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Referencias bibliograficas

Programming. Principles and Practice Using C++

Del autor del lenguaje C++, un amplio tutorial que ensefia a programar
en C++; hace un uso temprano de conceptos de orientacion a objetos y
de la STL, que quedan fuera del temario de este curso

C++: An Introduction to Computing (22 edicién)

Buena introduccion a la programacién en C++; buena organizacion de
los contenidos, bien desarrollado y con secciones practicas

El lenguaje de programacion C++ (Edicion especial)

Del autor del lenguaje C++, la referencia absoluta sobre el lenguaje C++
en la que consultar dudas y detalles técnicos sobre los elementos del
lenguaje
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Referencias bibliograficas

Programacion y resolucion de problemas con C++

Un enfoque practico al desarrollo de programas con C++ con
numerosos ejemplos

Problem Solving, Abstraction, Design Using C++ (32 edicion)

Introduccién a la programacién en C++ con un enfoque de desarrollo
de software y numerosos casos de estudio

Programacion en C++ para ingenieros

Introduccién a la programacion en C++ con explicaciones sencillas y
una organizacion clara
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Informatica y computadora R.A.E.

Informatica (Ciencia de la computacion)

Conjunto de conocimientos cientificos y técnicas
que hacen posible el tratamiento automatico
de la informacion por medio de ordenadores

Computadora

Maquina electronica, analogica o digital,
dotada de una memoria de gran capacidad

y de métodos de tratamiento de la informacién,
capaz de resolver problemas matematicos y logicos
mediante la ejecucion de programas informaticos
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Computadoras

En todas partes y con muchas formas

Luis Herndndez Yafiez

Pagima 5

Hardware y software

Hardware

Componentes que integran
la parte material
de una computadora

Software

Programas, instrucciones
y reglas informaticas
para ejecutar tareas

en una computadora
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Programacion de computadoras

Programar

Indicar a la computadora qué es lo que tiene que hacer

Programa

v" Secuencia de instrucciones

v" Instrucciones que entiende la computadora

v Y que persiguen un objetivo: jresolver un problema!

Fi== Luis Hernandez Yafiez
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Programadores

Anja Tivala DL PROEERVADOE SEEX

Trabajo en equipo
Muiltiples roles...

v' Gestores
v' Analistas
v' Disenadores

Parque Jurasico
v Programadores
v" Probadores

v Administradores de
sistemas

Fi== Luis Hernandez Yafiez
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Computadoras

Esquema general

Memoria

temporal

Unidad Central de Proceso
Central Processor Unit

Dispositivos Dispositivos
de entrada S de salida

Teclado Monitor
Ratén Impresora
N Escaner Altavoz
3§ Tactil Almacenamiento
2 permanente
Fundamentos de la programacion: Computadoras y programacion Pagina 9
Computadoras
La arquitectura de Von Neumann
Dispositivos de E/S I

Una ALU de 2 bits (Wikipedia)
C.P.U. (Procesador)

A.L.U.

Unidad Aritmético-Légica .
Memoria

Unidad de Control

Luis Hernandez Yafiez
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Computadoras

La memoria

Memoria Cada celda en una direccion
Celdasde 8 / 16 / 32 / 64 bits
Informacion volatil

1Bit=0/1

1 Byte = 8 bits = 1 caracter

1 Kilobyte (KB) = 1024 Bytes
1 Megabyte (MB) = 1024 KB

1 Gigabyte (GB) = 1024 MB
1 Terabyte (TB) = 1024 GB
1 Petabyte (PB) = 1024 TB

210=1024 ~ 1000

Fundamentos de la programacion: Computadoras y programacion Pagina 11

Direccion
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Lenguaje maquina y ensamblador
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Programacion de computadoras

Los procesadores trabajan con ceros y unos (bits)

Unidad de memoria basica: Byte (8 bits)
(2 digitos hexadecimales: 01011011 - 0101 1011 - 5B)

Lenguaje maquina

Codigos hexadecimales que representan instrucciones,
registros de la CPU, direcciones de memoria o datos

Instruccién Significado Lenguaje de bajo nivel

Dependiente de la maquina

A0 2F Acceder a la celda de memoria 2F
3E 01 Copiarlo el registro 1 de la ALU Programacion dificil
3 Ao 30 Acceder a la celda de memoria 30
£ 3E 02 Copiarlo en el registro 2 de la ALU
fg 1D Sumar
&: B3 31 Guardar el resultado en la celda de memoria 31

P Fundamentos de la programacion: Computadoras y programacion Pagina 13

Lenguaje ensamblador

Nemotécnicos para los cddigos hexadecimales:
A® - READ 3E 2> REG 1D -> ADD

Mayor legibilidad:

READ 2F Cédigo fuente
REG 01 (lenguaje ensamblador)
READ 30

REG 02

ADD Programa
WRITE 31 ensamblador

Lenguaje de nivel medio
Codigo objeto

(lenguaje maquina)

Fi== Luis Hernandez Yafiez
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Lenguajes de programacion
de alto nivel
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Lenguajes de programacion de alto nivel

v Maés cercanos a los lenguajes natural y matematico
resultado = datol + dato2;

v’ Mayor legibilidad, mayor facilidad de codificacién

v" Estructuracion de datos / abstraccion procedimental

FORTRAN Python Prolog C#
C Pascal Cobol Lisp Ruby

BASIC Smalltalk Haskell Ada
Simula Java Eiffel C++

z
I eee
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Lenguajes de programacion de alto nivel

Traduccion using nanespace otd;
Codigo fuente it mainG)
¢ 1 d dl
cout << "Hola Mundo!" << endl;
Compiladores: , et
Compilan y enlazan Compilador
programas completos
Intérpretes: Cédigo objeto 0100010100111010011100...
Compilan, enlazan _
y ejecutan instruccion Codigo
) . Enlazador objeto de
a Instruccion o
biblioteca

Programa Para una arquitectura concreta
ejecutable v un sistema operativo

Fi== Luis Hernandez Yafiez
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Los lenguajes de programacion de alto nivel

Genealogia de lenguajes Versiones / Estandares

coBOL L
1959

FORTRAN
1954

Pascal Modula

1970 N 1975

Simula

Fuente: 1964

http://www.levenez.com/lang/

Fi== Luis Hernandez Yafiez
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Un poco de historia

Fi== Luis Hernandez Yafiez
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Un poco de historia

La prehistoria
El abaco
Slglo XIX (Wikipedia)
Maquina analitica de Charles Babbage
Lady Ada Lovelace
es considerada
la primera
programadora

Fi== Luis Hernandez Yafiez
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Un poco de historia

Siglo XX

AL AN 'W‘":
L
1936 Maquina de Turing

1946 ENIAC: Primera computadora digital
de propdsito general
1947 El transistor

1953 IBM 650: Primera
computadora a gran escala

1966 ARPANET: Origen de Internet

1967 Eldisquete

1970 Sistema operativo UNIX

1972 Primer virus informatico (Creeper) H
Lenguaje de programacion C ﬂ

1974 Protocolo TCP. Primera red local

Fi== Luis Hernandez Yafiez
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Un poco de historia

1975 Se funda Microsoft  IMikCrosoft’ |
1976 Se funda Apple o

1979 Juego Pacman @ ‘ - .
1981 1BM PC Ry

Sistema operativo MS-DOS Apple Il (Wikipedia)
1983 Lenguaje de programacion C++
1984 CD-ROM -
1985 Windows 1.0 i —————
1990 Lenguaje HTML W . e
World Wide Web 4f Linux

IBM PC (Wikipedia)
1991 Sistema operativo Linux

P8 Fundamentos de la programacion: Computadoras y programacion Pagina 22
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Un poco de historia

1992 Windows 3.1

1995 Lenguaje de programacion Java
DVD

1998 Se funda Google GO 8[@

1999 MSN Messenger

.

Siglo XXI s

2001 Windows XP
Mac 0S X

2002 Mozilla Firefox

2007 iPhone

2008 Android ...

aNS30I12

Fi== Luis Hernandez Yafiez
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Programacion
e Ingenieria del Software

Fi== Luis Hernandez Yafiez
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Programa informatico

;Qué es programar?

Decirle a un tonto muy rdpido exactamente lo que tiene que hacer

Especificar la estructura y el comportamiento de un programa,
asi como probar que el programa realiza su tarea
adecuadamente y con un rendimiento aceptable

Programa: Transforma entrada en salida

Programa

Algoritmo: Secuencia de pasos y operaciones que debe realizar
el programa para resolver el problema

El programa implementa el algoritmo en un lenguaje concreto
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La Ingenieria del Software

La programacion es sélo una etapa del proceso de desarrollo

Modelo de desarrollo “en cascada”:

Planificaciéon Recursos necesarios, presupuesto, plan, ...
Analisis
Diseno
Programacion Implementacion

Prueba y depuracién

Mantenimiento
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Fundamentos de la programacion

El lenguaje de programacion C++

:E Luis Herndndez Yafiez
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El lenguaje de programacion C++

Bjarne Stroustrup (1983)

Hola Mundo!

#include <iostream>
using namespace std;

int main()

cout << "Hola Mundo!" << endl;
// Muestra Hola Mundo!
2 return 9;
@ Fundamentos de la programacion: Computadoras y programacion Pagina 28




Elementos del lenguaje

Instrucciones
Datos: literales, variables, tipos
Subprogramas (funciones)

Comentarios

Directivas P Directiva_ 3
#include <iostream>
using namespace std;

@I int main()
{ <<
AT cout << "Hola Mundo!" << endl;

// Muestra Hola Mundo!

3 Comentario
3 [T return ©;

@©

c

g }

I

§
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Fundamentos de la programacion

Sintaxis de los lenguajes
de programacion
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Los lenguajes de programacion

Sintaxis y semdntica de los lenguajes

Sintaxis

— Reglas que determinan como se pueden construir
y secuenciar los elementos del lenguaje

Semantica

— Significado de cada elemento del lenguaje
(Para qué sirve?

Fi== Luis Hernandez Yafiez
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Sintaxis de los lenguajes de programacion

Especificacion
v' Lenguajes (BNF)
v’ Diagramas

Ejemplo: Nimeros enteros (sin decimales)
BNF

<numero entero> ::= <signo opcional><secuencia de digitos>
<signo opcional> ::= +|-|<nada>
<secuencia de digitos> ::= <digito>| <digito><secuencia de digitos>

<digito>::=0]1]2|3|4|5|6]|7]|8]9
<nada> ::= g

Fi== Luis Hernandez Yafiez
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Backus-Naur Form (BNF)

<numero entero> ::= <signo opcional><secuencia de digitos>
<signo opcional> ::= +|-|<nada>

<secuencia de digitos> ::= <digito> | <digito><secuencia de digitos>
<digito>::=0]1]2|3|4|5|6|7|8|9
<nada> ::=

+23

<numero entero> ::= <signo opcional><secuencia de digitos>

::= +<secuencia de digitos> ::= +<digito><secuencia de digitos>
::= +2<secuencia de digitos> ::= +2<digito> ::= +23

1374

<numero entero> ::= <signo opcional><secuencia de digitos>

::= <secuencia de digitos> ::= <digito><secuencia de digitos>

::= 1<secuencia de digitos> ::= 1<digito><secuencia de digitos>
::= 13<secuencia de digitos> ::= 13<digito><secuencia de digitos>

::= 137<secuencia de digitos> ::= 137<digito> ::= 1374
1-34
<numero entero> ::= <signo opcional><secuencia de digitos> x

::= <secuencia de digitos> ::= <digito><secuencia de digitos>
::= 1<secuencia de digitos> ::= ERROR (- no es <digito>)

Fi== Luis Hernandez Yafiez
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Diagramas de sintaxis

+23 _)01 T m—) +23 ‘/
e ’: @ 1374 V
1-34 ?

*0—&‘1 —@r— 1-

Fi== Luis Hernandez Yafiez

Fundamentos de la programacion: Computadoras y programacion Pagina 34




Fundamentos de la programacion

Un primer programa en C++
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Un primer programa en C++

Hola Mundo!

Un programa que muestra un saludo en la pantalla:

#include <iostream>
using namespace std;

int main()
// main() es donde empieza la ejecucidn

{

cout << "Hola Mundo!" << endl; // Muestra Hola Mundo!

return 0;

Luis Hernandez Yafiez
-
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Un primer programa en C++

Andalisis del programa
Biblioteca

Directiva #include <iostream> Espacio de nombres
Instruccién using Namespace std;

\ / Coloreado sintactico

Tipo Palabras reservadas
.\ i . .z
Declaracién |int main|() Cabecera de la funcion

.go Variable Cadena de caracteres Constante

3 | Instruccién cout k< "Hola Mundo!" << endl;

é Ogerador | Operador

o /Datos literales
N > .z .
2 g | Instruccién return 03
- o Numero
2 } Cuerpo de la funcidn
f Las instrucciones terminan en ;
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Un primer programa en C++

Hola Mundo!

Casi todo es infraestructura
Sélo

cout << "Hola Mundo!" << endl
hace algo palpable

La infraestructura (notacién, bibliotecas y otro soporte)
hace nuestro codigo simple, completo, confiable y eficiente

jEl estilo importa!
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Fundamentos de la programacion

Herramientas de desarrollo

Luis Herndndez Yafiez

(Glolcle
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Herramientas de desarrollo

Editor

v" Bloc de notas, Wordpad, Word, Writer, Gedit, Kwrite, ...
(texto simple, sin formatos)

v" Editores especificos: coloreado sintactico
v" Recomendaciéon: Notepad++

H Eerirsinay m,.__ﬁ i
- ® 3 |
Instalacién y uso:
i il vk Seccién
...... Herramientas de desarrollo

en el Campus Virtual

Luis Hernandez Yafiez
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Compilacidn, enlace y ejecucion

hola.cpp = RUGNNIELE), hola.ob]
(cédigo fuente) (cédigo objeto)

Codigo objeto de

la biblioteca iostream Enlazador

Hola Mundo!

(:Eifé;él(l()r <1EE-- hola.exe
(ejecutable)

(DE

..... (8 Fundamentos de la programacién: Computadoras y programacion Pagina 41
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Mas herramientas de desarrollo

Compilador

v Importante: C++ estandar
v" Recomendaciéon: GNU G++ (MinGW en Windows)

N ks @41 e = f0H &

Instalacion y uso:
Seccién
Herramientas de desarrollo
en el Campus Virtual

(DE
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Mas herramientas de desarrollo

Entornos de desarrollo

v' Para editar, compilar y probar el cdigo del programa
v" Recomendaciones:
— Windows: MS Visual Studio / C++ Express o Eclipse
— Linux: Netbeans o Eclipse

Instalacién y uso:
Seccion
Herramientas de desarrollo
en el Campus Virtual

Iﬂ Luis Herndndez Yafiez
=
£
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Un primer programa en C++: ejecucion

/Qué hace el programa?

v' La ejecucion del programa siempre empieza en main()

v" Se ejecutan las instrucciones en secuencia de principio a fin

Pantalla (cout)
cout << "Hola Mundo!" << endl;

Muestra Hola Mundo!

H en la pantalla y salta de linea

Devuelve © como codigo

i de terminacién del programa

Tl Fundamentos de la programacion: Computadoras y programacion Pagina 44
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Fundamentos de la programacion

C++: Un mejor C
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F==" Luis Hernandez Yafiez
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C++: Un mejor C

El lenguaje C

v' Lenguaje creado por Dennis M. Ritchie en 1972
v' Lenguaje de nivel medio:
— Estructuras tipicas de los lenguajes de alto nivel
— Construcciones para control a nivel de maquina
Lenguaje sencillo (pocas palabras reservadas)
Lenguaje estructurado (no estrictamente estructurado en bloques)
Compartimentalizacion de codigo (funciones) y datos (aAmbitos)

Componente estructural basico: la funcion (subprograma)

Distingue entre mayusculas y minusculas

v
v
v
v
v Programacion modular
v
v’ Palabras reservadas (o clave): en minusculas
&)

ﬂ Luis Hernandez Yafiez
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Acerca de Creative Commons @@@@

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

Pulsa en la imagen de arriba a la derecha para saber mas.
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Fundamentos de la programacion

Un ejemplo de programacion

(0]
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Un ejemplo de programacion

Una computadora de un coche

Instrucciones que entiende:
<instruccion> ::= <inst> ;
<inst>::= Start | Stop | <avanzar>
<avanzar> ::= Go <direccién> <num> Blocks ,é.:
<direccién> ::= North | East | South | West
<num>:=1|2|3|4]|5

Ejemplos:

Start;

Go North 3 Blocks;

Stop;

(0)2]
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Un ejemplo de programacion

Sintaxis del lenguaje de programacion

- = Literales

instruccién Stop

~d4

avanzar

avanzar direccion Blocks

direccion —> num —

Luis Herndndez Yafiez
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Un ejemplo de programacion

El problema a resolver %

Estando el coche en la posicion A, 31
conseguir llegar al Cine Tivoli (B)

;Qué pasos hay que seguir?
Arrancar
Ir un bloque al Norte
Ir dos bloques al Este
Ir cinco bloques al Norte A

Ir dos bloques al Este
Parar Bloque: ¢+—¢ I

Luis Hernandez Yafiez
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Un ejemplo de programacion

El algoritmo

Secuencia de pasos que hay que
seguir para resolver el problema ‘.g

A

1.- Arrancar
2.- Ir un bloque al Norte
3.- Ir dos bloques al Este

4.- Ir cinco bloques al Norte d e
5.- Ir dos bloques al Este ‘

6.- Parar

Esos pasos sirven tanto para
una persona como para una computadora.

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 54
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Un ejemplo de programacion

El programa

Instrucciones escritas en 1]
el lenguaje de programacion — 3 B

Start;
Go North 1 Blocks;
Go East 2 Blocks;

Go North 5 Blocks; A
Go East 2 Blocks;
Stop;

(0]
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Un ejemplo de programacion

El programa

Escribimos el codigo del programa en un editor
y lo guardamos en un archivo:

- -y
S e R S - - o
e Cowgpay s lpray Terld  Foges

[ el Beme Ve e -

3| L B RS e *

Stat; |
Go North 1 Blocks Copiamos el archivo

Go East Blocks; en una llave USB
Go Noth 5 Blocks; y lo llevamos al coche
Go West 2 Blocks;
Stop;

e
1
E
|-;

Luis Herndndez Yafiez

@10
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Un ejemplo de programacion

La compilacion

Introducimos la llave USB en el coche
y pulsamos el boton de ejecutar el programa:

Stat;
----"~ Unknown word.
Go North 1 Blocks
A 5 missing.

Go East Blocks;
A Number missing.

Errores

de sintaxis
Go Noth 5 Blocks;

A Unknown word.
Go West 2 Blocks;
Stop;
There are errors. Impossible to run the program.

Luis Hernandez Yafiez
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Un ejemplo de programacion

Depuracion

Editamos el codigo para corregir los errores sintacticos:

Stat; Start;

Go North 1 Blocks Go North 1 Blocks;
Go East Blocks; E::i:>- Go East 3 Blocks;

Go Noth 5 Blocks; Go North 5 Blocks;
Go West 2 Blocks; Go West 2 Blocks;

Stop; Stop;

(0]
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Un ejemplo de programacion

La ejecucion

Se realiza lo que pide
cada instruccion: B

Start;
Go North 1 Blocks;
Go East 3 Blocks;

® ——=mg

Error de ejecucion
jUna instruccion no se puede ejecutar!

Luis Hernandez Yafiez

(0]

@ Fundamentos de la programacion: Tipos e instrucciones | Pagina 59

f
e




Un ejemplo de programacion

Depuracion

Editamos el codigo para arreglar el error de ejecucion:

Start;

Go North 1 Blocks;

Go East 3 Blocks; E::{:>
Go North 5 Blocks;

Go West 2 Blocks;

Stop;

(0]
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Start;

Go North 1 Blocks;
Go East 2 Blocks;

Go North 5 Blocks;
Go West 2 Blocks;

Stop;

Pagina 60

Un ejemplo de programacion

La ejecucion

Se realiza lo que pide

cada instruccion:
Start;
Go North 1 Blocks;
Go East 2 Blocks;
Go North 5 Blocks;
Go West 2 Blocks;
Stop;

Error logico

Luis Hernandez Yafiez

(0]
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jEl programa no llega al resultado deseado!
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Un ejemplo de programacion

Depuracion

Editamos el codigo para arreglar el error logico:

Start; Start;
Go North 1 Blocks; Go North 1 Blocks;
Go East 2 Blocks; E::i:>- Go East 2 Blocks;
Go North 5 Blocks; Go North 5 Blocks;
Go West 2 Blocks; Go East 2 Blocks;
Stop; Stop;

Fundamentos de la programacién: Tipos e instrucciones | Pagina 62

Un ejemplo de programacion

La ejecucion
Se realiza lo que pide
cada instruccion: & &
Start;
Go North 1 Blocks;
Go East 2 Blocks;

Go North 5 Blocks; ~§ oo
Go East 2 Blocks; y
Stop;

jConseguido!

(0]
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Fundamentos de la programacion

El primer programa en C++

(0]
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El primer programa en C++

Hola Mundo!
De vuelta en el programa que muestra un saludo en la pantalla:

#include <iostream>
using namespace std;

int main() // main() es donde empieza la ejecucidn

{

cout << "Hola Mundo!" << endl;

return 0;

Luis Hernandez Yafiez
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El primer programa en C++

Hola Mundo!
La Unica instruccion que produce algo tangible:

#include <iostream>
using namespace std;

int main() // main() es donde empieza la ejecucidn

{
cout << "Hola Mundo!" << endl;
) return 0;
Fundamentos de la programacion: Tipos e instrucciones | Pagina 66

El primer programa en C++

cout (iostream) character output stream

Visualizacion en la pantalla: operador << (insertor)

cout << "Hola Mundo!" << endl;

-« "Hola Mundo!" << endl;

Hola Mundo!

endl = end line

(0]
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El dispositivo de salida

Pantalla en modo texto

=» Lineas de 80 caracteres (textos)

Aplicacién en modo texto

» -
v e Feratgrer o proge e J5 D JULTEW 15 L iinaie T o Frcio Crisgess: o -

=7 Luis Hernandez Yafiez
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El dispositivo de salida

Ventanas de consola o terminal

Las aplicaciones en modo texto se ejecutan dentro de ventanas:
v" Windows: ventanas de consola (Simbolo del sistema)

v' Linux: ventanas de terminal

Cursor parpadeante: Donde se colocara el siguiente caracter.

=7 Luis Hernandez Yafiez
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Visualizacion de datos

El insertor << cout << ...;

Inserta textos en la pantalla de modo texto
Representacién textual de los datos

A partir de la posicion del cursor

Line wrap (continua en la siguiente linea si no cabe)

Se pueden encadenar:

cout << ... << ... << %}

Recuerda: las instrucciones terminan en ;

(0]
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r Luis Herndndez Yafiez
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Visualizacion de datos

Con el insertor << podemos mostrar...

v’ Cadenas de caracteres literales
Textos encerrados entre comillas dobles: "..."
cout << "Hola Mundo!";
iLas comillas no se muestran!
v' Nameros literales
Con o sin decimales, con signo o no: 123, -37, 3.1416, ...
cout << "Pi = " << 3.1416;

Se muestran los caracteres que representan el niumero

v endl jPunto decimal, NO coma!

Luis Hernandez Yafiez
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El primer programa en C++

El programa principal
La funciéon main(): donde comienza la ejecucion...

#include <iostream>
using namespace std;

int main() // main() es donde empieza la ejecuciodn

{

cout << "Hola Mundo!" << endl;
return 0;

}

Contiene las instrucciones que hay que ejecutar

Luis Herndndez Yafiez
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El primer programa en C++

El programa principal

La funcién main():

Tipo de la funcion (int = entero): Tipo de valor que devuelve

I_ Nombre de la funcion

mair@— iEs una funcién!

r"c.e’;ur‘n 0; — Cuerpo de la funcion (bloque de c6digo)

AVl B% Il Devuelve el resultado (@) de la funcién
0]
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El primer programa en C++

Documentando el cédigo...
Comentarios (se ignoran):

#include <iostream>
using namespace std;

int main() // main() es donde empieza la ejecucidn

{

cout << "Hola Mundo!" << endl;

Hasta el final delalinea: // Comentario de una linea

De varias lineas: /* Comentario de varias
lineas seguidas */

Luis Herndndez Yafiez
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El primer programa en C++

La infraestructura

Codigo para reutilizar:

#include <iostream> <«—— Una directiva: empieza por #
using namespace std;

int main() // main() es donde empieza la ejecucidn

{

cout << "Hola Mundo!" << endl;
return 0;

}

Bibliotecas de funciones a nuestra disposicion

Luis Hernandez Yafiez

(0]
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El primer programa en C++

Bibliotecas

Se incluyen con la directiva #include:

#include <iostream>

(Utilidades de entrada/salida por consola)

Para mostrar o leer datos hay que incluir la biblioteca iostream

Espacios de nombres

En iostream hay espacios de nombres; ;cual queremos?

#include <iostream>
using namespace std; <«—— Esuna instruccion: terminaen ;

Siempre usaremos el espacio de nombres estandar (std)
Muchas bibliotecas no tienen espacios de nombres

Luis Herndndez Yafiez
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El primer programa en C++

Compilacion y enlace
A menudo en un paso

hola.obj
(cédigo objeto)

hola.cpp ——>> NUQWHIELNS
(codigo fuente)

Codigo objeto de
la biblioteca iostream

Hola Mundo!
(— hola.exe
(ejecutable)
013
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Enlazador
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El primer programa en C++

Elementos del programa

Biblioteca

Directiva #include <ios’cr‘eam>/ESI°"=‘Ci°de nombres

Instruccion using namespace std; Coloreado sintactico:

Directivas Tipos
. Palabras reservadas generales
T"< Palabras reservadas Datos literales Comentarios
Declaracion |int main ( ) Cabecera de la funcidn
_gn { Variable Cadena de caracteres Constante
3 | Instruccién cout K< "Hola Mundo!" << endl;
o Ogerador | Operador
©
o Datos literales
=) L
& | Instruccién return 0;
o Ndmero
} Cuerpo de la funcidn

Las instrucciones terminan en ;

7 Luis Hernandez Yafiez
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El primer programa en C++

Uso de espacio en blanco

Separacién de elementos por uno o mas espacios en blanco
(espacios, tabuladores y saltos de linea)

El compilador los ignora

#include <iostream> using namespace std;
int main(){cout<<"Hola Mundo!"<<endl;
return 0;}

#include <iostream>
using namespace std;

int main()

{ ;Cuadl se lee mejor?
cout << "Hola Mundo!" << endl;

return 0;

% Luis Hernandez Yafiez
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Fundamentos de la programacion

Las lineas de cddigo del programa

(0]
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Programa minimo

Programa con E/S por consola
Una plantilla para empezar:
#include <iostream>

using namespace std;

int main()

{
<€ jTu cédigo aqui!

Zgj
= return 9;
L
5
g
I
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El Quijote... M‘
.. recitado en la consola Yﬁ?

Mostrar los textos con cout <<:

#include <iostream>
using namespace std;

int main()

{

cout << "En un lugar de la Mancha," << endl;

cout << "de cuyo nombre no quiero acordarme," << endl;

cout << "no ha mucho tiempo que vivia un hidalgo de los de

lanza en astillero, " << endl;
s return 0;
53
3 }
5
T
I E E
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Lineas de cédigo

Introduccion del codigo del programa

Terminamos cada linea de c6digo con un salto de linea (J):

#tinclude <iostream> d
using namespace std; d

d
int main() d
{d
cout << "En un lugar de la Mancha," << endl; d
cout << "de cuyo nombre no quiero acordarme," << endl; J
cout << "no ha mucho tiempo que vivia un hidalgo de los de
lanza en astillero, ..." << endl; J
return 9; J
}d

Luis Hernandez Yafiez
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Lineas de cédigo
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L.

Introduccion del codigo del programa

No hay que partir una cadena literal entre dos lineas:

cout << "no ha mucho tiempo que vivia un hidalgo de@

los de lanza en astillero, ..." << endl; d

jLa cadena no termina (12 linea)!

jNo se entiende 1os (22 linea)!

Veamos cémo nos muestra los errores el compilador...

(0]
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Programar pensando en posibles cambios

Mantenimiento y reusabilidad

v' Usa espacio en blanco para separar los elementos:
<< endl;

cout << "En un lugar de la Mancha,

mejor que
cout<<"En un lugar de la Mancha, "<<endl;

v' Usa sangria (indentacion) para el cédigo de un bloque:

{
Tab ‘)‘cout << "En un lugar de la Mancha," << endl;
)
3esp- lpeturn 0;
}

jEl estilo importa!

(0]
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Fundamentos de la programacion

Calculos en los programas

(0]
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Calculos en los programas

Operadores aritméticos

+ Suma

- Resta

*  Multiplicacion

/  Divisiéon

Operadores binarios

operando_izquierdo  operador  operando _derecho

Operacion Resultado
3+ 4 7

2.56 - 3 -0.44
143 * 2 286
45.45 / 3 15.15

(0]
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Calculos en los programas

v, Luis Herndndez Yafiez
(7)
* )]

Numeros literales (concretos)

v Enteros: sin parte decimal
Signo negativo (opcional) + secuencia de digitos
3 143 -12 67321 -1234

No se usan puntos de millares

Signo negativo (opcional) + secuencia de digitos
+ punto decimal + secuencia de digitos

3.1416 357.0 -1.333 2345.6789 -404.1

v’ Reales: con parte decimal

54 Punto decimal (3 1416), NO coma (3.1416)

(0]
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Calculos en los programas

Luis Hernandez Yafiez

Ejemplo

#include <iostream>
using namespace std;

int main()

‘ Un texto Un nimero
cout << "33 + 1234 =" <<[133 + 1234 |<< endl;
cout << "1234 - 111.5 = " << 1234 - 111.5 << endl;
cout << "34 *¥ 59 = " << 34 * 59 << endl;
cout << "3.4 * 5,93 = " << 3.4 * 5,93 << endl;
cout << "500 / 3 = " << 500 / 3 << endl; // Div. entera
cout << "500.0 / 3 = " << 500.0 / 3 << endl; // Div. real
return 0;
}

(0]
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Calculos en los programas

D:\FP\Temad2»g++ -0 calculos calculos.cpp

s resuelve std::cout al enlaza

gw/bin/../ /lib/gee/mingw32/4.5.8

acion automatica s activo 51

InNcionar a meno

en simbolos de

Division entera

Division real

(0]
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Calculos en los programas

¢Division entera o division real?

Ambos operandos enteros > Divisioén entera
Algtin operando real = Division real

Division Resultado
500 / 3 166

500.0 / 3 166.667
500 / 3.0 166.667
500.0 / 3.0 166.667

Comprueba siempre que el tipo de divisidn sea el que quieres

Luis Hernandez Yafiez
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Fundamentos de la programacion

Variables
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Variables

Datos que se mantienen en memoria
Variable: dato que se accede por medio de un nombre

Dato literal: un valor concreto

Variable: puede cambiar de valor (variar)

edad = 19; // variable edad y literal 19

Las variables deben ser declaradas
;Qué tipo de dato queremos mantener?
v' Valor numérico sin decimales (entero): tipo int

v’ Valor numérico con decimales (real): tipo double

Declaracion: tipo nombre;

Luis Hernandez Yafiez
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Variables

Declaracion de variables tipo nombre;
int cantldac'j; Memoria
double precio; cantidad >
Se reserva espacio suficiente precio >

LAS VARIABLES NO SE INICIALIZAN
No se deben usar hasta que se les haya dado algun valor

¢;Donde colocamos las declaraciones?

Siempre, antes del primer uso
Habitualmente al principio de la funcién

Luis Herndndez Yafiez
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Variables
Declaracion de variables Memoria
#tinclude <iostream> cantidad ?
using namespace std; .
precio ?
int main() total >

{

int cantidad;
double precio, total;

Podemos declarar varias de un mismo tipo

return @; separando los nombres con comas

Luis Hernandez Yafiez
—
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Variables

Capacidad de las variables
int
-2.147.483.648 ... 2.147.483.647
-2147483648 .. 2147483647

double
2,23 x103%8 1,79 x 10*398 y sus negativos

[+]-] 2.23e-308..1.79e+308

Problemas de precision

Luis Herndndez Yafiez
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Variables

Asignacion de valores a las variables (operador =)

cantidad = 12; // int cantidad €< 12

precio = 39.95; // double
total = cantidad * precio; // Asigna 479.4

Concordancia de tipos: cantidM. 5;

jiiA la izquierda del = debe ir siempre una variable!!!

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 97

v, Luis Hernandez Yafiez
f




Fundamentos de la programacion

Expresiones

(0]
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Expresiones

Expresiones

Secuencias de operandos y operadores

operando operador operando operador operando ...

total =|cantidad * precio * 1.18|

p

I
Expresion

A igual prioridad se evaluan de izquierda a derecha

Paréntesis para forzar ciertas operaciones

total = cantidadl + cantidad2 * precio;

Luis Hernandez Yafiez
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total = (cantidadl + cantidad2) * precio;

Unos operadores se evaluan antes que otros
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Expresiones

Precedencia de los operadores

cantidadl 10;
cantidad2

=2;
precio = 40.0;

*y/ se evaldan antes que +y -

total = cantidadl + cantidad2 * precio;
*antesque+ > 10+2*40,0-> 10+80,0->90,0

total = (cantidadl + cantidad2) * precio;
+antesque * 2> (10+2)*40,0-> 12*40,0 > 480,0

Luis Herndndez Yafiez
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Variables y expresiones

Ejemplo de uso de variables y expresiones

#include <iostream>
using namespace std;

int main()

int cantidad;
double precio, total;
cantidad = 12;
precio = 39.95;
total = cantidad * precio;
cout << cantidad << " x " << precio << " ="
) << total << endl;
5 return 0;
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Variables y expresiones

Ejemplo de uso de variables Memoria
#include <iostream> cantidad ?
using namespace std;

precio ?
int main()
{
total ?
int cantidad;
double precio, total;
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Variables y expresiones

Ejemplo de uso de variables Memoria
#include <iostream> cantidad 12
using namespace std;

precio ?
int main()
{
total ?
int cantidad;
double precio, total;
cantidad = 12;
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Variables y expresiones

Ejemplo de uso de variables Memoria
#include <iostream> cantidad 12
using namespace std;

precio 39.95
int main()
{
total ?
int cantidad;
double precio, total;
cantidad = 12;
precio = 39.95;
Fundamentos de la programacion: Tipos e instrucciones | Pagina 104
Variables y expresiones

Ejemplo de uso de variables Memoria
#include <iostream> cantidad 12
using namespace std;

precio 39.95
int main()
{ total 479.4

int cantidad;

double precio, total;
cantidad = 12;

precio = 39.95;

total = cantidad * precio;

(0]
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Variables y expresiones

Ejemplo de uso de variables Memoria
#include <iostream> cantidad 12
using namespace std;

precio 39.95
int main()
{ total 479.4

int cantidad;

double precio, total;
cantidad = 12;

precio = 39.95;

total = cantidad * precio;

cout << cantidad << X " << precio << =
<< total << endl;

(0]
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Variables y expresiones

Ejemplo de uso de variables

#include <iostream>
using namespace std;

int main()
{
int cantidad;
double precio, total;
cantidad = 12;
precio = 39.95;
total = cantidad * precio;

cout << cantidad << X " << precio << =

<< total << endl;

return 0;

}
[0}
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Fundamentos de la programacion

Lectura de datos desde el teclado

P4gina 108
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: (&)

Valores proporcionados por el usuario

cin (iostream) character input stream
Lectura de valores de variables: operador >> (extractor)

cin >> cantidad;

Memoria
cin >> cantidad; cantidad 12
— 12
COEIED |-
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Valores proporcionados por el usuario

Transforma los caracteres introducidos en datos

Cursor parpadeante: lugar de lectura del siguiente caracter
La entrada termina con Intro (cursor a la siguiente linea)

jEl destino del extractor debe ser SIEMPRE una variable!

Se ignoran los espacios en blanco iniciales

==z Luis Hernandez Yafiez
f
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Valores proporcionados por el usuario

Lectura de valores enteros (int)
Se leen digitos hasta encontrar un caracter que no lo sea
12abcd 12 abcd 12  abcd 124
Se asigna el valor 12 a la variable
El resto queda pendiente para la siguiente lectura
Recomendacion: Lee cada variable en una linea 124

Lectura de valores reales (double)
Se leen digitos, el punto decimal y otros digitos
39.95.5abc 39.95 abcd 39.954

Se asigna el valor 39,95 a la variable; el resto queda pendiente
Recomendacioén: Lee cada variable en unalinea  39.954J

Luis Hernandez Yafiez
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Luis Herndndez Yafiez

Valores proporcionados por el usuario

@8l

/Qué pasa si el usuario se equivoca?

El dato no sera correcto
Aplicacion profesional: cddigo de comprobacion y ayuda
Aqui supondremos que los usuarios no se equivocan

En ocasiones afiadiremos comprobaciones sencillas

€@ Para evitar errores, lee cada dato en una instruccién aparte
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Valores proporcionados por el usuario

Luis Hernandez Yafiez

{E}

/Qué pasa si el usuario se equivoca?

int cantidad; jAmigable con el usuario!
double precio, total; (Qué tiene que introducir?

cout << "Introduce la cantidad: ";
cin >> cantidad;

cout << "Introduce el precio: ";
cin >> precio;

cout << "Cantidad: " << cantidad << endl;
cout << "Precio: " << precio << endl;

la cantidad: abc

ce el precio: Cantidad: @

recio: 1.79174e-387

No se puede leer un entero = 0 para cantidad y Error
La lectura del precio falla: precio no toma valor (basura)

HEE
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Valores proporcionados por el usuario

/Qué pasa si el usuario se equivoca?

duce la cant :ll.‘J:Jl.']i 12abc . 12 para cantidad
C el preclo: Cantidad: 12 No se puede leer un real
- 0 para precioy Error

s la -:'.'J||1.'1:L-‘|.-'J-:‘|j. J_J':r:-ni'_u_' 12 para cantidad
e 2] Precio: Lan cldad: .5 9 0,5 para pr\ec iO
Lo demas queda pendiente

jijLectura correctal!!

Luis Herndndez Yafiez
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Programa con lectura de datos

Division de dos niimeros

Pedir al usuario dos numeros y mostrarle el resultado
de dividir el primero entre el seqgundo

Algoritmo.- )
Datos / calculos

1. Pedir el numerador
Variable numerador (double)

2. Pedir el denominador
Variable denominador (double)

3. Realizar la division, guardando el resultado

Variable resultado (double)
resultado = numerador / denominador

4. Mostrar el resultado

Luis Hernandez Yafiez
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Un esquema general

Entrada-Proceso-Salida

Muchos programas se ajustan a un sencillo esquema:

Declaraciones Entrada Procesamiento Salida

. Leer numerador

. Leer denominador

. Calcular division en resultado

. Mostrar resultado

7 Luis Herndndez Yafiez
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Programa con lectura de datos  instrucciones

Division de dos niimeros

Pedir al usuario dos numeros y mostrarle el resultado de dividir el
primero entre el sequndo.

1. Leer numerador

cin >> numerador;

2. Leer denominador

cin >> denominador;

3. Calcular divisién en resultado

resultado = numerador / denominador;
4. Mostrar resultado

cout << resultado;

7 Luis Herndndez Yafiez
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Programa con lectura de datos implementacisn

Division de dos niimeros

#include <iostream> 129
using namespace std; Denominador: 2

Resultado: 64.5

int main()

{

doub numerador

resultado

£ cout "Resl - r do << en
>
3 return 0;
~©
5 }
§
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Fundamentos de la programacion

Resolucion de problemas

7 Luis Herndndez Yafiez
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Resolucion de problemas Anélisis / Disefio

Problema

Dadas la base y la altura de un tridngulo, mostrar su drea

Refinamiento

Mostrar en la pantalla un texto que pida la base del tridngulo. El usuario
introducirda el valor con el teclado. Mostrar en la pantalla un texto que
pida la altura del triangulo. El usuario introducird el valor con el teclado.
Se calculard el drea del tridngulo y se mostrard en la pantalla.

(0]
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Resolucion de problemas

Objetos: Datos que maneja el programa

variable cin

cout cadena literal

Mostrar pn Id pantallalyn|texto que pida la base del tridngulo| El usuario

introduc 4=a—le| baselcon &fiteclado)|Mostrar en la pantalla un|texto que

pida la altura del tridngula El usuario introducird Iq alturalcon el

teclado. 51 calculard el drea del tridnguloly se mostrard Izn la pantalla.

cadena literal

variable
variable

(0]
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Resolucion de problemas
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Datos que maneja el programa: tipos

Objeto Tipo
Pantalla

"Introduzca la base del triangulo: "

Base del triangulo double
Teclado

"Introduzca la altura del triangulo: "

Altura del triangulo double
Area del tridngulo double

(0]
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¢Varia?
Variable
Constante
Variable
Variable
Constante
Variable

Variable

Nombre
cout
ninguno
base
cin
ninguno
altura

area
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Resolucion de problemas

Operaciones (acciones)

cout <<

cin >> ...

Mostrar en la pantalla un texto que pida la Hase del tridngulo. El usuario

introducird la base con el teclado. Mostrar en la pantalla un texto que

pida la altura del tridngulo. El usuario|introducird

la altura con el

teclado. S¢ calculard el drea del tridngulo y se mostrard en la pantalla.

area = base * altura / 2

(0]
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El algoritmo

Secuencia de acciones que ha de realizar el programa
para conseguir resolver el problema

Mostrar en la pantalla el texto que pida la base del triangulo
Leer del teclado el valor para la base del triangulo

Mostrar en la pantalla el texto que pida la altura

Leer del teclado el valor para la altura del triangulo

Calcular el area del triangulo

A o A

Mostrar el area del triangulo

7 Luis Hernandez Yafiez
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El programa

#tinclude <iostream>

using namespace std;
int main()

{

Declaraciones

A]goritmo . Leer del teclado el valor para la base del triangulo

. Mostrar en la pantalla el texto que pida la base del triangulo

traducido . Mostrar en la pantalla el texto que pida la altura del triangulo
a codigo . Leer del teclado el valor para la altura del triangulo
en C++ . Calcular el area del triangulo

. Mostrar el area del tridngulo

return 0;

% Luis Hernandez Yafiez
-
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Programacion

El programa: implementacion

#include <iostream> . guls _ ;. _ ;
using namespace std; NP TN L

int main()

{
double base, altura, area; // Declaraciones
cout << "Introduzca la base del triangulo: "; // 1
cin >> base; // 2
cout << "Introduzca la altura del tridngulo: "; // 3
cin >> altura; // 4
area = base * altura / 2; // 5
cout << "El area de un triangulo de base " << base // 6
<< "y altura " << altura << " es: " << area << endl;
return 0;
)
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Los datos de los programas

HEE
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Los datos de los programas

Variabilidad de los datos

"Introduzca la base del triangulo: "

3.141592653589

Literales

Constantes

Con nombre

= 3.141592653589
Variables

base, altura, areg> €<—— ldentificadores

(0]
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Fundamentos de la programacion

Identificadores

(0]
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Identificadores # palabras reservadas

v, Luis Herndndez Yafiez
(7)
* )]

Para variables y constantes con nombre
— Nombre de un dato (para accederlo/modificarlo)
— Deben ser descriptivos

Sintaxis:

—

cantidad prrecio total base altura area numerador
Al menos 32 caracteres significativos

ﬁﬁ iNi efies ni vocales acentuadas!
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Identificadores
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Palabras reservadas del lenguaje C++

asm auto bool break case catch char class const
const _cast continue default delete do double
dynamic_cast else enum explicit extern false

float for friend goto if inline int 1long

mutable namespace new operator private protected
public register reinterpret_cast return short
signed sizeof static static_cast struct switch
template this throw true try typedef typeid
typename union unsigned wusing virtual void

volatile while

(0]
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A 4

Identificadores -

¢/ Qué identificadores son vdlidos?
balance \/ interesAnual \/

_base_imponible \/ afios X

EDAD12 \/ salario 1 mes \/

__edad \/ calculoNomina XK
valor%iee XK AlgunValor \/
100caracteres X valor? X

_12_meses ‘/ ____valor ‘/

(0]
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Fundamentos de la programacion

Tipos de datos
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Tipos de datos

Tipos true 125
Cada dato, de un tipo concreto 3.141 5-9 'a

Cada tipo establece:

— El conjunto (intervalo) de valores validos

— El conjunto de operaciones que se pueden realizar

Expresiones con datos de distintos tipos (compatibles):

Transformacién automatica de tipos (promocion de tipo)

©@ Anexo del Tema 2: detalles técnicos

Luis Herndndez Yafiez
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Tipos de datos basicos

int
Numeros enteros (sin decimales) 1363,-12,49 \/

float
Numeros reales 12.45,-3.1932,1.16E+02

double

Numeros reales (mayores intervalo y precision) \/
char

Caracteres at, {" "\t'
bool

Valores logicos (verdadero/falso) true, false
string

Cadenas de caracteres (biblioteca string) "Hola Mundo!"
void

Nada, ausencia de tipo, ausencia de dato (funciones)

Luis Hernandez Yafiez
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char Caracteres

Intervalo de valores: Juego de caracteres (ASCII) 1 byte
Literales:

L3 vy "\t
Constantes de barra invertida (o secuencias de escape):
Caracteres de control

"\t' =tabulador '\n' =salto delinea

Poeh )%+, -.f

8123456789 : r <=
GABCDEFGHIJKLMND ey —taAk
OpoOsopERUOUY

PORSTUVWXYZ [\ 1"
"abcdefghijklmno [SO-8859-1
pgrstuvwxyz{|}- (ASCII extendido: cédigos 128..255)

ASCII (cédigos 32..127)

==z Luis Hernandez Yafiez
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bool Valores l6gicos

Sélo dos valores posibles:
— Verdadero (true)
— Falso (false)

Literales:
true false

Cualquier namero distinto de @ es equivalente a true
El @ es equivalente a false

(0]
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Maylsculas y minuasculas

C++ distingue entre mayusculas y minusculas

int: palabra reservada de C++ para declarar datos enteros

Int, INT o inT no son palabras reservadas de C++

true: palabra reservada de C++ para el valor verdadero

True o TRUE no son palabras reservadas de C++

Luis Herndndez Yafiez

@ ? Fundamentos de la programacion: Tipos e instrucciones | P4gina 138
string Cadenas de caracteres
"Hola" "Introduce el numerador: " "X142FG5TX?%A"

—@— @—
—

Secuencias de caracteres

Programas con variables de tipo string:

#include <string>
using namespace std;

ﬂlﬂ Las comillas tipograficas (apertura/cierre) “..”” NO sirven

Asegurate de utilizar comillas rectas: "...

Luis Hernandez Yafiez
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Tipos de datos basicos: ejemplo

#include <iostream>
#include <string>
using namespace std; // Un solo using... para ambas bibliotecas

int main()
{
int entero = 3; // Podemos asignar (inicializar) al declarar
double real = 2.153;
char caracter = 'a';
bool cierto = true;
string cadena = "Hola";
cout << "Entero: " << entero << endl;
cout << "Real: " << real << endl;
cout << "Caracter: " << caracter << endl;
cout << "Booleano: << cierto << endl;
cout << "Cadena: " << cadena << endl;

return @; ;Cudntos numeros hay en total en el programa?
} (Y caracteres? ;Y cadenas? ;Y booleanos?

Luis Herndndez Yafiez
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Modificadores de tipos

— signed /unsigned : con signo (por defecto) / sin signo

— short / long : menor / mayor intervalo de valores

Tipo Intervalo

int -2147483648 .. 2147483647
unsigned int 0..4294967295

short int -32768..32768

unsigned short int ©..65535

long int -2147483648 .. 2147483647
unsigned long int ©..4294967295

double +|- 2.23e-308..1.79e+308
long double +|- 3.37E-4932..1.18E+4932

(0]
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Fundamentos de la programacion

Declaracion y uso de variables

Luis Herndndez Yafiez
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Declaracion de variables

[modificadores] tipo lista de variables;
L—— Opcional —

lista_de variables _>
int i, j, 1; O

short int unidades;
unsigned short int monedas;

double balance, beneficio, perdida;

co Programacion con buen estilo:
Identificadores descriptivos

Espacio tras cada coma
Nombres de las variables en minusculas
(Varias palabras: capitaliza cada inicial: interesPorMes)

Luis Hernandez Yafiez
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Datos y memoria

Se reserva memoria suficiente para cada tipo de dato

int inicio; Memoria
short int unidades;
double balance;

Luis Herndndez Yafiez
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Inicializacion de variables

jEn C++ las variables no se inicializan automdticamente!
jUna variable debe ser haber sido inicializada antes de ser accedida!
;COmo se inicializa una variable?

— Al leer suvalor (cin >>)

— Al asignarle un valor (instruccion de asignacién)

— Al declararla

Inicializacién en la propia declaracién:

N /dentificador = Expresion Expresion: valor compatible

int 1 =90, J, 1 = 26; En particular, una expresion
short int unidades = 100; puede ser un literal

Luis Hernandez Yafiez
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Uso de las variables

Obtencion del valor de una variable

v" Nombre de la variable en una expresion
cout << balance;
cout << interesPorMes * meses / 100;

Modificacion del valor de una variable

v" Nombre de la variable a la izquierda del =
balance = 1214;
porcentaje = valor / 30;

Las variables han de haber sido previamente declaradas

(0]
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Instrucciones de asignhacion

(0]
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Instrucciones de asignacion

El operador =

Variable = Expresion 0—>

Alaizquierda, SIEMPRE una variable

int i, j = 2;
i=23+3j*5; // itoma el valor 33

(0]
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Instrucciones de asignacion

Errores

int a, b, c;

X

// ERROR: un literal no puede recibir un valor

|

// ERROR: no puede haber una expresién a la izda.

11
(@]
-

25

(0]
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@ 0 o

// ERROR: un entero no puede guardar una cadena

// ERROR: expresién no valida (falta operador)
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Variables, asignacion y memoria

int i, j = 2;
i=23+3j * 5;

Memoria

>
23 + 2 * 5

7 Luis Herndndez Yafiez
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Ejemplo: Intercambio de valores

Necesitamos una variable auxiliar

double a = 3.45, b = 127.5, aux;

7 Luis Herndndez Yafiez
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Fundamentos de la programacion

Operadores
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Operadores

Operaciones sobre valores de los tipos

Cada tipo determina las operaciones posibles

Tipos de datos numéricos (int, float y double):
— Asignacion (=)

— Operadores aritméticos

— Operadores relacionales (menor, mayor, igual, ...)
Tipo de datos bool:

— Asignacion (=)

— Operadores légicos (Y, O, NO)

Tipos de datos char y string:

— Asignacion (=)

— Operadores relacionales (menor, mayor, igual, ...)

