Facultad de Informatica
Universidad Complutense

Apuntes de clase de la asignatura

Fundamentos de la programacion

1@ curso

Grado en Ingenieria en Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

2013-2014

Luis Hernandez Yanez

Licencia Creative Commons:
Reconocimiento, No comercial y Compartir igual.

http://creativecommons.org/licenses/by-nc-sa/3.0/

Esta publicacion contiene los apuntes de clase de la asignatura
Fundamentos de la programacidn, asignatura de 12 curso de los grados
que se imparten en la Facultad de Informatica de la UCM.

Durante los tres primeros cursos en los que se ha impartido la asignatura,
este material ha sido sometido a continuas revisiones y contribuciones
por parte de los profesores que han impartido los distintos grupos
de la asignatura. Aunque el trabajo ha quedado bastante consolidado,
estoy seguro de que todavia contiene muchas erratas. Si encuentras alguna,
no dudes, por favor, en hacérmelo saber y conseguir asi
que la siguiente version esté mejor depurada.

Quiero agradecer a todos los profesores que han impartido la asignatura
su contribucidn en el desarrollo del material, destacando especialmente
la labor de Pablo Moreno Ger y Carlos Cervigdn Riickauer.

Luis Hernandez Yanez
Profesor de la Facultad de Informatica de la UCM

Fundamentos de la programacion

IL® indice general

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

&9 Universidad Complutense

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4
|

£ []
Indice de temas
Temal Computadorasy programacion 1
Tema 2 Tipos e instrucciones | 48
Anexo: Detalles técnicos de los tipos 212
Tema 3 Tipos e instrucciones |l 225
Anexo |: El operador ternario ? 398
Anexo Il: Ejemplos de secuencias 402
Tema 4 La abstraccion procedimental 425
Anexo: Mas sobre subprogramas 496
Tema 5 Tipos de datos estructurados 512
Anexo: Cadenas al estilo de C 580
Tema 6 Recorridoy busqueda en arrays 588
Tema 7 Algoritmos de ordenacion 649
Anexo: Mas sobre ordenacién 742
Tema 8 Programacion modular 755
Anexo: Ejemplo de modularizacién 832
Tema 9 Punterosy memoria dindmica 847
Anexo: Punteros y memoria dinamica 938
Tema 10 Introduccion a la recursion 981
Apéndice: Archivos binarios 1049

Fundamentos de la programacion

Tema 1: Computadoras y programacion

Informatica, computadoras y programacion 3
Lenguaje maquina y ensamblador 12
Lenguajes de programacion de alto nivel 15
Un poco de historia 19
Programacion e Ingenieria del Software 24
El lenguaje de programacion C++ 27
Sintaxis de los lenguajes de programacion 30
Un primer programa en C++ 35
Herramientas de desarrollo 39
C++: Un mejor C 45

N
(9]
=
\©
>
N
[}
kel
f=
@
c
fu
[
s
2
=1
4

Fundamentos de la programacion

Tema 2: Tipos e instrucciones |

Un ejemplo de programacion 50 Operadores relacionales
El primer programa en C++ 64 Toma de decisiones (if)
Las lineas de cédigo del programa 80 Bloques de cddigo
Calculos en los programas 86 Bucles (while)

Variables 92 Entrada/salida por consola
Expresiones 98 Funciones definidas
Lectura de datos desde el teclado 108 por el programador
Resolucion de problemas 119

Los datos de los programas 127

Identificadores 129

Tipos de datos 133

Declaracion y uso de variables 142

Instrucciones de asignacion 147

Operadores 152

M4ds sobre expresiones 160

Constantes 167

La biblioteca cmath 171

Operaciones con caracteres 174

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4

Fundamentos de la programacion

177
180
183
186
190

199

Tema 2 (Anexo): Detalles técnicos de los tipos

int 214
float 216
Notacidn cientifica 217
double 218
char 220
bool 221
string 222
Literales con especificacidon de tipo 223

N
(9]
=
\©
>
N
[}
kel
f=
@
c
fu
[
s
2
=1
4

Fundamentos de la programacion

Tema 3: Tipos e instrucciones Il

Tipos, valores y variables 227 El bucle for
Conversioén de tipos 232 Bucles anidados
Tipos declarados por el usuario 236 Ambito y visibilidad
Tipos enumerados 238 Secuencias
Entrada/Salida Recorrido de secuencias
con archivos de texto 248 Secuencias calculadas
Lectura de archivos de texto 253 Busqueda en secuencias
Escritura en archivos de texto 266 Arrays de datos simples
Flujo de ejecucién 272 Uso de variables arrays
Seleccién simple 276 Recorrido de arrays
Operadores légicos 282 Busqueda en arrays
Anidamiento de if 286 Arrays no completos
Condiciones 290
Seleccién multiple 293
La escala if-else-if 295
La instruccion switch 302
Repeticion 313
El bucle while 316

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4

Fundamentos de la programacion

321
331
339
349
355
363
370
374
379
382
387
393

Tema 3: Anexos

Anexo |: El operador ternario ?

El operador ternario ? 399

Anexo llI: Ejemplos de secuencias

Recorridos 404
Un aparcamiento 405
¢Paréntesis bien emparejados? 409
¢Dos secuencias iguales? 412
Numeros primos menores que N 413
Busquedas 417
Busqueda de un nimero en un archivo 419
Busquedas en secuencias ordenadas 420
Z(E
B
E
5
I
@ ('8 Fundamentos de la programacion

Tema 4: La abstraccion procedimental

Disefio descendente: Tareas y subtareas 427
Subprogramas 434
Subprogramas y datos 441
Parametros 446
Argumentos 451
Resultado de la funcidn 467
Prototipos 473
Ejemplos completos 475
Funciones de operador 477
Disefio descendente (un ejemplo) 480
Precondiciones y postcondiciones 490

Iﬂ Luis Hernandez Yafiez
=
£

: ()

Fundamentos de la programacion

Tema 4 (Anexo): Mas sobre subprogramas

Archivos como parametros 498
La funcion main() 501
Argumentos implicitos 504
Sobrecarga de subprogramas 508

N
(9]
=
\©
>
N
[}
kel
f=
@
c
fu
[
s
2
=1
4

Fundamentos de la programacion: La abstraccion procedimental (Anexo)

Tema 5: Tipos de datos estructurados

Tipos de datos 514

Arrays de nuevo 517

Arrays y bucles for 520

Mas sobre arrays 522
Inicializacion de arrays 523
Enumerados como indices 524

Paso de arrays a subprogramas 525
Implementacion de listas 528
Cadenas de caracteres 531
Cadenas de caracteres de tipo string 535
Entrada/salida con string 539
Operaciones con string 541

Estructuras 543
Estructuras dentro de estructuras 549

Arrays de estructuras 550

z% Arrays dentro de estructuras 551
E Listas de longitud variable 552
5 Un ejemplo completo 558
: El bucle do..while 562

Fundamentos de la programacion

Tema 5 (Anexo): Cadenas al estilo de C

Cadenas al estilo de C 582
E/S con cadenas al estilo de C 583
La biblioteca cstring 584
Ejemplo 585

N
(9]
=
\©
>
N
[}
kel
f=
@
c
fu
[
s
2
=1
4

Fundamentos de la programacion

Tema 6: Recorrido y busqueda en arrays

Recorrido de arrays 590
Arrays completos 593
Arrays no completos con centinela 594
Arrays no completos con contador 595
Ejemplos 597
Generacion de numeros aleatorios 601

Busquedas en arrays 604
Arrays completos 606
Arrays no completos con centinela 607
Arrays no completos con contador 608
Ejemplo 610

Recorridos y busquedas en cadenas 614

Mas ejemplos de manejo de arrays 617

Arrays multidimensionales 630
Inicializacion de arrays multidimensionales 638
Recorrido de un array bidimensional 641
Recorrido de un array N-dimensional 644
Busqueda en un array multidimensional 647

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4

Fundamentos de la programacion

Tema 7: Algoritmos de ordenacion

Algoritmos de ordenacién 651
Algoritmo de ordenacién por insercion 654

Ordenacion de arrays por insercién 665
Algoritmo de ordenacidén por insercidon

con intercambios 672
Claves de ordenacion 680
Estabilidad de la ordenacién 688
Complejidad y eficiencia 692

Ordenaciones naturales 694
Ordenacion por seleccion directa 701
Método de la burbuja 716
Listas ordenadas 722
Busquedas en listas ordenadas 729
Busqueda binaria 731

N
(9]
=
\©
>
N
[}
kel
f=
@
c
fu
[
s
2
=1
4

Fundamentos de la programacion

Tema 7 (Anexo): Mas sobre ordenacion

Ordenacion por intercambio 744
Mezcla de dos listas ordenadas 747

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4

Fundamentos de la programacion

Tema 8: Programacion modular

Programas multiarchivo y compilacién separada
Interfaz frente a implementacién
Uso de modulos de biblioteca
Ejemplo: Gestidn de una lista ordenada |
Compilacién de programas multiarchivo
El preprocesador
Cada cosa en su mddulo
Ejemplo: Gestidn de una lista ordenada Il
El problema de las inclusiones multiples
Compilacién condicional
Proteccidn frente a inclusiones multiples
Ejemplo: Gestién de una lista ordenada Il
Implementaciones alternativas
Espacios de nombres
Implementaciones alternativas
Calidad y reutilizacién del software

N
(9]
=
\©
>
N
[}
kel
f=
@
c
fu
[
s
2
=1
4

Fundamentos de la programacion

757
762
768
770
778
780
782
784
789
794
795
796
804
808
817
827

Tema 8 (Anexo): Ejemplo de modularizacion

Modularizacién de un programa

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4

Fundamentos de la programacion

833

Tema 9: Punteros y memoria dinamica

Direcciones de memoria y punteros 849
Operadores de punteros 854
Punteros y direcciones validas 864
Punteros no inicializados 866

Un valor seguro: NULL 867

Copia y comparacion de punteros 868

Tipos puntero 873
Punteros a estructuras 875

Punteros a constantes y punteros constantes 877

Punteros y paso de pardmetros 879
Punteros y arrays 883
Memoria y datos del programa 886
Memoria dinamica 891
Punteros y datos dindmicos 895

N Gestidn de la memoria 907
3§ Errores comunes 911
g Arrays de datos dindmicos 916
§ Arrays dinamicos 928

Fundamentos de la programacion

Tema 9 (Anexo): Punteros y memoria dinamica

Aritmética de punteros 940
Recorrido de arrays con punteros 953
Referencias 962
Listas enlazadas 964

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4

Fundamentos de la programacion

Tema 10: Introduccion a la recursion

Concepto de recursion
Algoritmos recursivos
Funciones recursivas
Diseno de funciones recursivas
Modelo de ejecucién
La pila del sistema
La pila y las llamadas a funcion
Ejecucion de la funcidn factorial()
Tipos de recursion
Recursion simple
Recursion multiple
Recursion anidada
Recursion cruzada
Cddigo del subprograma recursivo
Parametros y recursion
Ejemplos de algoritmos recursivos
Busqueda binaria
Torres de Hanoi
Recursion frente a iteracion
Estructuras de datos recursivas

N
(9]
=
\©
>
N
[}
kel
f=
@
c
fu
[
s
2
=1
4

Fundamentos de la programacion

983
986
987
989
990
992
994
1005
1018
1019
1020
1022
1026
1027
1032
1034
1035
1038
1043
1045

Apéndice: Archivos binarios

Flujos

Archivos binarios

Tamafio de los datos: El operador sizeof()

Apertura de archivos binarios

Lectura de archivos binarios (acceso secuencial)

Escritura en archivos binarios (acceso secuencial)

Acceso directo o aleatorio

Ejemplos de uso de archivos binarios
Ordenacion de los registros del archivo
Busqueda binaria
Insercion en un archivo binario ordenado
Carga de los registro de un archivo en una tabla
Almacenamiento de una tabla en un archivo

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4

Fundamentos de la programacion

1051
1054
1056
1059
1061
1066
1070
1078
1079
1085
1088
1092
1093

Fundamentos de la programacion

Referencias
bibliograficas

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

&9 Universidad Complutense

Referencias bibliograficas

v Programming. Principles and Practice Using C++
B. Stroustrup. Pearson Education, 2009

v’ C++: An Introduction to Computing (22 edicion)
J. Adams, S. Leestma, L. Nyhoff. Prentice Hall, 1998

v' El lenguaje de programacion C++ (Edicion especial)
B. Stroustrup. Addison-Wesley, 2002

v’ Programacion y resolucion de problemas con C++
N. Dale, C. Weems. McGraw-Hill Interamericana, 2007

v' Problem Solving, Abstraction, Design Using C++ (32 edicion)
F.L. Friedman, E.B. Koffman. Addison-Wesley, 2000.

v’ Programacion en C++ para ingenieros
F. Xhafa et al. Thomson, 2006

=1 Luis Hernandez Yafez

(2]

e e ('8 Fundamentos de la programacion

Referencias bibliograficas

Programming. Principles and Practice Using C++

Del autor del lenguaje C++, un amplio tutorial que ensefia a programar
en C++; hace un uso temprano de conceptos de orientacion a objetos y
de la STL, que quedan fuera del temario de este curso

C++: An Introduction to Computing (22 edicién)

Buena introduccion a la programacién en C++; buena organizacion de
los contenidos, bien desarrollado y con secciones practicas

El lenguaje de programacion C++ (Edicion especial)

Del autor del lenguaje C++, la referencia absoluta sobre el lenguaje C++
en la que consultar dudas y detalles técnicos sobre los elementos del
lenguaje

N
U
=
\©
>
N
[}
kel
f=
@
c
fu
[
s
2
=1
4

Fundamentos de la programacion

Referencias bibliograficas

Programacion y resolucion de problemas con C++

Un enfoque practico al desarrollo de programas con C++ con
numerosos ejemplos

Problem Solving, Abstraction, Design Using C++ (32 edicion)

Introduccién a la programacién en C++ con un enfoque de desarrollo
de software y numerosos casos de estudio

Programacion en C++ para ingenieros

Introduccién a la programacion en C++ con explicaciones sencillas y
una organizacion clara

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4

Fundamentos de la programacion

Fundamentos de la programacion

Computadoras
y programacion

1

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

£ []

Indice
Informatica, computadoras y programacion 3
Lenguaje maquina y ensamblador 12
Lenguajes de programacion de alto nivel 15
Un poco de historia 19
Programacion e Ingenieria del Software 24
El lenguaje de programacion C++ 27
Sintaxis de los lenguajes de programacion 30
Un primer programa en C++ 35
Herramientas de desarrollo 39
C++: Un mejor C 45

Fi== Luis Hernandez Yafiez

Fundamentos de la programacion: Computadoras y programacion

Fundamentos de la programacion

Informatica, computadoras
Y programacion

N
U
=
\©
>
N
[}
kel
f=
@
c
fu
[
s
2
=1
4

Fundamentos de la programacion: Computadoras y programacion Péagina 3

Informatica y computadora R.A.E.

Informatica (Ciencia de la computacion)

Conjunto de conocimientos cientificos y técnicas
que hacen posible el tratamiento automatico
de la informacion por medio de ordenadores

Computadora

Maquina electronica, analogica o digital,
dotada de una memoria de gran capacidad

y de métodos de tratamiento de la informacién,
capaz de resolver problemas matematicos y logicos
mediante la ejecucion de programas informaticos

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4

Fundamentos de la programacion: Computadoras y programacion Péagina 4

Computadoras

En todas partes y con muchas formas

Luis Herndndez Yafiez

Pagima 5

Hardware y software

Hardware

Componentes que integran
la parte material
de una computadora

Software

Programas, instrucciones
y reglas informaticas
para ejecutar tareas

en una computadora

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4

P8 Fundamentos de la programacion: Computadoras y programacion Pagina 6

Programacion de computadoras

Programar

Indicar a la computadora qué es lo que tiene que hacer

Programa

v" Secuencia de instrucciones

v" Instrucciones que entiende la computadora

v Y que persiguen un objetivo: jresolver un problema!

Fi== Luis Hernandez Yafiez

Fundamentos de la programacion: Computadoras y programacion Pégina 7

Programadores

Anja Tivala DL PROEERVADOE SEEX

Trabajo en equipo
Muiltiples roles...

v' Gestores
v' Analistas
v' Disenadores

Parque Jurasico
v Programadores
v" Probadores

v Administradores de
sistemas

Fi== Luis Hernandez Yafiez

Fundamentos de la programacion: Computadoras y programacion Pé4gina 8

Computadoras

Esquema general

Memoria

temporal

Unidad Central de Proceso
Central Processor Unit

Dispositivos Dispositivos
de entrada S de salida

Teclado Monitor
Ratén Impresora
N Escaner Altavoz
3§ Tactil Almacenamiento
2 permanente
Fundamentos de la programacion: Computadoras y programacion Pagina 9
Computadoras
La arquitectura de Von Neumann
Dispositivos de E/S I

Una ALU de 2 bits (Wikipedia)
C.P.U. (Procesador)

A.L.U.

Unidad Aritmético-Légica .
Memoria

Unidad de Control

Luis Hernandez Yafiez

Fundamentos de la programacion: Computadoras y programacion Pagina 10

Computadoras

La memoria

Memoria Cada celda en una direccion
Celdasde 8 / 16 / 32 / 64 bits
Informacion volatil

1Bit=0/1

1 Byte = 8 bits = 1 caracter

1 Kilobyte (KB) = 1024 Bytes
1 Megabyte (MB) = 1024 KB

1 Gigabyte (GB) = 1024 MB
1 Terabyte (TB) = 1024 GB
1 Petabyte (PB) = 1024 TB

210=1024 ~ 1000

Fundamentos de la programacion: Computadoras y programacion Pagina 11

Direccion

= Luis Hernandez Yéfiez

Fundamentos de la programacion

Lenguaje maquina y ensamblador

N
U
=
\©
>
N
[}
kel
f=
~©
c
o
[}
T
2
=1
4
|

Fundamentos de la programacion: Computadoras y programacion Pagina 12

Programacion de computadoras

Los procesadores trabajan con ceros y unos (bits)

Unidad de memoria basica: Byte (8 bits)
(2 digitos hexadecimales: 01011011 - 0101 1011 - 5B)

Lenguaje maquina

Codigos hexadecimales que representan instrucciones,
registros de la CPU, direcciones de memoria o datos

Instruccién Significado Lenguaje de bajo nivel

Dependiente de la maquina

A0 2F Acceder a la celda de memoria 2F
3E 01 Copiarlo el registro 1 de la ALU Programacion dificil
3 Ao 30 Acceder a la celda de memoria 30
£ 3E 02 Copiarlo en el registro 2 de la ALU
fg 1D Sumar
&: B3 31 Guardar el resultado en la celda de memoria 31

P Fundamentos de la programacion: Computadoras y programacion Pagina 13

Lenguaje ensamblador

Nemotécnicos para los cddigos hexadecimales:
A® - READ 3E 2> REG 1D -> ADD

Mayor legibilidad:

READ 2F Cédigo fuente
REG 01 (lenguaje ensamblador)
READ 30

REG 02

ADD Programa
WRITE 31 ensamblador

Lenguaje de nivel medio
Codigo objeto

(lenguaje maquina)

Fi== Luis Hernandez Yafiez

P8 Fundamentos de la programacion: Computadoras y programacion Pagina 14

Fundamentos de la programacion

Lenguajes de programacion
de alto nivel

\©
>
N

[
ju

Fundamentos de la programacion: Computadoras y programacion Pagina 15

Lenguajes de programacion de alto nivel

v Maés cercanos a los lenguajes natural y matematico
resultado = datol + dato2;

v’ Mayor legibilidad, mayor facilidad de codificacién

v" Estructuracion de datos / abstraccion procedimental

FORTRAN Python Prolog C#
C Pascal Cobol Lisp Ruby

BASIC Smalltalk Haskell Ada
Simula Java Eiffel C++

z
I eee

Fundamentos de la programacion: Computadoras y programacion Pagina 16

Lenguajes de programacion de alto nivel

Traduccion using nanespace otd;
Codigo fuente it mainG)
¢ 1 d dl
cout << "Hola Mundo!" << endl;
Compiladores: , et
Compilan y enlazan Compilador
programas completos
Intérpretes: Cédigo objeto 0100010100111010011100...
Compilan, enlazan _
y ejecutan instruccion Codigo
) . Enlazador objeto de
a Instruccion o
biblioteca

Programa Para una arquitectura concreta
ejecutable v un sistema operativo

Fi== Luis Hernandez Yafiez

Fundamentos de la programacion: Computadoras y programacion Pagina 17

Los lenguajes de programacion de alto nivel

Genealogia de lenguajes Versiones / Estandares

coBOL L
1959

FORTRAN
1954

Pascal Modula

1970 N 1975

Simula

Fuente: 1964

http://www.levenez.com/lang/

Fi== Luis Hernandez Yafiez

Fundamentos de la programacion: Computadoras y programacion Pagina 18

Fundamentos de la programacion

Un poco de historia

Fi== Luis Hernandez Yafiez

P Fundamentos de la programacion: Computadoras y programacion

Pagina 19

Un poco de historia

La prehistoria
El abaco
Slglo XIX (Wikipedia)
Maquina analitica de Charles Babbage
Lady Ada Lovelace
es considerada
la primera
programadora

Fi== Luis Hernandez Yafiez

Pagina 20

Un poco de historia

Siglo XX

AL AN 'W‘":
L
1936 Maquina de Turing

1946 ENIAC: Primera computadora digital
de propdsito general
1947 El transistor

1953 IBM 650: Primera
computadora a gran escala

1966 ARPANET: Origen de Internet

1967 Eldisquete

1970 Sistema operativo UNIX

1972 Primer virus informatico (Creeper) H
Lenguaje de programacion C ﬂ

1974 Protocolo TCP. Primera red local

Fi== Luis Hernandez Yafiez

P Fundamentos de la programacion: Computadoras y programacion Pagina 21

Un poco de historia

1975 Se funda Microsoft IMikCrosoft’ |
1976 Se funda Apple o

1979 Juego Pacman @ ‘ - .
1981 1BM PC Ry

Sistema operativo MS-DOS Apple Il (Wikipedia)
1983 Lenguaje de programacion C++
1984 CD-ROM -
1985 Windows 1.0 i —————
1990 Lenguaje HTML W . e
World Wide Web 4f Linux

IBM PC (Wikipedia)
1991 Sistema operativo Linux

P8 Fundamentos de la programacion: Computadoras y programacion Pagina 22

Fi== Luis Hernandez Yafiez

Un poco de historia

1992 Windows 3.1

1995 Lenguaje de programacion Java
DVD

1998 Se funda Google GO 8[@

1999 MSN Messenger

.

Siglo XXI s

2001 Windows XP
Mac 0S X

2002 Mozilla Firefox

2007 iPhone

2008 Android ...

aNS30I12

Fi== Luis Hernandez Yafiez

P Fundamentos de la programacion: Computadoras y programacion Pagina 23

Fundamentos de la programacion

Programacion
e Ingenieria del Software

Fi== Luis Hernandez Yafiez

P8 Fundamentos de la programacion: Computadoras y programacion Pagina 24

Programa informatico

;Qué es programar?

Decirle a un tonto muy rdpido exactamente lo que tiene que hacer

Especificar la estructura y el comportamiento de un programa,
asi como probar que el programa realiza su tarea
adecuadamente y con un rendimiento aceptable

Programa: Transforma entrada en salida

Programa

Algoritmo: Secuencia de pasos y operaciones que debe realizar
el programa para resolver el problema

El programa implementa el algoritmo en un lenguaje concreto

N
U
=
\©
>
N
[}
kel
f=
@
c
fu
[
s
2
=1
4

Fundamentos de la programacion: Computadoras y programacion Pagina 25

La Ingenieria del Software

La programacion es sélo una etapa del proceso de desarrollo

Modelo de desarrollo “en cascada”:

Planificaciéon Recursos necesarios, presupuesto, plan, ...
Analisis
Diseno
Programacion Implementacion

Prueba y depuracién

Mantenimiento

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4

Fundamentos de la programacion: Computadoras y programacion Pagina 26

Fundamentos de la programacion

El lenguaje de programacion C++

:E Luis Herndndez Yafiez

i Tamrm Fundamentos de la programacion: Computadoras y programacion Pagina 27

El lenguaje de programacion C++

Bjarne Stroustrup (1983)

Hola Mundo!

#include <iostream>
using namespace std;

int main()

cout << "Hola Mundo!" << endl;
// Muestra Hola Mundo!
2 return 9;
@ Fundamentos de la programacion: Computadoras y programacion Pagina 28

Elementos del lenguaje

Instrucciones
Datos: literales, variables, tipos
Subprogramas (funciones)

Comentarios

Directivas P Directiva_ 3
#include <iostream>
using namespace std;

@I int main()
{ <<
AT cout << "Hola Mundo!" << endl;

// Muestra Hola Mundo!

3 Comentario
3 [T return ©;

@©

c

g }

I

§

. Fundamentos de la programacion: Computadoras y programacion Pagina 29

Fundamentos de la programacion

Sintaxis de los lenguajes
de programacion

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4

Fundamentos de la programacion: Computadoras y programacion Pagina 30

Los lenguajes de programacion

Sintaxis y semdntica de los lenguajes

Sintaxis

— Reglas que determinan como se pueden construir
y secuenciar los elementos del lenguaje

Semantica

— Significado de cada elemento del lenguaje
(Para qué sirve?

Fi== Luis Hernandez Yafiez

Fundamentos de la programacion: Computadoras y programacion Pagina 31

Sintaxis de los lenguajes de programacion

Especificacion
v' Lenguajes (BNF)
v’ Diagramas

Ejemplo: Nimeros enteros (sin decimales)
BNF

<numero entero> ::= <signo opcional><secuencia de digitos>
<signo opcional> ::= +|-|<nada>
<secuencia de digitos> ::= <digito>| <digito><secuencia de digitos>

<digito>::=0]1]2|3|4|5|6]|7]|8]9
<nada> ::= g

Fi== Luis Hernandez Yafiez

Fundamentos de la programacion: Computadoras y programacion Pagina 32

Backus-Naur Form (BNF)

<numero entero> ::= <signo opcional><secuencia de digitos>
<signo opcional> ::= +|-|<nada>

<secuencia de digitos> ::= <digito> | <digito><secuencia de digitos>
<digito>::=0]1]2|3|4|5|6|7|8|9
<nada> ::=

+23

<numero entero> ::= <signo opcional><secuencia de digitos>

::= +<secuencia de digitos> ::= +<digito><secuencia de digitos>
::= +2<secuencia de digitos> ::= +2<digito> ::= +23

1374

<numero entero> ::= <signo opcional><secuencia de digitos>

::= <secuencia de digitos> ::= <digito><secuencia de digitos>

::= 1<secuencia de digitos> ::= 1<digito><secuencia de digitos>
::= 13<secuencia de digitos> ::= 13<digito><secuencia de digitos>

::= 137<secuencia de digitos> ::= 137<digito> ::= 1374
1-34
<numero entero> ::= <signo opcional><secuencia de digitos> x

::= <secuencia de digitos> ::= <digito><secuencia de digitos>
::= 1<secuencia de digitos> ::= ERROR (- no es <digito>)

Fi== Luis Hernandez Yafiez

Fundamentos de la programacion: Computadoras y programacion Pagina 33

Diagramas de sintaxis

+23 _)01 T m—) +23 ‘/
e ’: @ 1374 V
1-34 ?

*0—&‘1 —@r— 1-

Fi== Luis Hernandez Yafiez

Fundamentos de la programacion: Computadoras y programacion Pagina 34

Fundamentos de la programacion

Un primer programa en C++

Iﬂ Luis Herndndez Yafiez
=
£
@

..... (8 Fundamentos de la programacién: Computadoras y programacion Pagina 35

Un primer programa en C++

Hola Mundo!

Un programa que muestra un saludo en la pantalla:

#include <iostream>
using namespace std;

int main()
// main() es donde empieza la ejecucidn

{

cout << "Hola Mundo!" << endl; // Muestra Hola Mundo!

return 0;

Luis Hernandez Yafiez
-

(%)
=)
7
(=)

..... ('@ Fundamentos de la programacién: Computadoras y programacion Pagina 36

Un primer programa en C++

Andalisis del programa
Biblioteca

Directiva #include <iostream> Espacio de nombres
Instruccién using Namespace std;

\ / Coloreado sintactico

Tipo Palabras reservadas
.\ i . .z
Declaracién |int main|() Cabecera de la funcion

.go Variable Cadena de caracteres Constante

3 | Instruccién cout k< "Hola Mundo!" << endl;

é Ogerador | Operador

o /Datos literales
N > .z .
2 g | Instruccién return 03
- o Numero
2 } Cuerpo de la funcidn
f Las instrucciones terminan en ;

Fundamentos de la programacion: Computadoras y programacion Pagina 37

Un primer programa en C++

Hola Mundo!

Casi todo es infraestructura
Sélo

cout << "Hola Mundo!" << endl
hace algo palpable

La infraestructura (notacién, bibliotecas y otro soporte)
hace nuestro codigo simple, completo, confiable y eficiente

jEl estilo importa!

N
U
=
\©
>
N
[}
kel
f=
@
c
o
[}
T
2
=1
4

Fundamentos de la programacion: Computadoras y programacion Pagina 38

Fundamentos de la programacion

Herramientas de desarrollo

Luis Herndndez Yafiez

(Glolcle

----- (8 Fundamentos de la programacién: Computadoras y programacion Pagina 39

Herramientas de desarrollo

Editor

v" Bloc de notas, Wordpad, Word, Writer, Gedit, Kwrite, ...
(texto simple, sin formatos)

v" Editores especificos: coloreado sintactico
v" Recomendaciéon: Notepad++

H Eerirsinay m,.__ﬁ i
- ® 3 |
Instalacién y uso:
i il vk Seccién
...... Herramientas de desarrollo

en el Campus Virtual

Luis Hernandez Yafiez

(Glolcle

----- ('@ Fundamentos de la programacién: Computadoras y programacion Pagina 40

Compilacidn, enlace y ejecucion

hola.cpp = RUGNNIELE), hola.ob]
(cédigo fuente) (cédigo objeto)

Codigo objeto de

la biblioteca iostream Enlazador

Hola Mundo!

(:Eifé;él(l()r <1EE-- hola.exe
(ejecutable)

(DE

..... (8 Fundamentos de la programacién: Computadoras y programacion Pagina 41

F==" Luis Hernandez Yafiez
r

Mas herramientas de desarrollo

Compilador

v Importante: C++ estandar
v" Recomendaciéon: GNU G++ (MinGW en Windows)

N ks @41 e = f0H &

Instalacion y uso:
Seccién
Herramientas de desarrollo
en el Campus Virtual

(DE

..... ('@ Fundamentos de la programacién: Computadoras y programacion Pagina 42

== Luis Hernandez Yafiez
r

Mas herramientas de desarrollo

Entornos de desarrollo

v' Para editar, compilar y probar el cdigo del programa
v" Recomendaciones:
— Windows: MS Visual Studio / C++ Express o Eclipse
— Linux: Netbeans o Eclipse

Instalacién y uso:
Seccion
Herramientas de desarrollo
en el Campus Virtual

Iﬂ Luis Herndndez Yafiez
=
£

: ()

Fundamentos de la programacion: Computadoras y programacion Pagina 43

Un primer programa en C++: ejecucion

/Qué hace el programa?

v' La ejecucion del programa siempre empieza en main()

v" Se ejecutan las instrucciones en secuencia de principio a fin

Pantalla (cout)
cout << "Hola Mundo!" << endl;

Muestra Hola Mundo!

H en la pantalla y salta de linea

Devuelve © como codigo

i de terminacién del programa

Tl Fundamentos de la programacion: Computadoras y programacion Pagina 44

ﬂ Luis Hernandez Yafiez

Fundamentos de la programacion

C++: Un mejor C

(DE

..... (8 Fundamentos de la programacién: Computadoras y programacion Pagina 45

F==" Luis Hernandez Yafiez
ﬁ

C++: Un mejor C

El lenguaje C

v' Lenguaje creado por Dennis M. Ritchie en 1972
v' Lenguaje de nivel medio:
— Estructuras tipicas de los lenguajes de alto nivel
— Construcciones para control a nivel de maquina
Lenguaje sencillo (pocas palabras reservadas)
Lenguaje estructurado (no estrictamente estructurado en bloques)
Compartimentalizacion de codigo (funciones) y datos (aAmbitos)

Componente estructural basico: la funcion (subprograma)

Distingue entre mayusculas y minusculas

v
v
v
v
v Programacion modular
v
v’ Palabras reservadas (o clave): en minusculas
&)

ﬂ Luis Hernandez Yafiez

T Fundamentos de la programacion: Computadoras y programacion Pagina 46

Acerca de Creative Commons @@@@

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

Pulsa en la imagen de arriba a la derecha para saber mas.

N
(9]
=
\©
>
N
[}
kel
f=
@
c
fu
[
s
2
=1
4

Fundamentos de la programacion: Computadoras y programacion Pagina 47

Fundamentos de la programacion

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

Tipos e instrucciones |

Indice

Un ejemplo de programacion

El primer programa en C++

Las lineas de cédigo del programa
Calculos en los programas
Variables

Expresiones

Lectura de datos desde el teclado
Resolucion de problemas

Los datos de los programas
Identificadores

Tipos de datos

Declaracion y uso de variables
Instrucciones de asignacion
Operadores

Mas sobre expresiones
Constantes

La biblioteca cmath

Operaciones con caracteres

% Luis Hernandez Yafiez

(3)
:

50
64
80
86
92
98
108
119
127
129
133
142
147
152
160
167
171
174

Fundamentos de la programacion: Tipos e instrucciones |

Operadores relacionales
Toma de decisiones (if)
Bloques de cddigo
Bucles (while)
Entrada/salida por consola
Funciones definidas

por el programador

177
180
183
186
190

199

Fundamentos de la programacion

Un ejemplo de programacion

(0]

@ Fundamentos de la programacion: Tipos e instrucciones | Pagina 50

==z Luis Hernandez Yafiez
f
L4

Un ejemplo de programacion

Una computadora de un coche

Instrucciones que entiende:
<instruccion> ::= <inst> ;
<inst>::= Start | Stop | <avanzar>
<avanzar> ::= Go <direccién> <num> Blocks ,é.:
<direccién> ::= North | East | South | West
<num>:=1|2|3|4]|5

Ejemplos:

Start;

Go North 3 Blocks;

Stop;

(0)2]

@ Fundamentos de la programacion: Tipos e instrucciones | Pagina 51

=17 Luis Hernandez Yafiez
f
L4

Un ejemplo de programacion

Sintaxis del lenguaje de programacion

- = Literales

instruccién Stop

~d4

avanzar

avanzar direccion Blocks

direccion —> num —

Luis Herndndez Yafiez

=@ ~undamentos de la programacién: Tipos e instrucciones | Pagina 52

Un ejemplo de programacion

El problema a resolver %

Estando el coche en la posicion A, 31
conseguir llegar al Cine Tivoli (B)

;Qué pasos hay que seguir?
Arrancar
Ir un bloque al Norte
Ir dos bloques al Este
Ir cinco bloques al Norte A

Ir dos bloques al Este
Parar Bloque: ¢+—¢ I

Luis Hernandez Yafiez

=mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 53

Un ejemplo de programacion

El algoritmo

Secuencia de pasos que hay que
seguir para resolver el problema ‘.g

A

1.- Arrancar
2.- Ir un bloque al Norte
3.- Ir dos bloques al Este

4.- Ir cinco bloques al Norte d e
5.- Ir dos bloques al Este ‘

6.- Parar

Esos pasos sirven tanto para
una persona como para una computadora.

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 54

v, Luis Herndndez Yafiez
f

Un ejemplo de programacion

El programa

Instrucciones escritas en 1]
el lenguaje de programacion — 3 B

Start;
Go North 1 Blocks;
Go East 2 Blocks;

Go North 5 Blocks; A
Go East 2 Blocks;
Stop;

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 55

v, Luis Hernandez Yafiez
f

Un ejemplo de programacion

El programa

Escribimos el codigo del programa en un editor
y lo guardamos en un archivo:

- -y
S e R S - - o
e Cowgpay s lpray Terld Foges

[el Beme Ve e -

3| L B RS e *

Stat; |
Go North 1 Blocks Copiamos el archivo

Go East Blocks; en una llave USB
Go Noth 5 Blocks; y lo llevamos al coche
Go West 2 Blocks;
Stop;

e
1
E
|-;

Luis Herndndez Yafiez

@10

el undamentos de la programacion: Tipos e instrucciones | Pagina 56

R

Un ejemplo de programacion

La compilacion

Introducimos la llave USB en el coche
y pulsamos el boton de ejecutar el programa:

Stat;
----"~ Unknown word.
Go North 1 Blocks
A 5 missing.

Go East Blocks;
A Number missing.

Errores

de sintaxis
Go Noth 5 Blocks;

A Unknown word.
Go West 2 Blocks;
Stop;
There are errors. Impossible to run the program.

Luis Hernandez Yafiez

{E}

HEE

S m Fundamentos de la programacion: Tipos e instrucciones | Pagina 57

Un ejemplo de programacion

Depuracion

Editamos el codigo para corregir los errores sintacticos:

Stat; Start;

Go North 1 Blocks Go North 1 Blocks;
Go East Blocks; E::i:>- Go East 3 Blocks;

Go Noth 5 Blocks; Go North 5 Blocks;
Go West 2 Blocks; Go West 2 Blocks;

Stop; Stop;

(0]

@ Fundamentos de la programacion: Tipos e instrucciones | Pagina 58

==z Luis Hernandez Yafiez
f
L4

Un ejemplo de programacion

La ejecucion

Se realiza lo que pide
cada instruccion: B

Start;
Go North 1 Blocks;
Go East 3 Blocks;

® ——=mg

Error de ejecucion
jUna instruccion no se puede ejecutar!

Luis Hernandez Yafiez

(0]

@ Fundamentos de la programacion: Tipos e instrucciones | Pagina 59

f
e

Un ejemplo de programacion

Depuracion

Editamos el codigo para arreglar el error de ejecucion:

Start;

Go North 1 Blocks;

Go East 3 Blocks; E::{:>
Go North 5 Blocks;

Go West 2 Blocks;

Stop;

(0]

@ Fundamentos de la programacion: Tipos e instrucciones |

==z Luis Hernandez Yafiez
f
L4

Start;

Go North 1 Blocks;
Go East 2 Blocks;

Go North 5 Blocks;
Go West 2 Blocks;

Stop;

Pagina 60

Un ejemplo de programacion

La ejecucion

Se realiza lo que pide

cada instruccion:
Start;
Go North 1 Blocks;
Go East 2 Blocks;
Go North 5 Blocks;
Go West 2 Blocks;
Stop;

Error logico

Luis Hernandez Yafiez

(0]

@ Fundamentos de la programacion: Tipos e instrucciones |

f
e

jEl programa no llega al resultado deseado!

Pagina 61

Un ejemplo de programacion

Depuracion

Editamos el codigo para arreglar el error logico:

Start; Start;
Go North 1 Blocks; Go North 1 Blocks;
Go East 2 Blocks; E::i:>- Go East 2 Blocks;
Go North 5 Blocks; Go North 5 Blocks;
Go West 2 Blocks; Go East 2 Blocks;
Stop; Stop;

Fundamentos de la programacién: Tipos e instrucciones | Pagina 62

Un ejemplo de programacion

La ejecucion
Se realiza lo que pide
cada instruccion: & &
Start;
Go North 1 Blocks;
Go East 2 Blocks;

Go North 5 Blocks; ~§ oo
Go East 2 Blocks; y
Stop;

jConseguido!

(0]

@ Fundamentos de la programacion: Tipos e instrucciones | Pagina 63

=17 Luis Hernandez Yafiez
f
L4

Fundamentos de la programacion

El primer programa en C++

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 64

==z Luis Hernandez Yafiez
f

El primer programa en C++

Hola Mundo!
De vuelta en el programa que muestra un saludo en la pantalla:

#include <iostream>
using namespace std;

int main() // main() es donde empieza la ejecucidn

{

cout << "Hola Mundo!" << endl;

return 0;

Luis Hernandez Yafiez

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 65

El primer programa en C++

Hola Mundo!
La Unica instruccion que produce algo tangible:

#include <iostream>
using namespace std;

int main() // main() es donde empieza la ejecucidn

{
cout << "Hola Mundo!" << endl;
) return 0;
Fundamentos de la programacion: Tipos e instrucciones | Pagina 66

El primer programa en C++

cout (iostream) character output stream

Visualizacion en la pantalla: operador << (insertor)

cout << "Hola Mundo!" << endl;

-« "Hola Mundo!" << endl;

Hola Mundo!

endl = end line

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 67

v, Luis Hernandez Yafiez
ﬁ

El dispositivo de salida

Pantalla en modo texto

=» Lineas de 80 caracteres (textos)

Aplicacién en modo texto

» -
v e Feratgrer o proge e J5 D JULTEW 15 L iinaie T o Frcio Crisgess: o -

=7 Luis Hernandez Yafiez

Fundamentos de la programacion: Tipos e instrucciones | Pagina 68

El dispositivo de salida

Ventanas de consola o terminal

Las aplicaciones en modo texto se ejecutan dentro de ventanas:
v" Windows: ventanas de consola (Simbolo del sistema)

v' Linux: ventanas de terminal

Cursor parpadeante: Donde se colocara el siguiente caracter.

=7 Luis Hernandez Yafiez

Fundamentos de la programacion: Tipos e instrucciones | Pagina 69

Visualizacion de datos

El insertor << cout << ...;

Inserta textos en la pantalla de modo texto
Representacién textual de los datos

A partir de la posicion del cursor

Line wrap (continua en la siguiente linea si no cabe)

Se pueden encadenar:

cout << ... << ... << %}

Recuerda: las instrucciones terminan en ;

(0]

- =mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 70

r Luis Herndndez Yafiez
L.

Visualizacion de datos

Con el insertor << podemos mostrar...

v’ Cadenas de caracteres literales
Textos encerrados entre comillas dobles: "..."
cout << "Hola Mundo!";
iLas comillas no se muestran!
v' Nameros literales
Con o sin decimales, con signo o no: 123, -37, 3.1416, ...
cout << "Pi = " << 3.1416;

Se muestran los caracteres que representan el niumero

v endl jPunto decimal, NO coma!

Luis Hernandez Yafiez

(0]

- =mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 71

El primer programa en C++

El programa principal
La funciéon main(): donde comienza la ejecucion...

#include <iostream>
using namespace std;

int main() // main() es donde empieza la ejecuciodn

{

cout << "Hola Mundo!" << endl;
return 0;

}

Contiene las instrucciones que hay que ejecutar

Luis Herndndez Yafiez

E

=@ ~undamentos de la programacién: Tipos e instrucciones | Pagina 72

El primer programa en C++

El programa principal

La funcién main():

Tipo de la funcion (int = entero): Tipo de valor que devuelve

I_ Nombre de la funcion

mair@— iEs una funcién!

r"c.e’;ur‘n 0; — Cuerpo de la funcion (bloque de c6digo)

AVl B% Il Devuelve el resultado (@) de la funcién
0]

- =mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 73

P Luis Hernandez Yafiez
L.
|@- — —~

El primer programa en C++

Documentando el cédigo...
Comentarios (se ignoran):

#include <iostream>
using namespace std;

int main() // main() es donde empieza la ejecucidn

{

cout << "Hola Mundo!" << endl;

Hasta el final delalinea: // Comentario de una linea

De varias lineas: /* Comentario de varias
lineas seguidas */

Luis Herndndez Yafiez

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 74

f
©

El primer programa en C++

La infraestructura

Codigo para reutilizar:

#include <iostream> <«—— Una directiva: empieza por #
using namespace std;

int main() // main() es donde empieza la ejecucidn

{

cout << "Hola Mundo!" << endl;
return 0;

}

Bibliotecas de funciones a nuestra disposicion

Luis Hernandez Yafiez

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 75

El primer programa en C++

Bibliotecas

Se incluyen con la directiva #include:

#include <iostream>

(Utilidades de entrada/salida por consola)

Para mostrar o leer datos hay que incluir la biblioteca iostream

Espacios de nombres

En iostream hay espacios de nombres; ;cual queremos?

#include <iostream>
using namespace std; <«—— Esuna instruccion: terminaen ;

Siempre usaremos el espacio de nombres estandar (std)
Muchas bibliotecas no tienen espacios de nombres

Luis Herndndez Yafiez

Fundamentos de la programacion: Tipos e instrucciones | Pagina 76

El primer programa en C++

Compilacion y enlace
A menudo en un paso

hola.obj
(cédigo objeto)

hola.cpp ——>> NUQWHIELNS
(codigo fuente)

Codigo objeto de
la biblioteca iostream

Hola Mundo!
(— hola.exe
(ejecutable)
013

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 77

Enlazador

Luis Hernandez Yafiez

El primer programa en C++

Elementos del programa

Biblioteca

Directiva #include <ios’cr‘eam>/ESI°"=‘Ci°de nombres

Instruccion using namespace std; Coloreado sintactico:

Directivas Tipos
. Palabras reservadas generales
T"< Palabras reservadas Datos literales Comentarios
Declaracion |int main () Cabecera de la funcidn
_gn { Variable Cadena de caracteres Constante
3 | Instruccién cout K< "Hola Mundo!" << endl;
o Ogerador | Operador
©
o Datos literales
=) L
& | Instruccién return 0;
o Ndmero
} Cuerpo de la funcidn

Las instrucciones terminan en ;

7 Luis Hernandez Yafiez

Fundamentos de la programacion: Tipos e instrucciones | Pagina 78

El primer programa en C++

Uso de espacio en blanco

Separacién de elementos por uno o mas espacios en blanco
(espacios, tabuladores y saltos de linea)

El compilador los ignora

#include <iostream> using namespace std;
int main(){cout<<"Hola Mundo!"<<endl;
return 0;}

#include <iostream>
using namespace std;

int main()

{ ;Cuadl se lee mejor?
cout << "Hola Mundo!" << endl;

return 0;

% Luis Hernandez Yafiez

Fundamentos de la programacion: Tipos e instrucciones | Pagina 79

Fundamentos de la programacion

Las lineas de cddigo del programa

(0]

@ Fundamentos de la programacion: Tipos e instrucciones | Pagina 80

==z Luis Hernandez Yafiez
T
L4

Programa minimo

Programa con E/S por consola
Una plantilla para empezar:
#include <iostream>

using namespace std;

int main()

{
<€ jTu cédigo aqui!

Zgj
= return 9;
L
5
g
I
Fundamentos de la programacion: Tipos e instrucciones | Pagina 81

El Quijote... M‘
.. recitado en la consola Yﬁ?

Mostrar los textos con cout <<:

#include <iostream>
using namespace std;

int main()

{

cout << "En un lugar de la Mancha," << endl;

cout << "de cuyo nombre no quiero acordarme," << endl;

cout << "no ha mucho tiempo que vivia un hidalgo de los de

lanza en astillero, " << endl;
s return 0;
53
3 }
5
T
I E E
Fundamentos de la programacion: Tipos e instrucciones | Pagina 82

Lineas de cédigo

Introduccion del codigo del programa

Terminamos cada linea de c6digo con un salto de linea (J):

#tinclude <iostream> d
using namespace std; d

d
int main() d
{d
cout << "En un lugar de la Mancha," << endl; d
cout << "de cuyo nombre no quiero acordarme," << endl; J
cout << "no ha mucho tiempo que vivia un hidalgo de los de
lanza en astillero, ..." << endl; J
return 9; J
}d

Luis Hernandez Yafiez

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 83

s

Lineas de cédigo

[Luis Herndndez Yafiez
L.

Introduccion del codigo del programa

No hay que partir una cadena literal entre dos lineas:

cout << "no ha mucho tiempo que vivia un hidalgo de@

los de lanza en astillero, ..." << endl; d

jLa cadena no termina (12 linea)!

jNo se entiende 1os (22 linea)!

Veamos cémo nos muestra los errores el compilador...

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 84

Luis Hernandez Yafiez

s

Programar pensando en posibles cambios

Mantenimiento y reusabilidad

v' Usa espacio en blanco para separar los elementos:
<< endl;

cout << "En un lugar de la Mancha,

mejor que
cout<<"En un lugar de la Mancha, "<<endl;

v' Usa sangria (indentacion) para el cédigo de un bloque:

{
Tab ‘)‘cout << "En un lugar de la Mancha," << endl;
)
3esp- lpeturn 0;
}

jEl estilo importa!

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 85

Fundamentos de la programacion

Calculos en los programas

(0]

@ Fundamentos de la programacion: Tipos e instrucciones | Pagina 86

==z Luis Hernandez Yafiez
f
L4

Calculos en los programas

Operadores aritméticos

+ Suma

- Resta

* Multiplicacion

/ Divisiéon

Operadores binarios

operando_izquierdo operador operando _derecho

Operacion Resultado
3+ 4 7

2.56 - 3 -0.44
143 * 2 286
45.45 / 3 15.15

(0]

@ Fundamentos de la programacion: Tipos e instrucciones | Pagina 87

=17 Luis Hernandez Yafiez
f
L4

Calculos en los programas

v, Luis Herndndez Yafiez
(7)
*)]

Numeros literales (concretos)

v Enteros: sin parte decimal
Signo negativo (opcional) + secuencia de digitos
3 143 -12 67321 -1234

No se usan puntos de millares

Signo negativo (opcional) + secuencia de digitos
+ punto decimal + secuencia de digitos

3.1416 357.0 -1.333 2345.6789 -404.1

v’ Reales: con parte decimal

54 Punto decimal (3 1416), NO coma (3.1416)

(0]

Fundamentos de la programacion: Tipos e instrucciones | Pagina 88

Calculos en los programas

Luis Hernandez Yafiez

Ejemplo

#include <iostream>
using namespace std;

int main()

‘ Un texto Un nimero
cout << "33 + 1234 =" <<[133 + 1234 |<< endl;
cout << "1234 - 111.5 = " << 1234 - 111.5 << endl;
cout << "34 *¥ 59 = " << 34 * 59 << endl;
cout << "3.4 * 5,93 = " << 3.4 * 5,93 << endl;
cout << "500 / 3 = " << 500 / 3 << endl; // Div. entera
cout << "500.0 / 3 = " << 500.0 / 3 << endl; // Div. real
return 0;
}

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 89

Calculos en los programas

D:\FP\Temad2»g++ -0 calculos calculos.cpp

s resuelve std::cout al enlaza

gw/bin/../ /lib/gee/mingw32/4.5.8

acion automatica s activo 51

InNcionar a meno

en simbolos de

Division entera

Division real

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 90

==z Luis Hernandez Yafiez
f

Calculos en los programas

¢Division entera o division real?

Ambos operandos enteros > Divisioén entera
Algtin operando real = Division real

Division Resultado
500 / 3 166

500.0 / 3 166.667
500 / 3.0 166.667
500.0 / 3.0 166.667

Comprueba siempre que el tipo de divisidn sea el que quieres

Luis Hernandez Yafiez

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 91

Fundamentos de la programacion

Variables

(0]

s =mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 92

[Luis Herndndez Yafiez
L.

Variables

Datos que se mantienen en memoria
Variable: dato que se accede por medio de un nombre

Dato literal: un valor concreto

Variable: puede cambiar de valor (variar)

edad = 19; // variable edad y literal 19

Las variables deben ser declaradas
;Qué tipo de dato queremos mantener?
v' Valor numérico sin decimales (entero): tipo int

v’ Valor numérico con decimales (real): tipo double

Declaracion: tipo nombre;

Luis Hernandez Yafiez

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 93

Variables

Declaracion de variables tipo nombre;
int cantldac'j; Memoria
double precio; cantidad >
Se reserva espacio suficiente precio >

LAS VARIABLES NO SE INICIALIZAN
No se deben usar hasta que se les haya dado algun valor

¢;Donde colocamos las declaraciones?

Siempre, antes del primer uso
Habitualmente al principio de la funcién

Luis Herndndez Yafiez

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 94
Variables
Declaracion de variables Memoria
#tinclude <iostream> cantidad ?
using namespace std; .
precio ?
int main() total >

{

int cantidad;
double precio, total;

Podemos declarar varias de un mismo tipo

return @; separando los nombres con comas

Luis Hernandez Yafiez
—

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 95

Variables

Capacidad de las variables
int
-2.147.483.648 ... 2.147.483.647
-2147483648 .. 2147483647

double
2,23 x103%8 1,79 x 10*398 y sus negativos

[+]-] 2.23e-308..1.79e+308

Problemas de precision

Luis Herndndez Yafiez

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 96

Variables

Asignacion de valores a las variables (operador =)

cantidad = 12; // int cantidad €< 12

precio = 39.95; // double
total = cantidad * precio; // Asigna 479.4

Concordancia de tipos: cantidM. 5;

jiiA la izquierda del = debe ir siempre una variable!!!

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 97

v, Luis Hernandez Yafiez
f

Fundamentos de la programacion

Expresiones

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones |

[Luis Herndndez Yafiez
L.

Pagina 98

Expresiones

Expresiones

Secuencias de operandos y operadores

operando operador operando operador operando ...

total =|cantidad * precio * 1.18|

p

I
Expresion

A igual prioridad se evaluan de izquierda a derecha

Paréntesis para forzar ciertas operaciones

total = cantidadl + cantidad2 * precio;

Luis Hernandez Yafiez

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones |

total = (cantidadl + cantidad2) * precio;

Unos operadores se evaluan antes que otros

Pagina 99

—+

Expresiones

Precedencia de los operadores

cantidadl 10;
cantidad2

=2;
precio = 40.0;

*y/ se evaldan antes que +y -

total = cantidadl + cantidad2 * precio;
*antesque+ > 10+2*40,0-> 10+80,0->90,0

total = (cantidadl + cantidad2) * precio;
+antesque * 2> (10+2)*40,0-> 12*40,0 > 480,0

Luis Herndndez Yafiez

(0]

s =mr=m ~undamentos de la programacion: Tipos e instrucciones | P4gina 100

Variables y expresiones

Ejemplo de uso de variables y expresiones

#include <iostream>
using namespace std;

int main()

int cantidad;
double precio, total;
cantidad = 12;
precio = 39.95;
total = cantidad * precio;
cout << cantidad << " x " << precio << " ="
) << total << endl;
5 return 0;
Fundamentos de la programacion: Tipos e instrucciones | Pagina 101

Variables y expresiones

Ejemplo de uso de variables Memoria
#include <iostream> cantidad ?
using namespace std;

precio ?
int main()
{
total ?
int cantidad;
double precio, total;
Fundamentos de la programacion: Tipos e instrucciones | Pagina 102

Variables y expresiones

Ejemplo de uso de variables Memoria
#include <iostream> cantidad 12
using namespace std;

precio ?
int main()
{
total ?
int cantidad;
double precio, total;
cantidad = 12;
Fundamentos de la programacion: Tipos e instrucciones | Pagina 103

Variables y expresiones

Ejemplo de uso de variables Memoria
#include <iostream> cantidad 12
using namespace std;

precio 39.95
int main()
{
total ?
int cantidad;
double precio, total;
cantidad = 12;
precio = 39.95;
Fundamentos de la programacion: Tipos e instrucciones | Pagina 104
Variables y expresiones

Ejemplo de uso de variables Memoria
#include <iostream> cantidad 12
using namespace std;

precio 39.95
int main()
{ total 479.4

int cantidad;

double precio, total;
cantidad = 12;

precio = 39.95;

total = cantidad * precio;

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones |

[Luis Hernandez Yafiez
L.

Pé4gina 105

Variables y expresiones

Ejemplo de uso de variables Memoria
#include <iostream> cantidad 12
using namespace std;

precio 39.95
int main()
{ total 479.4

int cantidad;

double precio, total;
cantidad = 12;

precio = 39.95;

total = cantidad * precio;

cout << cantidad << X " << precio << =
<< total << endl;

(0]

s =mr=m ~undamentos de la programacion: Tipos e instrucciones | Péagina 106

[Luis Herndndez Yafiez
L.

Variables y expresiones

Ejemplo de uso de variables

#include <iostream>
using namespace std;

int main()
{
int cantidad;
double precio, total;
cantidad = 12;
precio = 39.95;
total = cantidad * precio;

cout << cantidad << X " << precio << =

<< total << endl;

return 0;

}
[0}

e =mr=m ~undamentos de la programacion: Tipos e instrucciones | Péagina 107

Luis Hernandez Yafiez

Fundamentos de la programacion

Lectura de datos desde el teclado

P4gina 108

Fundamentos de la programacion: Tipos e instrucciones |

==z Luis Hernandez Yafiez
(7]

L4

: (&)

Valores proporcionados por el usuario

cin (iostream) character input stream
Lectura de valores de variables: operador >> (extractor)

cin >> cantidad;

Memoria
cin >> cantidad; cantidad 12
— 12
COEIED |-
Fundamentos de la programacion: Tipos e instrucciones | Pagina 109

Valores proporcionados por el usuario

Transforma los caracteres introducidos en datos

Cursor parpadeante: lugar de lectura del siguiente caracter
La entrada termina con Intro (cursor a la siguiente linea)

jEl destino del extractor debe ser SIEMPRE una variable!

Se ignoran los espacios en blanco iniciales

==z Luis Hernandez Yafiez
f

=@ ~undamentos de la programacién: Tipos e instrucciones | Pagina 110

Valores proporcionados por el usuario

Lectura de valores enteros (int)
Se leen digitos hasta encontrar un caracter que no lo sea
12abcd 12 abcd 12 abcd 124
Se asigna el valor 12 a la variable
El resto queda pendiente para la siguiente lectura
Recomendacion: Lee cada variable en una linea 124

Lectura de valores reales (double)
Se leen digitos, el punto decimal y otros digitos
39.95.5abc 39.95 abcd 39.954

Se asigna el valor 39,95 a la variable; el resto queda pendiente
Recomendacioén: Lee cada variable en unalinea 39.954J

Luis Hernandez Yafiez

(0]

- =mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 111

Luis Herndndez Yafiez

Valores proporcionados por el usuario

@8l

/Qué pasa si el usuario se equivoca?

El dato no sera correcto
Aplicacion profesional: cddigo de comprobacion y ayuda
Aqui supondremos que los usuarios no se equivocan

En ocasiones afiadiremos comprobaciones sencillas

€@ Para evitar errores, lee cada dato en una instruccién aparte

Fundamentos de la programacion: Tipos e instrucciones | Pagina 112

Valores proporcionados por el usuario

Luis Hernandez Yafiez

{E}

/Qué pasa si el usuario se equivoca?

int cantidad; jAmigable con el usuario!
double precio, total; (Qué tiene que introducir?

cout << "Introduce la cantidad: ";
cin >> cantidad;

cout << "Introduce el precio: ";
cin >> precio;

cout << "Cantidad: " << cantidad << endl;
cout << "Precio: " << precio << endl;

la cantidad: abc

ce el precio: Cantidad: @

recio: 1.79174e-387

No se puede leer un entero = 0 para cantidad y Error
La lectura del precio falla: precio no toma valor (basura)

HEE

SS—mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 113

Valores proporcionados por el usuario

/Qué pasa si el usuario se equivoca?

duce la cant :ll.‘J:Jl.']i 12abc . 12 para cantidad
C el preclo: Cantidad: 12 No se puede leer un real
- 0 para precioy Error

s la -:'.'J||1.'1:L-‘|.-'J-:‘|j. J_J':r:-ni'_u_' 12 para cantidad
e 2] Precio: Lan cldad: .5 9 0,5 para pr\ec iO
Lo demas queda pendiente

jijLectura correctal!!

Luis Herndndez Yafiez

(0]

s =mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 114

Programa con lectura de datos

Division de dos niimeros

Pedir al usuario dos numeros y mostrarle el resultado
de dividir el primero entre el seqgundo

Algoritmo.-)
Datos / calculos

1. Pedir el numerador
Variable numerador (double)

2. Pedir el denominador
Variable denominador (double)

3. Realizar la division, guardando el resultado

Variable resultado (double)
resultado = numerador / denominador

4. Mostrar el resultado

Luis Hernandez Yafiez

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 115

Un esquema general

Entrada-Proceso-Salida

Muchos programas se ajustan a un sencillo esquema:

Declaraciones Entrada Procesamiento Salida

. Leer numerador

. Leer denominador

. Calcular division en resultado

. Mostrar resultado

7 Luis Herndndez Yafiez

A Fundamentos de la programacion: Tipos e instrucciones | Pagina 116

Programa con lectura de datos instrucciones

Division de dos niimeros

Pedir al usuario dos numeros y mostrarle el resultado de dividir el
primero entre el sequndo.

1. Leer numerador

cin >> numerador;

2. Leer denominador

cin >> denominador;

3. Calcular divisién en resultado

resultado = numerador / denominador;
4. Mostrar resultado

cout << resultado;

7 Luis Herndndez Yafiez

A Fundamentos de la programacion: Tipos e instrucciones | Pagina 117

Programa con lectura de datos implementacisn

Division de dos niimeros

#include <iostream> 129
using namespace std; Denominador: 2

Resultado: 64.5

int main()

{

doub numerador

resultado

£ cout "Resl - r do << en
>
3 return 0;
~©
5 }
§
Fundamentos de la programacion: Tipos e instrucciones | P4gina 118

Fundamentos de la programacion

Resolucion de problemas

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Tipos e instrucciones | Pagina 119

Resolucion de problemas Anélisis / Disefio

Problema

Dadas la base y la altura de un tridngulo, mostrar su drea

Refinamiento

Mostrar en la pantalla un texto que pida la base del tridngulo. El usuario
introducirda el valor con el teclado. Mostrar en la pantalla un texto que
pida la altura del triangulo. El usuario introducird el valor con el teclado.
Se calculard el drea del tridngulo y se mostrard en la pantalla.

(0]

s =mr=m Fundamentos de la programacion: Tipos e instrucciones | Péagina 120

[Luis Herndndez Yafiez
L.

Resolucion de problemas

Objetos: Datos que maneja el programa

variable cin

cout cadena literal

Mostrar pn Id pantallalyn|texto que pida la base del tridngulo| El usuario

introduc 4=a—le| baselcon &fiteclado)|Mostrar en la pantalla un|texto que

pida la altura del tridngula El usuario introducird Iq alturalcon el

teclado. 51 calculard el drea del tridnguloly se mostrard Izn la pantalla.

cadena literal

variable
variable

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones | Pagina 121

[Luis Hernandez Yafiez
L.

Resolucion de problemas

[Luis Herndndez Yafiez
L.

Datos que maneja el programa: tipos

Objeto Tipo
Pantalla

"Introduzca la base del triangulo: "

Base del triangulo double
Teclado

"Introduzca la altura del triangulo: "

Altura del triangulo double
Area del tridngulo double

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones |

¢Varia?
Variable
Constante
Variable
Variable
Constante
Variable

Variable

Nombre
cout
ninguno
base
cin
ninguno
altura

area

Péagina 122

Luis Hernandez Yafiez

s

Resolucion de problemas

Operaciones (acciones)

cout <<

cin >> ...

Mostrar en la pantalla un texto que pida la Hase del tridngulo. El usuario

introducird la base con el teclado. Mostrar en la pantalla un texto que

pida la altura del tridngulo. El usuario|introducird

la altura con el

teclado. S¢ calculard el drea del tridngulo y se mostrard en la pantalla.

area = base * altura / 2

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones |

Pagina 123

El algoritmo

Secuencia de acciones que ha de realizar el programa
para conseguir resolver el problema

Mostrar en la pantalla el texto que pida la base del triangulo
Leer del teclado el valor para la base del triangulo

Mostrar en la pantalla el texto que pida la altura

Leer del teclado el valor para la altura del triangulo

Calcular el area del triangulo

A o A

Mostrar el area del triangulo

7 Luis Hernandez Yafiez

Fundamentos de la programacion: Tipos e instrucciones | Pagina 124

El programa

#tinclude <iostream>

using namespace std;
int main()

{

Declaraciones

A]goritmo . Leer del teclado el valor para la base del triangulo

. Mostrar en la pantalla el texto que pida la base del triangulo

traducido . Mostrar en la pantalla el texto que pida la altura del triangulo
a codigo . Leer del teclado el valor para la altura del triangulo
en C++ . Calcular el area del triangulo

. Mostrar el area del tridngulo

return 0;

% Luis Hernandez Yafiez
-

Fundamentos de la programacion: Tipos e instrucciones | Péagina 125

Luis Herndndez Yafiez

{E}

Programacion

El programa: implementacion

#include <iostream> . guls _ ;. _ ;
using namespace std; NP TN L

int main()

{
double base, altura, area; // Declaraciones
cout << "Introduzca la base del triangulo: "; // 1
cin >> base; // 2
cout << "Introduzca la altura del tridngulo: "; // 3
cin >> altura; // 4
area = base * altura / 2; // 5
cout << "El area de un triangulo de base " << base // 6
<< "y altura " << altura << " es: " << area << endl;
return 0;
)
Fundamentos de la programacion: Tipos e instrucciones | Péagina 126

Fundamentos de la programacion

Luis Hernandez Yafiez

{E}

Los datos de los programas

HEE

SS—mrm Fundamentos de la programacion: Tipos e instrucciones | Péagina 127

Los datos de los programas

Variabilidad de los datos

"Introduzca la base del triangulo: "

3.141592653589

Literales

Constantes

Con nombre

= 3.141592653589
Variables

base, altura, areg> €<—— ldentificadores

(0]

=mr'm Fundamentos de la programacién: Tipos e instrucciones | Pagina 128

v, Luis Herndndez Yafiez
f

Fundamentos de la programacion

Identificadores

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | Péagina 129

v, Luis Hernandez Yafiez
f

Identificadores # palabras reservadas

v, Luis Herndndez Yafiez
(7)
*)]

Para variables y constantes con nombre
— Nombre de un dato (para accederlo/modificarlo)
— Deben ser descriptivos

Sintaxis:

—

cantidad prrecio total base altura area numerador
Al menos 32 caracteres significativos

ﬁﬁ iNi efies ni vocales acentuadas!

Fundamentos de la programacion: Tipos e instrucciones | Pagina 130

(0]

Identificadores

Luis Hernandez Yafiez

Palabras reservadas del lenguaje C++

asm auto bool break case catch char class const
const _cast continue default delete do double
dynamic_cast else enum explicit extern false

float for friend goto if inline int 1long

mutable namespace new operator private protected
public register reinterpret_cast return short
signed sizeof static static_cast struct switch
template this throw true try typedef typeid
typename union unsigned wusing virtual void

volatile while

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 131

A 4

Identificadores -

¢/ Qué identificadores son vdlidos?
balance \/ interesAnual \/

_base_imponible \/ afios X

EDAD12 \/ salario 1 mes \/

__edad \/ calculoNomina XK
valor%iee XK AlgunValor \/
100caracteres X valor? X

_12_meses ‘/ ____valor ‘/

(0]

@ Fundamentos de la programacion: Tipos e instrucciones | Pagina 132

Luis Herndndez Yafiez

f
e

Fundamentos de la programacion

Tipos de datos

(0]

@ Fundamentos de la programacion: Tipos e instrucciones | Pagina 133

=17 Luis Hernandez Yafiez
f
L4

Tipos de datos

Tipos true 125
Cada dato, de un tipo concreto 3.141 5-9 'a

Cada tipo establece:

— El conjunto (intervalo) de valores validos

— El conjunto de operaciones que se pueden realizar

Expresiones con datos de distintos tipos (compatibles):

Transformacién automatica de tipos (promocion de tipo)

©@ Anexo del Tema 2: detalles técnicos

Luis Herndndez Yafiez

(o) (0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | Pagina 134

Tipos de datos basicos

int
Numeros enteros (sin decimales) 1363,-12,49 \/

float
Numeros reales 12.45,-3.1932,1.16E+02

double

Numeros reales (mayores intervalo y precision) \/
char

Caracteres at, {" "\t'
bool

Valores logicos (verdadero/falso) true, false
string

Cadenas de caracteres (biblioteca string) "Hola Mundo!"
void

Nada, ausencia de tipo, ausencia de dato (funciones)

Luis Hernandez Yafiez

(o) (0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | Péagina 135

char Caracteres

Intervalo de valores: Juego de caracteres (ASCII) 1 byte
Literales:

L3 vy "\t
Constantes de barra invertida (o secuencias de escape):
Caracteres de control

"\t' =tabulador '\n' =salto delinea

Poeh)%+, -.f

8123456789 : r <=
GABCDEFGHIJKLMND ey —taAk
OpoOsopERUOUY

PORSTUVWXYZ [\ 1"
"abcdefghijklmno [SO-8859-1
pgrstuvwxyz{|}- (ASCII extendido: cédigos 128..255)

ASCII (cédigos 32..127)

==z Luis Hernandez Yafiez
f

=mr=m Fundamentos de la programacion: Tipos e instrucciones | Pagina 136

bool Valores l6gicos

Sélo dos valores posibles:
— Verdadero (true)
— Falso (false)

Literales:
true false

Cualquier namero distinto de @ es equivalente a true
El @ es equivalente a false

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | Péagina 137

r Luis Hernandez Yafiez
|
L.

Maylsculas y minuasculas

C++ distingue entre mayusculas y minusculas

int: palabra reservada de C++ para declarar datos enteros

Int, INT o inT no son palabras reservadas de C++

true: palabra reservada de C++ para el valor verdadero

True o TRUE no son palabras reservadas de C++

Luis Herndndez Yafiez

@ ? Fundamentos de la programacion: Tipos e instrucciones | P4gina 138
string Cadenas de caracteres
"Hola" "Introduce el numerador: " "X142FG5TX?%A"

—@— @—
—

Secuencias de caracteres

Programas con variables de tipo string:

#include <string>
using namespace std;

ﬂlﬂ Las comillas tipograficas (apertura/cierre) “..”” NO sirven

Asegurate de utilizar comillas rectas: "...

Luis Hernandez Yafiez

(o) (0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | Péagina 139

Tipos de datos basicos: ejemplo

#include <iostream>
#include <string>
using namespace std; // Un solo using... para ambas bibliotecas

int main()
{
int entero = 3; // Podemos asignar (inicializar) al declarar
double real = 2.153;
char caracter = 'a';
bool cierto = true;
string cadena = "Hola";
cout << "Entero: " << entero << endl;
cout << "Real: " << real << endl;
cout << "Caracter: " << caracter << endl;
cout << "Booleano: << cierto << endl;
cout << "Cadena: " << cadena << endl;

return @; ;Cudntos numeros hay en total en el programa?
} (Y caracteres? ;Y cadenas? ;Y booleanos?

Luis Herndndez Yafiez

! =mr=m Fundamentos de la programacion: Tipos e instrucciones | Phgena 140

Modificadores de tipos

— signed /unsigned : con signo (por defecto) / sin signo

— short / long : menor / mayor intervalo de valores

Tipo Intervalo

int -2147483648 .. 2147483647
unsigned int 0..4294967295

short int -32768..32768

unsigned short int ©..65535

long int -2147483648 .. 2147483647
unsigned long int ©..4294967295

double +|- 2.23e-308..1.79e+308
long double +|- 3.37E-4932..1.18E+4932

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones | Pagina 141

[Luis Hernandez Yafiez
L.

Fundamentos de la programacion

Declaracion y uso de variables

Luis Herndndez Yafiez

=@ ~undamentos de la programacién: Tipos e instrucciones | Péagina 142

Declaracion de variables

[modificadores] tipo lista de variables;
L—— Opcional —

lista_de variables _>
int i, j, 1; O

short int unidades;
unsigned short int monedas;

double balance, beneficio, perdida;

co Programacion con buen estilo:
Identificadores descriptivos

Espacio tras cada coma
Nombres de las variables en minusculas
(Varias palabras: capitaliza cada inicial: interesPorMes)

Luis Hernandez Yafiez

=mr=m Fundamentos de la programacion: Tipos e instrucciones | Péagina 143

Datos y memoria

Se reserva memoria suficiente para cada tipo de dato

int inicio; Memoria
short int unidades;
double balance;

Luis Herndndez Yafiez

Fundamentos de la programacion: Tipos e instrucciones | Pagina 144

Inicializacion de variables

jEn C++ las variables no se inicializan automdticamente!
jUna variable debe ser haber sido inicializada antes de ser accedida!
;COmo se inicializa una variable?

— Al leer suvalor (cin >>)

— Al asignarle un valor (instruccion de asignacién)

— Al declararla

Inicializacién en la propia declaracién:

N /dentificador = Expresion Expresion: valor compatible

int 1 =90, J, 1 = 26; En particular, una expresion
short int unidades = 100; puede ser un literal

Luis Hernandez Yafiez

Fundamentos de la programacion: Tipos e instrucciones | Péagina 145

Luis Herndndez Yafiez

s

Uso de las variables

Obtencion del valor de una variable

v" Nombre de la variable en una expresion
cout << balance;
cout << interesPorMes * meses / 100;

Modificacion del valor de una variable

v" Nombre de la variable a la izquierda del =
balance = 1214;
porcentaje = valor / 30;

Las variables han de haber sido previamente declaradas

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | Péagina 146

s

Fundamentos de la programacion

[Luis Hernandez Yafiez
L.

Instrucciones de asignhacion

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones | Péagina 147

Instrucciones de asignacion

El operador =

Variable = Expresion 0—>

Alaizquierda, SIEMPRE una variable

int i, j = 2;
i=23+3j*5; // itoma el valor 33

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones |

v, Luis Herndndez Yafiez
f

Pagina 148

Instrucciones de asignacion

Errores

int a, b, c;

X

// ERROR: un literal no puede recibir un valor

|

// ERROR: no puede haber una expresién a la izda.

11
(@]
-

25

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones |

v, Luis Hernandez Yafiez
(7)
@ 0 o

// ERROR: un entero no puede guardar una cadena

// ERROR: expresién no valida (falta operador)

Péagina 149

Variables, asignacion y memoria

int i, j = 2;
i=23+3j * 5;

Memoria

>
23 + 2 * 5

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Tipos e instrucciones |

Memoria

P4gina 150

Ejemplo: Intercambio de valores

Necesitamos una variable auxiliar

double a = 3.45, b = 127.5, aux;

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Tipos e instrucciones |

3.45

Pagina 151

Fundamentos de la programacion

Operadores

(0]

s =mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 152

[Luis Herndndez Yafiez
L.

Operadores

Operaciones sobre valores de los tipos

Cada tipo determina las operaciones posibles

Tipos de datos numéricos (int, float y double):
— Asignacion (=)

— Operadores aritméticos

— Operadores relacionales (menor, mayor, igual, ...)
Tipo de datos bool:

— Asignacion (=)

— Operadores légicos (Y, O, NO)

Tipos de datos char y string:

— Asignacion (=)

— Operadores relacionales (menor, mayor, igual, ...)

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones | Pagina 153

[Luis Hernandez Yafiez
L.

Operadores aritméticos

Operadores para tipos de datos numéricos

oo fre | Combodewgmo
- Lemw o | wen

. tvonai | e ponio | Decrments

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Tipos e instrucciones | Pagina 154

Operadores aritméticos

Operadores monarios y operadores binarios

Operadores monarios (unarios)

— Cambio de signo (-):
Delante de variable, constante o expresion entre paréntesis
-saldo -RATIO -(3 * a - b)

— Incremento/decremento (so6lo variables) (prefijo/postfijo):
++interes --meses j++ // 1 mas 6 1 menos

Operadores binarios

— Operando izquierdo operador operando derecho
Operandos: literales, constantes, variables o expresiones
2 + 3 a * RATIO -a+b
(a % b) * (c / d)

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Tipos e instrucciones | Péagina 155

Operadores aritméticos

¢ Division entera o division real?
Ambos operandos enteros: division entera
int 1 = 23, j = 2;
cout << i / j; // Muestra 11

Algun operando real: division real

int 1 = 23;

double j = 2;

cout << 1 / j; // Muestra 11.5

(0]

@ Fundamentos de la programacion: Tipos e instrucciones | P4gina 156

==z Luis Hernandez Yafiez
f
L4

Operadores aritméticos

Modulo (resto de la division entera) %

Ambos operandos han de ser enteros
int 1 = 123, j = 5;
cout << 1 % j; // Muestra 3

Division entera:
No se obtienen decimales 2 Queda un resto

123 | 5

3 24

<
123 % 5///7

(0]

@ Fundamentos de la programacion: Tipos e instrucciones | Péagina 157

=17 Luis Hernandez Yafiez
f
L4

Operadores aritméticos

Operadores de incremento y decremento ++ /-
Incremento/decremento de la variable numérica en una unidad

Prefijo: Antes de acceder

int i = 10, j;
E—j = ++1i; // Incrementa antes de copiar
cout << 1 << " - " << j; // Muestra 11 - 11
Postfijo: Después de acceder
int i = 10, j;

Hj = i++; // Copia y después incrementa
cout << i << " - " << j; // Muestra 11 - 10

€@ No mezcles ++y - - con otros operadores
(030

S—mrm Fundamentos de la programacion: Tipos e instrucciones | P4gina 158

Luis Herndndez Yafiez

{E}

Operadores aritméticos: ejemplo

#include <iostream> operadores.cpp

using namespace std;

int main() {
int enterol = 15, entero2 = 4;
double reall = 15.9, real2 = 4.0;
cout << "Operaciones entre los numeros 15 y 4:" << endl;
cout << "Divisidn entera (/): " << enterol / entero2 << endl;
cout << "Resto de la divisidén (%): " << enterol % entero2 << endl;
cout << "Divisidn real (/): " << reall / real2 << endl;
cout << "Num = " << reall << endl;

reall = -reall;
cout << "Cambia de signo (-): " << reall << endl;
reall = -reall;

cout << "Vuelve a cambiar (-): << reall << endl;
cout << "Se incrementa antes (++ prefijo): " << ++reall << endl;
cout << "Se muestra antes de incrementar (posfijo ++): "

<< reall++ << endl;
cout << "Ya incrementado:
return 0;

<< reall << endl;

)
HEE

S ~undamentos de la programacion: Tipos e instrucciones | Pagina 159

Luis Hernandez Yafiez

{E}

Fundamentos de la programacion

Mas sobre expresiones

(0]

s =mr=m ~undamentos de la programacion: Tipos e instrucciones | Péagina 160

[Luis Herndndez Yafiez
L.

Orden de evaluacion

¢En qué orden se evaluan los operadores?

3+5*2/2-1
;Deizquierda a derecha?
;De derecha a izquierda?
;Unos antes que otros?

Precedencia de los operadores (prioridad):
Se evaluan antes los de mayor precedencia
.Y si tienen igual prioridad?

Normalmente, de izquierda a derecha

Paréntesis: fuerzan a evaluar su subexpresion

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones | Péagina 161

Precedencia de los operadores

Precedencia JOJJEelo]¢=
Mayor prioridad [EEdEEEN LR uii[N)!

++ -- (prefijos)

- (cambio de signo)
* /%

Menor prioridad [E3

3+5*2/2-1>3+10/2-1 >3+5-1->8-1 >7

L] b

Misma precedencia: Mayor Misma precedencia:
Izquierda antes precedencia Izquierda antes

Luis Herndndez Yafiez

=@ Fundamentos de la programacion: Tipos e instrucciones | Péagina 162

Evaluacion de expresiones

((3+5) *4+12) /4 - (3*2-1) Primero,losparéntesis...

* antes que -
(8 * 4 +12) / 4 - (6 - 1)
l*antesque+ l
(32 + 12) / 4 - 5
44 | 4 - 5

l / antes que -

11 - 5 @@ Pon espacio antes y después
l de cada operador binario

6

Luis Hernandez Yafiez

=mr=m Fundamentos de la programacion: Tipos e instrucciones | Péagina 163

v, Luis Herndndez Yafiez
(7)
(o] —

Una férmula

#include <iostream> 2

bx

using namespace std; ,{[AJ — 3; + -

-3

int main()

{
double x, f;

cout << "Introduce el valor de X: ";

cin >> X;
f=3*x*x/5+6%*x/7-3; «<—
cout << "f(x) = " << f << endl;

return 0;

ﬁﬁ Usa paréntesis para mejorar la legibilidad:

f=(3*x*x/5)+(6*x/7)-3;

(0]

Fundamentos de la programacion: Tipos e instrucciones | Péagina 164

Abreviaturas aritméticas

Luis Hernandez Yafiez

{E}

. N

variable = VM operador op derecho;
LLamismaJ =

variable operador= op derecho;

Asignacion Abreviatura
a =a + 12; a += 12; _
Igual precedencia

a=a* 3; a *= 3; que la asignacion
a =a - 5; a -= 5;
a =a/ 37; a /= 37; De momento,

o o mejor evitarlas
a =a»% b; a %= b;

oG

S ~undamentos de la programacion: Tipos e instrucciones | Péagina 165

Desbordamiento

¢Valor siguiente al mdaximo?

Valor mayor del maximo (o menor del minimo) del tipo

short int i = 32767; // Valor maximo para short int
i++; // 32768 no cabe en un short int
cout << i; // Muestra -32768

Bitde signo < [IIAAAEIAN BENOOBAR 3276

0= iti

yzresitvo . |DODDODOR DDODODBRA -
IODDDNDD DODBDARE -7

7 Luis Hernandez Yafiez

=mr=m Fundamentos de la programacion: Tipos e instrucciones | Péagina 166

Fundamentos de la programacion

Constantes

% Luis Hernandez Yafiez

=mr=m ~undamentos de la programacion: Tipos e instrucciones | Péagina 167

Constantes

Declaracion de constantes Modificador de acceso const

Variables inicializadas a las que no dejamos variar

const Declaracion de variable con inicializador

const short int Meses = 12;
const double Pi = 3.141592,
RATIO = 2.179 * Pi;

La constante no podra volver a
aparecer a laizquierda de un =

G'ﬁ Programacién con buen estilo:

Pon en mayuscula la primera letra
de una constante o todo su nombre

Luis Herndndez Yafiez

(o) (0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | Pagina 168

éPor qué utilizar constantes con nombre?

v" Aumentan la legibilidad del c6digo

cambioPoblacion = (0.1758 - ©.1257) * poblacion; VS.

cambioPoblacion = (RatioNacimientos - RatioMuertes) * poblacion;

v" Facilitan la modificacién del codigo

double compral = brutol * 18 / 100;)
double compra2 = bruto2 * 18 / 100; 3 cambios «—
double total = compral + compra2;

cout << total << " (IVA: " << 18 << "%)" << endl;

const int IVA = 18; ;Cambio del IVA al 21%?
double compral = brutol * IVA / 100;

double compra2 = bruto2 * IVA / 100; 1 cambio €<—
double total = compral + compra2;

cout << total << " (IVA: " << IVA << "%)" << endl;

Luis Hernandez Yafiez

(o) (0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | Péagina 169

Constantes: ejemplo

#include <iostream>
using namespace std;

int main() {

const double Pi = 3.141592;

double radio = 12.2, circunferencia;

circunferencia = 2 * Pi * radio;

cout << "Circunferencia de un circulo de radio
<< radio << ": " << circunferencia << endl;

const double Euler = 2.718281828459; // Numero e

cout << "Numero e al cuadrado: " << Euler * Euler << endl;

const int IVA = 21;

int cantidad = 12;

double precio = 39.95, neto, porIVA, total;

neto = cantidad * precio;

porIVA = neto * IVA / 100;

total = neto + porIVA;

cout << "Total compra:

return 0;

<< total << endl;

Luis Herndndez Yafiez

! =mr=m Fundamentos de la programacion: Tipos e instrucciones | Péagina 170

Fundamentos de la programacion

La biblioteca cmath

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 171

r Luis Hernandez Yafiez
L.

Funciones matematicas #include <cmath>

Algunas .. abs(x) Valor absoluto de x
pow(x, y) xelevadoay
sqrt(x) Raiz cuadrada de x
ceil(x) Menor entero que es mayor o igual que x

floor(x) Mayor entero que es menor o igual que x

exp(x) ex

log(x) Ln x (logaritmo natural de x)
logle(x) Logaritmo en base 10 de x
sin(x) Seno de x

cos(x) Coseno de x

tan(x) Tangente de x

round(x) Redondeo al entero mas préximo

trunc(x) Pérdida de la parte decimal (entero)

(0]

=mr'm Fundamentos de la programacién: Tipos e instrucciones | Péagina 172

v, Luis Herndndez Yafiez
f

La biblioteca cmath

#include <iostream> X
using namespace std; fow M dits |
#include <cmath> € - %% V|

cos(v

int main() {

double x, y, f; pow() con argumento entero:
C?Ut << "Valor de X: "; Usa el molde double():
cin >> X; pow(double(i), 5)
cout << "Vvalor de Y: ";
cin >> y;
f =2 * pow(x, 5) + sqrt(pow(x, 3) / pow(y, 2))

/ abs(x * y) - cos(y);
cout << "f(x, y) = " << f << endl;
return 0;

Gg Pon un espacio detras de cada coma en las listas de argumentos
(1))

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pagina 173

Luis Hernandez Yafiez

Fundamentos de la programacion

Operaciones con caracteres

(0]

s =mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 174

[Luis Herndndez Yafiez
L.

Operaciones con caracteres char

Asignacion, ++/- - y operadores relacionales

Funciones para caracteres (biblioteca cctype)

isalnum(c) true si c es una letra o un digito
isalpha(c) true si c es unaletra
isdigit(c) true si c es un digito
islower(c) true si c es una letra mindscula
isupper(c) true si c es una letra mayuscula

false en caso contrario

toupper(c) devuelve la mayuscula de ¢
tolower(c) devuelve la mindscula de c

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones | Péagina 175

[Luis Hernandez Yafiez
L.

Operaciones con caracteres

#include <cctype>

int main() {
char caracterl = 'A', caracter2 = '1', caracter3 = '&';
cout << "Caracter 1 (" << caracterl << ").-" << endl;
cout << "Alfanumérico? " << isalnum(caracterl) << endl;
cout << "Alfabético? " << isalpha(caracterl) << endl;
cout << "Digito? " << isdigit(caracterl) << endl;
cout << "Mayuscula? " << isupper(caracterl) << endl;
caracterl = tolower(caracterl);
cout << "En minuscula: " << caracterl << endl;
cout << "Caracter 2 (" << caracter2 << ").-" << endl;
cout << "Alfabético? " << isalpha(caracter2) << endl;
cout << "Digito? " << isdigit(caracter2) << endl;
cout << "Caracter 3 (" << caracter3 << ").-" << endl;
cout << "Alfanumérico? " << isalnum(caracter3) << endl;
cout << "Alfabético? " << isalpha(caracter3) << endl;
cout << "Digito? " << isdigit(caracter3) << endl;

return 0;
} l=true /0=false

(0]

= @ Fundamentos de la programacion: Tipos e instrucciones | Pagina 176

Luis Herndndez Yafiez

Fundamentos de la programacion

Operadores relacionales
(condiciones simples)

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones | Péagina 177

r Luis Hernandez Yafiez
L.

Expresiones logicas (booleanas)

Operadores relacionales

Comparaciones (condiciones)
Condicion simple ::= Expresién Operador_relacional Expresion

Concordancia de tipo entre las expresiones

Resultado: bool (true o false)

Operadores (prioridad)
menor que

mayor que
< <= > >=

mayor o igual que

igual que

distinto de
4=

7 Luis Herndndez Yafiez

Pagina 178

Operadores relacionales

Menor prioridad que los operadores aditivos y multiplicativos

bool resultado;
int a =2, b=3, c = 4;

resultado = a < 5; // 2 <5 2 true
resultado = a * b + ¢ >= 12; // 10 >= 12 > false
resultado = a * (b + ¢) >= 12; // 14 >= 12 > true
resultado = a != b; // 2 1= 3 > true
resultado = a * b > ¢ + 5; // 6 > 9 > false
resultado = a + b == ¢ + 1; // 5 == 5 2> true

€9 No confundas el operador de igualdad (==)

con el operador de asignacion (=)

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Tipos e instrucciones | Péagina 179

Fundamentos de la programacion

Toma de decisiones (if)

(0]

s =mr=m ~undamentos de la programacion: Tipos e instrucciones | Péagina 180

[Luis Herndndez Yafiez
L.

Hacer esto... o hacer esto otro...

Seleccion: bifurcacion condicional

if (condicion) {

Condicion +—>codigoT
}
codigoF else {
v —>cdodigoF
int num; }

cout << "Numero: ";
cin >> num;
if (num % 2 == 0) {

Opcional: puede no haber else

N cout << num << es par";

5 }

i else {

£ cout << num << " es impar";

: }

Fundamentos de la programacion: Tipos e instrucciones | Pagina 181

La instruccion if

#include <iostream>
using namespace std;

int main() {
int op1 = 13, op2 = 4; D ZWFP\TemaB2»selecclon
int opcion; 1 - Sumar
cout << "1 - Sumar" << endl; ? - Restar
cout << "2 - Restar" << endl; Opcidn: 1
cout << "Opcidén: "; 17
cin >> opcion;
if (opcion == 1) {
cout << opl + op2 << endl;

0:\FPA\Tema@2rsalaccidn

- Sumar

else {
5 cout << opl - op2 << endl;
2 return 0;
Fundamentos de la programacion: Tipos e instrucciones | Pagina 182

Fundamentos de la programacion

Bloques de cédigo

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones | P4gina 183

r Luis Hernandez Yafiez
L.

Bloques de cddigo

Agrupacion de instrucciones

Grupo de instrucciones a ejecutar en una rama del if

>0> {

Tabé |intruccion2

3 esp. .

int num, total = 0; intruccionN

cin >> num; }

if (num > 9)

cout << "Positivo"; Ambito local

8 total = total + num; (declaraciones locales)
E cout << endl;
Fundamentos de la programacion: Tipos e instrucciones | Pagina 184

Bloques de cédigo

Posicion de las llaves: cuestion de estilo

if (num > 9) if (num > @) {

{ cout << "Positivo";
cout << "Positivo"; total = total + num;
total = total + num; }

} cout << endl;

cout << endl;

No necesitamos las llaves si solo hay una instruccion

if (num > 0) { if (num > 9)
cout << "Positivo"; = cout << "Positivo";

}

Usaremos siempre llaves por simplicidad...

Evita poner el if y la instruccion objetivo en la misma linea:
if (num > 8) COUT ZZ=*RoSITIvo"; —
(013 -

- =mr=m Fundamentos de la programacion: Tipos e instrucciones | Pé4gina 185

Luis Hernandez Yafiez

Fundamentos de la programacion

Bucles (while)

(0]

v, Luis Herndndez Yafiez
(7)
i)

Fundamentos de la programacion: Tipos e instrucciones | Pé4gina 186

Mientras la condicion sea cierta, repetir...

Repeticion o iteracion condicional

while condicion) cuerpo

Bloque
de codigo

Condicié . o o <
ondicion while (cond'LC'LOn) {

—>cuerpo

}

v

©@ Silacondicién es false al empezar,
no se ejecuta el cuerpo ninguna vez
(1))

=mrm Fundamentos de la programacion: Tipos e instrucciones | Péagina 187

v, Luis Hernandez Yafiez
ﬁ

La instruccion while

#include <iostream> 1

using namespace std; .
E /

int main() {
int i =1, n =0, suma = 9;
while (n <= @) { // S6lo n positivo
cout << "iCuantos numeros quieres sumar? “;
cin >> n;

}

while (i <= n) {
suma = suma + 1i;
i++;

}

cout << "Sumatorio de i (1 a
<< suma << endl;
return 0;

<< nk ") ="

-

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | P4gina 188

La instruccion while

Iteracion condicional

n
while (i <= n) { ZJ

suma = suma + 1i;

. I=
1++;

n

i 6

suma 15

Sumatorio de

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | P4gina 189

r Luis Hernandez Yafiez
|
L.

Fundamentos de la programacion

Entrada/salida por consola

7 Luis Hernandez Yafiez

=Smrm Fundamentos de la programacidn: Tipos e instrucciones | Pagina 190

Entrada/salida por consola (teclado/pantalla)

#include <iostream>

Flujos de texto (streams) using namespace std;

Conectan la ejecucion del programa con los dispositivos de E/S
Son secuencias de caracteres

Entrada por teclado: flujo de entrada cin (tipo istream)
Salida por pantalla: flujo de salida cout (tipo ostream)

cin cout
dﬂlﬂlﬂﬂﬂlﬂlﬂlﬂﬁ

Biblioteca iostream con espacio de nombres std

Extractor Flujo de entrada >> Variable

Insertor Flujo de salida << Expresion

% Luis Hernandez Yafiez

S Fundamentos de la programacion: Tipos e instrucciones | Péagina 191

Entrada por teclado cin W 5> W Variable

Luis Herndndez Yafiez

{E}

Salta los espacios en blanco (espacios, tabuladores o saltos de linea)

— char
Se lee un caracter en la variable
— int
Se leen digitos y se transforman en el valor a asignar
— float/double:
Se leen digitos (quiza el punto y mas digitos) y se asigna el valor

— bool:
Si se lee 1, se asigna true; con cualquier otro valor se asigna false

Gﬂ Se amigable con el usuario &

Lee cada dato en una linea

cout << "Introduce tu edad: ";
cin >> edad;

HEE

Smrm Fundamentos de la programacién: Tipos e instrucciones | Péagina 192

#include <string>

Lectura de cadenas (string) ... ncipace otd;

Luis Hernandez Yafiez

{E}

cin >> cadena termina con el primer espacio en blanco

cin.sync() descarta la entrada pendiente

string nombre, apellidos; string nombre, apellidos;
cout << "Nombre: "; cout << "Nombre: ";

cin >> nombre; cin >> nombre;

cout << "Apellidos: "; cin.sync(); <€

cin >> apellidos; cout << "Apellidos: ";

cout << "Nombre completo:
<< nombre << " "
<< apellidos << endl;

cin >> apellidos;
cout <«

apellidos recibe "Antonio”

¢;Como leer varias palabras?

Siguiente pdgina...

HEE

S ~undamentos de la programacion: Tipos e instrucciones | Pagina 193

Entrada por teclado

Lectura sin saltar los espacios en blanco iniciales

Llamada a funciones con el operador punto (.):

El operador punto permite llamar a una funcién sobre una variable
variable.funcion(argumentos)

Lectura de un caracter sin saltar espacios en blanco:
cin.get(c); // Lee el siguiente caracter

Lectura de cadenas sin saltar los espacios en blanco:
getline(cin, cad);
Lee todo lo que haya hasta el final de la linea (Intro)

. Recuerda:
E Espacios en blanco son espacios, tabuladores, saltos de linea, ...
Fundamentos de la programacion: Tipos e instrucciones | Pagina 194
[]
Salida por pantalla cout I << W £presion

Representacion textual de los datos

int meses = 7;
cout << "Total: " << 123.45 << endl << " Meses: " << meses;

El valor double 123.45 se guarda en memoria en binario
Su representacion textuales:'1" '2' '3' ',"' '4' '5'

double d = 123.45;

d ' 123.45 ;Un numero real!

cout << d;

La biblioteca iostream

define la constante endl : g
como un salto de linea (secuencia de caracteres) -

Luis Hernandez Yafiez

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | Pé4gina 195

Salida por pantalla cout I << W £presion

ofclalil:] Jalzfsl Jalslanlelslels]:] | (Programa\
= cout €

int meses = 7;

cout << "Total: " << 123.45 << endl << " Meses: << meses;
AN v J
cout << 123.45 << endl << " Meses: " << meses;
A\ J
Y
cout << end]l << " Meses: " << meses;
A\ v J
cout << " Meses: " << meses;
. J
Y
3 Total: 123.45
g Meses: 7 cout << meses;
5
Fundamentos de la programacion: Tipos e instrucciones | Pagina 196
F de la salid
ormato de la salida #include <iomanip>

Constantes y funciones a enviar a cout para ajustar el formato de salida

iostream showpoint / Mostrar o no el punto decimal para reales sin
noshowpoint decimales (34.0)
fixed Notacion de punto fijo (reales) (123.5)
scientific Notacion cientifica (reales) (1.235E+2)

boolalpha Valores bool como true / false
left / right Ajustar a la izquierda/derecha (por defecto)

iomanip |setw(anchura)* N? de caracteres (anchura) para el dato

Precision: N2 de digitos (en total)

SREPREEISIEN(P) Con fixed o scientific, n® de decimales

*setw() sélo afecta al siguiente dato que se escriba,
mientras que los otros afectan a todos

Luis Hernandez Yafiez

Fundamentos de la programacion: Tipos e instrucciones | Péagina 197

Formato de la salida

bool fin = false;
cout << fin << "->" << boolalpha << fin << endl; 0->false
double d = 123.45;

char c = 'x';

int i = 62;

cout << d << € << 1 << endl; 123.45x62
cout << "|" << setw(8) << d << "|" << endl; | 123.45|
cout << "|" << left << setw(8) << d << "|" << endl; |
cout << "|" << setw(4) << c << "|" << endl; Ix |
cout << "|" << right << setw(5) << i << "|" << endl; [Ny

double e = 96;
cout << e << " - " << showpoint << e << endl; 96 - 96.0000
cout << scientific << d << endl; 1.234500e+002

cout << fixed << setprecision(8) << d << endl; 123.45000000

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | P4gina 198

©)
IZ;

Fundamentos de la programacion

Funciones definidas
por el programador

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones | Pagina 199

r Luis Hernandez Yafiez
L.