(0]
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Operadores aritméticos

Operadores para tipos de datos numéricos

oo fre | Combodewgmo
- Lemw o | wen

. tvonai | e ponio | Decrments

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Tipos e instrucciones | Pagina 154

Operadores aritméticos

Operadores monarios y operadores binarios

Operadores monarios (unarios)

— Cambio de signo (-):
Delante de variable, constante o expresion entre paréntesis
-saldo -RATIO -(3 * a - b)

— Incremento/decremento (so6lo variables) (prefijo/postfijo):
++interes --meses j++ // 1 mas 6 1 menos

Operadores binarios

— Operando izquierdo operador operando derecho
Operandos: literales, constantes, variables o expresiones
2 + 3 a * RATIO -a+b
(a % b) * (c / d)

7 Luis Herndndez Yafiez
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Operadores aritméticos

¢ Division entera o division real?
Ambos operandos enteros: division entera
int 1 = 23, j = 2;
cout << i / j; // Muestra 11

Algun operando real: division real

int 1 = 23;

double j = 2;

cout << 1 / j; // Muestra 11.5

(0]
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Operadores aritméticos

Modulo (resto de la division entera) %

Ambos operandos han de ser enteros
int 1 = 123, j = 5;
cout << 1 % j; // Muestra 3

Division entera:
No se obtienen decimales 2 Queda un resto

123 | 5

3 24

<
123 % 5///7

(0]
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Operadores aritméticos

Operadores de incremento y decremento ++ /-
Incremento/decremento de la variable numérica en una unidad

Prefijo: Antes de acceder

int i = 10, j;
E—j = ++1i; // Incrementa antes de copiar
cout << 1 << " - " << j; // Muestra 11 - 11
Postfijo: Después de acceder
int i = 10, j;

Hj = i++; // Copia y después incrementa
cout << i << " - " << j; // Muestra 11 - 10

€@ No mezcles ++y - - con otros operadores
(030

S—mrm Fundamentos de la programacion: Tipos e instrucciones | P4gina 158

Luis Herndndez Yafiez

{E}

Operadores aritméticos: ejemplo

#include <iostream> operadores.cpp

using namespace std;

int main() {
int enterol = 15, entero2 = 4;
double reall = 15.9, real2 = 4.0;
cout << "Operaciones entre los numeros 15 y 4:" << endl;
cout << "Divisidn entera (/): " << enterol / entero2 << endl;
cout << "Resto de la divisidén (%): " << enterol % entero2 << endl;
cout << "Divisidn real (/): " << reall / real2 << endl;
cout << "Num = " << reall << endl;

reall = -reall;
cout << "Cambia de signo (-): " << reall << endl;
reall = -reall;

cout << "Vuelve a cambiar (-): << reall << endl;
cout << "Se incrementa antes (++ prefijo): " << ++reall << endl;
cout << "Se muestra antes de incrementar (posfijo ++): "

<< reall++ << endl;
cout << "Ya incrementado:
return 0;

<< reall << endl;

)
HEE

S ~undamentos de la programacion: Tipos e instrucciones | Pagina 159

Luis Hernandez Yafiez

{E}




Fundamentos de la programacion

Mas sobre expresiones

(0]
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Orden de evaluacion

¢En qué orden se evaluan los operadores?

3+5*2/2-1
;Deizquierda a derecha?
;De derecha a izquierda?
;Unos antes que otros?

Precedencia de los operadores (prioridad):
Se evaluan antes los de mayor precedencia
.Y si tienen igual prioridad?

Normalmente, de izquierda a derecha

Paréntesis: fuerzan a evaluar su subexpresion

Luis Hernandez Yafiez
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Precedencia de los operadores

Precedencia  JOJJEelo]¢=
Mayor prioridad [EEdEEEN LR uii[N)!

++ -- (prefijos)

- (cambio de signo)
* /%

Menor prioridad [E3

3+5*2/2-1>3+10/2-1 >3+5-1->8-1 >7

L] b

Misma precedencia: Mayor Misma precedencia:
Izquierda antes precedencia Izquierda antes

Luis Herndndez Yafiez
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Evaluacion de expresiones

((3+5) *4+12) /4 - (3*2-1) Primero,losparéntesis...

* antes que -
(8 * 4 +12) / 4 - (6 - 1)
l*antesque+ l
(32 + 12) / 4 - 5
44 | 4 - 5

l / antes que -

11 - 5 @@ Pon espacio antes y después
l de cada operador binario

6

Luis Hernandez Yafiez
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v, Luis Herndndez Yafiez
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Una férmula

#include <iostream> 2

bx

using namespace std; ,{[AJ — 3; + -

-3

int main()

{
double x, f;

cout << "Introduce el valor de X: ";

cin >> X;
f=3*x*x/5+6%*x/7-3; «<—
cout << "f(x) = " << f << endl;

return 0;

ﬁﬁ Usa paréntesis para mejorar la legibilidad:

f=(3*x*x/5)+(6*x/7)-3;

(0]
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Abreviaturas aritméticas
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. N

variable = VM operador op derecho;
LLamismaJ =

variable operador= op derecho;

Asignacion Abreviatura
a =a + 12; a += 12; _
Igual precedencia

a=a* 3; a *= 3; que la asignacion
a =a - 5; a -= 5;
a =a/ 37; a /= 37; De momento,

o o mejor evitarlas
a =a»% b; a %= b;

oG
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Desbordamiento

¢Valor siguiente al mdaximo?

Valor mayor del maximo (o menor del minimo) del tipo

short int i = 32767; // Valor maximo para short int
i++; // 32768 no cabe en un short int
cout << i; // Muestra -32768

Bitde signo < [IIAAAEIAN BENOOBAR 3276

0= iti

yzresitvo . |DODDODOR DDODODBRA -
IODDDNDD DODBDARE -7

7 Luis Hernandez Yafiez
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Constantes
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Constantes

Declaracion de constantes Modificador de acceso const

Variables inicializadas a las que no dejamos variar

const Declaracion de variable con inicializador

const short int Meses = 12;
const double Pi = 3.141592,
RATIO = 2.179 * Pi;

La constante no podra volver a
aparecer a laizquierda de un =

G'ﬁ Programacién con buen estilo:

Pon en mayuscula la primera letra
de una constante o todo su nombre

Luis Herndndez Yafiez
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éPor qué utilizar constantes con nombre?

v" Aumentan la legibilidad del c6digo

cambioPoblacion = (0.1758 - ©.1257) * poblacion; VS.

cambioPoblacion = (RatioNacimientos - RatioMuertes) * poblacion;

v" Facilitan la modificacién del codigo

double compral = brutol * 18 / 100; )
double compra2 = bruto2 * 18 / 100; 3 cambios «—
double total = compral + compra2;

cout << total << " (IVA: " << 18 << "%)" << endl;

const int IVA = 18; ;Cambio del IVA al 21%?
double compral = brutol * IVA / 100;

double compra2 = bruto2 * IVA / 100; 1 cambio €<—
double total = compral + compra2;

cout << total << " (IVA: " << IVA << "%)" << endl;

Luis Hernandez Yafiez
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Constantes: ejemplo

#include <iostream>
using namespace std;

int main() {

const double Pi = 3.141592;

double radio = 12.2, circunferencia;

circunferencia = 2 * Pi * radio;

cout << "Circunferencia de un circulo de radio
<< radio << ": " << circunferencia << endl;

const double Euler = 2.718281828459; // Numero e

cout << "Numero e al cuadrado: " << Euler * Euler << endl;

const int IVA = 21;

int cantidad = 12;

double precio = 39.95, neto, porIVA, total;

neto = cantidad * precio;

porIVA = neto * IVA / 100;

total = neto + porIVA;

cout << "Total compra:

return 0;

<< total << endl;

Luis Herndndez Yafiez
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La biblioteca cmath
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Funciones matematicas #include <cmath>

Algunas .. abs(x) Valor absoluto de x
pow(x, y) xelevadoay
sqrt(x) Raiz cuadrada de x
ceil(x) Menor entero que es mayor o igual que x

floor(x) Mayor entero que es menor o igual que x

exp(x) ex

log(x) Ln x (logaritmo natural de x)
logle(x) Logaritmo en base 10 de x
sin(x) Seno de x

cos(x) Coseno de x

tan(x) Tangente de x

round(x) Redondeo al entero mas préximo

trunc(x) Pérdida de la parte decimal (entero)

(0]
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La biblioteca cmath

#include <iostream> X
using namespace std; fow M dits |
#include <cmath> € - %% V|

cos( v

int main() {

double x, y, f; pow() con argumento entero:
C?Ut << "Valor de X: "; Usa el molde double():
cin >> X; pow(double(i), 5)
cout << "Vvalor de Y: ";
cin >> y;
f =2 * pow(x, 5) + sqrt(pow(x, 3) / pow(y, 2))

/ abs(x * y) - cos(y);
cout << "f(x, y) = " << f << endl;
return 0;

Gg Pon un espacio detras de cada coma en las listas de argumentos
(1))
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Fundamentos de la programacion

Operaciones con caracteres
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Operaciones con caracteres char

Asignacion, ++/- - y operadores relacionales

Funciones para caracteres (biblioteca cctype)

isalnum(c) true si c es una letra o un digito
isalpha(c) true si c es unaletra
isdigit(c) true si c es un digito
islower(c) true si c es una letra mindscula
isupper(c) true si c es una letra mayuscula

false en caso contrario

toupper(c) devuelve la mayuscula de ¢
tolower(c) devuelve la mindscula de c

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones | Péagina 175

[ Luis Hernandez Yafiez
L.




Operaciones con caracteres

#include <cctype>

int main() {
char caracterl = 'A', caracter2 = '1', caracter3 = '&';
cout << "Caracter 1 (" << caracterl << ").-" << endl;
cout << "Alfanumérico? " << isalnum(caracterl) << endl;
cout << "Alfabético? " << isalpha(caracterl) << endl;
cout << "Digito? " << isdigit(caracterl) << endl;
cout << "Mayuscula? " << isupper(caracterl) << endl;
caracterl = tolower(caracterl);
cout << "En minuscula: " << caracterl << endl;
cout << "Caracter 2 (" << caracter2 << ").-" << endl;
cout << "Alfabético? " << isalpha(caracter2) << endl;
cout << "Digito? " << isdigit(caracter2) << endl;
cout << "Caracter 3 (" << caracter3 << ").-" << endl;
cout << "Alfanumérico? " << isalnum(caracter3) << endl;
cout << "Alfabético? " << isalpha(caracter3) << endl;
cout << "Digito? " << isdigit(caracter3) << endl;

return 0;
} l=true /0=false

(0]
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Operadores relacionales
(condiciones simples)
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Expresiones logicas (booleanas)

Operadores relacionales

Comparaciones (condiciones)
Condicion simple ::= Expresién Operador_relacional Expresion

Concordancia de tipo entre las expresiones

Resultado: bool (true o false)

Operadores (prioridad)
menor que

mayor que
< <= > >=

mayor o igual que

igual que

distinto de
4=

7 Luis Herndndez Yafiez
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Operadores relacionales

Menor prioridad que los operadores aditivos y multiplicativos

bool resultado;
int a =2, b=3, c = 4;

resultado = a < 5; // 2 <5 2 true
resultado = a * b + ¢ >= 12; // 10 >= 12 > false
resultado = a * (b + ¢) >= 12; // 14 >= 12 > true
resultado = a != b; // 2 1= 3 > true
resultado = a * b > ¢ + 5; // 6 > 9 > false
resultado = a + b == ¢ + 1; // 5 == 5 2> true

€9 No confundas el operador de igualdad (==)

con el operador de asignacion (=)

7 Luis Herndndez Yafiez
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Fundamentos de la programacion

Toma de decisiones (if)
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Hacer esto... o hacer esto otro...

Seleccion: bifurcacion condicional

if (condicion) {

Condicion +—>codigoT
}
codigoF else {
v —>cdodigoF
int num; }

cout << "Numero: ";
cin >> num;
if (num % 2 == 0) {

Opcional: puede no haber else

N cout << num << es par";

5 }

i else {

£ cout << num << " es impar";

: }
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La instruccion if

#include <iostream>
using namespace std;

int main() {
int op1 = 13, op2 = 4; D ZWFP\TemaB2»selecclon
int opcion; 1 - Sumar
cout << "1 - Sumar" << endl; ? - Restar
cout << "2 - Restar" << endl; Opcidn: 1
cout << "Opcidén: "; 17
cin >> opcion;
if (opcion == 1) {
cout << opl + op2 << endl;

0:\FPA\Tema@2rsalaccidn

- Sumar

else {
5 cout << opl - op2 << endl;
2 return 0;
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Bloques de cédigo
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Bloques de cddigo

Agrupacion de instrucciones

Grupo de instrucciones a ejecutar en una rama del if

_>0_> {

Tabé |intruccion2

3 esp. .

int num, total = 0; intruccionN

cin >> num; }

if (num > 9)

cout << "Positivo"; Ambito local

8 total = total + num; (declaraciones locales)
E cout << endl;
Fundamentos de la programacion: Tipos e instrucciones | Pagina 184

Bloques de cédigo

Posicion de las llaves: cuestion de estilo

if (num > 9) if (num > @) {

{ cout << "Positivo";
cout << "Positivo"; total = total + num;
total = total + num; }

} cout << endl;

cout << endl;

No necesitamos las llaves si solo hay una instruccion

if (num > 0) { if (num > 9)
cout << "Positivo"; = cout << "Positivo";

}

Usaremos siempre llaves por simplicidad...

Evita poner el if y la instruccion objetivo en la misma linea:
if (num > 8) COUT ZZ=*RoSITIvo"; —
(013 -
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Fundamentos de la programacion

Bucles (while)

(0]

v, Luis Herndndez Yafiez
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Mientras la condicion sea cierta, repetir...

Repeticion o iteracion condicional

while condicion ) cuerpo

Bloque
de codigo

Condicié . o o <
ondicion while (cond'LC'LOn) {

—>cuerpo

}

v

©@ Silacondicién es false al empezar,
no se ejecuta el cuerpo ninguna vez
(1))
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La instruccion while

#include <iostream> 1

using namespace std; .
E /

int main() {
int i =1, n =0, suma = 9;
while (n <= @) { // S6lo n positivo
cout << "iCuantos numeros quieres sumar? “;
cin >> n;

}

while (i <= n) {
suma = suma + 1i;
i++;

}

cout << "Sumatorio de i (1 a
<< suma << endl;
return 0;

<< nk ") ="

-

Luis Herndndez Yafiez
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La instruccion while

Iteracion condicional

n
while (i <= n) { ZJ

suma = suma + 1i;

. I=
1++;

n

i 6

suma 15

Sumatorio de

(0]
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Entrada/salida por consola
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Entrada/salida por consola (teclado/pantalla)

#include <iostream>

Flujos de texto (streams) using namespace std;

Conectan la ejecucion del programa con los dispositivos de E/S
Son secuencias de caracteres

Entrada por teclado: flujo de entrada cin (tipo istream)
Salida por pantalla: flujo de salida cout (tipo ostream)

cin cout
dﬂlﬂlﬂﬂﬂlﬂlﬂlﬂﬁ

Biblioteca iostream con espacio de nombres std

Extractor Flujo de entrada >> Variable

Insertor Flujo de salida << Expresion

% Luis Hernandez Yafiez
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Entrada por teclado cin W 5> W Variable

Luis Herndndez Yafiez

{E}

Salta los espacios en blanco (espacios, tabuladores o saltos de linea)

— char
Se lee un caracter en la variable
— int
Se leen digitos y se transforman en el valor a asignar
— float/double:
Se leen digitos (quiza el punto y mas digitos) y se asigna el valor

— bool:
Si se lee 1, se asigna true; con cualquier otro valor se asigna false

Gﬂ Se amigable con el usuario &

Lee cada dato en una linea

cout << "Introduce tu edad: ";
cin >> edad;

HEE
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#include <string>

Lectura de cadenas (string) ... ncipace otd;

Luis Hernandez Yafiez

{E}

cin >> cadena termina con el primer espacio en blanco

cin.sync() descarta la entrada pendiente

string nombre, apellidos; string nombre, apellidos;
cout << "Nombre: "; cout << "Nombre: ";

cin >> nombre; cin >> nombre;

cout << "Apellidos: "; cin.sync(); <€

cin >> apellidos; cout << "Apellidos: ";

cout << "Nombre completo:
<< nombre << " "
<< apellidos << endl;

cin >> apellidos;
cout <«

apellidos recibe "Antonio”

¢;Como leer varias palabras?

Siguiente pdgina...

HEE
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Entrada por teclado

Lectura sin saltar los espacios en blanco iniciales

Llamada a funciones con el operador punto (.):

El operador punto permite llamar a una funcién sobre una variable
variable.funcion(argumentos)

Lectura de un caracter sin saltar espacios en blanco:
cin.get(c); // Lee el siguiente caracter

Lectura de cadenas sin saltar los espacios en blanco:
getline(cin, cad);
Lee todo lo que haya hasta el final de la linea (Intro)

. Recuerda:
E Espacios en blanco son espacios, tabuladores, saltos de linea, ...
Fundamentos de la programacion: Tipos e instrucciones | Pagina 194
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Salida por pantalla cout I << W £presion

Representacion textual de los datos

int meses = 7;
cout << "Total: " << 123.45 << endl << " Meses: " << meses;

El valor double 123.45 se guarda en memoria en binario
Su representacion textuales:'1" '2' '3' ',"' '4' '5'

double d = 123.45;

d ' 123.45 ;Un numero real!

cout << d;

La biblioteca iostream

define la constante endl : g
como un salto de linea (secuencia de caracteres) -

Luis Hernandez Yafiez
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Salida por pantalla cout I << W £presion

ofclalil:] Jalzfsl Jalslanlelslels]:] | ( Programa\
= cout €

int meses = 7;

cout << "Total: " << 123.45 << endl << " Meses: << meses;
AN v J
cout << 123.45 << endl << " Meses: " << meses;
A\ J
Y
cout << end]l << " Meses: " << meses;
A\ v J
cout << " Meses: " << meses;
. J
Y
3 Total: 123.45
g Meses: 7 cout << meses;
5
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F de la salid
ormato de la salida #include <iomanip>

Constantes y funciones a enviar a cout para ajustar el formato de salida

iostream showpoint / Mostrar o no el punto decimal para reales sin
noshowpoint decimales (34.0)
fixed Notacion de punto fijo (reales) (123.5)
scientific Notacion cientifica (reales) (1.235E+2)

boolalpha Valores bool como true / false
left / right Ajustar a la izquierda/derecha (por defecto)

iomanip |setw(anchura)* N? de caracteres (anchura) para el dato

Precision: N2 de digitos (en total)

SREPREEISIEN(P) Con fixed o scientific, n® de decimales

*setw() sélo afecta al siguiente dato que se escriba,
mientras que los otros afectan a todos

Luis Hernandez Yafiez
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Formato de la salida

bool fin = false;
cout << fin << "->" << boolalpha << fin << endl; 0->false
double d = 123.45;

char c = 'x';

int i = 62;

cout << d << € << 1 << endl; 123.45x62
cout << "|" << setw(8) << d << "|" << endl; | 123.45|
cout << "|" << left << setw(8) << d << "|" << endl; |
cout << "|" << setw(4) << c << "|" << endl; Ix |
cout << "|" << right << setw(5) << i << "|" << endl; [Ny

double e = 96;
cout << e << " - " << showpoint << e << endl; 96 - 96.0000
cout << scientific << d << endl; 1.234500e+002

cout << fixed << setprecision(8) << d << endl; 123.45000000

Luis Herndndez Yafiez
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Funciones definidas
por el programador
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Funciones en C++

Los programas pueden incluir otras funciones ademas de main()

Forma general de una funcion en C++:

tipo nombre(pardmetros) // Cabecera

{
}

v" Tipo de dato que devuelve la funcion como resultado

// Cuerpo

v’ Pardmetros para proporcionar datos a la funcién
Declaraciones de variables separadas por comas

v’ Cuerpo: secuencia de declaraciones e instrucciones
iUn bloque de codigo!

(0]
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Datos en las funciones

v" Datos locales: declarados en el cuerpo de la funcién
Datos auxiliares que utiliza la funcion (puede no haber)
v Parametros: declarados en la cabecera de la funcién
Datos de entrada de la funcion (puede no haber)
Ambos son de uso exclusivo de la funcién y no se conocen fuera

double f(int x, int y) {
// Declaracion de datos locales:

double resultado; fx,y)=2x" 4 L cos( v)
X

// Instrucciones:
resultado = 2 * pow(x, 5) + sqrt(pow(x, 3)
/ pow(y, 2)) / abs(x *y) - cos(y);

return resultado; // Devolucidn del resultado

}
[0}
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Argumentos

Llamada a una funcion con parametros

Nombre (Argumentos)

Al llamar a la funcién:

— Tantos argumentos entre los paréntesis como parametros
— Orden de declaracion de los parametros

— Cada argumento: mismo tipo que su parametro

— Cada argumento: expresion valida (se pasa el resultado)

Se copian los valores resultantes de las expresiones
en los correspondientes parametros

Llamadas a la funcion: en expresiones de otras funciones
int valor = f(2, 3);

Luis Herndndez Yafiez
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Paso de argumentos

Se copian los argumentos en los pardmetros

int funcion(int x, double a) {

Memoria

—> ... / f / f i 124

d 3.0

X 124

funcion(i, ; a 99.0
z return ©; // main() devuelve @ al S.O.
I Los argumentos no se modifican
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Resultado de la funcion

La funcion ha de devolver un resultado

La funcién termina su ejecucion devolviendo un resultado

La instruccion return (sélo una en cada funcién)
— Devuelve el dato que se pone a continuacion (tipo de la funcion)

— Termina la ejecucién de la funcién

El dato devuelto sustituye a la llamada de la funcion:

int cuad(int x int main() {

X = X * X; (—I
} return 9; 256

Esta instruccion
no se ejecutara nunca

Luis Herndndez Yafiez

(0]

=mr'm Fundamentos de programacién: Tipos e instrucciones | Péagina 204

Prototipos de las funciones

¢/ Qué funciones hay en el programa?

Colocaremos las funciones después de main()

¢Son correctas las llamadas a funciones del programa?
— ¢Existe la funcién?

— ¢Concuerdan los argumentos con los parametros?
—> Prototipos tras las inclusiones de bibliotecas

Prototipo de funcion: Cabecera de la funcion terminada en ;

double f(int x, int y);
int funcion(int x, double a)
int cuad(int x);

ﬁﬁ main() esla Unica funciéon

que no hay que prototipar

(0]
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Un programa con funciones

#include <iostream>
using namespace std;
##include <cmath>

// Prototipos de las funciones (excepto main())
bool par(int num);

bool letra(char car);

int suma(int num);

double formula(int x, int y);

int main() {
int numero, sum, X, y;
char caracter;
double f;
cout << "Entero: ";
cin >> numero;
if (par(numero)) {
cout << "Par";
}

(0]
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Un programa con funciones

else {
cout << "Impar";
}

cout << endl;
if (numero > 1) {
cout << "Sumatorio de 1 a " << numero <<
<< suma(numero) << endl;

}

cout << "Caracter: ";
cin >> caracter;

if (!letra(caracter)) {

}

cout << "no ";
cout << "es una letra" << endl;
cout << "f(x, y) = " << formula(x, y) << endl;
// Los argumentos pueden llamarse igual o no que los parametros

return 0;

Luis Hernandez Yafiez
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Un programa con funciones

// Implementacidén de las funciones propias

bool par(int num) {
bool esPar;

if (num % 2 == 0) {

esPar = true;
}
else {

esPar = false;
}

return esPar;

Luis Herndndez Yafiez
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Un programa con funciones

bool letra(char car) {
bool eslLetra;
if ((car >= 'a') & (car <= 'z') || (car >= 'A') && (car <= 'Z")) {
esLetra = true;

}
else {

esLetra = false;
}

return eslLetra;

}

int suma(int num) {

int sum =90, i = 1;

while (i < num) {
sum = sum + 1i;
i++;

}

return sum;

Luis Hernandez Yafiez
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Un programa con funciones

double formula(int x, int y) {
double f;

f =2 * pow(x, 5) + sqrt(pow(x, 3) / pow(y, 2))
/ abs(x * y) - cos(y);

return f;

5]

C

g

53

kel

f=

2

5}
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Acerca de Creative Commons @@@@

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacién de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

Pulsa en la imagen de arriba a la derecha para saber mas.
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Tipos: Detalles técnicos

ANEXO

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores
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int Nimeros enteros

Intervalo de valores:
-2147483648 .. 2147483647

Bytes de memoria: 4* (*) Depende de la maquina

4 bytes es lo mas habitual

Literales: Se puede saber cuantos

1363, -12,010, 0x1A se usan con la funcién

sizeof(int)

ke

Notacién octal

Notacion hexadecimal

Luis Herndndez Yafiez
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int Niimeros enteros

Numeros en notacidn octal (base 8: digitos entre 0 y 7):
-010 = -8 en notacion decimal
10=1x81+0x8°=1x8+0

0423 =275 en notacion decimal
423=4x82+2x81+3x8'=4x64+2x8+3=256
+16 +3

Numeros en notacidon hexadecimal (base 16):

Digitos posibles: 0,1, 2, 3,4,5,6,7,8,9,A,B,C,D,E, F
Ox1F = 31 en notacion decimal
1F=1x161+Fx16°=1x16 + 15

©xAD = 173 en notacién decimal
AD=Ax161+Dx16°=10x16+13 =160+ 13

Luis Hernandez Yafiez
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float Niimeros reales (con decimales)

Intervalo de valores:
+/- 1.18e-38..3.40e+38

Bytes de memoria: 4* (*)sizeof(float)
Punto flotante. Precisién: 7 digitos

Literales (punto decimal):

v"Notacion normal: 134.45, -1.1764

-0,
Lot T®ror®

v"Notacion cientifica: 1.4E2, -5.23e-02

Luis Herndndez Yafiez
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Notacion cientifica

Siempre un numero (con o sin signo) con un solo digito de parte
entera, seguido del exponente (potencia de 10):

-5.23e-2 > -5,23x107 - -0,0523
1.11e2 > 1,11x10? -> 1110
7.4523e-04 > 7,4523x10%* > 0,00074523
-3.3333e+06 > -3,3333x10° > -3.333.300

Luis Hernandez Yafiez
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7 Luis Herndndez Yafiez

double Nimeros reales (con decimales)

Intervalo de valores:
+/- 2.23e-308..1.79e+308

Bytes de memoria: 8* (*)sizeof (double)
Punto flotante. Precision: 15 digitos

Literales (punto decimal):

v"Notaciéon normal: 134.45, -1.1764

-0,
Lot T®ror®

v"Notacion cientifica: 1.4E2, -5.23e-02

P4gina 218
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char

Caracteres

Intervalo de valores:

Juego de caracteres (ASCII)
Bytes de memoria: 1 (FC)
Literales:

al "%\t

Constantes de barra invertida:

(O secuencias de escape)
Para caracteres de control

"\t' =tabulador, '\n"' =salto de linea, ...

L[ O o
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char

Juego de caracteres ASCII:
American Standard Code for Information Interchange (1963)
Caracteres con cédigos entre 0y 127 (7 bits)

— Caracteres de control: URERE" ()%, -,
Codigos del 0 al 31y 127 0123456789 ; <=>7
Tabulacién, salto de linea,... @ABCDEFGHIJKLMNO
PORSTUVWXYZ [\ 1"
— Caracteres imprimibles: ‘abcdefghijklmno
Codigos del 32 al 126 pgrstuvwxyz{|}-
Juego de caracteres ASCII extendido (8 bits):
[ISO-8859-1
o Multitud de codificaciones:
+ Codigos entre 128y 255 EBCDIC, UNICODE, UTF-8, ..
% ,ur-111r-!u-" bl AAEsRSSOOOY OO LD ]'
£ Tie] r: ..-.—'—"E- L":'.I'_'[::llr i
i ,_...:__u‘] l|-|=|- |.'|| L .
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bool Valores Idgicos

Sélo dos valores posibles:
— Verdadero (true)

— Falso (false)

Bytes de memoria: 1 (FC)

Literales:

true, false

En realidad, cualquier nimero
distinto de 0 es equivalente a true
y el namero 0 es equivalente a false

(0]
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strin g Cadenas de caracteres

"Hola", "Introduce el numerador: ", "X142FG5TX?%A"

-@ Q-

Secuencias de caracteres
Se asigna la memoria que se necesita para la secuencia concreta
Requieren la biblioteca string con el espacio de nombres std:

#include <string>
using namespace std;

€9 i

Las comillas tipograficas (apertura/cierre) “..” te daran problemas

al compilar. Asegurate de utilizar comillas rectas: "...

o ”n

Luis Herndndez Yafiez
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Literales con especificacion de tipo

Por defecto un literal entero se considera un dato int
— long int:35L, 15461

—unsigned int: 35U, 1546u

—unsigned long int:35UL, 1546ul

Por defecto un literal real se considera un dato double
— float:1.35F, 15.46f

— long double:1.35L,15.461

Abreviaturas para modificadores de tipos
short =short int
long=1ong int
Es preferible evitar el uso de tales abreviaturas:

Minimizar la cantidad de informacién a recordar
sobre el lenguaje

Luis Hernandez Yafiez
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Acerca de Creative Commons @@@@

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.
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Tipos, valores y variables
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Tipos, valores y variables

Tipo
Conjunto de valores con sus posibles operaciones

Valor
Conjunto de bits interpretados como de un tipo concreto

Variable (o constante)
Cierta memoria con nombre para valores de un tipo

Declaracion

Instruccion que identifica un nombre

Definicion

Declaracidn que asigna memoria a una variable o constante

Luis Hernandez Yafiez
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Variables

Memoria suficiente para su tipo de valores

short int 1 = 3; i
int j = 9;
char c = 'a’';

double x = 1.5;

El significado de los bits depende del tipo de la variable:
00000000 VPV 0PV 01111000

Interpretado como int es el entero 120

Interpretado como char (s6lo ©1111000) es el caracter 'x'

Luis Herndndez Yafiez
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Tipos

v’ Simples

« Estandar: int, float, double, char, bool
Conjunto de valores predeterminado

7
0.0

Definidos por el usuario: enumerados
Conjunto de valores definido por el programador

v’ Estructurados (Tema 5)

« Colecciones homogéneas: arrays
Todos los elementos de la coleccion de un mismo tipo

R/
0.0

Colecciones heterogéneas: estructuras
Elementos de la coleccion de tipos distintos

(0]
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Tipos simples estandar

Con sus posibles modificadores:

[unsigned] [short] int

long long int long int = int
float

[long] double

char

bool

Definicion de variables:

tipo nombre [ = expresion] [, ...];
Definicién de constantes con nombre:

const tipo nombre = expresion;

(0]
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Fundamentos de la programacion

Conversion de tipos
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Conversiones automaticas de tipos

Promocion de tipos

Dos operandos de tipos distintos:
El valor del tipo menor se promociona al tipo mayor

short int i = 3; A long double
int j = 2; kS double
double a = 1.5, b; g | float
b=a+i* j; g!ongmt
a int
short int

b=a+3%*2;

L Valor 3 short int (2 bytes) = int (4 bytes)
1.5 + 6;

Ls Valor 6 int (4 bytes) = double (8 bytes)

(o
Il

Luis Herndndez Yafiez
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Conversiones seguras y no seguras

Conversion segura: long double
De un tipo menor a un tipo mayor double
short int > int 2 long int > .. float
L, long Int
Conversion no segura: _
_ _ int
De un tipo mayor a un tipo menor short int

int entero = 1234;
char caracter;
caracter = entero; // Conversidn no segura

Menor memoria: Pérdida de informacion en la conversion

(0]
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Moldes (casts)

Fuerzan una conversién de tipo:
tipo(expresion)

El valor resultante de la expresion se trata como un valor del tipo

int a = 3, b = 2;
cout << a / b; // Muestra 1 (divisiodn entera)
cout << double(a) / b; // Muestra 1.5 (divisiodn real)

Tienen la mayor prioridad

(0]
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Fundamentos de la programacion

Tipos declarados por el usuario

(0]
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Tipos declarados por el usuario

Describimos los valores de las variables del tipo
typedef descripcion nombre de tipo;

t

Identificador vdlido

ﬁﬁ Nombres de tipos propios:

t minuscula seguida de una o varias palabras capitalizadas

Los colorearemos en naranja, para remarcar que son tipos

typedef descripcion tMiTipo;
typedef descripcion tMoneda;
typedef descripcion tTiposDeCalificacion;

Declaracion de tipo frente a definicion de variable

Luis Herndndez Yafiez
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Tipos enumerados
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Enumeraciones

Enumeracion del conjunto de valores posibles para las variables:

enum { simbolol, simbolo2, ..., simboloN }

enum { gy !dentificador 90—>

enum { centimo, dos_centimos, cinco_centimos,
diez_centimos, veinte_centimos,
medio_euro, euro }

Valores literales que pueden tomar las variables (en amarillo)

Luis Herndndez Yafiez
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Tipos enumerados Mejoran la legibilidad

typedef descripcion nombre de tipo;

Elegimos un nombre para el tipo: tMoneda descripcion

typedef |[enum { centimo, dos centimos, cinco_centimos,
diez_centimos, veinte_centimos,
medio _euro, euro }|tMoneda;

En el ambito de la declaracidn, se reconoce un nuevo tipo tMoneda
tMoneda monedal, moneda2;

Cada variable de ese tipo contendra alguno de los simbolos

monedal
moneda?2

dos_centimos;
euro;

monedal e[l Ne=Ighshl([e}5

moneda2 euro
(Internamente se usan enteros)

HEE
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Entrada/salida para tipos enumerados

typedef enum { enero, febrero, marzo, abril, mayo,
junio, julio, agosto, septiembre, octubre,
noviembre, diciembre } tMes;

tMes mes;

Lectura de la variable mes:

cin >> mes;

Se espera un valor entero

No se puede escribir directamente enero o junio

Y si se escribe la variable en la pantalla:
cout << mes;

Se vera un numero entero

- Codigo de entrada/salida especifico

7 Luis Herndndez Yafiez
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Lectura del valor de un tipo enumerado

typedef enum { enero, febrero, marzo, abril, mayo, junio, julio,
agosto, septiembre, octubre, noviembre, diciembre } tMes;

int op;
cout <<
cout <<
cout <<
cout <<
cout <<
cout <«
cout <«

Enero"
Febrero"
Marzo"
Abril"
Mayo"
Junio"
Julio"
Agosto"
cout <« Septiembre"
cout << "10 Octubre”
cout << "11 Noviembre"
cout << "12 Diciembre"
cout << "Numero de mes: ";
cin >> op;

tMes mes = tMes(op - 1);

cout <<

W oONOUID WNER

7 Luis Herndndez Yafiez
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Escritura de variables de tipos enumerados

typedef enum { enero, febrero, marzo, abril, mayo, junio, julio,
agosto, septiembre, octubre, noviembre, diciembre } tMes;

enero) {
"enero";

= febrero) {
"febrero";

= marzo) {

"marzo";

= diciembre) {
"diciembre";

También podemos utilizar una instruccién switch
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Tipos enumerados

Conjunto de valores ordenado (posicion en la enumeracién)

typedef enum { lunes, martes, miercoles, jueves,
viernes, sabado, domingo } tDiaSemana;

tDiaSemana dia; lunes < martes < miercoles < jueves

< viernes < sabado < domingo

if (dia == jueves)...
bool nolLaborable = (dia >= sabado);

No admiten operadores de incremento y decremento
Emulacion con moldes:

int i = int(dia); // jdia no ha de valer domingo!
i++;
dia = tDiaSemana(i);
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Ejemplo de tipos enumerados

#include <iostream> ©@ Silos tipos se usan en varias funciones,
using namespace std; los declaramos antes de los prototipos

typedef enum { enero, febrero, marzo, abril, mayo,
junio, julio, agosto, septiembre, octubre,
noviembre, diciembre } tMes;

typedef enum { lunes, martes, miercoles, jueves,
viernes, sabado, domingo } tDiaSemana;

string cadMes(tMes mes);
string cadDia(tDiaSemana dia);

int main() {

tDiaSemana hoy = lunes;
int dia = 21;

tMes mes = octubre;

int anio = 2013;

(0]
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Ejemplo de tipos enumerados

// Mostramos la fecha

cout << "Hoy es: " << cadDia(hoy) << " " <« dia
<< " de " << cadMes(mes) << " de " << anio
<< endl;

cout << "Pasada la medianoche..." << endl;
dia++;

int i = int(hoy);

i++;

hoy = tDiaSemana(i);

// Mostramos la fecha

cout << "Hoy es: " << cadDia(hoy) << " " << dia
<< " de " << cadMes(mes) << " de " << anio
<< endl;

return 0;

}
(012

f
16
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Ejemplo de tipos enumerados

fechas.cpp

string cadMes(tMes mes) {

string cad;

if (mes == enero) {
cad = "enero";

}

if (mes == febrero) {
cad = "febrero";

}

if (mes == diciembre) {
cad = "diciembre";

¥

return cad;

(0]
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string cadDia(tDiaSemana dia);

string cad;

if (dia == lunes) {

cad = "lunes";

}

if (dia == martes) {
cad = "martes";

¥

if (dia == domingo) {
cad = "domingo";

}

return cad;

Péagina 247
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Fundamentos de la programacion

Entrada/Salida
con archivos de texto
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Archivos

Datos del programa: en la memoria principal (volatil)
Medios (dispositivos) de almacenamiento permanente:

— Discos magnéticos fijos (internos) o portatiles (externos)
— Cintas magnéticas

— Discos opticos (CD, DVD, BlueRay)
— Memorias USB

Mantienen la informacion en archivos

Secuencias de datos
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Archivos de texto y archivos binarios

Archivo de texto: secuencia de caracteres
Archivo binario: contiene una secuencia de codigos binarios

(Cédigos representados en notacién hexadecimal)

Los archivos se manejan en los programas por medio de flujos
Archivos de texto: flujos de texto
Similarala E/S por consola

(Mas adelante veremos el uso de archivos binarios)
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Archivos de texto

Textos dispuestos en sucesivas lineas

Caracter de fin de linea entre linea y linea (Intro)
Posiblemente varios datos en cada linea
Ejemplo: Compras de los clientes

En cada linea, NIF del cliente, unidades compradas, precio
unitario y descripcion de producto, separados por espacio

12345678F 2 123.95 Reproductor de DVD{
©0112233A 1 218.4 Disco portatild
32143567] 3 32 Memoria USB 16Gbd
76329845H 1 134.5 Modem ADSLJ

Normalmente terminan con un dato especial (centinela)
Por ejemplo, un NIF que sea X

(0]
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Flujos de texto para archivos :inciude <fstreams

v" Lectura del archivo: flujo de entrada
v' Escritura en el archivo: flujo de salida

No podemos leer y escribir en un mismo flujo

Un flujo de texto se puede utilizar para lectura o para escritura:
— Flujos (archivos) de entrada: variables de tipo ifstream

— Flujos (archivos) de salida : variables de tipo ofstream

Biblioteca fstream (sin espacio de nombres)

(0]
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Fundamentos de la programacion

Lectura de archivos de texto

(0]
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Lectura de archivos de texto

Flujos de texto de entrada ifstream

Para leer de un archivo de texto:

E Declara una variable de tipo ifstream

E Asocia la variable con el archivo de texto (apertura del archivo)
E Realiza las operaciones de lectura

E Desliga la variable del archivo de texto (cierre el archivo)

(0]
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Lectura de archivos de texto

Apertura del archivo

Conecta la variable con el archivo de texto del dispositivo

flujo.open(cadena_Literal);

. . jEl archivo debe existir!
ifstream archivo;

archivo.open("abc.txt");
if (archivo.is open()) ...

is_open():
true si el archivo

se ha podido abrir
false en caso contrario
Cierre del archivo

Desconecta la variable del archivo de texto del dispositivo
flujo.close();
archivo.close();

Luis Herndndez Yafiez
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Lectura de archivos de texto

Operaciones de lectura

v’ Extractor (>>) archivo >> variable;
Salta primero los espacios en blanco (espacio, tab, Intro, ...)
Datos numéricos: lee hasta el primer caracter no valido
Cadenas (string): lee hasta el siguiente espacio en blanco

v' archivo.get(c)

Lee el siguiente caracter en la variable ¢, sea el que sea

v’ getline(archivo, cadena)

Lee en la cadena todos los caracteres que queden en la linea
Incluidos los espacios en blanco
Hasta el siguiente salto de linea (descartandolo)

Con los archivos no tiene efecto la funcién sync()
03
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Lectura de archivos de texto

;Qué debo leer?

v Un ndimero

Usa el extractor archivo >> num;

v Un caracter (sea el que sea)
Usa la funcién get () archivo.get(c);

v Una cadena sin espacios

Usa el extractor archivo »>> cad;

v Una cadena posiblemente con espacios
Usa la funciéon getline() getline(archivo, cad);

(0]
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Lectura de archivos de texto

¢;Donde queda pendiente la entrada?

Numero leido con el extractor

En el primer caracter no valido (inc. espacios en blanco)

Caracter leido con get ()

En el siguiente caracter (inc. espacios en blanco)

Una cadena leida con el extractor
En el siguiente espacio en blanco

Una cadena leida con la funcién getline()
Al principio de la siguiente linea

(0]
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Lectura de archivos de texto

string nif, producto;
int unidades;

double precio;

"f hret Ediadn  Fermate Ve Ayuda
L2JE0TAF 2 123, 9% Reproducice de DWD
GOLEXI2REA 1 YLE.4& Disco portdtil
121435671 3 37 mamor iy USE LECh
1

char aux;

THITHBA SH E3. 5 Moces ADEL

ifstream archivo;

H Flujo de entrada
archivo

archivo.open("compras.txt"); // Apertura

archivo >> nif >> unidades >> precio;
getline(archivo, producto);

Ei archivo.close(); // Cierre

7 Luis Herndndez Yafiez
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Lectura de archivos de texto

archivo >> nif;

archivo >> unidades; Archeve Edhcn Formato Ver Ayuds
. . Yok AT T
archivo >> preclo, 371435677 1 17 Memoria LS Lech

TEITEBASH 1 13,3 Modes ADSL

getline(archivo, producto);

getline() no salta espacios

I12345678F| 2 323.9%|Reproductor de DVDI

L
(il

El extractor salta los espacios

nif 12345678F unidades

slgels[ilaeM Reproductor de DVD precio [EVERCE)

Espacio

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Tipos e instrucciones Il Péagina 260




Lectura de archivos de texto

archivo >> nif;

archivo >> unidades;

archivo >> precio;

archivo.get(aux); // Salta el espacio en blanco
getline(archivo, producto);

I12345678FI IEI I123.95I “Repr'oductor‘ de DVDI

Leemos el espacio
(no hacemos nada con él)

unidades
precio EVENCES

nif 12345678F

producto = s]lels ¥ eh o]l <IN )V/D)

Sin espacio

7 Luis Hernandez Yafiez
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Procesamiento de los datos de un archivo

{ “ i b )
Cada linea, datos de una compra e

Archres Edicidn  Fersats  Yer  Ayuda
B3IAENTEF 2 B23.5h Beproductior de DD

Mostrar el total de cada compra BOL1I2134 1 Fif.4 Disco portdtil

321435%67]1 3 3P memoria USE 16GH

| THITRBASH 1 D345 Moges ADSL

unidades x precio mas IVA (21%) I

Final: "X" como NIF
Bucle de procesamiento:
v’ Cada paso del bucle (ciclo) procesa una linea (compra)

v Podemos usar las mismas variables en cada ciclo

Leer primer NIF

Mientras el NIF no sea X:
Leer unidades, precio y descripcion
Calcular y mostrar el total
Leer el siguiente NIF

% Luis Hernandez Yafiez

(o) (0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pégina 262




Procesamiento de los datos de un archivo

#include <iostream>

#include <string>

using namespace std;

#include <fstream>

#include <iomanip> // Formato de salida

int main() {

const int IVA = 21;

string nif, producto;

int unidades;

double precio, neto, total, iva;
char aux;

ifstream archivo;

int contador = 0;

archivo.open("compras.txt"); // Apertura

(0]
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Procesamiento de los datos de un archivo

if (archivo.is open()) { // Existe el archivo

archivo >> nif; // Primer NIF

while (nif != "X") {
archivo >> unidades >> precio;
archivo.get(aux); // Salta el espacio
getline(archivo, producto);
contador++;
neto = unidades * precio;
iva = neto * IVA / 100;
total = neto + iva;
cout << "Compra " << contador <<

<< endl;

cout << " " << producto << ": " << unidades
<< " x " << fixed << setprecision(2)
3 << precio << " =" << neto << " - I.V.A.: "
. << iva << " - Total: " << total << endl;
E: archivo >> nif; // Siguiente NIF
z ...
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Procesamiento de los datos de un archivo

archivo.close(); // Cierre

}
else {
cout << "ERROR: No se ha podido abrir el archivo"
<< endl;
}
return 9;

Luis Herndndez Yafiez
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Fundamentos de la programacion

Escritura en archivos de texto
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7 Luis Hernandez Yafiez

Escritura en archivos de texto

Flujos de texto de salida ofstream

Para crear un archivo de texto y escribir en él:
H Declara una variable de tipo ofstream
E Asocia la variable con el archivo de texto (crea el archivo)

E Realiza las escrituras por medio del operador << (insertor)

ﬁ Desliga la variable del archivo de texto (cierra el archivo)

:lﬁ jAtencion!
Si el archivo ya existe, se borra todo lo que hubiera

ﬂlﬂ jAtencion!

Si no se cierra el archivo se puede perder informacién
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Escritura en archivos de texto

int valor = 999;

(Programa‘

2
ofstream archivo; 1
B Flujo de salida
archivo.open("output.txt"); // Apertura [l archivo
I B
o
archivo << 'X' << " Hola! " << 123.45 B
<< endl << valor << "Byel"; |+ |
[ ]
: . [ x
archivo.close(); // Cierre flkoc 3= watin

ferfves [deiom Fomafa Ver &gl
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Escritura en archivos de texto

#include <iostream>
#include <string>
using namespace std;
#include <fstream>

int main() {
string nif, producto;
int unidades;
double precio;
char aux;
ofstream archivo;

archivo.open("output.txt"); // Apertura (creacion)

cout << "NIF del cliente (X para terminar): ";
cin >> nif;

(0]
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Escritura en archivos de texto

while (nif != "X") {

// Queda pendiente el Intro anterior...

cin.get(aux); // Leemos el Intro

cout << "Producto: ";

getline(cin, producto);

cout << "Unidades: ";

cin >> unidades;

cout << "Precio: ";

cin >> precio;

// Escribimos los datos en una linea del archivo...

// Con un espacio de separacidén entre ellos

archivo << nif << " " << unidades <<
<< precio << " " << producto << endl;

cout << "NIF del cliente (X para terminar): ";

cin >> nif;

(0]
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Escritura en archivos de texto

// Escribimos el centinela final...
archivo << "X";
archivo.close(); // Cierre del archivo

return 0;

MIF del cliente (X para terminar): 2:

o to: Ampliacidn de memoria 2Gb

fBnén Fomete er  Aysds
121432560 § 46.7 ampliacidn de mesoria Téh
806754l 1 23 Lector de DMl
EREBETER & F10.93 MEco exEerng ITh

Luis Herndndez Yafiez
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Fundamentos de la programacion

Flujo de ejecucion

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pégina 272

r Luis Hernandez Yafiez
L.




Ejecucion secuencial

double operl, oper2, prod;
= Instruccion 1 cout << "Operando 1: ";
\O
(e ” :
= Instruccion 2 cin >> operl;
o
P
' Instruccién 3 cout << "Operando 2: ";
P
o
o
=) cout << "Producto: " << prod;
. return 9;
[ }
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[ Y 4
Seleccidn
Uno entre dos o mads caminos de ejecucion
Seleccién simple (2 caminos) Seleccién multiple (> 2 caminos)
Condicion
Instruccion T Instruccion F
. . true
) if-else-if
£ . false
. switch
2 : : A
Diagramas de flujo
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Repeticidn (iteracion)

Repetir la ejecucion de una o mas instrucciones

Acumular, procesar colecciones, ...

Inicializacion

élterar?

5]

C

g

53 .

2 while for
=

5}

T

§

I E E
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Fundamentos de la programacion

Seleccidn simple
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Seleccidn simple (bifurcacion)

La instruccion if

if (condicion) {

oo Condicion
—>codigoT
} BloqueT
Opcional
[else { ¢' pciona
+—>codigoF

}]

condicion: expresion bool
Clausula else opcional

Luis Herndndez Yafiez
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La instruccion if

int num;
cin >> num;
if (num < 9) {
cout << "Negativo";

}

else {

cin >> num;

" R . " tr\ e -False
cout << "Positivo’; -

}

cout << endl;

cout << "Negativo"; cout << "Positivo";

(0]
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La instruccion if

int num;
cin >> num; 129
if (num < @) { Positivo

cout << "Negativo";

}

else {
cout << "Positivo";

}

cout << endl;

cout << "Positivo";

cout << endl;

(0]
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La instruccion if

int num;
cin >> num; -5
if (num < @) { Negativo

cout << "Negativo"; -

}

else {

cout << "Positivo"; cin >> num;

}

cout << endl; true

num =5

cout << "Negativo";

(0]
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Ejemplo

Division entre dos nimeros protegida frente a intento de division por 0

#include <iostream>
using namespace std;

int main() {

double numerador, denominador, resultado;
cout << "Numerador: ";
cin >> numerador;
cout << "Denominador: ";
cin >> denominador;
if (denominador == 0) {

cout << "Imposible dividir entre 0!";

else {
5 resultado = numerador / denominador;
s cout << "Resultado: " << resultado << endl;
£ return 0;

}
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Operadores légicos
(condiciones compuestas)
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Operadores logicos (booleanos)

Se aplican a valores bool (condiciones)
El resultado es de tipo bool

Operadores (prioridad)

! NO Monario
&& Y Binario

|| O Binario

0
20

-+
1

7 Luis Herndndez Yafiez
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Operadores logicos - Tablas de verdad

| e I
true false true true false @ true true true
false |true false |[false false @ false |true false

NO (Not) Y (And) 0 (0r)

bool condl, cond2, resultado;

int a = 2, b =3, c = 4;

resultado = !(a < 5); // 1'(2 < 5) > ltrue > false
condl = (a * b + c) >= 12; // 10 >= 12 - false

cond2 = (a * (b + c)) >=12; // 14 >= 12 > true

condl && cond2; // false && true > false
condl || cond2; // false || true = true

resultado
resultado

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Tipos e instrucciones || Péagina 284




Ejemplo

#include <iostream>
using namespace std;

int main()
{
int num;
cout << "Introduce un numero entre 1y 10: ";
cin >> num;
if ((num >= 1) && (num <= 10)) {
cout << "Numero dentro del intervalo de valores validos";

}
else {
cout << "Numero no valido!";
} . :
return 0; Condiciones equivalentes

} ((num >= 1) && (num <= 10))
. o ((num > @) && (num < 11))
iEncierra las condiciones ((num >= 1) && (num < 11))
simples entre paréntesis! ((num > @) & (num <= 10))

(0]
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Anidamiento de if
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Numero de dias de un mes

int mes, anio, dias;

cout << "Numero de mes: ";
cin >> mes;
cout << "Ano: ";

cin >> anio;
if (mes == 2) {

if (bisiesto(mes, anio)) {
dias = 29;
}
else {
'dias = 28;
}
}
else {
if ((mes == 1) [| (mes == 3) || (mes == 5) ||
|| (mes == 8) || (mes == 10) || (mes ==
‘dias = 31;
}
5 else {
5 ‘dias = 30;
g }
E }

(0]
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éAno bisiesto?

Calendario Gregoriano: bisiesto si divisible por 4, excepto el Gltimo
de cada siglo (divisible por 100), salvo que sea divisible por 400

bool bisiesto(int mes, int anio) {

bool esBisiesto;

if ((anio % 4) == @) { // Divisible por 4

if (((anio % 100) == @) && ((anio % 400) !=
// Pero ultimo de siglo y no multiplo de
esBisiesto = false;

}
else {
esBisiesto = true; // Aho bisiesto
by
¥
else {
‘esBisiesto = false;
y

return esBisiesto;

Luis Hernandez Yafiez
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Asociacion de clausulas else

Cada else se asocia al if anterior mas cercano sin asociar (mismo bloque)
@(condicio’nl) { , |
@ (condicion2) {...} Una mala sangria puede confundir
€15 if (x > 0) {

y teeed GOy > o) {...}
D @
@(condicién3) { —Q—=
if (condicidén4) {...} if (x > 0) {

(if) (condiciéns) {...} if (y >0) {...}
{”.} else {...}
}

€@ Lasangriaayuda a asociar los else con sus if
(1))
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Condiciones
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Condiciones

e Condicion simple: Expresion logica (true/false)
Sin operadores l0gicos

num < @

car == 'a' Compatibilidad con el lenguaje C:

isalpha(car) 0 es equivalente a false

12 Cualquier valor distinto de @ es equivalente a true

e Condicién compuesta:
Combinacién de condiciones simples y operadores légicos
lisalpha(car)
(num < @) || (car == 'a")
(num < @) & ((car == 'a') || !isalpha(car))

€9 No confundas el operador de igualdad (==)
con el operador de asignacion (=).