Funciones en C++

Los programas pueden incluir otras funciones ademas de main()

Forma general de una funcion en C++:

tipo nombre(pardmetros) // Cabecera

{
}

v" Tipo de dato que devuelve la funcion como resultado

// Cuerpo

v’ Pardmetros para proporcionar datos a la funcién
Declaraciones de variables separadas por comas

v’ Cuerpo: secuencia de declaraciones e instrucciones
iUn bloque de codigo!

(0]

s =mr=m Fundamentos de programacion: Tipos e instrucciones | Pé4gina 200

[Luis Herndndez Yafiez
L.

Datos en las funciones

v" Datos locales: declarados en el cuerpo de la funcién
Datos auxiliares que utiliza la funcion (puede no haber)
v Parametros: declarados en la cabecera de la funcién
Datos de entrada de la funcion (puede no haber)
Ambos son de uso exclusivo de la funcién y no se conocen fuera

double f(int x, int y) {
// Declaracion de datos locales:

double resultado; fx,y)=2x" 4 L cos(v)
X

// Instrucciones:
resultado = 2 * pow(x, 5) + sqrt(pow(x, 3)
/ pow(y, 2)) / abs(x *y) - cos(y);

return resultado; // Devolucidn del resultado

}
[0}

e =mr=m Fundamentos de programacion: Tipos e instrucciones | Pé4gina 201

Luis Hernandez Yafiez

Argumentos

Llamada a una funcion con parametros

Nombre (Argumentos)

Al llamar a la funcién:

— Tantos argumentos entre los paréntesis como parametros
— Orden de declaracion de los parametros

— Cada argumento: mismo tipo que su parametro

— Cada argumento: expresion valida (se pasa el resultado)

Se copian los valores resultantes de las expresiones
en los correspondientes parametros

Llamadas a la funcion: en expresiones de otras funciones
int valor = f(2, 3);

Luis Herndndez Yafiez

(0]

s =mr=m Fundamentos de programacion: Tipos e instrucciones | Péagina 202

Paso de argumentos

Se copian los argumentos en los pardmetros

int funcion(int x, double a) {

Memoria

—> ... / f / f i 124

d 3.0

X 124

funcion(i, ; a 99.0
z return ©; // main() devuelve @ al S.O.
I Los argumentos no se modifican

Fundamentos de programacién: Tipos e instrucciones | Pagina 203

Resultado de la funcion

La funcion ha de devolver un resultado

La funcién termina su ejecucion devolviendo un resultado

La instruccion return (sélo una en cada funcién)
— Devuelve el dato que se pone a continuacion (tipo de la funcion)

— Termina la ejecucién de la funcién

El dato devuelto sustituye a la llamada de la funcion:

int cuad(int x int main() {

X = X * X; (—I
} return 9; 256

Esta instruccion
no se ejecutara nunca

Luis Herndndez Yafiez

(0]

=mr'm Fundamentos de programacién: Tipos e instrucciones | Péagina 204

Prototipos de las funciones

¢/ Qué funciones hay en el programa?

Colocaremos las funciones después de main()

¢Son correctas las llamadas a funciones del programa?
— ¢Existe la funcién?

— ¢Concuerdan los argumentos con los parametros?
—> Prototipos tras las inclusiones de bibliotecas

Prototipo de funcion: Cabecera de la funcion terminada en ;

double f(int x, int y);
int funcion(int x, double a)
int cuad(int x);

ﬁﬁ main() esla Unica funciéon

que no hay que prototipar

(0]

=mr=m Fundamentos de programacion: Tipos e instrucciones | Pé4gina 205

v, Luis Hernandez Yafiez
f
L]

Un programa con funciones

#include <iostream>
using namespace std;
##include <cmath>

// Prototipos de las funciones (excepto main())
bool par(int num);

bool letra(char car);

int suma(int num);

double formula(int x, int y);

int main() {
int numero, sum, X, y;
char caracter;
double f;
cout << "Entero: ";
cin >> numero;
if (par(numero)) {
cout << "Par";
}

(0]

=mr'm Fundamentos de programacion: Tipos e instrucciones | Pé4gina 206

r Luis Herndndez Yafiez
L.

Un programa con funciones

else {
cout << "Impar";
}

cout << endl;
if (numero > 1) {
cout << "Sumatorio de 1 a " << numero <<
<< suma(numero) << endl;

}

cout << "Caracter: ";
cin >> caracter;

if (!letra(caracter)) {

}

cout << "no ";
cout << "es una letra" << endl;
cout << "f(x, y) = " << formula(x, y) << endl;
// Los argumentos pueden llamarse igual o no que los parametros

return 0;

Luis Hernandez Yafiez
—

(0]

=mr=m Fundamentos de programacion: Tipos e instrucciones | Pégina 207

©)
|:;

Un programa con funciones

// Implementacidén de las funciones propias

bool par(int num) {
bool esPar;

if (num % 2 == 0) {

esPar = true;
}
else {

esPar = false;
}

return esPar;

Luis Herndndez Yafiez

(0]

=mr'm Fundamentos de programacion: Tipos e instrucciones | Pé4gina 208

©)
|:;

Un programa con funciones

bool letra(char car) {
bool eslLetra;
if ((car >= 'a') & (car <= 'z') || (car >= 'A') && (car <= 'Z")) {
esLetra = true;

}
else {

esLetra = false;
}

return eslLetra;

}

int suma(int num) {

int sum =90, i = 1;

while (i < num) {
sum = sum + 1i;
i++;

}

return sum;

Luis Hernandez Yafiez
—

(0]

=mr=m Fundamentos de programacion: Tipos e instrucciones | Pé4gina 209

©)
|:;

Un programa con funciones

double formula(int x, int y) {
double f;

f =2 * pow(x, 5) + sqrt(pow(x, 3) / pow(y, 2))
/ abs(x * y) - cos(y);

return f;

5]

C

g

53

kel

f=

2

5}

T

§

I E E

Fundamentos de programacién: Tipos e instrucciones | Pagina 210

Acerca de Creative Commons @@@@

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacién de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | Pagina 211

Fundamentos de |la programacion

Tipos: Detalles técnicos

ANEXO

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

4 [3

Indice
int 214
float 216
Notacidn cientifica 217
double 218
char 220
bool 221
string 222
Literales con especificacidon de tipo 223

(o) (0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | (Anexo)

int Nimeros enteros

Intervalo de valores:
-2147483648 .. 2147483647

Bytes de memoria: 4* (*) Depende de la maquina

4 bytes es lo mas habitual

Literales: Se puede saber cuantos

1363, -12,010, 0x1A se usan con la funcién

sizeof(int)

ke

Notacién octal

Notacion hexadecimal

Luis Herndndez Yafiez

(o) (0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | (Anexo) Pagina 214

int Niimeros enteros

Numeros en notacidn octal (base 8: digitos entre 0 y 7):
-010 = -8 en notacion decimal
10=1x81+0x8°=1x8+0

0423 =275 en notacion decimal
423=4x82+2x81+3x8'=4x64+2x8+3=256
+16 +3

Numeros en notacidon hexadecimal (base 16):

Digitos posibles: 0,1, 2, 3,4,5,6,7,8,9,A,B,C,D,E, F
Ox1F = 31 en notacion decimal
1F=1x161+Fx16°=1x16 + 15

©xAD = 173 en notacién decimal
AD=Ax161+Dx16°=10x16+13 =160+ 13

Luis Hernandez Yafiez

(o) (0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | (Anexo) Péagina 215

float Niimeros reales (con decimales)

Intervalo de valores:
+/- 1.18e-38..3.40e+38

Bytes de memoria: 4* (*)sizeof(float)
Punto flotante. Precisién: 7 digitos

Literales (punto decimal):

v"Notacion normal: 134.45, -1.1764

-0,
Lot T®ror®

v"Notacion cientifica: 1.4E2, -5.23e-02

Luis Herndndez Yafiez

(o) (0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | (Anexo) Péagina 216

Notacion cientifica

Siempre un numero (con o sin signo) con un solo digito de parte
entera, seguido del exponente (potencia de 10):

-5.23e-2 > -5,23x107 - -0,0523
1.11e2 > 1,11x10? -> 1110
7.4523e-04 > 7,4523x10%* > 0,00074523
-3.3333e+06 > -3,3333x10° > -3.333.300

Luis Hernandez Yafiez

(o) (0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | (Anexo) Péagina 217

7 Luis Herndndez Yafiez

double Nimeros reales (con decimales)

Intervalo de valores:
+/- 2.23e-308..1.79e+308

Bytes de memoria: 8* (*)sizeof (double)
Punto flotante. Precision: 15 digitos

Literales (punto decimal):

v"Notaciéon normal: 134.45, -1.1764

-0,
Lot T®ror®

v"Notacion cientifica: 1.4E2, -5.23e-02

P4gina 218

7 Luis Herndndez Yafiez

char

Caracteres

Intervalo de valores:

Juego de caracteres (ASCII)
Bytes de memoria: 1 (FC)
Literales:

al "%\t

Constantes de barra invertida:

(O secuencias de escape)
Para caracteres de control

"\t' =tabulador, '\n"' =salto de linea, ...

L[O o

A Fundamentos de la programacion: Tipos e instrucciones | (Anexo)

Péagina 219

char

Juego de caracteres ASCII:
American Standard Code for Information Interchange (1963)
Caracteres con cédigos entre 0y 127 (7 bits)

— Caracteres de control: URERE" ()%, -,
Codigos del 0 al 31y 127 0123456789 ; <=>7
Tabulacién, salto de linea,... @ABCDEFGHIJKLMNO
PORSTUVWXYZ [\ 1"
— Caracteres imprimibles: ‘abcdefghijklmno
Codigos del 32 al 126 pgrstuvwxyz{|}-
Juego de caracteres ASCII extendido (8 bits):
[ISO-8859-1
o Multitud de codificaciones:
+ Codigos entre 128y 255 EBCDIC, UNICODE, UTF-8, ..
% ,ur-111r-!u-" bl AAEsRSSOOOY OO LD]'
£ Tie] r: ..-.—'—"E- L":'.I'_'[::llr i
i ,_...:__u‘] l|-|=|- |.'|| L .
Fundamentos de la programacion: Tipos e instrucciones | (Anexo) Pagina 220
bool Valores Idgicos

Sélo dos valores posibles:
— Verdadero (true)

— Falso (false)

Bytes de memoria: 1 (FC)

Literales:

true, false

En realidad, cualquier nimero
distinto de 0 es equivalente a true
y el namero 0 es equivalente a false

(0]

@ Fundamentos de la programacion: Tipos e instrucciones | (Anexo) Péagina 221

v, Luis Hernandez Yafiez
f

strin g Cadenas de caracteres

"Hola", "Introduce el numerador: ", "X142FG5TX?%A"

-@ Q-

Secuencias de caracteres
Se asigna la memoria que se necesita para la secuencia concreta
Requieren la biblioteca string con el espacio de nombres std:

#include <string>
using namespace std;

€9 i

Las comillas tipograficas (apertura/cierre) “..” te daran problemas

al compilar. Asegurate de utilizar comillas rectas: "...

o ”n

Luis Herndndez Yafiez

(o) (0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | (Anexo) Péagina 222

Literales con especificacion de tipo

Por defecto un literal entero se considera un dato int
— long int:35L, 15461

—unsigned int: 35U, 1546u

—unsigned long int:35UL, 1546ul

Por defecto un literal real se considera un dato double
— float:1.35F, 15.46f

— long double:1.35L,15.461

Abreviaturas para modificadores de tipos
short =short int
long=1ong int
Es preferible evitar el uso de tales abreviaturas:

Minimizar la cantidad de informacién a recordar
sobre el lenguaje

Luis Hernandez Yafiez

(o) (0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones | (Anexo) Péagina 223

Acerca de Creative Commons @@@@

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones | (Anexo) Pégina 224

Fundamentos de |la programacion

Tipos e instrucciones I

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

r4 [3
Indice
Tipos, valores y variables 227 El bucle for 321
Conversién de tipos 232 Bucles anidados 331
Tipos declarados por el usuario 236 Ambito y visibilidad 339
Tipos enumerados 238 Secuencias 349
Entrada/Salida Recorrido de secuencias 355
con archivos de texto 248 Secuencias calculadas 363
Lectura de archivos de texto 253 Busqueda en secuencias 370
Escritura en archivos de texto 266 Arrays de datos simples 374
Flujo de ejecucién 272 Uso de variables arrays 379
Seleccién simple 276 Recorrido de arrays 382
Operadores légicos 282 Busqueda en arrays 387
Anidamiento de if 286 Arrays no completos 393
Condiciones 290
Seleccién multiple 293
N La escala if-else-if 295
5 La instruccién switch 302
3 Repeticion 313
g El bucle while 316
@ ? Fundamentos de la programacion: Tipos e instrucciones Il

Fundamentos de la programacion

Tipos, valores y variables

(0]

=mr'm ~undamentos de la programacidn: Tipos e instrucciones Il Péagina 227

r Luis Herndndez Yafiez
L.

Tipos, valores y variables

Tipo
Conjunto de valores con sus posibles operaciones

Valor
Conjunto de bits interpretados como de un tipo concreto

Variable (o constante)
Cierta memoria con nombre para valores de un tipo

Declaracion

Instruccion que identifica un nombre

Definicion

Declaracidn que asigna memoria a una variable o constante

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 228

©)
E

Variables

Memoria suficiente para su tipo de valores

short int 1 = 3; i
int j = 9;
char c = 'a’';

double x = 1.5;

El significado de los bits depende del tipo de la variable:
00000000 VPV 0PV 01111000

Interpretado como int es el entero 120

Interpretado como char (s6lo ©1111000) es el caracter 'x'

Luis Herndndez Yafiez

(0]

=mrm Fundamentos de la programacién: Tipos e instrucciones Il Péagina 229

Tipos

v’ Simples

« Estandar: int, float, double, char, bool
Conjunto de valores predeterminado

7
0.0

Definidos por el usuario: enumerados
Conjunto de valores definido por el programador

v’ Estructurados (Tema 5)

« Colecciones homogéneas: arrays
Todos los elementos de la coleccion de un mismo tipo

R/
0.0

Colecciones heterogéneas: estructuras
Elementos de la coleccion de tipos distintos

(0]

=mrm Fundamentos de programacion: Tipos e instrucciones Il Péagina 230

v, Luis Hernandez Yafiez
ﬁ

Tipos simples estandar

Con sus posibles modificadores:

[unsigned] [short] int

long long int long int = int
float

[long] double

char

bool

Definicion de variables:

tipo nombre [= expresion] [, ...];
Definicién de constantes con nombre:

const tipo nombre = expresion;

(0]

(@ Fundamentos de la programacion: Tipos e instrucciones Il Pagina 231

==z Luis Hernandez Yafiez
f
L4

Fundamentos de la programacion

Conversion de tipos

(0]

@ Fundamentos de la programacion: Tipos e instrucciones Il Péagina 232

=17 Luis Hernandez Yafiez
f
L4

Conversiones automaticas de tipos

Promocion de tipos

Dos operandos de tipos distintos:
El valor del tipo menor se promociona al tipo mayor

short int i = 3; A long double
int j = 2; kS double
double a = 1.5, b; g | float
b=a+i* j; g!ongmt
a int
short int

b=a+3%*2;

L Valor 3 short int (2 bytes) = int (4 bytes)
1.5 + 6;

Ls Valor 6 int (4 bytes) = double (8 bytes)

(o
Il

Luis Herndndez Yafiez

(0]

s =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 233

Conversiones seguras y no seguras

Conversion segura: long double
De un tipo menor a un tipo mayor double
short int > int 2 long int > .. float
L, long Int
Conversion no segura: _
_ _ int
De un tipo mayor a un tipo menor short int

int entero = 1234;
char caracter;
caracter = entero; // Conversidn no segura

Menor memoria: Pérdida de informacion en la conversion

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 234

[Luis Hernandez Yafiez
L.

Moldes (casts)

Fuerzan una conversién de tipo:
tipo(expresion)

El valor resultante de la expresion se trata como un valor del tipo

int a = 3, b = 2;
cout << a / b; // Muestra 1 (divisiodn entera)
cout << double(a) / b; // Muestra 1.5 (divisiodn real)

Tienen la mayor prioridad

(0]

(@ Fundamentos de la programacion: Tipos e instrucciones Il Péagina 235

==z Luis Hernandez Yafiez
f
L4

Fundamentos de la programacion

Tipos declarados por el usuario

(0]

@ Fundamentos de la programacion: Tipos e instrucciones Il Péagina 236

=17 Luis Hernandez Yafiez
f
L4

Tipos declarados por el usuario

Describimos los valores de las variables del tipo
typedef descripcion nombre de tipo;

t

Identificador vdlido

ﬁﬁ Nombres de tipos propios:

t minuscula seguida de una o varias palabras capitalizadas

Los colorearemos en naranja, para remarcar que son tipos

typedef descripcion tMiTipo;
typedef descripcion tMoneda;
typedef descripcion tTiposDeCalificacion;

Declaracion de tipo frente a definicion de variable

Luis Herndndez Yafiez

(o) (0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 237

Fundamentos de la programacion

Tipos enumerados

Luis Hernandez Yafiez

(o) (0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones Il Péagina 238

Enumeraciones

Enumeracion del conjunto de valores posibles para las variables:

enum { simbolol, simbolo2, ..., simboloN }

enum { gy !dentificador 90—>

enum { centimo, dos_centimos, cinco_centimos,
diez_centimos, veinte_centimos,
medio_euro, euro }

Valores literales que pueden tomar las variables (en amarillo)

Luis Herndndez Yafiez

{E}

HEE

Smrm Fundamentos de la programacién: Tipos e instrucciones Il Péagina 239

Tipos enumerados Mejoran la legibilidad

typedef descripcion nombre de tipo;

Elegimos un nombre para el tipo: tMoneda descripcion

typedef |[enum { centimo, dos centimos, cinco_centimos,
diez_centimos, veinte_centimos,
medio _euro, euro }|tMoneda;

En el ambito de la declaracidn, se reconoce un nuevo tipo tMoneda
tMoneda monedal, moneda2;

Cada variable de ese tipo contendra alguno de los simbolos

monedal
moneda?2

dos_centimos;
euro;

monedal e[l Ne=Ighshl([e}5

moneda2 euro
(Internamente se usan enteros)

HEE

Smrm Fundamentos de la programacion: Tipos e instrucciones Il Péagina 240

Luis Hernandez Yafiez

{E}

Entrada/salida para tipos enumerados

typedef enum { enero, febrero, marzo, abril, mayo,
junio, julio, agosto, septiembre, octubre,
noviembre, diciembre } tMes;

tMes mes;

Lectura de la variable mes:

cin >> mes;

Se espera un valor entero

No se puede escribir directamente enero o junio

Y si se escribe la variable en la pantalla:
cout << mes;

Se vera un numero entero

- Codigo de entrada/salida especifico

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Tipos e instrucciones Il Pagina 241

Lectura del valor de un tipo enumerado

typedef enum { enero, febrero, marzo, abril, mayo, junio, julio,
agosto, septiembre, octubre, noviembre, diciembre } tMes;

int op;
cout <<
cout <<
cout <<
cout <<
cout <<
cout <«
cout <«

Enero"
Febrero"
Marzo"
Abril"
Mayo"
Junio"
Julio"
Agosto"
cout <« Septiembre"
cout << "10 Octubre”
cout << "11 Noviembre"
cout << "12 Diciembre"
cout << "Numero de mes: ";
cin >> op;

tMes mes = tMes(op - 1);

cout <<

W oONOUID WNER

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Tipos e instrucciones Il Pégina 242

7 Luis Hernandez Yafiez

Escritura de variables de tipos enumerados

typedef enum { enero, febrero, marzo, abril, mayo, junio, julio,
agosto, septiembre, octubre, noviembre, diciembre } tMes;

enero) {
"enero";

= febrero) {
"febrero";

= marzo) {

"marzo";

= diciembre) {
"diciembre";

También podemos utilizar una instruccién switch

Fundamentos de la programacion: Tipos e instrucciones Il Péagina 243

% Luis Hernandez Yafiez

Tipos enumerados

Conjunto de valores ordenado (posicion en la enumeracién)

typedef enum { lunes, martes, miercoles, jueves,
viernes, sabado, domingo } tDiaSemana;

tDiaSemana dia; lunes < martes < miercoles < jueves

< viernes < sabado < domingo

if (dia == jueves)...
bool nolLaborable = (dia >= sabado);

No admiten operadores de incremento y decremento
Emulacion con moldes:

int i = int(dia); // jdia no ha de valer domingo!
i++;
dia = tDiaSemana(i);

Fundamentos de la programacion: Tipos e instrucciones Il Péagina 244

Ejemplo de tipos enumerados

#include <iostream> ©@ Silos tipos se usan en varias funciones,
using namespace std; los declaramos antes de los prototipos

typedef enum { enero, febrero, marzo, abril, mayo,
junio, julio, agosto, septiembre, octubre,
noviembre, diciembre } tMes;

typedef enum { lunes, martes, miercoles, jueves,
viernes, sabado, domingo } tDiaSemana;

string cadMes(tMes mes);
string cadDia(tDiaSemana dia);

int main() {

tDiaSemana hoy = lunes;
int dia = 21;

tMes mes = octubre;

int anio = 2013;

(0]

=mrm Fundamentos de la programacién: Tipos e instrucciones Il Péagina 245

v, Luis Herndndez Yafiez
f

Luis Hernandez Yafiez

Ejemplo de tipos enumerados

// Mostramos la fecha

cout << "Hoy es: " << cadDia(hoy) << " " <« dia
<< " de " << cadMes(mes) << " de " << anio
<< endl;

cout << "Pasada la medianoche..." << endl;
dia++;

int i = int(hoy);

i++;

hoy = tDiaSemana(i);

// Mostramos la fecha

cout << "Hoy es: " << cadDia(hoy) << " " << dia
<< " de " << cadMes(mes) << " de " << anio
<< endl;

return 0;

}
(012

f
16

Fundamentos de la programacion: Tipos e instrucciones Il Péagina 246

Luis Herndndez Yafiez

f
e

Ejemplo de tipos enumerados

fechas.cpp

string cadMes(tMes mes) {

string cad;

if (mes == enero) {
cad = "enero";

}

if (mes == febrero) {
cad = "febrero";

}

if (mes == diciembre) {
cad = "diciembre";

¥

return cad;

(0]

(@ Fundamentos de la programacion: Tipos e instrucciones Il

string cadDia(tDiaSemana dia);

string cad;

if (dia == lunes) {

cad = "lunes";

}

if (dia == martes) {
cad = "martes";

¥

if (dia == domingo) {
cad = "domingo";

}

return cad;

Péagina 247

=17 Luis Hernandez Yafiez
f
L4

Fundamentos de la programacion

Entrada/Salida
con archivos de texto

(0]

@ Fundamentos de la programacion: Tipos e instrucciones Il

Péagina 248

7 Luis Hernandez Yafiez

Archivos

Datos del programa: en la memoria principal (volatil)
Medios (dispositivos) de almacenamiento permanente:

— Discos magnéticos fijos (internos) o portatiles (externos)
— Cintas magnéticas

— Discos opticos (CD, DVD, BlueRay)
— Memorias USB

Mantienen la informacion en archivos

Secuencias de datos

Fundamentos de la programacion: Tipos e instrucciones Il Péagina 249

% Luis Hernandez Yafiez

Archivos de texto y archivos binarios

Archivo de texto: secuencia de caracteres
Archivo binario: contiene una secuencia de codigos binarios

(Cédigos representados en notacién hexadecimal)

Los archivos se manejan en los programas por medio de flujos
Archivos de texto: flujos de texto
Similarala E/S por consola

(Mas adelante veremos el uso de archivos binarios)

Fundamentos de la programacion: Tipos e instrucciones Il Péagina 250

Archivos de texto

Textos dispuestos en sucesivas lineas

Caracter de fin de linea entre linea y linea (Intro)
Posiblemente varios datos en cada linea
Ejemplo: Compras de los clientes

En cada linea, NIF del cliente, unidades compradas, precio
unitario y descripcion de producto, separados por espacio

12345678F 2 123.95 Reproductor de DVD{
©0112233A 1 218.4 Disco portatild
32143567] 3 32 Memoria USB 16Gbd
76329845H 1 134.5 Modem ADSLJ

Normalmente terminan con un dato especial (centinela)
Por ejemplo, un NIF que sea X

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones Il Pagina 251

Luis Herndndez Yafiez

f
©

Flujos de texto para archivos :inciude <fstreams

v" Lectura del archivo: flujo de entrada
v' Escritura en el archivo: flujo de salida

No podemos leer y escribir en un mismo flujo

Un flujo de texto se puede utilizar para lectura o para escritura:
— Flujos (archivos) de entrada: variables de tipo ifstream

— Flujos (archivos) de salida : variables de tipo ofstream

Biblioteca fstream (sin espacio de nombres)

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 252

[Luis Hernandez Yafiez
L.

Fundamentos de la programacion

Lectura de archivos de texto

(0]

@ Fundamentos de la programacion: Tipos e instrucciones Il Péagina 253

==z Luis Hernandez Yafiez
f
L4

Lectura de archivos de texto

Flujos de texto de entrada ifstream

Para leer de un archivo de texto:

E Declara una variable de tipo ifstream

E Asocia la variable con el archivo de texto (apertura del archivo)
E Realiza las operaciones de lectura

E Desliga la variable del archivo de texto (cierre el archivo)

(0]

@ Fundamentos de la programacion: Tipos e instrucciones Il Péagina 254

=17 Luis Hernandez Yafiez
f
L4

Lectura de archivos de texto

Apertura del archivo

Conecta la variable con el archivo de texto del dispositivo

flujo.open(cadena_Literal);

. . jEl archivo debe existir!
ifstream archivo;

archivo.open("abc.txt");
if (archivo.is open()) ...

is_open():
true si el archivo

se ha podido abrir
false en caso contrario
Cierre del archivo

Desconecta la variable del archivo de texto del dispositivo
flujo.close();
archivo.close();

Luis Herndndez Yafiez

(0]

s =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 255

Lectura de archivos de texto

Operaciones de lectura

v’ Extractor (>>) archivo >> variable;
Salta primero los espacios en blanco (espacio, tab, Intro, ...)
Datos numéricos: lee hasta el primer caracter no valido
Cadenas (string): lee hasta el siguiente espacio en blanco

v' archivo.get(c)

Lee el siguiente caracter en la variable ¢, sea el que sea

v’ getline(archivo, cadena)

Lee en la cadena todos los caracteres que queden en la linea
Incluidos los espacios en blanco
Hasta el siguiente salto de linea (descartandolo)

Con los archivos no tiene efecto la funcién sync()
03

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 256

Luis Hernandez Yafiez

Lectura de archivos de texto

;Qué debo leer?

v Un ndimero

Usa el extractor archivo >> num;

v Un caracter (sea el que sea)
Usa la funcién get () archivo.get(c);

v Una cadena sin espacios

Usa el extractor archivo »>> cad;

v Una cadena posiblemente con espacios
Usa la funciéon getline() getline(archivo, cad);

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 257

[Luis Herndndez Yafiez
L.

Lectura de archivos de texto

¢;Donde queda pendiente la entrada?

Numero leido con el extractor

En el primer caracter no valido (inc. espacios en blanco)

Caracter leido con get ()

En el siguiente caracter (inc. espacios en blanco)

Una cadena leida con el extractor
En el siguiente espacio en blanco

Una cadena leida con la funcién getline()
Al principio de la siguiente linea

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 258

b= Luis Hernandez Yafez
[
© A A A A

Lectura de archivos de texto

string nif, producto;
int unidades;

double precio;

"f hret Ediadn Fermate Ve Ayuda
L2JE0TAF 2 123, 9% Reproducice de DWD
GOLEXI2REA 1 YLE.4& Disco portdtil
121435671 3 37 mamor iy USE LECh
1

char aux;

THITHBA SH E3. 5 Moces ADEL

ifstream archivo;

H Flujo de entrada
archivo

archivo.open("compras.txt"); // Apertura

archivo >> nif >> unidades >> precio;
getline(archivo, producto);

Ei archivo.close(); // Cierre

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Tipos e instrucciones Il Pé4gina 259

Lectura de archivos de texto

archivo >> nif;

archivo >> unidades; Archeve Edhcn Formato Ver Ayuds
. . Yok AT T
archivo >> preclo, 371435677 1 17 Memoria LS Lech

TEITEBASH 1 13,3 Modes ADSL

getline(archivo, producto);

getline() no salta espacios

I12345678F| 2 323.9%|Reproductor de DVDI

L
(il

El extractor salta los espacios

nif 12345678F unidades

slgels[ilaeM Reproductor de DVD precio [EVERCE)

Espacio

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Tipos e instrucciones Il Péagina 260

Lectura de archivos de texto

archivo >> nif;

archivo >> unidades;

archivo >> precio;

archivo.get(aux); // Salta el espacio en blanco
getline(archivo, producto);

I12345678FI IEI I123.95I “Repr'oductor‘ de DVDI

Leemos el espacio
(no hacemos nada con él)

unidades
precio EVENCES

nif 12345678F

producto = s]lels ¥ eh o]l <IN)V/D)

Sin espacio

7 Luis Hernandez Yafiez

(o) (0]

=mrm Fundamentos de la programacion: Tipos e instrucciones Il Péagina 261

Procesamiento de los datos de un archivo

{ “ i b)
Cada linea, datos de una compra e

Archres Edicidn Fersats Yer Ayuda
B3IAENTEF 2 B23.5h Beproductior de DD

Mostrar el total de cada compra BOL1I2134 1 Fif.4 Disco portdtil

321435%67]1 3 3P memoria USE 16GH

| THITRBASH 1 D345 Moges ADSL

unidades x precio mas IVA (21%) I

Final: "X" como NIF
Bucle de procesamiento:
v’ Cada paso del bucle (ciclo) procesa una linea (compra)

v Podemos usar las mismas variables en cada ciclo

Leer primer NIF

Mientras el NIF no sea X:
Leer unidades, precio y descripcion
Calcular y mostrar el total
Leer el siguiente NIF

% Luis Hernandez Yafiez

(o) (0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pégina 262

Procesamiento de los datos de un archivo

#include <iostream>

#include <string>

using namespace std;

#include <fstream>

#include <iomanip> // Formato de salida

int main() {

const int IVA = 21;

string nif, producto;

int unidades;

double precio, neto, total, iva;
char aux;

ifstream archivo;

int contador = 0;

archivo.open("compras.txt"); // Apertura

(0]

s =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 263

[Luis Herndndez Yafiez
L.

Procesamiento de los datos de un archivo

if (archivo.is open()) { // Existe el archivo

archivo >> nif; // Primer NIF

while (nif != "X") {
archivo >> unidades >> precio;
archivo.get(aux); // Salta el espacio
getline(archivo, producto);
contador++;
neto = unidades * precio;
iva = neto * IVA / 100;
total = neto + iva;
cout << "Compra " << contador <<

<< endl;

cout << " " << producto << ": " << unidades
<< " x " << fixed << setprecision(2)
3 << precio << " =" << neto << " - I.V.A.: "
. << iva << " - Total: " << total << endl;
E: archivo >> nif; // Siguiente NIF
z ...
Fundamentos de la programacion: Tipos e instrucciones Il Pagina 264

Procesamiento de los datos de un archivo

archivo.close(); // Cierre

}
else {
cout << "ERROR: No se ha podido abrir el archivo"
<< endl;
}
return 9;

Luis Herndndez Yafiez

(0]

(@ Fundamentos de la programacion: Tipos e instrucciones Il Péagina 265

f
o

Fundamentos de la programacion

Escritura en archivos de texto

(0]

@ Fundamentos de la programacion: Tipos e instrucciones Il Pégina 266

=17 Luis Hernandez Yafiez
T
L4

7 Luis Hernandez Yafiez

Escritura en archivos de texto

Flujos de texto de salida ofstream

Para crear un archivo de texto y escribir en él:
H Declara una variable de tipo ofstream
E Asocia la variable con el archivo de texto (crea el archivo)

E Realiza las escrituras por medio del operador << (insertor)

ﬁ Desliga la variable del archivo de texto (cierra el archivo)

:lﬁ jAtencion!
Si el archivo ya existe, se borra todo lo que hubiera

ﬂlﬂ jAtencion!

Si no se cierra el archivo se puede perder informacién

A Fundamentos de la programacién: Tipos e instrucciones Il Pégina 267

% Luis Hernandez Yafiez

Escritura en archivos de texto

int valor = 999;

(Programa‘

2
ofstream archivo; 1
B Flujo de salida
archivo.open("output.txt"); // Apertura [l archivo
I B
o
archivo << 'X' << " Hola! " << 123.45 B
<< endl << valor << "Byel"; |+ |
[]
: . [x
archivo.close(); // Cierre flkoc 3= watin

ferfves [deiom Fomafa Ver &gl

A Fundamentos de la programacién: Tipos e instrucciones || Péagina 268

Escritura en archivos de texto

#include <iostream>
#include <string>
using namespace std;
#include <fstream>

int main() {
string nif, producto;
int unidades;
double precio;
char aux;
ofstream archivo;

archivo.open("output.txt"); // Apertura (creacion)

cout << "NIF del cliente (X para terminar): ";
cin >> nif;

(0]

s =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 269

[Luis Herndndez Yafiez
L.

Escritura en archivos de texto

while (nif != "X") {

// Queda pendiente el Intro anterior...

cin.get(aux); // Leemos el Intro

cout << "Producto: ";

getline(cin, producto);

cout << "Unidades: ";

cin >> unidades;

cout << "Precio: ";

cin >> precio;

// Escribimos los datos en una linea del archivo...

// Con un espacio de separacidén entre ellos

archivo << nif << " " << unidades <<
<< precio << " " << producto << endl;

cout << "NIF del cliente (X para terminar): ";

cin >> nif;

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 270

[Luis Hernandez Yafiez
L.

Escritura en archivos de texto

// Escribimos el centinela final...
archivo << "X";
archivo.close(); // Cierre del archivo

return 0;

MIF del cliente (X para terminar): 2:

o to: Ampliacidn de memoria 2Gb

fBnén Fomete er Aysds
121432560 § 46.7 ampliacidn de mesoria Téh
806754l 1 23 Lector de DMl
EREBETER & F10.93 MEco exEerng ITh

Luis Herndndez Yafiez

E

Fundamentos de la programacion: Tipos e instrucciones Il Pagina 271

Fundamentos de la programacion

Flujo de ejecucion

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pégina 272

r Luis Hernandez Yafiez
L.

Ejecucion secuencial

double operl, oper2, prod;
= Instruccion 1 cout << "Operando 1: ";
\O
(e ” :
= Instruccion 2 cin >> operl;
o
P
' Instruccién 3 cout << "Operando 2: ";
P
o
o
=) cout << "Producto: " << prod;
. return 9;
[}
% Fundamentos de la programacion: Tipos e instrucciones Il Péagina 273
[Y 4
Seleccidn
Uno entre dos o mads caminos de ejecucion
Seleccién simple (2 caminos) Seleccién multiple (> 2 caminos)
Condicion
Instruccion T Instruccion F
. . true
) if-else-if
£ . false
. switch
2 : : A
Diagramas de flujo
@ Fundamentos de la programacion: Tipos e instrucciones Il Péagina 274

Repeticidn (iteracion)

Repetir la ejecucion de una o mas instrucciones

Acumular, procesar colecciones, ...

Inicializacion

élterar?

5]

C

g

53 .

2 while for
=

5}

T

§

I E E

Fundamentos de la programacion: Tipos e instrucciones Il Pagina 275

Fundamentos de la programacion

Seleccidn simple

(0]

@ Fundamentos de la programacion: Tipos e instrucciones Il Pégina 276

=17 Luis Hernandez Yafiez
f
L4

Seleccidn simple (bifurcacion)

La instruccion if

if (condicion) {

oo Condicion
—>codigoT
} BloqueT
Opcional
[else { ¢' pciona
+—>codigoF

}]

condicion: expresion bool
Clausula else opcional

Luis Herndndez Yafiez

(0]

=mrm Fundamentos de la programacién: Tipos e instrucciones Il Péagina 277

La instruccion if

int num;
cin >> num;
if (num < 9) {
cout << "Negativo";

}

else {

cin >> num;

" R . " tr\ e -False
cout << "Positivo’; -

}

cout << endl;

cout << "Negativo"; cout << "Positivo";

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 278

v, Luis Hernandez Yafiez
f

La instruccion if

int num;
cin >> num; 129
if (num < @) { Positivo

cout << "Negativo";

}

else {
cout << "Positivo";

}

cout << endl;

cout << "Positivo";

cout << endl;

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 279

r Luis Herndndez Yafiez
L.

La instruccion if

int num;
cin >> num; -5
if (num < @) { Negativo

cout << "Negativo"; -

}

else {

cout << "Positivo"; cin >> num;

}

cout << endl; true

num =5

cout << "Negativo";

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 280

r Luis Hernandez Yafiez
L.

Ejemplo

Division entre dos nimeros protegida frente a intento de division por 0

#include <iostream>
using namespace std;

int main() {

double numerador, denominador, resultado;
cout << "Numerador: ";
cin >> numerador;
cout << "Denominador: ";
cin >> denominador;
if (denominador == 0) {

cout << "Imposible dividir entre 0!";

else {
5 resultado = numerador / denominador;
s cout << "Resultado: " << resultado << endl;
£ return 0;

}

! =mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 281

Fundamentos de la programacion

Operadores légicos
(condiciones compuestas)

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pégina 282

[Luis Hernandez Yafiez
L.

Operadores logicos (booleanos)

Se aplican a valores bool (condiciones)
El resultado es de tipo bool

Operadores (prioridad)

! NO Monario
&& Y Binario

|| O Binario

0
20

-+
1

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Tipos e instrucciones Il Péagina 283

Operadores logicos - Tablas de verdad

| e I
true false true true false @ true true true
false |true false |[false false @ false |true false

NO (Not) Y (And) 0 (0r)

bool condl, cond2, resultado;

int a = 2, b =3, c = 4;

resultado = !(a < 5); // 1'(2 < 5) > ltrue > false
condl = (a * b + c) >= 12; // 10 >= 12 - false

cond2 = (a * (b + c)) >=12; // 14 >= 12 > true

condl && cond2; // false && true > false
condl || cond2; // false || true = true

resultado
resultado

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Tipos e instrucciones || Péagina 284

Ejemplo

#include <iostream>
using namespace std;

int main()
{
int num;
cout << "Introduce un numero entre 1y 10: ";
cin >> num;
if ((num >= 1) && (num <= 10)) {
cout << "Numero dentro del intervalo de valores validos";

}
else {
cout << "Numero no valido!";
} . :
return 0; Condiciones equivalentes

} ((num >= 1) && (num <= 10))
. o ((num > @) && (num < 11))
iEncierra las condiciones ((num >= 1) && (num < 11))
simples entre paréntesis! ((num > @) & (num <= 10))

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 285

Luis Herndndez Yafiez

©)
|:;

Fundamentos de la programacion

Anidamiento de if

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pé4gina 286

r Luis Hernandez Yafiez
L.

Numero de dias de un mes

int mes, anio, dias;

cout << "Numero de mes: ";
cin >> mes;
cout << "Ano: ";

cin >> anio;
if (mes == 2) {

if (bisiesto(mes, anio)) {
dias = 29;
}
else {
'dias = 28;
}
}
else {
if ((mes == 1) [| (mes == 3) || (mes == 5) ||
|| (mes == 8) || (mes == 10) || (mes ==
‘dias = 31;
}
5 else {
5 ‘dias = 30;
g }
E }

(0]

=l [

Fundamentos de la programacion: Tipos e instrucciones Il

Péagina 287

éAno bisiesto?

Calendario Gregoriano: bisiesto si divisible por 4, excepto el Gltimo
de cada siglo (divisible por 100), salvo que sea divisible por 400

bool bisiesto(int mes, int anio) {

bool esBisiesto;

if ((anio % 4) == @) { // Divisible por 4

if (((anio % 100) == @) && ((anio % 400) !=
// Pero ultimo de siglo y no multiplo de
esBisiesto = false;

}
else {
esBisiesto = true; // Aho bisiesto
by
¥
else {
‘esBisiesto = false;
y

return esBisiesto;

Luis Hernandez Yafiez

Fundamentos de la programacion: Tipos e instrucciones Il

=l [

0)) {
400

Pé4gina 288

Asociacion de clausulas else

Cada else se asocia al if anterior mas cercano sin asociar (mismo bloque)
@(condicio’nl) { , |
@ (condicion2) {...} Una mala sangria puede confundir
€15 if (x > 0) {

y teeed GOy > o) {...}
D @
@(condicién3) { —Q—=
if (condicidén4) {...} if (x > 0) {

(if) (condiciéns) {...} if (y >0) {...}
{”.} else {...}
}

€@ Lasangriaayuda a asociar los else con sus if
(1))

=mrm Fundamentos de la programacién: Tipos e instrucciones Il Pé4gina 289

Luis Herndndez Yafiez

Fundamentos de la programacion

Condiciones

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones Il Péagina 290

v, Luis Hernandez Yafiez
f

Condiciones

e Condicion simple: Expresion logica (true/false)
Sin operadores l0gicos

num < @

car == 'a' Compatibilidad con el lenguaje C:

isalpha(car) 0 es equivalente a false

12 Cualquier valor distinto de @ es equivalente a true

e Condicién compuesta:
Combinacién de condiciones simples y operadores légicos
lisalpha(car)
(num < @) || (car == 'a")
(num < @) & ((car == 'a') || !isalpha(car))

€9 No confundas el operador de igualdad (==)
con el operador de asignacion (=).

Luis Herndndez Yafiez

(0]

=mrm Fundamentos de la programacién: Tipos e instrucciones Il Pagina 291

Evaluacion perezosa

Shortcut Boolean Evaluation
true || X = true
(n ==0) || (x >=1.0 / n)
Si n es ©: ;division por cero? (segunda condicion)
Como la primera seria true: jno se evalua la segundal

false && X = false
(n 1=0) & (x < 1.0 / n)
Si n es O: ;division por cero? (segunda condicién)
Como la primera seria false: jno se evalua la segunda!

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 292

Fundamentos de la programacion

Seleccidon multiple

==z Luis Hernandez Yafiez
f

=mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pé4gina 293

Selecciéon miiltiple

true
false

\4

) . .

£ if-else-if

53

kel °

5 switch

5}

g

§

I E E

Fundamentos de la programacion: Tipos e instrucciones Il Pagina 294

Fundamentos de la programacion

La escala if-else-if

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones Il

r Luis Herndndez Yafiez
|
L.

Pé4gina 295

La escala if-else-if

Ejemplo:

Calificacion (en letras)

de un estudiante en base
a su nota numérica (0-10)

Sinota == 10 entonces MH

sino, sinota >= 9 entonces SB
sino, sinota >= 7 entonces NT
sino, sinota >= 5 entonces AP

sino SS

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones ||

Péagina 296

La escala if-else-if

double nota;
cin >> nota;

double nota;
cin >> nota;
if (nota == 10) {

if (nota == 10) {
cout << "MH";
cout
else { }
if (nota >= 9) {)
cout << "SB"; else if
cout
else { }
if (nota >= 7) { _)
cout << "NT"; — else if
cout
else { }
if (nota >= 5) { .
cout << "AP"; else if
cout
N else { }
£ cout << "SS"; else {
3 }
E: } cout
3 } }

}
(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones ||

<< "MH";
(nota >= 9) {
<< "SB";
(nota >=7) {
<< "NT";
(nota >= 5) {
<< "AP";
<< IlSSIl;

Péagina 297

La escala if-else-if

jCuidado con el orden de las condiciones!

double nota;
cin >> nota;
if (nota < 5) { cout << "SS"; }

if (nota < 7) { cout << "AP"; }
if (nota < 9) { cout << "NT"; }

else
else
else
else

if (nota < 10)

{ cout << "MH";

double nota;
cin >> nota;

if (nota >= 5) { cout << "AP"; 1}

else
else
else
else

Luis Hernandez Yafiez

(0]

if (nota >= 7)
if (nota >= 9)
if (nota

{ cout << "SS";

{ cout << "SB"; }
}

iNo

10)

{ cout << "NT"; }
{ cout << "SB"; }
{ cout << "MH"; }

¥

se ejecutan nunca!

X

A

So6lo muestra AP o SS

e =mr=m Fundamentos de la programacion: Tipos e instrucciones ||

Pé4gina 298

La escala if-else-if

Simplificacion de las condiciones

FIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIFIIIIIIIII‘IIIIII‘

0 sS g AP , NT g SB 1

if (nota == 10) { cout << "MH"; } MH
else if |((nota < 10)| & (nota >= 9)) { cout << "SB"; }
else if |((nota < 9) R& (nota >= 7)) { cout << "NT"; }
else if |((nota < 7) R& (nota >= 5)) { cout << "AP"; }
else if |(nota < 5) [cout << "SS"; }

| Siempre true: ramas else

. e Sino es 10, es menor que 10
if (nota == 10) { cout << "MH"; } Sino es >= 9, es menor que 9

else if (nota >= 9) {cout << "SB"; } Si no es >= 7, es menor que 7
else if (nota >= 7) { cout << "NT"; } ..
else if (nota >= 5) { cout << "AP"; } true && X = X

else { cout << "SS"; }

Luis Herndndez Yafiez

(0]

=mrm Fundamentos de la programacién: Tipos e instrucciones Il Péagina 299

Nivel de un valor

#include <iostream> Si num == 4 entonces Muy alto
using namespace std;

- . Si num == 3 entonces Alto

int main() { S _= Jent Medi
int num; inum == 2 entonces Medio
cout << "Introduce el nivel: "; Sinum == 1 entonces Bajo

cin >> num;
if (num == 4) {
cout << "Muy alto" << endl;

else if (num == 3) {
cout << "Alto" << endl;

else if (num ==
cout << "Medio" << endl;

else if (num == 1) {
cout << "Bajo" << endl;

else {
cout << "Valor no valido" << endl;

Luis Hernandez Yafiez

return 0;
Fundamentos de la programacion: Tipos e instrucciones Il Pagina 300

é¢Cadigo repetido en las distintas ramas?

if (num == 4) { cout << "Muy alto"}
else if (num == 3) { cout << "Alto"(X< endl;>}

else if (num == 2) { cout <<
else if (num == 1) { cout <«
else cout << "Valor no valido"

—~ =

if (num == 4) cout << "Muy alto";

else if (num == 2) cout << "MediO";
else if (num == 1) cout <« "BajO";

else cout << "Valor no valido";

(0]

(@ Fundamentos de la programacion: Tipos e instrucciones Il Pé4gina 301

Luis Herndndez Yafiez

f
e

Fundamentos de la programacion

La instruccion switch

(0]

@ Fundamentos de la programacion: Tipos e instrucciones Il Pé4gina 302

=17 Luis Hernandez Yafiez
f
L4

La instruccion switch

Seleccion entre valores posibles de una expresion

switch (expresion) { —> case constanteN:
case constantel: {
{ codigoN
codigol }
} [break;]
[break;] [default:
case constante2: {
{ codigoDefault
codigo2]
} }
o [break;]
Fundamentos de la programacion: Tipos e instrucciones Il Pagina 303

La instruccion switch

nivel2.cpp

switch (num) {
case 4:

{

cout << "Muy alto";
}
break;
case 3:

{

cout << "Alto";

break;
case 2:

{

cout << "Medio";
}
break;
case 1:
{ .
cout << "Bajo";
}
break;
default:
{

cout << "Valor no valido";

}

Luis Hernandez Yafiez

}
(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones ||

Si num == 4 - Muy alto
Sinum == 3 - Alto
Sinum == 2 - Medio
Sinum == 1-> Bajo

Pagina 304

La instruccion break

Interrumpe el switch; continda en la instruccion que le siga

switch (num) {
case @)
{

cout << "Alto";

"Medio";

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 305

La instruccion break

switch (num) {

{ cout [«< "Alto";
casg 2
{ cout |k« "Medio";
casg 1:
{ cout |<< "Bajo";
3 def;ult:
% { cout |<< "Valor no valido";
IR
Fundamentos de la programacion: Tipos e instrucciones Il Pagina 306

Con y sin break

4

true

Muy alto

false
Sin break;

false
Sin break;

false
Sin break;

num==1

false I Sin break;
~ No valido
— __‘1‘
@ Fundamentos de la programacion: Tipos e instrucciones Il Pé4gina 307
l 4
Un menu
int menu() {
int op = -1; // Cualquiera no valida
while ((op < @) [| (op > 4)) {
cout << "1 Nuevo cliente" << endl;
cout << "2 - Editar cliente" << endl;
cout << "3 - Baja cliente" << endl;
cout << "4 - Ver cliente" << endl;
cout << "@ - Salir" << endl;
cout << "Opciodn: ";
cin >> op;
if ((op < @) || (op > 4)) {
cout << "jOpcidén no validal!" << endl;
s }
5 }
g return op;
E)
(cc) (%)

el Fundamentos de la programacién: Tipos e instrucciones || Pé4gina 308

Un menu

int opcion;

opcion = menu();
switch (opcion) {
case 1:

{
}

break;
case 2:

{
}

break;
case 3:

{
}

break;
case 4:

{
cout << "En la opcidn 4..." << endl;
} // En la ultima no necesitamos break

cout << "En la opcidn 1..." << endl;

cout << "En la opcidn 2..." << endl;

cout << "En la opcidn 3..." << endl;

fiez

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 309

==z Luis Hernandez Ya
(7)
&

El menu con su bucle...

int opcion;

opcion = menu();

while (opcion != @) {
switch (opcion) {
case 1:

cout << "En la opcidn 1..." << endl;

reak;

case 4:

cout << "En la opciodn 4..." << endl;

}
} // switch
éééion = menu();
} // while

fiez

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || P4gina 310

©)
[:

Casos multiples

nota2.cpp

int nota; // Sin decimales
cout << "Nota (©-10): ";
cin >> nota;

switch (nota) {

case 0:
case 1:
case 2:
case 3:
case 4:
{
cout << "Suspenso";
}
break; // De © a 4: SS
case 5:
case 6:
{
cout << "Aprobado";
}

break; // 5 o 6: AP

(0]

-

r Luis Herndndez Yafiez
L.

Fundamentos de la programacion: Tipos e instrucciones Il

case 7:
case 8:
{
cout << "Notable";
}
break; // 7 u 8: NT
case 9:
case 10:
{
cout << "Sobresaliente";
¥

break; // 9 o 10: SB
default:

{
}

cout << "iNo valida!";

Pagina 311

Escritura de variables de tipos enumerados

typedef enum { enero, febrero, marzo, abril, mayo, junio,
julio, agosto, septiembre, octubre, noviembre, diciembre }

tMes;
tMes mes;

switch (mes) {
case enero:

{
cout << "enero";
¥
break;
case febrero:
{
cout << "febrero";
¥
break;

case diciembre:

)
C
T
5 {
n s > n
2 cout << "diciembre";
=
g }
i)
I E E
Fundamentos de la programacion: Tipos e instrucciones Il

Péagina 312

Fundamentos de la programacion

[I 4

Repeticion

(0]

=mr'm ~undamentos de la programacidn: Tipos e instrucciones Il Pagina 313

r Luis Herndndez Yafiez
|
L.

Repeticidn (iteracion)

Inicializacion

No

Bucles whiley for

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pagina 314

r Luis Hernandez Yafiez
|
L.

Tipos de bucles

v Numero de iteraciones condicionado (recorrido variable):

— Buclewhile

while (condicion) cuerpo

Ejecuta el cuerpo mientras la condicion sea true
— Bucle do-while

Comprueba la condicion al final (lo veremos mas adelante)

v Numero de iteraciones prefijado (recorrido fijo):

— Bucle for
for (inicializacion; condicion; paso) cuerpo
Ejecuta el cuerpo mientras la condicion sea true

Se usa una variable contadora entera

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones Il Pé4gina 315

r Luis Herndndez Yafiez
L.

Fundamentos de la programacion

El bucle while

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pagina 316

r Luis Hernandez Yafiez
L.

El bucle while

Mientras la condicion sea cierta, ejecuta el cuerpo

while (condicidn) {
cuerpo Condicion al principio del bucle

}

int i = 1; // Inicializacioén de la variable i
while (i <= 100) {

cout << i << endl;

i++;

}

Muestra los numeros del 1 al 100

Luis Herndndez Yafiez

(0]

- =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 317

Ejecucion del bucle while

int 1 = 1;
while (i <= 100) { I icion
cout << 1 << endl;
i++;

i 1e1

cout << i << endl;

(0]

- =mr=m Fundamentos de la programacion: Tipos e instrucciones || P4gina 318

r Luis Hernandez Yafiez
L.

El bucle while

;Y si la condicion es falsa al comenzar?

No se ejecuta el cuerpo del bucle ninguna vez

int op;

cout << "Introduce la opcidn: ";

cin >> op;

while ((op < @) [| (op > 4)) {
cout << "jNo valida! Inténtalo otra vez" << endl;

cout << "Introduce la opcidén: ";
cin >> op;

}

Si el usuario introduce un niumero entre 0 y 4:

No se ejecuta el cuerpo del bucle

(0]

s =mr=m Fundamentos de la programacion: Tipos e instrucciones || P4gina 319

[Luis Herndndez Yafiez
L.

Ejemplo de bucle while

Primer entero cuyo cuadrado es mayor que 1.000

##include <iostream>

. jEjecuta el programa para
using namespace std;

saber cudl es ese niimero!

int main() {
int num = 1; <—— Empezamos en 1

while (num * num <= 1000) {
) num++; <—— |ncrementamosen 1

cout << "ler. entero con cuadrado mayor que 1.000:
<< num << endl;

return 0;

Recorre la secuencia de nameros 1, 2, 3, 4, 5, ...

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 320

Suma y media de nimeros

#include <iostream> Recorre la secuencia
using namespace std;

int main() { de nimeros introducidos
double num, suma = @, media = O;
int cont = 9;
cout << "Introduce un numero (@ para terminar): ";

cin >> num; <—— Leemos el primero
while (num != 0) { // © para terminar

suma = suma + num;

cont++;

cout << "Introduce un numero (@ para terminar): ";
cin >> num; <«<—— Leemos el siguiente

}
if (cont > @) {

media = suma / cont;

}
2 cout << "Suma = " << suma << endl;
- cout << "Media = " << media << endl;
5 return 0;
2 ¥
I
Fundamentos de la programacion: Tipos e instrucciones Il Pagina 321

Fundamentos de la programacion

El bucle for

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones Il Péagina 322

r Luis Hernandez Yafiez
L.

Bucle for

Numero de iteraciones prefijado

Variable contadora que determina el nimero de iteraciones:
for ([int] var = ini; condicidn; paso) cuerpo
La condicién compara el valor de var con un valor final

El paso incrementa o decrementa el valor de var

El valor de var debe ir aproximandose al valor final

for (int i

1; i <= 100; i++)... 1, 2, 3, 4, 5, ..., 100

for (int i 100; i »>= 1; i--)... 1e@e, 99, 98, 97, ..., 1

Tantos ciclos como valores toma la variable contadora

Luis Herndndez Yafiez

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones Il Pagina 323

Ejecucion del bucle for

for (inicializacidn; condicion; paso) cuerpo

for (int i = 1; i <= 100; i++) {
cout << 1i;

cout << 1i;

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pagina 324

r Luis Hernandez Yafiez
|
L.

Ejecucion del bucle for

for (int i = 1; i <= 100; i++) {
cout << 1 << endl;

}
i 101
1
2
3
99
cout << i << endl; 100
Fundamentos de la programacion: Tipos e instrucciones Il Pagina 325
Bucle for
La variable contadora

El paso no tiene porqué ir de uno en uno:
for (int i =1; i <=100; i =1 + 2)
cout << 1 << endl;
Este bucle for muestra los nimeros impares de 1 a 99

ﬁ'ﬁ Muy importante
El cuerpo del bucle NUNCA debe alterar el valor del contador

Garantia de terminacion

Todo bucle debe terminar su ejecuciéon
Bucles for: la variable contadora debe converger al valor final

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 326

Ejemplo de bucle for

#include <iostream> AT

using namespace std; - .

long long int suma(int n); § l

int main() { i=]
int num;

cout << "Numero final: ";

cin >> num;

if (num > @) { // E1l numero debe ser positivo
cout << "La suma de los numeros entre 1y

<< num << " es: << suma(num);

}

return 0;

}

long long int suma(int n) {
long long int total = 0;
for (int i = 1; i <= n; i++) {
total = total + 1i;

} Recorre la secuencia de nameros
return total; 1,2,3,4,5,..n

Luis Herndndez Yafiez

}

! =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 327

Bucle for

¢Incremento/decremento prefijo o postfijo?

Es indiferente
Estos dos bucles producen el mismo resultado:

1; i <= 100; i++) ...

for (int i

for (int i = 1; i <= 100; ++i) ...

Bucles infinitos

for (int 1 = 1; i <= 100; i--)
10 -1-2-3 -4-5-6-7-8-9-10 -11
Cada vez mas lejos del valor final (100)

Es un error de disefio/programacion

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 328

s

Ambito de la variable contadora

[Luis Herndndez Yafiez
L.

Declarada en el propio bucle
for (int i =1; ...)
Sélo se conoce en el cuerpo del bucle (su dambito)

No se puede usar en instrucciones que sigan al bucle

Declarada antes del bucle
int 1i;
for (1 =1; ...)
Se conoce en el cuerpo del bucle y después del mismo
Ambito externo al bucle

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones Il Péagina 329

Luis Hernandez Yafiez

s

Bucle for versus bucle while

Los bucles for se pueden reescribir como bucles condicionados
for (int 1 = 1; i <= 100; i++) cuerpo
Es equivalente a:
int 1 = 1;
while (i <= 100) {
cuerpo
i++;

}

La inversa no es siempre posible:
int i;
cin >> 1; ¢;Bucle for equivalente?

while (i !'= @) { ’)
cuerpo iNo sabemos cudntos niimeros

cin >> i; introducird el usuario!

}
[0}

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 330

Fundamentos de la programacion

Bucles anidados

(0]

s =mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pagina 331

[Luis Herndndez Yafiez
L.

Bucles for anidados

Un bucle for en el cuerpo de otro bucle for
Cada uno con su propia variable contadora:
for (int 1 = 1; i <= 100; i++) {

i

for (int j = 1; j <= 5; j++) { 1

cuerpo 1

1

} 1

} 1

Para cada valor de 1 ;

el valor de j variaentre 1y 5 5

) j varia mds rdpido que i ;

3 3
Fundamentos de la programacion: Tipos e instrucciones Il Pagina 332

P U pWNERPUPDWDNPREGW

Tablas de multiplicacion

tablas.cpp

#include <iostream>
using namespace std;
#include <iomanip>

int main() {
for (int 1 = 1; i <= 10; i++)
for (int j =
cout << setw(2) << i <«

<< setw(2) << j << " =

{

1; j <= 10; j++) {

X

<< setw(3) << i * j << endl;

Luis Herndndez Yafiez

=

return 0;

=mr=m Fundamentos de la programacion: Tipos e instrucciones ||

Péagina 333

Mejor presentacion

tablas2.cpp

Luis Hernandez Yafiez

=

#include <iostream>
using namespace std;
#include <iomanip>

int main() {
for (int 1 = 1; 1 <= 10; i++) {
cout << "Tabla del " << i << endl;
cout << M------mmmo--- " << endl;
for (int j = 1; j <= 10; j++) {
cout << setw(2) << i << " x "
<< setw(2) << j << " ="
<< setw(3) << i * j << endl;

}

cout << endl;
}
return 0;

}

=mr=m Fundamentos de la programacion: Tipos e instrucciones ||

[- T TN T

Pagina 334

Mas bucles anidados

##include <iostream>
using namespace std;
#include <iomanip>

int menu(); // 1: Tablas de multiplicacién; 2: S
long long int suma(int n); // Sumatorio

int main() {
int opcion = menu();
while (opcion != 0) {
switch (opcion) {
case 1:
{
for (int i = 1; i<=10; i++) {
for (int j = 1; j <= 10; j++) {

cout << setw(2) << i << " x
<< setw(2) << j << " ="

umatorio

<< setw(3) << 1 * j << endl;

L
3 }
}
I }
3 break;
Fundamentos de la programacion: Tipos e instrucciones Il Pagina 335
Mas bucles anidados
case 2:
{
int num = 0;
while (num <= @) {
cout << "Hasta (positivo)? ";
cin >> num;
¥
cout << "La suma de los numeros del 1 al "
<< num << " es: " << suma(num) << endl;
by
} // switch

opcion = menu();
} // while (opcion != 0)
return 0;

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones ||

=17 Luis Hernandez Yafiez
L
i -

Pégina 336

Mas bucles anidados

int menu() {

int op = -1;

while ((op < @) || (op > 2)) {
cout << "1 - Tablas de multiplicar" << endl;
cout << "2 - Sumatorio" << endl;
cout << "@ - Salir" << endl;
cout << "Opcion: " << endl;
cin >> op;
if ((op < @) || (op > 2)) {

cout << "iOpcidn no valida!" << endl;

}

}

return op;
}
long long int suma(int n) {
long long int total = ©;
for (int 1 = 1; i <= n; i++) {
total = total + i;
}

return total;

}
(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 337

Luis Herndndez Yafiez

Ambos tipos de bucles anidados

while (opcion != @) {

e o o

<= 10; i++) {

j <= 10; j++) {

for (int i = 1;
for (int j =

}

i
1;

}
while (num <= 0) {

} o suma()
for (int i = 1; i <= n; i++) {

Lo
while ((op < @) [| (op > 2)) {

Luis Hernandez Yafiez

} menu()
I E E
Fundamentos de la programacion: Tipos e instrucciones Il Pagina 338

Fundamentos de la programacion

Ambito y visibilidad

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones Il Péagina 339

[Luis Herndndez Yafiez
L.

Ambito de los identificadores

Cada bloque crea un nuevo ambito:

int main() {

double d
int cont Q;
while (d != 0) {
cin >> d;
if (d '=0) {
suma = suma + d;
cont++;

-1, suma = ©; 3 ambitos anidados

}

cout << "Suma = << suma << endl;
cout << "Media = " << suma / cont << endl;
return 0;

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 340

Ambito de los identificadores

Un identificador se conoce
en el ambito en el que esta declarado
(a partir de su instruccién de declaracion)
y en los subambitos posteriores

(0]

s =mr=m Fundamentos de la programacion: Tipos e instrucciones || Pagina 341

[Luis Herndndez Yafiez
L.

Ambito de los identificadores

int main() {]
double d; Ambito de la variable d

if (...) {
int cont = 6;
for (int 1 =

9; i <= 10; i++) {

}
}

char c;

if ()

double x;

¥

return 0;

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 342

Ambito de los identificadores

int main() {
double d;
if (...) {

int cont = 9; Ambito de la variable cont
for (int i = 0; i <= 10; i++) {

char c;
1{ (e o o) {
double x;
3 return 0;
Fundamentos de la programacion: Tipos e instrucciones Il Pagina 343

Ambito de los identificadores

int main() {
double d;
if (...) {
int cont = 0;

for (int 1 = 0; i <= 10; i++) {

) } Ambito de la variable i
char c;
if (...) {
double x;
3 return 0;
Fundamentos de la programacion: Tipos e instrucciones Il Pagina 344

Ambito de los identificadores

int main() {
double d;
if (...) {
int cont = 0;

for (int 1 = 0; i <= 10; i++) {

char c;
if (...) | Ambito de la variable c
double x;
3 return 0;
Fundamentos de la programacion: Tipos e instrucciones Il Pagina 345

Ambito de los identificadores

int main() {
double d;
if (...) {
int cont = 0;

for (int 1 = 0; i <= 10; i++) {

char c;
if (...) {
double x;
| cee | Ambito de la variable x
2 return 0;
Fundamentos de la programacion: Tipos e instrucciones Il Pagina 346

Visibilidad de los identificadores

Si en un subambito se declara
un identificador con idéntico nombre
que uno ya declarado en el ambito,
el del subambito oculta al del ambito
(no es visible)

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 347

[Luis Herndndez Yafiez
L.

Visibilidad de los identificadores

int main

Oculta, en su ambito, a la i anterior

int =0; Oculta, en su ambito, a la i anterior
for(int @=0; i <= 10; i++) {

}

char c;

if (...) {

double /():(); Oculta, en su ambito, a la x anterior
.
return 0;

}

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 348

Fundamentos de la programacion

Secuencias

Luis Herndndez Yafiez

{E}

HEE

Smrm Fundamentos de la programacion: Tipos e instrucciones Il Péagina 349

Secuencias i Gt

T

Sucesién de elementos de un mismo tipo que se acceden linealmente

elemento secuencia
secuencia = 0 >
elemento

(Secuencia vacia)

1 34 12 26 4 87 184 52

Comienza en un primer elemento (si no esta vacia)

A cada elemento le sigue otra secuencia (vacia, si es el tiltimo)
Acceso secuencial (lineal)

Se comienza siempre accediendo al primer elemento

Desde un elemento sé6lo se puede acceder a su elemento siguiente
(sucesor), si es que existe

Todos los elementos, de un mismo tipo

) DE(E)

=t m ~undamentos de la programacioén: Tipos e instrucciones || Pé4gina 350

Luis Hernandez Yafiez

Secuencias en programacion

No tratamos secuencias infinitas: siempre hay un ultimo elemento

v’ Secuencias explicitas:

— Sucesion de datos de un dispositivo (teclado, disco, sensor, ...)
v" Secuencias calculadas:

— Formula de recurrencia que determina el elemento siguiente

v’ Listas (mds adelante)

Secuencias explicitas que manejaremos:
Datos introducidos por el teclado o leidos de un archivo
Con un elemento especial al final de la secuencia (centinela)
1 34 12 26 4 87 184 52 -1

Luis Herndndez Yafiez

(0]

s =mr=m Fundamentos de la programacion: Tipos e instrucciones || P4gina 351

Deteccion del final de la secuencia

v" Secuencia explicita leida de archivo:
— Detectar la marca de final de archivo (Eof - End of file)
— Detectar un valor centinela al final <=

v’ Secuencia explicita leida del teclado:
— Preguntar al usuario si quiere introducir un nuevo dato
— Preguntar al usuario primero cuantos datos va a introducir
— Detectar un valor centinela al final <=

Valor centinela:

Valor especial al final que no puede darse en la secuencia
(Secuencia de nimeros positivos = centinela: cualquier negativo)

\ 4
12 4 37 23 8 19 83 63 2 35 17 76 15 -1

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 352

Centinelas

Debe haber algtun valor que no sea un elemento valido
Secuencias numéricas:
Si se permite cualquier numero, no hay centinela posible
Cadenas de caracteres:
;Caracteres especiales (no imprimibles)?

En realidad el valor centinela es parte de la secuencia,
pero su significado es especial y no se procesa como el resto

Significa que se ha alcanzado el final de la secuencia
(Incluso aunque haya elementos posteriores)

Ultimo elemento

\ 4
12 4 37 23 8 19 83 63 -1 35 17 76 15
\ J

v
No se procesan

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 353

r Luis Herndndez Yafiez
L.

Esquemas de tratamiento de secuencias

Tratamiento de los elementos uno a uno desde el primero
Recorrido

Un mismo tratamiento para todos los elementos de la secuencia

Ej.- Mostrar los elementos de una secuencia, sumar los nimeros
de una secuencia, ;par o impar cada nimero de una secuencia?, ...

Termina al llegar al final de la secuencia
Busqueda

Recorrido de la secuencia hasta encontrar un elemento buscado

Ej.- Localizar el primer nimero que sea mayor que 1.000

fiez

Termina al localizar el primer elemento que cumple la condicion
o al llegar al final de la secuencia (no encontrado)

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 354

©)
E

Fundamentos de la programacion

Recorrido de secuencias

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pé4gina 355

[Luis Herndndez Yafiez
L.

Esquema de recorrido

Un mismo tratamiento a todos los elementos
Inicializacion
Mientras no se llegue al final de la secuencia:
Obtener el siguiente elemento
Procesar el elemento
Finalizacion
Al empezar se obtiene el primer elemento de la secuencia

En los siguientes pasos del bucle se van obteniendo
los siguientes elementos de la secuencia

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 356

Luis Herndndez Yafiez

{E}

Esquema de recorrido

Inicializaciéon

(Al final?

Obtener elemento

Procesar elemento

Finalizacion

HEE

Smrm Fundamentos de la programacion: Tipos e instrucciones Il

No sabemos cuantos
elementos hay
- No podemos
implementar con for

Pé4gina 357

Luis Hernandez Yafiez

{E}

Secuencias explicitas con centinela

Implementacion con while

Inicializacion

Obtener el primer elemento

Mientras no sea el centinela:
Procesar el elemento

Obtener el siguiente elemento
Finalizacion

HEE

Smrm Fundamentos de la programacion: Tipos e instrucciones Il

Inicializacion

Obtener 12

;Centinela?

Procesar elemento

Obtener siguiente

Finalizacion

Pé4gina 358

Secuencias explicitas leidas del teclado

Secuencia de niimeros positivos

Siempre se realiza al menos una lectura
Centinela: -1

double d, suma = 0; Inicializacién
cout << "Valor (-1 termina): ";
cin >> d; }Primer elemento
while (d != -1) { Mientras no el centinela
suma = suma + d; Procesar elemento
cout << "Valor (-1 termina): "; o
cin >> d; }Slgulente elemento
}

cout << "Suma = << suma << endl; — Finalizacion

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 359

Secuencias explicitas leidas del teclado
Longitud de una secuencia de caracteres

Centinela: caracter punto (.)

int longitud() {

int 1 = 0;
char c;
cout << "Texto terminado en punto: ";
cin >> c; // Obtener primer caracter
while (c != '.") { // Mientras no el centinela
1++; // Procesar
cin >> c; // Obtener siguiente caracter
}
return 1;

Luis Hernandez Yafiez
-

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 360

Secuencias explicitas leidas del teclado

/Cudntas veces aparece un cardcter en una cadena?

Centinela: asterisco (*)

char buscado, c;
int cont = 0O;

cout << "Caracter a buscar: ";
cin >> buscado;

cout << "Cadena: "“;

cin >> c; — Primer elemento
while (c != "*') { — Mientras no el centinela
if (c == buscado) {
cont++; Procesar elemento
cin >> c; — Siguiente elemento

cout << buscado << " aparece " << cont
<< " veces.";

Luis Herndndez Yafiez

(0]

s =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 361

Secuencias explicitas leidas de archivo

1 ; 2.
Suma de los numeros de la secuencia

Centinela: ©

int sumaSecuencia() {
double d, suma = 0;
ifstream archivo; // Archivo de entrada (lectura)
archivo.open("datos.txt");
if (archivo.is_open()) {
archivo >> d; // Obtener el primero
while (d != @) { // Mientras no sea el centinela
suma = suma + d; // Procesar el dato
archivo >> d; // Obtener el siguiente

}

archivo.close();

}

return suma;

Luis Hernandez Yafiez

¥
(012

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Pégina 362

Fundamentos de la programacion

Secuencias calculadas

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pé4gina 363

r Luis Herndndez Yafiez
L.

Secuencias calculadas
Recurrencia: e,;=e;+1 e, =1 N
1 2 3 4 5 6 7 8 ... l

Suma de los nimeros de la secuencia calculada: i=]

int main() {
int num;
cout << "N = ";
cin >> num;
cout << "Sumatorio:
return 0;

<< suma(num);

}

long long int suma(int n) {
int sumatorio = 0;
for (int i = 1;@ <= n) i++) {
sumatorio = i

}

return sumatorio; L .
’ Ultimo elemento de la secuencia: n

Luis Hernandez Yafiez

}
(0]

= @ Fundamentos de la programacion: Tipos e instrucciones Il Péagina 364

Suma de una secuencia calculada

long long int suma(int n) { N
int sumatorio = ©; :E:f
for (int i = 1; i <= n; i++) { i=1

sumatorio = sumatorio + 1i;

}

sumatorio = 0;

n 5

sumatorio 15

i e B

\ 7
g

3 Secuencia

Z(E

53

kel

f=

2

5}

T

§

Fundamentos de la programacion: Tipos e instrucciones Il Pagina 365

Numeros de Fibonacci

Definicion
Fi=F, +Fp,
F, =0
F,=1
©112358 1321 34 55 89

/Fin de la secuencia?

Primer nimero de Fibonacci mayor que un nimero dado
Ese numero de Fibonacci actia como centinela

Si num es 50, la secuencia sera:
©11235813 21 34

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pégina 366

v, Luis Hernandez Yafiez
f

Numeros de Fibonacci

Recorrido de la secuencia calculada

int num, fib, fibMenos2 = @, fibMenosl = 1; // 12 y 2¢
fib = fibMenos2 + fibMenosl; // Calculamos el tercero
cout << "Hasta: ";
cin >> num;
if (num >= 1) { // Ha de ser entero positivo
cout << "@ 1 "; // Los dos primeros son <= num
while (fib <= num) { // Mientras no mayor que num
cout << fib << " ",
fibMenos2 = fibMenosl; // Actualizamos anteriores
fibMenosl = fib; // para obtener...
fib = fibMenos2 + fibMenosl; // ... el siguiente

Gg ¢;Demasiados comentarios?

Para no oscurecer el c6digo, mejor una explicacién al principio

Luis Herndndez Yafiez

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones || Pégina 367

Numeros de Fibonacci

El bucle calcula adecuadamente la secuencia:

—» while (fib <= num) {
—> cout << fib << " ";
fibMenos2 = fibMenos1;

—>
—> fibMenosl = fib;
—> fib = fibMenos2 + fibMenos1;
}
num = 160
©11235...
fib = 5

fibMenosl 3

fibMenos2 @ 2

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 368

v, Luis Hernandez Yafiez
f

Fundamentos de la programacion

Blisqueda en secuencias

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pé4gina 369

[Luis Herndndez Yafiez
L.

Esquema de busqueda

Localizacion del primer elemento con una propiedad
Inicializacion
Mientras no se encuentre el elemento
y no se esté al final de la secuencia:
Obtener el siguiente elemento
Comprobar si el elemento satisface la condicion
Finalizacién
(tratar el elemento encontrado o indicar que no se ha encontrado)

Elemento que se busca: satisfard una condicién
Dos condiciones de terminacion del bucle: se encuentra / al final

Variable légica que indique si se ha encontrado

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 370

Esquema de busqueda

Localizacion del primer elemento con una propiedad

Inicializaciéon / encontrado = false;

(Al final o true
encontrado?

Obtener elemento

(Encontrado?

Finalizacion

(0]

=mrm Fundamentos de la programacién: Tipos e instrucciones Il Pagina 371

v, Luis Herndndez Yafiez
f

Secuencias explicitas con centinela

Implementacion con while
Inicializacion Inicializacién
Obtener el primer elemento Obtener 1°
Mientras ni encontrado ni el centinela:
Obtener el siguiente elemento

¢Encontrado
Finalizacion (;encontrado?) o centinela?

Obtener siguiente

Finalizacion

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 372

v, Luis Hernandez Yafiez
f

Secuencias explicitas leidas del teclado

Primer numero mayor que uno dado

Centinela: -1

double d, num;
bool encontrado = false;
cout << "Encontrar primero mayor que: ";
cin >> num;
cout << "Siguiente (-1 para terminar): ";
cin >> d; // Obtener el primer elemento
while ((d !'= -1) && !encontrado) {
// Mientras no sea el centinela y no se encuentre
if (d > num) { // éEncontrado?
encontrado = true;

5 else {

£ cout << "Siguiente (-1 para terminar): ";

2 cin >> d; // Obtener el siguiente elemento
: }

Fundamentos de la programacion: Tipos e instrucciones Il Pagina 373

Fundamentos de la programacion

Arrays de tipos simples

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pagina 374

[Luis Hernandez Yafiez
L.

Arrays

Colecciones homogéneas

Un mismo tipo de dato para varios elementos:
v" Notas de los estudiantes de una clase

v" Ventas de cada dia de la semana

v Temperaturas de cada dia del mes

En lugar de declarar N variables...

vLun vMar vMie vJue vVie vSab vDom

125.40 l 76.95 B 328.80 W 254.62 W 435.00 | 164.29

... declaramos una tabla de N valores:

NSl 125.40 76.95 328.80 254.62 435.00 164.29 ©0.00
indices—> o 1 2 3 4 5 6

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Tipos e instrucciones Il Pé4gina 375

Arrays

Estructura secuencial

Cada elemento se encuentra en una posicion (indice):
v" Los indices son enteros positivos
v" Elindice del primer elemento siempre es 0

v" Los indices se incrementan de uno en uno

IRl 125.40 76.95 328.80 254.62 435.00 164.29 0.00

0 1 2 3 4 5 6
Acceso directo

A cada elemento se accede a través de su indice:

ventas[4] accede al 52 elemento (contiene el valor 435.00)
cout << ventas[4];

ventas[4] = 442.75; ca Datos de un mismo tipo base:
Se usan como cualquier variable

Fundamentos de la programacion: Tipos e instrucciones Il Pé4gina 376

7 Luis Herndndez Yafiez

Tipos arrays

Declaracion de tipos de arrays

typedef tipo base nombre tipo[tamano];

Ejemplos:

typedef double tTemp[7];

typedef short int tDiasMes[12];

typedef char tVocales[5];

typedef double tVentas[31];

typedef tMoneda tCalderilla[15]; // Enumerado tMoneda

Recuerda: Adoptamos el convenio de comenzar

los nombres de tipo con una t minuscula, seguida
de una o varias palabras, cada una con su inicial en mayuscula

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Tipos e instrucciones Il Péagina 377

Variables arrays

.z : typedef double tTemp[7];
Declaracion de variables arrays — Preiet duoe vewlils o1,

. . typedef char tVocales[5];
t"-PO nombr*e, typedef double tVentas[31];

Ejemplos:

(7] 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8 9 10 11

tVocales vocales; vocales
0 1 2 3 4

e 1 2 3 4 5 6 7 8 9 10 11 12 30

:lq NO se inicializan los elementos automaticamente

A Fundamentos de la programacién: Tipos e instrucciones || Pé4gina 378

tVentas ventasFeb; ventasFeb

7 Luis Herndndez Yafiez

Fundamentos de la programacion

Uso de variables arrays

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones Il Pé4gina 379

v, Luis Herndndez Yafiez
f

Acceso a los elementos de un array

nombre[indice]

Cada elemento se accede a través de su indice (posicion en el array)

tVocales vocales;

typedef char tVocales[5];

vocales

5 elementos, indices de 0 a 4:

vocales[0] vocales[1] vocales[2] vocales[3] vocales[4]
Procesamiento de cada elemento:

Como cualquier otra variable del tipo base

cout << vocales[4];

vocales[3] = '0';

if (vocales[i] == 'e")

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 380

v, Luis Hernandez Yafiez
f

Acceso a los elementos de un array

iIMPORTANTE!
iNo se comprueba si el indice es correcto!

jEs responsabilidad del programador!

const int Dim = 100;
typedef double tVentas[Dim];
tVentas ventas;

Indices validos: enteros entre 0 y Dim-1
ventas[@] ventas[l] ventas[2] ... ventas[98] ventas[99]

;Qué es ventas[100]? ;O ventas[-1]7 ;O ventas[132]?

iMemoria de alguna otra variable del programa!

ﬁﬂ Define los tamafios de los arrays con constantes
(013

=mrm Fundamentos de la programacién: Tipos e instrucciones Il P4gina 381

Luis Herndndez Yafiez

Fundamentos de la programacion

Recorrido de arrays

(0]

=mrm Fundamentos de la programacion: Tipos e instrucciones Il Pé4gina 382

v, Luis Hernandez Yafiez
f

Recorrido de arrays

Arrays: tamafio fijo 2 Bucle de recorrido fijo (for)

Ejemplo: Media de un array de temperaturas

const int Dias = 7;

typedef double tTemp[Dias];

tTemp temp;

double media, total = 0;

for (int i = @; i < Dias; i++) {
total = total + temp[i];

}

media = total / Dias;

Ig)
L
]
©
f=
2
5]
I
§
@loEle o -
=t m ~undamentos de la programacion: Tipos e instrucciones || Pagina 383
Recorrido de arrays
12.40 10.96 8.43 11.65 13.70 13.41 14.07
0 1 2 3 4 5 6
tTemp temp;
double media, total = 9; Memoria
Dias 7
for (int i =0; i< D1as,. i++) { > temp[e] 15 46
total = total + temp[i];
} —_— temp[1] 10.96
— temp[2] 8.43
— temp[3] 11.65
—_— temp[4] 13.70
temp[5] 13.41
1<Dias temp[6] 14.07
i ?
total+=temp[i] media :
total 84.62
3]
i< i 7
>
]
©
f=
2
5]
I
§
@loEle o -
=t m ~undamentos de la programacioén: Tipos e instrucciones || Pagina 384

Recorrido de arrays

#include <iostream>
using namespace std;

const int Dias = 7;
typedef double tTemp[Dias];

double media(const tTemp temp);

int main() {
tTemp temp;
for (int i = @; i < Dias; i++) { // Recorrido del array
cout << "Temperatura del dia " << i + 1 << ": ";
cin >> temp[i];

}
N cout << "Temperatura media: " << media(femp) << endl;
5 return 0;
i } Los usuarios usan de 1 a 7 para numerar los dias
g La interfaz debe aproximarse a los usuarios,
= aunque internamente se usen los indices de 0 a 6
@ ? Fundamentos de la programacion: Tipos e instrucciones Il Pé4gina 385

Recorrido de arrays

double media(const tTemp temp) {
double med, total = 0;

for (int i = @; i < Dias; i++) { // Recorrido del array
total = total + temp[i];

}
med = total / Dias;

return med;

Gg Los arrays se pasan a las funciones como constantes

5 Las funciones no pueden devolver arrays

3;-%

]

©

f=

2

5]

g

§

=t m ~undamentos de la programacioén: Tipos e instrucciones || Pagina 386

Luis Herndndez Yafiez

Arrays de tipos enumerados

const int Cuantas = 15;

typedef enum { centimo, dos_ centimos, cinco_centimos,
diez_centimos, veinte centimos, medio_euro, euro } tMoneda;

typedef tMoneda tCalderilla[Cuantas];

string aCadena(tMoneda moneda);
// Devuelve la cadena correspondiente al valor de moneda

tCalderilla bolsillo; // Exactamente llevo Cuantas monedas

bolsillo[@] = euro;
bolsillo[1] = cinco_centimos;
bolsillo[2] = medio_euro;
bolsillo[3] = euro;
bolsillo[4] = centimo;

for (int moneda = ©; moneda < Cuantas; moneda++)
cout << aCadena(bolsillo[moneda]) << endl;

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 387

©)
|:;

Fundamentos de la programacion

Busqueda en arrays

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pé4gina 388

r Luis Hernandez Yafiez
L.

Luis Herndndez Yafiez

s

Busqueda en arrays

/Qué dia las ventas superaron los 1.000 €?

const int Dias = 365; // Ano no bisiesto
typedef double tVentas[Dias];

int busca(const tVentas ventas) {
// Indice del primer elemento mayor que 1000 (-1 si no hay)

}

(0]

bool encontrado = false;
int ind = 0;
while ((ind < Dias) && !encontrado) { // Esquema de busqueda
if (ventas[ind] > 1000) {
encontrado = true;

}
else {
ind++;

}

if (!encontrado) {
ind = -1;
}

return ind;

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 389

Fundamentos de la programacion

(0]

r Luis Hernandez Yafiez
L.

-

Capacidad y copia de arrays

Fundamentos de la programacion: Tipos e instrucciones Il Péagina 390

Capacidad de los arrays

La capacidad de un array no puede ser alterada en la ejecucion
El tamafio de un array es una decision de disefo:
v En ocasiones sera facil (dias de la semana)

v Cuando pueda variar ha de estimarse un tamafio
Ni corto ni con mucho desperdicio (posiciones sin usar)

STL (Standard Template Library) de C++:
Colecciones mas eficientes cuyo tamafo puede variar

(0]

s =mr=m Fundamentos de la programacion: Tipos e instrucciones || P4gina 391

[Luis Herndndez Yafiez
L.

Copia de arrays

No se pueden copiar dos arrays (del mismo tipo) con asignacion:
array2 = arrayl; // jji NO COPIA LOS ELEMENTOS !!!

Han de copiarse los elementos uno a uno:
for (int 1 = 0; i < N; i++) {
array2[i] = arrayl[i];

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Pé4gina 392

[Luis Hernandez Yafiez
L.

Fundamentos de la programacion

Arrays no completos

(0]

e =mr=m ~undamentos de la programacion: Tipos e instrucciones Il Pé4gina 393

[Luis Herndndez Yafiez
L.

Arrays no completos

Puede que no necesitemos todas las posiciones de un array...
La dimensidn del array sera el maximo de elementos
Pero podremos tener menos elementos del maximo

Necesitamos un contador de elementos...

const int Max = 100;
typedef double tArray[Max];
tArray lista;

int contador = 9;

contador: indica cuantas posiciones del array se utilizan
Sélo accederemos a las posiciones entre 0 y contador-1

Las demas posiciones no contienen informacion del programa

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Tipos e instrucciones || Pagina 394

Arrays no completos

#include <iostream>
using namespace std;
#tinclude <fstream>

const int Max = 100;
typedef double tArray[Max];

double media(const tArray lista, int cont);

int main() {
tArray lista;
int contador = 0;
double valor, med;
ifstream archivo;
archivo.open("lista.txt");
if (archivo.is_open()) {

archivo >»> valor;

2 while ((valor != -1) &% (contador < Max)) {

> .

5 lista[contador] = valor;

kel

5 contador++;

o archivo >> valor;

I E E

Fundamentos de la programacion: Tipos e instrucciones Il Pagina 395

Arrays no completos

archivo.close();
med = media(lista, contador);
cout << "Media de los elementos de la lista: " << med << endl;

}
else {
cout << "iNo se pudo abrir el archivo!" << endl;
}
return 0;

}

double media(const tArray lista, int cont) {
double med, total = ©;
for (int ind = 0; ind < cont; ind++) {

total = total + lista[ind];
}

med = total / cont; Solo recorremos hasta cont-1
return med;

Luis Hernandez Yafiez
—

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 396

©)
|:;

Acerca de Creative Commons @@@@

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones || Péagina 397

Fundamentos de |la programacion

El operador ternario ?

ANEXO I

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

(& Universidad Complutense

El operador ternario ?

Expresion condicional Condicién ? Exp1 : M—>

Dos alternativas

— Condicion: Expresion logica

++ -- (postfijos)
Llamadas a funciones
Moldes

— Exply Exp2: Expresiones
Si Condicidn se evalda a true, -

el resultado es Exp1; TJ'(C;I;IIE?JZT leg,n;)
si Condicion se evalia a false,
el resultado es ExpZ2.

int a =5, b =3, c;

c=(a+b==10) ? 2 : 3;

3 c=(8 ==10) ? 2 : 3;
§ Cc = false ? 2 : 3;
% c = 3;

Pé4gina 399

El operador ternario ?

Equivalencia con un if-else
c=(a+b==10) ? 2 : 3;

Es equivalente a:
if (a +b==10) c = 2;
else c = 3;

Se pueden concatenar:

cout << (nota == 10 ? "MH" : (nota >= 9 ? "SB"
(nota >= 7 ? "NT" : (nota >= 5 ? "AP" : "SS"))))

Esto es equivalente a la escala if-else-1if de la siguiente seccidn.

==z Luis Hernandez Yafiez
f

=@ Fundamentos de la programacion: Tipos e instrucciones Il (Anexo 1) Pé4gina 400

El operador ternario ?

Escala if .. else 1if..equivalente

cout << (nota == 10 ? "MH" : (nota >= 9 ? "SB"
(nota >= 7 ? "NT" : (nota >= 5 ? "AP" : "SS"))))

Sinota == 10 entonces MH
sino, sinota >= 9 entonces SB
sino, sinota >= 7 entonces NT
sino, sinota >= 5 entonces AP
sino SS

double nota;

cin >> nota;

if (nota == 10) { cout << "MH"; }
else if (nota »>= 9) { cout << "SB"; }
else if (nota »>= 7) { cout << "NT"; }
else if (nota >= 5) { cout << "AP"; }
else { cout << "SS"; } \ 4

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I) Péagina 401

Fundamentos de |la programacion

Ejemplos de secuencias

ANEXO II

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

4 []
Indice
Recorridos 404
Un aparcamiento 405
éParéntesis bien emparejados? 409
¢Dos secuencias iguales? 412
Numeros primos menores que N 413
Busquedas 417
Busqueda de un numero en un archivo 419
Busquedas en secuencias ordenadas 420
(cc)(MOE)

Fundamentos de la programacion: Tipos e instrucciones Il (Anexo Il)

=il i]

Fundamentos de la programacion

Recorridos

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones Il (Anexo Il)

r Luis Herndndez Yafiez
|
L.

Pagina 404

Un aparcamiento

Secuencia de caracteres E y S en archivo
E = Entra un coche; S = Sale un coche

;Cuantos coches quedan al final de la jornada?

Varios casos, cada uno en una linea y terminado en punto

Final: linea s6lo con punto

parkeng tet: Bo de nolbin BT —

Archrid ESostn Fosvale Wer Ayoda

ELEI SIS SIS LS I S S S E S SE S LS55 888S
EEESSERSSEE SSEEESE SESSEESEEESS

EEEE SR SE SR RS SE SR S RS EERESSEEE SREE .

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1)

r Luis Hernandez Yafiez
|
L.

Pé4gina 405

Un aparcamiento

#include <iostream>
using namespace std;
#include <fstream>

int main() {
int coches;
char c;
bool terminar = false;
ifstream archivo;
archivo.open("parking.txt");
if (larchivo.is_open()) {
cout << "jNo se ha podido abrir el archivo!" << endl;
}

else {
// Recorrido...
archivo.close();)

}

return 0;

-

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1) Péagina 406

©)
|:;

Un aparcamiento (recorrido)

while (!terminar) {
archivo »>> c;
if (¢ == "'.") { // . como primer caracter? (centinela)
terminar = true;
}
else {
coches = 0;
while (c != ".") { // Recorrido de la secuencia
cout << c;
if (c == "E') {
coches++;
}
else if (c == 'S") {
coches--;

}

archivo >»> c;

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1) Péagina 407

r Luis Hernandez Yafiez
L.

Un aparcamiento (recorrido)

if (coches >= 0) {

cout << endl << "Quedan " << coches << " coches.";
else {
cout << endl << "Error: Mas salidas que entradas!";
cout << endl;
353
B
E
5
I
I
Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1) Pagina 408

é¢Paréntesis bien emparejados?

Cada paréntesis, con su pareja
Secuencia de caracteres terminada en # y con parejas de paréntesis:
ab(c(de)fgh((i(jk))Imn)op)(rs)#
L | | —] | | (I

Contador del nivel de anidamiento:

Al encontrar ' (' incrementamos - Al encontrar ') ' decrementamos

Al terminar, el contador debera tener el valor ©

Errores:

— Contador -1: paréntesis de cierre sin uno de apertura pendiente
abc)de(fgh(ij))#

— Contador termina con un valor positivo
Mas paréntesis de apertura que de cierre
Algtn paréntesis sin cerrar: (a(b(cd(e)f)gh(i))jk#

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1) Péagina 409

©)
E

é¢Paréntesis bien emparejados?

Un error puede interrumpir el recorrido:

char c;
int anidamiento = @, pos = 0;
bool error = false;
cin >> c;
while ((c != "#') && l!error) {
poOS++;
if (c == "(") {

anidamiento++;

else if (c == ")") {
anidamiento--;

}

if (anidamiento < @) {
error = true;

if (lerror) {

Luis Herndndez Yafiez

cin >> c;
I E E
Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1)

Pagina 410

é¢Paréntesis bien emparejados?

parentesis.cpp

if (error) {

cout << "Error: cierre sin apertura (pos.

<< 5
}
else if (anidamiento > 0) {
cout << "Error: Apertura sin cierre";

)i
else {

cout << "Correcto";
¥

cout << endl;

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1)

r Luis Hernandez Yafiez
L.

<< pos

Pagina 411

é¢Dos secuencias iguales?

bool iguales() {
bool sonIguales = true;
double di, d2;
ifstream secl, sec2;
bool final = false;
secl.open("secuencial.txt");
sec2.open("secuencia2.txt");
secl >> di;
sec2 >> d2; // Al menos estaran los centinelas (9)
while (sonIguales && !final) {
sonIguales = (d1 == d2);
final = ((d1 == 0) || (d2 == @));
if (!final) {
secl >> di;
sec2 >> d2;

}

} ﬁg Cambia secuencia2.txt por secuencia3.txt
secl.close(); y por secuencia4.txt para comprobar otros casos
sec2.close();

return sonIguales;

Luis Herndndez Yafiez

}
@10

e rar—wrm "undamentos de la programacion: Tipos e instrucciones Il (Anexo I1) Pagina 412

(8]

NuUmeros primos menores que N

Secuencia calculada: numeros divisibles sé6lo por 1 y ellos mismos (< N)

#include <iostream>
using namespace std;
bool primo(int n); >
int main() {
int num, candidato;
cout << "Entero en el que parar (>1): ";
cin >> num;
if (num > 1) {
candidato = 2; // E1 1 no se considera un numero primo
while (candidato < num) {
cout << candidato << " "

;5 // Mostrar numero primo

candidato++;
while (!primo(candidato)) { // Siguiente primo
candidato++;
}
}
2 }
§ return 0;
5 }
(cc) (%)

el Fundamentos de la programacién: Tipos e instrucciones Il (Anexo Il) Pagina 413

Nimeros primos menores que N

bool primo(int n) {
bool esPrimo = true;

for (int i = 2; i <=n - 1; i++) {
if (n % 1i==20) {
esPrimo = false; // Es divisible por i

}
}

return esPrimo;

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1) Pagina 414

r Luis Herndndez Yafiez
L.

NuUmeros primos menores que N

Mejoras: probar sélo impares; sélo pueden ser divisibles por impares;
no pueden ser divisibles por ninguno mayor que su/mitad

; // Mostrar/el numero primo 2
e es primo

cout << candidato << ; strar numero primo
candidato 0lo probamos impares
while (!primo(candidato) iguiente numero primo
candidato
}
}o...
bool primo(int n)
bool esPrimo =
for (int i =3;i<=n/2;i=1+2){
if (n%1i==29) {
esPrimo = false; // Es divisible por i
}

}...
(1))

=mr=m Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1) Péagina 415

r Luis Hernandez Yafiez
L.

NuUmeros primos menores que N

Otra mejora mas: Paramos al encontrar el primer divisor

bool primo(int n) {
bool esPrimo = true;

int i = 3; 2
while ((i <= n / 2) && esPrimo) {
if (n%1i==209){
esPrimo = false;
)
i

=1+ 2;

}

return esPrimo;

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1) Pagina 416

==z Luis Hernandez Yafiez
L
(o) -

Fundamentos de la programacion

Busquedas

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones Il (Anexo Il) Péagina 417

r Luis Hernandez Yafiez
L.

Busqueda de un numero en un archivo

#include <iostream> buscaarch.cpp

using namespace std;
#include <fstream>

int busca(int n);
// Devuelve la linea en la que se encuentra o -1 si no esta

int main() {
int num, linea;
cout << "Valor a localizar: ";
cin >> num;

linea = busca(num); >
if (linea != -1) {
cout << "Encontrado (linea " << linea << ")" << endl;

else {

£ cout << "No encontrado"” << endl;

3 }

5 return 0;

2 }

Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1) Pagina 418

Busqueda de un numero en un archivo

int busca(int n) {
int i, linea = 0;
bool encontrado =
ifstream archivo;
archivo.open("enteros.txt");
if (larchivo.is_open()) { Sobe P
linea = -1; '8

false;

wnbmion Exd- @

else { .
archivo >> i; 11
while ((i != @) && !encontrado) { :

linea++; 265
if (i ==n) { 153

encontrado = true; 164
} £

archivo »>> i; Centinela —> @

if (!encontrado) {
linea = -1;

archivo.close();

return linea;

r Luis Hernandez Yafiez
L.