Luis Herndndez Yafiez
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Evaluacion perezosa

Shortcut Boolean Evaluation
true || X = true
(n ==0) || (x >=1.0 / n)
Si n es ©: ;division por cero? (segunda condicion)
Como la primera seria true: jno se evalua la segundal

false && X = false
(n 1=0) & (x < 1.0 / n)
Si n es O: ;division por cero? (segunda condicién)
Como la primera seria false: jno se evalua la segunda!

Luis Hernandez Yafiez
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Seleccidon multiple
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Selecciéon miiltiple

true
false

\4

) . .

£ if-else-if

53

kel °

5 switch

5}

g

§

I E E
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Fundamentos de la programacion

La escala if-else-if

(0]
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La escala if-else-if

Ejemplo:

Calificacion (en letras)

de un estudiante en base
a su nota numérica (0-10)

Sinota == 10 entonces MH

sino, sinota >= 9 entonces SB
sino, sinota >= 7 entonces NT
sino, sinota >= 5 entonces AP

sino SS

Luis Hernandez Yafiez
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La escala if-else-if

double nota;
cin >> nota;

double nota;
cin >> nota;
if (nota == 10) {

if (nota == 10) {
cout << "MH";
cout
else { }
if (nota >= 9) { )
cout << "SB"; else if
cout
else { }
if (nota >= 7) { _ )
cout << "NT"; — else if
cout
else { }
if (nota >= 5) { .
cout << "AP"; else if
cout
N else { }
£ cout << "SS"; else {
3 }
E: } cout
3 } }

}
(0]
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<< "MH";
(nota >= 9) {
<< "SB";
(nota >=7) {
<< "NT";
(nota >= 5) {
<< "AP";
<< IlSSIl;
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La escala if-else-if

jCuidado con el orden de las condiciones!

double nota;
cin >> nota;
if (nota < 5) { cout << "SS"; }

if (nota < 7) { cout << "AP"; }
if (nota < 9) { cout << "NT"; }

else
else
else
else

if (nota < 10)

{ cout << "MH";

double nota;
cin >> nota;

if (nota >= 5) { cout << "AP"; 1}

else
else
else
else

Luis Hernandez Yafiez
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if (nota >= 7)
if (nota >= 9)
if (nota

{ cout << "SS";

{ cout << "SB"; }
}

iNo

10)

{ cout << "NT"; }
{ cout << "SB"; }
{ cout << "MH"; }

¥

se ejecutan nunca!

X

A

So6lo muestra AP o SS
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La escala if-else-if

Simplificacion de las condiciones

FIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIFIIIIIIIII‘IIIIII‘

0 sS g AP , NT g SB 1

if (nota == 10) { cout << "MH"; } MH
else if |((nota < 10)| & (nota >= 9)) { cout << "SB"; }
else if |((nota < 9) R& (nota >= 7)) { cout << "NT"; }
else if |((nota < 7) R& (nota >= 5)) { cout << "AP"; }
else if |(nota < 5) [ cout << "SS"; }

| Siempre true: ramas else

. e Sino es 10, es menor que 10
if (nota == 10) { cout << "MH"; } Sino es >= 9, es menor que 9

else if (nota >= 9) {cout << "SB"; } Si no es >= 7, es menor que 7
else if (nota >= 7) { cout << "NT"; } ..
else if (nota >= 5) { cout << "AP"; } true && X = X

else { cout << "SS"; }

Luis Herndndez Yafiez

(0]

=mrm Fundamentos de la programacién: Tipos e instrucciones Il Péagina 299

Nivel de un valor

#include <iostream> Si num == 4 entonces Muy alto
using namespace std;

- . Si num == 3 entonces Alto

int main() { S _= Jent Medi
int num; inum == 2 entonces Medio
cout << "Introduce el nivel: "; Sinum == 1 entonces Bajo

cin >> num;
if (num == 4) {
cout << "Muy alto" << endl;

else if (num == 3) {
cout << "Alto" << endl;

else if (num ==
cout << "Medio" << endl;

else if (num == 1) {
cout << "Bajo" << endl;

else {
cout << "Valor no valido" << endl;

Luis Hernandez Yafiez

return 0;
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é¢Cadigo repetido en las distintas ramas?

if (num == 4) { cout << "Muy alto"}
else if (num == 3) { cout << "Alto"(X< endl;>}

else if (num == 2) { cout <<
else if (num == 1) { cout <«
else cout << "Valor no valido"

—~ =

if (num == 4) cout << "Muy alto";

else if (num == 2) cout << "MediO";
else if (num == 1) cout <« "BajO";

else cout << "Valor no valido";

(0]
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La instruccion switch
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La instruccion switch

Seleccion entre valores posibles de una expresion

switch (expresion) { —> case constanteN:
case constantel: {
{ codigoN
codigol }
} [break; ]
[break; ] [default:
case constante2: {
{ codigoDefault
codigo2 ]
} }
o [break; ]
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La instruccion switch

nivel2.cpp

switch (num) {
case 4:

{

cout << "Muy alto";
}
break;
case 3:

{

cout << "Alto";

break;
case 2:

{

cout << "Medio";
}
break;
case 1:
{ .
cout << "Bajo";
}
break;
default:
{

cout << "Valor no valido";

}

Luis Hernandez Yafiez
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Si num == 4 - Muy alto
Sinum == 3 - Alto
Sinum == 2 - Medio
Sinum == 1-> Bajo
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La instruccion break

Interrumpe el switch; continda en la instruccion que le siga

switch (num) {
case @)
{

cout << "Alto";

"Medio";

Luis Herndndez Yafiez
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La instruccion break

switch (num) {

{ cout [«< "Alto";
casg 2
{ cout |k« "Medio";
casg 1:
{ cout |<< "Bajo";
3 def;ult:
% { cout |<< "Valor no valido";
IR
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Con y sin break

4

true

Muy alto

false
Sin break;

false
Sin break;

false
Sin break;

num==1

false I Sin break;
~ No valido
— __‘1‘
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l 4
Un menu
int menu() {
int op = -1; // Cualquiera no valida
while ((op < @) [| (op > 4)) {
cout << "1 Nuevo cliente" << endl;
cout << "2 - Editar cliente" << endl;
cout << "3 - Baja cliente" << endl;
cout << "4 - Ver cliente" << endl;
cout << "@ - Salir" << endl;
cout << "Opciodn: ";
cin >> op;
if ((op < @) || (op > 4)) {
cout << "jOpcidén no validal!" << endl;
s }
5 }
g return op;
E )
(cc) (%)
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Un menu

int opcion;

opcion = menu();
switch (opcion) {
case 1:

{
}

break;
case 2:

{
}

break;
case 3:

{
}

break;
case 4:

{
cout << "En la opcidn 4..." << endl;
} // En la ultima no necesitamos break

cout << "En la opcidn 1..." << endl;

cout << "En la opcidn 2..." << endl;

cout << "En la opcidn 3..." << endl;

fiez

(0]
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El menu con su bucle...

int opcion;

opcion = menu();

while (opcion != @) {
switch (opcion) {
case 1:

cout << "En la opcidn 1..." << endl;

reak;

case 4:

cout << "En la opciodn 4..." << endl;

}
} // switch
éééion = menu();
} // while

fiez

Luis Hernandez Ya
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Casos multiples

nota2.cpp

int nota; // Sin decimales
cout << "Nota (©-10): ";
cin >> nota;

switch (nota) {

case 0:
case 1:
case 2:
case 3:
case 4:
{
cout << "Suspenso";
}
break; // De © a 4: SS
case 5:
case 6:
{
cout << "Aprobado";
}

break; // 5 o 6: AP

(0]
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case 7:
case 8:
{
cout << "Notable";
}
break; // 7 u 8: NT
case 9:
case 10:
{
cout << "Sobresaliente";
¥

break; // 9 o 10: SB
default:

{
}

cout << "iNo valida!";

Pagina 311

Escritura de variables de tipos enumerados

typedef enum { enero, febrero, marzo, abril, mayo, junio,
julio, agosto, septiembre, octubre, noviembre, diciembre }

tMes;
tMes mes;

switch (mes) {
case enero:

{
cout << "enero";
¥
break;
case febrero:
{
cout << "febrero";
¥
break;

case diciembre:

)
C
T
5 {
n s > n
2 cout << "diciembre";
=
g }
i)
I E E
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Repeticion
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Repeticidn (iteracion)

Inicializacion

No

Bucles whiley for

(0]
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Tipos de bucles

v Numero de iteraciones condicionado (recorrido variable):

— Buclewhile

while (condicion) cuerpo

Ejecuta el cuerpo mientras la condicion sea true
— Bucle do-while

Comprueba la condicion al final (lo veremos mas adelante)

v Numero de iteraciones prefijado (recorrido fijo):

— Bucle for
for (inicializacion; condicion; paso) cuerpo
Ejecuta el cuerpo mientras la condicion sea true

Se usa una variable contadora entera

(0]
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El bucle while
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El bucle while

Mientras la condicion sea cierta, ejecuta el cuerpo

while (condicidn) {
cuerpo Condicion al principio del bucle

}

int i = 1; // Inicializacioén de la variable i
while (i <= 100) {

cout << i << endl;

i++;

}

Muestra los numeros del 1 al 100

Luis Herndndez Yafiez

(0]

- =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 317

Ejecucion del bucle while

int 1 = 1;
while (i <= 100) { I icion
cout << 1 << endl;
i++;

i 1e1

cout << i << endl;

(0]
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El bucle while

;Y si la condicion es falsa al comenzar?

No se ejecuta el cuerpo del bucle ninguna vez

int op;

cout << "Introduce la opcidn: ";

cin >> op;

while ((op < @) [| (op > 4)) {
cout << "jNo valida! Inténtalo otra vez" << endl;

cout << "Introduce la opcidén: ";
cin >> op;

}

Si el usuario introduce un niumero entre 0 y 4:

No se ejecuta el cuerpo del bucle

(0]
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Ejemplo de bucle while

Primer entero cuyo cuadrado es mayor que 1.000

##include <iostream>

. jEjecuta el programa para
using namespace std;

saber cudl es ese niimero!

int main() {
int num = 1; <—— Empezamos en 1

while (num * num <= 1000) {
) num++; <—— |ncrementamosen 1

cout << "ler. entero con cuadrado mayor que 1.000:
<< num << endl;

return 0;

Recorre la secuencia de nameros 1, 2, 3, 4, 5, ...

Luis Hernandez Yafiez
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Suma y media de nimeros

#include <iostream> Recorre la secuencia
using namespace std;

int main() { de nimeros introducidos
double num, suma = @, media = O;
int cont = 9;
cout << "Introduce un numero (@ para terminar): ";

cin >> num; <—— Leemos el primero
while (num != 0) { // © para terminar

suma = suma + num;

cont++;

cout << "Introduce un numero (@ para terminar): ";
cin >> num; <«<—— Leemos el siguiente

}
if (cont > @) {

media = suma / cont;

}
2 cout << "Suma = " << suma << endl;
- cout << "Media = " << media << endl;
5 return 0;
2 ¥
I
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Bucle for

Numero de iteraciones prefijado

Variable contadora que determina el nimero de iteraciones:
for ([int] var = ini; condicidn; paso) cuerpo
La condicién compara el valor de var con un valor final

El paso incrementa o decrementa el valor de var

El valor de var debe ir aproximandose al valor final

for (int i

1; i <= 100; i++)... 1, 2, 3, 4, 5, ..., 100

for (int i 100; i »>= 1; i--)... 1e@e, 99, 98, 97, ..., 1

Tantos ciclos como valores toma la variable contadora

Luis Herndndez Yafiez

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones Il Pagina 323

Ejecucion del bucle for

for (inicializacidn; condicion; paso) cuerpo

for (int i = 1; i <= 100; i++) {
cout << 1i;

cout << 1i;

(0]
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Ejecucion del bucle for

for (int i = 1; i <= 100; i++) {
cout << 1 << endl;

}
i 101
1
2
3
99
cout << i << endl; 100
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Bucle for
La variable contadora

El paso no tiene porqué ir de uno en uno:
for (int i =1; i <=100; i =1 + 2)
cout << 1 << endl;
Este bucle for muestra los nimeros impares de 1 a 99

ﬁ'ﬁ Muy importante
El cuerpo del bucle NUNCA debe alterar el valor del contador

Garantia de terminacion

Todo bucle debe terminar su ejecuciéon
Bucles for: la variable contadora debe converger al valor final

Luis Hernandez Yafiez
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Ejemplo de bucle for

#include <iostream> AT

using namespace std; - .

long long int suma(int n); § l

int main() { i=]
int num;

cout << "Numero final: ";

cin >> num;

if (num > @) { // E1l numero debe ser positivo
cout << "La suma de los numeros entre 1y

<< num << " es: << suma(num);

}

return 0;

}

long long int suma(int n) {
long long int total = 0;
for (int i = 1; i <= n; i++) {
total = total + 1i;

} Recorre la secuencia de nameros
return total; 1,2,3,4,5,..n

Luis Herndndez Yafiez

}

! =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 327

Bucle for

¢Incremento/decremento prefijo o postfijo?

Es indiferente
Estos dos bucles producen el mismo resultado:

1; i <= 100; i++) ...

for (int i

for (int i = 1; i <= 100; ++i) ...

Bucles infinitos

for (int 1 = 1; i <= 100; i--)
10 -1-2-3 -4-5-6-7-8-9-10 -11
Cada vez mas lejos del valor final (100)

Es un error de disefio/programacion

Luis Hernandez Yafiez
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Ambito de la variable contadora
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Declarada en el propio bucle
for (int i =1; ...)
Sélo se conoce en el cuerpo del bucle (su dambito)

No se puede usar en instrucciones que sigan al bucle

Declarada antes del bucle
int 1i;
for (1 =1; ...)
Se conoce en el cuerpo del bucle y después del mismo
Ambito externo al bucle

(0]
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Bucle for versus bucle while

Los bucles for se pueden reescribir como bucles condicionados
for (int 1 = 1; i <= 100; i++) cuerpo
Es equivalente a:
int 1 = 1;
while (i <= 100) {
cuerpo
i++;

}

La inversa no es siempre posible:
int i;
cin >> 1; ¢;Bucle for equivalente?

while (i !'= @) { ’ )
cuerpo iNo sabemos cudntos niimeros

cin >> i; introducird el usuario!

}
[0}
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Bucles anidados
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Bucles for anidados

Un bucle for en el cuerpo de otro bucle for
Cada uno con su propia variable contadora:
for (int 1 = 1; i <= 100; i++) {

i

for (int j = 1; j <= 5; j++) { 1

cuerpo 1

1

} 1

} 1

Para cada valor de 1 ;

el valor de j variaentre 1y 5 5

) j varia mds rdpido que i ;

3 3
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Tablas de multiplicacion

tablas.cpp

#include <iostream>
using namespace std;
#include <iomanip>

int main() {
for (int 1 = 1; i <= 10; i++)
for (int j =
cout << setw(2) << i <«

<< setw(2) << j << " =

{

1; j <= 10; j++) {

X

<< setw(3) << i * j << endl;

Luis Herndndez Yafiez

=

return 0;
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Mejor presentacion

tablas2.cpp

Luis Hernandez Yafiez

=

#include <iostream>
using namespace std;
#include <iomanip>

int main() {
for (int 1 = 1; 1 <= 10; i++) {
cout << "Tabla del " << i << endl;
cout << M------mmmo--- " << endl;
for (int j = 1; j <= 10; j++) {
cout << setw(2) << i << " x "
<< setw(2) << j << " ="
<< setw(3) << i * j << endl;

}

cout << endl;
}
return 0;

}

=mr=m Fundamentos de la programacion: Tipos e instrucciones ||

[ - T TN T

Pagina 334




Mas bucles anidados

##include <iostream>
using namespace std;
#include <iomanip>

int menu(); // 1: Tablas de multiplicacién; 2: S
long long int suma(int n); // Sumatorio

int main() {
int opcion = menu();
while (opcion != 0) {
switch (opcion) {
case 1:
{
for (int i = 1; i<=10; i++) {
for (int j = 1; j <= 10; j++) {

cout << setw(2) << i << " x
<< setw(2) << j << " ="

umatorio

<< setw(3) << 1 * j << endl;

L
3 }
}
I }
3 break;
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Mas bucles anidados
case 2:
{
int num = 0;
while (num <= @) {
cout << "Hasta (positivo)? ";
cin >> num;
¥
cout << "La suma de los numeros del 1 al "
<< num << " es: " << suma(num) << endl;
by
} // switch

opcion = menu();
} // while (opcion != 0)
return 0;

(0]
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Mas bucles anidados

int menu() {

int op = -1;

while ((op < @) || (op > 2)) {
cout << "1 - Tablas de multiplicar" << endl;
cout << "2 - Sumatorio" << endl;
cout << "@ - Salir" << endl;
cout << "Opcion: " << endl;
cin >> op;
if ((op < @) || (op > 2)) {

cout << "iOpcidn no valida!" << endl;

}

}

return op;
}
long long int suma(int n) {
long long int total = ©;
for (int 1 = 1; i <= n; i++) {
total = total + i;
}

return total;

}
(0]
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Ambos tipos de bucles anidados

while (opcion != @) {

e o o

<= 10; i++) {

j <= 10; j++) {

for (int i = 1;
for (int j =

}

i
1;

}
while (num <= 0) {

} o suma()
for (int i = 1; i <= n; i++) {

Lo
while ((op < @) [| (op > 2)) {

Luis Hernandez Yafiez

} menu()
I E E
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Ambito y visibilidad
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Ambito de los identificadores

Cada bloque crea un nuevo ambito:

int main() {

double d
int cont Q;
while (d != 0) {
cin >> d;
if (d '=0) {
suma = suma + d;
cont++;

-1, suma = ©; 3 ambitos anidados

}

cout << "Suma = << suma << endl;
cout << "Media = " << suma / cont << endl;
return 0;

Luis Hernandez Yafiez
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Ambito de los identificadores

Un identificador se conoce
en el ambito en el que esta declarado
(a partir de su instruccién de declaracion)
y en los subambitos posteriores

(0]
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Ambito de los identificadores

int main() { ]
double d; Ambito de la variable d

if (...) {
int cont = 6;
for (int 1 =

9; i <= 10; i++) {

}
}

char c;

if ()

double x;

¥

return 0;

Luis Hernandez Yafiez
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Ambito de los identificadores

int main() {
double d;
if (...) {

int cont = 9; Ambito de la variable cont
for (int i = 0; i <= 10; i++) {

char c;
1{ ( e o o ) {
double x;
3 return 0;
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Ambito de los identificadores

int main() {
double d;
if (...) {
int cont = 0;

for (int 1 = 0; i <= 10; i++) {

) } Ambito de la variable i
char c;
if (...) {
double x;
3 return 0;
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Ambito de los identificadores

int main() {
double d;
if (...) {
int cont = 0;

for (int 1 = 0; i <= 10; i++) {

char c;
if (...) | Ambito de la variable c
double x;
3 return 0;
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Ambito de los identificadores

int main() {
double d;
if (...) {
int cont = 0;

for (int 1 = 0; i <= 10; i++) {

char c;
if (...) {
double x;
| cee | Ambito de la variable x
2 return 0;
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Visibilidad de los identificadores

Si en un subambito se declara
un identificador con idéntico nombre
que uno ya declarado en el ambito,
el del subambito oculta al del ambito
(no es visible)

(0]
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Visibilidad de los identificadores

int main

Oculta, en su ambito, a la i anterior

int =0; Oculta, en su ambito, a la i anterior
for(int @=0; i <= 10; i++) {

}

char c;

if (...) {

double /():(); Oculta, en su ambito, a la x anterior
.
return 0;

}

Luis Hernandez Yafiez
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Fundamentos de la programacion

Secuencias
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Secuencias i Gt

T

Sucesién de elementos de un mismo tipo que se acceden linealmente

elemento secuencia
secuencia = 0 >
elemento

(Secuencia vacia)

1 34 12 26 4 87 184 52

Comienza en un primer elemento (si no esta vacia)

A cada elemento le sigue otra secuencia (vacia, si es el tiltimo)
Acceso secuencial (lineal)

Se comienza siempre accediendo al primer elemento

Desde un elemento sé6lo se puede acceder a su elemento siguiente
(sucesor), si es que existe

Todos los elementos, de un mismo tipo

) DE(E)
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Secuencias en programacion

No tratamos secuencias infinitas: siempre hay un ultimo elemento

v’ Secuencias explicitas:

— Sucesion de datos de un dispositivo (teclado, disco, sensor, ...)
v" Secuencias calculadas:

— Formula de recurrencia que determina el elemento siguiente

v’ Listas (mds adelante)

Secuencias explicitas que manejaremos:
Datos introducidos por el teclado o leidos de un archivo
Con un elemento especial al final de la secuencia (centinela)
1 34 12 26 4 87 184 52 -1

Luis Herndndez Yafiez
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Deteccion del final de la secuencia

v" Secuencia explicita leida de archivo:
— Detectar la marca de final de archivo (Eof - End of file)
— Detectar un valor centinela al final <=

v’ Secuencia explicita leida del teclado:
— Preguntar al usuario si quiere introducir un nuevo dato
— Preguntar al usuario primero cuantos datos va a introducir
— Detectar un valor centinela al final <=

Valor centinela:

Valor especial al final que no puede darse en la secuencia
(Secuencia de nimeros positivos = centinela: cualquier negativo)

\ 4
12 4 37 23 8 19 83 63 2 35 17 76 15 -1

Luis Hernandez Yafiez
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Centinelas

Debe haber algtun valor que no sea un elemento valido
Secuencias numéricas:
Si se permite cualquier numero, no hay centinela posible
Cadenas de caracteres:
;Caracteres especiales (no imprimibles)?

En realidad el valor centinela es parte de la secuencia,
pero su significado es especial y no se procesa como el resto

Significa que se ha alcanzado el final de la secuencia
(Incluso aunque haya elementos posteriores)

Ultimo elemento

\ 4
12 4 37 23 8 19 83 63 -1 35 17 76 15
\ J

v
No se procesan

(0]
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Esquemas de tratamiento de secuencias

Tratamiento de los elementos uno a uno desde el primero
Recorrido

Un mismo tratamiento para todos los elementos de la secuencia

Ej.- Mostrar los elementos de una secuencia, sumar los nimeros
de una secuencia, ;par o impar cada nimero de una secuencia?, ...

Termina al llegar al final de la secuencia
Busqueda

Recorrido de la secuencia hasta encontrar un elemento buscado

Ej.- Localizar el primer nimero que sea mayor que 1.000

fiez

Termina al localizar el primer elemento que cumple la condicion
o al llegar al final de la secuencia (no encontrado)

Luis Hernandez Ya
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Fundamentos de la programacion

Recorrido de secuencias

(0]
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Esquema de recorrido

Un mismo tratamiento a todos los elementos
Inicializacion
Mientras no se llegue al final de la secuencia:
Obtener el siguiente elemento
Procesar el elemento
Finalizacion
Al empezar se obtiene el primer elemento de la secuencia

En los siguientes pasos del bucle se van obteniendo
los siguientes elementos de la secuencia

Luis Hernandez Yafiez
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Esquema de recorrido

Inicializaciéon

(Al final?

Obtener elemento

Procesar elemento

Finalizacion

HEE

Smrm Fundamentos de la programacion: Tipos e instrucciones Il

No sabemos cuantos
elementos hay
- No podemos
implementar con for
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Secuencias explicitas con centinela

Implementacion con while

Inicializacion

Obtener el primer elemento

Mientras no sea el centinela:
Procesar el elemento

Obtener el siguiente elemento
Finalizacion

HEE

Smrm Fundamentos de la programacion: Tipos e instrucciones Il

Inicializacion

Obtener 12

;Centinela?

Procesar elemento

Obtener siguiente

Finalizacion
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Secuencias explicitas leidas del teclado

Secuencia de niimeros positivos

Siempre se realiza al menos una lectura
Centinela: -1

double d, suma = 0; Inicializacién
cout << "Valor (-1 termina): ";
cin >> d; }Primer elemento
while (d != -1) { Mientras no el centinela
suma = suma + d; Procesar elemento
cout << "Valor (-1 termina): "; o
cin >> d; }Slgulente elemento
}

cout << "Suma = << suma << endl; — Finalizacion

Luis Herndndez Yafiez
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Secuencias explicitas leidas del teclado
Longitud de una secuencia de caracteres

Centinela: caracter punto (.)

int longitud() {

int 1 = 0;
char c;
cout << "Texto terminado en punto: ";
cin >> c; // Obtener primer caracter
while (c != '.") { // Mientras no el centinela
1++; // Procesar
cin >> c; // Obtener siguiente caracter
}
return 1;

Luis Hernandez Yafiez
-

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 360




Secuencias explicitas leidas del teclado

/Cudntas veces aparece un cardcter en una cadena?

Centinela: asterisco (*)

char buscado, c;
int cont = 0O;

cout << "Caracter a buscar: ";
cin >> buscado;

cout << "Cadena: "“;

cin >> c; — Primer elemento
while (c != "*') { — Mientras no el centinela
if (c == buscado) {
cont++; Procesar elemento
cin >> c; — Siguiente elemento

cout << buscado << " aparece " << cont
<< " veces.";

Luis Herndndez Yafiez
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Secuencias explicitas leidas de archivo

1 ; 2.
Suma de los numeros de la secuencia

Centinela: ©

int sumaSecuencia() {
double d, suma = 0;
ifstream archivo; // Archivo de entrada (lectura)
archivo.open("datos.txt");
if (archivo.is_open()) {
archivo >> d; // Obtener el primero
while (d != @) { // Mientras no sea el centinela
suma = suma + d; // Procesar el dato
archivo >> d; // Obtener el siguiente

}

archivo.close();

}

return suma;

Luis Hernandez Yafiez
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Fundamentos de la programacion

Secuencias calculadas

(0]
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Secuencias calculadas
Recurrencia:  e,;=e;+1 e, =1 N
1 2 3 4 5 6 7 8 ... l

Suma de los nimeros de la secuencia calculada: i=]

int main() {
int num;
cout << "N = ";
cin >> num;
cout << "Sumatorio:
return 0;

<< suma(num);

}

long long int suma(int n) {
int sumatorio = 0;
for (int i = 1;@ <= n) i++) {
sumatorio = i

}

return sumatorio; L .
’ Ultimo elemento de la secuencia: n

Luis Hernandez Yafiez

}
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Suma de una secuencia calculada

long long int suma(int n) { N
int sumatorio = ©; :E:f
for (int i = 1; i <= n; i++) { i=1

sumatorio = sumatorio + 1i;

}

sumatorio = 0;

n 5

sumatorio 15

i e B

\ 7
g

3 Secuencia

Z(E

53

kel

f=

2

5}

T

§
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Numeros de Fibonacci

Definicion
Fi=F, +Fp,
F, =0
F,=1
©112358 1321 34 55 89

/Fin de la secuencia?

Primer nimero de Fibonacci mayor que un nimero dado
Ese numero de Fibonacci actia como centinela

Si num es 50, la secuencia sera:
©11235813 21 34

(0]
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Numeros de Fibonacci

Recorrido de la secuencia calculada

int num, fib, fibMenos2 = @, fibMenosl = 1; // 12 y 2¢
fib = fibMenos2 + fibMenosl; // Calculamos el tercero
cout << "Hasta: ";
cin >> num;
if (num >= 1) { // Ha de ser entero positivo
cout << "@ 1 "; // Los dos primeros son <= num
while (fib <= num) { // Mientras no mayor que num
cout << fib << " ",
fibMenos2 = fibMenosl; // Actualizamos anteriores
fibMenosl = fib; // para obtener...
fib = fibMenos2 + fibMenosl; // ... el siguiente

Gg ¢;Demasiados comentarios?

Para no oscurecer el c6digo, mejor una explicacién al principio

Luis Herndndez Yafiez
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Numeros de Fibonacci

El bucle calcula adecuadamente la secuencia:

—» while (fib <= num) {
—> cout << fib << " ";
fibMenos2 = fibMenos1;

—>
—> fibMenosl = fib;
—> fib = fibMenos2 + fibMenos1;
}
num = 160
©11235...
fib = 5

fibMenosl 3

fibMenos2 @ 2

(0]
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Fundamentos de la programacion

Blisqueda en secuencias

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pé4gina 369

[ Luis Herndndez Yafiez
L.

Esquema de busqueda

Localizacion del primer elemento con una propiedad
Inicializacion
Mientras no se encuentre el elemento
y no se esté al final de la secuencia:
Obtener el siguiente elemento
Comprobar si el elemento satisface la condicion
Finalizacién
(tratar el elemento encontrado o indicar que no se ha encontrado)

Elemento que se busca: satisfard una condicién
Dos condiciones de terminacion del bucle: se encuentra / al final

Variable légica que indique si se ha encontrado

Luis Hernandez Yafiez
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Esquema de busqueda

Localizacion del primer elemento con una propiedad

Inicializaciéon / encontrado = false;

(Al final o true
encontrado?

Obtener elemento

(Encontrado?

Finalizacion

(0]
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Secuencias explicitas con centinela

Implementacion con while
Inicializacion Inicializacién
Obtener el primer elemento Obtener 1°
Mientras ni encontrado ni el centinela:
Obtener el siguiente elemento

¢Encontrado
Finalizacion (;encontrado?) o centinela?

Obtener siguiente

Finalizacion

(0]
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Secuencias explicitas leidas del teclado

Primer numero mayor que uno dado

Centinela: -1

double d, num;
bool encontrado = false;
cout << "Encontrar primero mayor que: ";
cin >> num;
cout << "Siguiente (-1 para terminar): ";
cin >> d; // Obtener el primer elemento
while ((d !'= -1) && !encontrado) {
// Mientras no sea el centinela y no se encuentre
if (d > num) { // éEncontrado?
encontrado = true;

5 else {

£ cout << "Siguiente (-1 para terminar): ";

2 cin >> d; // Obtener el siguiente elemento
: }
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Fundamentos de la programacion

Arrays de tipos simples
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Arrays

Colecciones homogéneas

Un mismo tipo de dato para varios elementos:
v" Notas de los estudiantes de una clase

v" Ventas de cada dia de la semana

v Temperaturas de cada dia del mes

En lugar de declarar N variables...

vLun vMar vMie vJue vVie vSab vDom

125.40 l 76.95 B 328.80 W 254.62 W 435.00 | 164.29

... declaramos una tabla de N valores:

NSl 125.40 76.95 328.80 254.62 435.00 164.29 ©0.00
indices—> o 1 2 3 4 5 6

7 Luis Herndndez Yafiez
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Arrays

Estructura secuencial

Cada elemento se encuentra en una posicion (indice):
v" Los indices son enteros positivos
v" Elindice del primer elemento siempre es 0

v" Los indices se incrementan de uno en uno

IRl 125.40 76.95 328.80 254.62 435.00 164.29 0.00

0 1 2 3 4 5 6
Acceso directo

A cada elemento se accede a través de su indice:

ventas[4] accede al 52 elemento (contiene el valor 435.00)
cout << ventas[4];

ventas[4] = 442.75; ca Datos de un mismo tipo base:
Se usan como cualquier variable
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Tipos arrays

Declaracion de tipos de arrays

typedef tipo base nombre tipo[tamano];

Ejemplos:

typedef double tTemp[7];

typedef short int tDiasMes[12];

typedef char tVocales[5];

typedef double tVentas[31];

typedef tMoneda tCalderilla[15]; // Enumerado tMoneda

Recuerda: Adoptamos el convenio de comenzar

los nombres de tipo con una t minuscula, seguida
de una o varias palabras, cada una con su inicial en mayuscula

7 Luis Herndndez Yafiez
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Variables arrays

.z : typedef double tTemp[7];
Declaracion de variables arrays — Preiet duoe vewlils o1,

. . typedef char tVocales[5];
t"-PO nombr*e, typedef double tVentas[31];

Ejemplos:

(7] 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8 9 10 11

tVocales vocales; vocales
0 1 2 3 4

e 1 2 3 4 5 6 7 8 9 10 11 12 30

:lq NO se inicializan los elementos automaticamente
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tVentas ventasFeb; ventasFeb
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Fundamentos de la programacion

Uso de variables arrays
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Acceso a los elementos de un array

nombre[indice]

Cada elemento se accede a través de su indice (posicion en el array)

tVocales vocales;

typedef char tVocales[5];

vocales

5 elementos, indices de 0 a 4:

vocales[0] vocales[1] vocales[2] vocales[3] vocales[4]
Procesamiento de cada elemento:

Como cualquier otra variable del tipo base

cout << vocales[4];

vocales[3] = '0';

if (vocales[i] == 'e")

(0]
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Acceso a los elementos de un array

iIMPORTANTE!
iNo se comprueba si el indice es correcto!

jEs responsabilidad del programador!

const int Dim = 100;
typedef double tVentas[Dim];
tVentas ventas;

Indices validos: enteros entre 0 y Dim-1
ventas[@] ventas[l] ventas[2] ... ventas[98] ventas[99]

;Qué es ventas[100]? ;O ventas[-1]7 ;O ventas[132]?

iMemoria de alguna otra variable del programa!

ﬁﬂ Define los tamafios de los arrays con constantes
(013
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Recorrido de arrays
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Recorrido de arrays

Arrays: tamafio fijo 2 Bucle de recorrido fijo (for)

Ejemplo: Media de un array de temperaturas

const int Dias = 7;

typedef double tTemp[Dias];

tTemp temp;

double media, total = 0;

for (int i = @; i < Dias; i++) {
total = total + temp[i];

}

media = total / Dias;

Ig)
L
]
©
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2
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I
§
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Recorrido de arrays
12.40 10.96 8.43 11.65 13.70 13.41 14.07
0 1 2 3 4 5 6
tTemp temp;
double media, total = 9; Memoria
Dias 7
for (int i =0; i< D1as,. i++) { > temp[e] 15 46
total = total + temp[i];
} —_— temp[1] 10.96
—  temp[2] 8.43
—  temp[3] 11.65
—_—  temp[4] 13.70
temp[5] 13.41
1<Dias temp[6] 14.07
i ?
total+=temp[i] media :
total 84.62
3]
i< i 7
>
]
©
f=
2
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§
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Recorrido de arrays

#include <iostream>
using namespace std;

const int Dias = 7;
typedef double tTemp[Dias];

double media(const tTemp temp);

int main() {
tTemp temp;
for (int i = @; i < Dias; i++) { // Recorrido del array
cout << "Temperatura del dia " << i + 1 << ": ";
cin >> temp[i];

}
N cout << "Temperatura media: " << media(femp) << endl;
5 return 0;
i } Los usuarios usan de 1 a 7 para numerar los dias
g La interfaz debe aproximarse a los usuarios,
= aunque internamente se usen los indices de 0 a 6
@ ? Fundamentos de la programacion: Tipos e instrucciones Il Pé4gina 385

Recorrido de arrays

double media(const tTemp temp) {
double med, total = 0;

for (int i = @; i < Dias; i++) { // Recorrido del array
total = total + temp[i];

}
med = total / Dias;

return med;

Gg Los arrays se pasan a las funciones como constantes

5 Las funciones no pueden devolver arrays

3;-%

]
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Arrays de tipos enumerados

const int Cuantas = 15;

typedef enum { centimo, dos_ centimos, cinco_centimos,
diez_centimos, veinte centimos, medio_euro, euro } tMoneda;

typedef tMoneda tCalderilla[Cuantas];

string aCadena(tMoneda moneda);
// Devuelve la cadena correspondiente al valor de moneda

tCalderilla bolsillo; // Exactamente llevo Cuantas monedas

bolsillo[@] = euro;
bolsillo[1] = cinco_centimos;
bolsillo[2] = medio_euro;
bolsillo[3] = euro;
bolsillo[4] = centimo;

for (int moneda = ©; moneda < Cuantas; moneda++)
cout << aCadena(bolsillo[moneda]) << endl;

(0]
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Busqueda en arrays

/Qué dia las ventas superaron los 1.000 €?

const int Dias = 365; // Ano no bisiesto
typedef double tVentas[Dias];

int busca(const tVentas ventas) {
// Indice del primer elemento mayor que 1000 (-1 si no hay)

}

(0]

bool encontrado = false;
int ind = 0;
while ((ind < Dias) && !encontrado) { // Esquema de busqueda
if (ventas[ind] > 1000) {
encontrado = true;

}
else {
ind++;

}

if (!encontrado) {
ind = -1;
}

return ind;
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Capacidad y copia de arrays
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Capacidad de los arrays

La capacidad de un array no puede ser alterada en la ejecucion
El tamafio de un array es una decision de disefo:
v En ocasiones sera facil (dias de la semana)

v Cuando pueda variar ha de estimarse un tamafio
Ni corto ni con mucho desperdicio (posiciones sin usar)

STL (Standard Template Library) de C++:
Colecciones mas eficientes cuyo tamafo puede variar

(0]
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Copia de arrays

No se pueden copiar dos arrays (del mismo tipo) con asignacion:
array2 = arrayl; // jji NO COPIA LOS ELEMENTOS !!!

Han de copiarse los elementos uno a uno:
for (int 1 = 0; i < N; i++) {
array2[i] = arrayl[i];

(0]
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Arrays no completos
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Arrays no completos

Puede que no necesitemos todas las posiciones de un array...
La dimensidn del array sera el maximo de elementos
Pero podremos tener menos elementos del maximo

Necesitamos un contador de elementos...

const int Max = 100;
typedef double tArray[Max];
tArray lista;

int contador = 9;

contador: indica cuantas posiciones del array se utilizan
Sélo accederemos a las posiciones entre 0 y contador-1

Las demas posiciones no contienen informacion del programa

Luis Hernandez Yafiez
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Arrays no completos

#include <iostream>
using namespace std;
#tinclude <fstream>

const int Max = 100;
typedef double tArray[Max];

double media(const tArray lista, int cont);

int main() {
tArray lista;
int contador = 0;
double valor, med;
ifstream archivo;
archivo.open("lista.txt");
if (archivo.is_open()) {

archivo >»> valor;

2 while ((valor != -1) &% (contador < Max)) {

> .

5 lista[contador] = valor;

kel

5 contador++;

o archivo >> valor;

I E E
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Arrays no completos

archivo.close();
med = media(lista, contador);
cout << "Media de los elementos de la lista: " << med << endl;

}
else {
cout << "iNo se pudo abrir el archivo!" << endl;
}
return 0;

}

double media(const tArray lista, int cont) {
double med, total = ©;
for (int ind = 0; ind < cont; ind++) {

total = total + lista[ind];
}

med = total / cont; Solo recorremos hasta cont-1
return med;

Luis Hernandez Yafiez
—
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Acerca de Creative Commons @@@@

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.
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Pulsa en la imagen de arriba a la derecha para saber mas.
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El operador ternario ?

ANEXO I

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

(& Universidad Complutense

El operador ternario ?

Expresion condicional Condicién ? Exp1 : M—>

Dos alternativas

— Condicion: Expresion logica

++ -- (postfijos)
Llamadas a funciones
Moldes

— Exply Exp2: Expresiones
Si Condicidn se evalda a true, -

el resultado es Exp1; TJ'(C;I;IIE?JZT leg,n;)
si Condicion se evalia a false,
el resultado es ExpZ2.

int a =5, b =3, c;

c=(a+b==10) ? 2 : 3;

3 c=( 8 ==10) ? 2 : 3;
§ Cc = false ? 2 : 3;
% c = 3;
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El operador ternario ?

Equivalencia con un if-else
c=(a+b==10) ? 2 : 3;

Es equivalente a:
if (a +b==10) c = 2;
else c = 3;

Se pueden concatenar:

cout << (nota == 10 ? "MH" : (nota >= 9 ? "SB"
(nota >= 7 ? "NT" : (nota >= 5 ? "AP" : "SS"))))

Esto es equivalente a la escala if-else-1if de la siguiente seccidn.

==z Luis Hernandez Yafiez
f
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El operador ternario ?

Escala if .. else 1if..equivalente

cout << (nota == 10 ? "MH" : (nota >= 9 ? "SB"
(nota >= 7 ? "NT" : (nota >= 5 ? "AP" : "SS"))))

Sinota == 10 entonces MH
sino, sinota >= 9 entonces SB
sino, sinota >= 7 entonces NT
sino, sinota >= 5 entonces AP
sino SS

double nota;

cin >> nota;

if (nota == 10) { cout << "MH"; }
else if (nota »>= 9) { cout << "SB"; }
else if (nota »>= 7) { cout << "NT"; }
else if (nota >= 5) { cout << "AP"; }
else { cout << "SS"; } \ 4

Luis Hernandez Yafiez
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Ejemplos de secuencias

ANEXO II
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Recorridos
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Un aparcamiento

Secuencia de caracteres E y S en archivo
E = Entra un coche; S = Sale un coche

;Cuantos coches quedan al final de la jornada?

Varios casos, cada uno en una linea y terminado en punto

Final: linea s6lo con punto

parkeng tet: Bo de nolbin BT —

Archrid ESostn  Fosvale Wer  Ayoda

ELEI SIS SIS LS I S S S E S SE S LS55 888S
EEESSERSSEE SSEEESE SESSEESEEESS

EEEE SR SE SR RS SE SR S RS EERESSEEE SREE .
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Un aparcamiento

#include <iostream>
using namespace std;
#include <fstream>

int main() {
int coches;
char c;
bool terminar = false;
ifstream archivo;
archivo.open("parking.txt");
if (larchivo.is_open()) {
cout << "jNo se ha podido abrir el archivo!" << endl;
}

else {
// Recorrido...
archivo.close(); )

}

return 0;

-

Luis Herndndez Yafiez
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Un aparcamiento (recorrido)

while (!terminar) {
archivo »>> c;
if (¢ == "'.") { // . como primer caracter? (centinela)
terminar = true;
}
else {
coches = 0;
while (c != ".") { // Recorrido de la secuencia
cout << c;
if (c == "E') {
coches++;
}
else if (c == 'S") {
coches--;

}

archivo >»> c;

(0]
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Un aparcamiento (recorrido)

if (coches >= 0) {

cout << endl << "Quedan " << coches << " coches.";
else {
cout << endl << "Error: Mas salidas que entradas!";
cout << endl;
353
B
E
5
I
I
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é¢Paréntesis bien emparejados?

Cada paréntesis, con su pareja
Secuencia de caracteres terminada en # y con parejas de paréntesis:
ab(c(de)fgh((i(jk))Imn)op)(rs)#
L | | — ] | | (I

Contador del nivel de anidamiento:

Al encontrar ' (' incrementamos - Al encontrar ') ' decrementamos

Al terminar, el contador debera tener el valor ©

Errores:

— Contador -1: paréntesis de cierre sin uno de apertura pendiente
abc)de(fgh(ij))#

— Contador termina con un valor positivo
Mas paréntesis de apertura que de cierre
Algtn paréntesis sin cerrar: (a(b(cd(e)f)gh(i))jk#

Luis Hernandez Yafiez
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é¢Paréntesis bien emparejados?

Un error puede interrumpir el recorrido:

char c;
int anidamiento = @, pos = 0;
bool error = false;
cin >> c;
while ((c != "#') && l!error) {
poOS++;
if (c == "(") {

anidamiento++;

else if (c == ")") {
anidamiento--;

}

if (anidamiento < @) {
error = true;

if (lerror) {

Luis Herndndez Yafiez

cin >> c;
I E E
Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1)
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é¢Paréntesis bien emparejados?

parentesis.cpp

if (error) {

cout << "Error: cierre sin apertura (pos.

<< 5
}
else if (anidamiento > 0) {
cout << "Error: Apertura sin cierre";

)i
else {

cout << "Correcto";
¥

cout << endl;

(0]
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é¢Dos secuencias iguales?

bool iguales() {
bool sonIguales = true;
double di, d2;
ifstream secl, sec2;
bool final = false;
secl.open("secuencial.txt");
sec2.open("secuencia2.txt");
secl >> di;
sec2 >> d2; // Al menos estaran los centinelas (9)
while (sonIguales && !final) {
sonIguales = (d1 == d2);
final = ((d1 == 0) || (d2 == @));
if (!final) {
secl >> di;
sec2 >> d2;

}

} ﬁg Cambia secuencia2.txt por secuencia3.txt
secl.close(); y por secuencia4.txt para comprobar otros casos
sec2.close();

return sonIguales;

Luis Herndndez Yafiez
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NuUmeros primos menores que N

Secuencia calculada: numeros divisibles sé6lo por 1 y ellos mismos (< N)

#include <iostream>
using namespace std;
bool primo(int n); >
int main() {
int num, candidato;
cout << "Entero en el que parar (>1): ";
cin >> num;
if (num > 1) {
candidato = 2; // E1 1 no se considera un numero primo
while (candidato < num) {
cout << candidato << " "

;5 // Mostrar numero primo

candidato++;
while (!primo(candidato)) { // Siguiente primo
candidato++;
}
}
2 }
§ return 0;
5 }
(cc) (%)
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Nimeros primos menores que N

bool primo(int n) {
bool esPrimo = true;

for (int i = 2; i <=n - 1; i++) {
if (n % 1i==20) {
esPrimo = false; // Es divisible por i

}
}

return esPrimo;

(0]
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NuUmeros primos menores que N

Mejoras: probar sélo impares; sélo pueden ser divisibles por impares;
no pueden ser divisibles por ninguno mayor que su/mitad

; // Mostrar/el numero primo 2
e es primo

cout << candidato << ; strar numero primo
candidato 0lo probamos impares
while (!primo(candidato) iguiente numero primo
candidato
}
}o...
bool primo(int n)
bool esPrimo =
for (int i =3;i<=n/2;i=1+2){
if (n%1i==29) {
esPrimo = false; // Es divisible por i
}

}...
(1))
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NuUmeros primos menores que N

Otra mejora mas: Paramos al encontrar el primer divisor

bool primo(int n) {
bool esPrimo = true;

int i = 3; 2
while ((i <= n / 2) && esPrimo) {
if (n%1i==209){
esPrimo = false;
)
i

=1+ 2;

}

return esPrimo;

(0]
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Busqueda de un numero en un archivo

#include <iostream> buscaarch.cpp

using namespace std;
#include <fstream>

int busca(int n);
// Devuelve la linea en la que se encuentra o -1 si no esta

int main() {
int num, linea;
cout << "Valor a localizar: ";
cin >> num;

linea = busca(num); >
if (linea != -1) {
cout << "Encontrado (linea " << linea << ")" << endl;

else {

£ cout << "No encontrado"” << endl;

3 }

5 return 0;

2 }
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Busqueda de un numero en un archivo

int busca(int n) {
int i, linea = 0;
bool encontrado =
ifstream archivo;
archivo.open("enteros.txt");
if (larchivo.is_open()) { Sobe P
linea = -1; '8

false;

wnbmion Exd- @

else { .
archivo >> i; 11
while ((i != @) && !encontrado) { :

linea++; 265
if (i ==n) { 153

encontrado = true; 164
} £

archivo »>> i; Centinela —> @

if (!encontrado) {
linea = -1;

archivo.close();

return linea;

r Luis Hernandez Yafiez
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Busquedas en
secuencias ordenadas
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Busqueda en secuencias ordenadas

Secuencia ordenada de menor a mayor: buscaord. cpp

paramos al encontrar uno mayor o igual al buscado

Los que resten seran seguro mayores: jno puede estar el buscado!

cout << "Valor a localizar: ";
cin >> num;
archivo »>> i;

orcherancda et

Archva  Edeiiéy
-

while ((i != @) & (i < num)) { i
cont++; 18
archivo »>> i; -

} 4

if (i == num) { 'iﬁ
cout << "Encontrado (pos.: " << cont << ")"; 184

) B

else { N Fa
cout << "No encontrado"; )

}

cout << endl;
archivo.close();

(0]
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Secuencias ordenadas

Si el elemento esta: procesamiento similar a secuencias desordenadas

123 153 159

archivo >> i;

num 9

(EEN))
& (i < num)

cont++;
archivo >> i;

false

Fundamentos de la programacion: Tipos e instrucciones Il (Anexo Il)
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Secuencias ordenadas

Si el elemento no esta: evitamos buscar en el resto de la secuencia

125 153 159

archivo >> i;

num 10

(EEN-))
& (i < num)

cont++;
archivo >> i;

No se procesa
el resto
de la secuencia

false
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Acerca de Creative Commons @@@@

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.
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Pulsa en la imagen de arriba a la derecha para saber mas.
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Diseno descendente
Tareas y subtareas
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Tareas y subtareas

Refinamientos sucesivos

Tareas que ha de realizar un programa:

Se pueden dividir en subtareas mas sencillas
Subtareas:

También se pueden dividir en otras mas sencillas...

- Refinamientos sucesivos

Disefio en sucesivos pasos en los se amplia el detalle
Ejemplos:
v’ Dibujar ;

v’ Mostrar la cadena HOLA MAMA en letras gigantes

Luis Hernandez Yafiez
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Un dibujo

1.Dibujar ()

—>
REFINAMIENTO
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1.Dibujar ()

2.Dibujar /\

2.1. Dibujar /\ = <—

Misma tarea

2.2. Dibujar —

3.Dibujar /\ <
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Un dibujo

1.Dibujar ()

2.2. Dibujar

3.Dibujar  /\

Luis Hernandez Yafiez
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4 tareas, pero dos de ellas son iguales
Nos basta con saber cdmo dibujar:

O /\ —
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Un dibujo R

void dibujarCirculo()

{ ...}

void dibujarSecantes()
(...}

void dibujarLinea()

{ ...}
Dibujar

void dibujarTriangulo()
{

dibujarSecantes();
dibujarLinea();
}

int main() {
dibujarCirculo();
dibujarTriangulo();
dibujarSecantes();
return 0;

7 Luis Herndndez Yafiez
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Mensaje en letras gigantes

Mostrar la cadena HOLA MAMA en letras gigantes

Mostrar HOLA MAMA

Mostrar HOLA Espacio en blanco Mostrar MAMA

nonn oo

Tareas basicas

n Espacio en blanco

7 Luis Herndndez Yafiez
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Mensaje en letras gigantes

void mostrarH() {

void espaciosEnBlanco() {

cout << "* *" << endl; cout << endl << endl << endl;
cout << "*  *" << endl; }
cout << "F¥REREAM << endl;
cout << "*  *" << endl; void mostrarM()
cout << "*  *" << endl << endl; { ...}
}
int main() {
void mostrar0o() { mostrarH();
cout << "FEER¥XM (¢ andl; mostrarO();
cout << "*  *" << endl; mostrarL();
cout << "*  *" << endl; mostrarA();
cout << "*  *" << endl; espaciosEnBlanco();
cout << "F¥xxx" (¢ endl << endl; mostrarM();
} mostrarA();
mostrarM();
. void mostrarL() mostrarA();
5 { ...}
2 return 0;
% void mostrarA() }
% { ...}
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Abstraccion procedimental

Subprogramas

Pequerios programas dentro de otros programas
v Unidades de ejecuciéon independientes

v Encapsulan cédigo y datos

v Se comunican con otros subprogramas (datos)

Subrutinas, procedimientos, funciones, acciones, ...

v' Realizan tareas individuales del programa

v Funcionalidad concreta, identificable y coherente (disefio)
v" Se ejecutan de principio a fin cuando se llaman (invocan)
v Terminan devolviendo el control al punto de llamada

ﬁ Aumentan el nivel de abstraccién del programa

Luis Herndndez Yafiez

Facilitan la prueba, la depuracion y el mantenimiento
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Subprogramas

Flujo de ejecucion

——> int main()

{ )

mostraro() ;——

7

}

mostrarH();

I—) void mostrarH()
{
) (2
——— void mostraro()
{
© }

(0]
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Subprogramas

Subprogramas en C++

Forma general de un subprograma en C++:

tipo nombre(pardmetros) // Cabecera

{
}

// Cuerpo

v" Tipo de dato que devuelve el subprograma como resultado
v’ Pardmetros para la comunicacion con el exterior

v" Cuerpo: jUn bloque de cédigo!