=mr=m Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1) Pagina 419

Fundamentos de la programacion

Busquedas en
secuencias ordenadas

(0]

=mr=m ~undamentos de la programacion: Tipos e instrucciones Il (Anexo Il) Péagina 420

r Luis Herndndez Yafiez
L.

Luis Hernandez Yafiez

Busqueda en secuencias ordenadas

Secuencia ordenada de menor a mayor: buscaord. cpp

paramos al encontrar uno mayor o igual al buscado

Los que resten seran seguro mayores: jno puede estar el buscado!

cout << "Valor a localizar: ";
cin >> num;
archivo »>> i;

orcherancda et

Archva Edeiiéy
-

while ((i != @) & (i < num)) { i
cont++; 18
archivo »>> i; -

} 4

if (i == num) { 'iﬁ
cout << "Encontrado (pos.: " << cont << ")"; 184

) B

else { N Fa
cout << "No encontrado";)

}

cout << endl;
archivo.close();

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones Il (Anexo I1) Pagina 421

©)
|:;

Luis Herndndez Yafiez

ﬂﬂ-

Secuencias ordenadas

Si el elemento esta: procesamiento similar a secuencias desordenadas

123 153 159

archivo >> i;

num 9

(EEN))
& (i < num)

cont++;
archivo >> i;

false

Fundamentos de la programacion: Tipos e instrucciones Il (Anexo Il)

Péagina 422

Luis Hernandez Yafiez

{E}

Secuencias ordenadas

Si el elemento no esta: evitamos buscar en el resto de la secuencia

125 153 159

archivo >> i;

num 10

(EEN-))
& (i < num)

cont++;
archivo >> i;

No se procesa
el resto
de la secuencia

false

Fundamentos de la programacion: Tipos e instrucciones Il (Anexo Il)

Péagina 423

Acerca de Creative Commons @@@@

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacion: Tipos e instrucciones Il (Anexo Il) Pagina 424

Fundamentos de |la programacion

La abstraccion
procedimental

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

r4 [3

Indice
Disefio descendente: Tareas y subtareas 427
Subprogramas 434
Subprogramas y datos 441
Parametros 446
Argumentos 451
Resultado de la funcidn 467
Prototipos 473
Ejemplos completos 475
Funciones de operador 477
Disefio descendente (un ejemplo) 480
Precondiciones y postcondiciones 490

gloicie

Fundamentos de la programacion: La abstraccion procedimental

Fundamentos de la programacion

Diseno descendente
Tareas y subtareas

(0]

7@ Fundamentos de la programacion: La abstraccion procedimental Péagina 427

==z Luis Hernandez Yafiez
f
L4

Tareas y subtareas

Refinamientos sucesivos

Tareas que ha de realizar un programa:

Se pueden dividir en subtareas mas sencillas
Subtareas:

También se pueden dividir en otras mas sencillas...

- Refinamientos sucesivos

Disefio en sucesivos pasos en los se amplia el detalle
Ejemplos:
v’ Dibujar ;

v’ Mostrar la cadena HOLA MAMA en letras gigantes

Luis Hernandez Yafiez

(@l0icle)

e=tarararem ~undamentos de la programacion: La abstraccion procedimental Péagina 428

Un dibujo

1.Dibujar ()

—>
REFINAMIENTO

(0]

[

==z Luis Hernandez Yafiez
f
L4

Fundamentos de la programacion: La abstraccion procedimental

1.Dibujar ()

2.Dibujar /\

2.1. Dibujar /\ = <—

Misma tarea

2.2. Dibujar —

3.Dibujar /\ <

Péagina 429

Un dibujo

1.Dibujar ()

2.2. Dibujar

3.Dibujar /\

Luis Hernandez Yafiez

(0]

[

f
e

Fundamentos de la programacion: La abstraccidn procedimental

4 tareas, pero dos de ellas son iguales
Nos basta con saber cdmo dibujar:

O /\ —

Péagina 430

Un dibujo R

void dibujarCirculo()

{ ...}

void dibujarSecantes()
(...}

void dibujarLinea()

{ ...}
Dibujar

void dibujarTriangulo()
{

dibujarSecantes();
dibujarLinea();
}

int main() {
dibujarCirculo();
dibujarTriangulo();
dibujarSecantes();
return 0;

7 Luis Herndndez Yafiez

Fundamentos de la programacion: La abstraccion procedimental Pagina 431

Mensaje en letras gigantes

Mostrar la cadena HOLA MAMA en letras gigantes

Mostrar HOLA MAMA

Mostrar HOLA Espacio en blanco Mostrar MAMA

nonn oo

Tareas basicas

n Espacio en blanco

7 Luis Herndndez Yafiez

Fundamentos de la programacion: La abstraccion procedimental Péagina 432

Mensaje en letras gigantes

void mostrarH() {

void espaciosEnBlanco() {

cout << "* *" << endl; cout << endl << endl << endl;
cout << "* *" << endl; }
cout << "F¥REREAM << endl;
cout << "* *" << endl; void mostrarM()
cout << "* *" << endl << endl; { ...}
}
int main() {
void mostrar0o() { mostrarH();
cout << "FEER¥XM (¢ andl; mostrarO();
cout << "* *" << endl; mostrarL();
cout << "* *" << endl; mostrarA();
cout << "* *" << endl; espaciosEnBlanco();
cout << "F¥xxx" (¢ endl << endl; mostrarM();
} mostrarA();
mostrarM();
. void mostrarL() mostrarA();
5 { ...}
2 return 0;
% void mostrarA() }
% { ...}
Fundamentos de la programacion: La abstraccion procedimental Pagina 433

Fundamentos de la programacion

(0]

r Luis Hernandez Yafiez
L.

Subprogramas

=mr=m ~undamentos de la programacion: La abstraccidn procedimental Pagina 434

Abstraccion procedimental

Subprogramas

Pequerios programas dentro de otros programas
v Unidades de ejecuciéon independientes

v Encapsulan cédigo y datos

v Se comunican con otros subprogramas (datos)

Subrutinas, procedimientos, funciones, acciones, ...

v' Realizan tareas individuales del programa

v Funcionalidad concreta, identificable y coherente (disefio)
v" Se ejecutan de principio a fin cuando se llaman (invocan)
v Terminan devolviendo el control al punto de llamada

ﬁ Aumentan el nivel de abstraccién del programa

Luis Herndndez Yafiez

Facilitan la prueba, la depuracion y el mantenimiento

(0]

=mrm Fundamentos de la programacion: La abstraccion procedimental Péagina 435

Subprogramas

Flujo de ejecucion

——> int main()

{)

mostraro() ;——

7

}

mostrarH();

I—) void mostrarH()
{
) (2
——— void mostraro()
{
© }

(0]

=mrm Fundamentos de la programacion: La abstraccion procedimental Péagina 436

v, Luis Hernandez Yafiez
f

Subprogramas

Subprogramas en C++

Forma general de un subprograma en C++:

tipo nombre(pardmetros) // Cabecera

{
}

// Cuerpo

v" Tipo de dato que devuelve el subprograma como resultado
v’ Pardmetros para la comunicacion con el exterior

v" Cuerpo: jUn bloque de cédigo!

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 437

[Luis Herndndez Yafiez
L.

Subprogramas

Tipos de subprogramas

Procedimientos (acciones):
NO devuelven ningun resultado de su ejecucion con return
Tipo: void
Llamada: instrucciéon independiente
mostrarH();

Funciones:

SI devuelven un resultado con la instruccién return
Tipo distinto de void

Llamada: dentro de cualquier expresion

x = 12 * y + cuadrado(20) - 3;

Se sustituye en la expresién por el valor que devuelve

jYa venimos utilizando funciones desde el Tema 2!

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 438

[Luis Hernandez Yafiez
L.

Subprogramas

Funciones

Subprogramas de tipo distinto de void

{

int op;

cout << "1 - Editar" << endl;
cout << "2 - Combinar" << endl;
cout << "3 - Publicar" << endl;
cout << "@ - Cancelar" << endl;

cout << "Elija: ";
cin >> op;

int main()

{

int opcion;

opcion = @) :
A

Peturn<§E;

fiez
—

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental

r Luis Hernandez Ya
L.

Péagina 439

Subprogramas

Procedimientos

Subprogramas de tipo void

i wog
{

int op;

cout << "1 - Editar" << endl;

cout << "2 - Combinar" << endl;

cout << "@ - Cancelar" << endl;

cout << "Opcidn: ";

cin >> op;

if (op == 1) {
editar();

}

else if (op == 2) {
combinar();

fiez

}

int main()

{

menu(); —
—> ...

-

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental

©)
|:;

Péagina 440

Fundamentos de la programacion

Subprogramas y datos

(0]

s =mr=m ~undamentos de la programacion: La abstraccidn procedimental Péagina 441

[Luis Herndndez Yafiez
L.

Datos en los subprogramas

De uso exclusivo del subprograma

tipo nombre(pardmetros) // Cabecera

{
}

Declaraciones locales // Cuerpo

v" Declaraciones locales de tipos, constantes y variables
Dentro del cuerpo del subprograma

v’ Parametros declarados en la cabecera del subprograma

Comunicacion del subprograma con otros subprogramas

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 442

[Luis Hernandez Yafiez
L.

Datos locales y datos globales

Datos en los programas

v' Datos globales: declarados fuera de todos los subprogramas
Existen durante toda la ejecucién del programa
v" Datos locales: declarados en algiin subprograma

Existen so6lo durante la ejecucién del subprograma

Ambito y visibilidad de los datos Tema 3

— Ambito de los datos globales: resto del programa
Se conocen dentro de los subprogramas que siguen

— Ambito de los datos locales: resto del subprograma
No se conocen fuera del subprograma

— Visibilidad de los datos

Datos locales a un bloque ocultan otros externos homénimos

Luis Herndndez Yafiez

(0]

=mrm Fundamentos de la programacion: La abstraccion procedimental Péagina 443

Datos locales y datos globales

#include <iostream>
using namespace std;

const int MAX = 100;

double ingresos; } Datos globales B9 opdeproc()
es distinta

de op de main()

void proc() {
int op;
double ingresos;

} Datos locales a proc ()

— Se conocen MAX (global), op (local)
} e ingresos (local que oculta la global)

int main() {

int op; Datos locales amain()

r‘etum Se conocen MAX (global), op (local)

} e ingresos (global)

Luis Hernandez Yafiez

(0]

=mrm Fundamentos de la programacion: La abstraccion procedimental Péagina 444

Datos locales y datos globales

Sobre el uso de datos globales en los subprogramas

NO SE DEBEN USAR datos globales en subprogramas
v’ ;Necesidad de datos externos?

Define parametros en el subprograma

Los datos externos se pasan como argumentos en la llamada
v Uso de datos globales en los subprogramas:

Riesgo de efectos laterales

Modificacién inadvertida de esos datos afectando otros sitios

Excepciones:
v’ Constantes globales (valores inalterables)

v Tipos globales (necesarios en varios subprogramas)

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 445

Fundamentos de la programacion

Parametros

(0]

e =mr=m ~undamentos de la programacion: La abstraccidn procedimental Péagina 446

[Luis Hernandez Yafiez
L.

Comunicacion con el exterior

Datos de entrada, datos de salida y datos de entrada/salida

Datos de entrada: Aceptados Subprograma

Subprograma que dado un numero

muestra en la pantalla su cuadrado: cuadrado()

i

Datos de salida: Devueltos Subprograma
Subprograma que dado un nimero X y (=x2)
devuelve su cuadrado: s cuadrado()

Datos de entrada/salida:

. Subprograma
Aceptados y modificados oprog

Subprograma que dada una variable
numérica la eleva al cuadrado:

L

cuadrado()

Luis Herndndez Yafiez

(o) (0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 447

Parametros en C++

Declaracion de parametros

Sélo dos clases de parametros en C++:
— Sdélo de entrada (por valor)
— De salida (s6lo salida o E/S) (por referencia / por variable)

Lista de pardmetros formales

Entre los paréntesis de la cabecera del subprograma

tipo nombre(pardmetros) =
De salida

pardmetros —);-) A s dentificador RN
@lose

=mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 448

Luis Hernandez Yafiez

Parametros por valor

Reciben copias de los argumentos usados en la llamada
int cuadrado(int num)

double potencia(double base, int exp)

void muestra(string nombre, int edad, string nif)
void proc(char c, int x, double a, bool b)
Reciben sus valores en la llamada del subprograma
Argumentos: Expresiones en general

Variables, constantes, literales, llamadas a funcion, operaciones

Se destruyen al terminar la ejecucion del subprograma

jAtencion! Los arrays se pasan por valor como constantes:
double media(const tArray lista)

Luis Herndndez Yafiez

(0]

=mrm Fundamentos de la programacion: La abstraccion procedimental Péagina 449

Parametros por referencia &

Misma identidad que la variable pasada como argumento
void incrementa(int &x)
void intercambia(double &x, double &y)

void proc(char &c, int &x, double &a, bool &b)

Reciben las variables en la llamada del subprograma: jVariables!
Los argumentos pueden quedar modificados

jNo usaremos pardmetros por valor en las funciones!

Sélo en procedimientos

ﬂa Puede haber tanto por valor como por referencia

jAtencién! Los arrays se pasan por referencia sin utilizar &
void insertar(tArray lista, int &contador, double item)

El argumento de 1ista (variable tArray) quedara modificado

(0]

=mrm Fundamentos de la programacion: La abstraccion procedimental Péagina 450

Luis Hernandez Yafiez

Fundamentos de la programacion

Argumentos

(0]

=mr=m ~undamentos de la programacion: La abstraccidn procedimental Pagina 451

==z Luis Hernandez Yafiez
f

Llamada a subprogramas con parametros

nombre (argumentos)

— Tantos argumentos como parametros y en el mismo orden
— Concordancia de tipos argumento-parametro
— Por valor: Expresiones validas (se pasa el resultado)

— Por referencia: jSélo variables!

Se copian los valores de las expresiones pasadas por valor
en los correspondientes parametros

Se hacen corresponder los argumentos pasados por referencia
(variables) con sus correspondientes parametros

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 452

r Luis Hernandez Yafiez
L.

Argumentos pasados por valor

Expresiones validas con concordancia de tipo:

void proc(int x, double a) - proc(23 * 4 / 7, 13.5);

- double d = 3;
proc(12, d);

- double d = 3;
int i = 124,
proc(i, 33 * d);

- double d = 3;
int i = 124;
proc(cuad(20) * 34 + i, 1 * d);

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 453

[Luis Herndndez Yafiez
L.

Argumentos pasados por valor

void procg}nt X, double a) Memoria
i 124
—>{ ... }
d 3.0
int main()
X 124
proc(i, a 99.0
2 return 0;
B
2 }
5
g
I
Fundamentos de la programacion: La abstraccion procedimental Pagina 454

Argumentos pasados por referencia

void proc(int &x, double &a) Memoria

—>{ ... } :s!F% R
@ 3.0

int main()

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 455

[Luis Herndndez Yafiez
L.

é¢Qué llamadas son correctas?

Dadas las siguientes declaraciones:
int 1i;

double d;

void proc(int x, double &a);

¢ Qué pasos de argumentos son correctos? ;Por qué no?

proc(3, i, d); X N2 deargumentos # N2 de parametros
proc(i, d); v
proc(3 * i + 12, d); v/

proc(i, 23); X Parametro por referencia = jvariable!

proc(d, 1i); X jArgumento double para pardmetro int!
3;% proc(3.5, d); X jArgumento double para parametro int!
g proc(i); X N2deargumentos # N de pardmetros
Fundamentos de la programacion: La abstraccién procedimental Pagina 456

Paso de argumentos

void divide(int opl, int op2, int &div, int &rem) {

// Divide opl entre op2 y devuelve el cociente y el resto
div = opl / op2;
rem = opl % op2;

}

int main() {
int cociente, resto;
for (int j = 1; j <= 4; j++) {
for (int i = 1; i <= 4; i++) {
divide(i, j, cociente, resto);
cout << i << " entre " << j << " da un cociente de
<< cociente << " y un resto de " << resto << endl;

}

return 0;

-

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 457

©)
|:;

Paso de argumentos

void divide(int opl, int op2, int &div, int &rem) {
// Divide opl entre op2 y devuelve el cociente y el resto
div = opl / op2;

rem = opl % op2; Memoria

} cociente ?
?

int main() { feSto ;
int cociente, resto; 1 1
for (int j = 1; j <= 4; j++) { j 1

for (int i = 1; i <= 4; i++) {
————> divide(i, j, cociente, resto);

}
}

return 0;

Luis Hernandez Yafiez
-

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 458

©)
|:;

Paso de argumentos

void divide(int opl, int op2, int &div, int &rem) {
—> // Divide opl entre op2 y devuelve el cociente y el resto
div = opl / op2;

rem = opl % op2; Memoria

} div cociente ?
b)

int main() { :
int cociente, resto; i 1
for (int j = 1; j <= 4; j++) { j 1

for (int i = 1; i <= 4; i++) {
divide(i, j, cociente, resto);

} } opl 1
N op2
(1)
s
E return 0;
kel
5 }
5}
T
E
)
I E E
Fundamentos de la programacion: La abstraccion procedimental Pagina 459

Paso de argumentos

void divide(int opl, int op2, int &div, int &rem) {
// Divide opl entre op2 y devuelve el cociente y el resto
div = opl / op2;

rem = opl % op2; Memoria
} div cociente 1
int main() { 9
int cociente, resto; 1 1
for (int j = 1; j <= 4; j++) { j 1
for (int i = 1; i <= 4; i++) {
divide(i, j, cociente, resto);

N

} } opl 1
N op2
U
5
E return 0;
kel
5 }
5}
g
E
)
I E E
Fundamentos de la programacion: La abstraccion procedimental Pagina 460

Paso de argumentos

void divide(int opl, int op2, int &div, int &rem) {
// Divide opl entre op2 y devuelve el cociente y el resto
div = opl / op2;

rem = opl % op2; Memoria
} cociente 1
. . resto (%]
int main() {
int cociente, resto; 1 1
for (int j = 1; j <= 4; j++) { j 1
for (int i = 1; i <= 4; i++) {
divide(i, j, cociente, resto);
. return 0;
E ¥
5
I
I
Fundamentos de la programacion: La abstraccion procedimental Pagina 461

Mas ejemplos

void intercambia(double &valorl, double &valor2) {
// Intercambia los valores
—> double tmp; // Variable local (temporal)

tmp = valorl; Memoria temporal
valorl = valor2; del procedimiento
valor2 = tmp; tmp >
¥
int main() {
double numl, num2;
cout << "valor 1: "; Memoria de main()
cin >> numl; valorl numl 13.6
cout << "Valor 2: " valor2 num2 317.14

cin >> num2;
intercambia(numl, num2);
cout << "Ahora el valor 1 es " << numl

<< "y el valor 2 es " << num2 << endl;
return 0;

fiez

—

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental Pégina 462

©)
|:;

Mas ejemplos

// Prototipo
void cambio(double precio, double pago, int &euros, int ¢50,
int ¢20, int ¢le, int ¢5, int ¢2, int ¢l);

int main() {

double precio, pago;

int euros, cent50, cent20, centl@, cent5, cent2, centl;

cout << "Precio: ";

cin >> precio;

cout << "Pago: ";

cin >> pago;

cambio(precio, pago, euros, cent50, cent20, centl®, cent5, cent2,

centl);

cout << "Cambio: << euros << " euros, " << centb0 << " x 50c.,
<< cent20 << " x 20c., " << centlo << " x 10c.,
<< cent5 << " x 5c., " << cent2 << " x 2c. y "
<< centl << " x 1c." << endl;

fiez

return 0;

-

Luis Hernandez Ya

E

=mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 463

Mas ejemplos

void cambio(double precio, double pago, int &euros, int ¢50,

int ¢20, int ¢l@, int ¢5, int ¢2, int ¢l) {

if (pago < precio) { // Cantidad insuficiente

cout << "Error: El pago es inferior al precio" << endl;

}

else {
int cantidad = int(100.0 * (pago - precio) + 0.5);
euros = cantidad / 100;
cantidad = cambio % 100;
cent50 = cantidad / 59; l
cantidad = cantidad % 50;
cent20 = cantidad / 20;
cantidad = cantidad % 20;
centl10 = cantidad / 10;
cantidad = cantidad % 10;
cent5 = cantidad / 5;
cantidad = cantidad % 5;
cent2 = cantidad / 2
centl = cantidad % 2;

Explicacion en el libro de
Adams/Leestma/Nyhoff

fiez

-

Luis Hernandez Ya
—

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 464

Notificacion de errores

En los subprogramas se pueden detectar errores
Errores que impiden realizar los calculos:

void cambio(double precio, double pago, int &euros, int ¢50,
int ¢20, int ¢l@, int ¢5, int ¢2, int ¢l) {
if (pago < precio) { // Cantidad insuficiente
—_— cout << "Error: El pago es inferior al precio" << endl;

}

;Debe el subprograma notificar al usuario o al programa?
—> Mejor notificarlo al punto de llamada y alli decidir qué hacer

void cambio(double precio, double pago, int &euros, int ¢50,
int ¢20, int ¢l19, int ¢5, int ¢2, int ¢l,
—> bool &error) {
if (pago < precio) { // Cantidad insuficiente
—> error = true;

fiez

}

53

kel

5 else {

g —> error = false;

E

)

I E E

Fundamentos de la programacion: La abstraccion procedimental Pagina 465

Notificacion de errores

Al volver de la llamada se decide qué hacer si ha habido error...
v' ¢Informar al usuario?

v' ¢Volver a pedir los datos?

v’ Etcétera

int main() {
double precio, pago;
int euros, cent50, cent20, centl10, cent5, cent2, centl;
—> bool error;
cout << "Precio: ";
cin >> precio;
cout << "Pago: ";
cin >> pago;
cambio(precio, pago, euros, cent50, cent20, centld, cent5, cent2,
centl, error);
—> if (error) {
cout << "Error: El pago es inferior al precio" << endl;

fiez

}

else {

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental Pé4gina 466

f
©

Fundamentos de la programacion

Resultado de la funcion

(0]

=mr=m ~undamentos de la programacion: La abstraccidn procedimental Péagina 467

r Luis Herndndez Yafiez
L.

Resultado de la funcion

Una funcion ha de devolver un resultado
La funcién ha de terminar su ejecucion devolviendo el resultado

La instruccion return:
— Devuelve el dato que se indica a continuacién como resultado
— Termina la ejecucién de la funcién

El dato devuelto sustituye a la llamada de la funcion en la expresion

int cuad(int x) { int main() {
return x * m—.

} Esta instruccién return 9;

no se ejecutara nunca }

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 468

©)
E

Ejemplo: Calculo del factorial

Factorial (N)=1 x 2 x 3 x...x (N-2) x (N-1) x N
long long int factorial(int n); // Prototipo

int main() {
int num;
cout << "Num: ";
cin >> num;
cout << "Factorial de " << num << ": " << factorial(num) << endl;
return 0;

}

long long int factorial(int n) {
long long int fact = 1;

if (n < 9) {
fact = 0;
else {

for (int i = 1; 1 <= n; i++) {
fact = fact * i;

fiez

}

53

E }

< —> return fact;

= }

£

I E E

Fundamentos de la programacion: La abstraccion procedimental Pagina 469

Un Unico punto de salida

int compara(int vall, int val2) {
// -1 si vall < val2, 0@ si iguales, +1 si vall > val2
if (vall == val2) {

return 0; >
}
else if (vall < val2) {
, return -1; > ;3 puntos de salida! x
else {
return 1; >
}

fiez

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 470

r Luis Hernandez Ya
L.

Luis Herndndez Yafiez

{E}

Un Unico punto de salida

int compara(int vall, int val2) {
// -1 si vall < val2, 0@ si iguales, +1 si vall > val2
int resultado;

if (vall == val2) {
resultado = 0;

else if (vall < val2) {
resultado = -1;
else {
resultado = 1;
return resultado; > Punto de salida tGnico /
Fundamentos de la programacion: La abstraccion procedimental Pagina 471

é¢Cuando termina el subprograma?

Luis Hernandez Yafiez

{E}

Procedimientos (tipo void):

— Al encontrar la llave de cierre que termina el subprograma
— Al encontrar una instruccién return (sin resultado)
Funciones (tipo distinto de void):

— SOLO al encontrar una instruccién return (con resultado)

Nuestros subprogramas siempre terminaran al final:
v No usaremos return en los procedimientos
v" Funciones: s6lo un return y estara al final

ﬁg Para facilitar la depuracion y el mantenimiento,

codifica los subprogramas con un tnico punto de salida

HEE

S—mrm Fundamentos de la programacion: La abstraccidn procedimental Péagina 472

0]

Fundamentos de la programacion

Prototipos

Luis Herndndez Yafiez

) DE(E)

E=2r s m Fundamentos de la programacion: La abstraccidon procedimental Péagina 473

¢Qué subprogramas hay en el programa?

;Doénde los ponemos? ;Antes de main()? ;Después de main()?
- Los pondremos después de main()

;Son correctas las llamadas a subprogramas?
Enmain() o en otros subprogramas
— ¢;Existe el subprograma?

— ¢(Concuerdan los argumentos con los parametros?

Deben estar los prototipos de los subprogramas antes de main()
Prototipo: cabecera del subprograma terminada en ;

void dibujarCirculo();
void mostrarM(); ﬁg main() es el Unico subprograma
void proc(double &a); que no hay que prototipar

int cuad(int x);

(0]

=mrm Fundamentos de la programacion: La abstraccion procedimental Pagina 474

v, Luis Hernandez Yafiez
f

fiez

Luis Hernandez Ya

Ejemplos

intercambia.cpp

#include <iostream>
using namespace std;

void intercambia(double &valorl, double &valor2); // Prototipo

int main() {
double numl, num2;

cout << "Valor 1: ";
cin >> numl;
cout << "Valor 2: ";

cin >> num2;
intercambia(numl, num2);

cout << "Ahora el valor 1 es
<< "y el valor 2 es "
return 0;

}

ﬁa Asegurate de que los prototipos

coincidan con las implementaciones

<< numl

<< num2 << endl;

void intercambia(double &valorl, double &valor2) {
double tmp; // Variable local (temporal)

tmp = valoril;
valorl = valor2;
valor2 = tmp;

}
=

Fundamentos de la programacion: La abstraccion procedimental

Péagina 475

Luis Hernandez Yafiez

{E}

Ejemplos

#include <iostream>
using namespace std;

// Prototipos
long long int factorial(int n);
int sumatorio(int n);

int main() {

int num;
cout << "Num: ";
cin >> num;
cout << "Factorial de "
<< num << ": "
<< factorial(num)
<< endl
<< "Sumatorio de 1 a "
<< num << ": "
<< sumatorio(num)
<< endl;
return 0;
}
HEE

long long int factorial(int n) {

}

long long int fact = 1;

if (n < 9) {
fact = 0;
else {
for (int i = 1; i <= n; i++) {
fact = fact * i;
}
}

return fact;

int sumatorio(int n) {

}

Fundamentos de la programacion: La abstraccion procedimental

int sum = 9;
for (int i = 1; 1 <= n; i++) {

sum = sum + 1ij;

return sum;

Péagina 476

Fundamentos de la programacion

Funciones de operador

(0]

e =mr=m ~undamentos de la programacion: La abstraccidn procedimental Péagina 477

[Luis Herndndez Yafiez
L.

Funciones de operador

Notacion infija (de operador)
operandolzquierdo operador operandoDerecho
a+b
Se ejecuta el operador con los operandos como argumentos
Los operadores se implementan como funciones:

tipo operatorsimbolo(pardmetros)

Si es un operador monario solo habra un parametro

Si es binario habra dos parametros

El simbolo es un simbolo de operador (uno o dos caracteres):
+, =%,), ==, <

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 478

Funciones de operador

tMatriz suma(tMatriz a, tMatriz b);
tMat
C =

tMatriz operator+(tMatriz a, tMatriz b);

riz a, b, c;
suma(a, b);

tMatriz a, b, c;

c =a+ b;

iLa implementacion sera exactamente la misma!

Mayor aproximacion al lenguaje matematico

Luis Herndndez Yafiez

(0]

7@ Fundamentos de la programacion: La abstraccion procedimental

f
e

Péagina 479

Fundamentos de la programacion

Diseno descendente
(un ejemplo)

(0]

7 Fundamentos de la programacion: La abstraccidon procedimental

=17 Luis Hernandez Yafiez
f
L4

Péagina 480

Refinamientos sucesivos

Especificacidn inicial (Paso 0).-
Desarrollar un programa que haga operaciones de conversion
de medidas hasta que el usuario decida que no quiere hacer mds

Andlisis y disefio aumentando el nivel de detalle en cada paso

/Qué operaciones de conversion?

Paso 1.-

Desarrollar un programa que haga operaciones de conversion
de medidas hasta que el usuario decida que no quiere hacer mds

% Pulgadas a centimetros
% Libras a gramos

fiez

% Grados Fahrenheit a centigrados

% Galones a litros

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental Pé4gina 481

f
©

Refinamientos sucesivos

Paso 2.-

Desarrollar un programa que muestre al usuario un menu con
cuatro operaciones de conversion de medidas:

* Pulgadas a centimetros

% Libras a gramos

% Grados Fahrenheit a centigrados
% Galones a litros

Y lea la eleccion del usuario y proceda con la conversion, hasta que
el usuario decida que no quiere hacer mds

6 grandes tareas:

fiez

Menu, cuatro funciones de conversion y main()

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 482

©)
E

Refinamientos sucesivos

Paso 2.-

Conversiones

7 Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: La abstraccion procedimental Péagina 483

Refinamientos sucesivos

Paso 3.-

* Ment:
Mostrar las cuatro opciones mas una para salir
Validar la entrada y devolver la elegida

* Pulgadas a centimetros:
Devolver el equivalente en centimetros del valor en pulgadas

* Libras a gramos:
Devolver el equivalente en gramos del valor en libras

% Grados Fahrenheit a centigrados:
Devolver el equivalente en centigrados del valor en Fahrenheit

% Galones a litros:
Devolver el equivalente en litros del valor en galones

% Programa principal (main())

% Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: La abstraccion procedimental Pdgina 484

Refinamientos sucesivos

Paso 3.- Cada tarea, un subprograma

Comunicacion entre los subprogramas:

) |- - im
pulgAcn() |doule pulg |~ douple
Loner() |douvle Libras |~ douote
greaGrc() |doubte gre [~ [double
galaLEr() |double galones [~ [doupte
i) |- |- in

7 Luis Herndndez Yafiez

Fundamentos de la programacion: La abstraccion procedimental Pdgina 485

Refinamientos sucesivos

Paso 4.- Algoritmos detallados de cada subprograma = Programar

#include <iostream>

using namespace std;

// Prototipos

int menu();

double pulgACm(double pulg);
double 1bAGr(double libras);
double grFAGrC(double grF);
double galALtr(double galones);

int main() {
double valor;
int op = -1;
while (op != 0) {
op = menu();
switch (op) {
case 1:
{
cout << "Pulgadas: ";
cin >> valor;
cout << "Son

<< pulgACm(valor) << " cm." << endl;

}

break;

7 Luis Herndndez Yafiez

Fundamentos de la programacion: La abstraccion procedimental Pdgina 486

Refinamientos sucesivos

case 2:

{

cout << "Libras: ";
cin >> valor;
cout << "Son " << 1bAGr(valor) << " gr." << endl;

}
break;
case 3:
cout << "Grados Fahrenheit: ";
cin >> valor;
cout << "Son " << grFAGrC(valor) << " 2C" << endl;
¥
break;
case 4:
{
cout << "Galones: ";
cin >> valor;
cout << "Son " << galALtr(valor) << " 1." << endl;
}
p] break;
b
i !
3 return 0;
I E E
Fundamentos de la programacion: La abstraccion procedimental Pdgina 487

Refinamientos sucesivos

int menu() {
int op = -1;

while ((op < @) || (op > 4)) {

cout << "1 - Pulgadas a Cm." << endl;
cout << "2 - Libras a Gr." << endl;
cout << "3 - Fahrenheit a 2eC" << endl;
cout << "4 - Galones a L." << endl;
cout << "@ - Salir" << endl;

cout << "Elige: ";

cin >> op;

if ((op < @) || (op > 4)) {
cout << "Opcién no valida" << endl;
}

}

return op;

}

double pulgACm(double pulg) {
const double cmPorPulg = 2.54;
return pulg * cmPorPulg;

Luis Hernandez Yafiez

) =mr=m Fundamentos de la programacion: La abstraccion procedimental Pdgina 488

Refinamientos sucesivos

double 1bAGr(double libras) {
const double grPorlLb = 453.6;
return libras * grPorlLb;

}

double grFAGrC(double grfF) {
return ((grfF - 32) * 5/ 9);
}

double galALtr(double galones) {
const double 1trPorGal = 4.54609;
return galones * ltrPorGal;

}

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental Pdgina 489

r Luis Herndndez Yafiez
L.

Fundamentos de la programacion

Precondiciones y
postcondiciones

(0]

=mr=m ~undamentos de la programacion: La abstraccidn procedimental Péagina 490

r Luis Hernandez Yafiez
L.

Precondiciones y postcondiciones

Integridad de los subprogramas

Condiciones que se deben dar antes de comenzar su ejecucién
—> Precondiciones

v" Quien llame al subprograma debe garantizar que se satisfacen

Condiciones que se daran cuando termine su ejecucion
—> Postcondiciones

v En el punto de llamada se pueden dar por garantizadas

Aserciones:

Condiciones que si no se cumplen interrumpen la ejecucién

Funcién assert()

Luis Herndndez Yafiez

(0]

s =mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 491

Aserciones como precondiciones

Precondiciones

Por ejemplo, no realizaremos conversiones de valores negativos:

double pulgACm(double pulg) {
assert(pulg > 0);

double cmPorPulg = 2.54;

return pulg * cmPorPulg;

}

La funcion tiene una precondicién: pulg debe ser positivo

assert(pulg > 0); interrumpira la ejecucién si no es cierto

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 492

Aserciones como precondiciones

Precondiciones

Es responsabilidad del punto de llamada garantizar la precondicidn:

int main() {
double valor;

int op = -1;
while (op != @) {
op = menu();
switch (op) {

case 1:

{

cout << "Pulgadas: ";
cin >> valor;
if (valor < @) {

cout << "jNo valido!" << endl;

}

else { // Se cumple la precondicidn...

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 493

[Luis Herndndez Yafiez
L.

Aserciones como postcondiciones

Postcondiciones

Un subprograma puede garantizar condiciones al terminar:

int menu() {
int op = -1;
while ((op < @) || (op > 4)) {

cout << "Elige: ";
cin >> op;

if ((op < @) || (op > 4)) {
cout << "Opciodén no valida" << endl;
}

1

assert ((op >= 0) && (op <= 4)); "““}
return op;
¥

El subprograma debe asegurarse de que se cumpla

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental Péagina 494

Acerca de Creative Commons @@@@

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental Pégina 495

Fundamentos de |la programacion

Mas sobre
subprogramas

ANEXO

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

r4 []
Indice
Archivos como parametros 498
La funcién main() 501
Argumentos implicitos 504
Sobrecarga de subprogramas 508
QloEl

=mr=m Fundamentos de la programacion: La abstraccion procedimental (Anexo)

Fundamentos de la programacion

Archivos como parametros

(0]

=mrm Fundamentos de la programacidn: La abstraccion procedimental (Anexo)

r Luis Herndndez Yafiez
L.

Péagina 498

Archivos como parametros

##include <iostream>
using namespace std;
##include <fstream>

void sumatorio_archivo(ifstream &arch, double &suma);

int main() {
double resultado;
ifstream archivo;
archivo.open("datos.txt");
if (!archivo.is open()) {
cout << "ERROR DE APERTURA" << endl;

else {
sumatorio_archivo(archivo, resultado)
cout << "Suma = " << resultado << endl;
N archivo.close();
Ig
= }
B
2
: return 0;
= }
I
Fundamentos de la programacion: La abstraccion procedimental (Anexo)

Péagina 499

Luis Herndndez Yafiez

{E}

Archivos como parametros

void sumatorio_archivo(ifstream &arch, double &suma) {
double dato;

suma = 0;
arch >> dato;

while (dato != -1) {
suma = suma + dato;
arch >> dato;

ﬁ"ﬂ Los archivos siempre se pasan por referencia
= Fundamentos de la programacion: La abstraccion procedimental (Anexo) Pé4gina 500

Fundamentos de la programacion

Luis Hernandez Yafiez

{E}

La funcion main()

HEE

S—mrm Fundamentos de la programacion: La abstraccion procedimental (Anexo) Pé4gina 501

Parametros de main()

Comunicacion con el sistema operativo

Parametros opcionales de la funcion main():
int main(int argc, char *argv[])

Para obtener datos proporcionados al ejecutar el programa:
C:\>prueba cadl cad2 cad3
Ejecuta prueba.exe con tres argumentos (cadenas)

Parametros de main():
— argc: namero de argumentos que se proporcionan
4 en el ejemplo (primero: nombre del programa con su ruta)
— argv: array con las cadenas proporcionadas como argumentos

Luis Herndndez Yafiez

(0]

s =mrm Fundamentos de la programacion: La abstraccidon procedimental (Anexo) Péagina 502

Lo que devuelve main()

¢;Como ha ido la funcion?

La funciéon main () devuelve al S.0. un cédigo de terminacion
— 0: Todo OK

— Distinto de ©: jHa habido un error!

Si la ejecucion llega al final de la funcién main(), todo OK:

return @; // Fin del programa

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental (Anexo) Pé4gina 503

b= Luis Hernandez Yafez
L.
E

Fundamentos de la programacion

Argumentos implicitos

(0]

e =mrm Fundamentos de la programacidn: La abstraccion procedimental (Anexo) Péagina 504

[Luis Herndndez Yafiez
L.

Argumentos implicitos

Valores predeterminados para pardmetros por valor

Valor por defecto para un parametro:

Tras un = a continuacion del nombre del parametro:
void proc(int i = 1);

Si no se proporciona argumento, el parametro toma ese valor
proc(12); i toma el valor explicito 12
proc(); i toma el valor implicito (1)

So6lo puede haber argumentos implicitos en los parametros finales:
void p(int i, int j = 2, int k = 3); // CORRECTO
void p(int i = 1, int j, int k = 3); // INCORRECTO

U

Una vez asignado un valor implicito, todos los que siguen
han de tener también valor implicito

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental (Anexo) Pé4gina 505

Argumentos implicitos

Parametros y argumentos implicitos
void p(int i, int j = 2, int k = 3);

Se copian los argumentos en los parametros del primero al tltimo

- los que no tengan correspondencia tomaran los implicitos

void p(int i, int j = 2, int k = 3);
p(13); // i toma 13, j y k sus valores implicitos
p(5, 7); // i toma 5, j toma 7 y k su valor implicito
p(3, 9, 12); // i toma 3, j toma 9 y k toma 12

ﬁa Los argumentos implicitos se declaran en el prototipo

(preferible) o en la cabecera del subprograma, pero NO en ambos

7 Luis Hernandez Yafiez

@ ? Fundamentos de la programacion: La abstraccion procedimental (Anexo) Péagina 506
Por defecto, signo + X
Ejemplo SEROY flxy)=£A=
j p Por defecto,Aes 1 ¥

#include <iostream>
using namespace std;

double f(double x, double y, int signo = 1, double delta = 1.9);

int main() {

double x ;

cout << .’.Xy; " :Iﬁ No podemos dejar signo por defecto
J

cin >> x; y concretar delta

cout << "Y = ";

cin >> y;

cout << "signo y delta por defecto: " << f(x, y) << endl;

cout << "signo -1 y delta por defecto: " << f(x, y, -1) << endl;

cout << "signo y delta concretos: " << f(x, y, 1, 1.25) << endl;

return 9;

}

double f(double x, double y, int signo, double delta) {
return signo * delta * x / y;

% Luis Hernandez Yafiez

[®
o
2]

|
3

Fundamentos de la programacion: La abstraccion procedimental (Anexo) Pé4gina 507

Fundamentos de la programacion

Sobrecarga de subprogramas

(0]

e =mrm Fundamentos de la programacidn: La abstraccion procedimental (Anexo) Pé4gina 508

[Luis Herndndez Yafiez
L.

Sobrecarga de subprogramas

Igual nombre, distintos parametros

Funciones o procedimientos con igual nombre y distintos parametros:
int abs(int n);

double abs(double n);

long int abs(long int n);

Se ejecutara la funcion que corresponda al tipo de argumento:
abs(13) // argumento int --> primera funciodn
abs(-2.3) // argumento double --> segunda funciodn
abs(3L) // argumento long int --> tercera funcidn

!

Para indicar que es un literal long int, en lugar de int

(0]

e =mr=m Fundamentos de la programacion: La abstraccion procedimental (Anexo) Pé4gina 509

[Luis Hernandez Yafiez
L.

Sobrecarga de subprogramas

#include <iostream> void intercambia(char &x, char &y) {
using namespace std; char tmp;
tmp = X;
void intercambia(int &x, int &y); X =Y;
void intercambia(double &x, y = tmp;
double &y); }

void intercambia(char &x, char &y);
int main() {

void intercambia(int &x, int &y) { int i1 = 3, i2 = 7;
int tmp; double d1 = 12.5, d2 = 35.9;
tmp = Xx; char cl1 = 'a', c2 = 'b";
X =Y; cout << il << " - " << 12 << endl;
y = tmp; cout << d1 << " - " << d2 << endl;
} cout << cl1 << " - " << €2 << endl;
intercambia(il, i2);
void intercambia(double &x, intercambia(dl, d2);
double &y) { intercambia(cl, c2);
double tmp; cout << il << " - " << 12 << endl;
tmp = x; cout << dl << " - " << d2 << endl;
X =Y; cout << cl << " - " << €2 << endl;
y = tmp; return 0;

-
-

Luis Herndndez Yafiez

E

=mrm Fundamentos de la programacion: La abstraccidon procedimental (Anexo) P4gina 510

Acerca de Creative Commons @@@@

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacién de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacion: La abstraccion procedimental (Anexo) P4gina 511

Fundamentos de |la programacion

Tipos de datos
estructurados

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yafnez/Pablo Moreno Ger
Facultad de Informatica

Universidad Complutense

4 []
Indice

Tipos de datos 514
Arrays de nuevo 517
Arrays y bucles for 520
Mas sobre arrays 522
Inicializacion de arrays 523
Enumerados como indices 524
Paso de arrays a subprogramas 525
Implementacion de listas 528
Cadenas de caracteres 531
Cadenas de caracteres de tipo string 535
Entrada/salida con string 539
C’E Operaciones con string 541
g Estructuras 543
2 Estructuras dentro de estructuras 549
§ Arrays de estructuras 550
z% Arrays dentro de estructuras 551
E Listas de longitud variable 552
5 Un ejemplo completo 558
: El bucle do..while 562

@ ? Fundamentos de la programacion: Tipos de datos estructurados

Fundamentos de la programacion

(0]

[Luis Hernandez Yafiez/Pablo Moreno Ger
L.

Tipos de datos

s =mr=m ~undamentos de la programacion: Tipos de datos estructurados P4gina 514

Tipos de datos

Clasificacion de tipos

v’ Simples

AN

(0]

[Luis Hernandez Yafiez/Pablo Moreno Ger
L.

Estandar: int, float, double, char, bool
Conjunto de valores predeterminado

Definidos por el usuario: enumerados
Conjunto de valores definido por el programador

Estructurados

Colecciones homogéneas: arrays
Todos los elementos del mismo tipo

Colecciones heterogéneas: estructuras
Los elementos pueden ser de tipos distintos

e =mr=m Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 515

v
v

v

Tipos estructurados

Colecciones o tipos aglomerados

Agrupaciones de datos (elementos):
v" Todos del mismo tipo: array o tabla
v" De tipos distintos: estructura, registro o tupla

Arrays (tablas)

» Elementos organizados por posicién: 0, 1, 2, 3, ...

» Acceso porindice: 0,1, 2, 3, ...
» Una o varias dimensiones
Estructuras (tuplas, registros)

» Elementos (campos) sin orden establecido
» Acceso por nombre

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

e =mr=m Fundamentos de la programacion: Tipos de datos estructurados

P4gina 516

Fundamentos de la programacion

Arrays de nuevo

(0]

e =mr=m ~undamentos de la programacion: Tipos de datos estructurados

[Luis Hernandez Yafiez/Pablo Moreno Ger
L.

Péagina 517

Arrays

Estructura secuencial

Cada elemento se encuentra en una posicion (indice):
v" Los indices son enteros positivos

v" Elindice del primer elemento siempre es 0

v" Los indices se incrementan de uno en uno

IRl 125.40 76.95 328.80 254.62 435.00 164.29 0.00

0 1 2 3 4 5 6
Acceso directo []

A cada elemento se accede a través de su indice:
ventas[4] accede al 52 elemento (contiene el valor 435.00)

cout << ventas[4];

ventas[4] = 442.75; ga Datos de un mismo tipo base:
Se usan como cualquier variable

Luis Hernandez Yafiez/Pablo Moreno Ger

(o) (0]

=mr=m Fundamentos de la programacion: Tipos de datos estructurados P4gina 518

Tipos y variables arrays

Declaracion de tipos de arrays

const int Dimension = ...;

typedef tipo base tNombre[Dimension];
Ejemplo:

const int Dias = 7;

typedef double tVentas[Dias];

Declaracién de variables de tipos array: como cualquier otra
tVentas ventas;

iNO se inicializan los elementos automaticamente!
iEs responsabilidad del programador usar indices validos!

No se pueden copiar arrays directamente (arrayt==—srray?)

Hay que copiarlos elemento a elemento

Luis Hernandez Yafiez/Pablo Moreno Ger

(o) (0]

=mr=m Fundamentos de la programacion: Tipos de datos estructurados P4gina 519

Arrays y bucles for

Procesamiento de arrays

v" Recorridos
v Busquedas
v" Ordenacién

etcétera...

Recorrido de arrays con bucles for
Arrays: tamafio fijo = Bucles de recorrido fijo (for)

tVentas ventas;
double media, total = 9;

for (int i
total =
}

media = total / Dias;

total + ventas[i];

Luis Hernandez Yafiez/Pablo Moreno Ger

ﬂﬂ-

@HE@

const int Dias = 7;
typedef double tVentas[Dias];

0; i < Dias; i++) {

S Fundamentos de la programacion: Tipos de datos estructurados

Péagina 520

Arrays y bucles for

12.40 10.96 8.43 11.65

13.70

13.41

14.07

(] 1 2 3

tVentas ventas;
double media, total = 0;

for (int i = @; i < Dias; i++) {
total = total + ventas[i];

}

i<Dias

total+=ventas[i]

Luis Hernandez Yafiez/Pablo Moreno Ger

ﬁ)

@HE@

L

SSmrm Fundamentos de la programacion: Tipos de datos estructurados

Dias
ventas[0]
ventas[1]
ventas[2]
ventas[3]
ventas[4]
ventas[5]
ventas[6]

media
total

i

Memoria

7

12.40
10.96
8.43
11.65
13.70
13.41
14.07

84.62

Pé4gina 521

Fundamentos de la programacion

Mas sobre arrays

(0]

s =mr=m ~undamentos de la programacion: Tipos de datos estructurados Péagina 522

[Luis Hernandez Yafiez/Pablo Moreno Ger
L.

Inicializacion de arrays

Podemos inicializar los elementos de los arrays en la declaracion

Asignamos una serie de valores al array:

const int DIM = 10;

typedef int tTabla[DIM];

tTabla i = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

Se asignan los valores por su orden:
i[@] i[1] i[2] i[3] i[4] ... i[9]

(Y N N A N

1e 22 32 42 52 ... 19°
Si hay menos valores que elementos, los restantes se ponen a ©

tTabla i = { @ }; // Pone todos los elementos a ©

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

e =mr=m Fundamentos de la programacion: Tipos de datos estructurados Péagina 523

Enumerados como indices

const int Colores = 3,

typedef enum { rojo, verde, azul } tRGB;
typedef int tColor[Colores];

tColor color;

cout << "Cantidad de rojo (©-255): ";
cin >> colo;
cout << "Cantidad de verde (©-255): ";
cin >> color[verde];
cout << "Cantidad de azul (©-255): ";
cin >> color[azul];

Recuerda que internamente se asignan enteros a partir de 0

a los distintos simbolos del enumerado
rojo=0 verde=1 azul=2

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

=mrm Fundamentos de la programacion: Tipos de datos estructurados Péagina 524

Paso de arrays a subprogramas

Simulacion de paso de pardmetro por referencia
Sin poner & en la declaracion del parametro

Los subprogramas reciben la direccion en memoria del array

const int Max = 10;
typedef int tTabla[Max];
void inicializa(tTabla tabla); // Sin poner &

Las modificaciones del array quedan reflejadas en el argumento

inicializa(array);

Siinicializa() modifica algin elemento de tabla,
automaticamente queda modificado ese elemento de array

jSon el mismo array!