(0]
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Subprogramas

Tipos de subprogramas

Procedimientos (acciones):
NO devuelven ningun resultado de su ejecucion con return
Tipo: void
Llamada: instrucciéon independiente
mostrarH();

Funciones:

SI devuelven un resultado con la instruccién return
Tipo distinto de void

Llamada: dentro de cualquier expresion

x = 12 * y + cuadrado(20) - 3;

Se sustituye en la expresién por el valor que devuelve

jYa venimos utilizando funciones desde el Tema 2!

(0]
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Subprogramas

Funciones

Subprogramas de tipo distinto de void

{

int op;

cout << "1 - Editar" << endl;
cout << "2 - Combinar" << endl;
cout << "3 - Publicar" << endl;
cout << "@ - Cancelar" << endl;

cout << "Elija: ";
cin >> op;

int main()

{

int opcion;

opcion = @) :
A

Peturn<§E;

fiez
—

(0]
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Subprogramas

Procedimientos

Subprogramas de tipo void

i wog
{

int op;

cout << "1 - Editar" << endl;

cout << "2 - Combinar" << endl;

cout << "@ - Cancelar" << endl;

cout << "Opcidn: ";

cin >> op;

if (op == 1) {
editar();

}

else if (op == 2) {
combinar();

fiez

}

int main()

{

menu(); —
—> ...

-

Luis Hernandez Ya
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Subprogramas y datos

(0]
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Datos en los subprogramas

De uso exclusivo del subprograma

tipo nombre(pardmetros) // Cabecera

{
}

Declaraciones locales // Cuerpo

v" Declaraciones locales de tipos, constantes y variables
Dentro del cuerpo del subprograma

v’ Parametros declarados en la cabecera del subprograma

Comunicacion del subprograma con otros subprogramas

(0]
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Datos locales y datos globales

Datos en los programas

v' Datos globales: declarados fuera de todos los subprogramas
Existen durante toda la ejecucién del programa
v" Datos locales: declarados en algiin subprograma

Existen so6lo durante la ejecucién del subprograma

Ambito y visibilidad de los datos Tema 3

— Ambito de los datos globales: resto del programa
Se conocen dentro de los subprogramas que siguen

— Ambito de los datos locales: resto del subprograma
No se conocen fuera del subprograma

— Visibilidad de los datos

Datos locales a un bloque ocultan otros externos homénimos

Luis Herndndez Yafiez
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Datos locales y datos globales

#include <iostream>
using namespace std;

const int MAX = 100;

double ingresos; } Datos globales B9 opdeproc()
es distinta

de op de main()

void proc() {
int op;
double ingresos;

} Datos locales a proc ()

— Se conocen MAX (global), op (local)
} e ingresos (local que oculta la global)

int main() {

int op; Datos locales amain()

r‘etum Se conocen MAX (global), op (local)

} e ingresos (global)

Luis Hernandez Yafiez
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Datos locales y datos globales

Sobre el uso de datos globales en los subprogramas

NO SE DEBEN USAR datos globales en subprogramas
v’ ;Necesidad de datos externos?

Define parametros en el subprograma

Los datos externos se pasan como argumentos en la llamada
v Uso de datos globales en los subprogramas:

Riesgo de efectos laterales

Modificacién inadvertida de esos datos afectando otros sitios

Excepciones:
v’ Constantes globales (valores inalterables)

v Tipos globales (necesarios en varios subprogramas)

Luis Herndndez Yafiez
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Parametros
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Comunicacion con el exterior

Datos de entrada, datos de salida y datos de entrada/salida

Datos de entrada: Aceptados Subprograma

Subprograma que dado un numero

muestra en la pantalla su cuadrado: cuadrado()

i

Datos de salida: Devueltos Subprograma
Subprograma que dado un nimero X y (=x2)
devuelve su cuadrado: s cuadrado()

Datos de entrada/salida:

. Subprograma
Aceptados y modificados oprog

Subprograma que dada una variable
numérica la eleva al cuadrado:

L

cuadrado()

Luis Herndndez Yafiez
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Parametros en C++

Declaracion de parametros

Sélo dos clases de parametros en C++:
— Sdélo de entrada (por valor)
— De salida (s6lo salida o E/S) (por referencia / por variable)

Lista de pardmetros formales

Entre los paréntesis de la cabecera del subprograma

tipo nombre(pardmetros) =
De salida

pardmetros —);-) A s dentificador RN
@lose
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Parametros por valor

Reciben copias de los argumentos usados en la llamada
int cuadrado(int num)

double potencia(double base, int exp)

void muestra(string nombre, int edad, string nif)
void proc(char c, int x, double a, bool b)
Reciben sus valores en la llamada del subprograma
Argumentos: Expresiones en general

Variables, constantes, literales, llamadas a funcion, operaciones

Se destruyen al terminar la ejecucion del subprograma

jAtencion! Los arrays se pasan por valor como constantes:
double media(const tArray lista)

Luis Herndndez Yafiez
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Parametros por referencia &

Misma identidad que la variable pasada como argumento
void incrementa(int &x)
void intercambia(double &x, double &y)

void proc(char &c, int &x, double &a, bool &b)

Reciben las variables en la llamada del subprograma: jVariables!
Los argumentos pueden quedar modificados

jNo usaremos pardmetros por valor en las funciones!

Sélo en procedimientos

ﬂa Puede haber tanto por valor como por referencia

jAtencién! Los arrays se pasan por referencia sin utilizar &
void insertar(tArray lista, int &contador, double item)

El argumento de 1ista (variable tArray) quedara modificado

(0]
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Fundamentos de la programacion

Argumentos

(0]
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Llamada a subprogramas con parametros

nombre (argumentos)

— Tantos argumentos como parametros y en el mismo orden
— Concordancia de tipos argumento-parametro
— Por valor: Expresiones validas (se pasa el resultado)

— Por referencia: jSélo variables!

Se copian los valores de las expresiones pasadas por valor
en los correspondientes parametros

Se hacen corresponder los argumentos pasados por referencia
(variables) con sus correspondientes parametros

(0]
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Argumentos pasados por valor

Expresiones validas con concordancia de tipo:

void proc(int x, double a) - proc(23 * 4 / 7, 13.5);

- double d = 3;
proc(12, d);

- double d = 3;
int i = 124,
proc(i, 33 * d);

- double d = 3;
int i = 124;
proc(cuad(20) * 34 + i, 1 * d);

(0]
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Argumentos pasados por valor

void procg}nt X, double a) Memoria
i 124
—>{ ... }
d 3.0
int main()
X 124
proc(i, a 99.0
2 return 0;
B
2 }
5
g
I
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Argumentos pasados por referencia

void proc(int &x, double &a) Memoria

—>{ ... } :s!F% R
@ 3.0

int main()

(0]
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é¢Qué llamadas son correctas?

Dadas las siguientes declaraciones:
int 1i;

double d;

void proc(int x, double &a);

¢ Qué pasos de argumentos son correctos? ;Por qué no?

proc(3, i, d); X N2 deargumentos # N2 de parametros
proc(i, d); v
proc(3 * i + 12, d); v/

proc(i, 23); X  Parametro por referencia = jvariable!

proc(d, 1i); X jArgumento double para pardmetro int!
3;% proc(3.5, d); X  jArgumento double para parametro int!
g proc(i); X N2deargumentos # N de pardmetros
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Paso de argumentos

void divide(int opl, int op2, int &div, int &rem) {

// Divide opl entre op2 y devuelve el cociente y el resto
div = opl / op2;
rem = opl % op2;

}

int main() {
int cociente, resto;
for (int j = 1; j <= 4; j++) {
for (int i = 1; i <= 4; i++) {
divide(i, j, cociente, resto);
cout << i << " entre " << j << " da un cociente de
<< cociente << " y un resto de " << resto << endl;

}

return 0;

-

Luis Herndndez Yafiez
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Paso de argumentos

void divide(int opl, int op2, int &div, int &rem) {
// Divide opl entre op2 y devuelve el cociente y el resto
div = opl / op2;

rem = opl % op2; Memoria

} cociente ?
?

int main() { feSto ;
int cociente, resto; 1 1
for (int j = 1; j <= 4; j++) { j 1

for (int i = 1; i <= 4; i++) {
————> divide(i, j, cociente, resto);

}
}

return 0;

Luis Hernandez Yafiez
-
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Paso de argumentos

void divide(int opl, int op2, int &div, int &rem) {
—> // Divide opl entre op2 y devuelve el cociente y el resto
div = opl / op2;

rem = opl % op2; Memoria

} div cociente ?
b)

int main() { :
int cociente, resto; i 1
for (int j = 1; j <= 4; j++) { j 1

for (int i = 1; i <= 4; i++) {
divide(i, j, cociente, resto);

} } opl 1
N op2
(1)
s
E return 0;
kel
5 }
5}
T
E
)
I E E
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Paso de argumentos

void divide(int opl, int op2, int &div, int &rem) {
// Divide opl entre op2 y devuelve el cociente y el resto
div = opl / op2;

rem = opl % op2; Memoria
} div cociente 1
int main() { 9
int cociente, resto; 1 1
for (int j = 1; j <= 4; j++) { j 1
for (int i = 1; i <= 4; i++) {
divide(i, j, cociente, resto);

N

} } opl 1
N op2
U
5
E return 0;
kel
5 }
5}
g
E
)
I E E
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Paso de argumentos

void divide(int opl, int op2, int &div, int &rem) {
// Divide opl entre op2 y devuelve el cociente y el resto
div = opl / op2;

rem = opl % op2; Memoria
} cociente 1
. . resto (%]
int main() {
int cociente, resto; 1 1
for (int j = 1; j <= 4; j++) { j 1
for (int i = 1; i <= 4; i++) {
divide(i, j, cociente, resto);
. return 0;
E ¥
5
I
I
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Mas ejemplos

void intercambia(double &valorl, double &valor2) {
// Intercambia los valores
—> double tmp; // Variable local (temporal)

tmp = valorl; Memoria temporal
valorl = valor2; del procedimiento
valor2 = tmp; tmp >
¥
int main() {
double numl, num2;
cout << "valor 1: "; Memoria de main()
cin >> numl; valorl numl 13.6
cout << "Valor 2: " valor2 num2 317.14

cin >> num2;
intercambia(numl, num2);
cout << "Ahora el valor 1 es " << numl

<< "y el valor 2 es " << num2 << endl;
return 0;

fiez

—

Luis Hernandez Ya
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Mas ejemplos

// Prototipo
void cambio(double precio, double pago, int &euros, int &cent50,
int &cent20, int &centle, int &cent5, int &cent2, int &centl);

int main() {

double precio, pago;

int euros, cent50, cent20, centl@, cent5, cent2, centl;

cout << "Precio: ";

cin >> precio;

cout << "Pago: ";

cin >> pago;

cambio(precio, pago, euros, cent50, cent20, centl®, cent5, cent2,

centl);

cout << "Cambio: << euros << " euros, " << centb0 << " x 50c.,
<< cent20 << " x 20c., " << centlo << " x 10c.,
<< cent5 << " x 5c., " << cent2 << " x 2c. y "
<< centl << " x 1c." << endl;

fiez

return 0;

-

Luis Hernandez Ya
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Mas ejemplos

void cambio(double precio, double pago, int &euros, int &cent50,

int &cent20, int &centl@, int &cent5, int &cent2, int &centl) {

if (pago < precio) { // Cantidad insuficiente

cout << "Error: El pago es inferior al precio" << endl;

}

else {
int cantidad = int(100.0 * (pago - precio) + 0.5);
euros = cantidad / 100;
cantidad = cambio % 100;
cent50 = cantidad / 59; l
cantidad = cantidad % 50;
cent20 = cantidad / 20;
cantidad = cantidad % 20;
centl10 = cantidad / 10;
cantidad = cantidad % 10;
cent5 = cantidad / 5;
cantidad = cantidad % 5;
cent2 = cantidad / 2
centl = cantidad % 2;

Explicacion en el libro de
Adams/Leestma/Nyhoff

fiez

-
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Notificacion de errores

En los subprogramas se pueden detectar errores
Errores que impiden realizar los calculos:

void cambio(double precio, double pago, int &euros, int &cent50,
int &cent20, int &centl@, int &cent5, int &cent2, int &centl) {
if (pago < precio) { // Cantidad insuficiente
—_— cout << "Error: El pago es inferior al precio" << endl;

}

;Debe el subprograma notificar al usuario o al programa?
—> Mejor notificarlo al punto de llamada y alli decidir qué hacer

void cambio(double precio, double pago, int &euros, int &cent50,
int &cent20, int &centl19, int &cent5, int &cent2, int &centl,
—> bool &error) {
if (pago < precio) { // Cantidad insuficiente
—> error = true;

fiez

}

53

kel

5 else {

g —> error = false;

E

)

I E E
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Notificacion de errores

Al volver de la llamada se decide qué hacer si ha habido error...
v' ¢Informar al usuario?

v' ¢Volver a pedir los datos?

v’ Etcétera

int main() {
double precio, pago;
int euros, cent50, cent20, centl10, cent5, cent2, centl;
—> bool error;
cout << "Precio: ";
cin >> precio;
cout << "Pago: ";
cin >> pago;
cambio(precio, pago, euros, cent50, cent20, centld, cent5, cent2,
centl, error);
—> if (error) {
cout << "Error: El pago es inferior al precio" << endl;

fiez

}

else {

Luis Hernandez Ya
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Resultado de la funcion
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Resultado de la funcion

Una funcion ha de devolver un resultado
La funcién ha de terminar su ejecucion devolviendo el resultado

La instruccion return:
— Devuelve el dato que se indica a continuacién como resultado
— Termina la ejecucién de la funcién

El dato devuelto sustituye a la llamada de la funcion en la expresion

int cuad(int x) { int main() {
return x * m—.

} Esta instruccién return 9;

no se ejecutara nunca }

Luis Hernandez Yafiez
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Ejemplo: Calculo del factorial

Factorial (N)=1 x 2 x 3 x...x (N-2) x (N-1) x N
long long int factorial(int n); // Prototipo

int main() {
int num;
cout << "Num: ";
cin >> num;
cout << "Factorial de " << num << ": " << factorial(num) << endl;
return 0;

}

long long int factorial(int n) {
long long int fact = 1;

if (n < 9) {
fact = 0;
else {

for (int i = 1; 1 <= n; i++) {
fact = fact * i;

fiez

}

53

E }

< —> return fact;

= }

£

I E E
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Un Unico punto de salida

int compara(int vall, int val2) {
// -1 si vall < val2, 0@ si iguales, +1 si vall > val2
if (vall == val2) {

return 0; >
}
else if (vall < val2) {
, return -1; > ;3 puntos de salida! x
else {
return 1; >
}

fiez
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Un Unico punto de salida

int compara(int vall, int val2) {
// -1 si vall < val2, 0@ si iguales, +1 si vall > val2
int resultado;

if (vall == val2) {
resultado = 0;

else if (vall < val2) {
resultado = -1;
else {
resultado = 1;
return resultado; > Punto de salida tGnico /
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é¢Cuando termina el subprograma?

Luis Hernandez Yafiez
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Procedimientos (tipo void):

— Al encontrar la llave de cierre que termina el subprograma
— Al encontrar una instruccién return (sin resultado)
Funciones (tipo distinto de void):

— SOLO al encontrar una instruccién return (con resultado)

Nuestros subprogramas siempre terminaran al final:
v No usaremos return en los procedimientos
v" Funciones: s6lo un return y estara al final

ﬁg Para facilitar la depuracion y el mantenimiento,

codifica los subprogramas con un tnico punto de salida

HEE
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Prototipos

Luis Herndndez Yafiez

) DE(E)

E=2r s m Fundamentos de la programacion: La abstraccidon procedimental Péagina 473

¢Qué subprogramas hay en el programa?

;Doénde los ponemos? ;Antes de main()? ;Después de main()?
- Los pondremos después de main()

;Son correctas las llamadas a subprogramas?
Enmain() o en otros subprogramas
— ¢;Existe el subprograma?

— ¢(Concuerdan los argumentos con los parametros?

Deben estar los prototipos de los subprogramas antes de main()
Prototipo: cabecera del subprograma terminada en ;

void dibujarCirculo();
void mostrarM(); ﬁg main() es el Unico subprograma
void proc(double &a); que no hay que prototipar

int cuad(int x);

(0]
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Ejemplos

intercambia.cpp

#include <iostream>
using namespace std;

void intercambia(double &valorl, double &valor2); // Prototipo

int main() {
double numl, num2;

cout << "Valor 1: ";
cin >> numl;
cout << "Valor 2: ";

cin >> num2;
intercambia(numl, num2);

cout << "Ahora el valor 1 es
<< "y el valor 2 es "
return 0;

}

ﬁa Asegurate de que los prototipos

coincidan con las implementaciones

<< numl

<< num2 << endl;

void intercambia(double &valorl, double &valor2) {
double tmp; // Variable local (temporal)

tmp = valoril;
valorl = valor2;
valor2 = tmp;

}
=
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Ejemplos

#include <iostream>
using namespace std;

// Prototipos
long long int factorial(int n);
int sumatorio(int n);

int main() {

int num;
cout << "Num: ";
cin >> num;
cout << "Factorial de "
<< num << ": "
<< factorial(num)
<< endl
<< "Sumatorio de 1 a "
<< num << ": "
<< sumatorio(num)
<< endl;
return 0;
}
HEE

long long int factorial(int n) {

}

long long int fact = 1;

if (n < 9) {
fact = 0;
else {
for (int i = 1; i <= n; i++) {
fact = fact * i;
}
}

return fact;

int sumatorio(int n) {

}

Fundamentos de la programacion: La abstraccion procedimental

int sum = 9;
for (int i = 1; 1 <= n; i++) {

sum = sum + 1ij;

return sum;
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Funciones de operador

Notacion infija (de operador)
operandolzquierdo operador operandoDerecho
a+b
Se ejecuta el operador con los operandos como argumentos
Los operadores se implementan como funciones:

tipo operatorsimbolo(pardmetros)

Si es un operador monario solo habra un parametro

Si es binario habra dos parametros

El simbolo es un simbolo de operador (uno o dos caracteres):
+, =%, ), ==, <

Luis Hernandez Yafiez
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Funciones de operador

tMatriz suma(tMatriz a, tMatriz b);
tMat
C =

tMatriz operator+(tMatriz a, tMatriz b);

riz a, b, c;
suma(a, b);

tMatriz a, b, c;

c =a+ b;

iLa implementacion sera exactamente la misma!

Mayor aproximacion al lenguaje matematico

Luis Herndndez Yafiez
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Diseno descendente
(un ejemplo)
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Refinamientos sucesivos

Especificacidn inicial (Paso 0).-
Desarrollar un programa que haga operaciones de conversion
de medidas hasta que el usuario decida que no quiere hacer mds

Andlisis y disefio aumentando el nivel de detalle en cada paso

/Qué operaciones de conversion?

Paso 1.-

Desarrollar un programa que haga operaciones de conversion
de medidas hasta que el usuario decida que no quiere hacer mds

% Pulgadas a centimetros
% Libras a gramos

fiez

% Grados Fahrenheit a centigrados

% Galones a litros

Luis Hernandez Ya
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Refinamientos sucesivos

Paso 2.-

Desarrollar un programa que muestre al usuario un menu con
cuatro operaciones de conversion de medidas:

* Pulgadas a centimetros

% Libras a gramos

% Grados Fahrenheit a centigrados
% Galones a litros

Y lea la eleccion del usuario y proceda con la conversion, hasta que
el usuario decida que no quiere hacer mds

6 grandes tareas:

fiez

Menu, cuatro funciones de conversion y main()

Luis Hernandez Ya
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Refinamientos sucesivos

Paso 2.-

Conversiones

7 Luis Hernandez Yafiez
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Refinamientos sucesivos

Paso 3.-

* Ment:
Mostrar las cuatro opciones mas una para salir
Validar la entrada y devolver la elegida

* Pulgadas a centimetros:
Devolver el equivalente en centimetros del valor en pulgadas

* Libras a gramos:
Devolver el equivalente en gramos del valor en libras

% Grados Fahrenheit a centigrados:
Devolver el equivalente en centigrados del valor en Fahrenheit

% Galones a litros:
Devolver el equivalente en litros del valor en galones

% Programa principal (main())

% Luis Hernandez Yafiez
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Refinamientos sucesivos

Paso 3.- Cada tarea, un subprograma

Comunicacion entre los subprogramas:

) |- - im
pulgAcn() |doule pulg |~ douple
Loner() |douvle Libras |~ douote
greaGrc() |doubte gre [~ [double
galaLEr() |double galones [~ [doupte
i) |- |- in

7 Luis Herndndez Yafiez
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Refinamientos sucesivos

Paso 4.- Algoritmos detallados de cada subprograma = Programar

#include <iostream>

using namespace std;

// Prototipos

int menu();

double pulgACm(double pulg);
double 1bAGr(double libras);
double grFAGrC(double grF);
double galALtr(double galones);

int main() {
double valor;
int op = -1;
while (op != 0) {
op = menu();
switch (op) {
case 1:
{
cout << "Pulgadas: ";
cin >> valor;
cout << "Son

<< pulgACm(valor) << " cm." << endl;

}

break;

7 Luis Herndndez Yafiez
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Refinamientos sucesivos

case 2:

{

cout << "Libras: ";
cin >> valor;
cout << "Son " << 1bAGr(valor) << " gr." << endl;

}
break;
case 3:
cout << "Grados Fahrenheit: ";
cin >> valor;
cout << "Son " << grFAGrC(valor) << " 2C" << endl;
¥
break;
case 4:
{
cout << "Galones: ";
cin >> valor;
cout << "Son " << galALtr(valor) << " 1." << endl;
}
p] break;
b
i !
3 return 0;
I E E
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int menu() {
int op = -1;

while ((op < @) || (op > 4)) {

cout << "1 - Pulgadas a Cm." << endl;
cout << "2 - Libras a Gr." << endl;
cout << "3 - Fahrenheit a 2eC" << endl;
cout << "4 - Galones a L." << endl;
cout << "@ - Salir" << endl;

cout << "Elige: ";

cin >> op;

if ((op < @) || (op > 4)) {
cout << "Opcién no valida" << endl;
}

}

return op;

}

double pulgACm(double pulg) {
const double cmPorPulg = 2.54;
return pulg * cmPorPulg;

Luis Hernandez Yafiez
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Refinamientos sucesivos

double 1bAGr(double libras) {
const double grPorlLb = 453.6;
return libras * grPorlLb;

}

double grFAGrC(double grfF) {
return ((grfF - 32) * 5/ 9);
}

double galALtr(double galones) {
const double 1trPorGal = 4.54609;
return galones * ltrPorGal;

}

(0]
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Precondiciones y postcondiciones

Integridad de los subprogramas

Condiciones que se deben dar antes de comenzar su ejecucién
—> Precondiciones

v" Quien llame al subprograma debe garantizar que se satisfacen

Condiciones que se daran cuando termine su ejecucion
—> Postcondiciones

v En el punto de llamada se pueden dar por garantizadas

Aserciones:

Condiciones que si no se cumplen interrumpen la ejecucién

Funcién assert()

Luis Herndndez Yafiez
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Aserciones como precondiciones

Precondiciones

Por ejemplo, no realizaremos conversiones de valores negativos:

double pulgACm(double pulg) {
assert(pulg > 0);

double cmPorPulg = 2.54;

return pulg * cmPorPulg;

}

La funcion tiene una precondicién: pulg debe ser positivo

assert(pulg > 0); interrumpira la ejecucién si no es cierto

Luis Hernandez Yafiez
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Aserciones como precondiciones

Precondiciones

Es responsabilidad del punto de llamada garantizar la precondicidn:

int main() {
double valor;

int op = -1;
while (op != @) {
op = menu();
switch (op) {

case 1:

{

cout << "Pulgadas: ";
cin >> valor;
if (valor < @) {

cout << "jNo valido!" << endl;

}

else { // Se cumple la precondicidn...

(0]
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Aserciones como postcondiciones

Postcondiciones

Un subprograma puede garantizar condiciones al terminar:

int menu() {
int op = -1;
while ((op < @) || (op > 4)) {

cout << "Elige: ";
cin >> op;

if ((op < @) || (op > 4)) {
cout << "Opciodén no valida" << endl;
}

1

assert ((op >= 0) && (op <= 4)); "““}
return op;
¥

El subprograma debe asegurarse de que se cumpla

Luis Hernandez Yafiez
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Acerca de Creative Commons @@@@

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.
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Pulsa en la imagen de arriba a la derecha para saber mas.
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Archivos como parametros

##include <iostream>
using namespace std;
##include <fstream>

void sumatorio_archivo(ifstream &arch, double &suma);

int main() {
double resultado;
ifstream archivo;
archivo.open("datos.txt");
if (!archivo.is open()) {
cout << "ERROR DE APERTURA" << endl;

else {
sumatorio_archivo(archivo, resultado)
cout << "Suma = " << resultado << endl;
N archivo.close();
Ig
= }
B
2
: return 0;
= }
I
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Archivos como parametros

void sumatorio_archivo(ifstream &arch, double &suma) {
double dato;

suma = 0;
arch >> dato;

while (dato != -1) {
suma = suma + dato;
arch >> dato;

ﬁ"ﬂ Los archivos siempre se pasan por referencia
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La funcion main()
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Parametros de main()

Comunicacion con el sistema operativo

Parametros opcionales de la funcion main():
int main(int argc, char *argv[])

Para obtener datos proporcionados al ejecutar el programa:
C:\>prueba cadl cad2 cad3
Ejecuta prueba.exe con tres argumentos (cadenas)

Parametros de main():
— argc: namero de argumentos que se proporcionan
4 en el ejemplo (primero: nombre del programa con su ruta)
— argv: array con las cadenas proporcionadas como argumentos

Luis Herndndez Yafiez
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Lo que devuelve main()

¢;Como ha ido la funcion?

La funciéon main () devuelve al S.0. un cédigo de terminacion
— 0: Todo OK

— Distinto de ©: jHa habido un error!

Si la ejecucion llega al final de la funcién main(), todo OK:

return @; // Fin del programa

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental (Anexo) Pé4gina 503

b= Luis Hernandez Yafez
L.
E




Fundamentos de la programacion

Argumentos implicitos

(0]

e =mrm Fundamentos de la programacidn: La abstraccion procedimental (Anexo) Péagina 504

[ Luis Herndndez Yafiez
L.

Argumentos implicitos

Valores predeterminados para pardmetros por valor

Valor por defecto para un parametro:

Tras un = a continuacion del nombre del parametro:
void proc(int i = 1);

Si no se proporciona argumento, el parametro toma ese valor
proc(12); i toma el valor explicito 12
proc(); i toma el valor implicito (1)

So6lo puede haber argumentos implicitos en los parametros finales:
void p(int i, int j = 2, int k = 3); // CORRECTO
void p(int i = 1, int j, int k = 3); // INCORRECTO

U

Una vez asignado un valor implicito, todos los que siguen
han de tener también valor implicito

Luis Hernandez Yafiez
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Argumentos implicitos

Parametros y argumentos implicitos
void p(int i, int j = 2, int k = 3);

Se copian los argumentos en los parametros del primero al tltimo

- los que no tengan correspondencia tomaran los implicitos

void p(int i, int j = 2, int k = 3);
p(13); // i toma 13, j y k sus valores implicitos
p(5, 7); // i toma 5, j toma 7 y k su valor implicito
p(3, 9, 12); // i toma 3, j toma 9 y k toma 12

ﬁa Los argumentos implicitos se declaran en el prototipo

(preferible) o en la cabecera del subprograma, pero NO en ambos

7 Luis Hernandez Yafiez
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Por defecto, signo + X
Ejemplo SEROY flxy)=£A=
j p Por defecto,Aes 1 ¥

#include <iostream>
using namespace std;

double f(double x, double y, int signo = 1, double delta = 1.9);

int main() {

double x ;

cout << .’.Xy; " :Iﬁ No podemos dejar signo por defecto
J

cin >> x; y concretar delta

cout << "Y = ";

cin >> y;

cout << "signo y delta por defecto: " << f(x, y) << endl;

cout << "signo -1 y delta por defecto: " << f(x, y, -1) << endl;

cout << "signo y delta concretos: " << f(x, y, 1, 1.25) << endl;

return 9;

}

double f(double x, double y, int signo, double delta) {
return signo * delta * x / y;

% Luis Hernandez Yafiez
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Sobrecarga de subprogramas

Igual nombre, distintos parametros

Funciones o procedimientos con igual nombre y distintos parametros:
int abs(int n);

double abs(double n);

long int abs(long int n);

Se ejecutara la funcion que corresponda al tipo de argumento:
abs(13) // argumento int --> primera funciodn
abs(-2.3) // argumento double --> segunda funciodn
abs(3L) // argumento long int --> tercera funcidn

!

Para indicar que es un literal long int, en lugar de int
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Sobrecarga de subprogramas

#include <iostream> void intercambia(char &x, char &y) {
using namespace std; char tmp;
tmp = X;
void intercambia(int &x, int &y); X =Y;
void intercambia(double &x, y = tmp;
double &y); }

void intercambia(char &x, char &y);
int main() {

void intercambia(int &x, int &y) { int i1 = 3, i2 = 7;
int tmp; double d1 = 12.5, d2 = 35.9;
tmp = Xx; char cl1 = 'a', c2 = 'b";
X =Y; cout << il << " - " << 12 << endl;
y = tmp; cout << d1 << " - " << d2 << endl;
} cout << cl1 << " - " << €2 << endl;
intercambia(il, i2);
void intercambia(double &x, intercambia(dl, d2);
double &y) { intercambia(cl, c2);
double tmp; cout << il << " - " << 12 << endl;
tmp = x; cout << dl << " - " << d2 << endl;
X =Y; cout << cl << " - " << €2 << endl;
y = tmp; return 0;

-
-

Luis Herndndez Yafiez
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Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacién de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
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siempre que mantengan la misma licencia al ser divulgadas.
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Pulsa en la imagen de arriba a la derecha para saber mas.
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Tipos de datos
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Tipos de datos

Clasificacion de tipos

v’ Simples

AN
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Estandar: int, float, double, char, bool
Conjunto de valores predeterminado

Definidos por el usuario: enumerados
Conjunto de valores definido por el programador

Estructurados

Colecciones homogéneas: arrays
Todos los elementos del mismo tipo

Colecciones heterogéneas: estructuras
Los elementos pueden ser de tipos distintos
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Tipos estructurados

Colecciones o tipos aglomerados

Agrupaciones de datos (elementos):
v" Todos del mismo tipo: array o tabla
v" De tipos distintos: estructura, registro o tupla

Arrays (tablas)

» Elementos organizados por posicién: 0, 1, 2, 3, ...

» Acceso porindice: 0,1, 2, 3, ...
» Una o varias dimensiones
Estructuras (tuplas, registros)

» Elementos (campos) sin orden establecido
» Acceso por nombre

Luis Hernandez Yafiez/Pablo Moreno Ger
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Arrays

Estructura secuencial

Cada elemento se encuentra en una posicion (indice):
v" Los indices son enteros positivos

v" Elindice del primer elemento siempre es 0

v" Los indices se incrementan de uno en uno

IRl 125.40 76.95 328.80 254.62 435.00 164.29 0.00

0 1 2 3 4 5 6
Acceso directo []

A cada elemento se accede a través de su indice:
ventas[4] accede al 52 elemento (contiene el valor 435.00)

cout << ventas[4];

ventas[4] = 442.75; ga Datos de un mismo tipo base:
Se usan como cualquier variable

Luis Hernandez Yafiez/Pablo Moreno Ger
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Tipos y variables arrays

Declaracion de tipos de arrays

const int Dimension = ...;

typedef tipo base tNombre[Dimension];
Ejemplo:

const int Dias = 7;

typedef double tVentas[Dias];

Declaracién de variables de tipos array: como cualquier otra
tVentas ventas;

iNO se inicializan los elementos automaticamente!
iEs responsabilidad del programador usar indices validos!

No se pueden copiar arrays directamente (arrayt==—srray?)

Hay que copiarlos elemento a elemento

Luis Hernandez Yafiez/Pablo Moreno Ger
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Arrays y bucles for

Procesamiento de arrays

v" Recorridos
v Busquedas
v" Ordenacién

etcétera...

Recorrido de arrays con bucles for
Arrays: tamafio fijo = Bucles de recorrido fijo (for)

tVentas ventas;
double media, total = 9;

for (int i
total =
}

media = total / Dias;

total + ventas[i];

Luis Hernandez Yafiez/Pablo Moreno Ger
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const int Dias = 7;
typedef double tVentas[Dias];

0; i < Dias; i++) {

S Fundamentos de la programacion: Tipos de datos estructurados

Péagina 520

Arrays y bucles for

12.40 10.96 8.43 11.65

13.70

13.41

14.07

(] 1 2 3

tVentas ventas;
double media, total = 0;

for (int i = @; i < Dias; i++) {
total = total + ventas[i];

}

i<Dias

total+=ventas[i]
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Dias
ventas[0]
ventas[1]
ventas[2]
ventas[3]
ventas[4]
ventas[5]
ventas[6]

media
total

i

Memoria

7

12.40
10.96
8.43
11.65
13.70
13.41
14.07

84.62

Pé4gina 521




Fundamentos de la programacion

Mas sobre arrays
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Inicializacion de arrays

Podemos inicializar los elementos de los arrays en la declaracion

Asignamos una serie de valores al array:

const int DIM = 10;

typedef int tTabla[DIM];

tTabla i = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

Se asignan los valores por su orden:
i[@] i[1] i[2] i[3] i[4] ... i[9]

(Y N N A N

1e 22 32 42 52 ... 19°
Si hay menos valores que elementos, los restantes se ponen a ©

tTabla i = { @ }; // Pone todos los elementos a ©

Luis Hernandez Yafiez/Pablo Moreno Ger
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Enumerados como indices

const int Colores = 3,

typedef enum { rojo, verde, azul } tRGB;
typedef int tColor[Colores];

tColor color;

cout << "Cantidad de rojo (©-255): ";
cin >> colo;
cout << "Cantidad de verde (©-255): ";
cin >> color[verde];
cout << "Cantidad de azul (©-255): ";
cin >> color[azul];

Recuerda que internamente se asignan enteros a partir de 0

a los distintos simbolos del enumerado
rojo=0 verde=1 azul=2

Luis Hernandez Yafiez/Pablo Moreno Ger
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Paso de arrays a subprogramas

Simulacion de paso de pardmetro por referencia
Sin poner & en la declaracion del parametro

Los subprogramas reciben la direccion en memoria del array

const int Max = 10;
typedef int tTabla[Max];
void inicializa(tTabla tabla); // Sin poner &

Las modificaciones del array quedan reflejadas en el argumento

inicializa(array);

Siinicializa() modifica algin elemento de tabla,
automaticamente queda modificado ese elemento de array

jSon el mismo array!
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Paso de arrays a subprogramas

const int Dim = 10;
typedef int tTabla[Dim];
void inicializa(tTabla tabla); // no se usa &

void inicializa(tTabla tabla) {

for (int i = @; i < Dim; i++)

tabla[i] = i;

}
int main() {
tTabla array;
inicializa(array); // array queda modificado
for (int 1 = @; i < Dim; i++)

cout << array[i] <« ;

0123456789
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Paso de arrays a subprogramas

;Como evitar que se modifique el array?
Usando el modificador const en la declaracion del parametro:

const tTabla tabla Un array de constantes

void muestra(const tTabla tabla);

El argumento se tratard como un array de constantes

Si en el subprograma hay alguna instruccién que intente
modificar un elemento del array: error de compilacion
void muestra(const tTabla tabla) {
for (int 1 = @; 1 < Dim; i++) {
cout << tabla[i] << " ";
// OK. Se accede, pero no se modifica

Luis Hernandez Yafiez/Pablo Moreno Ger
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Implementacion de listas
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Implementacion de listas con arrays

Listas con un numero fijo de elementos

Luis Hernandez Yafiez/Pablo Moreno Ger
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Array con el n? de elementos como dimensién

const int NUM = 100;

typedef double tLista[NUM]; // Exactamente 100 double
tlLista lista;

Recorrido de la lista:
for (int 1 = @; i < NUM; i++) {

Busqueda en la lista:
while ((i < NUM) && !encontrado) {

e =mr=m Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 529




Implementacion de listas con arrays

Listas con un numero variable de elementos

Array con un maximo de elementos + Contador de elementos
const int MAX = 100;

typedef double tLista[MAX]; // Hasta 100 elementos
tlLista lista;

int contador = @; // Se incrementa al insertar
Recorrido de la lista:

for (int i = @; i < contador; i++) {

Busqueda en la lista:
while ((i < contador) && !encontrado) {

(Array y contador por separado? - Estructuras
(013
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Cadenas de caracteres
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Cadenas de caracteres

Arrays de caracteres

Cadenas: secuencias de caracteres de longitud variable
"Hola" "Adidés" "Supercalifragilistico" "1234 56 7"

Variables de cadena: contienen secuencias de caracteres
Se guardan en arrays de caracteres: tamafio maximo (dimension)
No todas las posiciones del array son relevantes:

v" Longitud de la cadena: nimero de caracteres, desde el
primero, que realmente constituyen la cadena:

8 9 10 11 12 13 14 15 16 17 18 19 20 21

3 Luis Hernandez Yafiez/Pablo Moreno Ger
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Cadenas de caracteres

Longitud de la cadena

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

P
2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Longitud: 21

Necesidad de saber donde terminan los caracteres relevantes:
v Mantener la longitud de la cadena como dato asociado

v" Colocar un caracter de terminacion al final (centinela)

A d i 6 s \e
e 1 2 3 4 5 6 7 8 9 10

y Luis Hernandez Yafiez/Pablo Moreno Ger
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Cadenas de caracteres

Cadenas de caracteres en C++

Dos alternativas para el manejo de cadenas:
v" Cadenas al estilo de C (terminadas en nulo)
v' Tipo string

Cadenas al estilo de C Anexo del tema
v" Arrays de tipo char con una longitud maxima

v" Un ultimo caracter especial al final: '\0"

Tipo string

v" Cadenas mas sofisticadas

v" Sin longitud maxima (gestion automatica de la memoria)
v" Multitud de funciones de utilidad (biblioteca string)

Luis Hernandez Yafiez/Pablo Moreno Ger
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Cadenas de caracteres
de tipo string
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Cadenas de caracteres de tipo string

El tipo string

v El tipo asume la responsabilidad de la gestién de memoria
v" Define operadores sobrecargados (+ para concatenar)
v’ Cadenas més eficientes y seguras de usar

Biblioteca string
Requiere establecer el espacio de nombres a std

v Se pueden inicializar en la declaracion

v' Se pueden copiar con el operador de asignacion
v Se pueden concatenar con el operador +

v' Multitud de funciones de utilidad

Luis Hernandez Yafiez/Pablo Moreno Ger
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Cadenas de tipo string

#include <iostream>
#include <string>
using namespace std;

int main() {
string cadl("Hola"); // inicializacidn
string cad2 = "amigo"; // inicializacidn
string cad3;
cad3 = cadl; // copia

cout << "cad3 = " << cad3 << endl;
cad3 = cadl + " "; // concatenacion
cad3 += cad2; // concatenacion
cout << "cad3 = " << cad3 << endl;
cadl.swap(cad2); // intercambio
cout << "cadl = " << cadl << endl;

cout << "cad2 = << cad2 << endl;

return 0;

Luis Hernandez Yafiez/Pablo Moreno Ger
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Cadenas de tipo string

Longitud de la cadena:
cadena.length() o cadena.size()

Se pueden comparar con los operadores relacionales:
if (cadl <= cad2) { ...

Acceso a los caracteres de una cadena:
v" Como array de caracteres: cadena[ 1]
Sin control de acceso a posiciones inexistentes del array
Sélo debe usarse si se esta seguro de que el indice es valido
v Funcion at(indice): cadena.at (1)
Error de ejecucion si se accede a una posicion inexistente

Luis Hernandez Yafiez/Pablo Moreno Ger
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E/S con cadenas de tipo string

v Se muestran en la pantalla con cout <<

v’ Lectura con cin >>: termina con espacio en blanco (inc. Intro)

El espacio en blanco queda pendiente

v’ Descartar el resto de los caracteres del bufer:
cin.sync();

v" Lectura incluyendo espacios en blanco:
getline(cin, cadena)

Guarda en la cadena los caracteres leidos hasta el fin de linea

v’ Lectura de archivos de texto:
Igual que de consola; sync() no tiene efecto
archivo >> cadena getline(archivo, cadena)

Luis Hernandez Yafiez/Pablo Moreno Ger
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E/S con cadenas de tipo string

string2.cpp

#include <iostream>
#include <string>
using namespace std;

int main() {
string nombre, apellidos;
cout << "Introduzca un nombre: ";
cin >> nombre;
cout << "Introduzca los apellidos: ";
cin.sync();
getline(cin, apellidos);
cout << "Nombre completo:

<< apellidos << endl;

<< nombre <<

return 0;
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Operaciones con cadenas de tipo string

v' cadena.substr(posicion, Llongitud)

Subcadena de longitud caracteres desde posicion

string cad = "abcdefg";
cout << cad.substr(2, 3); // Muestra cde

v’ cadena.find(subcadena)

Posicién de la primera ocurrencia de subcadena en cadena

string cad = "Olala";
cout << cad.find("1la"); // Muestra 1

v’ cadena.rfind(subcadena)

string cad = "Olala";
cout << cad.rfind("la"); // Muestra 3

Luis Hernandez Yafiez/Pablo Moreno Ger
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(Recuerda que los arrays de caracteres comienzan con el indice 0)

Posicion de la ultima ocurrencia de subcadena en cadena
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Operaciones con cadenas de tipo string

v’ cadena.erase(ini, num)
Elimina num caracteres a partir de la posicion ini
string cad = "abcdefgh";
cad.erase(3, 4); // cad ahora contiene "abch"
v’ cadena.insert(ini, cadena2)

Inserta cadenaZ a partir de la posicion ini

string cad = "abcdefgh";
cad.insert(3, "123"); // cad ahora contiene "abcl23defgh"

http://www.cplusplus.com/reference/string/string/
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Estructuras
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Estructuras

Colecciones heterogéneas (tuplas, registros)

Elementos de (posiblemente) distintos tipos: campos

Campos identificados por su nombre

Informacion relacionada que se puede manejar como una unidad
Acceso a cada elemento por su nombre de campo (operador.)

(0]
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Tipos de estructuras

typedef struct {
. // declaraciones de campos (como variables)
} tTipo; // nombre de tipo - jal final!

typedef struct {
string nombre;
string apellidos;
int edad;
string nif;

} tPersona;

Campos:
Tipos estandar o previamente declarado

Luis Hernandez Yafiez/Pablo Moreno Ger
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Variables de estructuras

tPersona persona;

Las variables de tipo tPersona contienen cuatro datos (campos):

nombre apellidos edad

nif

Acceso a los campos con el operador punto (.):

persona.nombre // una cadena (string)

persona.apellidos // una cadena (string)

persona.edad // un entero (int)

persona.nif // una cadena (string)

tPersona personal, persona2;

persona2 = personal;

Se copian todos los campos a la vez

3 Luis Hernandez Yafiez/Pablo Moreno Ger

Fundamentos de la programacion: Tipos de datos estructurados

Podemos copiar dos estructuras directamente:
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Agrupacion de datos heterogéneos

typedef struct {
string nombre;
string apellidos;
int edad;
string nif;

} tPersona;

tPersona persona;

persona

Luis Antonio

Hernandez Yanez

22

00223344F

y Luis Hernandez Yafiez/Pablo Moreno Ger
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Elementos sin orden establecido

typedef struct {
string nombre;
string apellidos;
int edad;
string nif;

} tPersona;

tPersona persona;

Los campos no siguen ningun orden establecido
Acceso directo por nombre de campo (operador .)

Con cada campo se puede hacer lo que permita su tipo

Oﬁ Las estructuras se pasan por valor (sin &)
o por referencia (con &) a los subprogramas
(o) (0]
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Estructuras dentro de estructuras

typedef struct { typedef struct {
string dni;

char letra; tNif nif;
} tNif;4————"'_____—__3a;Persona;

tPersona persona; tPersona

Acceso al NIF completo:
persona.nif // Otra estructura

Acceso a la letra del NIF:
persona.nif.letra

Acceso al DNI:
persona.nif.dni

Luis Hernandez Yafiez/Pablo Moreno Ger
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Arrays de estructuras

const int DIM = 100; tPersona personal

typedef struct {
string nombre;
string apellidos;
int edad;
string nif;

} tPersona;

typedef tPersona tArray[DIM]; 5

tArray personal;

Nombre de la tercera persona:
personal[2].nombre

Edad de la duodécima persona: DIM-1
personal[11].edad

NIF de la primera persona:
personal[@].nif

7 Luis Hernandez Yafiez/Pablo Moreno Ger
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Arrays dentro de estructuras

const int MAX = 100; lista
typedef struct {
string nombre;
string apellidos;
int edad;
string nif;
} tPersona;
typedef tPersona tArray[MAX];
typedef struct {
tArray elementos;
int contador;
} tlLista;
tLista lista;

Nombre de la tercera persona: lista.elementos[2].nombre

Edad de la duodécima persona: lista.elementos[11].edad

7 Luis Hernandez Yafiez/Pablo Moreno Ger

NIF de la primera persona: lista.elementos[0].nif
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Fundamentos de la programacion

Listas de longitud variable
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Listas de longitud variable

Estructura que agrupe el array y el contador:

const int MAX = 10;
typedef double tArray[MAX];
typedef struct {

tArray elementos;

int contador;

Elementos sin usar
(datos basura)

A\

N2 de elementos (y primer indice sin elemento)

Operaciones principales: insercion y eliminacion de elementos

y Luis Hernandez Yafiez/Pablo Moreno Ger
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Insercion de elementos

Insertar un nuevo elemento en una posicion

Posiciones validas: 0 a contador

0.0 36.2 35.0

Hay que asegurarse de que haya sitio (contador < maximo)
Operacién en 3 pasos:
1.- Abrir hueco para el nuevo elemento (desde la posicion)
2.- Colocar el elemento nuevo en la posicién

3.- Incrementar el contador

3 Luis Hernandez Yafiez/Pablo Moreno Ger
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Insercion de elementos

if (lista.contador < N) {
// Abrir hueco
for (int i = lista.contador;|i > pos;|i--) {
lista.elementos[i] = lista.elementos[i - 1];

}

// Insertar e incrementar contador
lista.elementos[pos] = nuevoElemento;
lista.contador++;

-2.2 5.4 42.0 0.0 36.2 35.0

y Luis Hernandez Yafiez/Pablo Moreno Ger
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Eliminacion de elementos

Eliminar el elemento en una posicion

Posiciones validas: 0 a contador-1

0.0 36.2 35.0 X

Desplazar a la izquierda desde el siguiente y decrementar el contador:

for (int|i = posf i < lista.contador - 1 ; i++) {

lista.elementos[i] = lista.elementos[i + 1];

}

lista.contador--;

3 Luis Hernandez Yafiez/Pablo Moreno Ger
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Eliminacion de elementos

for (int i = pos; i < lista.contador - 1 ; i++) {
lista.elementos[i] = lista.elementos[i + 1];

}

lista.contador--;

0.0 36.2 35.0 X

-2.2 5.4 36.2 35.0 35.0 X
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Fundamentos de la programacion

Un ejemplo completo
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Ejemplo de lista de longitud variable

Descripcion
Programa que mantenga una lista de los estudiantes de una clase
De cada estudiante: nombre, apellidos, edad, NIF y nota
v" Se desconoce el nimero total de estudiantes (maximo 100)
v" Lainformacién de la lista se mantiene en un archivo clase.txt
Se carga al empezar y se guarda al finalizar
El programa debe ofrecer estas opciones:
— Afadir un nuevo alumno
— Eliminar un alumno existente
— Calificar a los estudiantes
— Listado de notas, identificando la mayor y la media
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Ejemplo de lista de longitud variable

#include <iostream>
#include <string>
using namespace std;
#include <fstream>
#include <iomanip>

const int MAX = 100; N\
typedef struct {
string nombre;
string apellidos;
int edad;
string nif; _
double nota; > Declaraciones de constantes

} tEstudiante; y tipos globales
typedef tEstudiante tArray[MAX]; Tras las bibliotecas
typedef struct {

tArray elementos;

int contador;
} tlLista; y

Luis Hernandez Yafiez/Pablo Moreno Ger
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Ejemplo de lista de longitud variable

// Prototipos

int menu(); // Menu del programa - devuelve la opcidén elegida

void cargar(tLista &lista, bool &ok); // Carga del archivo

void guardar(const tLista &lista); // La guarda en el archivo

void leerEstudiante(tEstudiante &estudiante); // Lee los datos

void insertarEstudiante(tLista &lista, tEstudiante estudiante,
bool &ok); // Inserta un nuevo estudiante en la lista

void eliminarEstudiante(tLista &lista, int pos, bool &ok);

// Elimina el estudiante en esa posiciodn

string nombreCompleto(tEstudiante estudiante);

void calificar(tLista &lista); // Notas de los estudiantes

double mediaClase(const tLista &lista); // Nota media

int mayorNota(const tlLista &lista);

// Indice del estudiante con mayor nota

void mostrarEstudiante(tEstudiante estudiante);

void listado(const tLista &lista, double media, int mayor);

// Listado de la clase

Los prototipos, después de los tipos globales
(013
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Fundamentos de la programacion

El bucle do-while
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Otro bucle no determinado de C++

El bucle do.while

do cuerpo while (condicion); Condicion al final del bucle

do cuerpo while ¢ condicidn ) ;

int 1 = 1;

do {
cout << 1 << endl;
i++;

} while (i <= 100);

El cuerpo siempre se ejecuta al menos una vez

El cuerpo es un bloque de codigo

Luis Hernandez Yafiez/Pablo Moreno Ger
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Ejecucion del bucle do-while

int 1 = 1;

do {
cout << 1 << endl;
i++;

} while (i <= 100);

i

P Luis Hernandez Yafiez/Pablo Moreno Ger
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cout << 1 << endl;

i++;

S

false

true

El cuerpo
se ejecuta
al menos
una vez
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while versus do-while

¢Ha de ejecutarse al menos una vez el cuerpo del bucle?

cin >> d; // Lectura del 1¢°
while (d != 0) {
suma = suma + d;

cont++;
cin >> d;

do {
cin >> d;
if (d '= 0) { // ¢Final?
suma = suma + d;
cont++;

}
} while (d != 0);

cout << "Opciodn: ";
cin >> op; // Lectura del 1¢
while ((op < @) || (op > 4)) {

cout << "Opcion: ";
cin >> op;

do { // Mas simple
cout << "Opcidn: ";
cin >> op;

} while ((op < @) [| (op > 4));

Luis Hernandez Yafiez/Pablo Moreno Ger
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El menu de la aplicacion con do-while
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{E}

int menu() {
int op;

do {
cout <<
cout <<

cout <«
cout <« - Salir" << endl;
cout << "Opcidn: ";
cin >> op;

} while ((op < @) [| (op > 4));

return op;

HEE

S Fundamentos de la programacion: Tipos de datos estructurados

1 - Anadir un nuevo estudiante" << endl;
2 - Eliminar un estudiante" << endl;

cout << "3 - Calificar a los estudiantes" << endl;
4 - Listado de estudiantes" << endl;
(%]

Pé4gina 566

Ejemplo de lista de longitud variable
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El archivo clase.txt

Un dato en cada linea

Por cada estudiante:

v" Nombre (cadena)

v’ Apellidos (cadena)

v Edad (entero)

v NIF (cadena)

v" Nota (real; -1 si no calificado)

Termina con XXX como nombre

El archivo se supone correcto

HEE

SSmrm Fundamentos de la programacion: Tipos de datos estructurados
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Ejemplo de lista de longitud variable

Lectura de la informacion de un estudiante

Nombre y apellidos:
Puede haber varias palabras 2 getline()

Edad - extractor (>>)
NIF: Una sola palabra = extractor (>>)
Nota - extractor (>>)

Queda pendiente de leer el Intro
Hay que saltar (leer) ese caracter con get ()
Si no, en el siguiente nombre se leeria una cadena vacia (Intro)

ﬁﬂ No leas directamente en la lista:

aatrTinalanchiun Tic+a alamantac
BT LvaaniT \or Criave ) EEo LUl aCHIe LYo

Lee en una variable auxiliar de tipo t
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Carga del archivo clase. txt

void cargar(tLista &lista, bool &ok) {
tEstudiante estudiante; // Variable auxiliar para leer
ifstream archivo;
char aux;
lista.contador = 0; // Inicializamos la lista
archivo.open("clase.txt");
if (l!archivo.is_open()) {
ok = false;
¥

else {
ok = true;
getline(archivo, estudiante.nombre); // Leemos el primer nombre
while ((estudiante.nombre != "XXX") && (lista.contador < MAX)) {
getline(archivo, estudiante.apellidos);
archivo >> estudiante.edad;
archivo >> estudiante.nif;
archivo >> estudiante.nota;
archivo.get(aux); // Saltamos el Intro
—> lista.elementos[lista.contador] = estudiante; // Al final
lista.contador++;
getline(archivo, estudiante.nombre); // Siguiente nombre
} // Si hay mds de MAX estudiantes, ignoramos el resto
archivo.close();

Luis Hernandez Yafiez/Pablo Moreno Ger
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Volcado en el archivo clase.txt

Simplemente, un dato en cada linea y en orden:

void guardar(const tLista &lista) {

ofstream archivo;

archivo.open("clase.txt");

for (int i = @; i < lista.contador; i++) {
archivo << lista.elementos[i].nombre << endl;
archivo << lista.elementos[i].apellidos << endl;
archivo << lista.elementos[i].edad << endl;
archivo << lista.elementos[i].nif << endl;
archivo << lista.elementos[i].nota << endl;

}

archivo << "XXX" << endl; // Centinela final
archivo.close();

5
(G}
o
15
5
=
o
el
g }
1:‘:)
3 const tlLista &lista = Referencia constante
Tg Paso por referencia pero como constante = Paso por valor
5 Evita la copia del argumento en el parametro (estructuras grandes)
2
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Lectura de los datos de un estudiante

void leerEstudiante(tEstudiante &estudiante) {
cin.sync(); // Descartamos cualquier entrada pendiente
cout << "Nombre: ";
getline(cin, estudiante.nombre);
cout << "Apellidos: ";
getline(cin, estudiante.apellidos);
cout << "Edad: ";
cin >> estudiante.edad;
cout << "NIF: ";

cin >> estudiante.nif;

N estudiante.nota = -1; // Sin calificar de momento
& cin.sync(); // Descartamos cualquier entrada pendiente
5 }
=
o
K
=
]
:
5
I
() (e - -
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Insercion de un nuevo estudiante

void insertarEstudiante(tLista &lista, tEstudiante estudiante,
bool &ok) {

ok = true;
if (lista.contador == MAX) {
ok = false;

else {
lista.elementos[lista.contador] = estudiante;
// Insertamos al final
. lista.contador++;
[
}
g }
=
o
K
3(;‘:3
53
2
5
T
I
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Eliminacion de un estudiante

void eliminarEstudiante(tLista &lista, int pos, bool &ok) {
// Espera el indice del elemento en pos

if ((pos < @) || (pos > lista.contador - 1)) {
ok = false; // Elemento inexistente

else {
ok = true;
for (int i = pos; i < lista.contador - 1; i++) {
lista.elementos[i] = lista.elementos[i + 1];

& lista.contador--;
}
2 }
353
B
k5
5
I
I
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Calificacion de los estudiantes

string nombreCompleto(tEstudiante estudiante) {
return estudiante.nombre + " " + estudiante.apellidos;

}

void calificar(tLista &lista) {

for (int 1 = 9; i < lista.contador; i++) {
cout << "Nota del estudiante "
<< nombreCompleto(lista.elementos[i]) << ": ";
cin >> lista.elementos[i].nota;

(0]

©)
|:;
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Mas subprogramas

double mediaClase(const tlLista &lista) {
double total = 0.0;
for (int i = @; i < lista.contador; i++) {
total = total + lista.elementos[i].nota;

}

return total / lista.contador;

}

int mayorNota(const tLista &lista) {
double max = 0;
int pos = 0;
for (int i = @; i < lista.contador; i++) {
if (lista.elementos[i].nota > max) {
max = lista.elementos[i].nota;
pos = 1i;

}
}

return pos;

}
(0]
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El listado

void mostrarEstudiante(tEstudiante estudiante) {

cout << setw(35) << left << nombreCompleto(estudiante);

cout << estudiante.nif <« ;
cout << setw(2) << estudiante.edad <<

anos ";

cout << fixed << setprecision(1l) << estudiante.nota;

void listado(const tLista &lista, double media, int mayor) {

for (int i = @; i < lista.contador; i++) {
cout << setw(3) << i << ": ";
mostrarEstudiante(lista.elementos[i]);
if (i == mayor) {
cout << " <<< Mayor notal";

}

cout << endl;

}

cout << "Media de la clase:
<< media << endl << endl;

—

Luis Hernandez Yafiez/Pablo Moreno Ger

E

<< fixed << setprecision(1)
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El programa principal

int main() {
tlLista lista;
tEstudiante estudiante;
bool exito;
int op, pos;

cargar(lista, exito);
if (lexito) {

cout << "No se ha podido cargar la listal!" << endl;
}

else {

do { // El bucle do evita tener que leer antes la primera opciédn

op = menu();
switch (op) {
case 1:

{

leerEstudiante(estudiante);

if (lexito) {

break;
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insertarEstudiante(lista, estudiante, exito);

cout << "Lista llena: imposible insertar” << endl;




El programa principal

case 2:

{

cout << "Posicién: ";
cin >> pos;
eliminarEstudiante(lista, pos - 1, exito);
if (lexito) {

cout << "Elemento inexistente!" << endl;

}
}
break;
case 3:
calificar(lista);
i }
& break;
2 case 4:
E listado(lista, mediaClase(lista), mayorNota(lista));
g }
Ig) } .
£ } while (op != 0);
3 guardar(lista);
g }
% return 0;
3 }
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Cadenas de caracteres al estilo de C

Arrays de caracteres terminados en nulo

const Max = 15;
typedef char tCadena[Max];
tCadena cadena = "Adiés"; // Inicializacidén al declarar

Siempre hay al final un caracter nulo (c6digo ASCII 0 - '\0")
Indica que en esa posicion termina la cadena (exclusive)

FElhiFll A d i o6 s \@
(] 1 2 3 4 5 6 7 8 9 10 11 12 13 14

En el array caben MAX-1 caracteres significativos
Longitud maxima de la variable cadena: 14

No se pueden asignar cadenas literales: caw "5

Ni copiar cadenas directamente: chl ;

Ni comparar con op. relacionales: if (M) co
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Entrada/salida con cadenas al estilo de C

tCadena cadena;
cin >> cadena; // Se anade un nulo al final

Extractor: la lectura termina en el primer espacio en blanco
;No se comprueba si se leen mds caracteres de los que caben!
setw(): maximo de caracteres a colocar (incluyendo el nulo)
cin >> setw(15) >> cadena;

cin.getline(cadena estilo C, mdx):

Para leer también los espacios en blanco y no mas de mdx-1
cin.getline(cadena, 15); // Hasta 14 caracteres

cout << cadena << endl; // El nulo no se muestra

ﬁa cin.getline(cad, mdx) Cadenas al estilo de C

getline(cin, cad) Cadenas de tipo string
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La biblioteca cstring

v strlen(cadena):longitud actual de la cadena
cout << "Longitud: " << strlen(cadena);

v strcpy(destino, origen): copia origen en destino
strcpy(cad2, cadl); strcpy(cad, "Me gusta C++");

v strcat(destino, origen): afiade origen al final de destino
tCadena cadl = "Hola", cad2 = "Adidos";
strcat(cadl, cad2); // cadl contiene "HolaAdids"

v strcmp(cadl, cad2):compara lexicograficamente las cadenas
@ si son iguales, 1 si cadl > cad2 6 -1 si cadl < cad2
tCadena cadl = "Hola", cad2 = "Adidos";
strcmp(cadl, cad2) // Devuelve 1 ("Hola" > "Adids")

http://www.cplusplus.com/reference/clibrary/cstring/
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Ejemplo de cadenas al estilo de C

#include <iostream>
using namespace std;
#include <cstring>

int main() {
const int MAX = 20;
typedef char tCad[MAX];
tCad cadena = "Me gusta C++";
cout << cadena << endl;
cout << "Cadena: ";
cin >> cadena; // Lee hasta el primer espacio en blanco
cout << cadena << endl;
cin.sync(); // Sincronizar la entrada
cout << "Cadena: ";
cin.getline(cadena, MAX);
cout << cadena << endl;
cout << "Longitud: " << strlen(cadena) << endl;

strcpy(cadena, "Hola");

Luis Hernandez Yafiez/Pablo Moreno Ger
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Ejemplo de cadenas al estilo de C

tCad cadena2 = " amigo";

strcat(cadena, cadena2);

cout << cadena << endl;

if (strcmp(cadena, cadena2) == 0) {
cout << "Iguales";

}

else if (strcmp(cadena, cadena2) > 9) {

cout << cadena <« es mayor que " << cadena2;

else {
cout << cadena << " es menor que " << cadena2;

cout << endl;

return 0;
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Fundamentos de la programacion

Recorrido de arrays
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Recorrido de arrays

Esquema de recorrido
Inicializacién
Mientras no al final de la secuencia:
Obtener el siguiente elemento

Procesar el elemento

Finalizacion

(0]
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Inicializacion

(Al final?

Obtener elemento

Procesar elemento

Finalizacion
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Recorrido de arrays

Recorrido de secuencias en arrays

v" Todas las posiciones ocupadas:
Tamano del array = longitud de la secuencia
N elementos en un array de N posiciones:

Recorrer el array desde la primera posicion hasta la tltima

v" Posiciones libres al final del array:
Tamafio del array > longitud de la secuencia
» Con centinela:
Recorrer el array hasta encontrar el valor centinela
» Con contador de elementos:

Recorrer el array hasta el indice contador - 1

(0]
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Recorrido de arrays

Recorrido de arrays completos

Todas las posiciones del array ocupadas

const int N = 10;
typedef double tVentas[N];
tVentas ventas;

CENEI 125.40  76.95 328.80 254.62 435.00 164.29 316.05 219.99 93.45 756.62

(] 1 2 3 4 5 6 7 8 9

double elemento;

for (int 1 = 0; i < N; i++) {
elemento = ventas[i];

// Procesar el elemento ...

Luis Hernandez Yafiez
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Recorrido de arrays

Recorrido de arrays no completos - con centinela

No todas las posiciones del array estan ocupadas

const int N = 10;
typedef double tArray[N];
tArray datos; // Datos positivos: centinela = -1

Eldely 125.40 76.95 328.80 254.62 435.00 164.29 316.05 -1.0

0 1 2 3 4 5 6 7 8 9
. R int 1 = 0;
int 1 = 0; double elemento;
double elemento = datos[i]; do {
. while (elemento != -1) { elemento = datos[i];
5 // Procesar el elemento ... if (elemento != -1) {
5 . // Procesar el elemento...
2 i++; f4bs
: elemento = datos[i];
= } } while (elemento != -1);
( () y o -
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Recorrido de arrays

Recorrido de arrays no completos - con contador

Array y contador intimamente relacionados: estructura

const int N = 10;
typedef double tArray[N];
typedef struct {
tArray elementos;
int contador;
} tlLista;
Listas de elementos de longitud variable

125.40 76.95 328.80 254.62 435.00 164.29 316.05

N2 de elementos (primer indice sin elemento)

7 Luis Herndndez Yafiez
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Recorrido de arrays

Recorrido de arrays no completos - con contador

const int N = 10;
typedef double tArray[N];
typedef struct {
tArray elementos;
int contador;
} tlLista;
tlLista lista;

double elemento;

for (int 1 = 9; i < lista.contador;
elemento = lista.elementos[i];

// Procesar el elemento...

Luis Herndndez Yafiez
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Ejemplos

Array con los N primeros numeros de Fibonacci

const int N = 50;
typedef long long int tFibonacci[N]; // 50 numeros
tFibonacci fib;

fib[@] = 1;
fib[1] = 1;
for (int 1 = 2; i < N; i++) {
fib[i] = fib[i - 1] + fib[i - 2];
}
for (int 1 = 0; i < N; i++) {
cout << fib[i] << " "5
@ ‘? Fundamentos de la programacién: Recorrido y busqueda en arrays Pagina 598
Ejemplos

Cuenta de valores con k digitos

Recorrer una lista de N enteros contabilizando cuantos son
de 1 digito, cuantos de 2 digitos, etcétera (hasta 5 digitos)

2 arrays: array con los nameros y array de contadores

const int NUM = 100;

typedef int tNum[NUM]; // Exactamente 100 numeros

tNum numeros;

const int DIG = 5;

typedef int tDig[DIG]; // i --> numeros de i+l digitos
tDig numDig = { © };

numeros 123 2 46237 2345 236 11234 33 999 “e

B]

s 0 1 2 3 4 5 6 7 99
3

kS : ) ) ) ) ) )

g numDig

£ ) 1 2 3 4 5

E

() (e
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Ejemplos

Cuenta de valores con k digitos

Funciéon que devuelve el numero de digitos de un entero:

int digitos(int dato) {
int n_digitos = 1; // Al menos tiene un digito
// Recorremos la secuencia de digitos...
while (dato »>= 10) {
dato = dato / 10;
n_digitos++;
}

return n_digitos;

Luis Herndndez Yafiez
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Ejemplos

Generacion de numeros pseudoaleatorios

Probemos con una secuencia de enteros generada aleatoriamente
Funciéon rand() (cstdlib): entero aleatorio entre 0 y 32766
srand() (cstdlib): inicia la secuencia de nameros aleatorios
Acepta un entero que usa como semilla para iniciar la secuencia
;Qué valor usar? Uno distinto en cada ejecucién

- El instante de tiempo actual (diferente cada vez)

Funcién time () (ctime): segundos transcurridos desde 1970
Requiere un argumento, que en nuestro caso sera NULL

srand(time(NULL)); // Inicia la secuencia

numeros[@] = rand(); // Entre @ y 32766

Luis Hernandez Yafiez
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Ejemplos

Cuenta de valores con k digitos

#include <iostream>

using namespace std;

#include <cstdlib> // srand() y rand()
#include <ctime> // time()

int digitos(int dato);

int main() {

const int NUM = 100;

typedef int tNum[NUM]; // Exactamente 100 numeros
const int DIG = 5;

typedef int tDig[DIG];

tNum numeros;

tDig numDig = { © }; // Inicializa todo el array a ©

srand(time(NULL)); // Inicia la secuencia aleatoria

(0]
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Ejemplos

for (int 1 = @; i < NUM; i++) { // Creamos la secuencia
numeros[i] = rand(); // Entre @ y 32766

}

for (int 1 = @; i < NUM; i++) {
// Recorremos la secuencia de enteros
numDig[digitos(numeros[i]) - 1]++;

}

for (int 1 = @; i < DIG; i++) {
// Recorremos la secuencia de contadores
cout << "De " << 1 + 1 << " dig. =
<< endl;

<< numDig[i]

}

return 0;

}

int digitos(int dato) {

Luis Hernandez Yafiez
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Busquedas en arrays

(0]

r Luis Herndndez Yafiez
|
L.

=sr=m ~undamentos de la programacion: Recorrido y busqueda en arrays

Péagina 604

Busquedas en arrays

Esquema de busqueda
Inicializacion
Mientras no se encuentre el elemento
y no se esté al final de la secuencia:

Obtener el siguiente elemento

Comprobar si el elemento
satisface la condicion

Finalizacion

Inicializacién / encontrado = false;

(tratar el elemento encontrado

¢Al final o
encontrado?

Obtener elemento

¢Encontrado?

o indicar que no se ha encontrado)

(0]
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Finalizacion
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Busquedas en arrays completos

Todas las posiciones ocupadas const int N = 100;
. typedef int tArray[N];
int buscado; tArray lista;

bool encontrado = false;
cout << "Valor a buscar: ";
cin >> buscado;
int pos = 0;
while ((pos < N) && !encontrado) {
// Mientras no se llegue al final y no encontrado

if (lista[pos] == buscado) {

encontrado = true;

}

else {
pOS++;

}

}
if (encontrado) // ...

Luis Herndndez Yafiez
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Busquedas en arrays incompletos

Con centinela

const int N = 10;

. typedef int tArray[N];
int buscado; tArray array;

cout << "Valor a buscar: "; const int centinela = -1;

cin >> buscado;
int pos = 0;
bool encontrado = false;
while ((array[pos] != centinela) && !encontrado) {
if (array[pos] == buscado) {
encontrado = true;

}

else {
pOS++;

}

}
if (encontrado) // ...

Luis Hernandez Yafiez
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Busquedas en arrays incompletos

Con contador

const int N = 10;
typedef double tArray[N];

int bUSCﬁdOS i typedef struct {
cout << "Valor a buscar: "; tArray elementos;
3

?in >> buscado; int contador;
int pos = 9; } tlista;
bool encontrado = false; tLista miLista;

while ((pos < milLista.contador)
&& !encontrado) {
// Mientras no al final y no encontrado
if (miLista.elementos[pos] == buscado) {
encontrado = true;

else {
pOS++;
}
}

if (encontrado) // ...

Luis Herndndez Yafiez
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Busquedas por posicidn

Acceso directo a cualquier posicion

Acceso directo: array[posicion]
Si se puede calcular la posicion del elemento, su acceso es directo

typedef double tVentaMes[DIAS][SUCURSALES];
typedef struct {

tVentaMes ventas;

int dias;
} tMes;
typedef tMes tVentaAnual[MESES];
tVentaAnual anual;

Ventas del cuarto dia del tercer mes en la primera sucursal:
anual[2].ventas[3][9]

Luis Hernandez Yafiez
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Fundamentos de la programacion

Ejemplo
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Primer valor por encima de un umbral

#include <iostream> umbral.cpp

using namespace std;
#include <fstream>

const int N = 100;
typedef double tArray[N];
typedef struct {

tArray elementos;

int contador;
} tlLista;

void cargar(tLista &lista, bool &ok);

int main() {
tLista lista;

bool ok;
2 cargar(lista, ok);
5 if (lok) {
T " . . "
5 cout << "Error: no hay archivo o demasiados datos
g << endl;
I E E
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fiez
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Primer valor por encima de un umbral

}
(0]

i o

else {

double umbral;

cout << "Valor umbral: "; cin >> umbral;

bool encontrado = false;

int pos = 0;

while ((pos < lista.contador) && !encontrado) {
if (lista.elementos[pos] > umbral) {

encontrado = true;

else {
pOS++;
}

if (encontrado) {
cout << "Valor en pos. << pos + 1 << " ("
<< lista.elementos[pos] << ")" << endl;

else {
cout << "jNo encontrado!" << endl;
return 0;
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Primer valor por encima de un umbral

void cargar(tLista &lista, bool &ok) {

)

ifstream archivo;
double dato;
bool abierto = true, overflow = false;
lista.contador = 9;
archivo.open("datos.txt");
if (larchivo.is_open()) {
abierto = false;
}

else {
archivo >> dato;
while ((dato >= @) && l!overflow) {
if (lista.contador == N) {
overflow = true; // jDemasiados!
}

else {
lista.elementos[lista.contador] = dato;

lista.contador++;
archivo >> dato;

}

archivo.close();

ok = abierto && !overflow;
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Fundamentos de la programacion

Recorridos y busquedas
en cadenas de caracteres
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Cadenas de caracteres

Recorridos y busquedas en cadenas de caracteres

Longitud de la cadena: size() o length()
Caso similar a los arrays con contador de elementos

Ejemplo: Recorrido de una cadena generando otra invertida

string cadena, inversa = "";
int pos;

char car;

// ... (lectura de cadena)
pos = 0O;

while (pos < cadena.size()) {
// Mientras no se llegue al final de la cadena
car = cadena.at(pos);
inversa = car + inversa; // Inserta car al principio
pOS++;

Y /...
(D
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Cadenas de caracteres

Busqueda de un cardcter en una cadena

string cadena;
char buscado;

int pos;
bool encontrado;
// ... (lectura de cadena)

cout << "Introduce el caracter a buscar: ";
cin >> buscado;
pos = 9,
encontrado = false;
while ((pos < cadena.size()) && !encontrado) {
if (cadena.at(pos) == buscado) {
encontrado = true;
¥

else {

pOS++;
}
}

if (encontrado) // .
(£
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Mas ejemplos
de manejo de arrays
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Manejo de vectores

Tipo tVector para representar secuencias de N enteros:

const int N = 10;
typedef int tVector[N];

Subprogramas:

v Dado un vector, mueve sus componentes un lugar a la derecha;
el ultimo componente se movera al 1¢" lugar

v Dado un vector, calcula y devuelve la suma de los elementos que se
encuentran en las posiciones pares del vector

v Dado un vector, encuentra y devuelve la componente mayor
v Dados dos vectores, devuelve un valor que indique si son iguales

v Dado un vector, determina si alguno de los valores almacenados en
el vector es igual a la suma del resto de los valores del mismo;
devuelve el indice del primero encontrado o -1 si no se encuentra

fiez

Dado un vector, determina si alguno de los valores almacenados
en el vector esta repetido

Luis Hernandez Ya
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Manejo de vectores

void desplazar(tVector v) {
int aux = v[N - 1];

for (int i =N-1; i > 0; i--) {
v[i] = v[i - 1];

}

v[@] = aux;

}

int sumaPares(const tVector v) {
int suma = 0;

for (int 1 =0; i < N; i=1+ 2) {
suma = suma + Vv[i];

}

fiez

return suma;

Luis Hernandez Ya
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Manejo de vectores

int encuentraMayor(const tVector v) {
int max = v[@], posMayor = 0;
for (int 1 = 1; i < N; i++) {
if (v[i] > max) {
posMayor = 1i;
max = v[i];
}
}
return posMayor;

}

bool sonIguales(const tVector vl, const tVector v2) {
//Implementacidén como busqueda del primer elemento distinto
bool encontrado = false;

int 1 = 0;

while ((i<N) && !encontrado) {
encontrado = (v1[i] != v2[i]);
i++;

}

return !encontrado;

-

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 620

f
©

Manejo de vectores

int compruebaSuma(const tVector v) {
// éAlguno igual a la suma del resto?
bool encontrado = false;

int 1 = 0;
int suma;
while ((i < N) && !encontrado) {
suma = 0;
for (int j = 0; j < N; j++) {
if (J !'=1) {
suma = suma + Vv[j];
}
}
encontrado = (suma == v[i]);
i++;
}
if (!encontrado) {
i=0;
¥

return i - 1;

-
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Manejo de vectores

bool hayRepetidos(const tVector v) {
bool encontrado = false;
int i = 0, j;

while ((i < N) && !encontrado) {

j=1+1;

while ((j < N) && !encontrado) {
encontrado = (v[i] == v[j]);
J++;

)

i++;

}

return encontrado;

(0]
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Mas vectores

Dado un vector de N caracteres v1, en el que no hay elementos
repetidos, y otro vector de M caracteres v2, donde N < M, se
quiere comprobar si todos los elementos del vector v1 estan
también en el vector v2

Por ejemplo, si:

vli='a’ "h' "1’ 'm’

v2= 'h' 'a' "X X m i

El resultado seria cierto, ya que todos los elementos de v1 estan
en v2

(0]
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Manejo de vectores

#include <iostream>
using namespace std;

const int N 3;
const int M = 10;
typedef char tVectorl[N];
typedef char tVector2[M];

bool esta(char dato, const tVector2 v2);
bool vectorIncluido(const tVectorl vl, const tVector2 v2);

int main() {
tVectorl vl = { 'a', 'b', 'c' };

tvector2 v2 = { 'a', 'r', 'e', 't', 'z', 's', 'a', 'h', 'b', 'x' };
bool ok = vectorIncluido(vl, v2);
if (ok) {
cout << "OK: v1 esta incluido en v2" << endl;
. b
£ else {
E cout << "NO: vl no esta incluido en v2" << endl;
5 }
s return 0;
}
||
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Manejo de vectores

bool esta(char dato, const tVector2 v2) {
int i = 0;
bool encontrado = (dato == v2[0]);

while (!'encontrado & & (i < M - 1)) {

i++;
encontrado = (dato == v2[i]);
}
return encontrado;
}
bool vectorIncluido(const tVectorl vl, const tVector2 v2) {

int i = 0;
bool encontrado = esta(vli[@], v2);

while (encontrado & (i < N - 1)) {
i++;
encontrado = esta(vli[i], v2);

}

return encontrado;

fiez
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Anagramas

Un programa que lea dos cadenas del teclado y determine si una es
un anagrama de la otra, es decir, si una cadena es una permutacion
de los caracteres de la otra.

Por ejemplo, "acre" es un anagrama de "cera" y de "arce". Ten
en cuenta que puede haber letras repetidas ("carro", "11lave").

(0]
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Anagramas

#tinclude <iostream>
#include <string>
using namespace std;

int buscaCaracter(string cad, char c); // Indice o -1 si no estd

int main() {

string cadl, cad2;

bool sonAnagramas = true;

int numCar, posEnCad2;

cout << "Introduce la primera cadena: ";

getline(cin, cadl);

cout << "Introduce la segunda cadena: ";

getline(cin, cad2);

if (cadl.length() != cad2.length()) { // No son anagramas
sonAnagramas = false;

}

else {
numCar = @; // Contador de caracteres de la primera cadena
while (sonAnagramas && (numCar < cadl.length())) {

posEnCad2 = buscaCaracter(cad2, cadl.at(numCar));
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Anagramas

if (poskEnCad2 == -1) { //No se ha encontrado el caracter
sonAnagramas = false;

}

else {
cad2.erase(posEnCad2, 1);

}

numCar++;

}

if (sonAnagramas) {
cout << "Las palabras introducidas son anagramas" << endl;

else {
cout << "Las palabras introducidas NO son anagramas" << endl;

5]
G return 0;
3 }
f=
2
5}
T
§
I E E
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Anagramas

int buscaCaracter(string cad, char c) {
int pos = @, lon = cad.length();
bool encontrado = false;

while ((pos < lon) && !encontrado) {
if (cad.at(pos) == c) {
encontrado = true;

}
else {
poS++;
}
}
if (lencontrado) {
pos = -1;
}

return pos;

fiez
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Fundamentos de la programacion

Arrays multidimensionales
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Arrays multidimensionales

Arrays de varias dimensiones

Varios tamaifios en la declaracion: cada uno con sus corchetes
typedef tipo_base nombre[tamanol][tamano2]...[tamarnoN];
Varias dimensiones, tantas como tamanos se indiquen

typedef double tMatriz[50][100];
tMatriz matriz;

Tabla bidimensional de 50 filas por 100 columnas:

98 99
.
. I
.
.
.

7 Luis Herndndez Yafiez
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Arrays multidimensionales

Arrays de varias dimensiones

typedef double tMatriz[50][100];
tMatriz matriz;

Cada elemento se localiza con dos indices, uno por dimension

cout << matriz[2][98];

0 1 2 3 oo 98 99
o I .. A
]
Il

: I
> m———
o I .
s IR . -
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Arrays multidimensionales

Arrays de varias dimensiones

Podemos definir tantas dimensiones como necesitemos

typedef double tMatriz[5][10][20][10];
tMatriz matriz;

Necesitaremos tantos indices como dimensiones:
cout << matriz[2][9][15][6];
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Arrays multidimensionales

Ejemplo de array bidimensional

Temperaturas minimas y maximas

Matriz bidimensional de dias y minima/maxima:

const int MaxDias = 31;

const int MED = 2; // N2 de medidas

typedef double tTemp[MaxDias][MED]; // Dia x min./max.
tTemp temp;

Ahora:
v’ temp[i][@] es la temperatura minima del dia i+1
v' temp[i][1] es la temperatura maxima del dia i+1

(0]
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Arrays multidimensionales

int main() {
const int MaxDias = 31;
const int MED = 2; // N2 de medidas
typedef double tTemp[MaxDias][MED]; // Dia x min./max.
tTemp temp;
double tMaxMedia = @, tMinMedia = 9O,
tMaxAbs = -100, tMinAbs = 100;
int dia = 0;
double max, min;
ifstream archivo;

archivo.open("temp.txt");
if (larchivo.is_open()) {
cout << "No se ha podido abrir el archivo!" << endl;
}
else {
archivo >> min >> max;
// El archivo termina con -99 -99

(0]
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Arrays multidimensionales

while (!((min == -99) && (max == -99))
&& (dia < MaxDias)) {
temp[dia][@] = min;
temp[dia][1] = max;
dia++;
archivo >> min >> max;
by
archivo.close();
for (int i = @; i < dia; i++) {
tMinMedia = tMinMedia + temp[i][9];
if (temp[i][@] < tMinAbs) {
tMinAbs = temp[i][©];
}
tMaxMedia = tMaxMedia + temp[i][1];
if (temp[i][1] > tMaxAbs) {
tMaxAbs = temp[i][1];

}

‘% }
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Arrays multidimensionales

tMinMedia = tMinMedia / dia;
tMaxMedia = tMaxMedia / dia;
cout << "Temperaturas minimas.-" << endl;
cout << " Media = " << fixed << setprecision(1)

<< tMinMedia <<
<< setprecision(1l) << tMinAbs <<
cout << "Temperaturas maximas.-"
cout << " Media =

" C Minima absoluta
C" << endl;
<< endl;

<< fixed << setprecision(1)
<< tMaxMedia << " C Maxima absoluta

<< setprecision(1l) << tMaxAbs << " C" << endl;

return 0;

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays

=17 Luis Hernandez Yafiez
L
@ —

Péagina 637




Inicializacidn de arrays multidimensionales

Podemos dar valores a los elementos de un array al declararlo
Arrays bidimensionales:

typedef int tArray[5][2];
tArray cuads = {1,1, 2,4, 3,9, 4,16, 5,25};

Se asignan en el orden en el que los elementos estan en memoria

LLa memoria es de una dimension: secuencia de celdas

En memoria varian mas rapidamente los indices de la derecha:
cuads[0@][0] cuads[@][1] cuads[1][@] cuads[1][1] cuads[2][9@]...

Para cada valor del primer indice: todos los valores del segundo

(0]
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Inicializacion de arrays multidimensionales

Inicializacion de un array bidimensional

typedef int tArray[5][2];
tArray cuads = {1,1, 2,4, 3,9, 4,16, 5,25};

Memoria 0 1
cuads[@][e] 1 @ 1 1
cuads[0][1] 1 1 2 4
cuads[1][@] 2 2 3 ?
ds[1][1] 4 > * e
cua 4 5 25
cuads[2][@] 3
cuads[2][1] J €@ Sihay menos valores que elementos,
cuads[3][Q] 4 el resto se inicializan a cero
2 cuads[3][1] 16 Inicializacién a cero de todo el array:
3 cuads[4][0] 5 int cuads[5][2] = { @ };
£ cuads[4][1] 25

(0]
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Inicializacion de arrays multidimensionales

typedef double tMatriz[3][4][2][3];
tMatriz matriz =

{1J 2: 3; 4, 5, 6, Memoria
7, 8, 9, 10, 11, 12}; matriz[@][0@][0][@] 1
matriz[@][0@][0][1] 2
matriz[@][0@][0][2] 3
matriz[@][@][1][@] 4
matriz[@][0][1][1] 5
matriz[@][0][1][2] 6
matriz[@][1][0][@0] 7
matriz[@][1][0][1] 8
matriz[@][1][0][2] 9
matriz[@][1][1][@] 10
g matriz[@][1][1][1] 11
g matriz[@][1][1][2] 12
: matriz[e][2][e][e] 0
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Recorrido de un array bidimensional

const int FILAS = 10;

const int COLUMNAS = 5;

typedef double tMatriz[FILAS][COLUMNAS];
tMatriz matriz;

Para cada fila (de 0 a FILAS - 1):
Para cada columna (de 0 a COLUMNAS - 1):
Procesar el elemento en [fila][columna]

for (int fila = @; fila < FILAS; fila++) {
for (int columna = @; columna < COLUMNAS; columna++) {
// Procesar matriz[fila][columna]

}

Luis Hernandez Yafiez
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Ejemplo

Ventas de todos los meses de un ano

const int Meses = 12;

const int MaxDias = 31;

typedef double tVentas[Meses][MaxDias];
tVentas ventas; // Ventas de todo el ano
typedef short int tDiasMes[Meses];

tDiasMes diasMes;

inicializa(diasMes); // N2 de dias de cada mes
// Pedimos las ventas de cada dia del afo...

for (int mes = 0; mes < Meses; mes++)
for (int dia = @; dia < diasMes[mes]; dia++) {
cout << "Ventas del dia " << dia + 1
<< " del mes " << mes + 1 << ": "
cin >> ventas[mes][dia];

i Luis Hernandez Yafiez
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Ventas de todos los meses de un ano

Celdas no

Meses < utilizadas

\11 222 666 512 400 259 ...
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Recorrido de arrays N-dimensionales

const int DIM1 = 10;
const int DIM2 = 5;
const int DIM3 = 25;
const int DIM4 = 50;

typedef double tMatriz[DIM1][DIM2][DIM3][DIM4];

tMatriz matriz;

Bucles anidados, desde la primera dimensidn hasta la ultima:

for (int nl1 = @0; nl1 < DIM1; nl++) {
for (int n2 = 0; n2 < DIM2; n2++) {
for (int n3 = 0; n3 < DIM3; n3++) {
for (int n4 = 0; n4 < DIM4; nd++) {
// Procesar matriz[nl][n2][n3][n4]

}
}
}

Luis Herndndez Yafiez
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Ejemplo

Ventas diarias de cuatro sucursales

Cada mes del afio: ingresos de cada sucursal cada dia del mes

Meses con distinto n2 de dias = junto con la matriz de ventas
mensual guardamos el n2 de dias del mes concreto = estructura

const int DIAS = 31;

const int SUCURSALES = 4;
typedef double tVentaMes[DIAS][SUCURSALES];
typedef struct {

tVentaMes ventas: anual > tVentaAnual
J
int dias: anual[i] > tMes
J . . .
} tMes; anual[:.L].dlas - int
anual[i].ventas > tVentaMes
anual[i].ventas[j][k] = double

const int MESES = 12;
typedef tMes tVentaAnual[MESES];
tVentaAnual anual;

(£
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Ejemplo

const int DIAS = 31;
, const int SUCURSALES = 4;
Calculo de las ventas typedef double

o tVentaMes[DIAS][SUCURSALES];
de todo el ano: typedef struct {

Para cada mes tVentaMes ventas;

int dias;
Para cada dia del mes... } tMes;
Para cada sucursal... const int MESES = 12;
typedef tMes tVentaAnual[MESES];
ACumular ]as ventas tVentaAnual anual;

double total 0;
for (int mes = 0@; mes < MESES; mes++) {
for (int dia = 0; dia < anual[mes].dias; dia++) {
for (int suc = 0; suc < SUCURSALES; suc++) {
total = total + anual[mes].ventas[dia][suc];

-

>

3 }

f=

5 }

g }

E

)

I E E
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Busqueda en un array multidimensional

bool encontrado = false; Primer valor > umbral
int mes = 0, dia, suc;
while ((mes < MESES) && !encontrado) {
dia = 9;
while (Zdia < anual[mes].dias) && !encontrado) {
suc = 9,
while (Zsuc < SUCURSALES) && !encontrado) {
if (anual[mes].ventas[dia][suc] > umbral) {
encontrado = true;

else {
SUC++;
}
if (!encontrado) {
dia++;
}
2 if (!encontrado) {
5 mes++;
}
= if (encontrado) { ...

(0]
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Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.
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Fundamentos de la programacion

Algoritmos de ordenacion

7 Luis Hernandez Yafiez
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Algoritmos de ordenacion

Ordenacion de listas

array

125.40 76.95 328.80 254.62 435.00 164.29 316.05 219.99 93.45 756.62
0 1 2 3 4 5 6 7 8 9

Algoritmo de ordenacién
(de menor a mayor)

76.95 93.45 125.40 164.29 219.99 254.62 316.05 328.80 435.00 756.62
0 1 2 3 4 5 6 7 8 9

array[i] <= array[i + 1]

Mostrar los datos en orden, facilitar las busquedas, ...
Variadas formas de hacerlo (algoritmos)

% Luis Hernandez Yafiez
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Algoritmos de ordenacion

Ordenacion de listas

Los datos de la lista deben poderse comparar entre si
Sentido de la ordenacion:

v' Ascendente (de menor a mayor)

v Descendente (de mayor a menor)

Algoritmos de ordenacion basicos:

v Ordenacién por insercién

v Ordenacién por seleccion directa

v Ordenacién por el método de la burbuja

Los algoritmos se basan en comparaciones e intercambios

Hay otros algoritmos de ordenacién mejores

Luis Herndndez Yafiez
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Algoritmo de ordenacidn
por insercion

(0]

e =mr=m ~undamentos de la programacion: Algoritmos de ordenacién Péagina 654

[ Luis Hernandez Yafiez
L.




Ordenacidn por insercion

Algoritmo de ordenacion por insercion

Partimos de una lista vacia

Vamos insertando cada elemento en el lugar que le corresponda

Baraja de nueve cartas numeradas del 1 al 9
Las cartas estan desordenadas

Ordenaremos de menor a mayor (ascendente)

Luis Herndndez Yafiez
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Ordenacidn por insercion

Algoritmo de ordenacion por insercion

Colocamos el primer elemento en la lista vacia

Lista ordenada:

5

Luis Hernandez Yafiez
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Ordenacidn por insercion

Algoritmo de ordenacion por insercion

El 7 es mayor que todos los elementos de la lista
Lo insertamos al final

Lista ordenada:

7

7 Luis Hernandez Yafiez
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Ordenacidn por insercion

Algoritmo de ordenacion por insercion

Primer elemento (5) mayor que el nuevo (4):
Desplazamos todos una posicion a la derecha

Insertamos el nuevo en la primera posicion

Hemos insertado el elemento en su lugar

Lista ordenada:

415 |7

% Luis Hernandez Yafiez
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Ordenacidn por insercion

Algoritmo de ordenacion por insercion

9 es mayor que todos los elementos de la lista
Lo insertamos al final

Lista ordenada:
4[5[7[9

A Fundamentos de la programacién: Algoritmos de ordenacion Péagina 659
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Ordenacidn por insercion

Algoritmo de ordenacion por insercion

Primer elemento (4) mayor que el nuevo (2):
Desplazamos todos una posicion a la derecha

Insertamos el nuevo en la primera posicion

Lista ordenada:
2[a[5[7]9
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Ordenacidn por insercion

Algoritmo de ordenacion por insercion

El 9 es el primer elemento mayor que el nuevo (8):
Desplazamos desde ese hacia la derecha
Insertamos donde estaba el 9

Lista ordenada:
2]a[5(7]8]9
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Ordenacidn por insercion

Algoritmo de ordenacion por insercion

3 Segundo elemento (4) mayor que el nuevo (3):
Desplazamos desde ese hacia la derecha
Insertamos donde estaba el 4

23/4[s]7]8]8
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Ordenacidn por insercion

Algoritmo de ordenacion por insercion

1 Primer elemento (2) mayor que el nuevo (1):
Desplazamos todos una posicion a la derecha

Insertamos el nuevo en la primera posicion

112[3[4[5]7]8[9
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Ordenacidn por insercion

Algoritmo de ordenacion por insercion

E El 7 es el primer elemento mayor que el nuevo (6):
Desplazamos desde ese hacia la derecha
Insertamos donde estaba el 7

iii LISTA ORDENADA !!!

112(3[4[5]67[8[9
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Ordenacidn por insercion

Ordenacion de arrays por insercion

El array contiene inicialmente la lista desordenada:

20 7 14 32 ) 14 27 12 13 15
) 1 2 3 4 5 6 7 8 9

A medida que insertamos: dos zonas en el array

Parte ya ordenada y elementos por procesar

Parte ya ordenada Elementos por insertar

Siguiente elemento a insertar en la parte ya ordenada

7 Luis Herndndez Yafiez
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Ordenacidn por insercion

Ordenacion de arrays por insercion

Situaciodn inicial: Lista ordenada con un solo elemento (primero)

20 7 14 32 5 14 27 12 13
e i 1 2 3 4 5 6 7 8 9

15

4 9
T nuevo

7 Luis Herndndez Yafiez
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Ordenacidn por insercion

Ordenacion de arrays por insercion

nuevo

7 20 14 32 ) 14 27 12 13 15
0 1 i 2 3 4 5 6 7 8 9

nuevo

Pé4gina 667
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Ordenacion de arrays por insercion

Implementacion const int N = 15;
typedef int tLista[N];

tLista lista;

int nuevo, pos;
// Desde el segundo elemento hasta el ultimo...
for (int i = 1; i < N; i++) {
nuevo = lista[i];
pos = 0O;
while ((pos < i) && !(lista[pos] > nuevo)) {
pOS++;
}
// pos: indice del primer mayor; i si no lo hay
for (int j = 1i; j > pos; j--) {
lista[j] = lista[j - 1];
}

lista[pos] = nuevo;

7 Luis Herndndez Yafiez
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Ordenacidn de arrays por insercion

w0 i

7 Luis Herndndez Yafiez
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Ordenacidn de arrays por insercion

0wl e

7 Luis Herndndez Yafiez
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Ordenacidn de arrays por insercion

5 7 14 27 12 13 15
: 8 9

- 6 7
i pos nuevo

7 Luis Herndndez Yafiez
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Algoritmo de ordenacidn
por insercion con intercambios

7 Luis Herndndez Yafiez
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7 Luis Herndndez Yafiez

Ordenacidn por insercion con intercambios

La insercion de cada elemento se puede realizar
con comparaciones e intercambios

Péagina 673
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Ordenacidn por insercion con intercambios

const int N = 15;
typedef int tLista[N];
tLista lista;

int tmp, pos;
// Desde el segundo elemento hasta el ultimo...
for (int 1 = 1; i < N; i++) {
pos = 1i;
// Mientras no al principio y anterior mayor...
while ((pos > @) && (lista[pos - 1] > lista[pos])) {
// Intercambiar...
tmp = lista[pos];
lista[pos] = lista[pos - 1];
lista[pos - 1] = tmp;
pos--; // Posicién anterior

Luis Herndndez Yafiez
—
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Ordenacidn por insercion con intercambios

#include <iostream>

using namespace std;
#include <fstream>

const int N = 100;

typedef int tArray[N];

typedef struct { // Lista de longitud variable
tArray elementos;
int contador;

} tlLista;

int main() {

tLista lista;
ifstream archivo;
int dato, pos, tmp;
lista.contador = 0;

(0]
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Ordenacidn por insercion con intercambios

archivo.open("insercion.txt");
if ('archivo.is open()) {

cout << "Error de apertura de archivo!" << endl;
}

else {

archivo »>> dato;

while ((lista.contador < N) && (dato != -1)) {

// Centinela -1 al final
lista.elementos[lista.contador] = dato;
lista.contador++;
archivo »>> dato;

}

archivo.close();

// Si hay mas de N ignoramos el resto

cout << "Antes de ordenar:" << endl;

for (int i = @; i < lista.contador; i++) {

}

cout << lista.elementos[i] <« ;
cout << endl;

(0]
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Ordenacidn por insercion con intercambios

for (int i = 1; i < lista.contador; i++) {
pos = 1i;
while ((pos > 0)
&& (lista.elementos[pos-1] > lista.elementos[pos]))

{
tmp = lista.elementos[pos];
lista.elementos[pos] = lista.elementos[pos - 1];
lista.elementos[pos - 1] = tmp;
pos--;

}

}

cout << "Después de ordenar:" << endl;
for (int i = 9; i < lista.contador; i++) {

}

cout << lista.elementos[i] << 5
cout << endl;

}

return 9;

Luis Hernandez Yafiez
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Ordenacidn por insercion con intercambios

Consideracion de implementacion
;Operador relacional adecuado?
lista[pos - 1] ;>0>=7 lista[pos]
Con >= se realizan intercambios inttiles:

iIntercambio inutil!

7 Luis Herndndez Yafiez
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Claves de ordenacion
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Ordenacidn por insercion

Claves de ordenacion

Elementos que son estructuras con varios campaos:

const int N = 15;
typedef struct {

int codigo;

string nombre;

double sueldo;
} tDato;
typedef tDato tLista[N];
tLista lista;

Clave de ordenacion:
Campo en el que se basan las comparaciones

Luis Herndndez Yafiez
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Ordenacidn por insercion

Claves de ordenacion

[tDato]tmp;
while ((pos > 0)

&& (lista[pos - 1].nombre > lista[pos].nombre)) {
tmp = lista[pos]; -
lista[pos] = lista[pos - 1];
lista[pos - 1] = tmp;
pos--;

}

Comparacion: campo concreto

Intercambio: elementos completos

(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 682

[ Luis Hernandez Yafiez
L.




Ordenacidn por insercion

Claves de ordenacion

Funcién para la comparacion:

bool operator>(tDato opIzq, tDato opDer) {
return (opIzqg.nombre > opDer.nombre);

}

tDato tmp;

while ((pos > 0) && (lista[pos - 1]
tmp = lista[pos];
lista[pos] = lista[pos - 1];
lista[pos - 1] = tmp;
pos--;

Luis Herndndez Yafiez
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lista[pos])) {
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Ordenacidn por insercion

Claves de ordenacion

#include <iostream>
#include <string>
using namespace std;
#include <fstream>
#include <iomanip>
const int N = 15;
typedef struct {
int codigo;
string nombre;
double sueldo;
} tDato;
typedef tDato tArray[N];
typedef struct {
tArray datos;
int cont;
} tlLista;

Luis Hernandez Yafiez
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Ordenacidn por insercion

void mostrar(tLista lista);
bool operator>(tDato opIzq, tDato opDer);

int main() {
tLista lista;
ifstream archivo;
lista.cont = 0;
archivo.open("datos.txt");
if ('archivo.is open()) {
cout << "Error de apertura del archivo!" << endl;

else {

tDato dato;

archivo >> dato.codigo;

while ((lista.cont < N) && (dato.codigo != -1)) {
archivo >> dato.nombre >> dato.sueldo;
lista.datos[lista.cont] = dato;
lista.cont++;
archivo >> dato.codigo;

archivo.close();
(£
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Ordenacidn por insercion

cout << "Antes de ordenar:" << endl;
mostrar(lista);
for (int 1 = 1; i < lista.cont; i++) {
// Desde el segundo elemento hasta el ultimo
int pos = i;
while ((pos > 0)
&% (lista.datos[pos-1] > lista.datos[pos])) {
tDato tmp;
tmp = lista.datos[pos];
lista.datos[pos] = lista.datos[pos - 1];
lista.datos[pos - 1] = tmp;
pos--;
}
}
cout << "Después de ordenar:
mostrar(lista);

<< endl;

}

return 9;

Luis Hernandez Yafiez
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Luis Herndndez Yafiez

Ordenacidn por insercion

void mostrar(tLista lista) {
for (int 1 = @; i < lista.cont; i++) {
cout << setw(10)

<< lista.datos[i].codigo
<< setw(20)
<< lista.datos[i].nombre
<< setw(12)
<< fixed
<< setprecision(2)
<< lista.datos[i].sueldo
<< endl;

}

bool operator>(tDato opIzq, tDato opDer) {
return (opIzq.nombre > opDer.nombre);

I |
} I

Cambia a codigo o sueldo para ordenar por otros campos

(0]
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Estabilidad de la ordenacion
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Estabilidad de la ordenacion

Algoritmos de ordenacion estables

Al ordenar por otra clave una lista ya ordenada,
la segunda ordenacidn preserva el orden de la primera

tDato: tres posibles claves de ordenacion (campos)

Codigo :
Alvarez 120000
Nombre Benitez 100000
Sueldo Dominguez 90000
Duran 120000
Fernandez 120000
Gomez 100000
Lista ordenada por Nombre - Hernindez 150000

Jiménez 100000
Pérez 90000
Sanchez 90000
Sergei 100000
Tarazona 120000
Turégano 100000
Urpiano 90000

Luis Herndndez Yafiez
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Estabilidad de la ordenacion

Ordenamos ahora por el campo Codigo:

Sergei 100000 Hernandez 150000
Hernandez 150000 Sergei 100000
Urpiano 90000 Benitez 100000
Benitez 100000 Duran 120000
Pérez 90000 Pérez 90000
Duran 120000 Urpiano 90000
Sanchez 90000 Alvarez 120000
Alvarez 120000 Gomez 100000
Turégano 100000 Sanchez 90000
Gomez 100000 Turégano 100000
Dominguez 90000 Dominguez 90000
Jiménez 100000 Jiménez 100000
Fernandez 120000 Fernandez 120000
Tarazona 120000 Tarazona 120000

No estable: Estable:
Los nombres no mantienen Los nombres mantienen
sus posiciones relativas sus posiciones relativas

Luis Hernandez Yafiez
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Estabilidad de la ordenacion

Ordenacion por insercion

Estable siempre que utilicemos < 0 > Con <=0 >=no es estable
Ordenamos por sueldo:
A igual sueldo, ordenado por codigos y a igual codigo, por nombres

Hernandez 150000 Pérez 90000
Sergei 100000 Urpiano 90000
Benitez 100000 Sanchez 90000
Duran 120000 Dominguez 90000
Pérez 90000 Sergei 100000
Urpiano 90000 Benitez 100000
Alvarez 120000 Gomez 100000

Gomez 100000 Turégano 100000
Sanchez 90000 Jiménez 100000
Turégano 100000 Duran 120000
Dominguez 90000 Alvarez 120000
Jiménez 100000 Fernandez 120000
Fernandez 120000 Tarazona 120000
Tarazona 120000 Hernandez 150000

7 Luis Hernandez Yafiez
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Fundamentos de la programacion

Complejidad y eficiencia
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Complejidad y eficiencia

Casos de estudio para los algoritmos de ordenacion
v' Lista inicialmente ordenada

) 7 12 13 14 14 15 20 27 32

7 Luis Herndndez Yafiez

Péagina 693

Complejidad y eficiencia

Ordenaciones naturales

Si el algoritmo trabaja menos cuanto mds ordenada esta
inicialmente la lista, se dice que la ordenacién es natural

Ordenacion por insercion con la lista inicialmente ordenada:

v" Versién que busca el lugar primero y luego desplaza:
No hay desplazamientos; mismo nimero de comparaciones
Comportamiento no natural

v" Versién con intercambios:
Trabaja mucho menos; basta una comparacion cada vez
Comportamiento natural

7 Luis Herndndez Yafiez
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Complejidad y eficiencia

Eleccion de un algoritmo de ordenacion

;.Como de bueno es cada algoritmo?