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

=mrm Fundamentos de la programacion: Tipos de datos estructurados Péagina 525

Paso de arrays a subprogramas

const int Dim = 10;
typedef int tTabla[Dim];
void inicializa(tTabla tabla); // no se usa &

void inicializa(tTabla tabla) {

for (int i = @; i < Dim; i++)

tabla[i] = i;

}
int main() {
tTabla array;
inicializa(array); // array queda modificado
for (int 1 = @; i < Dim; i++)

cout << array[i] <« ;

0123456789

(0]

s =mr=m Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 526

[Luis Hernandez Yafiez/Pablo Moreno Ger
L.

Paso de arrays a subprogramas

;Como evitar que se modifique el array?
Usando el modificador const en la declaracion del parametro:

const tTabla tabla Un array de constantes

void muestra(const tTabla tabla);

El argumento se tratard como un array de constantes

Si en el subprograma hay alguna instruccién que intente
modificar un elemento del array: error de compilacion
void muestra(const tTabla tabla) {
for (int 1 = @; 1 < Dim; i++) {
cout << tabla[i] << " ";
// OK. Se accede, pero no se modifica

Luis Hernandez Yafiez/Pablo Moreno Ger

I E E
Fundamentos de la programacién: Tipos de datos estructurados Pagina 527

Fu

ndamentos de la programacion

(0]

[Luis Hernandez Yafiez/Pablo Moreno Ger
L.

Implementacion de listas

s =mr=m ~undamentos de la programacion: Tipos de datos estructurados Pé4gina 528

Implementacion de listas con arrays

Listas con un numero fijo de elementos

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

Array con el n? de elementos como dimensién

const int NUM = 100;

typedef double tLista[NUM]; // Exactamente 100 double
tlLista lista;

Recorrido de la lista:
for (int 1 = @; i < NUM; i++) {

Busqueda en la lista:
while ((i < NUM) && !encontrado) {

e =mr=m Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 529

Implementacion de listas con arrays

Listas con un numero variable de elementos

Array con un maximo de elementos + Contador de elementos
const int MAX = 100;

typedef double tLista[MAX]; // Hasta 100 elementos
tlLista lista;

int contador = @; // Se incrementa al insertar
Recorrido de la lista:

for (int i = @; i < contador; i++) {

Busqueda en la lista:
while ((i < contador) && !encontrado) {

(Array y contador por separado? - Estructuras
(013

=mrm Fundamentos de la programacion: Tipos de datos estructurados Péagina 530

Luis Hernandez Yafiez/Pablo Moreno Ger

Fundamentos de la programacion

Cadenas de caracteres

(0]

=mrm Fundamentos de la programacion: Tipos de datos estructurados Pagina 531

f Luis Hernandez Yafiez/Pablo Moreno Ger
II

Cadenas de caracteres

Arrays de caracteres

Cadenas: secuencias de caracteres de longitud variable
"Hola" "Adidés" "Supercalifragilistico" "1234 56 7"

Variables de cadena: contienen secuencias de caracteres
Se guardan en arrays de caracteres: tamafio maximo (dimension)
No todas las posiciones del array son relevantes:

v" Longitud de la cadena: nimero de caracteres, desde el
primero, que realmente constituyen la cadena:

8 9 10 11 12 13 14 15 16 17 18 19 20 21

3 Luis Hernandez Yafiez/Pablo Moreno Ger
[y
N
w
IN
v
o
~

Pé4gina 532

Cadenas de caracteres

Longitud de la cadena

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

P
2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Longitud: 21

Necesidad de saber donde terminan los caracteres relevantes:
v Mantener la longitud de la cadena como dato asociado

v" Colocar un caracter de terminacion al final (centinela)

A d i 6 s \e
e 1 2 3 4 5 6 7 8 9 10

y Luis Hernandez Yafiez/Pablo Moreno Ger

Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 533

Cadenas de caracteres

Cadenas de caracteres en C++

Dos alternativas para el manejo de cadenas:
v" Cadenas al estilo de C (terminadas en nulo)
v' Tipo string

Cadenas al estilo de C Anexo del tema
v" Arrays de tipo char con una longitud maxima

v" Un ultimo caracter especial al final: '\0"

Tipo string

v" Cadenas mas sofisticadas

v" Sin longitud maxima (gestion automatica de la memoria)
v" Multitud de funciones de utilidad (biblioteca string)

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

e =mr=m Fundamentos de la programacion: Tipos de datos estructurados Péagina 534

Fundamentos de la programacion

Cadenas de caracteres
de tipo string

(0]

e =mr=m ~undamentos de la programacion: Tipos de datos estructurados Pé4gina 535

[Luis Hernandez Yafiez/Pablo Moreno Ger
L.

Cadenas de caracteres de tipo string

El tipo string

v El tipo asume la responsabilidad de la gestién de memoria
v" Define operadores sobrecargados (+ para concatenar)
v’ Cadenas més eficientes y seguras de usar

Biblioteca string
Requiere establecer el espacio de nombres a std

v Se pueden inicializar en la declaracion

v' Se pueden copiar con el operador de asignacion
v Se pueden concatenar con el operador +

v' Multitud de funciones de utilidad

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

=mr=m Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 536

©)
|:;

Cadenas de tipo string

#include <iostream>
#include <string>
using namespace std;

int main() {
string cadl("Hola"); // inicializacidn
string cad2 = "amigo"; // inicializacidn
string cad3;
cad3 = cadl; // copia

cout << "cad3 = " << cad3 << endl;
cad3 = cadl + " "; // concatenacion
cad3 += cad2; // concatenacion
cout << "cad3 = " << cad3 << endl;
cadl.swap(cad2); // intercambio
cout << "cadl = " << cadl << endl;

cout << "cad2 = << cad2 << endl;

return 0;

Luis Hernandez Yafiez/Pablo Moreno Ger

-

(0]

=mr=m Fundamentos de la programacion: Tipos de datos estructurados Pagina 537

©)
|:;

Cadenas de tipo string

Longitud de la cadena:
cadena.length() o cadena.size()

Se pueden comparar con los operadores relacionales:
if (cadl <= cad2) { ...

Acceso a los caracteres de una cadena:
v" Como array de caracteres: cadena[1]
Sin control de acceso a posiciones inexistentes del array
Sélo debe usarse si se esta seguro de que el indice es valido
v Funcion at(indice): cadena.at (1)
Error de ejecucion si se accede a una posicion inexistente

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

=mr=m Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 538

f
©

E/S con cadenas de tipo string

v Se muestran en la pantalla con cout <<

v’ Lectura con cin >>: termina con espacio en blanco (inc. Intro)

El espacio en blanco queda pendiente

v’ Descartar el resto de los caracteres del bufer:
cin.sync();

v" Lectura incluyendo espacios en blanco:
getline(cin, cadena)

Guarda en la cadena los caracteres leidos hasta el fin de linea

v’ Lectura de archivos de texto:
Igual que de consola; sync() no tiene efecto
archivo >> cadena getline(archivo, cadena)

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

=mr=m Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 539

©)
[:

E/S con cadenas de tipo string

string2.cpp

#include <iostream>
#include <string>
using namespace std;

int main() {
string nombre, apellidos;
cout << "Introduzca un nombre: ";
cin >> nombre;
cout << "Introduzca los apellidos: ";
cin.sync();
getline(cin, apellidos);
cout << "Nombre completo:

<< apellidos << endl;

<< nombre <<

return 0;

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

=mr=m Fundamentos de la programacion: Tipos de datos estructurados

©)
|:;

Péagina 540

Operaciones con cadenas de tipo string

v' cadena.substr(posicion, Llongitud)

Subcadena de longitud caracteres desde posicion

string cad = "abcdefg";
cout << cad.substr(2, 3); // Muestra cde

v’ cadena.find(subcadena)

Posicién de la primera ocurrencia de subcadena en cadena

string cad = "Olala";
cout << cad.find("1la"); // Muestra 1

v’ cadena.rfind(subcadena)

string cad = "Olala";
cout << cad.rfind("la"); // Muestra 3

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

=mr=m Fundamentos de la programacion: Tipos de datos estructurados

©)
|:;

(Recuerda que los arrays de caracteres comienzan con el indice 0)

Posicion de la ultima ocurrencia de subcadena en cadena

Péagina 541

Operaciones con cadenas de tipo string

v’ cadena.erase(ini, num)
Elimina num caracteres a partir de la posicion ini
string cad = "abcdefgh";
cad.erase(3, 4); // cad ahora contiene "abch"
v’ cadena.insert(ini, cadena2)

Inserta cadenaZ a partir de la posicion ini

string cad = "abcdefgh";
cad.insert(3, "123"); // cad ahora contiene "abcl23defgh"

http://www.cplusplus.com/reference/string/string/

(0]

s =mr=m Fundamentos de la programacion: Tipos de datos estructurados Péagina 542

[Luis Hernandez Yafiez/Pablo Moreno Ger
L.

Fundamentos de la programacion

Estructuras

(0]

=mr=m ~undamentos de la programacion: Tipos de datos estructurados Péagina 543

r Luis Hernandez Yafiez/Pablo Moreno Ger
L.

Estructuras

Colecciones heterogéneas (tuplas, registros)

Elementos de (posiblemente) distintos tipos: campos

Campos identificados por su nombre

Informacion relacionada que se puede manejar como una unidad
Acceso a cada elemento por su nombre de campo (operador.)

(0]

e =mr=m Fundamentos de la programacion: Tipos de datos estructurados Péagina 544

[Luis Hernandez Yafiez/Pablo Moreno Ger
L.

Tipos de estructuras

typedef struct {
. // declaraciones de campos (como variables)
} tTipo; // nombre de tipo - jal final!

typedef struct {
string nombre;
string apellidos;
int edad;
string nif;

} tPersona;

Campos:
Tipos estandar o previamente declarado

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

e =mr=m Fundamentos de la programacion: Tipos de datos estructurados Pégina 545

Variables de estructuras

tPersona persona;

Las variables de tipo tPersona contienen cuatro datos (campos):

nombre apellidos edad

nif

Acceso a los campos con el operador punto (.):

persona.nombre // una cadena (string)

persona.apellidos // una cadena (string)

persona.edad // un entero (int)

persona.nif // una cadena (string)

tPersona personal, persona2;

persona2 = personal;

Se copian todos los campos a la vez

3 Luis Hernandez Yafiez/Pablo Moreno Ger

Fundamentos de la programacion: Tipos de datos estructurados

Podemos copiar dos estructuras directamente:

Péagina 546

Agrupacion de datos heterogéneos

typedef struct {
string nombre;
string apellidos;
int edad;
string nif;

} tPersona;

tPersona persona;

persona

Luis Antonio

Hernandez Yanez

22

00223344F

y Luis Hernandez Yafiez/Pablo Moreno Ger

Fundamentos de la programacion: Tipos de datos estructurados

Memoria
ersona.nombre Luis
P) Antonio
. Hernandez
persona.apellidos e
Yanez
persona.edad 22

persona.nif & 00223344F

Péagina 547

Elementos sin orden establecido

typedef struct {
string nombre;
string apellidos;
int edad;
string nif;

} tPersona;

tPersona persona;

Los campos no siguen ningun orden establecido
Acceso directo por nombre de campo (operador .)

Con cada campo se puede hacer lo que permita su tipo

Oﬁ Las estructuras se pasan por valor (sin &)
o por referencia (con &) a los subprogramas
(o) (0]

=mr=m Fundamentos de la programacion: Tipos de datos estructurados Péagina 548

Luis Hernandez Yafiez/Pablo Moreno Ger

Estructuras dentro de estructuras

typedef struct { typedef struct {
string dni;

char letra; tNif nif;
} tNif;4————"'_____—__3a;Persona;

tPersona persona; tPersona

Acceso al NIF completo:
persona.nif // Otra estructura

Acceso a la letra del NIF:
persona.nif.letra

Acceso al DNI:
persona.nif.dni

Luis Hernandez Yafiez/Pablo Moreno Ger

(o) (0]

=mr=m Fundamentos de la programacion: Tipos de datos estructurados Péagina 549

Arrays de estructuras

const int DIM = 100; tPersona personal

typedef struct {
string nombre;
string apellidos;
int edad;
string nif;

} tPersona;

typedef tPersona tArray[DIM]; 5

tArray personal;

Nombre de la tercera persona:
personal[2].nombre

Edad de la duodécima persona: DIM-1
personal[11].edad

NIF de la primera persona:
personal[@].nif

7 Luis Hernandez Yafiez/Pablo Moreno Ger

=awrm Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 550

Arrays dentro de estructuras

const int MAX = 100; lista
typedef struct {
string nombre;
string apellidos;
int edad;
string nif;
} tPersona;
typedef tPersona tArray[MAX];
typedef struct {
tArray elementos;
int contador;
} tlLista;
tLista lista;

Nombre de la tercera persona: lista.elementos[2].nombre

Edad de la duodécima persona: lista.elementos[11].edad

7 Luis Hernandez Yafiez/Pablo Moreno Ger

NIF de la primera persona: lista.elementos[0].nif

S s Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 551

Fundamentos de la programacion

Listas de longitud variable

3 Luis Hernandez Yafiez/p #algddidoeamoGaer

Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 552

Listas de longitud variable

Estructura que agrupe el array y el contador:

const int MAX = 10;
typedef double tArray[MAX];
typedef struct {

tArray elementos;

int contador;

Elementos sin usar
(datos basura)

A\

N2 de elementos (y primer indice sin elemento)

Operaciones principales: insercion y eliminacion de elementos

y Luis Hernandez Yafiez/Pablo Moreno Ger

Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 553

Insercion de elementos

Insertar un nuevo elemento en una posicion

Posiciones validas: 0 a contador

0.0 36.2 35.0

Hay que asegurarse de que haya sitio (contador < maximo)
Operacién en 3 pasos:
1.- Abrir hueco para el nuevo elemento (desde la posicion)
2.- Colocar el elemento nuevo en la posicién

3.- Incrementar el contador

3 Luis Hernandez Yafiez/Pablo Moreno Ger

A Fundamentos de la programacion: Tipos de datos estructurados Péagina 554

Insercion de elementos

if (lista.contador < N) {
// Abrir hueco
for (int i = lista.contador;|i > pos;|i--) {
lista.elementos[i] = lista.elementos[i - 1];

}

// Insertar e incrementar contador
lista.elementos[pos] = nuevoElemento;
lista.contador++;

-2.2 5.4 42.0 0.0 36.2 35.0

y Luis Hernandez Yafiez/Pablo Moreno Ger

Pé4gina 555

Eliminacion de elementos

Eliminar el elemento en una posicion

Posiciones validas: 0 a contador-1

0.0 36.2 35.0 X

Desplazar a la izquierda desde el siguiente y decrementar el contador:

for (int|i = posf i < lista.contador - 1 ; i++) {

lista.elementos[i] = lista.elementos[i + 1];

}

lista.contador--;

3 Luis Hernandez Yafiez/Pablo Moreno Ger

Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 556

Eliminacion de elementos

for (int i = pos; i < lista.contador - 1 ; i++) {
lista.elementos[i] = lista.elementos[i + 1];

}

lista.contador--;

0.0 36.2 35.0 X

-2.2 5.4 36.2 35.0 35.0 X

y Luis Hernandez Yafiez/Pablo Moreno Ger

Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 557

Fundamentos de la programacion

Un ejemplo completo

(0]

e =mr=m ~undamentos de la programacion: Tipos de datos estructurados Pé4gina 558

[Luis Hernandez Yafiez/Pablo Moreno Ger
L.

Ejemplo de lista de longitud variable

Descripcion
Programa que mantenga una lista de los estudiantes de una clase
De cada estudiante: nombre, apellidos, edad, NIF y nota
v" Se desconoce el nimero total de estudiantes (maximo 100)
v" Lainformacién de la lista se mantiene en un archivo clase.txt
Se carga al empezar y se guarda al finalizar
El programa debe ofrecer estas opciones:
— Afadir un nuevo alumno
— Eliminar un alumno existente
— Calificar a los estudiantes
— Listado de notas, identificando la mayor y la media

(0]

e =mr=m Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 559

[Luis Hernandez Yafiez/Pablo Moreno Ger
L.

Ejemplo de lista de longitud variable

#include <iostream>
#include <string>
using namespace std;
#include <fstream>
#include <iomanip>

const int MAX = 100; N\
typedef struct {
string nombre;
string apellidos;
int edad;
string nif; _
double nota; > Declaraciones de constantes

} tEstudiante; y tipos globales
typedef tEstudiante tArray[MAX]; Tras las bibliotecas
typedef struct {

tArray elementos;

int contador;
} tlLista; y

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

=mr=m Fundamentos de la programacion: Tipos de datos estructurados Péagina 560

Ejemplo de lista de longitud variable

// Prototipos

int menu(); // Menu del programa - devuelve la opcidén elegida

void cargar(tLista &lista, bool &ok); // Carga del archivo

void guardar(const tLista &lista); // La guarda en el archivo

void leerEstudiante(tEstudiante &estudiante); // Lee los datos

void insertarEstudiante(tLista &lista, tEstudiante estudiante,
bool &ok); // Inserta un nuevo estudiante en la lista

void eliminarEstudiante(tLista &lista, int pos, bool &ok);

// Elimina el estudiante en esa posiciodn

string nombreCompleto(tEstudiante estudiante);

void calificar(tLista &lista); // Notas de los estudiantes

double mediaClase(const tLista &lista); // Nota media

int mayorNota(const tlLista &lista);

// Indice del estudiante con mayor nota

void mostrarEstudiante(tEstudiante estudiante);

void listado(const tLista &lista, double media, int mayor);

// Listado de la clase

Los prototipos, después de los tipos globales
(013

=mr=m Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 561

Luis Hernandez Yafiez/Pablo Moreno Ger

Fundamentos de la programacion

El bucle do-while

(0]

=mrm Fundamentos de la programacion: Tipos de datos estructurados Pégina 562

f Luis Hernandez Yafiez/Pablo Moreno Ger
II

Otro bucle no determinado de C++

El bucle do.while

do cuerpo while (condicion); Condicion al final del bucle

do cuerpo while ¢ condicidn) ;

int 1 = 1;

do {
cout << 1 << endl;
i++;

} while (i <= 100);

El cuerpo siempre se ejecuta al menos una vez

El cuerpo es un bloque de codigo

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

=mrm Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 563

Ejecucion del bucle do-while

int 1 = 1;

do {
cout << 1 << endl;
i++;

} while (i <= 100);

i

P Luis Hernandez Yafiez/Pablo Moreno Ger
f

=mr=m Fundamentos de la programacion: Tipos de datos estructurados

cout << 1 << endl;

i++;

S

false

true

El cuerpo
se ejecuta
al menos
una vez

Péagina 564

while versus do-while

¢Ha de ejecutarse al menos una vez el cuerpo del bucle?

cin >> d; // Lectura del 1¢°
while (d != 0) {
suma = suma + d;

cont++;
cin >> d;

do {
cin >> d;
if (d '= 0) { // ¢Final?
suma = suma + d;
cont++;

}
} while (d != 0);

cout << "Opciodn: ";
cin >> op; // Lectura del 1¢
while ((op < @) || (op > 4)) {

cout << "Opcion: ";
cin >> op;

do { // Mas simple
cout << "Opcidn: ";
cin >> op;

} while ((op < @) [| (op > 4));

Luis Hernandez Yafiez/Pablo Moreno Ger

=mr=m Fundamentos de la programacion: Tipos de datos estructurados

E

Pé4gina 565

El menu de la aplicacion con do-while

Luis Hernandez Yafiez/Pablo Moreno Ger

{E}

int menu() {
int op;

do {
cout <<
cout <<

cout <«
cout <« - Salir" << endl;
cout << "Opcidn: ";
cin >> op;

} while ((op < @) [| (op > 4));

return op;

HEE

S Fundamentos de la programacion: Tipos de datos estructurados

1 - Anadir un nuevo estudiante" << endl;
2 - Eliminar un estudiante" << endl;

cout << "3 - Calificar a los estudiantes" << endl;
4 - Listado de estudiantes" << endl;
(%]

Pé4gina 566

Ejemplo de lista de longitud variable

Luis Hernandez Yafiez/Pablo Moreno Ger

{E}

El archivo clase.txt

Un dato en cada linea

Por cada estudiante:

v" Nombre (cadena)

v’ Apellidos (cadena)

v Edad (entero)

v NIF (cadena)

v" Nota (real; -1 si no calificado)

Termina con XXX como nombre

El archivo se supone correcto

HEE

SSmrm Fundamentos de la programacion: Tipos de datos estructurados

ciaiter o e At

Rryjbuey Einses Feesgle e S

1054 Luis J
Garcia Pérez J
)

14
12345678G J
=1 d
ana J
Gonzdlez Rios d
Hy d

22334455€
-1 d
Harniel Alejandra J

tBaiTaire ROAPIgURER |

21 d
BTE54371a J
-1 d

Aosa Maria J

1611 andrés d

18273645 d

=1 d

sara J

Galisteo Mordn J
XHd

5647 IB2OF J

1d
e

Pé4gina 567

Ejemplo de lista de longitud variable

Lectura de la informacion de un estudiante

Nombre y apellidos:
Puede haber varias palabras 2 getline()

Edad - extractor (>>)
NIF: Una sola palabra = extractor (>>)
Nota - extractor (>>)

Queda pendiente de leer el Intro
Hay que saltar (leer) ese caracter con get ()
Si no, en el siguiente nombre se leeria una cadena vacia (Intro)

ﬁﬂ No leas directamente en la lista:

aatrTinalanchiun Tic+a alamantac
BT LvaaniT \or Criave) EEo LUl aCHIe LYo

Lee en una variable auxiliar de tipo t

Luis Hernandez Yafiez/Pablo Moreno Ger

{E}

E:a

S Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 568

Carga del archivo clase. txt

void cargar(tLista &lista, bool &ok) {
tEstudiante estudiante; // Variable auxiliar para leer
ifstream archivo;
char aux;
lista.contador = 0; // Inicializamos la lista
archivo.open("clase.txt");
if (l!archivo.is_open()) {
ok = false;
¥

else {
ok = true;
getline(archivo, estudiante.nombre); // Leemos el primer nombre
while ((estudiante.nombre != "XXX") && (lista.contador < MAX)) {
getline(archivo, estudiante.apellidos);
archivo >> estudiante.edad;
archivo >> estudiante.nif;
archivo >> estudiante.nota;
archivo.get(aux); // Saltamos el Intro
—> lista.elementos[lista.contador] = estudiante; // Al final
lista.contador++;
getline(archivo, estudiante.nombre); // Siguiente nombre
} // Si hay mds de MAX estudiantes, ignoramos el resto
archivo.close();

Luis Hernandez Yafiez/Pablo Moreno Ger

(L)
Fundamentos de la programacién: Tipos de datos estructurados Pagina 569

Volcado en el archivo clase.txt

Simplemente, un dato en cada linea y en orden:

void guardar(const tLista &lista) {

ofstream archivo;

archivo.open("clase.txt");

for (int i = @; i < lista.contador; i++) {
archivo << lista.elementos[i].nombre << endl;
archivo << lista.elementos[i].apellidos << endl;
archivo << lista.elementos[i].edad << endl;
archivo << lista.elementos[i].nif << endl;
archivo << lista.elementos[i].nota << endl;

}

archivo << "XXX" << endl; // Centinela final
archivo.close();

5
(G}
o
15
5
=
o
el
g }
1:‘:)
3 const tlLista &lista = Referencia constante
Tg Paso por referencia pero como constante = Paso por valor
5 Evita la copia del argumento en el parametro (estructuras grandes)
2
=t aram ~undamentos de la programacion: Tipos de datos estructurados Péagina 570

Lectura de los datos de un estudiante

void leerEstudiante(tEstudiante &estudiante) {
cin.sync(); // Descartamos cualquier entrada pendiente
cout << "Nombre: ";
getline(cin, estudiante.nombre);
cout << "Apellidos: ";
getline(cin, estudiante.apellidos);
cout << "Edad: ";
cin >> estudiante.edad;
cout << "NIF: ";

cin >> estudiante.nif;

N estudiante.nota = -1; // Sin calificar de momento
& cin.sync(); // Descartamos cualquier entrada pendiente
5 }
=
o
K
=
]
:
5
I
() (e - -
=t araTm ~undamentos de la programacion: Tipos de datos estructurados Pagina 571

Insercion de un nuevo estudiante

void insertarEstudiante(tLista &lista, tEstudiante estudiante,
bool &ok) {

ok = true;
if (lista.contador == MAX) {
ok = false;

else {
lista.elementos[lista.contador] = estudiante;
// Insertamos al final
. lista.contador++;
[
}
g }
=
o
K
3(;‘:3
53
2
5
T
I
Fundamentos de la programacioén: Tipos de datos estructurados Pagina 572

Eliminacion de un estudiante

void eliminarEstudiante(tLista &lista, int pos, bool &ok) {
// Espera el indice del elemento en pos

if ((pos < @) || (pos > lista.contador - 1)) {
ok = false; // Elemento inexistente

else {
ok = true;
for (int i = pos; i < lista.contador - 1; i++) {
lista.elementos[i] = lista.elementos[i + 1];

& lista.contador--;
}
2 }
353
B
k5
5
I
I
Fundamentos de la programacién: Tipos de datos estructurados Pagina 573

Luis Hernandez Yafiez/Pablo Moreno Ger

Calificacion de los estudiantes

string nombreCompleto(tEstudiante estudiante) {
return estudiante.nombre + " " + estudiante.apellidos;

}

void calificar(tLista &lista) {

for (int 1 = 9; i < lista.contador; i++) {
cout << "Nota del estudiante "
<< nombreCompleto(lista.elementos[i]) << ": ";
cin >> lista.elementos[i].nota;

(0]

©)
|:;

=mr=m Fundamentos de la programacion: Tipos de datos estructurados Pagina 574

Luis Hernandez Yafiez/Pablo Moreno Ger

Mas subprogramas

double mediaClase(const tlLista &lista) {
double total = 0.0;
for (int i = @; i < lista.contador; i++) {
total = total + lista.elementos[i].nota;

}

return total / lista.contador;

}

int mayorNota(const tLista &lista) {
double max = 0;
int pos = 0;
for (int i = @; i < lista.contador; i++) {
if (lista.elementos[i].nota > max) {
max = lista.elementos[i].nota;
pos = 1i;

}
}

return pos;

}
(0]

= @ Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 575

El listado

void mostrarEstudiante(tEstudiante estudiante) {

cout << setw(35) << left << nombreCompleto(estudiante);

cout << estudiante.nif <« ;
cout << setw(2) << estudiante.edad <<

anos ";

cout << fixed << setprecision(1l) << estudiante.nota;

void listado(const tLista &lista, double media, int mayor) {

for (int i = @; i < lista.contador; i++) {
cout << setw(3) << i << ": ";
mostrarEstudiante(lista.elementos[i]);
if (i == mayor) {
cout << " <<< Mayor notal";

}

cout << endl;

}

cout << "Media de la clase:
<< media << endl << endl;

—

Luis Hernandez Yafiez/Pablo Moreno Ger

E

<< fixed << setprecision(1)

=mr=m Fundamentos de la programacion: Tipos de datos estructurados P4gina 576

El programa principal

int main() {
tlLista lista;
tEstudiante estudiante;
bool exito;
int op, pos;

cargar(lista, exito);
if (lexito) {

cout << "No se ha podido cargar la listal!" << endl;
}

else {

do { // El bucle do evita tener que leer antes la primera opciédn

op = menu();
switch (op) {
case 1:

{

leerEstudiante(estudiante);

if (lexito) {

break;
=mr=m Fundamentos de la programacion: Tipos de datos estructurados Péagina 577

r Luis Hernandez Yafiez/Pablo Moreno Ger
|
L.

insertarEstudiante(lista, estudiante, exito);

cout << "Lista llena: imposible insertar” << endl;

El programa principal

case 2:

{

cout << "Posicién: ";
cin >> pos;
eliminarEstudiante(lista, pos - 1, exito);
if (lexito) {

cout << "Elemento inexistente!" << endl;

}
}
break;
case 3:
calificar(lista);
i }
& break;
2 case 4:
E listado(lista, mediaClase(lista), mayorNota(lista));
g }
Ig) } .
£ } while (op != 0);
3 guardar(lista);
g }
% return 0;
3 }
Fundamentos de la programacioén: Tipos de datos estructurados Pagina 578

Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacién de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

=mr=m Fundamentos de la programacion: Tipos de datos estructurados Pé4gina 579

Fundamentos de |la programacion

Cadenas de caracteres
al estilo de C

ANEXO

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yafnez/Pablo Moreno Ger
Facultad de Informatica

Universidad Complutense

z [J
Indice
Cadenas al estilo de C 582
E/S con cadenas al estilo de C 583
La biblioteca cstring 584
Ejemplo 585
s
ga

=mr=m Fundamentos de la programacién: Cadenas al estilo de C (Anexo)

Cadenas de caracteres al estilo de C

Arrays de caracteres terminados en nulo

const Max = 15;
typedef char tCadena[Max];
tCadena cadena = "Adiés"; // Inicializacidén al declarar

Siempre hay al final un caracter nulo (c6digo ASCII 0 - '\0")
Indica que en esa posicion termina la cadena (exclusive)

FElhiFll A d i o6 s \@
(] 1 2 3 4 5 6 7 8 9 10 11 12 13 14

En el array caben MAX-1 caracteres significativos
Longitud maxima de la variable cadena: 14

No se pueden asignar cadenas literales: caw "5

Ni copiar cadenas directamente: chl ;

Ni comparar con op. relacionales: if (M) co

Fundamentos de la programacion: Cadenas al estilo de C (Anexo) Pé4gina 582

v Luis Hernandez Yafiez/Pablo Moreno Ger

(8)
2

=il i]

Entrada/salida con cadenas al estilo de C

tCadena cadena;
cin >> cadena; // Se anade un nulo al final

Extractor: la lectura termina en el primer espacio en blanco
;No se comprueba si se leen mds caracteres de los que caben!
setw(): maximo de caracteres a colocar (incluyendo el nulo)
cin >> setw(15) >> cadena;

cin.getline(cadena estilo C, mdx):

Para leer también los espacios en blanco y no mas de mdx-1
cin.getline(cadena, 15); // Hasta 14 caracteres

cout << cadena << endl; // El nulo no se muestra

ﬁa cin.getline(cad, mdx) Cadenas al estilo de C

getline(cin, cad) Cadenas de tipo string

Luis Hernandez Yafiez/Pablo Moreno Ger

(o) (0]

=mr=m Fundamentos de la programacién: Cadenas al estilo de C (Anexo) Pé4gina 583

La biblioteca cstring

v strlen(cadena):longitud actual de la cadena
cout << "Longitud: " << strlen(cadena);

v strcpy(destino, origen): copia origen en destino
strcpy(cad2, cadl); strcpy(cad, "Me gusta C++");

v strcat(destino, origen): afiade origen al final de destino
tCadena cadl = "Hola", cad2 = "Adidos";
strcat(cadl, cad2); // cadl contiene "HolaAdids"

v strcmp(cadl, cad2):compara lexicograficamente las cadenas
@ si son iguales, 1 si cadl > cad2 6 -1 si cadl < cad2
tCadena cadl = "Hola", cad2 = "Adidos";
strcmp(cadl, cad2) // Devuelve 1 ("Hola" > "Adids")

http://www.cplusplus.com/reference/clibrary/cstring/

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

e =@ Fundamentos de la programacion: Cadenas al estilo de C (Anexo) Péagina 584

Ejemplo de cadenas al estilo de C

#include <iostream>
using namespace std;
#include <cstring>

int main() {
const int MAX = 20;
typedef char tCad[MAX];
tCad cadena = "Me gusta C++";
cout << cadena << endl;
cout << "Cadena: ";
cin >> cadena; // Lee hasta el primer espacio en blanco
cout << cadena << endl;
cin.sync(); // Sincronizar la entrada
cout << "Cadena: ";
cin.getline(cadena, MAX);
cout << cadena << endl;
cout << "Longitud: " << strlen(cadena) << endl;

strcpy(cadena, "Hola");

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

e =mr=m Fundamentos de la programacién: Cadenas al estilo de C (Anexo) Pé4gina 585

Ejemplo de cadenas al estilo de C

tCad cadena2 = " amigo";

strcat(cadena, cadena2);

cout << cadena << endl;

if (strcmp(cadena, cadena2) == 0) {
cout << "Iguales";

}

else if (strcmp(cadena, cadena2) > 9) {

cout << cadena <« es mayor que " << cadena2;

else {
cout << cadena << " es menor que " << cadena2;

cout << endl;

return 0;

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

=@ Fundamentos de la programacion: Cadenas al estilo de C (Anexo) Pé4gina 586

Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacién de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Yafiez/Pablo Moreno Ger

(0]

=mr=m Fundamentos de la programacién: Cadenas al estilo de C (Anexo) Pégina 587

Fundamentos de |la programacion

Recorrido y busqueda
en arrays

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yanez / Pablo Moreno Ger
Facultad de Informatica

Universidad Complutense

r4 [3
Indice
Recorrido de arrays 590
Arrays completos 593
Arrays no completos con centinela 594
Arrays no completos con contador 595
Ejemplos 597
Generacién de numeros aleatorios 601
Busquedas en arrays 604
Arrays completos 606
Arrays no completos con centinela 607
Arrays no completos con contador 608
Ejemplo 610
Recorridos y busquedas en cadenas 614
Mas ejemplos de manejo de arrays 617
Arrays multidimensionales 630
i} Inicializacion de arrays multidimensionales 638
z§ Recorrido de un array bidimensional 641
3 Recorrido de un array N-dimensional 644
g Busqueda en un array multidimensional 647
@ ? Fundamentos de la programacion: Recorrido y busqueda en arrays

Fundamentos de la programacion

Recorrido de arrays

(0]

=sr=m ~undamentos de la programacion: Recorrido y busqueda en arrays

r Luis Herndndez Yafiez
|
L.

Péagina 590

Recorrido de arrays

Esquema de recorrido
Inicializacién
Mientras no al final de la secuencia:
Obtener el siguiente elemento

Procesar el elemento

Finalizacion

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays

r Luis Hernandez Yafiez
|
L.

Inicializacion

(Al final?

Obtener elemento

Procesar elemento

Finalizacion

Pé4gina 591

Recorrido de arrays

Recorrido de secuencias en arrays

v" Todas las posiciones ocupadas:
Tamano del array = longitud de la secuencia
N elementos en un array de N posiciones:

Recorrer el array desde la primera posicion hasta la tltima

v" Posiciones libres al final del array:
Tamafio del array > longitud de la secuencia
» Con centinela:
Recorrer el array hasta encontrar el valor centinela
» Con contador de elementos:

Recorrer el array hasta el indice contador - 1

(0]

=mr=m Fundamentos de la programacion: Recorrido y bisqueda en arrays Pé4gina 592

v, Luis Herndndez Yafiez
ﬁ

Recorrido de arrays

Recorrido de arrays completos

Todas las posiciones del array ocupadas

const int N = 10;
typedef double tVentas[N];
tVentas ventas;

CENEI 125.40 76.95 328.80 254.62 435.00 164.29 316.05 219.99 93.45 756.62

(] 1 2 3 4 5 6 7 8 9

double elemento;

for (int 1 = 0; i < N; i++) {
elemento = ventas[i];

// Procesar el elemento ...

Luis Hernandez Yafiez
—

(0]

=mr=m Fundamentos de la programacién: Recorrido y bisqueda en arrays Pé4gina 593

Recorrido de arrays

Recorrido de arrays no completos - con centinela

No todas las posiciones del array estan ocupadas

const int N = 10;
typedef double tArray[N];
tArray datos; // Datos positivos: centinela = -1

Eldely 125.40 76.95 328.80 254.62 435.00 164.29 316.05 -1.0

0 1 2 3 4 5 6 7 8 9
. R int 1 = 0;
int 1 = 0; double elemento;
double elemento = datos[i]; do {
. while (elemento != -1) { elemento = datos[i];
5 // Procesar el elemento ... if (elemento != -1) {
5 . // Procesar el elemento...
2 i++; f4bs
: elemento = datos[i];
= } } while (elemento != -1);
(() y o -
7@ Fundamentos de la programacion: Recorrido y buisqueda en arrays Péagina 594

Recorrido de arrays

Recorrido de arrays no completos - con contador

Array y contador intimamente relacionados: estructura

const int N = 10;
typedef double tArray[N];
typedef struct {
tArray elementos;
int contador;
} tlLista;
Listas de elementos de longitud variable

125.40 76.95 328.80 254.62 435.00 164.29 316.05

N2 de elementos (primer indice sin elemento)

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Recorrido y busqueda en arrays Pé4gina 595

Recorrido de arrays

Recorrido de arrays no completos - con contador

const int N = 10;
typedef double tArray[N];
typedef struct {
tArray elementos;
int contador;
} tlLista;
tlLista lista;

double elemento;

for (int 1 = 9; i < lista.contador;
elemento = lista.elementos[i];

// Procesar el elemento...

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays

i++) {

Péagina 596

Fundamentos de la programacion

Ejemplos

(0]

[Luis Hernandez Yafiez
L.

e =sr=m ~undamentos de la programacion: Recorrido y busqueda en arrays

Pé4gina 597

Ejemplos

Array con los N primeros numeros de Fibonacci

const int N = 50;
typedef long long int tFibonacci[N]; // 50 numeros
tFibonacci fib;

fib[@] = 1;
fib[1] = 1;
for (int 1 = 2; i < N; i++) {
fib[i] = fib[i - 1] + fib[i - 2];
}
for (int 1 = 0; i < N; i++) {
cout << fib[i] << " "5
@ ‘? Fundamentos de la programacién: Recorrido y busqueda en arrays Pagina 598
Ejemplos

Cuenta de valores con k digitos

Recorrer una lista de N enteros contabilizando cuantos son
de 1 digito, cuantos de 2 digitos, etcétera (hasta 5 digitos)

2 arrays: array con los nameros y array de contadores

const int NUM = 100;

typedef int tNum[NUM]; // Exactamente 100 numeros

tNum numeros;

const int DIG = 5;

typedef int tDig[DIG]; // i --> numeros de i+l digitos
tDig numDig = { © };

numeros 123 2 46237 2345 236 11234 33 999 “e

B]

s 0 1 2 3 4 5 6 7 99
3

kS :))))))

g numDig

£) 1 2 3 4 5

E

() (e

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Pé4gina 599

Ejemplos

Cuenta de valores con k digitos

Funciéon que devuelve el numero de digitos de un entero:

int digitos(int dato) {
int n_digitos = 1; // Al menos tiene un digito
// Recorremos la secuencia de digitos...
while (dato »>= 10) {
dato = dato / 10;
n_digitos++;
}

return n_digitos;

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 600

Ejemplos

Generacion de numeros pseudoaleatorios

Probemos con una secuencia de enteros generada aleatoriamente
Funciéon rand() (cstdlib): entero aleatorio entre 0 y 32766
srand() (cstdlib): inicia la secuencia de nameros aleatorios
Acepta un entero que usa como semilla para iniciar la secuencia
;Qué valor usar? Uno distinto en cada ejecucién

- El instante de tiempo actual (diferente cada vez)

Funcién time () (ctime): segundos transcurridos desde 1970
Requiere un argumento, que en nuestro caso sera NULL

srand(time(NULL)); // Inicia la secuencia

numeros[@] = rand(); // Entre @ y 32766

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Pé4gina 601

Ejemplos

Cuenta de valores con k digitos

#include <iostream>

using namespace std;

#include <cstdlib> // srand() y rand()
#include <ctime> // time()

int digitos(int dato);

int main() {

const int NUM = 100;

typedef int tNum[NUM]; // Exactamente 100 numeros
const int DIG = 5;

typedef int tDig[DIG];

tNum numeros;

tDig numDig = { © }; // Inicializa todo el array a ©

srand(time(NULL)); // Inicia la secuencia aleatoria

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 602

r Luis Herndndez Yafiez
|
L.

Ejemplos

for (int 1 = @; i < NUM; i++) { // Creamos la secuencia
numeros[i] = rand(); // Entre @ y 32766

}

for (int 1 = @; i < NUM; i++) {
// Recorremos la secuencia de enteros
numDig[digitos(numeros[i]) - 1]++;

}

for (int 1 = @; i < DIG; i++) {
// Recorremos la secuencia de contadores
cout << "De " << 1 + 1 << " dig. =
<< endl;

<< numDig[i]

}

return 0;

}

int digitos(int dato) {

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Pé4gina 603

Fundamentos de la programacion

Busquedas en arrays

(0]

r Luis Herndndez Yafiez
|
L.

=sr=m ~undamentos de la programacion: Recorrido y busqueda en arrays

Péagina 604

Busquedas en arrays

Esquema de busqueda
Inicializacion
Mientras no se encuentre el elemento
y no se esté al final de la secuencia:

Obtener el siguiente elemento

Comprobar si el elemento
satisface la condicion

Finalizacion

Inicializacién / encontrado = false;

(tratar el elemento encontrado

¢Al final o
encontrado?

Obtener elemento

¢Encontrado?

o indicar que no se ha encontrado)

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays

r Luis Hernandez Yafiez
|
L.

Finalizacion

Pé4gina 605

Busquedas en arrays completos

Todas las posiciones ocupadas const int N = 100;
. typedef int tArray[N];
int buscado; tArray lista;

bool encontrado = false;
cout << "Valor a buscar: ";
cin >> buscado;
int pos = 0;
while ((pos < N) && !encontrado) {
// Mientras no se llegue al final y no encontrado

if (lista[pos] == buscado) {

encontrado = true;

}

else {
pOS++;

}

}
if (encontrado) // ...

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 606

Busquedas en arrays incompletos

Con centinela

const int N = 10;

. typedef int tArray[N];
int buscado; tArray array;

cout << "Valor a buscar: "; const int centinela = -1;

cin >> buscado;
int pos = 0;
bool encontrado = false;
while ((array[pos] != centinela) && !encontrado) {
if (array[pos] == buscado) {
encontrado = true;

}

else {
pOS++;

}

}
if (encontrado) // ...

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Pé4gina 607

Busquedas en arrays incompletos

Con contador

const int N = 10;
typedef double tArray[N];

int bUSCﬁdOS i typedef struct {
cout << "Valor a buscar: "; tArray elementos;
3

?in >> buscado; int contador;
int pos = 9; } tlista;
bool encontrado = false; tLista miLista;

while ((pos < milLista.contador)
&& !encontrado) {
// Mientras no al final y no encontrado
if (miLista.elementos[pos] == buscado) {
encontrado = true;

else {
pOS++;
}
}

if (encontrado) // ...

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Pé4gina 608

Busquedas por posicidn

Acceso directo a cualquier posicion

Acceso directo: array[posicion]
Si se puede calcular la posicion del elemento, su acceso es directo

typedef double tVentaMes[DIAS][SUCURSALES];
typedef struct {

tVentaMes ventas;

int dias;
} tMes;
typedef tMes tVentaAnual[MESES];
tVentaAnual anual;

Ventas del cuarto dia del tercer mes en la primera sucursal:
anual[2].ventas[3][9]

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Pé4gina 609

Fundamentos de la programacion

Ejemplo

(0]

=sr=m ~undamentos de la programacion: Recorrido y busqueda en arrays Péagina 610

r Luis Herndndez Yafiez
L.

Primer valor por encima de un umbral

#include <iostream> umbral.cpp

using namespace std;
#include <fstream>

const int N = 100;
typedef double tArray[N];
typedef struct {

tArray elementos;

int contador;
} tlLista;

void cargar(tLista &lista, bool &ok);

int main() {
tLista lista;

bool ok;
2 cargar(lista, ok);
5 if (lok) {
T " . . "
5 cout << "Error: no hay archivo o demasiados datos
g << endl;
I E E
Fundamentos de la programacion: Recorrido y busqueda en arrays Pagina 611

fiez

Luis Hernandez Ya

Primer valor por encima de un umbral

}
(0]

i o

else {

double umbral;

cout << "Valor umbral: "; cin >> umbral;

bool encontrado = false;

int pos = 0;

while ((pos < lista.contador) && !encontrado) {
if (lista.elementos[pos] > umbral) {

encontrado = true;

else {
pOS++;
}

if (encontrado) {
cout << "Valor en pos. << pos + 1 << " ("
<< lista.elementos[pos] << ")" << endl;

else {
cout << "jNo encontrado!" << endl;
return 0;
Fundamentos de la programacion: Recorrido y busqueda en arrays Péagina 612

fiez

Luis Hernandez Ya

Nt

Primer valor por encima de un umbral

void cargar(tLista &lista, bool &ok) {

)

ifstream archivo;
double dato;
bool abierto = true, overflow = false;
lista.contador = 9;
archivo.open("datos.txt");
if (larchivo.is_open()) {
abierto = false;
}

else {
archivo >> dato;
while ((dato >= @) && l!overflow) {
if (lista.contador == N) {
overflow = true; // jDemasiados!
}

else {
lista.elementos[lista.contador] = dato;

lista.contador++;
archivo >> dato;

}

archivo.close();

ok = abierto && !overflow;

Fundamentos de la programacion: Recorrido y busqueda en arrays Pagina 613

Fundamentos de la programacion

Recorridos y busquedas
en cadenas de caracteres

(0]

s =sr=m ~undamentos de la programacion: Recorrido y busqueda en arrays Pagina 614

[Luis Herndndez Yafiez
L.

Cadenas de caracteres

Recorridos y busquedas en cadenas de caracteres

Longitud de la cadena: size() o length()
Caso similar a los arrays con contador de elementos

Ejemplo: Recorrido de una cadena generando otra invertida

string cadena, inversa = "";
int pos;

char car;

// ... (lectura de cadena)
pos = 0O;

while (pos < cadena.size()) {
// Mientras no se llegue al final de la cadena
car = cadena.at(pos);
inversa = car + inversa; // Inserta car al principio
pOS++;

Y /...
(D

e =mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Pé4gina 615

Luis Hernandez Yafiez

Cadenas de caracteres

Busqueda de un cardcter en una cadena

string cadena;
char buscado;

int pos;
bool encontrado;
// ... (lectura de cadena)

cout << "Introduce el caracter a buscar: ";
cin >> buscado;
pos = 9,
encontrado = false;
while ((pos < cadena.size()) && !encontrado) {
if (cadena.at(pos) == buscado) {
encontrado = true;
¥

else {

pOS++;
}
}

if (encontrado) // .
(£

s =mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Pé4gina 616

Luis Herndndez Yafiez

Fundamentos de la programacion

Mas ejemplos
de manejo de arrays

(0]

e =sr=m ~undamentos de la programacion: Recorrido y busqueda en arrays Péagina 617

[Luis Hernandez Yafiez
L.