;Cuanto tarda en comparacion con otros algoritmos?
Algoritmos mas eficientes: los de menor complejidad
Tardan menos en realizar la misma tarea
Comparamos en orden de complejidad: O()

En funcién de la dimension de la lista a ordenar: N
0() = f(N)

Operaciones que realiza el algoritmo de ordenacidn:
v' Comparaciones

v' Intercambios

Asumimos que tardan un tiempo similar

Luis Herndndez Yafiez
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Complejidad y eficiencia

Cdlculo de la complejidad

Ordenacidn por insercion (con intercambios):

for (int i = 1; i < N; i++) {
int pos = i;

while ((pos > 0) && |(lista[pos - 1] > lista[pos])

N—”

{

int tmp; Comparacién
tmp = lista[pos];

lista[pos] = lista[pos - 1];
lista[pos - 1] = tmp;

pos--; Intercambio

}
}

Intercambios y comparaciones:
Tantos como ciclos realicen los correspondientes bucles

(0]
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Complejidad y eficiencia

Cdlculo de la complejidad

L. N - 1 ciclos

for (int i = 1; i < N; i++)[{
int pos = i; N¢ variable de ciclos
while ((pos > @) && (lista[pos - 1] > lista[pos]))

int tmp;
tmp = lista[pos];
lista[pos] = lista[pos - 1];
lista[pos - 1] = tmp;
pOs--;
}
}

Caso en el que el while se ejecuta mas: caso peor
Caso en el que se ejecuta menos: caso mejor

(0]
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Complejidad y eficiencia

Cdlculo de la complejidad

v’ Caso mejor: lista inicialmente ordenada
La primera comparacion falla: ningtin intercambio
(N -1)* (1 comparacion + 0 intercambios) =N -1 -2 O(N)
v’ Caso peor: lista inicialmente ordenada al revés
Para cada pos, entre 1 y 1: 1 comparacién y 1 intercambio
1+2+3+4+..+(N-1)
(N-D)+1)x(N-1)/2
N*(N-1)/2
(N2-N) /2 > O(N?)
Notacion O grande: orden de complejidad en base a N
El término en N que mas rapidamente crece al crecer N
En el caso peor, N? crece mas rapido que N 2> O(N?)
(Ignoramos las constantes, como 2)

Luis Hernandez Yafiez
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Complejidad y eficiencia

Ordenacion por insercion (con intercambios)

v’ Caso mejor: O(N)
v’ Caso peor: O(N?)

Caso medio (distribucién aleatoria de los elementos): O(N?)

Hay algoritmos de ordenacién mejores

(0]

[ Luis Herndndez Yafiez
L.
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Complejidad y eficiencia
Ordenes de complejidad
O(log N) < O(N) < O(N log N) < O(N?) < O(N?) ...
N log, N N2
1 %) 1
2 1 4
4 2 16
8 3 64
16 4 256
32 5 1024
) 64 6 4096
2 128 7 16384
% 256 8 65536
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Fundamentos de la programacion

Ordenacion por seleccion directa

(0]
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v, Luis Herndndez Yafiez
f

Ordenacidn por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

4
Lista desordenada: n E E E

Lista ordenada:

Luis Hernandez Yafiez

(0]
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Ordenacion por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: n E E E
Lista ordenada:

(o) (0]
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Luis Herndndez Yafiez

Ordenacidn por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: n E E E
Lista ordenada:

(o) (0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pagina 704

Luis Hernandez Yafiez




Ordenacion por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: n E E E
Lista ordenada:

(o) (0]
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Ordenacidn por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: E E E
Lista ordenada:

(o) (0]
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Ordenacion por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: E E E
Lista ordenada:

(o) (0]
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Ordenacidn por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: E E
Lista ordenada: E

(o) (0]
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Ordenacion por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: E E
> [:[::]”

(o) (0]
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Ordenacidn por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: E

Lista ordenada: E E

(o) (0]
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Ordenacion por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada:

;i LISTA ORDENADA !!!
3
E
5
I
A Fundamentos de la programacién: Algoritmos de ordenacion Pagina 711

Ordenacidn por seleccion directa

Ordenacion de un array por seleccion directa

im
l{ l{ Sdélo intercambiamos si no es la misma posicion
5 7

14 32 20 14 27 12 13 )
0 | 2 3 4 5 6 7 8 9

7 Luis Herndndez Yafiez
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Ordenacion por seleccion directa

Ordenacion de un array por seleccion directa
i m

v v

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Algoritmos de ordenacion Pagina 713

Ordenacion por seleccion directa

const int N = 15;
typedef int tLista[N];
tLista lista;

Implementacion

// Desde el primer elemento hasta el penultimo...
for (int 1 =0; 1 < N - 1; i++) {
int menor = 1i;
// Desde i + 1 hasta el final...
for (int j =1 + 1; j < N; j++) {
if (lista[j] < lista[menor]) {
menor = j;
}

if (menor > i) {
int tmp;
tmp = lista[i];
lista[i] = lista[menor];
lista[menor] = tmp;

7 Luis Herndndez Yafiez
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Ordenacion por seleccion directa

Complejidad de la ordenacion por seleccion directa

¢ Cudntas comparaciones se realizan?

Bucle externo: N - 1 ciclos

Tantas comparaciones como elementos queden en la lista:

(N-1)+(N-2)+(N-3)+..+3+2+1=

Nx(N-1)/2=(N?-N) /2> O(N?)

Mismo nuimero de comparaciones en todos los casos

Complejidad: O(N?) Igual que el método de insercion
Algo mejor (menos intercambios; uno en cada paso)

No es estable: intercambios “a larga distancia”
No se garantiza que se mantenga el mismo orden relativo original

Comportamiento no natural (trabaja siempre lo mismo)

(0]
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Fundamentos de la programacion

Método de la burbuja

(0]
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Método de la burbuja h:.h

Algoritmo de ordenacion por el método de la burbuja

Variacion del método de seleccion directa

El elemento menor va ascendiendo hasta alcanzar su posicion

7 Luis Herndndez Yafiez

Pagina 717

12 32 14 7 14
P 2 3 4 5

7 Luis Herndndez Yafiez
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Método de la burbuja

Ordenacion de un array por el método de la burbuja

L. const int N = 10;

int tmp; typedef int tLista[N];

// Del primero al penultimo... tLista lista;

for (int 1 =0; i < N - 1; i++) {
// Desde el ultimo hasta el siguiente a 1i...
for (int j =N -1; j > 1i; j--) {

if (lista[j] < lista[j - 1]) {

tmp = lista[j];

lista[j] = lista[j - 1];

lista[j - 1] = tmp;

Luis Herndndez Yafiez
—

(o) (0]
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Método de la burbuja

Algoritmo de ordenacion por el método de la burbuja
Complejidad: O(N?)
Comportamiento no natural
Estable (mantiene el orden relativo)
Mejora:
Si en un paso del bucle exterior no ha habido intercambios:

La lista ya esta ordenada (no es necesario seguir)

14 14 14 / 12
16 16 12 14 . .
/ La lista ya esta ordenada

2 35 12 16 16 .
3 / No hace falta seguir
g 12 35 35 35
; 50 50 50 50
(o) (0]
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Método de la burbuja mejorado

bool inter = true;
int i = 0;
// Desde el 12 hasta el penultimo si hay intercambios...
while ((i < N - 1) && inter) {
inter = false;
// Desde el ultimo hasta el siguiente a i...
for (int j =N -1; j > 1i; j--) {
if (lista[j] < lista[j - 1]) {
int tmp;
tmp = lista[j];
lista[j] = lista[j - 1];
lista[j - 1] = tmp;
inter = true;

3 if (inter) {

% i++;

L ¥ Esta variacion si tiene un comportamiento natural
Fundamentos de la programacion: Algoritmos de ordenacion Pagina 721
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Listas ordenadas

(0]
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Listas ordenadas

Gestion de listas ordenadas

Casi todas las tareas se realizan igual que en listas sin orden
Operaciones que tengan en cuenta el orden:

v" Insercién de un nuevo elemento: debe seguir en orden

v Busquedas més eficientes

.Y la carga desde archivo?

v" Silos elementos se guardaron en orden: se lee igual

v" Silos elementos no estan ordenados en el archivo: insertar

(0]
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Gestion de listas ordenadas

Declaraciones: Iguales que para listas sin orden
const int N = 20;

typedef struct {
int codigo;
string nombre;
double sueldo;
} tRegistro;

typedef tRegistro tArray[N];

typedef struct {
tArray registros;
int cont;

} tlLista;

Luis Hernandez Yafiez
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Gestion de listas ordenadas

Subprogramas: Misma declaracion que para listas sin orden
void mostrarDato(int pos, tRegistro registro);

void mostrar(tLista lista);

bool operator>(tRegistro opIzq, tRegistro opDer);

bool operator<(tRegistro opIzq, tRegistro opDer);

tRegistro nuevo();

void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);

(0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 725

r Luis Herndndez Yafiez
L.

Luis Hernandez Yafiez

Gestion de listas ordenadas

Nuevas implementaciones:

v’ Operadores relacionales

v" Insercion (mantener el orden)

v Busqueda (mas eficiente)

Se guarda la lista en orden, por lo que cargar() no cambia

bool operator>(tRegistro oplzq, tRegistro opDer) {
return opIzq.nombre > opDer.nombre;

}

bool operator<(tRegistro oplzq, tRegistro opDer) {
return opIlzq.nombre < opDer.nombre;

(0]
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Gestion de listas ordenadas

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false; // lista llena

}
else {
int 1 = 0;
while ((i < lista.cont) & (lista.registros[i] < registro)) {
i++;
}
// Insertamos en la posicién i (primer mayor o igual)
for (int j = lista.cont; j > i; j--) {
// Desplazamos una posicidn a la derecha
lista.registros[j] = lista.registros[j - 1];
§ }
§ lista.registros[i] = registro;
g lista.cont++;
: }
: }
Fundamentos de la programacion: Algoritmos de ordenacion Pagina 727
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Busquedas en listas ordenadas
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Luis Herndndez Yafiez

Busquedas en listas ordenadas

Busqueda de un elemento en una secuencia

No ordenada: recorremos hasta encontrarlo o al final

Ordenada: recorremos hasta encontrarlo o mayor / al final

) 7 12 13 14 14 15 20 27 32
2 3 4 5 6 7 8 9

Buscamos el 36: al llegar al final sabemos que no esta
Buscamos el 17: al llegar al 20 ya sabemos que no esta
Condiciones de terminacion:

v" Se llega al final

v" Se encuentra el elemento buscado

v' Se encuentra uno mayor

—> Mientras no al final y el valor sea menor que el buscado

(0]
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Luis Hernandez Yafiez

Busquedas en listas ordenadas

int buscado; const int N = 10;
cout << "Valor a buscar: "; typedef int tLista[N];
cin >> buscado; tlLista lista;

int i = 0;

while ((i < N) && (lista[i] < buscado)) {
i++;

}

// Ahora, o estamos al final o lista[i] >= buscado
if (i == N) { // Al final: no se ha encontrado
cout << "No encontrado!" << endl;

}
else if (lista[i] == buscado) { // Encontrado!

cout << "Encontrado en posicidén " << 1 + 1 << endl;
}

else { // Hemos encontrado uno mayor
cout << "No encontrado!" << endl;
}

Complejidad: O(N)
(1))

=mrm Fundamentos de la programacion: Algoritmos de ordenacién Péagina 730




Fundamentos de la programacion

Busqueda binaria

7 Luis Herndndez Yafiez
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Busqueda binaria

Busqueda mucho mas rapida que aprovecha la ordenacion

Buscamos el 12 *Elemento mitad

14 14 15 18
2 3 g 4 5 6 7 8 9

7 Luis Herndndez Yafiez
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Busqueda binaria

Vamos buscando en sublistas cada vez mas pequenas (mitades)
Delimitamos el segmento de la lista donde buscar
Inicialmente tenemos toda la lista:

ini mitad fin
5 7 12 14 14 15 18 20 27 32
(7] 1 2 3 4 5 6 7 8 9

Indice del elemento en la mitad: mitad = (ini + fin) / 2

Si no se encuentra, ;donde seguir buscando?
Buscado < elemento en la mitad: fin = mitad - 1
Buscado > elemento en la mitad: ini = mitad + 1
Siini > fin, no queda donde buscar

7 Luis Herndndez Yafiez
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U 4 [ ] o
Busqueda binaria Buscamos el 12
ini mitad fin
5 7 20 27 32
1 7 8 9
12 < lista[mitad] = fin = mitad - 1
ini mitad fin
5 7 12 14 14 15 18 20 27 32
0 1 2 3 4 5 6 7 8 9
12 > lista[mitad] - ini = mitad + 1
ini fin
3‘%" 5 7 12 14 14 15 18 20 27 32
2 0 1 2 3 4 5 6 7 8 9
= mitad jEncontrado!
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Busqueda binaria

Si el elemento no esta, nos quedamos sin sublista: ini > fin

Parael 13: mitad
ini fin

) 7 12 14 14 15 18 20 27 32

0 1 2 3 4 5 6 7 8 9
13 > lista[mitad] = ini = mitad + 1
mitad
ini
fin

) 7 12 14 14 15 18 20 27 32
) 1 2 3 4 5 6 7 8 9

13 < lista[mitad] - fin = mitad - 1 2> 2
iiiini > fin!l! No hay dénde seguir buscando = No esta

7 Luis Hernandez Yafiez
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Busqueda binaria

Implementacién const Int N = 16;
. typedef int tLista[N];
int buscado; . tlLista lista;

cout << "Valor a buscar: ";

cin >> buscado;
int ini = @, fin = N - 1, mitad;
bool encontrado = false;
while ((ini <= fin) && !encontrado) {
mitad = (ini + fin) / 2; // Divisidén entera
if (buscado == lista[mitad]) {
encontrado = true;

else if (buscado < lista[mitad]) {
fin = mitad - 1;
}

else {
ini = mitad + 1;

} // Si se ha encontrado, estd en [mitad]

% Luis Hernandez Yafiez

S Fundamentos de la programacion: Algoritmos de ordenacién Péagina 736




Busqueda binaria

#include <iostream> binaria.cpp

using namespace std;
##include <fstream>

const int N = 100;

typedef int tArray[N];

typedef struct {
tArray elementos;
int cont;

} tlLista;

int buscar(tLista lista, int buscado);

int main() {

tLista lista;

ifstream archivo;

int dato;

lista.cont = 0;

archivo.open("ordenados.txt"); // Existe y es correcto
archivo >> dato;

(0]
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Busqueda binaria

while ((lista.cont < N) && (dato != -1)) {
lista.elementos[lista.cont] = dato;
lista.cont++;
archivo »>> dato;

archivo.close();
for (int 1 = @; i < lista.cont; i++) {

cout << lista.elementos[i] <« 5

cout << endl;
int buscado, pos;
cout << "valor a buscar: ";
cin >> buscado;
pos = buscar(lista, buscado);
if (pos !'= -1) {
cout << "Encontrado en la posiciodn

<< pos + 1 << endl;

3 else {

= cout << "No encontrado!" << endl;
£ return 0;

E }

(0]
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Busqueda binaria

int buscar(tLista lista, int buscado) {
int pos = -1, ini = @, fin = lista.cont - 1, mitad;
bool encontrado = false;
while ((ini <= fin) && !encontrado) {
mitad = (ini + fin) / 2; // Divisidn entera
if (buscado == lista.elementos[mitad]) {
encontrado = true;

else if (buscado < lista.elementos[mitad]) {
fin = mitad - 1;

}
else {

ini = mitad + 1;
}

}

if (encontrado) {
pos = mitad;
}

return pos;

}
(0]
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Busqueda binaria

Complejidad
¢ Qué orden de complejidad tiene la busqueda binaria?
Caso peor:
No estd o se encuentra en una sublista de 1 elemento
N¢ de comparaciones = N2 de mitades que podemos hacer
N/2,N/4N/8 N/16,.,842,1
=1,2,48,.,.N/16,N/8 N /4, N /2
Si hacemos que N sea igual a 2k
20 21 22 23 2k4 Jk3 k2 Dkl
N¢ de elementos de esa serie: k
N® de comparaciones=k N=2k->k=1log, N
Complejidad: O(log, N) Mucho mas rapida que O(N)

Luis Hernandez Yafiez
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Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya
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¥4 \N Mas sobre ordenacién

ANEXO
Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores
Luis Hernandez Yariez
o Facultad de Informatica
w Universidad Complutense
4 [ ]
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Ordenacidn por intercambio 744
Mezcla de dos listas ordenadas 747
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Fundamentos de la programacion

Ordenacion por intercambio

7 Luis Herndndez Yafiez
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Ordenacidn por intercambio

Algoritmo de ordenacion por intercambio

Variacion del método de seleccion directa

Se intercambia el elemento de la posicidén que se trata en cada
momento siempre que se encuentra uno que es menor:

.

7 Luis Herndndez Yafiez
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Ordenacidn por intercambio

const int N = 10;
typedef int tLista[N];
tlLista lista;

for (int 1 =0; i < N - 1; i++) {
// Desde el primer elemento hasta el penultimo
for (int j =1+ 1; j < N; j++) {
// Desde i+l hasta el final
if (lista[j] < lista[i]) {
int tmp;
tmp = lista[i];
lista[i] = lista[j];
lista[j] = tmp;

}
[gual nimero de comparaciones, muchos mas intercambios
No es estable

(0]
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Fundamentos de la programacion

Mezcla de dos listas ordenadas
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Mezcla de listas ordenadas

Mezcla de dos listas ordenadas en arrays

const int N = 100;

typedef struct {
int elementos[N];
int cont;

} tlista;

Un indice para cada lista, inicializados a 0 (principio de las listas)

Mientras que no lleguemos al final de alguna de las dos listas:

Elegimos el elemento menor de los que tienen los indices

Lo copiamos en la lista resultado y avanzamos su indice una posicion
Copiamos en la lista resultado los que queden en la lista no acabada

Luis Herndndez Yafiez
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Mezcla de listas ordenadas

void mezcla(tLista listal, tLista lista2, tLista &listaM) {
int posl = @, pos2 = 0;
listaM.cont = ©;

while ((posl < listal.cont) && (pos2 < lista2.cont)
&& (listaM.cont < N)) {
if (listal.elementos[posl] < lista2.elementos[pos2]) {
listaM.elementos[listaM.cont] = listal.elementos[posl];

posl++;

}

else {
listaM.elementos[listaM.cont] = lista2.elementos[pos2];
pOS2++;

}

listaM.cont++;

(0]
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Mezcla de listas ordenadas

// Pueden quedar datos en alguna de las Llistas
if (posl < listal.cont) {
while ((posl < listal.cont) && (listaM.cont < N)) {
listaM.elementos[listaM.cont] = listal.elementos[posl];
posl++;
listaM.cont++;

}

}
else { // pos2 < lista2.cont

while ((pos2 < lista2.cont) && (listaM.cont < N)) {
listaM.elementos[listaM.cont] = lista2.elementos[pos2];
poOS2++;
listaM.cont++;

Luis Herndndez Yafiez
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Mezcla de listas ordenadas

Mezcla de dos listas ordenadas en archivos

void mezcla(string nombrel, string nombre2, string nombreM) {
// Mezcla las secuencias en los archivos nombnrel y nombre2
// generando la secuencia mezclada en el archivo nombreM

ifstream archivol, archivo2;

ofstream mezcla;

int datol, dato2;

// Los archivos existen y son correctos
archivol.open(nombrel.c_str());
archivo2.open(nombre2.c_str());
mezcla.open(nombreM.c_str());

archivol >> datol;

archivo2 »>> dato2;

while ((datol != -1) && (dato2 != -1)) {
// Mientras quede algo en ambos archivos
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Mezcla de listas ordenadas

if (datol < dato2) {
mezcla << datol << endl;
archivol »>> datol;

} else {
mezcla << dato2 << endl;
archivo2 >> dato2;

¥
} // Uno de los dos archivos se ha acabado
if (datol != -1) { // Quedan en el primer archivo
while (datol != -1) {
mezcla << datol << endl;
archivol »>> datol;
¥
else { // Quedan en el segundo archivo
N while (dato2 != -1) {
= mezcla << dato2 << endl;
3 archivo2 >> dato2;
5 }
2 }
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Mezcla de listas ordenadas

archivo2.close();
archivol.close();
mezcla << -1 << endl;
mezcla.close();
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Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya
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Programas multiarchivo
y compilacion separada
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Programacion modular

Programas multiarchivo

Codigo fuente repartido entre varios archivos (madulos)
Cada modulo con sus declaraciones y sus subprogramas
- Moédulo: Unidad funcional (estructura de datos, utilidades, ...

Lista Principal Calculos Archivos

const int N = 10; int main() { double mean(tArray lista); bool cargar(tArray &lista,

typedef double tArray[N]; tArray lista; string nombre);
typedef struct { bool ok; double min(tArray lists);
tArray elem; init(lista); bool guardar(tArray lista,
int cont; c (lista, "bd.txt"); double max(tArray lista); string nombre);
} tArray; sort(lista);
double dato; double desv(tArray lista); bool mezclar(string archl,
void init(tArray &lista); cout << "Dato: "; i
cin >> dato; int minIndex(tArray lista);
void insert(tArray &lista, insert(lista, dato, ok); int size(string nombre);
double elem, bool &ok); cout << min(lista) << endl; int maxIndex(tArray lista);
) . cout << max(lista) << endl; bool exportar(string nombre);
void remove(tArray &lista, cout << sum(lista) << endl; double sum(tArray lista);

int pos, bool &ok); guardar(lista, "bd.txt");

return @;

Ejecutable
(013
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Programacion modular

= Luis Hernandez Yafiez
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Compilacion separada

Cada modulo se compila a cddigo objeto de forma independiente

Lista

const int N = 10; \

typedef double tArray[N];
typedef struct {

tArray elem;

int cont;
} tArray;

void init(tArray &lista);

void insert(tArray &lista,
double elem, bool &ok);

void remove(tArray &lista,
int pos, bool &ok);

Célculos

mean(tArray lista); \

min(tArray lists);

double
double
double max(tArray lista);
double desv(tArray lista);
int minIndex(tArray lista);

int maxIndex(tArray lista);

double sum(tArray lista);

lista.obj

00101110101011001010010010101
00101010010101011111010101000
10100101010101010010101010101
01100101010101010101010101001
01010101010100000101010101101
©01001010101010101000010101011
11001010101010111100110010101
01101010101010010010101001111
00101010101001010100101010010
10100101010100101000010011110
10010101011001010101001010100
10101010101010010101001010101
©1000010101011100101010010100
©1110101011101001101010100101
©1011111110101011001101010111
00001001010100101010101010110

calculos.obj

01011001010010010101001010100
10101011111010101000101001010
10101010010101010101011001010
10101010101010101001010101010
10100000101010101101010010101
01010101000010101011110010101
01010111100110010101011010101
01010010010101001111001010101
01001010100101010010101001010
10100101000010011110100101010
11001010101001010100101010101
01010010101001010101010000101
01011100101010010100011101010
11101001101010100101010111111
10101011001101010111000010010
10100101010101010110001111010

:

Fundamentos de la programacion: Programacién modular

Archivos

bool cargar(thrray &lista, N\

string nombre);

bool guardar(tArray lista,
string nombre);

bool mezclar(string archl,
string arch2);

int size(string nombre);

bool exportar(string nombre);

archivos.obj

11101010110010100100101010010
10100101010111110101010001016
01010101010100101010101010110
01010101010101010101010010101
01010101000001010101011010100
10101010101010000101010111100
10101010101111001100101010110
10101010100100101010011110010
10101010010101001010100101010
01010101001010000100111101001
01010110010101010010101001010
10101010100101010010101010100
00101010111001010100101000111
01010111010011010101001010101
11111101010110011010101110000
10010101001010101010101101111
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Compilacion separada

Al compilar el programa principal, se adjuntan los modulos compilados

Médulos del programa

Principal

int main() {
tArray lista;
bool ok;
init(lista);
cargar(lista,
sort(lista);
double dato;

cin >> dato;
insert(lista,

cout << “"Dato:

“"bd.txt");

dato, ok);

calculos.obj

cout << min(lista) << endl;
cout << max(lista) << endl;
cout << sum(lista) << endl;

archivos.obj

:

return 0;

guardar(lista, "bd.txt");

Ejecutable

Fundamentos de la programacion: Programacién modular

Bibliotecas del sistema

fstream.obj

iostream.obj
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Programacion modular

Compilacion separada

jSolo los archivos fuente modificados necesitan ser recompilados!

Principal

lista.cpp main.cpp
COMPILACION
v

fstream.obj
v/' main.obj

calculos.obj

archivos.obj

—

Ejecutable

ENLACE

(0]
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Interfaz frente a implementacion
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Interfaz frente a implementacion

Creacion de modulos de biblioteca

Codigo de un programa de un tnico archivo:

v" Definiciones de constantes

v" Declaraciones de tipos de datos

v" Prototipos de los subprogramas

v Implementacién de los subprogramas

v Implementacién de la funcién main()

Constantes, tipos y prototipos indican como se usa: Interfaz

v" Estructura de datos con los subprogramas que la gestionan
v Conjunto de utilidades (subprogramas) de uso general
v’ Etcétera

+ Implementacion de los subprogramas (cémo se hace)

Luis Herndndez Yafiez
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Interfaz frente a implementacion

Creacion de modulos de biblioteca

Interfaz: Definiciones/declaraciones de datos y prototipos
iTodo lo que el usuario de la unidad funcional necesita saber!
Implementacion: Codigo de los subprogramas que hacen el trabajo
No hay que conocerlo para usarlo: j{Seguro que es correcto!
Interfaz e implementacion en dos archivos separados:
v’ Cabecera: Definiciones/declaraciones de datos y prototipos
v Implementacién: Implementacion de los subprogramas.
Archivo de cabecera: extension . h
Archivo de implementacion: extension . cpp } Mismo nombre

Repartimos el cddigo entre ambos archivos (1ista.h/lista.cpp)

Luis Hernandez Yafiez
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Interfaz frente a implementacion

Creacion de modulos de biblioteca

Interfaz frente a implementacion

lista.h lista.cpp

const int N = 10; #include "lista.h"
typedef double tArray[N];
typedef struct { void init(tArray &lista) {
tArray elem; lista.cont = ©;
int cont;
} tArray;
void insert(tArray &lista,
void init(tArray &lista); double elem, bool &ok) {
if (lista.cont == N) {
1se;

Moédulo
Unidad
Biblioteca

Si otro modulo quiere usar algo de esa biblioteca:

Debe incluir el archivo de cabecera

main.cpp

#include "lista.h"

r Luis Herndndez Yafiez
L.

Los nombres de archivos de cabecera
propios (no del sistema) se encierran
entre dobles comillas, no entre angulos

@ Fundamentos de la programacion: Programacién modular Pé4gina 765
Interfaz frente a implementacion
Creacion de mddulos de biblioteca lista.h

Interfaz

Archivo de cabecera (. h): todo lo que necesita
conocer otro modulo (o programa principal)
que quiera utilizar sus servicios (subprogramas)

void remove (tArray &lista,
int pos, bool &ok);

La directiva #include afiade las declaraciones del archivo
de cabecera en el codigo del médulo (preprocesamiento):

main.cpp

Preprocesador

#include "lista.h" ’ :

Todo lo que se necesita saber para
comprobar si el cédigo de main.cpp
hace un uso correcto de la lista
(declaraciones y llamadas)

(0]
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main.cpp

const int N = 10;
typedef double tArray[N];
typedef struct {

tArray elem;

int cont;
} tArray;

void init(tArray &lista);

void insert(tArray &lista, double elem,
bool &ok);

void remove(tArray &lista, int pos,
bool &ok);
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Interfaz frente a implementacion

Creacion de modulos de biblioteca

Implementacion

Compilar el modulo significa compilar
su archivo de implementacion (. cpp)

También necesita conocer sus propias declaraciones:

lista.cpp

tinclude "lista.h"

Al compilar el médulo se genera el c6digo objeto
Si no se modifica no hay necesidad de recompilar

Codigo que usa el modulo:

Luis Herndndez Yafiez
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v Necesita sdlo el archivo de cabecera para compilar

lista.cpp

#include "lista.h"

void init(tArray &lista) {
lista.cont = @;
}

void insert(tArray &lista,
double elem, bool &ok) {
if (lista.cont == N) {
ok false;
}

else {

lista.obj

00101110101011001010010010101
00101010010101011111010101000
10100101010101010010101010101
01100101010101010101010101001
01010101010100000101010101101
01001010101010101000010101011
11001010101010111100110010101
01101010101010010010101001111
00101010101001010100101010010
10100101010100101000010011110
10010101011001010101001010100
10101010101010010101001010101
01000010101011100101010010100
01110101011101001101010100101
01011111110101011001101010111
00001001010100101010101010110

v" Se adjunta el codigo objeto del médulo durante el enlace

Péagina 767
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Programacion modular

Uso de modulos de biblioteca

Ejemplo: Gestion de una lista ordenada (Tema 7)

Todo lo que tenga que ver con la lista estara en su propio mddulo
Ahora el cddigo estara repartido en tres archivos:

v’ lista.h: archivo de cabecera del modulo de lista

v lista.cpp: implementacién del modulo de lista

v' bd.cpp: programa principal que usa la lista

Tanto 1lista.cpp como bd.cpp deben incluir al principio lista.h
Modulo propio: dobles comillas en la directiva #include
#include "lista.h"

Archivos de cabecera de bibliotecas del sistema: entre angulos

Y no tienen necesariamente que llevar extension . h

Luis Herndndez Yafiez
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Programacion modular  acchivo de cabecera

Modulo: Gestion de una lista ordenada

#include <string> e et
using namespace std; o

const int N = 100; Iries =
typedef struct { T
int codigo;
string nombre;
double sueldo; .
} tRegistro; bt
typedef tRegistro tArray[N];
typedef struct {
tArray registros; e ta alista]
int cont;
} tlLista;
const string BD = "bd.txt"; R

i.

1

iDocumenta bien el codigo!

Luis Hernandez Yafiez
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Programacion modular

void mostrar(int pos, tRegistro registro);

void mostrar(const tLista &lista);

bool operator>(tRegistro opIzq, tRegistro opDer);

bool operator<(tRegistro opIzq, tRegistro opDer);

tRegistro nuevo();

void insertar(tLista &lista, tRegistro registro, bool &ok);

=

void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..
int buscar(tLista lista, string nombre);

void cargar(tLista &lista, bool &ok);

void guardar(tLista lista);

Cada prototipo, con un comentario que explique su utilidad/uso
(Aqui se omiten por cuestion de espacio)

Luis Herndndez Yafiez
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Programacion modular  impiementacion

Modulo: Gestion de una lista ordenada

#include <iostream>
#include <string>
using namespace std;
#include <fstream>
#include <iomanip>
#include "lista.h"

tRegistro nuevo() {
tRegistro registro;
cout << "Introduce el cédigo: ";
cin >> registro.codigo;
cout << "Introduce el nombre: ";
cin >> registro.nombre;
cout << "Introduce el sueldo: ";
cin >> registro.sueldo;
return registro;

-

Luis Hernandez Yafiez
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Programacion modular

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false; // Lista llena

}
else {
int i = 0;
while ((i < lista.cont) & (lista.registros[i] < registro)) {
i++;
}
// Insertamos en la posicidn i
for (int j = lista.cont; j > i; j--) {
// Desplazamos a la derecha
lista.registros[j] = lista.registros[j - 1];
§ }
§ lista.registros[i] = registro;
g lista.cont++;
: }
% }o...
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Programacion modular

void eliminar(tLista &lista, int pos, bool &ok) { // pos = 1..
ok = true;
if ((pos < 1) || (pos > lista.cont)) {
ok = false; // Posicién inexistente

}
else {
pos--; // Pasamos a indice del array
for (int i = pos + 1; i < lista.cont; i++) {
// Desplazamos a la izquierda
lista.registros[i - 1] = lista.registros[i];
}
lista.cont--;
}

(0]
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ProgramaCién mOdUIar Programa principal

Modulo: Gestion de una lista ordenada

##include <iostream>
using namespace std;
##include "lista.h"

int menu();

int main() {
tlLista lista;
bool ok;
int op, pos;
cargar(lista, ok);
if (lok) {
cout << "No se ha podido abrir el archivo!" << endl;
}

else {
do {
mostrar(lista);
op = menu();

(0]
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if (op == 1) {
tRegistro registro = nuevo();
insertar(lista, registro, ok);
if (lok) {
cout << "Error: Lista 1llena!" << endl;
}
}
else if (op == 2) {
cout << "Posicién: ";
cin >> pos;
eliminar(lista, pos, ok);
if (lok) {
cout << "Error: Posicion inexistente!" << endl;
}
}
else if (op == 3) {
string nombre;
cin.sync();
cout << "Nombre: ";
cin >> nombre;
int pos = buscar(lista, nombre);

(0]
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Programacion modular

if (pos == -1) {
cout << "No se ha encontrado!" << endl;

}
else {
cout << "Encontrado en la posicion " << pos << endl;
}
}
} while (op != 0@);
guardar(lista);
}
return 0;

}

int menu() {
cout << endl;
cout << "1 - Insertar" << endl;
cout << "2 - Eliminar" << endl;
cout << "3 - Buscar" << endl;

£ cout << "@ - Salir" << endl;

- int op;

kel

5 do {

5} .

T

§

I E E
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Compilacion de programas multiarchivo

G++

Archivos de cabecera e implementacién en la misma carpeta
Listamos todos los . cpp en la orden g++:
D:\FP\Tema@8>g++ -0 bd.exe lista.cpp bd.cpp
Recuerda que so6lo se compilan los . cpp

Visual C++/Studio

Archivos de cabecera e implementacion en grupos distintos:

Liplotuics de sofisrezner

T p— Alos archivos de cabecera
g © e sewsgenes.  los1llama de encabezado
] -3 Bdpp .,
E o1 Esta.cpu Con Depurar -> Generar solucidn
£ i o Aichears de oed s et .
£ ) bt se compilan todos los . cpp
=] A Archeaoy de recuric
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Luis Herndndez Yafiez

El preprocesador

Directivas: #. . .
Antes de compilar se pone en marcha el preprocesador

Interpreta las directivas y genera un unico archivo temporal con
todo el codigo del modulo o programa

Como en la inclusién (directiva #include):

. . #include "lista.h" : .
#include <string> #include <string>

using namespace std; int menu(); using namespace std;

const int N = 100; .. const int N = 100;

typedef struct { typedef struct {
int codigo; int codigo;
string nombre; string nombre;
double sueldo; double sueldo;

} tRegistro; } tRegistro;

typedef tRegistro typedef tRegistro

tArray[N]; tArray[N];

typedef struct { typedef struct {
tArray registros; tArray registros;
int cont; int cont;

} tlLista; } tlLista;
int menu();

(0]
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Cada cosa en su modulo
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Programacion modular

Distribuir la funcionalidad del programa en modulos

Encapsulacion de un conjunto de subprogramas relacionados:
v" Por la estructura de datos sobre la que trabajan
v Subprogramas de utilidad

A menudo las estructuras de datos contienen otras estructuras:

const int N = 100;

typedef struct {
int codigo; Lista de registros:
string nombre;
double sueldo;

} tRegistro; v" Estructura tLista

typedef tRegistro tArray[N]; (contiene tRegistro)

typedef struct {
tArray registros;
int cont;

} tlLista;

(013

e =mr=m Fundamentos de la programacién: Programaciéon modular Péagina 783

v Estructura tRegistro

Cada estructura, en su modulo

Luis Herndndez Yafiez

Médulo de registros Cabecera

Gestion de una lista ordenada 11

#include <string>
using namespace std;

typedef struct {
int codigo;
string nombre;
double sueldo;
} tRegistro;

tRegistro nuevo();

bool operator>(tRegistro oplzq, tRegistro opDer);
bool operator<(tRegistro opIzq, tRegistro opDer);
void mostrar(int pos, tRegistro registro);

Luis Hernandez Yafiez
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Méd“lo de regiStros Implementacién

Gestion de una lista ordenada 11

#include <iostream>
#include <string>
using namespace std;
#include <iomanip>

#include "registro.h" - ———

tRegistro nuevo() {
tRegistro registro;
cout << "Introduce el cdédigo: ";
cin >> registro.codigo;
cout << "Introduce el nombre: ";
cin >> registro.nombre;
cout << "Introduce el sueldo: “;
cin >> registro.sueldo;
return registro;

}

bool operator>(tRegistro opIzq, tRegistro opDer) {
return oplzq.nombre > opDer.nombre;

fiez
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Méd“lo de IiSta Cabecera

Gestion de una lista ordenada 11

#include <string>
using namespace std;

#include "registro.h" - —————

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlista;
const string BD = "bd.txt";

void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..N
int buscar(tLista lista, string nombre);

void mostrar(const tLista &lista);

void cargar(tlLista &lista, bool &ok);

void guardar(tLista lista);

fiez
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Méd“lo de IiSta Implementacién

Gestion de una lista ordenada 11

#tinclude <iostream>
using namespace std;
#tinclude <fstream>

#include "1ista2.h" «C——

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false; // Lista llena
}

else {
int i = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {
i++;
¥

// Insertamos en la posicidn i
for (int j = lista.cont; j > i; j--) {// Desplazar a la derecha
lista.registros[j] = lista.registros[j - 1];

}

E:a
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Programa principal

Gestion de una lista ordenada 11

#tinclude <iostream>
using namespace std;

#include "registro.h" (@ —
#include "lista2.h" < ————

int menu();

int main() { . . ; . /
tlista lista; €9 ;No intentes compilar este ejemplo!
bool ok; Tiene errores

int op, pos;

cargar(lista, ok);
if (lok) {

cout << "No se pudo abrir el archivo!" << endl;
}

else {
do {
mostrar(lista);
op = menu();

E:a
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Fundamentos de la programacion

El problema de las
inclusiones miltiples
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Inclusiones multiples

Gestion de una lista ordenada 11

2 modulos y el programa principal: bd2. cpp

—> registro.h €« € #include "registro.h"
= #include "lista2.h"

#include <string>

registro.cpp

#include "registro.h"

—>» lista2.h <

#include "registro.h"

lista2.cpp

—_— Inc]uye___ #include "lista2.h"

Luis Hernandez Yafiez
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Inclusiones multiples

Gestion de una lista ordenada 11

Preprocesamiento de #include: el <UD

#include <iostream> using namespace std;

using namespace std; typedef struct {
ypede uc

#include "registro.h" cee
} tRegistro;

#tinclude "lista2.h"

int menu(); #include <string>

#include <string> using namespace std;

using namespace std;
#include "registro.h" typedef struct {

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlista;

} tRegistro;

Luis Herndndez Yafiez
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Inclusiones multiples

Gestion de una lista ordenada 11

Preprocesamiento de #include: S

#include <iostream> R
using namespace std;

.......................................... . #include <string>
#include <string> : using namespace std;
using namespace std; i #include <string>

using namespace std;
typedef struct {
ce typedef struct {
} tRegistro; 500
} tRegistro;

#include "lista2.h"

const int N = 100;
int menu(); typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlista;

Luis Hernandez Yafiez
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Inclusiones multiples

Gestion de una lista ordenada 11

#include <iostream>

using namespace std; const int N = 100;
typedef tRegistro tArray[N];
#include <string> typedef struct {
using namespace std; tArray registros;
int cont;

typedef struct { } tlista;

} tRegistro; € —————
. int menu();
! #include <string>

i using namespace std;i
E #include <string> :
i using namespace std; i

€9 ildentificador duplicado!

; typedef struct {

§ é} téééistro;<(---?-—-
@ Fundamentos de la programacion: Programacién modular Péagina 793
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Inclusiones multiples
Compilacion condicional
Directivas #ifdef, #ifndef, #else y #endif
Se usan en conjuncion con la directiva #define
#define X #define X
#ifdef X #ifndef X
// Cédigo if ... // Codigo if
[#else [#else
... // Codigo else ... // Codigo else
] ]
#endif #endif
La directiva #define define un simbolo (identificador)
§ Izquierda: se compilara el “Codigo if” y no el “Cédigo else”
g Derecha: al revés, o nada si no hay else
§ Las clausulas else son opcionales

(0]
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Inclusiones multiples

Proteccion frente a inclusiones multiples

lista2.cpp y bd2.cpp incluyen registro.h
- ildentificadores duplicados!
Cada mddulo debe incluirse una y sélo una vez

Proteccion frente a inclusiones multiples:

#ifndef X
#define X €9 Elsimbolo X debe ser tinico

// Mddulo para cada médulo de la aplicacién
#endif

La primera vez no esta definido el simbolo X: se incluye y define
Las siguientes veces el simbolo X ya esta definido: no se incluye

Simbolo X: nombre del archivo con _ en lugar de .

Luis Herndndez Yafiez
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Moédulo de registros Cabecera

Gestion de una lista ordenada 111

#ifndef registrofin_h
#define registrofin_h
#include <string>
using namespace std;

typedef struct {
int codigo;
string nombre;
double sueldo;
} tRegistro;

tRegistro nuevo();

bool operator>(tRegistro opIzq, tRegistro opDer);
bool operator<(tRegistro opIzq, tRegistro opDer);
void mostrar(int pos, tRegistro registro);

#endif|
(£
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Méd“lo de regiStros Implementacion

Gestion de una lista ordenada 111

#include <iostream>
#include <string>
using namespace std;
#include <iomanip>

#include "registrofin.h" - —————

tRegistro nuevo() {
tRegistro registro;
cout << "Introduce el cdédigo: ";
cin >> registro.codigo;
cout << "Introduce el nombre: ";
cin >> registro.nombre;
cout << "Introduce el sueldo: “;
cin >> registro.sueldo;
return registro;

}

bool operator>(tRegistro opIzq, tRegistro opDer) {
return oplzq.nombre > opDer.nombre;

fiez
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Méd“lo de IiSta Cabecera

Gestion de una lista ordenada 111

#ifndef listafin_h
#define listafin h
#include <string>
using namespace std;

#include "registrofin.h" € ————

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlLista;
const string BD = "bd.txt";
void mostrar(const tLista &lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..N
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);

void guardar(tLista lista);
#endif |

(0]
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Méd“lo de IiSta Implementacion

Gestion de una lista ordenada 111

#tinclude <iostream>
using namespace std;
#tinclude <fstream>

#include "listafin.h" € —————

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false; // lista llena

}
else {
int i = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {
i++;
¥
3 // Insertamos en la posiciodn i
£ for (int j = lista.cont; j > i; j--) {
T // Desplazamos a la derecha
£ lista.registros[j] = lista.registros[j - 1];
p }
@ Fundamentos de la programacion: Programacién modular Péagina 799
[ ] [ ]
Programa principal bdFin. cpp
Gestion de una lista ordenada 111
#include <iostream>
using namespace std;
#include "registrofin.h"  ——
#include "listafin.h" —
int menu();
int main() {
tlLista lista; .
bool ok: €@ Ahoraya puedes compilarlo!
int op, pos;
cargar(lista, ok);
if (lok) {
cout << "No se pudo abrir el archivo!" << endl;
Ig) }
2 else {
< do {
‘g mostrar(lista);
z op = menu();
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Inclusiones multiples

Gestion de una lista ordenada 111

Preprocesamiento de #include en bdfin.cpp:

#tinclude <iostream>
using namespace std;

#ifndef registrofin_h

#tdefine registrofin_h

#include <string>

#include "registrofin.h using namespace std;

#include "listafin.h" typedef struct {

int menu(); } tRegistro;

€9 registrofin_h no se ha definido todavia

7 Luis Hernandez Yafiez
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Inclusiones multiples

Gestion de una lista ordenada 111

Preprocesamiento de #include en bdfin.cpp:

#tinclude <iostream>

using namespace std; : ; .
#ifndef listafin_h

. R . #tdefine listafin_h
#define registrofin_h T = e

#include <string> using namespace std;
using namespace std; #include "registrofin.h"

typedef struct { const int N = 100;
typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlLista;

} tRegistro;

#tinclude "listafin.h"

€@ listafin_h no se ha definido todavia

Fundamentos de la programacion: Programacién modular Pé4gina 802

int menu();
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Inclusiones multiples

Gestion de una lista ordenada 111

Preprocesamiento de #include en bdfin.cpp:

#include <iostream>
using namespace std;
#define registrofin_h
#include <string>
using namespace std;

typedef struct { #ifndef registrofin_h

#define registrofin_h

#includn <string>

} tRegistro;
e using n 1ec ace std;

#define listafin_h typede® .t1 * {
#include <string> ..
using namespace std; } tRegistro;
#include "registrofin.h"

Int menu(); €@ ;registrofin_h ya estd definido!

7 Luis Hernandez Yafiez
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Implementaciones alternativas

Misma interfaz, implementacion alternativa

#include <string> lista.h

using namespace std;
#include "registrofin.h"

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {

tArray registros;

Lista int cont; Lista
tlista;
ordenada } tlista no ordenada

void insertar(tLista &lista, tRegistro registro, bool &ok);

void insertar(tlLista &lista, tRegistro registro, bool &ok) {

?i (lizzztcont == N) { void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = false; // Lista llena ok = true;

} if (lista.cont == N) {

else { ok = false; // Lista llena
int i = 0; }
while ((i < lista.cont) && (lista.reg else {

it+; lista.registros[lista.cont] = registro;

} lista.cont++;
// Insertamos en la posicioén i

for (int j = lista.cont; j > i; j--) }
// Desplazamos a la derecha
lista.registros[j] = lista.registros[j - 1];

Luis Herndndez Yafiez
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Implementaciones alternativas

Misma interfaz, implementacion alternativa

listaDES. cpp: Lista no ordenada

#include "lista.h"

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;

1istaORD. cpp: Lista ordenada if (lista.cont == N) {
ok = false; // Lista llena

#include "lista.h" }
else {
void insertar(tLista &lista, tRegistro registro, l}sta.reglstros[llsta.cont] = registro;
ok = true; lista.cont++;
if (lista.cont == N) { }
ok = false; // Lista llena
}
else {
int 1 = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {
i++;
}
// Insertamos en la posiciédn i
for (int j = lista.cont; j > i; j--) {
// Desplazamos a la derecha
lista.registros[j] = lista.registros[j - 1];
}

lista.registros[i] = registro;

Luis Hernandez Yafiez
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Implementaciones alternativas

Misma interfaz, implementacion alternativa

Al compilar, incluimos un archivo de implementacion u otro:
(Programa con lista ordenada o con lista desordenada?

g++ -0 programa.exe registrofin.cpp listaORD.cpp ...

Incluye la implementacion de la lista con ordenacion

g++ -0 programa.exe registrofin.cpp listaDES.cpp ...

Incluye la implementacion de la lista sin ordenacion

(0]
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Espacios de nombres

Agrupaciones logicas de declaraciones

Espacio de nombres: agrupacion de declaraciones
(tipos, datos, subprogramas) bajo un nombre distintivo
Forma de un espacio de nombres:

namespace nombre {
// Declaraciones

}

Por ejemplo:

namespace miEspacio {
int i;
double d;

}

Variables i y d declaradas en el espacio de nombres miEspacio

Luis Herndndez Yafiez
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Espacios de nombres

Acceso a miembros de un espacio de nombres

Operador de resolucion de ambito (: :)

Acceso a las variables del espacio de nombres miEspacio:
Nombre del espacio y operador de resolucion de ambito
miEspacio::1i

miEspacio::d

Puede haber entidades con el mismo identificador en distintos
maddulos o en ambitos distintos de un mismo modulo

Cada declaracién en un espacio de nombres distinto:

namespace primero { namespace segundo {
int x = 5; double x = 3.1416;

} }

Ahora se distingue entre primero::x y segundo: :x

Luis Hernandez Yafiez
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Espacios de nombres

using

Introduce un nombre de un espacio de nombres en el ambito actual:

#include <iostream>
using namespace std;
namespace primero {
int x 5;
int y = 10;

}

namespace segundo {
double x = 3.1416;
double y = 2.7183;

int main() {

using primero::x;

using segundo::y;

cout << x << endl; // x es primero::X
cout << y << endl; // y es segundo::y
cout << primero::y << endl; // espacio explicito
cout << segundo::x << endl; // espacio explicito
return 0;

}

= @ Fundamentos de la programacion: Programacién modular P4gina 811
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Espacios de nombres

using hamespdce

Introduce todos los nombres de un espacio en el ambito actual:

#include <iostream>
using namespace std;
namespace primero {

int x = 5;
int y = 10; .
using [namespace]
namespace segundo { solo tiene efecto
double x = 3.1416; en el bloque
double y = 2.7183; en que se encuentra

int main() {
using namespace primero;
cout << x << endl; // x es primero::x
cout << y << endl; // y es primero::y
cout << segundo::x << endl; // espacio explicito
cout << segundo::y << endl; // espacio explicito
return 0;

-
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Ejemplo de espacio de nombres

#ifndef listaEN_h
#define listaEN_h
#include "registrofin.h"

namespace ord { // Lista ordenada
const int N = 100;
typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlLista;
const string BD = "bd.txt";
void mostrar(const tLista &lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int pos, bool &ok); // 1..N
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);
} // namespace

#tendif

Luis Herndndez Yafiez
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Ejemplo de espacio de nombres

Implementacion

#tinclude <iostream>
#tinclude <fstream>

using namespace std;
##include "listaEN.h"

void ord::insertar(tlLista &lista, tRegistro registro, bool &ok) {

/]l ...

}

void ord::eliminar(tLista &lista, int pos, bool &ok) {
/] ...

}

int ord::buscar(tLista lista, string nombre) {
// ...

}

Luis Hernandez Yafiez
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Ejemplo de espacio de nombres

Uso del espacio de nombres

Quien utilice 1istakEN.h debe poner el nombre del espacio:

#tinclude <iostream>
using namespace std;
#include "registrofin.h"
#include "listaEN.h"

int menu();

int main() {
rd::tlLista lista;
ool ok;
rd::cargar(lista, ok);
if (lok) {
cout << "No se pudo abrir el archivo!" << endl;

eNge {
ord::mostrar(lista);

O usar una instrucciéon using namespace ord;
(e
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Ejemplo de espacio de nombres

Uso del espacio de nombres

#include <iostream>
using namespace std;
#include "registrofin.h"
#include "listaEN.h"

using namespace ord; <

int menu();

int main() {
tLista lista;
bool ok;
argar(lista, ok);
if (lok) {
cout << "No se pudo abrir el archivo!" << endl;

eNse {
mostrar(lista);

(0]

e =mr=m Fundamentos de la programacién: Programaciéon modular Pé4gina 816

[ Luis Hernandez Yafiez
L.




Espacios de nombres

Implementaciones alternativas

Distintos espacios de nombres para distintas implementaciones

;Lista ordenada o lista desordenada?

namespace { // Lista ordenada
const intT N = 100;
typedef tRegistro tArray[N];

void mostrar(const tLista &lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);

} /}.ﬁamespace

namespace { // Lista desordenada
const int N = 100;
typedef tRegistro tArray[N];

void mostrar(const tLista &lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);

} /).ﬁamespace

(0]
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Ejemplo Cabecera

Implementaciones alternativas

Todo lo comun puede estar fuera de la estructura namespace:

#ifndef listaEN_H
#define listaEN_H

#include "registrofin.h"
const int N = 100;

typedef tRegistro tArray[N];
typedef struct {

tArray registros;

int cont;
} tlLista;

void mostrar(const tLista &lista);
void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..N

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular P4gina 818

©)
|:;




Luis Herndndez Yafiez

ﬁ}

Implementaciones alternativas

namespace ord { // Lista ordenada
const string BD = "bd.txt";
void insertar(tLista &lista, tRegistro registro, bool &ok);
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);
} // namespace

namespace des { // Lista desordenada
const string BD = "bddes.txt";
void insertar(tLista &lista, tRegistro registro, bool &ok);
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);
} // namespace

#tendif

€9 cargar()ysguardar() se distinguen porque usan

su propia BD, pero se implementan exactamente igual

HEE
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Implementaciones alternativas
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#tinclude <iostream>
using namespace std;
#include <fstream>

#include "listaEN.h"

// IMPLEMENTACION DE LOS SUBPROGRAMAS COMUNES
void eliminar(tLista &lista, int pos, bool &ok) { // ...

}

void mostrar(const tLista &lista) { // ...
}

// IMPLEMENTACION DE LOS SUBPROGRAMAS DEL ESPACIO DE NOMBRES ord
void ord::insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false; // Lista llena

}
else {
int i = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {
i++;
}o...
()
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Implementaciones alternativas

for (int j = lista.cont; j > i; j--) {
lista.registros[j] = lista.registros[j - 1];
}

lista.registros[i] = registro;
lista.cont++;

}

int ord::buscar(tLista lista, string nombre) {

int ini = @, fin = lista.cont - 1, mitad;

bool encontrado = false;

while ((ini <= fin) && !encontrado) {
mitad = (ini + fin) / 2;
if (nombre == lista.registros[mitad].nombre) {

encontrado = true;

}

else if (nombre < lista.registros[mitad].nombre) {
fin = mitad - 1;

}
else {

ini = mitad + 1;
}

1
(1))
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Implementaciones alternativas

if (encontrado) {

mitad++;
}
else {
mitad = -1;
}
return mitad;
}
void ord::cargar(tLista &lista, bool &ok) { // ...
¥

void ord::guardar(tLista lista) { // ...

(0]
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Implementaciones alternativas

// IMPLEMENTACION DE LOS SUBPROGRAMAS DEL ESPACIO DE NOMBRES des

void des::insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false; // Lista 1llena

}

else {
lista.registros[lista.cont] = registro;
lista.cont++;

}

}

int des::buscar(tLista lista, string nombre) {
int pos = 0;
bool encontrado = false;
while ((pos < lista.cont) && !encontrado) {
if (nombre == lista.registros[pos].nombre) {
encontrado = true;

Ig)

T

- else {

2 pos++;

2

5 }

I E E
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Implementaciones alternativas

if (encontrado) {

poOS++;

}

else {

pos = -1;

}

return pos;
}
void des::cargar(tLista &lista, bool &ok) { // ...
}

void des::guardar(tLista lista) { // ...

(0]
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Implementaciones alternativas

Programa principal

#include <iostream>
using namespace std;
#include "registrofin.h"
#include "listaEN.h"

using namespace
int menu();

int main() {
tlLista lista;
bool ok;

tRegistro registro = nuevo();
insertar(lista, registro, ok);

3 if (lok) {

53
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Implementaciones alternativas

Programa principal

#include <iostream>
using namespace std;
#include "registrofin.h"
#include "listaEN.h"

using namespace

int menu();

int main() {
tLista lista;
bool ok;

tRegistro registro = nuevo();
insertar(lista, registro, ok);
if (lok) {

(0] >
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Fundamentos de la programacion

Calidad y reutilizacion
del software
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Calidad del software

Software de calidad

El software debe ser desarrollado con buenas practicas de
ingenieria del software que aseguren un buen nivel de calidad

Los distintos mddulos de la aplicacion deben ser probados
exhaustivamente, tanto de forma independiente como en su
relacién con los demas mddulos

La prueba y depuracién es muy importante y todos los equipos
deberan seguir buenas pautas para asegurar la calidad

Los médulos deben ser igualmente bien documentados, de
forma que otros desarrolladores puedan aprovecharlos

(0]
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Prueba y depuracion del software

Prueba exhaustiva

El software debe ser probado exhaustivamente
Debemos intentar descubrir todos los errores posible
Los errores deben ser depurados, corrigiendo el cédigo
Pruebas sobre listas:
v’ Lista inicialmente vacia
v’ Lista inicialmente llena
v’ Lista con un nimero intermedio de elementos
v’ Archivo no existente
Etcétera...
Se han de probar todas las opciones/situaciones del programa

En las clases practicas veremos como se depura el software

Luis Herndndez Yafiez
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Reutilizacion del software

No reinventemos la rueda

Desarrollar el software pensando en su posible reutilizacion
Un software de calidad debe poder ser facilmente reutilizado
Nuestros modulos deben ser facilmente usados y modificados

Por ejemplo: Nueva aplicacion que gestione una lista de longitud
variable de registros con NIF, nombre, apellidos y edad

Partiremos de los médulos registroy lista existentes

Las modificaciones basicamente afectaran al modulo registro

(0]
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Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.
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Fundamentos de |la programacion

Ejemplo de

ANEXO

modularizacion

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores
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Facultad de Informatica

Universidad Complutense
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Modularizacién de un programa

#include <iostream> string nombre;
#include <string> double precio;
using namespace std; int unidades;

} tProducto;

const int NCLI = 100;

const int NPROD = 200; typedef struct {
const int NVENTAS = 3000; tProducto productos[NPROD];
int cont;
typedef struct { } tListaProductos;
int id_cli;
string nif; typedef struct {
string nombre; int id;
string telefono; int id_prod;
} tCliente; int id_cli;
int unidades;
typedef struct { } tVenta;
tCliente clientes[NCLI];
int cont; typedef struct {
} tListaClientes; tVenta ventas[NVENTAS];
int cont;
typedef struct { } tListaVentas;

int id_prod;
string codigo;

Fundamentos de la programacion: Ejemplo de modularizacién
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Modularizacién de un programa

tCliente nuevoCliente();

bool valida(tCliente cliente); // Funcién interna

bool operator<(tCliente opIzq, tCliente opDer); // Por NIF

void mostrar(tCliente cliente);

void inicializar(tListaClientes &lista);

void cargar(tListaClientes &lista);

void insertar(tListaClientes &lista, tCliente cliente, bool &ok);
void buscar(const tListaClientes &lista, string nif, tCliente &cliente, bool &ok);
void eliminar(tListaClientes &lista, string nif, bool &ok);

void mostrar(const tListaClientes &lista);

tProducto nuevoProducto();

bool valida(tProducto producto); // Funcién interna

bool operator<(tProducto opIzq, tProducto opDer); // Por cédigo
void mostrar(tProducto producto);

void inicializar(tListaProductos &lista);

void cargar(tListaProductos &lista);

void insertar(tListaProductos &lista, tProducto producto, bool &ok);

void buscar(const tListaProductos &lista, string codigo, tProducto &producto,
bool &ok);

void eliminar(tListaProductos &lista, string codigo, bool &ok);

fiez
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Modularizacién de un programa

void mostrar(const tListaProductos &lista);
tVenta nuevaVenta(int id_prod, int id_cli, int unidades);
bool valida(tVenta venta); // Funcién interna

void mostrar(tVenta venta, const tListaClientes &clientes,
const tListaProductos &productos);

void inicializar(tListaVentas &lista);

void cargar(tListaVentas &lista);

void insertar(tListaVentas &lista, tVenta venta, bool &ok);

void buscar(const tListaVentas &lista, int id, tVenta &venta, bool &ok);
void eliminar(tListaVentas &lista, int id, bool &ok);

void ventasPorClientes(const tListaVentas &lista);

void ventasPorProductos(const tListaVentas &lista);

double totalVentas(const tListaVentas &ventas, string nif,
const tlListaClientes &clientes,
const tListaProductos &productos);
void stock(const tListaVentas &ventas, const tListaClientes &clientes,
const tListaProductos &productos);
int menu();

fiez

int main() {
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Estructuras de datos

#include <iostream>
#include <string>

string nombre;
double precio;

using namespace std; int unidades;

} tProducto;

Lista de productos

—— const int NCLI = 100;
const int NPROD = 200;
const int NVENTAS = 3000;

typedef struct {
tProducto productos[NPROD];
int cont;

} tListaProductos;

typedef struct {
int id_cli;
string nif;
string nombre;
string telefono;
} tCliente;

typedef struct {
int id;
int id_prod;
int id_cli;
int unidades;
} tVenta;

Lista de clientes

typedef struct {
tCliente clientes[NCLI];
int cont;

} tListaClientes;

Lista de ventas

typedef struct {
tVenta ventas[NVENTAS];
int cont;

} tListaVentas;

typedef struct {
int id_prod;
string codigo;

Producto

Luis Herndndez Yafiez
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Subprogramas de las estructuras de datos

tCliente nuevoCliente();
bool valida(tCliente cliente); // Funcién interna
bool operator<(tCliente opIzq, tCliente opDer); // Por NIF

void mostrar(tCliente cliente);

Lista de clientes

void inicializar(tListaClientes &lista);
void cargar(tListaClientes &lista);
void insertar(tListaClientes &lista, tCliente cliente, bool &ok);

void buscar(const tlListaClientes &lista, string nif, tCliente &cliente,
bool &ok);

void eliminar(tListaClientes &lista, string nif, bool &ok);

void mostrar(const tListaClientes &lista);

tProducto nuevoProducto();
bool valida(tProducto producto); // Funcién interna Producto

bool operator<(tProducto opIzq, tProducto opDer); // Por cédigo

void mostrar(tProducto producto);

Luis Hernandez Yafiez
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Subprogramas de las estructuras de datos

Lista de productos

void inicializar(tListaProductos &lista);
void cargar(tListaProductos &lista);
void insertar(tListaProductos &lista, tProducto producto, bool &ok);

void buscar(const tListaProductos &lista, string codigo, tProducto &producto,
bool &ok);

void eliminar(tListaProductos &lista, string codigo, bool &ok);

void mostrar(const tlListaProductos &lista);

tVenta nuevaVenta(int id_prod, int id_cli, int unidades);
bool valida(tVenta venta); // Funcién interna

void mostrar(tVenta venta, const tListaClientes &clientes,
const tListaProductos &productos);

(0]
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Subprogramas de las estructuras de datos

Lista de ventas

void inicializar(tListaVentas &lista);

void cargar(tListaVentas &lista);

void insertar(tListaVentas &lista, tVenta venta, bool &ok);

void buscar(const tListaVentas &lista, int id, tVenta &venta, bool &ok);
void eliminar(tListaVentas &lista, int id, bool &ok);

void ventasPorClientes(const tListaVentas &lista);

void ventasPorProductos(const tListaVentas &lista);

double totalVentas(const tListaVentas &ventas, string nif,
const tListaClientes &clientes,
const tListaProductos &productos);

void stock(const tListaVentas &ventas, const tListaClientes &clientes,
const tListaProductos &productos);

int menu();

fiez

int main() {
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Modulos

v’ Cliente: cliente.hy cliente.cpp

Lista de clientes: 1istaclientes.hy listaclientes.cpp
Producto: producto.hy producto.cpp

Lista de productos: 1listaproductos.hy listaproductos.cpp
Venta: venta.hy venta.cpp

Lista de ventas: listaventas.hy listaventas.cpp

AN N NN

Programa principal: main.cpp
Distribucién del cédigo en los médulos:
v" Declaraciones de tipos y datos en el archivo de cabecera (. h)

v" Prototipos en el archivo de cabecera (. h) (excepto los de los
subprogramas privados -internos-, que iran en el . cpp)

v’ Implementacién de los subprogramas en el . cpp

7 Luis Hernandez Yafiez
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Modulos

Ventas
main.cpp

Cliente Lista de clientes Venta Lista de ventas
cliente.h listaclientes.h venta.h listaventas.h
cliente.cpp listaclientes.cpp venta.cpp listaventas.cpp

Producto Lista de productos
producto.h listaproductos.h
producto.cpp listaproductos.cpp

% Luis Hernandez Yafiez
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Luis Herndndez Yafiez

{E}

Dependencias entre mdédulos

Inclusiones (ademas de otras bibliotecas del sistema)

typedef struct {
int id cli;

string pif;

string hombre; cliente.h string
string [telefono;

} tCliente;

const int NCLI = 100;

clientes[NCLI];
int cont; _m
} tListaClientes;

void buscar(const tListaClientes &lista,|string|nif,[tCliente]
&cliente, bool &ok);

HEE
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Dependencias entre mdédulos

Luis Hernandez Yafiez

{E}

typedef struct {
int id_prod;
string |[codigo;
string [nombre;
double precio;
int unidades;
} tProducto;

producto.h string

const int NPROD = 200;

typedef struct { listaproductos.h producto.h
tProducto|productos[NPROD]; _m

int cont;
} tListaProductos;

void buscar(const tListaProductos &lista,codigo, tProducto

&producto, bool &ok);

HEE
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{E}

Dependencias entre mdédulos

typedef struct {

int id;

int id_prod; W listaclientes.h

int id_cli;

int unidades;
} tVenta;

listaproductos.h

void mostrar(tVenta venta, const [tListaClientes|&clientes,
const|tListaProductos|&productos);

const int NVENTAS = 3000;

listaventas.h
typedef struct {

ventas[NVENTAS]; listaclientes.h

int cont;
} tListaVentas; listaproductos.h

I

double totalVentas(const tListaVentas &ventas, string nif,
const tListaClientes|&clientes,
const[tListaProductos| &productos);

HEE
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Proteccion frente a inclusiones miiltiples
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{E}

#ifndef cliente_h
#define cliente_h

#include <string>
using namespace std;

typedef struct {
int id cli;
string nif;
string nombre;
string telefono;
} tCliente;

tCliente nuevoCliente();
bool operator<(tCliente opIzq, tCliente opDer); // Por NIF
void mostrar(tCliente cliente);

#tendif

HEE
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Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.
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Pulsa en la imagen de arriba a la derecha para saber mas.
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Fundamentos de la programacion

Direcciones de memoria
Yy punteros
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Direcciones de memoria

Los datos en la memoria

Todo dato se almacena en memoria:

Varios bytes a partir de una direccion OF03: 1437 _
i IERVEEN 00000000

int i = 5; 0F03:1A39

. .2 OF03:1A3A
Direcciéon base = = 7T e

CICERVELN 00000101

El dato (1) se accede a partir de su direccion base (0F93:1A38)
Direccion de la primera celda de memoria utilizada por el dato
El tipo del dato (int) indica cuantos bytes (4) requiere el dato:
00000000 000000 00V 0101 —> 5

(La codificacion de los datos puede ser diferente; y la de las direcciones también)

(0]
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Variables punteros

Los punteros contienen direcciones de memoria

Un puntero sirve para acceder a traveés de €l a otro dato
El valor del puntero es la direccion de memoria base de otro dato

Indireccion:

i 0F03:1A38 | . .
Acceso indirecto a un dato

OF03:1A39
@F@3:1A3A punt punt apunta a 1
OF03:1A3B

punt  ©oFe7:0417
OF07:0418
OF07:0419

€9 (De qué tipo es el dato apuntado?

OF07:041A

¢;Cuantas celdas ocupa?
;Como se interpretan los 0/17?

05
|-
e

Luis Herndndez Yafiez
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Punteros

Los punteros contienen direcciones de memoria

;De que tipo es el dato apuntado?

La variable a la que apunta un puntero sera de un tipo concreto
;Cuanto ocupa? ;COmo se interpreta?

El tipo de variable apuntado se establece al declarar el puntero:
tipo *nombre;

El puntero nombre apuntara a una variable del tipo indicado

El asterisco (*) indica que es un puntero a datos de ese tipo

int * unt; // punt inicialmente contiene una direccion
p punt 1 t t
// que no es valida (no apunta a nada)

El puntero punt apuntara a una variable entera (int)
int i; // Dato entero vs. int *punt; // Puntero a entero

Luis Hernandez Yafiez
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Punteros

Los punteros contienen direcciones de memoria

Las variables puntero tampoco se inicializan automaticamente
Al declararlas sin inicializador contienen direcciones no validas

int *punt; // punt inicialmente contiene una direcciodn
// que no es valida (no apunta a nada)

Un puntero puede apuntar a cualquier dato de su tipo base

Un puntero no tiene por qué apuntar necesariamente a un dato
(puede no apuntar a nada: valor NULL)

¢Para qué sirven los punteros?

v’ Para implementar el paso de parametros por referencia

v’ Para manejar datos dinamicos
(Datos que se crean y destruyen durante la ejecucién)

Luis Herndndez Yafiez

v’ Para implementar los arrays
03
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Operadores de punteros
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Operadores de punteros &

Obtener la direccion de memoria de ...

Operador monario y prefijo

& devuelve la direccién de memoria base del dato al que precede
int 1i;

cout << &i; // Muestra la direccidn de memoria de i

Un puntero puede recibir la direccién de datos de su tipo base
int i; punt

int *punt; i
punt = &i; // punt contiene la direccidn de i
Ahora punt ya contiene una direccién de memoria valida

punt apunta a (contiene la direccion de) la variable i (int)

Luis Herndndez Yafiez
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Operadores de punteros &

Obtener la direccion de memoria de ...

y
. . .. i QF03:1A38
int 1, J; OF03:1A39
OF03:1A3A

int *punt; OFO3:1A3B
Jj OFO@3:1A3C

OF03:1A3D

OF03:1A3E

OF03:1A3F

punt  eore7:e417
OF07:0418
0F07:0419

OF07:041A
@l0Ele)
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Operadores de punteros

Obtener la direccion de memoria de ...

.
. . .. i OF03:1A38
int 1, J; OF03:1A39
OF03:1A3A

int *punt; OF03:1A3B
Jj OFO@3:1A3C

i = 5; OF03:1A3D
OF03:1A3E

OF03:1A3F

punt  ore7:e417

OF07:0418
i OF07:0419
OF07:041A
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Operadores de punteros

Obtener la direccion de memoria de ...

. . .. i QF03:1A38
int 1, J; @F03:1A39
OF03:1A3A

int *punt; OFO3:1A3B
Jj OFO@3:1A3C
OF03:1A3D
OF03:1A3E

OF03:1A3F

punt punt  orFe7:e417

0F07:0418
0F07:0419

OF07:041A
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Operadores de punteros *

Obtener lo que hay en la direccion ...

Operador monario y prefijo

* accede a lo que hay en la direccion de memoria a la que precede
Permite acceder a un dato a través un puntero que lo apunte:
punt = &i;

cout << *punt; // Muestra lo que hay en la direccidn punt

*punt: lo que hay en la direccidén que contiene el puntero punt

punt contiene la direccion de memoria de la variable i
*punt accede al contenido de esa variable 1

Acceso indirecto al valor de i

Luis Herndndez Yafiez
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Operadores de punteros *

Obtener lo que hay en la direccion ...

int i . i QF03:1A38
int 1 >
> 15 OF03:1A39
OF03:1A3A
int *punt; OFO3:1A3B
Jj OFO@3:1A3C
. OF03:1A3D
1 =05;
. OF03:1A3E
punt = &i;
OF03:1A3F
J = *punt;
punt  eore7:e417
2 0F07:0418
\©
>
3 OF07:0419
° punt:
2 OF07:041A
[}
g
§
@l0ce
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Operadores de punteros

Obtener lo que hay en la direccion ...

. . . —_— ]
int 1, J;
: B " Direccionamiento
int *punt; indirecto
ce (indireccién) j
i=s5: Se accede al dato 1

? de forma indirecta
punt = &i;
Jj = *punt;

punt

*punt:
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OF03:

OF03:

OF03:

OF03:

OF03:

OF03:

OF03:

OF07:

OF07:

OF07:

OF07:

:1A38

1A39

1A3A

1A3B

1A3C

1A3D

1A3E

1A3F

0417

0418

0419

041A
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Operadores de punteros

Obtener lo que hay en la direccion ...

. . i
int 1, J;
int *punt;

. >
1 =05;
punt = &i;
J = *punt;

punt

Fundamentos de la programacion: Punteros y memoria dindmica
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Operadores de punteros

Ejemplo de uso de punteros

#include <iostream>
using namespace std;

int main() {

int 1 = 5;

int j = 13;

int *punt;

punt = &i;

cout << *punt << endl; // Muestra el valor de i
punt = &j;

cout << *punt << endl; // Ahora muestra el valor de j
int *otro = &i;

cout << *otro + *punt << endl; // i + j
int k = *punt;

cout << k << endl; // Mismo valor que j

return 0;

}
(0]
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Punteros y direcciones validas
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Punteros y direcciones validas

Todo puntero ha de tener una direccion valida

Un puntero solo debe ser utilizado si tiene una direccion valida
Un puntero NO contiene una direccion valida tras ser definido
Un puntero obtiene una direccién valida:

v" Asignando la direccion de otro dato (operador &)

v" Asignando otro puntero (mismo tipo base) que ya sea valido
v’ Asignando el valor NULL (puntero nulo, no apunta a nada)
int 1i;

int *q; // q no tiene aun una direccidn valida

int *p = &i; // p toma una direccidn valida

q = p; // ahora q ya tiene una direccidén valida
q = NULL; // otra direccién véalida para q

Luis Herndndez Yafiez
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Punteros no inicializados

Punteros que apuntan a saber qué...

Un puntero no inicializado contiene una direccién desconocida
int *punt; // No inicializado

*punt = 12; // ¢A qué dato se esta asignando el valor?
¢Direccion de la zona de datos del programa?

iPodemos modificar inadvertidamente un dato del programa!

¢Direccion de la zona de cddigo del programa?
iPodemos modificar el cddigo del propio programa!

¢Direccion de la zona de cddigo del sistema operativa? c}.
iPodemos modificar el cédigo del propio S.0O.! 4&
—> Consecuencias imprevisibles (cuelgue)

(Los S.0. modernos protegen bien la memoria) -'.:':3

(0]
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Un valor seguro: NULL

Punteros que no apuntan a nada

Inicializando los punteros a NULL podemos detectar errores:
int *punt = NULL; -

ce punt ¢

*punt = 13;

punt ha sido inicializado a NULL: No apunta a nada!

Si no apunta a nada, ;;;qué significa *punt??? No tiene sentido
- ERROR: jAcceso a un dato a través de un puntero nulo!

Error de ejecucidn, lo que ciertamente no es bueno
Pero sabemos cudl ha sido el problema, lo que es mucho
Sabemos dénde y qué buscar para depurar

Luis Herndndez Yafiez
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Fundamentos de la programacion

Copia y comparacion de punteros
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Copia de punteros

Apuntando al mismo dato

Al copiar un puntero en otro, ambos apuntaran al mismo dato:
int x = 5;

int *puntl

NULL; // puntl no apunta a nada
int *punt2

&x; // punt2 apunta a la variable x

puntl punt2

Ig)

g

g

§ X

5}

T

§
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Copia de punteros

Apuntando al mismo dato

Al copiar un puntero en otro, ambos apuntaran al mismo dato:

int x = 5;

int *puntl = NULL; // puntl no apunta a nada
int *punt2 = &x; // punt2 apunta a la variable x

puntl = punt2; // ambos apuntan a la variable x

puntl punt2

(0]
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Copia de punteros

Apuntando al mismo dato

Al copiar un puntero en otro, ambos apuntaran al mismo dato:
int x = 5;
int *puntl

NULL; // puntl no apunta a nada

&x; // punt2 apunta a la variable x
puntl = punt2; // ambos apuntan a la variable x
*puntl = 8;

int *punt2

puntl punt2

Al dato x ahora se puede
acceder de tres formas:

X *puntl *punt2

Luis Herndndez Yafiez
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Comparaciéon de punteros

JApuntan al mismo dato?

Operadores relacionales ==y !=:
int x = 5;

int *puntl = NULL;
int *punt2 = &x;
if (puntl == punt2) {
cout << "Apuntan al mismo dato" << endl;
}
else {
cout << "No apuntan al mismo dato" << endl;
}

Gﬂ Sélo se pueden comparar punteros con el mismo tipo base
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Fundamentos de la programacion

Tipos puntero
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Tipos puntero

Declaracion de tipos puntero

Declaramos tipos para los punteros con distintos tipos base:

typedef int *tIntPtr;

typedef char *tCharPtr;

typedef double *tDoublePtr;

int entero = 5;

tIntPtr puntI = &entero;

char caracter = 'C';

tCharPtr puntC = &caracter;

double real = 5.23;

tDoublePtr puntD = &real;

cout << *puntI << " " << *puntC <<

<< *puntD << endl;

Con *puntero podemos hacer lo que con otros datos del tipo base

Luis Hernandez Yafiez
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Punteros a estructuras

Acceso a estructuras a través de punteros

Los punteros pueden apuntar también a estructuras:

typedef struct {
int codigo;
string nombre;
double sueldo;
} tRegistro;
tRegistro registro;
typedef tRegistro *tRegistroPtr;
tRegistroPtr puntero = &registro;

Operador flecha (->):

Acceso a los campos a través de un puntero sin usar el operador *
puntero->codigo puntero->nombre puntero->sueldo
puntero->.. = (*puntero)...

Luis Herndndez Yafiez
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Punteros a estructuras

Acceso a estructuras a través de punteros

typedef struct {
int codigo;
string nombre;
double sueldo;
} tRegistro;
tRegistro registro;
typedef tRegistro *tRegistroPtr;
tRegistroPtr puntero = &registro;

registro.codigo = 12345;

registro.nombre = "Javier";

registro.sueldo = 95000;

cout << punterd:)codigo <« """k punterd:]nombre

<< " " << punterd®Jsueldo << endl;

puntero->codigo = (*puntero).codigo # *puntero.codigo

b4

puntero seria una estructura con campo codigo de tipo puntero

Luis Hernandez Yafiez
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Punteros y el modificador const

Punteros a constantes y punteros constantes

El efecto del modificador de acceso const depende de su sitio:
const tipo *puntero; Puntero a una constante

tipo *const puntero; Puntero constante

Punteros a constantes:

typedef const int *tIntCtePtr; // Puntero a constante
int enterol = 5, entero2 = 13;

tIntCtePtr punt_a cte = &enterol;

(*punt_a_cte)++; // ERROR: jDato no modificable!
punt_a_cte = &entero2; // OK: El puntero no es cte.

Luis Herndndez Yafiez
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Punteros y el modificador const

Punteros a constantes y punteros constantes

El efecto del modificador de acceso const depende de su sitio:
const tipo *puntero; Puntero a una constante

tipo *const puntero; Puntero constante

Punteros constantes:

typedef int *const tIntPtrCte; // Puntero constante
int enterol = 5, entero2 = 13;

tIntPtrCte punt_cte = &enterol;

(*punt_cte)++; // OK: E1l puntero no apunta a cte.
punt_cte = &entero2; // ERROR: jPuntero constante!

Luis Hernandez Yafiez
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Fundamentos de la programacion

Punteros y paso de parametros
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Punteros y paso de parametros

Paso de parametros por referencia o variable

En el lenguaje C no hay mecanismo de paso por referencia (&)
Sélo se pueden pasar parametros por valor

;. Como se simula el paso por referencia? Por medio de punteros:

void incrementa(int *punt);

void incrementa(int *punt) {
(*punt)++;

}

Paso por valor:
T El argumento (el puntero) no cambia
int entero = 5;

incrementa(&entero);
cout << entero << endl;

Aquello a lo que apunta (el entero)
S puede cambiar

Mostrara 6 en la consola

(0]
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Punteros y paso de parametros

Paso de parametros por referencia o variable

int entero = 5;
incrementa(&entero); entero
punt recibe la direccién de entero

void incrementa(int *punt) { punt
(*punt)++;

}

entero

cout << entero << endl; entero “

(0]
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Punteros y paso de parametros

Paso de pardmetros por referencia o variable

;Cual es el equivalente en C a este prototipo de C++?

void foo(int &paraml, double &param2, char &param3);

Prototipo equivalente:

void foo(int *paraml, double *param2, char *param3);

void foo(int *paraml, double *param2, char *param3) {
// Al primer argumento se accede con *paraml
// Al segundo argumento se accede con *param2
// Al tercer argumento se accede con *param3

}
;Cémo se llamaria?

int entero; double real; char caracter;

/]...

foo(&entero, &real, &caracter);

(0]
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Fundamentos de la programacion

Punteros y arrays
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Punteros y arrays

Una intima relacion

Variable array = Puntero al primer elemento del array
Asi, si tenemos:

int dias[12] =
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},

Entonces:
cout << *dias << endl;

Muestra 31 en la consola, el primer elemento del array
€9 ;Unnombre de array es un puntero constante!

Siempre apunta al primer elemento (no se puede modificar)
Acceso a los elementos del array:

Por indice o con aritmética de punteros (Anexo)

(0]
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Punteros y paso de parametros arrays

Paso de arrays a subprogramas

jEsto explica por qué no usamos & con los pardmetros array!
El nombre del array es un puntero: ya es un paso por referencia

Prototipos equivalentes para parametros array:

const int N = ...;

void cuadrado(int arr[N]);

void cuadrado(int arr[], int size); // Array no delimitado
void cuadrado(int *arr, int size); // Puntero

Arrays no delimitados y punteros: se necesita la dimension
Elementos: se acceden con indice (arr[i]) o con puntero (*arr)

Una funcidn sélo puede devolver un array en forma de puntero:
intPtr inicializar();

Luis Herndndez Yafiez
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Memoria y datos del programa
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Memoria y datos del programa

Regiones de la memoria

El sistema operativo distingue varias regiones en la memoria:
Pila (Stack) } Datos locales
-~

WM L] = Datos dindmicos

J\

Datos globales

Cédigo del

> Memoria principal
programa

7 Luis Herndndez Yafiez
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Memoria y datos del programa

Memoria principal BT } oo oo

Datos globales del programa: Montén Datos dinémicos
Declarados fuera
de los subprogramas

Datos globales

Memoria principal

typedef struct {

} tRegistro;
const int[N]= 1000;
typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlista;

int main() {

7 Luis Herndndez Yafiez
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Memoria y datos del programa

La pila (stack)

Datos locales de subprogramas:
Parametros por valor
y variables locales

void func(tLista [lista] double &total)

{

tListaaux

} Datos locales
Datos dindmicos

Datos globales

Memoria principal

int[i}

Y los punteros temporales
que apuntan a los argumentos
de los parametros por referencia

7 Luis Hernandez Yafiez

&resultado

func(lista, resultado)
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Memoria y datos del programa
EI montén (heap] “ } Datos locales

Datos dinamicos

Datos que se crean y se destruyen
durante la ejecucion del programa,
a medida que se necesita

Montoén Datos dindmicos

Datos globales

Memoria principal

Sistema de gestion de memoria dinamica (SGMD)
Cuando se necesita memoria para una variable se solicita
El SGMD reserva espacio y devuelve la direccion base
Cuando ya no se necesita mas la variable, se destruye
Se libera la memoria y el SGMD cuenta de nuevo con ella

% Luis Hernandez Yafiez
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Fundamentos de la programacion

Memoria dinamica
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Memoria dinamica

Datos dinamicos

Se crean y se destruyen durante la ejecucion del programa
Se les asigna memoria del montén

Creacién

Dato dindmico
Destruccion j

;Por qué utilizar memoria dindmica?

v Almacén de memoria muy grande: datos o listas de datos que
no caben en memoria principal pueden caber en el montéon

v El programa ajusta el uso de la memoria a las necesidades
de cada momento: ni le falta ni la desperdicia

% Luis Hernandez Yafiez
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Datos y asignacion de memoria
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¢Cudndo se asigna memoria a los datos?

v" Datos globales
En memoria principal al comenzar la ejecucion del programa
Existen durante toda la ejecucion del programa

v" Datos locales de un subprograma
En la pila al ejecutarse el subprograma

Existen sélo durante la ejecuciéon de su subprograma

v' Datos dindmicos
En el montdn cuando el programa lo solicita

Existen a voluntad del programa

(0]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 893

Luis Hernandez Yafiez

s

Datos estaticos frente a datos dinamicos

Datos estaticos

v" Datos declarados como de un tipo concreto:
int i;

v’ Se acceden directamente a través del identificador:
cout << 1i;

Datos dinamicos

v' Datos accedidos a través de su direcciéon de memoria
Esa direccion de memoria debe estar el algiin puntero
Los punteros son la base del SGMD

Los datos estaticos también se pueden acceder a través de punteros
int *p = &i;
(03]
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Fundamentos de la programacion

Punteros y datos dinamicos
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Creacion de datos dinamicos

El OpBI"CIdOI" new Devuelve NULL si no queda memoria suficiente

new tipo Reserva memoria del montdn para una variable del
tipo y devuelve la primera direccion de memoria
utilizada, que debe ser asignada a un puntero

int *p; // Todavia sin una direccidén valida

p = new int; // Ya tiene una direccién valida
%k _ .
p = 12;

La variable dinamica se accede exclusivamente por punteros

No tiene identificador asociado

int i; // i es una variable estatica
int *pl, *p2;
pl = &i; // Puntero que da acceso a la variable
// estatica i (accesible con i o con *pil)
p2 = new int; // Puntero que da acceso a una variable
// dindmica (accesible sélo a través de p2)

Luis Hernandez Yafiez
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Inicializacion de datos dinamicos

Inicializacién con el operador new

El operador new admite un valor inicial para el dato creado:
int *p;

p = new int(12);

Se crea la variable, de tipo int, y se inicializa con el valor 12

#include <iostream>
using namespace std;
#include "registro.h"

int main() {
tRegistro reg; l
reg = nuevo();
tRegistro *punt = new tRegistro(reg);
mostrar(*punt);

Luis Herndndez Yafiez
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Eliminacion de datos dinamicos

El operador delete

delete puntero; Devuelve al montén la memoria usada por
la variable dinamica apuntada por puntero

int *p;
p = new int;
*p = 12;

delete p; // Ya no se necesita el entero apuntado por p

€9 El puntero deja de contener una direccién vélida!

(0]
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Ejemplo de variables dinamicas

#include <iostream>
using namespace std;

int main() {

—> double a = 1.5; pl
double *pl, *p2, *p3;
pl = &a; 41
p2 = new double; (a, p1, p2, p3)
*p2 = *pl;
p3 = new double;
*p3 = 123.45;
cout << *pl << endl; p2
cout << *p2 << endl;
cout << *p3 << endl;

Identificadores:

a

o)}

delete p2;
. p<s (+ *p2y *p3)
S delete p3;
>
]
E
: return 0;
= }
( &
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Ejemplo de variables dinamicas

#include <iostream>
using namespace std; PILA

int main() {
double a = 1.5;
double *pl, *p2, *p3;

=
Ul

MONTON
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Ejemplo de variables dinamicas

#include <iostream>
using namespace std; PILA

=
(921
A

int main() {
double a = 1.5;
double *pl, *p2, *p3;
pl = &a;

IRRNARERES

MONTON
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Ejemplo de variables dinamicas

#include <iostream>
using namespace std; PILA

int main() {
double a = 1.5;
double *pl, *p2, *p3;
pl = &a;
p2 = new double;

BBRANRESI:

MONTON
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Ejemplo de variables dinamicas

#include <iostream>
using namespace std; PILA

=
U1
A

int main() {
double a = 1.5;
double *pl, *p2, *p3;
pl = &a;
p2 = new double;
*p2 = *pl;

S

MONTON
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Ejemplo de variables dinamicas

#include <iostream>
using namespace std; PILA

int main() {
double a = 1.5;
double *pl, *p2, *p3;

pl = &a;
p2 = new double;
*p2 = *pl;

p3 = new double;

A

MONTON
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Ejemplo de variables dinamicas

#include <iostream>
using namespace std;

int main() {
double a = 1.5;
double *pl, *p2, *p3;

pl = &a;
p2 = new double;
*p2 = *pl;

p3 = new double;
*p3 = 123.45;

PILA

Q

T T T

w N R
=
U1
A

3 123.45 e
% MONTON
Fundamentos de la programacion: Punteros y memoria dindmica P4gina 905
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Ejemplo de variables dinamicas
#include <iostream>
using namespace std; PILA
- I —
e nasn() p1 S ——
double a = 1.5;
double *p1, *p2, *p3; p2 -
pl = &a; p3
p2 = new double;
*p2 = *pl;

7 Luis Herndndez Yafiez

p3 = new double;

*p3 = 123.45;

cout << *pl << endl;
cout << *p2 << endl;
cout << *p3 << endl;
delete p2;

Fundamentos de la programacion: Punteros y memoria dindmica
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Ejemplo de variables dinamicas

#include <iostream>
using namespace std;

int main() {

double a = 1.5;

double *pl, *p2, *p3;

pl = &a;
p2 = new double;
*p2 = *pl;

p3 = new double;

*p3 = 123.45;

cout << *pl << endl;
cout << *p2 << endl;
cout << *p3 << endl;
delete p2;

delete p3;
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Fundamentos de la programacion

Gestion de la memoria
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Errores de asignacion de memoria

La memoria se reparte entre la pila y el montén
Crecen en direcciones opuestas
Al llamar a subprogramas la pila crece

Al crear datos dinamicos el monton crece

Monton

Colision pila-monton
Los limites de ambas regiones se encuentran
Se agota la memoria

Desbordamiento de la pila
La pila suele tener un tamafo maximo establecido
Si se sobrepasa se agota la pila

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica P4gina 909

Gestion de la memoria dinamica

Gestion del monton

Sistema de Gestion de Memoria Dinamica (SGMD)

Gestiona la asignacion de memoria a los datos dindmicos
Localiza secciones adecuadas y sigue la pista de lo disponible
No dispone de un recolector de basura, como el lenguaje Java
jHay que devolver toda la memoria solicitada!

Deben ejecutarse tantos delete como new se hayan ejecutado

La memoria disponible en el montén debe ser exactamente la
misma antes y después de la ejecucion del programa

Y todo dato dinamico debe tener algin acceso (puntero)
Es un grave error perder un dato en el montén

Luis Hernandez Yafiez
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Fundamentos de la programacion

Errores comunes
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Mal uso de la memoria dinamica |

Olvido de destruccion de un dato dinamico

int main() {
tRegistro *p;
p = new tRegistro;
*p = nuevo();
mostrar(*p);

:

return 0;

}

G++ no indicara ningun error y el programa parecera terminar
correctamente, pero dejara memoria desperdiciada

Visual C++ si comprueba el uso de la memoria dinamica
y nos avisa si dejamos memoria sin liberar

Luis Hernandez Yafiez
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Mal uso de la memoria dinamica Il

Intento de destruccion de un dato inexistente

int main() {
tRegistro *pl = new tRegistro;
*pl = nuevo();
mostrar(*pl); p2
tRegistro *p2;
p2 = pl; ot Wil i g Al f—
mostrar(*p2); @ s
delete p1; P e A o e
delete p2; i ;

pl tRegistro

return 0; €9 Solo se ha creado

una variable

7 Luis Hernandez Yafiez
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Mal uso de la memoria dinamica lll

Pérdida de un dato dinamico

int main() {
tRegistro *pl, *p2;
pl = new tRegistro(nuevo()); @
p2 = new tRegistro(nuevo());

tRegistro

mostrar(*pl);
pl = p2;

*n1) - e  E.
mostrar(*pl); o
delete pl;

delete p2;

return ©; -ﬁﬂ Se pierde un dato en el monton
} Se intenta eliminar un dato ya eliminado

% Luis Hernandez Yafiez
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Mal uso de la memoria dinamica IV

Intento de acceso a un dato tras su eliminacion

int main() {
tRegistro *p;
p = new tRegistro(nuevo());

mostrar(*p);
delete p;

mostrar(*p); «<—— [ == BRERSEL NI E

al dato dinamico destruido
return 0; - Acceso a memoria inexistente

Luis Herndndez Yafiez
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Arrays de datos dinamicos
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Arrays de datos dinamicos

Arrays de punteros a datos dindmicos

typedef struct {
int codigo;

string nombre; Los punteros ocupan
double valor; muy poco en memoria
} tRegistro; Los datos a los que apunten
typedef tRegistro *tRegPtr; estaran en el montén

const int N = 1000;
// Array de punteros a registros:
typedef tRegPtr tArray[N];
typedef struct {

tArray registros;

. int cont;

E } tlLista; Se crean a medida que se insertan

I Se destruyen a medida que se eliminan
@ ? Fundamentos de la programacion: Punteros y memoria dindmica Pagina 917

Arrays de datos dinamicos

tLista lista;
lista.cont = ©;

Luis Hernandez Yafiez
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7 Luis Herndndez Yafiez

Arrays de datos dinamicos

tLista lista;

lista.cont = ©;

lista.registros[lista.cont] = new tRegistro(nuevo());
lista.cont++;

A Fundamentos de la programacién: Punteros y memoria dindmica P4gina 919
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Arrays de datos dinamicos

tLista lista;

lista.cont = ©;
lista.registros[lista.cont]
lista.cont++;
lista.registros[lista.cont]
lista.cont++;

new tRegistro(nuevo());

new tRegistro(nuevo());
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Arrays de datos dinamicos

tLista lista;

lista.cont = ©;
lista.registros[lista.cont]
lista.cont++;
lista.registros[lista.cont]
lista.cont++;
lista.registros[lista.cont]
lista.cont++;

new tRegistro(nuevo());

new tRegistro(nuevo());

new tRegistro(nuevo());

P4gina 921
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Arrays de datos dinamicos

Los registros se acceden a través de los punteros (operador ->):
cout << lista.registros[@]->nombre;
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Arrays de datos dinamicos

No hay que olvidarse de devolver la memoria al monton:

for (int i = @; i < lista.cont; i++) {
delete lista.registros[i];

}

7 Luis Hernandez Yafiez
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Arrays de datos dinamicos

#ifndef lista_h
#define lista_h
#include "registro.h"

registro.h con el tipo puntero:

typedef tRegistro *tRegPtr;
const int N = 1000;

const string BD = "bd.dat";
typedef tRegPtr tArray[N];
typedef struct {

tArray registros;

int cont;
} tlLista;

void mostrar(const tLista &lista);

void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int code, bool &ok);

int buscar(const tlLista &lista, int code);

void cargar(tLista &lista, bool &ok);

void guardar(const tLista &lista);

void destruir(tLista &lista);

% Luis Hernandez Yafiez
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Arrays de datos dinamicos

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false;

}
else {

lista.cont++;

}
}

void eliminar(tLista &lista, int code, bool &ok) {
ok = true;
int ind = buscar(lista, code);
if (ind == -1) {
ok = false;
}

else

for (int i = ind + 1; 1 < lista.cont; i++) {

2 lista.registros[i - 1] = lista.registros[i];
= }
3 lista.cont--;
s }
£
2 }
§
Fundamentos de la programacion: Punteros y memoria dindmica Pagina 925

Arrays de datos dinamicos

int buscar(const tLista &lista, int code) {
// Devuelve el indice o -1 si no se ha encontrado
int ind = 9;
bool encontrado = false;
while ((ind < lista.cont) && !encontrado) {
if == code) {

}

else {
ind++;

encontrado = true;

if (!encontrado) {
ind = -1;
}

return ind;

7 Luis Herndndez Yafiez
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Arrays de datos dinamicos

#include <iostream>
using namespace std;
#include "registro.h"
#include "lista.h"

int main() {
tLista lista;
bool ok;
cargar(lista, ok);
if (ok) {
mostrar(lista);
destruir(lista);

}

return 0;

Luis Herndndez Yafiez
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Arrays dinamicos

Creacion y destruccion de arrays dindmicos

Array dindmico: array que se ubica en la memoria dinamica

Creacidon de un array dindmico:

tipo *puntero = new tipo[dimension];
int *p = new int[10];

Crea un array de 10 int en memoria dinamica

Los elementos se acceden a través del puntero: p[1]

Destruccidn del array:
delete [] p;

Luis Herndndez Yafiez
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Arrays dinamicos

#include <iostream>
using namespace std;
const int N = 10;

int main() {

int *p = new int[N];
for (int 1 = 0; i < N; i++) {
p[i] = i;

}
for (int 1 = 0; i < N; i++) {
cout << p[i] << endl;

€@ iNo olvides destruir el array dindmico!

Luis Hernandez Yafiez
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Ejemplo de array dinamico

#include "registro.h"
const int N = 1000;

// Lista: array dinamico (puntero) y contador
typedef struct {

tRegPtr registros;

int cont;
} tlLista;

fiez
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Ejemplo de array dinamico

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false;

No usamos new

elsi{ o : Se han creado todo
ista.registros[lista.cont] = registro;
lista.contet; el array al cargar

}
}
void eliminar(tLista &lista, int code, bool &ok) {
ok = true;
int ind = buscar(lista, code); No usamos delete
if (ind == -1) {
ok = false; Se destruye todo
} el array al final
else {
for (int i = ind + 1; i < lista.cont; i++) {
gg lista.registros[i - 1] = lista.registros[i];
5 }
% lista.cont--;
5 }
é }o...

(0]
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Ejemplo de array dinamico

int buscar(tLista lista, int code) {
int ind = 9;
bool encontrado = false;
while ((ind < lista.cont) && !encontrado) {
if (ISEENRCEISEROSCINEeENEs -~ code) {
encontrado = true;
}

else {
ind++;
}
if (!encontrado) {
ind = -1;
}

return ind;

}

void destruir(tLista &lista) {

lista.cont = 0;

}

HEE
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Ejemplo de array dinamico

void cargar(tLista &lista, bool &ok) {
ifstream archivo;
char aux;
ok = true;
archivo.open(BD.c_str())
if (larchivo.is open())
ok = false;

{

else {

tRegistro registro;

lista.cont = 0;

lista.registros = new tRegistro[N];

archivo >> registro.codigo;

while ((registro.codigo != -1) && (lista.cont < N)) {
archivo >> registro.valor;
archivo.get(aux); // Saltamos el espacio
getline(archivo, registro.nombre);
lista.registros[lista.cont] = registro;
lista.cont++;
archivo >> registro.codigo;

/ Se crean todos a la vez

archivo.close();

HEE
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Ejemplo de array dinamico

Mismo programa principal que el del array de datos dinamicos
Pero incluyendo 1istaAD. h, en lugar de 1lista.h

7 Luis Herndndez Yafiez
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Arrays dinamicos vs. arrays de dinamicos

Array de datos dindmicos: Array de punteros a datos dindmicos
Array dindmico: Puntero a array en memoria dinamica

Array de datos dinamicos: Array dindmico:
Array de punteros Puntero a array
0 1 2 3 4 5 6 7

7 Luis Herndndez Yafiez
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Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.
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Aritmética de punteros
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Aritmética de punteros

Operaciones aritméticas con punteros

La aritmética de punteros es una aritmética un tanto especial...

Trabaja tomando como unidad de calculo el tamafio del tipo base
int dias[12] = { 31, 28, 31, 3e, 31, 30, 31, 31, 30, 31, 30, 31 };
typedef int* tIntPtr;
tIntPtr punt = dias;

punt empieza apuntando al primer elemento del array:
cout << *punt << endl; // Muestra 31 (primer elemento)
punt++;

punt++ hace que punt pase a apuntar al siguiente elemento
cout << *punt << endl; // Muestra 28 (segundo elemento)

A la direccion de memoria actual se le suman tantas unidades
como bytes (4) ocupe en memoria un dato de ese tipo (int)

Luis Hernandez Yafiez
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Aritmética de punteros

int dias[12] = { 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 }; dias[@]  oF03:1A38
typedef int* tIntPtr; oros: 1A

OF03:1A3A
tIntPtr punt = dias; OF03:1A38
dias[1] @F@3:1A3C
OF03:1A3D
OF03:1A3E
OF03:1A3F
dias[2] OF03:1A40
OF03:1A41
OF03:1A42
OF03:1A43

dias 0@Fe7:0417

OF07:0418
OF07:0419
OF07:041A

N

3% punt  @F@7:041B

E @F07:041C

§ OF07:041D

c

< OF07:041E

I

0

=)

)
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Aritmética de punteros

int dias[12] = { 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 }; dias[@]  6Fe3:1A38
. OF03:1A39
typedef int* tIntPtr;

OF03:1A3A

tIntPtr punt = dias; 0F03:1A38
dias[1]  eFe3:1A3c

punt++; OF03:1A3D
OF03:1A3E

OF03:1A3F

dias[2] ©@F@3:1A40

OF03:1A41

OF03:1A42

OF03:1A43

dias OF07:0417
OF07:0418
OF07:0419
OF07:041A
punt  OF07:041B
OF07:041C
OF07:041D
OF07:041E

punt-- hace que apunte al elemento anterior

Luis Hernandez Yafiez
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Aritmética de punteros

int dias[12] = { 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 }; dias[@] @F@3:1A38
. OF03:1A39
typedef int* tIntPtr;

OF03:1A3A

tIntPtr punt = dias; 0F03:1A38
dias[1]  eFe3:1A3c

punt = punt + 2; @F@3:1A3D
0FO3:1A3E

0F@3:1A3F

dias[2] @F@3:1A40

0FO3:1A41

0FO3:1A42

0FO3:1A43

dias OF07:0417
OF07:0418
OF07:0419
OF07:041A
punt  0OF07:041B
OF07:041C
OF07:041D

Restando pasamos a elementos anteriores oFo7:041E

7 Luis Hernandez Yafiez
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Aritmética de punteros

int dias[12] = { 31, 28, 31, 30, 31, 30,

31, 31, 3@, 31, 3@, 31 }; dias[@] ©F@3:1A38

N OF03:1A39

typedef int* tIntPtr; oFo3: 1A3A
tIntPtr punt = dias; 0F03:1A38
dias[1] ©F@3:1A3C

punt = punt + 2; 0F03:1A3D
OF03:1A3E

OF03:1A3F

int num = punt - dias; dias[2] ©Fe3:1A40
OF03:1A41

N¢ de elementos entre los punteros oF0s 1442

OF03:1A43

dias OF07:0417
OF07:0418
OF07:0419
OF07:041A
punt  OF07:041B
OF07:041C
OF07:041D
OF07:041E

% Luis Hernandez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo) Péagina 945




Aritmética de punteros

Otro tipo base

short int (2 bytes)

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

tSIPtr punt = dias;

Luis Herndndez Yafiez
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dias[0]

dias[1]

dias[2]

dias[3]

dias[4]

dias

punt

OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:

0F07:
OF07:
0F07:
OF07:
OF07:
OF07:
0F07:
OF07:

1A38
1A39
1A3A
1A3B
1A3C
1A3D
1A3E
1A3F
1A40
1A41
0417
0418
0419
041A
041B
041C
041D
041E
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Aritmética de punteros

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

tSIPtr punt = dias;

punt++;

Luis Hernandez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo)

dias[0]

dias[1]

dias[2]

dias[3]

dias[4]

dias

punt

OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:

OF07:
OF07:
OF07:
OF07:
OF07:
OF07:
0F07:
OF07:

1A38
1A39
1A3A
1A3B
1A3C
1A3D
1A3E
1A3F
1A40
1A41
0417
0418
0419
041A
041B
041C
041D
041E
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Aritmética de punteros

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

tSIPtr punt = dias;

punt++;

punt = punt + 3;

Luis Herndndez Yafiez
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dias[0]

dias[1]

dias[2]

dias[3]

dias[4]

dias

punt

OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:

0F07:
OF07:
0F07:
OF07:
OF07:
OF07:
0F07:
OF07:

1A38
1A39
1A3A
1A3B
1A3C
1A3D
1A3E
1A3F
1A40
1A41
0417
0418
0419
041A
041B
041C
041D
041E
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Aritmética de punteros

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

tSIPtr punt = dias;

punt++;

punt = punt + 3;

punt--;
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dias[0]

dias[1]

dias[2]

dias[3]

dias[4]

dias

punt

OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:

OF07:
OF07:
OF07:
OF07:
OF07:
OF07:
0F07:
OF07:

1A38
1A39
1A3A
1A3B
1A3C
1A3D
1A3E
1A3F
1A40
1A41
0417
0418
0419
041A
041B
041C
041D
041E
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Aritmética de punteros

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

dias[0]

typedef short int* tSIPtr;
tSIPtr punt = dias;

dias[1]

punt++; dias[2]

punt = punt + 3; dias[3]

punt--;

dias[4]

tSIPtr punt2;

7 Luis Hernandez Yafiez
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dias

punt

punt2

OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:

0F07:
OF07:
0F07:
OF07:
OF07:
OF07:
0F07:
OF07:
0F07:

1A38
1A39
1A3A
1A3B
1A3C
1A3D
1A3E
1A3F
1A40
1A41
0417
0418
0419
041A
041B
041C
041D
041E
041F
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Aritmética de punteros

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr; d
siPtr punt = dias; ’
punt++; d
punt = punt + 3; d
punt--; ,
tSIPtr punt2;

punt2 = dias;

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo)
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ias[0]

ias[1]

ias[2]

ias[3]

ias[4]

dias

punt

punt2

OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:

OF07:
OF07:
OF07:
OF07:
OF07:
OF07:
0F07:
OF07:
0F07:

1A38
1A39
1A3A
1A3B
1A3C
1A3D
1A3E
1A3F
1A40
1A41
0417
0418
0419
041A
041B
041C
041D
041E
041F
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Aritmética de punteros

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

dias[0]
typedef short int* tSIPtr;
siPtr punt = dias; ; diestd]
punt++; dias[2]
punt = punt + 3; dias[3]
punt--; dias[4]
tSIPtr punt2;
punt2 = dias; diae
cout << punt - punt2; // 3
punt
§ punt2

(3)
:
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OF03:1A38
OF03:1A39
OF03:1A3A
OF03:1A3B
OF03:1A3C
OF03:1A3D
OF03:1A3E
OF03:1A3F
OF03:1A40
OF03:1A41

OF07:0417
0OF07:0418
OF07:0419
OF07:041A
OF07:041B
OF07:041C
OF07:041D
OF07:041E
OFQ7:041F
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(3)
:
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Recorrido de arrays con punteros

Punteros como iteradores para arrays

const int MAX = 100;
typedef int tArray[MAX];
typedef struct {

tArray elementos;

int cont;
} tlLista;
typedef int* tIntPtr;
tlLista lista;

Usamos un puntero como iterador para recorrer el array:

tIntPtr punt = lista.elementos;

for (int i = @; i < lista.cont; i++) {
cout << *punt << endl;

punt++;

7 Luis Hernandez Yafiez
—
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Punteros como iteradores para arrays

intPtr punt = lista.elementos;

punt

(4|3 ar|safas|7fas] | | | |

% Luis Hernandez Yafiez
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7 Luis Hernandez Yafiez

Punteros como iteradores para arrays

for (int 1 = @; i < lista.cont; i++) {
cout << *punt << endl;
punt++;

(4|3 ar|s3fas|7fas] | | | |
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Punteros como iteradores para arrays

for (int 1 = @; i < lista.cont; i++) {
cout << *punt << endl;
punt++;

(4|3 ar|safas|7fas] | | | |
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Punteros como iteradores para arrays

for (int 1 = @; i < lista.cont; i++) {
cout << *punt << endl;
punt++;

(4|3 ar|s3fas|7fas] | | | |
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Punteros como iteradores para arrays

for (int 1 = @; i < lista.cont; i++) {
cout << *punt << endl;
punt++;

(4|3 ar|safas|7fas] | | | |
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Punteros como iteradores para arrays

for (int 1 = @; i < lista.cont; i++) {
cout << *punt << endl;
punt++;

(4|3 ar|s3fas|7fas] | | | |

7 Luis Hernandez Yafiez
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Punteros como iteradores para arrays

for (int 1 = @; i < lista.cont; i++) {
cout << *punt << endl;
punt++;

(4|3 ar|safas|7fas] | | | |
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Fundamentos de la programacion

Referencias
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Referencias

Nombres alternativos para los datos

Una referencia es una nueva forma de llamar a una variable

Nos permiten referirnos a una variable con otro identificador:
int x = 10;

int &z = x;

X y z son ahora la misma variable (comparten memoria)
Cualquier cambio en x afecta a z y cualquier cambio en z afecta a x

z = 30;
cout << x;

Las referencias se usan en el paso de parametros por referencia

(0]
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Fundamentos de la programacion

Listas enlazadas

(0]
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Listas enlazadas

Una implementacion dindmica de listas enlazadas

Cada elemento de la lista apunta al siguiente elemento:

struct tNodo; // Declaracién anticipada
typedef tNodo *tlLista;
struct tNodo { reg sig

tLista sig;
}s

Una lista (tLista) es un puntero a un nodo
Si el puntero vale NULL, no apunta a ningiin nodo: lista vacia

Un nodo (tNodo) es un elemento seguido de una lista

Vacia
Lista iDefinicién recursiva!
Elemento seguido de una lista

Luis Hernandez Yafiez

(0]
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Implementacidn dinamica de listas enlazadas

Cada elemento de la lista en su nodo

Apuntara al siguiente elemento o a ninguno (NULL)

struct tNodo; // Declaracidén anticipada
typedef tNodo *tLista;
struct tNodo {

tRegistro reg;

tLista sig;

¥
Ademas, un puntero al primer elemento (nodo) de la lista
tLista lista = NULL; // Lista vacia

lista .