Manejo de vectores

Tipo tVector para representar secuencias de N enteros:

const int N = 10;
typedef int tVector[N];

Subprogramas:

v Dado un vector, mueve sus componentes un lugar a la derecha;
el ultimo componente se movera al 1¢" lugar

v Dado un vector, calcula y devuelve la suma de los elementos que se
encuentran en las posiciones pares del vector

v Dado un vector, encuentra y devuelve la componente mayor
v Dados dos vectores, devuelve un valor que indique si son iguales

v Dado un vector, determina si alguno de los valores almacenados en
el vector es igual a la suma del resto de los valores del mismo;
devuelve el indice del primero encontrado o -1 si no se encuentra

fiez

Dado un vector, determina si alguno de los valores almacenados
en el vector esta repetido

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays P4gina 618

f
©

Manejo de vectores

void desplazar(tVector v) {
int aux = v[N - 1];

for (int i =N-1; i > 0; i--) {
v[i] = v[i - 1];

}

v[@] = aux;

}

int sumaPares(const tVector v) {
int suma = 0;

for (int 1 =0; i < N; i=1+ 2) {
suma = suma + Vv[i];

}

fiez

return suma;

Luis Hernandez Ya
-

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 619

©)
E

Manejo de vectores

int encuentraMayor(const tVector v) {
int max = v[@], posMayor = 0;
for (int 1 = 1; i < N; i++) {
if (v[i] > max) {
posMayor = 1i;
max = v[i];
}
}
return posMayor;

}

bool sonIguales(const tVector vl, const tVector v2) {
//Implementacidén como busqueda del primer elemento distinto
bool encontrado = false;

int 1 = 0;

while ((i<N) && !encontrado) {
encontrado = (v1[i] != v2[i]);
i++;

}

return !encontrado;

-

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 620

f
©

Manejo de vectores

int compruebaSuma(const tVector v) {
// éAlguno igual a la suma del resto?
bool encontrado = false;

int 1 = 0;
int suma;
while ((i < N) && !encontrado) {
suma = 0;
for (int j = 0; j < N; j++) {
if (J !'=1) {
suma = suma + Vv[j];
}
}
encontrado = (suma == v[i]);
i++;
}
if (!encontrado) {
i=0;
¥

return i - 1;

-

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 621

©)
|:;

Manejo de vectores

bool hayRepetidos(const tVector v) {
bool encontrado = false;
int i = 0, j;

while ((i < N) && !encontrado) {

j=1+1;

while ((j < N) && !encontrado) {
encontrado = (v[i] == v[j]);
J++;

)

i++;

}

return encontrado;

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 622

==z Luis Hernandez Yafiez
L
)] it

Mas vectores

Dado un vector de N caracteres v1, en el que no hay elementos
repetidos, y otro vector de M caracteres v2, donde N < M, se
quiere comprobar si todos los elementos del vector v1 estan
también en el vector v2

Por ejemplo, si:

vli='a’ "h' "1’ 'm’

v2= 'h' 'a' "X X m i

El resultado seria cierto, ya que todos los elementos de v1 estan
en v2

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 623

r Luis Hernandez Yafiez
L.

Manejo de vectores

#include <iostream>
using namespace std;

const int N 3;
const int M = 10;
typedef char tVectorl[N];
typedef char tVector2[M];

bool esta(char dato, const tVector2 v2);
bool vectorIncluido(const tVectorl vl, const tVector2 v2);

int main() {
tVectorl vl = { 'a', 'b', 'c' };

tvector2 v2 = { 'a', 'r', 'e', 't', 'z', 's', 'a', 'h', 'b', 'x' };
bool ok = vectorIncluido(vl, v2);
if (ok) {
cout << "OK: v1 esta incluido en v2" << endl;
. b
£ else {
E cout << "NO: vl no esta incluido en v2" << endl;
5 }
s return 0;
}
||
Fundamentos de la programacion: Recorrido y busqueda en arrays Péagina 624

Manejo de vectores

bool esta(char dato, const tVector2 v2) {
int i = 0;
bool encontrado = (dato == v2[0]);

while (!'encontrado & & (i < M - 1)) {

i++;
encontrado = (dato == v2[i]);
}
return encontrado;
}
bool vectorIncluido(const tVectorl vl, const tVector2 v2) {

int i = 0;
bool encontrado = esta(vli[@], v2);

while (encontrado & (i < N - 1)) {
i++;
encontrado = esta(vli[i], v2);

}

return encontrado;

fiez

Luis Hernandez Ya

)
HEE

= Fundamentos de la programacion: Recorrido y busqueda en arrays Péagina 625

Anagramas

Un programa que lea dos cadenas del teclado y determine si una es
un anagrama de la otra, es decir, si una cadena es una permutacion
de los caracteres de la otra.

Por ejemplo, "acre" es un anagrama de "cera" y de "arce". Ten
en cuenta que puede haber letras repetidas ("carro", "11lave").

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Pé4gina 626

r Luis Herndndez Yafiez
|
L.

Anagramas

#tinclude <iostream>
#include <string>
using namespace std;

int buscaCaracter(string cad, char c); // Indice o -1 si no estd

int main() {

string cadl, cad2;

bool sonAnagramas = true;

int numCar, posEnCad2;

cout << "Introduce la primera cadena: ";

getline(cin, cadl);

cout << "Introduce la segunda cadena: ";

getline(cin, cad2);

if (cadl.length() != cad2.length()) { // No son anagramas
sonAnagramas = false;

}

else {
numCar = @; // Contador de caracteres de la primera cadena
while (sonAnagramas && (numCar < cadl.length())) {

posEnCad2 = buscaCaracter(cad2, cadl.at(numCar));

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 627

r Luis Hernandez Yafiez
|
L.

Anagramas

if (poskEnCad2 == -1) { //No se ha encontrado el caracter
sonAnagramas = false;

}

else {
cad2.erase(posEnCad2, 1);

}

numCar++;

}

if (sonAnagramas) {
cout << "Las palabras introducidas son anagramas" << endl;

else {
cout << "Las palabras introducidas NO son anagramas" << endl;

5]
G return 0;
3 }
f=
2
5}
T
§
I E E
Fundamentos de la programacion: Recorrido y busqueda en arrays Pagina 628

Anagramas

int buscaCaracter(string cad, char c) {
int pos = @, lon = cad.length();
bool encontrado = false;

while ((pos < lon) && !encontrado) {
if (cad.at(pos) == c) {
encontrado = true;

}
else {
poS++;
}
}
if (lencontrado) {
pos = -1;
}

return pos;

fiez

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Pé4gina 629

Fundamentos de la programacion

Arrays multidimensionales

7 Luis Herndndez Yafiez

A Fundamentos de la programacion: Recorrido y busqueda en arrays Péagina 630

Arrays multidimensionales

Arrays de varias dimensiones

Varios tamaifios en la declaracion: cada uno con sus corchetes
typedef tipo_base nombre[tamanol][tamano2]...[tamarnoN];
Varias dimensiones, tantas como tamanos se indiquen

typedef double tMatriz[50][100];
tMatriz matriz;

Tabla bidimensional de 50 filas por 100 columnas:

98 99
.
. I
.
.
.

7 Luis Herndndez Yafiez

Pagina 631

Luis Herndndez Yafiez

Arrays multidimensionales

Arrays de varias dimensiones

typedef double tMatriz[50][100];
tMatriz matriz;

Cada elemento se localiza con dos indices, uno por dimension

cout << matriz[2][98];

0 1 2 3 oo 98 99
o I .. A
]
Il

: I
> m———
o I .
s IR . -

A Fundamentos de la programacién: Recorrido y busqueda en arrays Pé4gina 632

Luis Hernandez Yafiez

Arrays multidimensionales

Arrays de varias dimensiones

Podemos definir tantas dimensiones como necesitemos

typedef double tMatriz[5][10][20][10];
tMatriz matriz;

Necesitaremos tantos indices como dimensiones:
cout << matriz[2][9][15][6];

A Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 633

Arrays multidimensionales

Ejemplo de array bidimensional

Temperaturas minimas y maximas

Matriz bidimensional de dias y minima/maxima:

const int MaxDias = 31;

const int MED = 2; // N2 de medidas

typedef double tTemp[MaxDias][MED]; // Dia x min./max.
tTemp temp;

Ahora:
v’ temp[i][@] es la temperatura minima del dia i+1
v' temp[i][1] es la temperatura maxima del dia i+1

(0]

e =mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 634

[Luis Herndndez Yafiez
L.

Arrays multidimensionales

int main() {
const int MaxDias = 31;
const int MED = 2; // N2 de medidas
typedef double tTemp[MaxDias][MED]; // Dia x min./max.
tTemp temp;
double tMaxMedia = @, tMinMedia = 9O,
tMaxAbs = -100, tMinAbs = 100;
int dia = 0;
double max, min;
ifstream archivo;

archivo.open("temp.txt");
if (larchivo.is_open()) {
cout << "No se ha podido abrir el archivo!" << endl;
}
else {
archivo >> min >> max;
// El archivo termina con -99 -99

(0]

e =mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Pé4gina 635

[Luis Hernandez Yafiez
L.

Arrays multidimensionales

while (!((min == -99) && (max == -99))
&& (dia < MaxDias)) {
temp[dia][@] = min;
temp[dia][1] = max;
dia++;
archivo >> min >> max;
by
archivo.close();
for (int i = @; i < dia; i++) {
tMinMedia = tMinMedia + temp[i][9];
if (temp[i][@] < tMinAbs) {
tMinAbs = temp[i][©];
}
tMaxMedia = tMaxMedia + temp[i][1];
if (temp[i][1] > tMaxAbs) {
tMaxAbs = temp[i][1];

}

‘% }

Fundamentos de la programacion: Recorrido y busqueda en arrays Pagina 636

(] (] []
Arrays multidimensionales

tMinMedia = tMinMedia / dia;
tMaxMedia = tMaxMedia / dia;
cout << "Temperaturas minimas.-" << endl;
cout << " Media = " << fixed << setprecision(1)

<< tMinMedia <<
<< setprecision(1l) << tMinAbs <<
cout << "Temperaturas maximas.-"
cout << " Media =

" C Minima absoluta
C" << endl;
<< endl;

<< fixed << setprecision(1)
<< tMaxMedia << " C Maxima absoluta

<< setprecision(1l) << tMaxAbs << " C" << endl;

return 0;

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays

=17 Luis Hernandez Yafiez
L
@ —

Péagina 637

Inicializacidn de arrays multidimensionales

Podemos dar valores a los elementos de un array al declararlo
Arrays bidimensionales:

typedef int tArray[5][2];
tArray cuads = {1,1, 2,4, 3,9, 4,16, 5,25};

Se asignan en el orden en el que los elementos estan en memoria

LLa memoria es de una dimension: secuencia de celdas

En memoria varian mas rapidamente los indices de la derecha:
cuads[0@][0] cuads[@][1] cuads[1][@] cuads[1][1] cuads[2][9@]...

Para cada valor del primer indice: todos los valores del segundo

(0]

=mr=m Fundamentos de la programacion: Recorrido y bisqueda en arrays Pé4gina 638

v, Luis Herndndez Yafiez
f

Inicializacion de arrays multidimensionales

Inicializacion de un array bidimensional

typedef int tArray[5][2];
tArray cuads = {1,1, 2,4, 3,9, 4,16, 5,25};

Memoria 0 1
cuads[@][e] 1 @ 1 1
cuads[0][1] 1 1 2 4
cuads[1][@] 2 2 3 ?
ds[1][1] 4 > * e
cua 4 5 25
cuads[2][@] 3
cuads[2][1] J €@ Sihay menos valores que elementos,
cuads[3][Q] 4 el resto se inicializan a cero
2 cuads[3][1] 16 Inicializacién a cero de todo el array:
3 cuads[4][0] 5 int cuads[5][2] = { @ };
£ cuads[4][1] 25

(0]

=mr=m Fundamentos de la programacién: Recorrido y bisqueda en arrays Péagina 639

Inicializacion de arrays multidimensionales

typedef double tMatriz[3][4][2][3];
tMatriz matriz =

{1J 2: 3; 4, 5, 6, Memoria
7, 8, 9, 10, 11, 12}; matriz[@][0@][0][@] 1
matriz[@][0@][0][1] 2
matriz[@][0@][0][2] 3
matriz[@][@][1][@] 4
matriz[@][0][1][1] 5
matriz[@][0][1][2] 6
matriz[@][1][0][@0] 7
matriz[@][1][0][1] 8
matriz[@][1][0][2] 9
matriz[@][1][1][@] 10
g matriz[@][1][1][1] 11
g matriz[@][1][1][2] 12
: matriz[e][2][e][e] 0
Fundamentos de la programacion: Recorrido y busqueda en arrays Péagina 640

Recorrido de un array bidimensional

const int FILAS = 10;

const int COLUMNAS = 5;

typedef double tMatriz[FILAS][COLUMNAS];
tMatriz matriz;

Para cada fila (de 0 a FILAS - 1):
Para cada columna (de 0 a COLUMNAS - 1):
Procesar el elemento en [fila][columna]

for (int fila = @; fila < FILAS; fila++) {
for (int columna = @; columna < COLUMNAS; columna++) {
// Procesar matriz[fila][columna]

}

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 641

Ejemplo

Ventas de todos los meses de un ano

const int Meses = 12;

const int MaxDias = 31;

typedef double tVentas[Meses][MaxDias];
tVentas ventas; // Ventas de todo el ano
typedef short int tDiasMes[Meses];

tDiasMes diasMes;

inicializa(diasMes); // N2 de dias de cada mes
// Pedimos las ventas de cada dia del afo...

for (int mes = 0; mes < Meses; mes++)
for (int dia = @; dia < diasMes[mes]; dia++) {
cout << "Ventas del dia " << dia + 1
<< " del mes " << mes + 1 << ": "
cin >> ventas[mes][dia];

i Luis Hernandez Yafiez

E"‘- ear-wrrm Fundamentos de la programacion: Recorrido y busqueda en arrays Péagina 642
Ejemplo

Ventas de todos los meses de un ano

Celdas no

Meses < utilizadas

\11 222 666 512 400 259 ...

arem Fundamentos de la programacion: Recorrido y busqueda en arrays Péagina 643

=z Luis Hernandez Yafiez

L)
[*'I.
]

Recorrido de arrays N-dimensionales

const int DIM1 = 10;
const int DIM2 = 5;
const int DIM3 = 25;
const int DIM4 = 50;

typedef double tMatriz[DIM1][DIM2][DIM3][DIM4];

tMatriz matriz;

Bucles anidados, desde la primera dimensidn hasta la ultima:

for (int nl1 = @0; nl1 < DIM1; nl++) {
for (int n2 = 0; n2 < DIM2; n2++) {
for (int n3 = 0; n3 < DIM3; n3++) {
for (int n4 = 0; n4 < DIM4; nd++) {
// Procesar matriz[nl][n2][n3][n4]

}
}
}

Luis Herndndez Yafiez

}
[0}

=mr=m Fundamentos de la programacion: Recorrido y bisqueda en arrays Péagina 644

Ejemplo

Ventas diarias de cuatro sucursales

Cada mes del afio: ingresos de cada sucursal cada dia del mes

Meses con distinto n2 de dias = junto con la matriz de ventas
mensual guardamos el n2 de dias del mes concreto = estructura

const int DIAS = 31;

const int SUCURSALES = 4;
typedef double tVentaMes[DIAS][SUCURSALES];
typedef struct {

tVentaMes ventas: anual > tVentaAnual
J
int dias: anual[i] > tMes
J . . .
} tMes; anual[:.L].dlas - int
anual[i].ventas > tVentaMes
anual[i].ventas[j][k] = double

const int MESES = 12;
typedef tMes tVentaAnual[MESES];
tVentaAnual anual;

(£

=mr=m Fundamentos de la programacién: Recorrido y bisqueda en arrays Péagina 645

Luis Hernandez Yafiez

Ejemplo

const int DIAS = 31;
, const int SUCURSALES = 4;
Calculo de las ventas typedef double

o tVentaMes[DIAS][SUCURSALES];
de todo el ano: typedef struct {

Para cada mes tVentaMes ventas;

int dias;
Para cada dia del mes... } tMes;
Para cada sucursal... const int MESES = 12;
typedef tMes tVentaAnual[MESES];
ACumular]as ventas tVentaAnual anual;

double total 0;
for (int mes = 0@; mes < MESES; mes++) {
for (int dia = 0; dia < anual[mes].dias; dia++) {
for (int suc = 0; suc < SUCURSALES; suc++) {
total = total + anual[mes].ventas[dia][suc];

-

>

3 }

f=

5 }

g }

E

)

I E E

Fundamentos de la programacion: Recorrido y busqueda en arrays Pagina 646

Busqueda en un array multidimensional

bool encontrado = false; Primer valor > umbral
int mes = 0, dia, suc;
while ((mes < MESES) && !encontrado) {
dia = 9;
while (Zdia < anual[mes].dias) && !encontrado) {
suc = 9,
while (Zsuc < SUCURSALES) && !encontrado) {
if (anual[mes].ventas[dia][suc] > umbral) {
encontrado = true;

else {
SUC++;
}
if (!encontrado) {
dia++;
}
2 if (!encontrado) {
5 mes++;
}
= if (encontrado) { ...

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Péagina 647

©)
|:;

Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacién: Recorrido y busqueda en arrays Pé4gina 648

Fundamentos de |la programacion

7 Algoritmos de
ordenacion

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

r4 [3
Indice
Algoritmos de ordenacion 651
Algoritmo de ordenacién por inserciéon 654
Ordenacidn de arrays por insercion 665
Algoritmo de ordenacién por insercién
con intercambios 672
Claves de ordenacion 680
Estabilidad de la ordenacion 688
Complejidad y eficiencia 692
Ordenaciones naturales 694
Ordenacion por seleccion directa 701
Método de la burbuja 716
Listas ordenadas 722
Busquedas en listas ordenadas 729
Busqueda binaria 731
@ ? Fundamentos de la programacion: Algoritmos de ordenacién

Fundamentos de la programacion

Algoritmos de ordenacion

7 Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Algoritmos de ordenacién Péagina 651

Algoritmos de ordenacion

Ordenacion de listas

array

125.40 76.95 328.80 254.62 435.00 164.29 316.05 219.99 93.45 756.62
0 1 2 3 4 5 6 7 8 9

Algoritmo de ordenacién
(de menor a mayor)

76.95 93.45 125.40 164.29 219.99 254.62 316.05 328.80 435.00 756.62
0 1 2 3 4 5 6 7 8 9

array[i] <= array[i + 1]

Mostrar los datos en orden, facilitar las busquedas, ...
Variadas formas de hacerlo (algoritmos)

% Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Algoritmos de ordenacién Pé4gina 652

Algoritmos de ordenacion

Ordenacion de listas

Los datos de la lista deben poderse comparar entre si
Sentido de la ordenacion:

v' Ascendente (de menor a mayor)

v Descendente (de mayor a menor)

Algoritmos de ordenacion basicos:

v Ordenacién por insercién

v Ordenacién por seleccion directa

v Ordenacién por el método de la burbuja

Los algoritmos se basan en comparaciones e intercambios

Hay otros algoritmos de ordenacién mejores

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 653

Fundamentos de la programacion

Algoritmo de ordenacidn
por insercion

(0]

e =mr=m ~undamentos de la programacion: Algoritmos de ordenacién Péagina 654

[Luis Hernandez Yafiez
L.

Ordenacidn por insercion

Algoritmo de ordenacion por insercion

Partimos de una lista vacia

Vamos insertando cada elemento en el lugar que le corresponda

Baraja de nueve cartas numeradas del 1 al 9
Las cartas estan desordenadas

Ordenaremos de menor a mayor (ascendente)

Luis Herndndez Yafiez

(o) (0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 655

Ordenacidn por insercion

Algoritmo de ordenacion por insercion

Colocamos el primer elemento en la lista vacia

Lista ordenada:

5

Luis Hernandez Yafiez

(o) (0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 656

Ordenacidn por insercion

Algoritmo de ordenacion por insercion

El 7 es mayor que todos los elementos de la lista
Lo insertamos al final

Lista ordenada:

7

7 Luis Hernandez Yafiez

Pé4gina 657

Ordenacidn por insercion

Algoritmo de ordenacion por insercion

Primer elemento (5) mayor que el nuevo (4):
Desplazamos todos una posicion a la derecha

Insertamos el nuevo en la primera posicion

Hemos insertado el elemento en su lugar

Lista ordenada:

415 |7

% Luis Hernandez Yafiez

Pé4gina 658

Ordenacidn por insercion

Algoritmo de ordenacion por insercion

9 es mayor que todos los elementos de la lista
Lo insertamos al final

Lista ordenada:
4[5[7[9

A Fundamentos de la programacién: Algoritmos de ordenacion Péagina 659

7 Luis Hernandez Yafiez

Ordenacidn por insercion

Algoritmo de ordenacion por insercion

Primer elemento (4) mayor que el nuevo (2):
Desplazamos todos una posicion a la derecha

Insertamos el nuevo en la primera posicion

Lista ordenada:
2[a[5[7]9

A Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 660

% Luis Hernandez Yafiez

Ordenacidn por insercion

Algoritmo de ordenacion por insercion

El 9 es el primer elemento mayor que el nuevo (8):
Desplazamos desde ese hacia la derecha
Insertamos donde estaba el 9

Lista ordenada:
2]a[5(7]8]9

A Fundamentos de la programacién: Algoritmos de ordenacion Pé4gina 661

7 Luis Herndndez Yafiez

Ordenacidn por insercion

Algoritmo de ordenacion por insercion

3 Segundo elemento (4) mayor que el nuevo (3):
Desplazamos desde ese hacia la derecha
Insertamos donde estaba el 4

23/4[s]7]8]8

A Fundamentos de la programacién: Algoritmos de ordenacidn Pégina 662

7 Luis Herndndez Yafiez

Ordenacidn por insercion

Algoritmo de ordenacion por insercion

1 Primer elemento (2) mayor que el nuevo (1):
Desplazamos todos una posicion a la derecha

Insertamos el nuevo en la primera posicion

112[3[4[5]7]8[9

A Fundamentos de la programacién: Algoritmos de ordenacion Pé4gina 663

7 Luis Herndndez Yafiez

Ordenacidn por insercion

Algoritmo de ordenacion por insercion

E El 7 es el primer elemento mayor que el nuevo (6):
Desplazamos desde ese hacia la derecha
Insertamos donde estaba el 7

iii LISTA ORDENADA !!!

112(3[4[5]67[8[9

A Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 664

7 Luis Herndndez Yafiez

Ordenacidn por insercion

Ordenacion de arrays por insercion

El array contiene inicialmente la lista desordenada:

20 7 14 32) 14 27 12 13 15
) 1 2 3 4 5 6 7 8 9

A medida que insertamos: dos zonas en el array

Parte ya ordenada y elementos por procesar

Parte ya ordenada Elementos por insertar

Siguiente elemento a insertar en la parte ya ordenada

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Algoritmos de ordenacién Pé4gina 665

Ordenacidn por insercion

Ordenacion de arrays por insercion

Situaciodn inicial: Lista ordenada con un solo elemento (primero)

20 7 14 32 5 14 27 12 13
e i 1 2 3 4 5 6 7 8 9

15

4 9
T nuevo

7 Luis Herndndez Yafiez

Pé4gina 666

Ordenacidn por insercion

Ordenacion de arrays por insercion

nuevo

7 20 14 32) 14 27 12 13 15
0 1 i 2 3 4 5 6 7 8 9

nuevo

Pé4gina 667

7 Luis Herndndez Yafiez

Ordenacion de arrays por insercion

Implementacion const int N = 15;
typedef int tLista[N];

tLista lista;

int nuevo, pos;
// Desde el segundo elemento hasta el ultimo...
for (int i = 1; i < N; i++) {
nuevo = lista[i];
pos = 0O;
while ((pos < i) && !(lista[pos] > nuevo)) {
pOS++;
}
// pos: indice del primer mayor; i si no lo hay
for (int j = 1i; j > pos; j--) {
lista[j] = lista[j - 1];
}

lista[pos] = nuevo;

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 668

Ordenacidn de arrays por insercion

w0 i

7 Luis Herndndez Yafiez

Péagina 669

Ordenacidn de arrays por insercion

0wl e

7 Luis Herndndez Yafiez

Péagina 670

Ordenacidn de arrays por insercion

5 7 14 27 12 13 15
: 8 9

- 6 7
i pos nuevo

7 Luis Herndndez Yafiez

Pagina 671

Fundamentos de la programacion

Algoritmo de ordenacidn
por insercion con intercambios

7 Luis Herndndez Yafiez

A Fundamentos de la programacion: Algoritmos de ordenacion Pégina 672

7 Luis Herndndez Yafiez

Ordenacidn por insercion con intercambios

La insercion de cada elemento se puede realizar
con comparaciones e intercambios

Péagina 673

7 Luis Herndndez Yafiez

Pagina 674

Ordenacidn por insercion con intercambios

const int N = 15;
typedef int tLista[N];
tLista lista;

int tmp, pos;
// Desde el segundo elemento hasta el ultimo...
for (int 1 = 1; i < N; i++) {
pos = 1i;
// Mientras no al principio y anterior mayor...
while ((pos > @) && (lista[pos - 1] > lista[pos])) {
// Intercambiar...
tmp = lista[pos];
lista[pos] = lista[pos - 1];
lista[pos - 1] = tmp;
pos--; // Posicién anterior

Luis Herndndez Yafiez
—

(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 675

Ordenacidn por insercion con intercambios

#include <iostream>

using namespace std;
#include <fstream>

const int N = 100;

typedef int tArray[N];

typedef struct { // Lista de longitud variable
tArray elementos;
int contador;

} tlLista;

int main() {

tLista lista;
ifstream archivo;
int dato, pos, tmp;
lista.contador = 0;

(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 676

[Luis Hernandez Yafiez
L.

Ordenacidn por insercion con intercambios

archivo.open("insercion.txt");
if ('archivo.is open()) {

cout << "Error de apertura de archivo!" << endl;
}

else {

archivo »>> dato;

while ((lista.contador < N) && (dato != -1)) {

// Centinela -1 al final
lista.elementos[lista.contador] = dato;
lista.contador++;
archivo »>> dato;

}

archivo.close();

// Si hay mas de N ignoramos el resto

cout << "Antes de ordenar:" << endl;

for (int i = @; i < lista.contador; i++) {

}

cout << lista.elementos[i] <« ;
cout << endl;

(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 677

[Luis Herndndez Yafiez
L.

Ordenacidn por insercion con intercambios

for (int i = 1; i < lista.contador; i++) {
pos = 1i;
while ((pos > 0)
&& (lista.elementos[pos-1] > lista.elementos[pos]))

{
tmp = lista.elementos[pos];
lista.elementos[pos] = lista.elementos[pos - 1];
lista.elementos[pos - 1] = tmp;
pos--;

}

}

cout << "Después de ordenar:" << endl;
for (int i = 9; i < lista.contador; i++) {

}

cout << lista.elementos[i] << 5
cout << endl;

}

return 9;

Luis Hernandez Yafiez

}
[0}

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 678

Ordenacidn por insercion con intercambios

Consideracion de implementacion
;Operador relacional adecuado?
lista[pos - 1] ;>0>=7 lista[pos]
Con >= se realizan intercambios inttiles:

iIntercambio inutil!

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Algoritmos de ordenacion Pé4gina 679

Fundamentos de la programacion

Claves de ordenacion

7 Luis Herndndez Yafiez

A Fundamentos de la programacion: Algoritmos de ordenacion Péagina 680

Ordenacidn por insercion

Claves de ordenacion

Elementos que son estructuras con varios campaos:

const int N = 15;
typedef struct {

int codigo;

string nombre;

double sueldo;
} tDato;
typedef tDato tLista[N];
tLista lista;

Clave de ordenacion:
Campo en el que se basan las comparaciones

Luis Herndndez Yafiez

(0]

s =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 681

Ordenacidn por insercion

Claves de ordenacion

[tDato]tmp;
while ((pos > 0)

&& (lista[pos - 1].nombre > lista[pos].nombre)) {
tmp = lista[pos]; -
lista[pos] = lista[pos - 1];
lista[pos - 1] = tmp;
pos--;

}

Comparacion: campo concreto

Intercambio: elementos completos

(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 682

[Luis Hernandez Yafiez
L.

Ordenacidn por insercion

Claves de ordenacion

Funcién para la comparacion:

bool operator>(tDato opIzq, tDato opDer) {
return (opIzqg.nombre > opDer.nombre);

}

tDato tmp;

while ((pos > 0) && (lista[pos - 1]
tmp = lista[pos];
lista[pos] = lista[pos - 1];
lista[pos - 1] = tmp;
pos--;

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn

lista[pos])) {

Pé4gina 683

Ordenacidn por insercion

Claves de ordenacion

#include <iostream>
#include <string>
using namespace std;
#include <fstream>
#include <iomanip>
const int N = 15;
typedef struct {
int codigo;
string nombre;
double sueldo;
} tDato;
typedef tDato tArray[N];
typedef struct {
tArray datos;
int cont;
} tlLista;

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn

Pé4gina 684

Ordenacidn por insercion

void mostrar(tLista lista);
bool operator>(tDato opIzq, tDato opDer);

int main() {
tLista lista;
ifstream archivo;
lista.cont = 0;
archivo.open("datos.txt");
if ('archivo.is open()) {
cout << "Error de apertura del archivo!" << endl;

else {

tDato dato;

archivo >> dato.codigo;

while ((lista.cont < N) && (dato.codigo != -1)) {
archivo >> dato.nombre >> dato.sueldo;
lista.datos[lista.cont] = dato;
lista.cont++;
archivo >> dato.codigo;

archivo.close();
(£

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 685

[Luis Herndndez Yafiez
L.

Ordenacidn por insercion

cout << "Antes de ordenar:" << endl;
mostrar(lista);
for (int 1 = 1; i < lista.cont; i++) {
// Desde el segundo elemento hasta el ultimo
int pos = i;
while ((pos > 0)
&% (lista.datos[pos-1] > lista.datos[pos])) {
tDato tmp;
tmp = lista.datos[pos];
lista.datos[pos] = lista.datos[pos - 1];
lista.datos[pos - 1] = tmp;
pos--;
}
}
cout << "Después de ordenar:
mostrar(lista);

<< endl;

}

return 9;

Luis Hernandez Yafiez

}
[0}

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 686

Luis Herndndez Yafiez

Ordenacidn por insercion

void mostrar(tLista lista) {
for (int 1 = @; i < lista.cont; i++) {
cout << setw(10)

<< lista.datos[i].codigo
<< setw(20)
<< lista.datos[i].nombre
<< setw(12)
<< fixed
<< setprecision(2)
<< lista.datos[i].sueldo
<< endl;

}

bool operator>(tDato opIzq, tDato opDer) {
return (opIzq.nombre > opDer.nombre);

I |
} I

Cambia a codigo o sueldo para ordenar por otros campos

(0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 687

Fundamentos de la programacion

Estabilidad de la ordenacion

(0]

=mr=m ~undamentos de la programacion: Algoritmos de ordenacién Pé4gina 688

r Luis Hernandez Yafiez
|
L.

Estabilidad de la ordenacion

Algoritmos de ordenacion estables

Al ordenar por otra clave una lista ya ordenada,
la segunda ordenacidn preserva el orden de la primera

tDato: tres posibles claves de ordenacion (campos)

Codigo :
Alvarez 120000
Nombre Benitez 100000
Sueldo Dominguez 90000
Duran 120000
Fernandez 120000
Gomez 100000
Lista ordenada por Nombre - Hernindez 150000

Jiménez 100000
Pérez 90000
Sanchez 90000
Sergei 100000
Tarazona 120000
Turégano 100000
Urpiano 90000

Luis Herndndez Yafiez

Fundamentos de la programacion: Algoritmos de ordenacién Péagina 689

Estabilidad de la ordenacion

Ordenamos ahora por el campo Codigo:

Sergei 100000 Hernandez 150000
Hernandez 150000 Sergei 100000
Urpiano 90000 Benitez 100000
Benitez 100000 Duran 120000
Pérez 90000 Pérez 90000
Duran 120000 Urpiano 90000
Sanchez 90000 Alvarez 120000
Alvarez 120000 Gomez 100000
Turégano 100000 Sanchez 90000
Gomez 100000 Turégano 100000
Dominguez 90000 Dominguez 90000
Jiménez 100000 Jiménez 100000
Fernandez 120000 Fernandez 120000
Tarazona 120000 Tarazona 120000

No estable: Estable:
Los nombres no mantienen Los nombres mantienen
sus posiciones relativas sus posiciones relativas

Luis Hernandez Yafiez

Fundamentos de la programacion: Algoritmos de ordenacién Pé4gina 690

Estabilidad de la ordenacion

Ordenacion por insercion

Estable siempre que utilicemos < 0 > Con <=0 >=no es estable
Ordenamos por sueldo:
A igual sueldo, ordenado por codigos y a igual codigo, por nombres

Hernandez 150000 Pérez 90000
Sergei 100000 Urpiano 90000
Benitez 100000 Sanchez 90000
Duran 120000 Dominguez 90000
Pérez 90000 Sergei 100000
Urpiano 90000 Benitez 100000
Alvarez 120000 Gomez 100000

Gomez 100000 Turégano 100000
Sanchez 90000 Jiménez 100000
Turégano 100000 Duran 120000
Dominguez 90000 Alvarez 120000
Jiménez 100000 Fernandez 120000
Fernandez 120000 Tarazona 120000
Tarazona 120000 Hernandez 150000

7 Luis Hernandez Yafiez

Fundamentos de la programacion: Algoritmos de ordenacién Pagina 691

Fundamentos de la programacion

Complejidad y eficiencia

% Luis Hernandez Yafiez

Fundamentos de la programacion: Algoritmos de ordenaciéon Péagina 692

Complejidad y eficiencia

Casos de estudio para los algoritmos de ordenacion
v' Lista inicialmente ordenada

) 7 12 13 14 14 15 20 27 32

7 Luis Herndndez Yafiez

Péagina 693

Complejidad y eficiencia

Ordenaciones naturales

Si el algoritmo trabaja menos cuanto mds ordenada esta
inicialmente la lista, se dice que la ordenacién es natural

Ordenacion por insercion con la lista inicialmente ordenada:

v" Versién que busca el lugar primero y luego desplaza:
No hay desplazamientos; mismo nimero de comparaciones
Comportamiento no natural

v" Versién con intercambios:
Trabaja mucho menos; basta una comparacion cada vez
Comportamiento natural

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Algoritmos de ordenacién Péagina 694

Complejidad y eficiencia

Eleccion de un algoritmo de ordenacion

;.Como de bueno es cada algoritmo?

;Cuanto tarda en comparacion con otros algoritmos?
Algoritmos mas eficientes: los de menor complejidad
Tardan menos en realizar la misma tarea
Comparamos en orden de complejidad: O()

En funcién de la dimension de la lista a ordenar: N
0() = f(N)

Operaciones que realiza el algoritmo de ordenacidn:
v' Comparaciones

v' Intercambios

Asumimos que tardan un tiempo similar

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 695

Complejidad y eficiencia

Cdlculo de la complejidad

Ordenacidn por insercion (con intercambios):

for (int i = 1; i < N; i++) {
int pos = i;

while ((pos > 0) && |(lista[pos - 1] > lista[pos])

N—”

{

int tmp; Comparacién
tmp = lista[pos];

lista[pos] = lista[pos - 1];
lista[pos - 1] = tmp;

pos--; Intercambio

}
}

Intercambios y comparaciones:
Tantos como ciclos realicen los correspondientes bucles

(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 696

Luis Hernandez Yafiez

Complejidad y eficiencia

Cdlculo de la complejidad

L. N - 1 ciclos

for (int i = 1; i < N; i++)[{
int pos = i; N¢ variable de ciclos
while ((pos > @) && (lista[pos - 1] > lista[pos]))

int tmp;
tmp = lista[pos];
lista[pos] = lista[pos - 1];
lista[pos - 1] = tmp;
pOs--;
}
}

Caso en el que el while se ejecuta mas: caso peor
Caso en el que se ejecuta menos: caso mejor

(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 697

Luis Herndndez Yafiez

Complejidad y eficiencia

Cdlculo de la complejidad

v’ Caso mejor: lista inicialmente ordenada
La primera comparacion falla: ningtin intercambio
(N -1)* (1 comparacion + 0 intercambios) =N -1 -2 O(N)
v’ Caso peor: lista inicialmente ordenada al revés
Para cada pos, entre 1 y 1: 1 comparacién y 1 intercambio
1+2+3+4+..+(N-1)
(N-D)+1)x(N-1)/2
N*(N-1)/2
(N2-N) /2 > O(N?)
Notacion O grande: orden de complejidad en base a N
El término en N que mas rapidamente crece al crecer N
En el caso peor, N? crece mas rapido que N 2> O(N?)
(Ignoramos las constantes, como 2)

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 698

Complejidad y eficiencia

Ordenacion por insercion (con intercambios)

v’ Caso mejor: O(N)
v’ Caso peor: O(N?)

Caso medio (distribucién aleatoria de los elementos): O(N?)

Hay algoritmos de ordenacién mejores

(0]

[Luis Herndndez Yafiez
L.

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 699
Complejidad y eficiencia
Ordenes de complejidad
O(log N) < O(N) < O(N log N) < O(N?) < O(N?) ...
N log, N N2
1 %) 1
2 1 4
4 2 16
8 3 64
16 4 256
32 5 1024
) 64 6 4096
2 128 7 16384
% 256 8 65536
Fundamentos de la programacion: Algoritmos de ordenacion Pagina 700

Fundamentos de la programacion

Ordenacion por seleccion directa

(0]

=S Fundamentos de la programacidn: Algoritmos de ordenacién Pagina 701

v, Luis Herndndez Yafiez
f

Ordenacidn por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

4
Lista desordenada: n E E E

Lista ordenada:

Luis Hernandez Yafiez

(0]

=mrm Fundamentos de la programacion: Algoritmos de ordenacién Péagina 702

Ordenacion por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: n E E E
Lista ordenada:

(o) (0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 703

Luis Herndndez Yafiez

Ordenacidn por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: n E E E
Lista ordenada:

(o) (0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pagina 704

Luis Hernandez Yafiez

Ordenacion por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: n E E E
Lista ordenada:

(o) (0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 705

Luis Herndndez Yafiez

Ordenacidn por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: E E E
Lista ordenada:

(o) (0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 706

Luis Hernandez Yafiez

Ordenacion por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: E E E
Lista ordenada:

(o) (0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 707

Luis Herndndez Yafiez

Ordenacidn por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: E E
Lista ordenada: E

(o) (0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 708

Luis Hernandez Yafiez

Ordenacion por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: E E
> [:[::]”

(o) (0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pé4gina 709

Luis Herndndez Yafiez

Ordenacidn por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada: E

Lista ordenada: E E

(o) (0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pagina 710

Luis Hernandez Yafiez

Ordenacion por seleccion directa

Algoritmo de ordenacion por seleccion directa

Seleccionar el siguiente elemento menor de los que queden

Lista desordenada:

;i LISTA ORDENADA !!!
3
E
5
I
A Fundamentos de la programacién: Algoritmos de ordenacion Pagina 711

Ordenacidn por seleccion directa

Ordenacion de un array por seleccion directa

im
l{ l{ Sdélo intercambiamos si no es la misma posicion
5 7

14 32 20 14 27 12 13)
0 | 2 3 4 5 6 7 8 9

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 712

Ordenacion por seleccion directa

Ordenacion de un array por seleccion directa
i m

v v

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Algoritmos de ordenacion Pagina 713

Ordenacion por seleccion directa

const int N = 15;
typedef int tLista[N];
tLista lista;

Implementacion

// Desde el primer elemento hasta el penultimo...
for (int 1 =0; 1 < N - 1; i++) {
int menor = 1i;
// Desde i + 1 hasta el final...
for (int j =1 + 1; j < N; j++) {
if (lista[j] < lista[menor]) {
menor = j;
}

if (menor > i) {
int tmp;
tmp = lista[i];
lista[i] = lista[menor];
lista[menor] = tmp;

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Algoritmos de ordenacidn Pagina 714

Ordenacion por seleccion directa

Complejidad de la ordenacion por seleccion directa

¢ Cudntas comparaciones se realizan?

Bucle externo: N - 1 ciclos

Tantas comparaciones como elementos queden en la lista:

(N-1)+(N-2)+(N-3)+..+3+2+1=

Nx(N-1)/2=(N?-N) /2> O(N?)

Mismo nuimero de comparaciones en todos los casos

Complejidad: O(N?) Igual que el método de insercion
Algo mejor (menos intercambios; uno en cada paso)

No es estable: intercambios “a larga distancia”
No se garantiza que se mantenga el mismo orden relativo original

Comportamiento no natural (trabaja siempre lo mismo)

(0]

s =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pagina 715

Luis Herndndez Yafiez

Fundamentos de la programacion

Método de la burbuja

(0]

e =mr=m ~undamentos de la programacion: Algoritmos de ordenacién Péagina 716

[Luis Hernandez Yafiez
L.

Método de la burbuja h:.h

Algoritmo de ordenacion por el método de la burbuja

Variacion del método de seleccion directa

El elemento menor va ascendiendo hasta alcanzar su posicion

7 Luis Herndndez Yafiez

Pagina 717

12 32 14 7 14
P 2 3 4 5

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Algoritmos de ordenacidn Pagina 718

Método de la burbuja

Ordenacion de un array por el método de la burbuja

L. const int N = 10;

int tmp; typedef int tLista[N];

// Del primero al penultimo... tLista lista;

for (int 1 =0; i < N - 1; i++) {
// Desde el ultimo hasta el siguiente a 1i...
for (int j =N -1; j > 1i; j--) {

if (lista[j] < lista[j - 1]) {

tmp = lista[j];

lista[j] = lista[j - 1];

lista[j - 1] = tmp;

Luis Herndndez Yafiez
—

(o) (0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pagina 719

Método de la burbuja

Algoritmo de ordenacion por el método de la burbuja
Complejidad: O(N?)
Comportamiento no natural
Estable (mantiene el orden relativo)
Mejora:
Si en un paso del bucle exterior no ha habido intercambios:

La lista ya esta ordenada (no es necesario seguir)

14 14 14 / 12
16 16 12 14 . .
/ La lista ya esta ordenada

2 35 12 16 16 .
3 / No hace falta seguir
g 12 35 35 35
; 50 50 50 50
(o) (0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 720

Método de la burbuja mejorado

bool inter = true;
int i = 0;
// Desde el 12 hasta el penultimo si hay intercambios...
while ((i < N - 1) && inter) {
inter = false;
// Desde el ultimo hasta el siguiente a i...
for (int j =N -1; j > 1i; j--) {
if (lista[j] < lista[j - 1]) {
int tmp;
tmp = lista[j];
lista[j] = lista[j - 1];
lista[j - 1] = tmp;
inter = true;

3 if (inter) {

% i++;

L ¥ Esta variacion si tiene un comportamiento natural
Fundamentos de la programacion: Algoritmos de ordenacion Pagina 721

Fundamentos de la programacion

Listas ordenadas

(0]

e =mr=m ~undamentos de la programacion: Algoritmos de ordenacién Péagina 722

[Luis Hernandez Yafiez
L.

Listas ordenadas

Gestion de listas ordenadas

Casi todas las tareas se realizan igual que en listas sin orden
Operaciones que tengan en cuenta el orden:

v" Insercién de un nuevo elemento: debe seguir en orden

v Busquedas més eficientes

.Y la carga desde archivo?

v" Silos elementos se guardaron en orden: se lee igual

v" Silos elementos no estan ordenados en el archivo: insertar

(0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 723

r Luis Herndndez Yafiez
L.

Gestion de listas ordenadas

Declaraciones: Iguales que para listas sin orden
const int N = 20;

typedef struct {
int codigo;
string nombre;
double sueldo;
} tRegistro;

typedef tRegistro tArray[N];

typedef struct {
tArray registros;
int cont;

} tlLista;

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Pagina 724

©)
|:;

Gestion de listas ordenadas

Subprogramas: Misma declaracion que para listas sin orden
void mostrarDato(int pos, tRegistro registro);

void mostrar(tLista lista);

bool operator>(tRegistro opIzq, tRegistro opDer);

bool operator<(tRegistro opIzq, tRegistro opDer);

tRegistro nuevo();

void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);

(0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 725

r Luis Herndndez Yafiez
L.

Luis Hernandez Yafiez

Gestion de listas ordenadas

Nuevas implementaciones:

v’ Operadores relacionales

v" Insercion (mantener el orden)

v Busqueda (mas eficiente)

Se guarda la lista en orden, por lo que cargar() no cambia

bool operator>(tRegistro oplzq, tRegistro opDer) {
return opIzq.nombre > opDer.nombre;

}

bool operator<(tRegistro oplzq, tRegistro opDer) {
return opIlzq.nombre < opDer.nombre;

(0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 726

©)
|:;

Gestion de listas ordenadas

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false; // lista llena

}
else {
int 1 = 0;
while ((i < lista.cont) & (lista.registros[i] < registro)) {
i++;
}
// Insertamos en la posicién i (primer mayor o igual)
for (int j = lista.cont; j > i; j--) {
// Desplazamos una posicidn a la derecha
lista.registros[j] = lista.registros[j - 1];
§ }
§ lista.registros[i] = registro;
g lista.cont++;
: }
: }
Fundamentos de la programacion: Algoritmos de ordenacion Pagina 727

Fundamentos de la programacion

Busquedas en listas ordenadas

(0]

=mr=m ~undamentos de la programacion: Algoritmos de ordenacién Péagina 728

r Luis Hernandez Yafiez
L.

Luis Herndndez Yafiez

Busquedas en listas ordenadas

Busqueda de un elemento en una secuencia

No ordenada: recorremos hasta encontrarlo o al final

Ordenada: recorremos hasta encontrarlo o mayor / al final

) 7 12 13 14 14 15 20 27 32
2 3 4 5 6 7 8 9

Buscamos el 36: al llegar al final sabemos que no esta
Buscamos el 17: al llegar al 20 ya sabemos que no esta
Condiciones de terminacion:

v" Se llega al final

v" Se encuentra el elemento buscado

v' Se encuentra uno mayor

—> Mientras no al final y el valor sea menor que el buscado

(0]

=mrm Fundamentos de la programacion: Algoritmos de ordenacién Péagina 729

Luis Hernandez Yafiez

Busquedas en listas ordenadas

int buscado; const int N = 10;
cout << "Valor a buscar: "; typedef int tLista[N];
cin >> buscado; tlLista lista;

int i = 0;

while ((i < N) && (lista[i] < buscado)) {
i++;

}

// Ahora, o estamos al final o lista[i] >= buscado
if (i == N) { // Al final: no se ha encontrado
cout << "No encontrado!" << endl;

}
else if (lista[i] == buscado) { // Encontrado!

cout << "Encontrado en posicidén " << 1 + 1 << endl;
}

else { // Hemos encontrado uno mayor
cout << "No encontrado!" << endl;
}

Complejidad: O(N)
(1))

=mrm Fundamentos de la programacion: Algoritmos de ordenacién Péagina 730

Fundamentos de la programacion

Busqueda binaria

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Algoritmos de ordenacién Pagina 731

Busqueda binaria

Busqueda mucho mas rapida que aprovecha la ordenacion

Buscamos el 12 *Elemento mitad

14 14 15 18
2 3 g 4 5 6 7 8 9

7 Luis Herndndez Yafiez

Pégina 732

Busqueda binaria

Vamos buscando en sublistas cada vez mas pequenas (mitades)
Delimitamos el segmento de la lista donde buscar
Inicialmente tenemos toda la lista:

ini mitad fin
5 7 12 14 14 15 18 20 27 32
(7] 1 2 3 4 5 6 7 8 9

Indice del elemento en la mitad: mitad = (ini + fin) / 2

Si no se encuentra, ;donde seguir buscando?
Buscado < elemento en la mitad: fin = mitad - 1
Buscado > elemento en la mitad: ini = mitad + 1
Siini > fin, no queda donde buscar

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Algoritmos de ordenacién Péagina 733
U 4 [] o
Busqueda binaria Buscamos el 12
ini mitad fin
5 7 20 27 32
1 7 8 9
12 < lista[mitad] = fin = mitad - 1
ini mitad fin
5 7 12 14 14 15 18 20 27 32
0 1 2 3 4 5 6 7 8 9
12 > lista[mitad] - ini = mitad + 1
ini fin
3‘%" 5 7 12 14 14 15 18 20 27 32
2 0 1 2 3 4 5 6 7 8 9
= mitad jEncontrado!

Fundamentos de la programacion: Algoritmos de ordenacién Pagina 734

Busqueda binaria

Si el elemento no esta, nos quedamos sin sublista: ini > fin

Parael 13: mitad
ini fin

) 7 12 14 14 15 18 20 27 32

0 1 2 3 4 5 6 7 8 9
13 > lista[mitad] = ini = mitad + 1
mitad
ini
fin

) 7 12 14 14 15 18 20 27 32
) 1 2 3 4 5 6 7 8 9

13 < lista[mitad] - fin = mitad - 1 2> 2
iiiini > fin!l! No hay dénde seguir buscando = No esta

7 Luis Hernandez Yafiez

= Fundamentos de la programacion: Algoritmos de ordenacion Péagina 735

Busqueda binaria

Implementacién const Int N = 16;
. typedef int tLista[N];
int buscado; . tlLista lista;

cout << "Valor a buscar: ";

cin >> buscado;
int ini = @, fin = N - 1, mitad;
bool encontrado = false;
while ((ini <= fin) && !encontrado) {
mitad = (ini + fin) / 2; // Divisidén entera
if (buscado == lista[mitad]) {
encontrado = true;

else if (buscado < lista[mitad]) {
fin = mitad - 1;
}

else {
ini = mitad + 1;

} // Si se ha encontrado, estd en [mitad]

% Luis Hernandez Yafiez

S Fundamentos de la programacion: Algoritmos de ordenacién Péagina 736

Busqueda binaria

#include <iostream> binaria.cpp

using namespace std;
##include <fstream>

const int N = 100;

typedef int tArray[N];

typedef struct {
tArray elementos;
int cont;

} tlLista;

int buscar(tLista lista, int buscado);

int main() {

tLista lista;

ifstream archivo;

int dato;

lista.cont = 0;

archivo.open("ordenados.txt"); // Existe y es correcto
archivo >> dato;

(0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 737

r Luis Herndndez Yafiez
L.