(0]
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Implementacidn dinamica de listas enlazadas

struct tNodo;
typedef tNodo *tLista;
struct tNodo {
tRegistro reg;
tLista sig;
¥
tLista lista = NULL; // Lista vacia
lista = new tNodo;
lista->reg = nuevo();
lista->sig = NULL;

(0]
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Implementacidn dinamica de listas enlazadas

tLista lista = NULL; // Lista vacia
lista = new tNodo;

lista->reg = nuevo();

lista->sig = NULL;

tLista p;

p = lista;

(0]
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Implementacidn dinamica de listas enlazadas

tLista lista = NULL; // Lista vacia
lista = new tNodo;

lista->reg = nuevo();

lista->sig = NULL;

tLista p;

p = lista;

p->sig = new tNodo;

p->sig->reg = nuevo();

p->sig->sig = NULL;

(0]
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Implementacidn dinamica de listas enlazadas

Luis Herndndez Yafiez

{E}

tLista lista = NULL; // Lista vacia
lista = new tNodo;
lista->reg = nuevo();
lista->sig = NULL;
tLista p;

p = lista;

p->sig = new tNodo;
p->sig->reg = nuevo();
p->sig->sig = NULL;

p = p->sig;

p->sig = new tNodo;
p->sig->reg = nuevo();

p->sig->sig = NULL; p
lista tRegistro tRegistro tRegistro
= Fundamentos de la programacion: Punteros y memoria dinamica (Anexo) Pagina 970

Implementacidn dinamica de listas enlazadas

Luis Hernandez Yafiez

{E}

Usamos la memoria que necesitamos, ni mas ni menos

lista tRegistro tRegistro tRegistro

Tantos elementos, tantos nodos hay en la lista
jPero perdemos el acceso directo!
Algunas operaciones de la lista se complican y otras no

A continuacién tienes el médulo de lista implementado
como lista enlazada...

HEE
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Ejemplo de lista enlazada

struct tNodo;

typedef tNodo *tLista;

struct tNodo {
tRegistro reg;
tLista sig;

}s
const string BD = "bd.txt";

void mostrar(tLista lista);

void insertar(tLista &lista, tRegistro registro, bool &ok);

void eliminar(tLista &lista, int code, bool &ok);

tLista buscar(tLista lista, int code); // Devuelve puntero

void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);

Luis Herndndez Yafiez
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void destruir(tLista &lista); // Liberar la memoria dindmica

Péagina 972

Ejemplo de lista enlazada

void insertar(tlLista &lista, tRegistro registro, bool &ok) {

ok = true;
tLista nuevo = new tNodo;
if (nuevo == NULL) {
ok = false; // No hay mas memoria dinamica

}

else {
nuevo->reg = registro;
nuevo->sig = NULL;

if (lista == NULL) { // Lista vacia
lista = nuevo;
(1 , o
else {
tlLista p = lista;
// Localizamos el ultimo nodo...
while (p->sig != NULL) {

lista

nuevo

2] p = p->sig; nuevo [IH—>NDA

) p
- p->sig = nuevo; (2)

E }

£ lista

3 }

i)
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Ejemplo de lista enlazada

void eliminar(tLista &lista, int code, bool &ok) {
ok = true;
tlLista p = lista;
if (p == NULL) {
ok = false; // Lista vacia

else if (p->reg.codigo == code) { // El primero
lista = p->sig;
(1 delete p;
}

else { 0o
tLista ant = p; lista
p = p->sig;

bool encontrado = false;
while ((p !'= NULL) && !encontrado) {
if (p->reg.codigo == code) {

ant
encontrado = true; P
2 else { 1ista >
s ista
5 (2 ant = p; (2
3 .
£ p = p->s18;
c
5 ¥
I
(e ) (HE(E) 3 o -
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Ejemplo de lista enlazada

if (!encontrado) {
ok = false; // No existe ese cédigo

}
else {
ant->sig = p->sig;
delete p;
}
}
}
ant p

lista .—) . -_)

% Luis Hernandez Yafiez
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Ejemplo de lista enlazada

tLista buscar(tLista lista, int code) {
// Devuelve un puntero al nodo, o NULL si no se encuentra
tLista p = lista;
bool encontrado = false;
while ((p !'= NULL) && !encontrado) {
if (p->reg.codigo == code) {
encontrado = true;

else {
p = p->sig;
}
}
return p;

}

void mostrar(tLista lista) {
cout << endl << "Elementos de la lista:" << endl
K Mo - " << endl;
tLista p = lista;
while (p != NULL) {

fiez

\©

- mostrar(p->reg);

E p = p->sig;

2

t

:

I E E
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Ejemplo de lista enlazada

void cargar(tLista &lista, bool &ok) {
ifstream archivo;
char aux;
ok = true;
lista = NULL;
archivo.open(BD.c_str());
if (larchivo.is open()) {
ok = false;
}
else {
tRegistro registro;
tlLista ult = NULL;
archivo >> registro.codigo;
while (registro.codigo != -1) {
archivo >> registro.valor;
archivo.get(aux); // Saltamos el espacio
getline(archivo, registro.nombre);

(0]
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Ejemplo de lista enlazada

if (lista == NULL) {
lista = new tNodo;
ult = lista;

¥

else {
ult->sig = new tNodo;
ult = ult->sig;

}

ult->reg registro;

ult->sig = NULL;

archivo >> registro.codigo;

}
archivo.close();
}
return ok;

fiez

(0]
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Ejemplo de lista enlazada

void guardar(tLista lista) {
ofstream archivo;
archivo.open(BD);
tlLista p = lista;
while (p != NULL) {

archivo << p->registro.codigo << " ";
archivo << p->registro.valor << " ";
archivo << p->registro.nombre << endl;
p = p->sig;
}
archivo.close();
}
void destruir(tLista &lista) {
tLista p;
while (lista != NULL) {
N p = lista;
% lista = lista->sig;
3 delete p;
I }

(0]
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Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.
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Fundamentos de la programacion

Recursion

7 Luis Hernandez Yafiez
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Concepto de recursion

Recursion (recursividad, recurrencia)

Definicion recursiva: En la definicion aparece lo que se define
Factorial(N) = N x Factorial(N-1) (N>=0)

Cada tridngulo esta
formado por otros
triangulos mas pequefios

¥,
La cAmara graba lo que graba 4 A
(http://farm1.static.flickr.com/83 _\_._-. i ". Al
/229219543 _edf740535b.jpg) A b A A ACK AA
N ' (wikipedia.org)
2 La imagen del paquete
B .
3 aparece dentro del propio
£ paquete,... jhasta el infinito! |
c
[
g e . .
= (wikipedia.org) Las matrioskas rusas
)
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Definiciones recursivas

Factorial(N) = N x Factorial(N-1)

El factorial se define en funcién de si mismo

Los programas no pueden manejar la recursion infinita

La definicién recursiva debe adjuntar uno o mas casos base
Caso base: aquel en el que no se utiliza la definicidn recursiva

Proporcionan puntos finales de calculo:

N x Factorial(N-1) siN>0  Caso recursivo (induccion)
Factorial(N)

1 siN=0 Caso base (o de parada)

El valor de N se va aproximando al valor del caso base (0)

Luis Herndndez Yafiez
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Algoritmos recursivos
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Algoritmos recursivos

Funciones recursivas

Una funcidon puede implementar un algoritmo recursivo

La funcién se llamara a si misma si no se ha llegado al caso base

1 siN=0
Factorial(N)
N x Factorial(N-1) SiN>0

long long int factorial(int n) {
long long int resultado;
if (n == @) { // Caso base
resultado = 1;

}
else {

resultado = n * factorial(n - 1);
}

return resultado;

Luis Herndndez Yafiez
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Algoritmos recursivos

Funciones recursivas

long long int factorial(int n) {
long long int resultado;
if (n == @) { // Caso base
resultado = 1;

}
else {

resultado = n * factorial(n - 1);
b

return resultado;

}
factorial(5) = 5 x factorial(4) = 5 x 4 x factorial(3)

= 5x 4 x 3 x factorial(2) = 5 x4 x 3 x 2 x factorial(1)
2 5x4x3x2x1xfactorial(0) > 5x4x3x2x1x1
-2 120 Caso base

Luis Hernandez Yafiez
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Algoritmos recursivos

Diserio de funciones recursivas

Una funcidn recursiva debe satisfacer tres condiciones:

v’ Caso(s) base: Debe haber al menos un caso base de parada

v" Induccidn: Paso recursivo que provoca una llamada recursiva
Debe ser correcto para distintos parametros de entrada

v' Convergencia: Cada paso recursivo debe acercar a un caso base

Se describe el problema en términos de problemas mads sencillos

1 sSiN=0
Factorial(N)
N x Factorial(N-1) siN>0

Funciéon factorial(): tiene caso base (N = 0), siendo correcta
para N es correcta para N+1 (induccién) y se acerca cada vez
mas al caso base (N-1 esta mas cerca de 0 que N)

(0]
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Modelo de ejecucidn

long long int factorial(int n) {
long long int resultado;
if (n == @) { // Caso base
resultado = 1;

}
else {

resultado = n * 'Factor‘ial(n - 1);
}

return resultado;

}

Cada llamada recursiva fuerza una nueva ejecucién de la funcion

Cada llamada utiliza sus propios parametros por valor
y variables locales (n y resultado en este caso)

En las llamadas a la funcion se utiliza la pila del sistema para
mantener los datos locales y la direccidon de vuelta

7 Luis Hernandez Yafiez
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:
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La pila del sistema (stack)

Regiones de memoria que distingue el sistema operativo:

Pila (Stack) } Llamadas a subprogramas
~

Montén (Heap) >~ Memoria dindmica (Tema 9)

Datos del programa

> Memoria principal

% Luis Hernandez Yafiez
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La pila del sistema (stack)

Mantiene los datos locales de la funcién y la direccion de vuelta
Estructura de tipo pila: lista LIFO (last-in first-out)

El Gltimo que entra es el primero que sale:

7 Luis Herndndez Yafiez

P4gina 993

La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {

return Xx;

}
int funcA(int a) {
int b;

<DIR2> b = funcB(a);

return b;
¥

int main() {

Llamada a funcién: Pila
<~

<< funcA(4);
<DIR1> cout uncA(4); Entra la direccién de vuelta

7 Luis Herndndez Yafiez
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La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {
return Xx;
¥

int funcA(int a) {

. Entrada en la funcién:
int b;

Se alojan los datos locales
<DIR2> b = funcB(a);
return b;
}

int main() {

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez
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Pila
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La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {

return Xx;

by
int funcA(int a) {
int b;
<DIR2> b = funcB(a); ¢ Llamada a funcién:
Entra la direccién de vuelta
return b;
¥

int main() {

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez
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La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) { Entrada en la funcién:

D —

. Se alojan los datos locales
return Xx;
}

int funcA(int a) {
int b;

<DIR2> b = funcB(a);
return b;
¥

int main() { <DIR1>
Pila

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez
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La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {

return Xx; <« ‘S/:eellti?n(iirel;i: 1;1;2((5112;5 locales -
}
int funcA(int a) { -
int b; IIIIIIII
o
<DIR2> b = funcB(a);
return b; “
, a2
int main() {
Pila

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Introduccidn a la recursion Péagina 998




La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {

return x; < Vuelta de la funcion:
} Sale la direccién de vuelta

int funcA(int a) {
int b;

<DIR2> b = funcB(a);
return b;
¥

int main() { <DIR1>
Pila

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez
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La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {

return Xx;

) [ 1]
int funcA(int a) { -
e o [ 1]
<DIR2> b = funcB(a); <« Laejecg.cién.cf)ntinﬁa -
en esa direcciéon -
; B

int main() { P

Pila

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez
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La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {
return Xx;
¥

int funcA(int a) {
int b;

<DIR2> b = funcB(a);

return b: € Vuelta de la funcién:
} ? Se eliminan los datos locales

int main() {

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez

<DIR1>
Pila
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La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {
return Xx;
¥

int funcA(int a) {
int b;

<DIR2> b = funcB(a);

return b: ¢ Vuelta de la funcion:
} ? Sale la direccién de vuelta

int main() {

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez

<DIR1>

e~}
=
[Y)
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La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {
return Xx;
¥

int funcA(int a) {
int b;

<DIR2> b = funcB(a);

return b;

¥

. int main() {
= .
3 L La ejecucion continda Pila
L <DIR1> cout << funcA(4); €— )
X en esa direccién
z
§
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La pila y las llamadas a funcién

Mecanismo de pila adecuado para llamadas a funciones anidadas:

Las llamadas terminan en el orden contrario a como se llaman

int funcC(...) { <€

— )
int funcB(...) { €——0r
v
<
... funcC(...
= = uncC(...) <
- } a
= int funcA(...) { €— <
> > - funcB(...) <
v ! —
3 int main() { —
g 3 cout << funcA(...); — Pila
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Ejecucion de la funcion factorial()

long long int factorial(int n) {
long long int resultado;
if (n == @) { // Caso base
resultado = 1;

}
else {

resultado = n * 'Factor‘ial(n - 1);
}

return resultado;

cout << factorial(5) << endl;

€9 Obviaremos las direcciones de vuelta en la pila

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1005
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Ejecucion de la funcién factorial()

factorial(5)

resultado = ?

Pila

7 Luis Herndndez Yafiez
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Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)

resultado = ?

resultado = ?

Pila

7 Luis Herndndez Yafiez
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Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(3)

resultado = ?
n =3

resultado = ?

=}
]

resultado = ?

n=>5
Pila

7 Luis Herndndez Yafiez
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Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(B)

Factorial(2) I
n =
:
18
3 .
§ Pila
5]
I
§
Fundamentos de la programacion: Introduccidn a la recursion Pagina 1009

Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(3)
factorial(2)
L—)-Factorial(l)

resultado = ?

S
[}

resultado = ?

)
L}

resultado = ?
n =3

resultado = ?

=}
]

resultado = ?

n=>5
Pila

7 Luis Herndndez Yafiez
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Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(B)

f rial(2
actorlal(2)
L> factorial(1) T
Ls factorial(e)
n =
:
18
g .
§ Pila
5]
I
§
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Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(3)

factortal(2) ——
L factorial(1) L
Ls factorial(e)

n =
—

)
L}

resultado = ?
n =3

resultado = ?

=}
]

resultado = ?

n=>5
Pila

7 Luis Herndndez Yafiez
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Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(B)
factorial(2)
L—)-Factorial(l)
L—)-Factorial(@)

PR
—

1 resultado = ?

resultado = 2

S
L}

n =3

resultado = ?

resultado = ?

=} =}
] ]
v

Pila

7 Luis Herndndez Yafiez
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Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(3)
factorial(2)
L—)-Factorial(l)
l—) factorial(9)

PR
—
I 1 resultado = 6

2 n=3

resultado = ?

=}
]

resultado = ?

n=>5
Pila

7 Luis Herndndez Yafiez
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Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(B)
factorial(2)
L—)-Factorial(l)
L—)-Factorial(@)

PR
—
—1 !
(_I 2 resultado = 24

6
n =
:
18
]
2 .
£ Pila
c
[
I
wv
£
A Fundamentos de la programacion: Introduccion a la recursion Pagina 1015

Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(3)
factorial(2)
L—)-Factorial(l)
l—) factorial(9)

]
—
1
12
—J°

24 resultado = 120

=}
n
v

Pila

7 Luis Herndndez Yafiez
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Ejecucion de la funcién factorial()

factorial(5)
|—) factorial(4)
|—) factorial(3)

factorial(2) =

L factorial(1) ]

|—) factorial(9) I

| I

— —_

11 I

| 2 ]

1 ° —_

: 24 ]
f l 120 Pila
. Pagina 1017
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Tipos de recursion

7 Luis Herndndez Yafiez
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Recursidon simple

Sélo hay una llamada recursiva
Ejemplo: Calculo del factorial de un namero entero positivo

long long int factorial(int n) {
long long int resultado;
if (n == @) { // Caso base
resultado = 1;

}
else {

resultado = n * factorial(n - 1);
}

return resultado;

Una sola llamada recursiva

(0]
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Recursion multiple

Varias llamadas recursivas

Ejemplo: Calculo de los numeros de Fibonacci

0 sin=0
Fib(n) 1 sin=1
Fib(n-1) + Fib(n-2) sin>1

N/

Dos llamadas recursivas

(0]
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Recursidon multiple

0 sin=0
int main() { Fib(n) 1 sin=1
for (int i = @; i < 20; i++) { Fib(n-1) + Fib(n-2) sin>1

cout << fibonacci(i) << endl;
}

return 0;

}

int fibonacci(int n) {
int resultado;
if (n == 09) {
resultado = 0;
}
else if (n == 1) {
resultado = 1;

}

N else {

5 resultado = fibonacci(n - 1) + fibonacci(n - 2);
}

return resultado;

-

Luis Hernandez Ya

(0]
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Recursion anidada

En una llamada recursiva alguno de los argumentos es otra llamada

Ejemplo: Calculo de los nimeros de Ackermann:

n+1l sim=0
Ack(m, n) Ack(m-1, 1) sim>0yn=0
Ack(m-1, Ack(m,n-1)) sim>0yn>0

AN

Argumento que es una llamada recursiva

(0]
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Luis Herndndez Yafiez

{E}

Recursidn anidada

n+1 sim=0
Ack(m, n) Ack(m-1, 1) sim>0yn=0
Ack(m-1, Ack(m,n-1)) sim>0yn>0

Numeros de Ackermann

int ackermann(int m, int n) {
int resultado;
if (m == 09) {
resultado = n + 1;
¥
else if (n == 0) {
resultado = ackermann(m - 1, 1);

else {
resultado = ackermann(m - 1, ackermann(m, n - 1));
return resultado;
€@ Pruébalo con nimeros muy bajos:
Se generan MUCHAS llamadas recursivas
SECarTm Fundamentos de la programacion: Introduccion a la recursién Pagina 1023

Recursion anidada

Luis Hernandez Yafiez

{E}

n+1 sim=0
Ack(m, n) Ack(m-1, 1) sim>0yn=0
Ack(m-1, Ack(m,n-1)) sim>0yn>0

Numeros de Ackermann

ackermann(1, 1)
L)»ackermann(@, ackermann(1, 0))
12
3 ackermann(o, 1)

ackermann(@, 2)

E:a
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Recursion anidada

, n+1 sim=0
NumerOS de ACkermann Ack(m, n) { Ack(m-1, 1) sim>0yn=0
Ack(m-1, Ack(m,n-1)) sim>0yn>0

ackermann(2, 1)
0 |—)acker‘mann(1, ackermann(2, 0))
13
5 ackermann(1, 1)
I} ackermann(@, ackermann(l, 0))

(P

ackermann(@, 1)
ackermann(e, 2)

L ackermann(1, 3)
1 La»ackermann(e, ackermann(1, 2))
L)»ackermann(@, ackermann(1, 1))

ackermann(@, ackermann(1, 9))
A2
ackermann(0, 1)

ackermann(0, 2)
ackermann(@, 3)

—— ackermann(@, 4)

(0]
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Fundamentos de la programacion

Codigo del subprograma recursivo

(0]
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Caddigo del subprograma recursivo

Codigo anteriory posterior a la llamada recursiva

{
Codigo anterior
Llamada recursiva
Codigo posterior

}

Codigo anterior

Se ejecuta para las distintas entradas antes que el cédigo posterior
Codigo posterior

Se ejecuta para las distintas entradas tras llegarse al caso base

El c6digo anterior se ejecuta en orden directo para las distintas
entradas, mientras que el cédigo posterior lo hace en orden inverso

Si no hay cédigo anterior: recursién por delante

Luis Herndndez Yafiez

Si no hay cddigo posterior: recursion por detrds

(0]
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Caddigo del subprograma recursivo

Cddigo anteriory posterior a la llamada recursiva

void func(int n) {
if (n > @) { // Caso base: n
cout << "Entrando (" << n << ")" << endl; // Cédigo anterior
func(n - 1); // Llamada recursiva
cout << "Saliendo (" << n << ")" << endl; // Cédigo posterior

1]
1]
ER )

}
}

- func(5);

El c6digo anterior se ejecuta
para los sucesivos valores de n (5, 4, 3, ...)

El codigo posterior al revés (1, 2, 3, ...)

Luis Hernandez Yafiez

(0]
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Cédigo del subprograma recursivo

Recorrido de los elementos de una lista (directo)

El codigo anterior a la llamada procesa la lista en su orden:

void mostrar(tLista lista, int pos);

int main() {
tlLista lista;
lista.cont = 0;
// Carga del array...
mostrar(lista, 9);

return 0;

}

void mostrar(tLista lista, int pos) {
if (pos < lista.cont) {
lcout << lista.elementos[pos] << endl;]
mostrar(lista, pos + 1);

}

—

Luis Herndndez Yafiez

(0]
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Cédigo del subprograma recursivo

Recorrido de los elementos de una lista (inverso)

El codigo posterior procesa la lista en el orden inverso:

void mostrar(tLista lista, int pos);

int main() {
tLista lista;
lista.cont = 0;
// Carga del array...
mostrar(lista, 9);

return 0;

}

void mostrar(tLista lista, int pos) {
if (pos < lista.cont) {

)

s mostrar(lista, pos + 1);

% lcout << lista.elementos[pos] << endl;]

T }

é

I E E
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Fundamentos de la programacion

Parametros y recursion

(0]
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Parametros y recursion

Parametros por valor y por referencia

Parametros por valor: cada llamada usa los suyos propios
Parametros por referencia: misma variable en todas las llamadas
Recogen resultados que transmiten entre las llamadas

void factorial(int n, int &fact) {

if (n == 0) {
fact = 1;

}

else {

factorial(n - 1, fact);
fact = n * fact;

}
Cuando n es 0, el argumento de fact toma el valor 1

Al volver se le va multiplicando por los demas n (distintos)
(03]
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7 Luis Herndndez Yafiez

Fundamentos de la programacion

Ejemplos de algoritmos recursivos

A Fundamentos de la programacion: Introduccidn a la recursion Pagina 1033

7 Luis Herndndez Yafiez

Busqueda binaria

Parte el problema en subproblemas mas pequefios
Aplica el mismo proceso a cada subproblema
Naturaleza recursiva (casos base: encontrado o no queda lista)

Partimos de la lista completa
Si no queda lista... terminar (lista vacia: no encontrado)
En caso contrario...
Comprobar si el elemento en la mitad es el buscado
Si es el buscado... terminar (encontrado)
Si no...
Si el buscado es menor que el elemento mitad...
Repetir con la primera mitad de la lista
Si el buscado es mayor que el elemento mitad...
Repetir con la segunda mitad de la lista

—> La repeticion se consigue con las llamadas recursivas

A Fundamentos de la programacién: Introduccion a la recursion Pagina 1034




Busqueda binaria

Dos indices que indiquen el inicio y el final de la sublista:

int buscar(tLista lista, int buscado, int ini, int fin)
// Devuelve el indice (0, 1, ...) o -1 si no esta
;Cuales son los casos base?

v" Que ya no quede sublista (ini > fin) = No encontrado

v Que se encuentre el elemento

€9 Repasaen el Tema 7 cémo funciona y cémo se implement6

iterativamente la busqueda binaria (comparala con esta)

7 Luis Hernandez Yafiez

(3)
:
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Busqueda binaria

int buscar(tLista lista, int buscado, int ini, int fin) {
int pos = -1;
if (ini <= fin) {
int mitad = (ini + fin) / 2;
if (buscado == lista.elementos[mitad]) {
pos = mitad;

}

else if (buscado < lista.elementos[mitad]) {
pos = buscar(lista, buscado, ini, mitad - 1);

}
else {

pos = buscar(lista, buscado, mitad + 1, fin);
}

}

return pos;

}

Llamada: pos = buscar(lista, valor, @, lista.cont - 1);

% Luis Hernandez Yafiez
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Las Torres de Hanoi

Cuenta una leyenda que en un templo de Hanoi se dispusieron tres
pilares de diamante y en uno de ellos 64 discos de oro, de distintos
tamarios y colocados por orden de tamario con el mayor debajo

Torre de ocho discos (wikipedia.org)

Cada monje, en su turno, debia mover un unico disco de un pilar

a otro, para con el tiempo conseguir entre todos llevar la torre del
pilar inicial a uno de los otros dos; respetando una unica regla:
nunca poner un disco sobre otro de menor tamario

Cuando lo hayan conseguido, jse acabard el mundo!

[Se requieren al menos 2°4-1 movimientos; si se hiciera uno por segundo,
se terminaria en mas de 500 mil millones de afios]

7 Luis Hernandez Yafiez
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Las Torres de Hanoi

Queremos resolver el juego en el menor nimero de pasos posible
;Qué disco hay que mover en cada paso y a donde?
Identifiquemos los elementos (torre de cuatro discos):

A B C
Cada pilar se identifica con una letra
Mover del pilar X al pilar Y:

Coger el disco superior de Xy ponerlo encima de los que hayaen Y

% Luis Hernandez Yafiez
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Las Torres de Hanoi

Resolucion del problema en base
a problemas mas pequeios

Mover N discos del pilar A al pilar C:
Mover N-1 discos del pilar A al pilar B
Mover el disco del pilar A al pilar C
Mover N-1 discos del pilar B al pilar C

Para llevar N discos de un pilar origen a
otro destino se usa el tercero como auxiliar

Mover N-1 discos del origen al auxiliar
Mover el disco del origen al destino

Mover N-1 discos del auxiliar al destino

(0]
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Mover 4 discosde Aa C
A B C
| ]| |
A B C
| I |
A B C
A B C

Pagina 1039

Las Torres de Hanoi

Mover N-1 discos se hace igual, pero
usando ahora otros origen y destino

Mover N-1 discos del pilar A al pilar B:
Mover N-2 discos del pilar A al pilar C
Mover el disco del pilar A al pilar B
Mover N-2 discos del pilar C al pilar B

Naturaleza recursiva de la soluciéon

&

Simulacién para 4 discos (wikipedia.org)

(0]
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Mover 3 discosde AaB

A B C

=

[

A

I |
A

I | I
A

B C

I
B C

|
B C
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Las Torres de Hanoi

Caso base: no quedan discos que mover

void hanoi(int n, char origen, char destino, char auxiliar) {
if (n > 0) {
hanoi(n - 1, origen, auxiliar, destino);
cout << origen << " --> << destino << endl;
hanoi(n - 1, auxiliar, destino, origen);

¥
}
int main() {
int n;
cout << "Numero de torres: ";
cin >> n;

hanoi(n, 'A', 'C', 'B');

return 0;

-

(0]
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Recursion frente a iteracion

(0]
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Recursion frente a iteracion

long long int factorial(int n) { long long int factorial(int n) {
long long int fact; long long int fact = 1;
assert(n >= 0); assert(n >= 0);
if (n == 0) { for (int i = 1; i <= n; i++) {
fact = 1; fact = fact * i;
} }
else {
fact = n * factorial(n - 1); return fact;
} }
return fact;
}

fiez

(0]
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Recursion frente a iteracion

¢/ Qué es preferible?
Cualquier algoritmo recursivo tiene uno iterativo equivalente
Los recursivos son menos eficientes que los iterativos:
Sobrecarga de las llamadas a subprograma
Si hay una versidn iterativa sencilla, sera preferible a la recursiva
En ocasiones la version recursiva es mucho mas simple
Sera preferible si no hay requisitos de rendimiento

Compara las versiones recursivas del factorial o de los nimeros
de Fibonacci con sus equivalentes iterativas

;Y qué tal una version iterativa para los niimeros de Ackermann?

fiez

(0]
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Fundamentos de la programacion

Estructuras de datos recursivas

(0]
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Estructuras de datos recursivas

Definicion recursiva de listas

Ya hemos definido de forma recursiva alguna estructura de datos:

elemento seguido de una secuencia
Secuencia

secuencia vacia (ningun elemento)
Las listas son secuencias:

elemento seguido de una lista
Lista

lista vacia (ninguin elemento) (Caso base)

Lalista 1, 2, 3 consiste en el elemento 1 seguido de la lista 2, 3, que,
a su vez, consiste en el elemento 2 seguido de la lista 3, que, a su vez,
consiste en el elemento 3 seguido de la lista vacia (caso base)

Hay otras estructuras con naturaleza recursiva (p.e., los arboles)
que estudiaras en posteriores cursos

(0]
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Estructuras de datos recursivas

Procesamiento de estructuras de datos recursivas

Naturaleza recursiva de las estructuras: procesamiento recursivo
Procesar (lista):
Si lista no vacia (caso base):
Procesar el primer elemento de la lista // Cédigo anterior
Procesar (resto(lista))

Procesar el primer elemento de la lista // Cédigo posterior

resto(lista): sublista tras quitar el primer elemento

(0]
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Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacién de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Yafiez

(0]

- =mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1048




Fundamentos de |la programacion

Apendice:
Archivos binarios

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

r4 [ 3
Indice
Flujos 1051
Archivos binarios 1054
Tamafio de los datos: El operador sizeof() 1056
Apertura de archivos binarios 1059
Lectura de archivos binarios (acceso secuencial) 1061
Escritura en archivos binarios (acceso secuencial) 1066
Acceso directo o aleatorio 1070
Ejemplos de uso de archivos binarios 1078
Ordenacion de los registros del archivo 1079
Busqueda binaria 1085
Insercion en un archivo binario ordenado 1088
Carga de los registro de un archivo en una tabla 1092
Almacenamiento de una tabla en un archivo 1093
@ ? Fundamentos de la programacion: Archivos binarios




Fundamentos de la programacion

Flujos
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Entrada/salida

Flujos

Canalizan la E/S entre los dispositivos y el programa

En forma de secuencias de caracteres

La entrada puede proceder de un dispositivo o de un archivo
La salida puede dirigirse a un dispositivo o a un archivo

Siempre por medio de flujos
Dispositivos/archivos

Dispositivos/archivos de salida
de entrada

| | | IIIIIII--?"
ﬂ -
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Flujos

Flujos de texto y binarios

v" Flujo de texto: contiene una secuencia de caracteres
(Tloltlalll: ] (11203 el Al
v" Flujo binario: contiene una secuencia de cddigos binarios.

A0 | 25 2F |04 [D6 | FF 10027 |6C | CA |49 07| 5F | As [

(Cédigos representados en notacidén hexadecimal.)
Lo que signifiquen los cddigos dependera del programa que use el archivo
En ambos casos se trata de una secuencia de caracteres
En el segundo caso se interpretan como cdédigos binarios
Sin contemplar caracteres especiales como \n o \t

Ya hemos usado flujos de texto para E/S por consola/archivos

7 Luis Hernandez Yafiez
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Archivos binarios
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Archivos

Codificacion textual y binaria

Datos numéricos: se pueden guardar en forma textual o binaria
int dato = 124567894;

Representac1on como texto: caracteres '1' '2' '4' '5' '6'

Flujo de texto -ﬂﬂﬂﬂ-ﬂﬂﬂ--

O caracteres (se guarda el c6digo ASCII de cada uno)

Representacién binaria:
00000111 01101100 11000001 010101160 Hex: 07 6C C1 56

Flujo binario - [CZ IS G IEE N N I N O

4 caracteres interpretados como cédigos binarios

7 Luis Hernandez Yafiez

(o) (0]

=@ Fundamentos de programacién: Archivos binarios Pagina 1055

Archivos binarios

El operador sizeof ()

En los archivos binarios se manejan codigos binarios (bytes)
sizeof () (palabra clave): bytes que ocupa en memoria algo

Se aplica a un dato o a un tipo char = byte
const int Max = 80;
typedef char tCadena[Max];
typedef struct {
int codigo;
tCadena item;
double valor;
} tRegistro;
const int SIZE = sizeof(tRegistro);

En un archivo binario un dato del tipo tRegistro
ocupara exactamente SIZE caracteres

(o) (0]
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El operador sizeof()

typedef struct {
int COd; MEMORIA
double val;

. reg [ oro3:1a38 )
} tReglstr\o; g s 100 I
tRegistro reg; orosi1ass [ = » reg.cod
ConS't lnt SIZE — SiZGO'F(r‘eg); oros:1azs [SER ) (4)
OF03:1A3C )
. . . OF03:1A3D
Posiciones de memoria usadas -  SIZE < wrosi10se |
(12) '
OF03:1A3F
oros: 1010 |8 }E\Zi.val
‘3:1A41
Se guardan los SIZE bytes: | s
L BFE3:1A43 b,

FEE3:1A44 _
Flujo binario

oo | 00 | o0 o5 | 0a |37 | ac | oF |03 [ 92 [ 59 loe | | |

Luis Herndndez Yafiez
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Alineamiento a tamaiio de palabra

Por eficiencia, algunos campos de una estructura se pueden
forzar a ocupar un multiplo del tamafio de palabra del sistema

Tamafio de palabra (4, 8, 16, ... bytes): dato mas pequefio que se
lee de la memoria (aunque se usen sélo algunos de los bytes)

Asi, el tamafio real de las estructuras puede ser mayor que la
simple suma de los tamafios de cada tipo

Por ejemplo:

typedef struct {
char c;
int i;
} tRegistro;
const int SIZE = sizeof(tRegistro);

char (1 byte) + int (4 bytes) SIZE toma el valor 8 (4 + 4),no 5

Luis Hernandez Yafiez

char + int + double - 24 bytes (8 + 8 + 8)
NOTA: El tamafio de palabra y los tamafios de los tipos dependen del sistema concreto
() DEE
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Apertura de archivos binarios
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Apertura de archivos binarios siblioteca fstrean

Archivos binarios: tipo fstream
Apertura: funciéon open(nombre, modo)
Nombre: char[] (funcién c_str() para cadenas de tipo string)

Modos de apertura del archivo:

Truncar: borrar todo lo que haya y empezar de nuevo

Concatenacion de modos: operador | (O binaria: suma bit a bit)
archivo.open("entrada.dat", ios::in | ios::binary);

7 Luis Herndndez Yafiez
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Fundamentos de la programacion

Lectura de archivos binarios
(acceso secuencial)

(0]
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Lectura de archivos binarios

archivo.read(puntero_al bufer, numero)

bufer: variable destino de los caracteres leidos
Pasado como puntero a secuencia de caracteres
Referencia (&) a la variable destino
Molde de puntero a caracter (char *)

numero: cantidad de caracteres a extraer del archivo
- Operador sizeof ()

Archivo abierto con los modos ios::in e ios::binary

archivo.read( (char *) &registro, sizeof(tRegistro));

Los caracteres leidos se interpretan como codigos binarios

Luis Hernandez Yafiez
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Lectura de archivos binarios

Exito o fallo de la lectura
Funcidén gcount ()
N¢ de caracteres realmente leidos en la ultima operacion
Si coincide con el numero que se solicitaron leer: OK

Si son menos, se ha alcanzado el final del archivo: Fallo

tRegistro registro;
fstream archivo;
archivo.open("entrada.dat", ios::in | ios::binary);
archivo.read( (char *) &registro, sizeof(tRegistro));
if (archivo.gcount() < sizeof(tRegistro)) {
// Fallo en la lectura
}
else {
// Lectura OK

Luis Herndndez Yafiez

(0]
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Lectura de archivos binarios

#include <iostream>
using namespace std;
#include <fstream>
#include "registro.h"

int main() {
tRegistro registro;
fstream archivo;
archivo.open("bd.dat", ios::in | ios::binary);
archivo.read( (char *) &registro, SIZE);
int cuantos = archivo.gcount();
while (cuantos == SIZE) {
mostrar(registro);
archivo.read( (char *) &registro, SIZE);
cuantos = archivo.gcount();

3

y o

2 archivo.close(); <= No olvides cerrar el archivo!
£ return 0;

g

}
(0]
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Lectura de archivos binarios

El tipo tRegistro

const int Max = 80;
typedef char tCadena[Max];

typedef struct {
int codigo;
tCadena item;
double valor;
} tRegistro;

const int SIZE = sizeof(tRegistro);
¢ Por qué usamos cadenas al estilo de C?
string: tamafo variable en memoria
Requieren un proceso de serializacion

Las cadenas al estilo de C siempre ocupan lo mismo en memoria

Luis Herndndez Yafiez
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Escritura en archivos binarios
(acceso secuencial)
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Escritura en archivos binarios

archivo.write(puntero _al bufer, numero)

bufer: origen de los caracteres a escribir en el archivo
Pasado como puntero a secuencia de caracteres
Referencia (&) a la variable destino
Molde de puntero a caracter (char *)

numero: cantidad de caracteres a escribir en el archivo
- Operador sizeof ()

Archivo abierto con los modos ios: :out e ios: :binary

archivo.write( (char *) &registro, sizeof(tRegistro));

Se escriben tantos caracteres como celdas de memoria ocupe
la variable registro

Luis Herndndez Yafiez
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Escritura en archivos binarios

#include <iostream>
using namespace std;
#include <fstream>
#include "registro.h"

int main() {
tRegistro registro;
fstream archivo;
archivo.open("bd2.dat", ios::out | ios::binary);
bool seguir = true;
while (seguir) {
cout << "Codigo: ";
cin.sync();
cin >> registro.codigo;
cout << "Nombre: ";
cin.sync();
cin.getline(registro.item, Max); // Max: 80

(0]
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Escritura en archivos binarios

cout << "Precio: ";

cin.sync();

cin >> registro.valor;

archivo.write( (char *) &registro, SIZE);
cout << "Otro [S/N]? “;

char c;

cin >> c;

if ((c == "'n") || (c == "'N")) {

seguir = false;

archivo.close(); <= iNo olvides cerrar el archivo!
(jpérdida de datos!)
return 0;
Z(E
53
2
5
T
I E E
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Acceso directo o aleatorio
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Archivos binarios: acceso directo

Acceso secuencial: empezando en el primero pasando a siguiente

Acceso directo (también llamado aleatorio):

Para localizar registros individuales necesitamos otras rutinas:

v' tellg():lugar donde se encuentra el puntero del archivo
Siguiente posicion donde se realizard una lectura o escritura

v seekg(desplazamiento, origen):

Lleva el puntero del archivo a una posicién concreta:
desplazamiento caracteres desde el origen indicado

Origen:
ios: :beg: principio del archivo
ios: :cur: posicion actual

ios: :end: final del archivo

7 Luis Hernandez Yafiez
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Archivos binarios: acceso directo

os::beg ios::end
SIZE 2*SIZE 3*SIZE 4*SIZE 5*SIZE 6*SIZE

\l, SIZE \1, SIZE \l, SIZE \1, SIZE SIZE \l, SIZE

tRegistro | tRegistro | tRegistro | tRegistro | tRegistro | tRegistro

const int SIZE = sizeof(tRegistro);

Cada registro ocupa SIZE caracteres en el archivo

;Cuantos registros hay en el archivo?
archivo.seekg(@, ios::end); // © car. desde el final -> final

int pos = archivo.tellg(); // Total de caracteres del archivo
int numReg = pos / SIZE;

% Luis Hernandez Yafiez
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Archivos binarios: acceso directo

os::beg ios::end
SIZE 2*SIZE 3*SIZE 4*SIZE 5*SIZE 6*SIZE

\1, SIZE \1, SIZE \l, SIZE \1, SIZE SIZE \l, SIZE

tRegistro | tRegistro | tRegistro | tRegistro | tRegistro | tRegistro

const int SIZE = sizeof(tRegistro);

Poner el puntero del archivo en un n? de registro:
archivo.seekg((num - 1) * SIZE, ios::beg);

7 Luis Hernandez Yafiez
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Archivos binarios: acceso directo

Lecturas y escrituras

Una vez ubicado el puntero al principio de un registro,
se puede leer el registro o actualizar (escribir) el registro

Si se ubica al final, se puede afiadir (escribir) un nuevo registro

Archivos binarios de lectura/escritura:
Se han de abrir con los modos ios: :in, ios::out e ios: :binary
archivo.open("bd.dat", ios::in | ios::out | ios::binary);

Ahora podemos tanto leer como escribir

% Luis Hernandez Yafiez
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Acceso directo

actualizar.cpp

// Actualizacidén de un registro
#include <iostream>

using namespace std;

#include <fstream>

#include "registro.h"

int main() {
tRegistro registro;
fstream archivo;

archivo.open("bd.dat", ios::in
archivo.seekg(@, ios::end);
int pos = archivo.tellg();

int numReg = pos / SIZE;

cout << "Numero de registros:
int num;

cout << "Registro numero? ";
cin >> num;

(0]

-

r Luis Herndndez Yafiez
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ios::out | ios::binary);

<< numReg << endl;
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Acceso directo

if ((num > @) && (num <= numReg)) {
archivo.seekg((num - 1) * SIZE, ios::beg);
archivo.read( (char *) &registro, SIZE);

mostrar(registro);

cout << endl << "Cambiar nombre [S/N]? ";

char c;
cin.sync();
cin >> c;

if ((c =="s") [] (c ST A

",
J

cout << "Nombre:
cin.sync();

cin.getline(registro.item, 890);

}

cout << endl <<
cin.sync();
cin >> c;
if ((c =="s") || (c
cout << "Precio: ";
cin >> registro.valor;

ISI

(0]

r Luis Hernandez Yafiez
|
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Cambiar precio [S/N]? ";

Pagina 1076




Acceso directo

archivo.
archivo.

cout <«

archivo.
archivo.

seekg((num - 1) * SIZE, ios::beg);
write( (char *) &registro, SIZE);

endl << "Registro actualizado:" << endl;
seekg((num - 1) * SIZE, ios::beg);

read( (char *) &registro, SIZE);

mostrar(registro);

}

archivo.close();

return 0;

(0]

r Luis Herndndez Yafiez
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Ejemplos de uso

de archivos binarios

(0]
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Ordenacion de los registros

r Luis Herndndez Yafiez
L.

Mediante un acceso directo a los registros del archivo

Ordenaremos por el campo item

#include <iostream>
using namespace std;
#include <fstream>
#include <iomanip>
#include <cstring>
#include "registro.h"

const char BD[] = "lista.dat";

void mostrar();

(@l Fundamentos de programacién: Archivos binarios Pagina 1079
[ Y & [ ]
Ordenacion de los registros
void mostrar() {
fstream archivo;
tRegistro registro;
int cuantos;
archivo.open(BD, ios::in | ios::binary);
archivo.read( (char *) &registro, SIZE);
cuantos = archivo.gcount();
while (cuantos == SIZE) {
mostrar(registro);
archivo.read( (char *) &registro, SIZE);
cuantos = archivo.gcount();
}
archivo.close();
.}
Fundamentos de programacién: Archivos binarios Pagina 1080
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Ordenacidn de los registros

int main() {

mostrar();

Orden inicial

fstream archivo;

archivo.open(BD, ios::in | ios::out | ios::binary);
archivo.seekg(9, ios::end);

int pos = archivo.tellg();

int numReg = pos / SIZE;

HEE
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Luis Hernandez Yafiez
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Ordenacidn de los registros

// Ordenamos con el método de seleccidn directa
tRegistro regMenor, reg;
for (int i = @; i < numReg - 1; i++) {
int menor = i;
for (int j =i + 1; j < numReg; j++) {
archivo.seekg(menor * SIZE, ios::beg);
archivo.read( (char *) &regMenor, SIZE);
archivo.seekg(j * SIZE, ios::beg);
archivo.read( (char *) &reg, SIZE);
if (strcmp(reg.item, regMenor.item) < 0) {
menor = j;

regMenor reg

1 J
l I - -
- -
- -
.

HEE
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Ordenacidn de los registros

if (menor > i) { // Intercambiamos
archivo.seekg(i * SIZE, ios::beg);
archivo.read( (char *) &reg, SIZE);
archivo.seekg(menor * SIZE, ios::beg);
archivo.read( (char *) &regMenor, SIZE);
archivo.seekg(i * SIZE, ios::beg);
archivo.write( (char *) &regMenor, SIZE);
archivo.seekg(menor * SIZE, ios::beg);
archivo.write( (char *) &reg, SIZE);

© ® 0 0C

reg regMenor

Luis Herndndez Yafiez
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Ordenacidn de los registros

archivo.close();

cout << endl << "Tras ordenar:
mostrar();

<< endl << endl;

return 0;

Luis Hernandez Yafiez
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Busqueda binaria

Archivo binario ordenado; por codigo

#include <iostream>
using namespace std;
#include <fstream>
#include "registro.h"

const char BD[] = "ord.dat";

void mostrar();

int main() {

(0]

-
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L.

mostrar();
tRegistro registro;
fstream archivo;

Fundamentos de programacién: Archivos binarios
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Busqueda binaria

(0]
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archivo.open(BD, ios::in | ios::binary);
archivo.seekg(9, ios::end);
int pos = archivo.tellg();
int numReg = pos / SIZE;
int buscado;
cout << "Codigo a buscar: ";
cin >> buscado;
int ini = @, fin = numReg - 1, mitad;
bool encontrado = false;
while ((ini <= fin) && !encontrado) {
mitad = (ini + fin) / 2;
archivo.seekg(mitad * SIZE, ios::beg);
archivo.read( (char *) &registro, SIZE);
if (buscado == registro.codigo) {
encontrado = true;
}
else if (buscado < registro.codigo) {
fin = mitad - 1;

}

Fundamentos de programacioén: Archivos binarios
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Busqueda binaria

else {
ini = mitad + 1;
}
}
if (encontrado) {
int pos = mitad + 1;
cout << "Encontrado en la posicion "
mostrar(registro);
}
else {
cout << "No encontrado!" << endl;
}

archivo.close();

return 0;

fiez
—

Luis Hernandez Ya
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<< pos << endl;
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Inserciéon en un archivo ordenado

Ordenado por el campo codigo

#include <iostream>
using namespace std;
#include <fstream>
#include "registro.h"

const char BD[] = "ord2.dat";
void mostrar();

int main() {
mostrar();
tRegistro nuevoRegistro =
fstream archivo;

archivo.seekg(@, ios::end);
int pos = archivo.tellg();
int numReg = pos / SIZE;

(0]

-
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nuevo(), registro;

archivo.open(BD, ios::in | ios::out | ios::binary);
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Insercion en un archivo ordenado

pos = 0;
bool encontrado = false;
archivo.seekg(9, ios::beg);
while ((pos < numReg) && !encontrado) {
archivo.read( (char *) &registro, SIZE);
if (registro.codigo > nuevoRegistro.codigo) {
encontrado = true;

¥

else {
pOS++;

¥

}
if (pos == numReg) { // Debe ir al final

archivo.seekg(@, ios::end);
archivo.write( (char *) &nuevoRegistro, SIZE);

7 Luis Hernandez Yafiez
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Insercion en un archivo ordenado

else { // Hay que hacer hueco

for (int i = numReg - 1; i >= pos; i--) {
archivo.seekg(i * SIZE, ios::beg);
archivo.read( (char *) &registro, SIZE);
archivo.seekg((i + 1) * SIZE, ios::beg);
archivo.write( (char *) &registro, SIZE);

}

archivo.seekg(pos * SIZE, ios::beg);

archivo.write( (char *) &nuevoRegistro, SIZE);

}

archivo.close();
mostrar(); nuevoRegistr‘o

return 0; (3] (2] (1)

| ----fff
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Insercion en un archivo ordenado

Al principio

Por el medio

Al final

(0]
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Carga de los registros en una tabla

void cargar(tTabla &tabla, bool &ok) {
ok = true;
fstream archivo;
archivo.open(BD, ios::in | ios::binary);
if (larchivo.is open()) {
ok = false;
}

else {

archivo.seekg(@, ios::end);

int pos = archivo.tellg();

int numReg = pos / SIZE;

tabla.cont = 9;

tRegistro registro;

archivo.seekg(@, ios::beg);

for (int i = @; i < numReg; i++) {
archivo.read( (char *) &registro, SIZE);
tabla.registros[tabla.cont] = registro;
tabla.cont++;

}

archivo.close();

}
(0]
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Almacenamiento de la tabla

void guardar(tTabla tabla) {
fstream archivo;
archivo.open(BD, ios::out | ios::binary | ios::trunc);
for (int i = @; i < tabla.cont; i++) {
archivo.write( (char *) &tabla.registros[i], SIZE);

}

archivo.close();

(0]
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Carga y almacenamiento

#include <iostream>
using namespace std;
#include "registro.h"
#include "tabla.h"

int main() {
tTabla tabla;
tTabla ok;
cargar(tabla, ok);
if (lok) {
cout << "Error al abrir el archivo!" << endl;
}

else {
mostrar(tabla);
insertar(tabla, nuevo(), ok);
mostrar(tabla);
guardar(tabla);

}

return 0;

-

Luis Hernandez Yafiez
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Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Herndndez Yafiez
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