Busqueda binaria

while ((lista.cont < N) && (dato != -1)) {
lista.elementos[lista.cont] = dato;
lista.cont++;
archivo »>> dato;

archivo.close();
for (int 1 = @; i < lista.cont; i++) {

cout << lista.elementos[i] <« 5

cout << endl;
int buscado, pos;
cout << "valor a buscar: ";
cin >> buscado;
pos = buscar(lista, buscado);
if (pos !'= -1) {
cout << "Encontrado en la posiciodn

<< pos + 1 << endl;

3 else {

= cout << "No encontrado!" << endl;
£ return 0;

E }

(0]

= @ Fundamentos de la programacion: Algoritmos de ordenacién Péagina 738

Busqueda binaria

int buscar(tLista lista, int buscado) {
int pos = -1, ini = @, fin = lista.cont - 1, mitad;
bool encontrado = false;
while ((ini <= fin) && !encontrado) {
mitad = (ini + fin) / 2; // Divisidn entera
if (buscado == lista.elementos[mitad]) {
encontrado = true;

else if (buscado < lista.elementos[mitad]) {
fin = mitad - 1;

}
else {

ini = mitad + 1;
}

}

if (encontrado) {
pos = mitad;
}

return pos;

}
(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 739

Luis Herndndez Yafiez

Busqueda binaria

Complejidad
¢ Qué orden de complejidad tiene la busqueda binaria?
Caso peor:
No estd o se encuentra en una sublista de 1 elemento
N¢ de comparaciones = N2 de mitades que podemos hacer
N/2,N/4N/8 N/16,.,842,1
=1,2,48,.,.N/16,N/8 N /4, N /2
Si hacemos que N sea igual a 2k
20 21 22 23 2k4 Jk3 k2 Dkl
N¢ de elementos de esa serie: k
N® de comparaciones=k N=2k->k=1log, N
Complejidad: O(log, N) Mucho mas rapida que O(N)

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Algoritmos de ordenacidn Péagina 740

Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacién Péagina 741

Fundamentos de |la programacion

¥4 \N Mas sobre ordenacién

ANEXO
Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores
Luis Hernandez Yariez
o Facultad de Informatica
w Universidad Complutense
4 []
Indice
Ordenacidn por intercambio 744
Mezcla de dos listas ordenadas 747
(o) (0]

=mr=m ~undamentos de la programacion: Algoritmos de ordenacién (Anexo)

Fundamentos de la programacion

Ordenacion por intercambio

7 Luis Herndndez Yafiez

Fundamentos de la programacidn: Algoritmos de ordenacion (Anexo) Pagina 744

Ordenacidn por intercambio

Algoritmo de ordenacion por intercambio

Variacion del método de seleccion directa

Se intercambia el elemento de la posicidén que se trata en cada
momento siempre que se encuentra uno que es menor:

.

7 Luis Herndndez Yafiez

Péagina 745

Ordenacidn por intercambio

const int N = 10;
typedef int tLista[N];
tlLista lista;

for (int 1 =0; i < N - 1; i++) {
// Desde el primer elemento hasta el penultimo
for (int j =1+ 1; j < N; j++) {
// Desde i+l hasta el final
if (lista[j] < lista[i]) {
int tmp;
tmp = lista[i];
lista[i] = lista[j];
lista[j] = tmp;

}
[gual nimero de comparaciones, muchos mas intercambios
No es estable

(0]

e =@ Fundamentos de la programacion: Algoritmos de ordenacion (Anexo) Péagina 746

Luis Herndndez Yafiez

Fundamentos de la programacion

Mezcla de dos listas ordenadas

(0]

=mr=m ~undamentos de la programacion: Algoritmos de ordenacién (Anexo) Péagina 747

r Luis Hernandez Yafiez
L.

Mezcla de listas ordenadas

Mezcla de dos listas ordenadas en arrays

const int N = 100;

typedef struct {
int elementos[N];
int cont;

} tlista;

Un indice para cada lista, inicializados a 0 (principio de las listas)

Mientras que no lleguemos al final de alguna de las dos listas:

Elegimos el elemento menor de los que tienen los indices

Lo copiamos en la lista resultado y avanzamos su indice una posicion
Copiamos en la lista resultado los que queden en la lista no acabada

Luis Herndndez Yafiez

(0]

=@ Fundamentos de la programacion: Algoritmos de ordenacion (Anexo) Péagina 748

©)
|:;

Mezcla de listas ordenadas

void mezcla(tLista listal, tLista lista2, tLista &listaM) {
int posl = @, pos2 = 0;
listaM.cont = ©;

while ((posl < listal.cont) && (pos2 < lista2.cont)
&& (listaM.cont < N)) {
if (listal.elementos[posl] < lista2.elementos[pos2]) {
listaM.elementos[listaM.cont] = listal.elementos[posl];

posl++;

}

else {
listaM.elementos[listaM.cont] = lista2.elementos[pos2];
pOS2++;

}

listaM.cont++;

(0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacién (Anexo) Péagina 749

r Luis Hernandez Yafiez
L.

Mezcla de listas ordenadas

// Pueden quedar datos en alguna de las Llistas
if (posl < listal.cont) {
while ((posl < listal.cont) && (listaM.cont < N)) {
listaM.elementos[listaM.cont] = listal.elementos[posl];
posl++;
listaM.cont++;

}

}
else { // pos2 < lista2.cont

while ((pos2 < lista2.cont) && (listaM.cont < N)) {
listaM.elementos[listaM.cont] = lista2.elementos[pos2];
poOS2++;
listaM.cont++;

Luis Herndndez Yafiez

(0]

=@ Fundamentos de la programacion: Algoritmos de ordenacion (Anexo) Péagina 750

©)
|:;

Mezcla de listas ordenadas

Mezcla de dos listas ordenadas en archivos

void mezcla(string nombrel, string nombre2, string nombreM) {
// Mezcla las secuencias en los archivos nombnrel y nombre2
// generando la secuencia mezclada en el archivo nombreM

ifstream archivol, archivo2;

ofstream mezcla;

int datol, dato2;

// Los archivos existen y son correctos
archivol.open(nombrel.c_str());
archivo2.open(nombre2.c_str());
mezcla.open(nombreM.c_str());

archivol >> datol;

archivo2 »>> dato2;

while ((datol != -1) && (dato2 != -1)) {
// Mientras quede algo en ambos archivos

(0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacién (Anexo) Pagina 751

r Luis Hernandez Yafiez
L.

Mezcla de listas ordenadas

if (datol < dato2) {
mezcla << datol << endl;
archivol »>> datol;

} else {
mezcla << dato2 << endl;
archivo2 >> dato2;

¥
} // Uno de los dos archivos se ha acabado
if (datol != -1) { // Quedan en el primer archivo
while (datol != -1) {
mezcla << datol << endl;
archivol »>> datol;
¥
else { // Quedan en el segundo archivo
N while (dato2 != -1) {
= mezcla << dato2 << endl;
3 archivo2 >> dato2;
5 }
2 }
Fundamentos de la programacion: Algoritmos de ordenacién (Anexo) Pagina 752

Mezcla de listas ordenadas

archivo2.close();
archivol.close();
mezcla << -1 << endl;
mezcla.close();

(0]

=mr=m Fundamentos de la programacién: Algoritmos de ordenacién (Anexo) Péagina 753

r Luis Hernandez Yafiez
L.

Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya

(0]

=mrm Fundamentos de la programacion: Algoritmos de ordenacion (Anexo) Péagina 754

Fundamentos de |la programacion

Programacion
modular

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

Indice

Programas multiarchivo y compilacién separada 757
Interfaz frente a implementacién 762
Uso de mddulos de biblioteca 768
Ejemplo: Gestidn de una lista ordenada | 770
Compilacién de programas multiarchivo 778
El preprocesador 780
Cada cosa en su mddulo 782
Ejemplo: Gestidn de una lista ordenada Il 784
El problema de las inclusiones multiples 789
Compilaciéon condicional 794
Proteccidn frente a inclusiones multiples 795
Ejemplo: Gestidn de una lista ordenada Ill 796
Implementaciones alternativas 804
Espacios de nombres 808
N Implementaciones alternativas 817
3§ Calidad y reutilizacion del software 827

@? Fundamentos de la programacion: Programacién modular

Fundamentos de la programacion

Programas multiarchivo
y compilacion separada

(0]

=mr=m ~undamentos de la programacion: Programacién modular Péagina 757

r Luis Herndndez Yafiez
L.

fiez

Programacion modular

Programas multiarchivo

Codigo fuente repartido entre varios archivos (madulos)
Cada modulo con sus declaraciones y sus subprogramas
- Moédulo: Unidad funcional (estructura de datos, utilidades, ...

Lista Principal Calculos Archivos

const int N = 10; int main() { double mean(tArray lista); bool cargar(tArray &lista,

typedef double tArray[N]; tArray lista; string nombre);
typedef struct { bool ok; double min(tArray lists);
tArray elem; init(lista); bool guardar(tArray lista,
int cont; c (lista, "bd.txt"); double max(tArray lista); string nombre);
} tArray; sort(lista);
double dato; double desv(tArray lista); bool mezclar(string archl,
void init(tArray &lista); cout << "Dato: "; i
cin >> dato; int minIndex(tArray lista);
void insert(tArray &lista, insert(lista, dato, ok); int size(string nombre);
double elem, bool &ok); cout << min(lista) << endl; int maxIndex(tArray lista);
) . cout << max(lista) << endl; bool exportar(string nombre);
void remove(tArray &lista, cout << sum(lista) << endl; double sum(tArray lista);

int pos, bool &ok); guardar(lista, "bd.txt");

return @;

Ejecutable
(013

=mr=m Fundamentos de la programacién: Programaciéon modular Pagina 758

r Luis Hernandez Ya
L.

Programacion modular

= Luis Hernandez Yafiez

(7]

Compilacion separada

Cada modulo se compila a cddigo objeto de forma independiente

Lista

const int N = 10; \

typedef double tArray[N];
typedef struct {

tArray elem;

int cont;
} tArray;

void init(tArray &lista);

void insert(tArray &lista,
double elem, bool &ok);

void remove(tArray &lista,
int pos, bool &ok);

Célculos

mean(tArray lista); \

min(tArray lists);

double
double
double max(tArray lista);
double desv(tArray lista);
int minIndex(tArray lista);

int maxIndex(tArray lista);

double sum(tArray lista);

lista.obj

00101110101011001010010010101
00101010010101011111010101000
10100101010101010010101010101
01100101010101010101010101001
01010101010100000101010101101
©01001010101010101000010101011
11001010101010111100110010101
01101010101010010010101001111
00101010101001010100101010010
10100101010100101000010011110
10010101011001010101001010100
10101010101010010101001010101
©1000010101011100101010010100
©1110101011101001101010100101
©1011111110101011001101010111
00001001010100101010101010110

calculos.obj

01011001010010010101001010100
10101011111010101000101001010
10101010010101010101011001010
10101010101010101001010101010
10100000101010101101010010101
01010101000010101011110010101
01010111100110010101011010101
01010010010101001111001010101
01001010100101010010101001010
10100101000010011110100101010
11001010101001010100101010101
01010010101001010101010000101
01011100101010010100011101010
11101001101010100101010111111
10101011001101010111000010010
10100101010101010110001111010

:

Fundamentos de la programacion: Programacién modular

Archivos

bool cargar(thrray &lista, N\

string nombre);

bool guardar(tArray lista,
string nombre);

bool mezclar(string archl,
string arch2);

int size(string nombre);

bool exportar(string nombre);

archivos.obj

11101010110010100100101010010
10100101010111110101010001016
01010101010100101010101010110
01010101010101010101010010101
01010101000001010101011010100
10101010101010000101010111100
10101010101111001100101010110
10101010100100101010011110010
10101010010101001010100101010
01010101001010000100111101001
01010110010101010010101001010
10101010100101010010101010100
00101010111001010100101000111
01010111010011010101001010101
11111101010110011010101110000
10010101001010101010101101111

Péagina 759

Programacion modular

= Luis Hernandez Yafiez

(7]

Compilacion separada

Al compilar el programa principal, se adjuntan los modulos compilados

Médulos del programa

Principal

int main() {
tArray lista;
bool ok;
init(lista);
cargar(lista,
sort(lista);
double dato;

cin >> dato;
insert(lista,

cout << “"Dato:

“"bd.txt");

dato, ok);

calculos.obj

cout << min(lista) << endl;
cout << max(lista) << endl;
cout << sum(lista) << endl;

archivos.obj

:

return 0;

guardar(lista, "bd.txt");

Ejecutable

Fundamentos de la programacion: Programacién modular

Bibliotecas del sistema

fstream.obj

iostream.obj

Péagina 760

Programacion modular

Compilacion separada

jSolo los archivos fuente modificados necesitan ser recompilados!

Principal

lista.cpp main.cpp
COMPILACION
v

fstream.obj
v/' main.obj

calculos.obj

archivos.obj

—

Ejecutable

ENLACE

(0]

@ Fundamentos de la programacion: Programacién modular Péagina 761

==z Luis Hernandez Yafiez
T
L4

Fundamentos de la programacion

Interfaz frente a implementacion

(0]

@ Fundamentos de la programacion: Programacién modular Pégina 762

=17 Luis Hernandez Yafiez
T
L4

Interfaz frente a implementacion

Creacion de modulos de biblioteca

Codigo de un programa de un tnico archivo:

v" Definiciones de constantes

v" Declaraciones de tipos de datos

v" Prototipos de los subprogramas

v Implementacién de los subprogramas

v Implementacién de la funcién main()

Constantes, tipos y prototipos indican como se usa: Interfaz

v" Estructura de datos con los subprogramas que la gestionan
v Conjunto de utilidades (subprogramas) de uso general
v’ Etcétera

+ Implementacion de los subprogramas (cémo se hace)

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Programaciéon modular Péagina 763

Interfaz frente a implementacion

Creacion de modulos de biblioteca

Interfaz: Definiciones/declaraciones de datos y prototipos
iTodo lo que el usuario de la unidad funcional necesita saber!
Implementacion: Codigo de los subprogramas que hacen el trabajo
No hay que conocerlo para usarlo: j{Seguro que es correcto!
Interfaz e implementacion en dos archivos separados:
v’ Cabecera: Definiciones/declaraciones de datos y prototipos
v Implementacién: Implementacion de los subprogramas.
Archivo de cabecera: extension . h
Archivo de implementacion: extension . cpp } Mismo nombre

Repartimos el cddigo entre ambos archivos (1ista.h/lista.cpp)

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Programaciéon modular Péagina 764

Interfaz frente a implementacion

Creacion de modulos de biblioteca

Interfaz frente a implementacion

lista.h lista.cpp

const int N = 10; #include "lista.h"
typedef double tArray[N];
typedef struct { void init(tArray &lista) {
tArray elem; lista.cont = ©;
int cont;
} tArray;
void insert(tArray &lista,
void init(tArray &lista); double elem, bool &ok) {
if (lista.cont == N) {
1se;

Moédulo
Unidad
Biblioteca

Si otro modulo quiere usar algo de esa biblioteca:

Debe incluir el archivo de cabecera

main.cpp

#include "lista.h"

r Luis Herndndez Yafiez
L.

Los nombres de archivos de cabecera
propios (no del sistema) se encierran
entre dobles comillas, no entre angulos

@ Fundamentos de la programacion: Programacién modular Pé4gina 765
Interfaz frente a implementacion
Creacion de mddulos de biblioteca lista.h

Interfaz

Archivo de cabecera (. h): todo lo que necesita
conocer otro modulo (o programa principal)
que quiera utilizar sus servicios (subprogramas)

void remove (tArray &lista,
int pos, bool &ok);

La directiva #include afiade las declaraciones del archivo
de cabecera en el codigo del médulo (preprocesamiento):

main.cpp

Preprocesador

#include "lista.h" ’ :

Todo lo que se necesita saber para
comprobar si el cédigo de main.cpp
hace un uso correcto de la lista
(declaraciones y llamadas)

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular

fiez

Luis Hernandez Ya

©)
E

main.cpp

const int N = 10;
typedef double tArray[N];
typedef struct {

tArray elem;

int cont;
} tArray;

void init(tArray &lista);

void insert(tArray &lista, double elem,
bool &ok);

void remove(tArray &lista, int pos,
bool &ok);

Pé4gina 766

Interfaz frente a implementacion

Creacion de modulos de biblioteca

Implementacion

Compilar el modulo significa compilar
su archivo de implementacion (. cpp)

También necesita conocer sus propias declaraciones:

lista.cpp

tinclude "lista.h"

Al compilar el médulo se genera el c6digo objeto
Si no se modifica no hay necesidad de recompilar

Codigo que usa el modulo:

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular

©)
E

v Necesita sdlo el archivo de cabecera para compilar

lista.cpp

#include "lista.h"

void init(tArray &lista) {
lista.cont = @;
}

void insert(tArray &lista,
double elem, bool &ok) {
if (lista.cont == N) {
ok false;
}

else {

lista.obj

00101110101011001010010010101
00101010010101011111010101000
10100101010101010010101010101
01100101010101010101010101001
01010101010100000101010101101
01001010101010101000010101011
11001010101010111100110010101
01101010101010010010101001111
00101010101001010100101010010
10100101010100101000010011110
10010101011001010101001010100
10101010101010010101001010101
01000010101011100101010010100
01110101011101001101010100101
01011111110101011001101010111
00001001010100101010101010110

v" Se adjunta el codigo objeto del médulo durante el enlace

Péagina 767

Fundamentos de la programacion

Uso de modulos de biblioteca

(0]

=mr=m ~undamentos de la programacion: Programacién modular

r Luis Hernandez Yafiez
L.

Pé4gina 768

Programacion modular

Uso de modulos de biblioteca

Ejemplo: Gestion de una lista ordenada (Tema 7)

Todo lo que tenga que ver con la lista estara en su propio mddulo
Ahora el cddigo estara repartido en tres archivos:

v’ lista.h: archivo de cabecera del modulo de lista

v lista.cpp: implementacién del modulo de lista

v' bd.cpp: programa principal que usa la lista

Tanto 1lista.cpp como bd.cpp deben incluir al principio lista.h
Modulo propio: dobles comillas en la directiva #include
#include "lista.h"

Archivos de cabecera de bibliotecas del sistema: entre angulos

Y no tienen necesariamente que llevar extension . h

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Programaciéon modular Péagina 769

Programacion modular acchivo de cabecera

Modulo: Gestion de una lista ordenada

#include <string> e et
using namespace std; o

const int N = 100; Iries =
typedef struct { T
int codigo;
string nombre;
double sueldo; .
} tRegistro; bt
typedef tRegistro tArray[N];
typedef struct {
tArray registros; e ta alista]
int cont;
} tlLista;
const string BD = "bd.txt"; R

i.

1

iDocumenta bien el codigo!

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Programaciéon modular Péagina 770

Programacion modular

void mostrar(int pos, tRegistro registro);

void mostrar(const tLista &lista);

bool operator>(tRegistro opIzq, tRegistro opDer);

bool operator<(tRegistro opIzq, tRegistro opDer);

tRegistro nuevo();

void insertar(tLista &lista, tRegistro registro, bool &ok);

=

void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..
int buscar(tLista lista, string nombre);

void cargar(tLista &lista, bool &ok);

void guardar(tLista lista);

Cada prototipo, con un comentario que explique su utilidad/uso
(Aqui se omiten por cuestion de espacio)

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular Pagina 771

©)
|:;

Programacion modular impiementacion

Modulo: Gestion de una lista ordenada

#include <iostream>
#include <string>
using namespace std;
#include <fstream>
#include <iomanip>
#include "lista.h"

tRegistro nuevo() {
tRegistro registro;
cout << "Introduce el cédigo: ";
cin >> registro.codigo;
cout << "Introduce el nombre: ";
cin >> registro.nombre;
cout << "Introduce el sueldo: ";
cin >> registro.sueldo;
return registro;

-

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular Pégina 772

©)
|:;

Programacion modular

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false; // Lista llena

}
else {
int i = 0;
while ((i < lista.cont) & (lista.registros[i] < registro)) {
i++;
}
// Insertamos en la posicidn i
for (int j = lista.cont; j > i; j--) {
// Desplazamos a la derecha
lista.registros[j] = lista.registros[j - 1];
§ }
§ lista.registros[i] = registro;
g lista.cont++;
: }
% }o...
Fundamentos de la programacion: Programacién modular Pagina 773

Programacion modular

void eliminar(tLista &lista, int pos, bool &ok) { // pos = 1..
ok = true;
if ((pos < 1) || (pos > lista.cont)) {
ok = false; // Posicién inexistente

}
else {
pos--; // Pasamos a indice del array
for (int i = pos + 1; i < lista.cont; i++) {
// Desplazamos a la izquierda
lista.registros[i - 1] = lista.registros[i];
}
lista.cont--;
}

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular Pagina 774

=17 Luis Hernandez Yafiez
L
) L

ProgramaCién mOdUIar Programa principal

Modulo: Gestion de una lista ordenada

##include <iostream>
using namespace std;
##include "lista.h"

int menu();

int main() {
tlLista lista;
bool ok;
int op, pos;
cargar(lista, ok);
if (lok) {
cout << "No se ha podido abrir el archivo!" << endl;
}

else {
do {
mostrar(lista);
op = menu();

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular Péagina 775

r Luis Herndndez Yafiez
L.

Programacion modular

if (op == 1) {
tRegistro registro = nuevo();
insertar(lista, registro, ok);
if (lok) {
cout << "Error: Lista 1llena!" << endl;
}
}
else if (op == 2) {
cout << "Posicién: ";
cin >> pos;
eliminar(lista, pos, ok);
if (lok) {
cout << "Error: Posicion inexistente!" << endl;
}
}
else if (op == 3) {
string nombre;
cin.sync();
cout << "Nombre: ";
cin >> nombre;
int pos = buscar(lista, nombre);

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular Péagina 776

r Luis Hernandez Yafiez
L.

Programacion modular

if (pos == -1) {
cout << "No se ha encontrado!" << endl;

}
else {
cout << "Encontrado en la posicion " << pos << endl;
}
}
} while (op != 0@);
guardar(lista);
}
return 0;

}

int menu() {
cout << endl;
cout << "1 - Insertar" << endl;
cout << "2 - Eliminar" << endl;
cout << "3 - Buscar" << endl;

£ cout << "@ - Salir" << endl;

- int op;

kel

5 do {

5} .

T

§

I E E

Fundamentos de la programacion: Programacién modular Pagina 777

Fundamentos de la programacion

Compilacidon de
programas multiarchivo

(0]

=mr=m ~undamentos de la programacion: Programacién modular Péagina 778

r Luis Hernandez Yafiez
L.

Compilacion de programas multiarchivo

G++

Archivos de cabecera e implementacién en la misma carpeta
Listamos todos los . cpp en la orden g++:
D:\FP\Tema@8>g++ -0 bd.exe lista.cpp bd.cpp
Recuerda que so6lo se compilan los . cpp

Visual C++/Studio

Archivos de cabecera e implementacion en grupos distintos:

Liplotuics de sofisrezner

T p— Alos archivos de cabecera
g © e sewsgenes. los1llama de encabezado
] -3 Bdpp .,
E o1 Esta.cpu Con Depurar -> Generar solucidn
£ i o Aichears de oed s et .
£) bt se compilan todos los . cpp
=] A Archeaoy de recuric
Fundamentos de la programacion: Programacién modular Pagina 779

Fundamentos de la programacion

El preprocesador

(0]

e =mr=m ~undamentos de la programacion: Programacién modular Péagina 780

[Luis Hernandez Yafiez
L.

Luis Herndndez Yafiez

El preprocesador

Directivas: #. . .
Antes de compilar se pone en marcha el preprocesador

Interpreta las directivas y genera un unico archivo temporal con
todo el codigo del modulo o programa

Como en la inclusién (directiva #include):

. . #include "lista.h" : .
#include <string> #include <string>

using namespace std; int menu(); using namespace std;

const int N = 100; .. const int N = 100;

typedef struct { typedef struct {
int codigo; int codigo;
string nombre; string nombre;
double sueldo; double sueldo;

} tRegistro; } tRegistro;

typedef tRegistro typedef tRegistro

tArray[N]; tArray[N];

typedef struct { typedef struct {
tArray registros; tArray registros;
int cont; int cont;

} tlLista; } tlLista;
int menu();

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular P4gina 781

©)
E

Fundamentos de la programacion

Cada cosa en su modulo

(0]

=mr=m ~undamentos de la programacion: Programacién modular Pégina 782

r Luis Hernandez Yafiez
L.

Programacion modular

Distribuir la funcionalidad del programa en modulos

Encapsulacion de un conjunto de subprogramas relacionados:
v" Por la estructura de datos sobre la que trabajan
v Subprogramas de utilidad

A menudo las estructuras de datos contienen otras estructuras:

const int N = 100;

typedef struct {
int codigo; Lista de registros:
string nombre;
double sueldo;

} tRegistro; v" Estructura tLista

typedef tRegistro tArray[N]; (contiene tRegistro)

typedef struct {
tArray registros;
int cont;

} tlLista;

(013

e =mr=m Fundamentos de la programacién: Programaciéon modular Péagina 783

v Estructura tRegistro

Cada estructura, en su modulo

Luis Herndndez Yafiez

Médulo de registros Cabecera

Gestion de una lista ordenada 11

#include <string>
using namespace std;

typedef struct {
int codigo;
string nombre;
double sueldo;
} tRegistro;

tRegistro nuevo();

bool operator>(tRegistro oplzq, tRegistro opDer);
bool operator<(tRegistro opIzq, tRegistro opDer);
void mostrar(int pos, tRegistro registro);

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Programaciéon modular Pagina 784

Méd“lo de regiStros Implementacién

Gestion de una lista ordenada 11

#include <iostream>
#include <string>
using namespace std;
#include <iomanip>

#include "registro.h" - ———

tRegistro nuevo() {
tRegistro registro;
cout << "Introduce el cdédigo: ";
cin >> registro.codigo;
cout << "Introduce el nombre: ";
cin >> registro.nombre;
cout << "Introduce el sueldo: “;
cin >> registro.sueldo;
return registro;

}

bool operator>(tRegistro opIzq, tRegistro opDer) {
return oplzq.nombre > opDer.nombre;

fiez

-

Luis Hernandez Ya

E

=mr=m Fundamentos de la programacién: Programaciéon modular Pé4gina 785

Méd“lo de IiSta Cabecera

Gestion de una lista ordenada 11

#include <string>
using namespace std;

#include "registro.h" - —————

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlista;
const string BD = "bd.txt";

void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..N
int buscar(tLista lista, string nombre);

void mostrar(const tLista &lista);

void cargar(tlLista &lista, bool &ok);

void guardar(tLista lista);

fiez

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular Pé4gina 786

Luis Herndndez Yafiez

ﬁ}

Méd“lo de IiSta Implementacién

Gestion de una lista ordenada 11

#tinclude <iostream>
using namespace std;
#tinclude <fstream>

#include "1ista2.h" «C——

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false; // Lista llena
}

else {
int i = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {
i++;
¥

// Insertamos en la posicidn i
for (int j = lista.cont; j > i; j--) {// Desplazar a la derecha
lista.registros[j] = lista.registros[j - 1];

}

E:a

Smrm Fundamentos de la programacion: Programacion modular Péagina 787

Luis Hernandez Yafiez

ﬁ}

Programa principal

Gestion de una lista ordenada 11

#tinclude <iostream>
using namespace std;

#include "registro.h" (@ —
#include "lista2.h" < ————

int menu();

int main() { . . ; . /
tlista lista; €9 ;No intentes compilar este ejemplo!
bool ok; Tiene errores

int op, pos;

cargar(lista, ok);
if (lok) {

cout << "No se pudo abrir el archivo!" << endl;
}

else {
do {
mostrar(lista);
op = menu();

E:a

Smm Fundamentos de la programacion: Programacion modular Pé4gina 788

Fundamentos de la programacion

El problema de las
inclusiones miltiples

(0]

=mr=m ~undamentos de la programacion: Programacién modular Péagina 789

==z Luis Hernandez Yafiez
f

Inclusiones multiples

Gestion de una lista ordenada 11

2 modulos y el programa principal: bd2. cpp

—> registro.h €« € #include "registro.h"
= #include "lista2.h"

#include <string>

registro.cpp

#include "registro.h"

—>» lista2.h <

#include "registro.h"

lista2.cpp

—_— Inc]uye___ #include "lista2.h"

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Programaciéon modular Péagina 790

Inclusiones multiples

Gestion de una lista ordenada 11

Preprocesamiento de #include: el <UD

#include <iostream> using namespace std;

using namespace std; typedef struct {
ypede uc

#include "registro.h" cee
} tRegistro;

#tinclude "lista2.h"

int menu(); #include <string>

#include <string> using namespace std;

using namespace std;
#include "registro.h" typedef struct {

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlista;

} tRegistro;

Luis Herndndez Yafiez

Fundamentos de la programacion: Programacién modular Pagina 791

Inclusiones multiples

Gestion de una lista ordenada 11

Preprocesamiento de #include: S

#include <iostream> R
using namespace std;

.. . #include <string>
#include <string> : using namespace std;
using namespace std; i #include <string>

using namespace std;
typedef struct {
ce typedef struct {
} tRegistro; 500
} tRegistro;

#include "lista2.h"

const int N = 100;
int menu(); typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlista;

Luis Hernandez Yafiez

Fundamentos de la programacion: Programacién modular Pégina 792

Inclusiones multiples

Gestion de una lista ordenada 11

#include <iostream>

using namespace std; const int N = 100;
typedef tRegistro tArray[N];
#include <string> typedef struct {
using namespace std; tArray registros;
int cont;

typedef struct { } tlista;

} tRegistro; € —————
. int menu();
! #include <string>

i using namespace std;i
E #include <string> :
i using namespace std; i

€9 ildentificador duplicado!

; typedef struct {

§ é} téééistro;<(---?-—-
@ Fundamentos de la programacion: Programacién modular Péagina 793
[] U 4 e
Inclusiones multiples
Compilacion condicional
Directivas #ifdef, #ifndef, #else y #endif
Se usan en conjuncion con la directiva #define
#define X #define X
#ifdef X #ifndef X
// Cédigo if ... // Codigo if
[#else [#else
... // Codigo else ... // Codigo else
]]
#endif #endif
La directiva #define define un simbolo (identificador)
§ Izquierda: se compilara el “Codigo if” y no el “Cédigo else”
g Derecha: al revés, o nada si no hay else
§ Las clausulas else son opcionales

(0]

=mrm Fundamentos de la programacion: Programacién modular Péagina 794

Inclusiones multiples

Proteccion frente a inclusiones multiples

lista2.cpp y bd2.cpp incluyen registro.h
- ildentificadores duplicados!
Cada mddulo debe incluirse una y sélo una vez

Proteccion frente a inclusiones multiples:

#ifndef X
#define X €9 Elsimbolo X debe ser tinico

// Mddulo para cada médulo de la aplicacién
#endif

La primera vez no esta definido el simbolo X: se incluye y define
Las siguientes veces el simbolo X ya esta definido: no se incluye

Simbolo X: nombre del archivo con _ en lugar de .

Luis Herndndez Yafiez

registro_h, lista2 h,..

Fundamentos de la programacion: Programacién modular Pagina 795

Moédulo de registros Cabecera

Gestion de una lista ordenada 111

#ifndef registrofin_h
#define registrofin_h
#include <string>
using namespace std;

typedef struct {
int codigo;
string nombre;
double sueldo;
} tRegistro;

tRegistro nuevo();

bool operator>(tRegistro opIzq, tRegistro opDer);
bool operator<(tRegistro opIzq, tRegistro opDer);
void mostrar(int pos, tRegistro registro);

#endif|
(£

=mrm Fundamentos de la programacion: Programacién modular Péagina 796

Luis Hernandez Yafiez

Méd“lo de regiStros Implementacion

Gestion de una lista ordenada 111

#include <iostream>
#include <string>
using namespace std;
#include <iomanip>

#include "registrofin.h" - —————

tRegistro nuevo() {
tRegistro registro;
cout << "Introduce el cdédigo: ";
cin >> registro.codigo;
cout << "Introduce el nombre: ";
cin >> registro.nombre;
cout << "Introduce el sueldo: “;
cin >> registro.sueldo;
return registro;

}

bool operator>(tRegistro opIzq, tRegistro opDer) {
return oplzq.nombre > opDer.nombre;

fiez

Luis Hernandez Ya

} .
HEE

= Fundamentos de la programacion: Programacién modular Péagina 797

Méd“lo de IiSta Cabecera

Gestion de una lista ordenada 111

#ifndef listafin_h
#define listafin h
#include <string>
using namespace std;

#include "registrofin.h" € ————

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlLista;
const string BD = "bd.txt";
void mostrar(const tLista &lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..N
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);

void guardar(tLista lista);
#endif |

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular Péagina 798

fiez

Luis Hernandez Ya

Méd“lo de IiSta Implementacion

Gestion de una lista ordenada 111

#tinclude <iostream>
using namespace std;
#tinclude <fstream>

#include "listafin.h" € —————

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false; // lista llena

}
else {
int i = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {
i++;
¥
3 // Insertamos en la posiciodn i
£ for (int j = lista.cont; j > i; j--) {
T // Desplazamos a la derecha
£ lista.registros[j] = lista.registros[j - 1];
p }
@ Fundamentos de la programacion: Programacién modular Péagina 799
[] []
Programa principal bdFin. cpp
Gestion de una lista ordenada 111
#include <iostream>
using namespace std;
#include "registrofin.h" ——
#include "listafin.h" —
int menu();
int main() {
tlLista lista; .
bool ok: €@ Ahoraya puedes compilarlo!
int op, pos;
cargar(lista, ok);
if (lok) {
cout << "No se pudo abrir el archivo!" << endl;
Ig) }
2 else {
< do {
‘g mostrar(lista);
z op = menu();
@ Fundamentos de la programacion: Programacién modular Pé4gina 800

Inclusiones multiples

Gestion de una lista ordenada 111

Preprocesamiento de #include en bdfin.cpp:

#tinclude <iostream>
using namespace std;

#ifndef registrofin_h

#tdefine registrofin_h

#include <string>

#include "registrofin.h using namespace std;

#include "listafin.h" typedef struct {

int menu(); } tRegistro;

€9 registrofin_h no se ha definido todavia

7 Luis Hernandez Yafiez

Fundamentos de la programacion: Programacién modular Pé4gina 801

Inclusiones multiples

Gestion de una lista ordenada 111

Preprocesamiento de #include en bdfin.cpp:

#tinclude <iostream>

using namespace std; : ; .
#ifndef listafin_h

. R . #tdefine listafin_h
#define registrofin_h T = e

#include <string> using namespace std;
using namespace std; #include "registrofin.h"

typedef struct { const int N = 100;
typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlLista;

} tRegistro;

#tinclude "listafin.h"

€@ listafin_h no se ha definido todavia

Fundamentos de la programacion: Programacién modular Pé4gina 802

int menu();

% Luis Hernandez Yafiez

Inclusiones multiples

Gestion de una lista ordenada 111

Preprocesamiento de #include en bdfin.cpp:

#include <iostream>
using namespace std;
#define registrofin_h
#include <string>
using namespace std;

typedef struct { #ifndef registrofin_h

#define registrofin_h

#includn <string>

} tRegistro;
e using n 1ec ace std;

#define listafin_h typede® .t1 * {
#include <string> ..
using namespace std; } tRegistro;
#include "registrofin.h"

Int menu(); €@ ;registrofin_h ya estd definido!

7 Luis Hernandez Yafiez

Fundamentos de la programacion: Programacién modular Pé4gina 803

Fundamentos de la programacion

Implementaciones alternativas

% Luis Hernandez Yafiez

Fundamentos de la programacion: Programacién modular Pagina 804

Implementaciones alternativas

Misma interfaz, implementacion alternativa

#include <string> lista.h

using namespace std;
#include "registrofin.h"

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {

tArray registros;

Lista int cont; Lista
tlista;
ordenada } tlista no ordenada

void insertar(tLista &lista, tRegistro registro, bool &ok);

void insertar(tlLista &lista, tRegistro registro, bool &ok) {

?i (lizzztcont == N) { void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = false; // Lista llena ok = true;

} if (lista.cont == N) {

else { ok = false; // Lista llena
int i = 0; }
while ((i < lista.cont) && (lista.reg else {

it+; lista.registros[lista.cont] = registro;

} lista.cont++;
// Insertamos en la posicioén i

for (int j = lista.cont; j > i; j--) }
// Desplazamos a la derecha
lista.registros[j] = lista.registros[j - 1];

Luis Herndndez Yafiez

Fundamentos de la programacion: Programacién modular Pé4gina 805

Implementaciones alternativas

Misma interfaz, implementacion alternativa

listaDES. cpp: Lista no ordenada

#include "lista.h"

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;

1istaORD. cpp: Lista ordenada if (lista.cont == N) {
ok = false; // Lista llena

#include "lista.h" }
else {
void insertar(tLista &lista, tRegistro registro, l}sta.reglstros[llsta.cont] = registro;
ok = true; lista.cont++;
if (lista.cont == N) { }
ok = false; // Lista llena
}
else {
int 1 = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {
i++;
}
// Insertamos en la posiciédn i
for (int j = lista.cont; j > i; j--) {
// Desplazamos a la derecha
lista.registros[j] = lista.registros[j - 1];
}

lista.registros[i] = registro;

Luis Hernandez Yafiez

Fundamentos de la programacion: Programacién modular Pé4gina 806

Implementaciones alternativas

Misma interfaz, implementacion alternativa

Al compilar, incluimos un archivo de implementacion u otro:
(Programa con lista ordenada o con lista desordenada?

g++ -0 programa.exe registrofin.cpp listaORD.cpp ...

Incluye la implementacion de la lista con ordenacion

g++ -0 programa.exe registrofin.cpp listaDES.cpp ...

Incluye la implementacion de la lista sin ordenacion

(0]

e =mr=m Fundamentos de la programacién: Programaciéon modular Pé4gina 807

[Luis Herndndez Yafiez
L.

Fundamentos de la programacion

Espacios de nombres

(0]

e =mr=m ~undamentos de la programacion: Programacién modular Pé4gina 808

[Luis Hernandez Yafiez
L.

Espacios de nombres

Agrupaciones logicas de declaraciones

Espacio de nombres: agrupacion de declaraciones
(tipos, datos, subprogramas) bajo un nombre distintivo
Forma de un espacio de nombres:

namespace nombre {
// Declaraciones

}

Por ejemplo:

namespace miEspacio {
int i;
double d;

}

Variables i y d declaradas en el espacio de nombres miEspacio

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Programaciéon modular Pé4gina 809

Espacios de nombres

Acceso a miembros de un espacio de nombres

Operador de resolucion de ambito (: :)

Acceso a las variables del espacio de nombres miEspacio:
Nombre del espacio y operador de resolucion de ambito
miEspacio::1i

miEspacio::d

Puede haber entidades con el mismo identificador en distintos
maddulos o en ambitos distintos de un mismo modulo

Cada declaracién en un espacio de nombres distinto:

namespace primero { namespace segundo {
int x = 5; double x = 3.1416;

} }

Ahora se distingue entre primero::x y segundo: :x

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Programaciéon modular P4gina 810

Luis Herndndez Yafiez

Espacios de nombres

using

Introduce un nombre de un espacio de nombres en el ambito actual:

#include <iostream>
using namespace std;
namespace primero {
int x 5;
int y = 10;

}

namespace segundo {
double x = 3.1416;
double y = 2.7183;

int main() {

using primero::x;

using segundo::y;

cout << x << endl; // x es primero::X
cout << y << endl; // y es segundo::y
cout << primero::y << endl; // espacio explicito
cout << segundo::x << endl; // espacio explicito
return 0;

}

= @ Fundamentos de la programacion: Programacién modular P4gina 811

Luis Hernandez Yafiez

Espacios de nombres

using hamespdce

Introduce todos los nombres de un espacio en el ambito actual:

#include <iostream>
using namespace std;
namespace primero {

int x = 5;
int y = 10; .
using [namespace]
namespace segundo { solo tiene efecto
double x = 3.1416; en el bloque
double y = 2.7183; en que se encuentra

int main() {
using namespace primero;
cout << x << endl; // x es primero::x
cout << y << endl; // y es primero::y
cout << segundo::x << endl; // espacio explicito
cout << segundo::y << endl; // espacio explicito
return 0;

-

@ Fundamentos de la programacion: Programacién modular Péagina 812

Ejemplo de espacio de nombres

#ifndef listaEN_h
#define listaEN_h
#include "registrofin.h"

namespace ord { // Lista ordenada
const int N = 100;
typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlLista;
const string BD = "bd.txt";
void mostrar(const tLista &lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int pos, bool &ok); // 1..N
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);
} // namespace

#tendif

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular P4gina 813

©)
|:;

Ejemplo de espacio de nombres

Implementacion

#tinclude <iostream>
#tinclude <fstream>

using namespace std;
##include "listaEN.h"

void ord::insertar(tlLista &lista, tRegistro registro, bool &ok) {

/]l ...

}

void ord::eliminar(tLista &lista, int pos, bool &ok) {
/] ...

}

int ord::buscar(tLista lista, string nombre) {
// ...

}

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular P4gina 814

©)
|:;

Ejemplo de espacio de nombres

Uso del espacio de nombres

Quien utilice 1istakEN.h debe poner el nombre del espacio:

#tinclude <iostream>
using namespace std;
#include "registrofin.h"
#include "listaEN.h"

int menu();

int main() {
rd::tlLista lista;
ool ok;
rd::cargar(lista, ok);
if (lok) {
cout << "No se pudo abrir el archivo!" << endl;

eNge {
ord::mostrar(lista);

O usar una instrucciéon using namespace ord;
(e

s =mr=m Fundamentos de la programacién: Programaciéon modular Pé4gina 815

Luis Herndndez Yafiez

Ejemplo de espacio de nombres

Uso del espacio de nombres

#include <iostream>
using namespace std;
#include "registrofin.h"
#include "listaEN.h"

using namespace ord; <

int menu();

int main() {
tLista lista;
bool ok;
argar(lista, ok);
if (lok) {
cout << "No se pudo abrir el archivo!" << endl;

eNse {
mostrar(lista);

(0]

e =mr=m Fundamentos de la programacién: Programaciéon modular Pé4gina 816

[Luis Hernandez Yafiez
L.

Espacios de nombres

Implementaciones alternativas

Distintos espacios de nombres para distintas implementaciones

;Lista ordenada o lista desordenada?

namespace { // Lista ordenada
const intT N = 100;
typedef tRegistro tArray[N];

void mostrar(const tLista &lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);

} /}.ﬁamespace

namespace { // Lista desordenada
const int N = 100;
typedef tRegistro tArray[N];

void mostrar(const tLista &lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);

} /).ﬁamespace

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular Pé4gina 817

Luis Herndndez Yafiez

©)
|:;

Ejemplo Cabecera

Implementaciones alternativas

Todo lo comun puede estar fuera de la estructura namespace:

#ifndef listaEN_H
#define listaEN_H

#include "registrofin.h"
const int N = 100;

typedef tRegistro tArray[N];
typedef struct {

tArray registros;

int cont;
} tlLista;

void mostrar(const tLista &lista);
void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..N

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular P4gina 818

©)
|:;

Luis Herndndez Yafiez

ﬁ}

Implementaciones alternativas

namespace ord { // Lista ordenada
const string BD = "bd.txt";
void insertar(tLista &lista, tRegistro registro, bool &ok);
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);
} // namespace

namespace des { // Lista desordenada
const string BD = "bddes.txt";
void insertar(tLista &lista, tRegistro registro, bool &ok);
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);
} // namespace

#tendif

€9 cargar()ysguardar() se distinguen porque usan

su propia BD, pero se implementan exactamente igual

HEE

Smrm Fundamentos de la programacion: Programacion modular P4gina 819

Implementaciones alternativas

Luis Hernandez Yafiez

ﬁ}

#tinclude <iostream>
using namespace std;
#include <fstream>

#include "listaEN.h"

// IMPLEMENTACION DE LOS SUBPROGRAMAS COMUNES
void eliminar(tLista &lista, int pos, bool &ok) { // ...

}

void mostrar(const tLista &lista) { // ...
}

// IMPLEMENTACION DE LOS SUBPROGRAMAS DEL ESPACIO DE NOMBRES ord
void ord::insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false; // Lista llena

}
else {
int i = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {
i++;
}o...
()

Smm Fundamentos de la programacion: Programacion modular Péagina 820

Implementaciones alternativas

for (int j = lista.cont; j > i; j--) {
lista.registros[j] = lista.registros[j - 1];
}

lista.registros[i] = registro;
lista.cont++;

}

int ord::buscar(tLista lista, string nombre) {

int ini = @, fin = lista.cont - 1, mitad;

bool encontrado = false;

while ((ini <= fin) && !encontrado) {
mitad = (ini + fin) / 2;
if (nombre == lista.registros[mitad].nombre) {

encontrado = true;

}

else if (nombre < lista.registros[mitad].nombre) {
fin = mitad - 1;

}
else {

ini = mitad + 1;
}

1
(1))

=mr=m Fundamentos de la programacién: Programaciéon modular

r Luis Herndndez Yafiez
L.

Péagina 821

Implementaciones alternativas

if (encontrado) {

mitad++;
}
else {
mitad = -1;
}
return mitad;
}
void ord::cargar(tLista &lista, bool &ok) { // ...
¥

void ord::guardar(tLista lista) { // ...

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular

=17 Luis Hernandez Yafiez
L
@ D

Péagina 822

Implementaciones alternativas

// IMPLEMENTACION DE LOS SUBPROGRAMAS DEL ESPACIO DE NOMBRES des

void des::insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false; // Lista 1llena

}

else {
lista.registros[lista.cont] = registro;
lista.cont++;

}

}

int des::buscar(tLista lista, string nombre) {
int pos = 0;
bool encontrado = false;
while ((pos < lista.cont) && !encontrado) {
if (nombre == lista.registros[pos].nombre) {
encontrado = true;

Ig)

T

- else {

2 pos++;

2

5 }

I E E

Fundamentos de la programacion: Programacién modular Pagina 823

Implementaciones alternativas

if (encontrado) {

poOS++;

}

else {

pos = -1;

}

return pos;
}
void des::cargar(tLista &lista, bool &ok) { // ...
}

void des::guardar(tLista lista) { // ...

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular Péagina 824

=17 Luis Hernandez Yafiez
L
@ -

Implementaciones alternativas

Programa principal

#include <iostream>
using namespace std;
#include "registrofin.h"
#include "listaEN.h"

using namespace
int menu();

int main() {
tlLista lista;
bool ok;

tRegistro registro = nuevo();
insertar(lista, registro, ok);

3 if (lok) {

53

kel

f=

2

5}

T

§

I E E

Fundamentos de la programacion: Programacién modular Pagina 825

Implementaciones alternativas

Programa principal

#include <iostream>
using namespace std;
#include "registrofin.h"
#include "listaEN.h"

using namespace

int menu();

int main() {
tLista lista;
bool ok;

tRegistro registro = nuevo();
insertar(lista, registro, ok);
if (lok) {

(0] >

=mr=m Fundamentos de la programacién: Programaciéon modular Pé4gina 826

r Luis Hernandez Yafiez
|
L.

Fundamentos de la programacion

Calidad y reutilizacion
del software

(0]

=mr=m ~undamentos de la programacion: Programacién modular Péagina 827

==z Luis Hernandez Yafiez
f

Calidad del software

Software de calidad

El software debe ser desarrollado con buenas practicas de
ingenieria del software que aseguren un buen nivel de calidad

Los distintos mddulos de la aplicacion deben ser probados
exhaustivamente, tanto de forma independiente como en su
relacién con los demas mddulos

La prueba y depuracién es muy importante y todos los equipos
deberan seguir buenas pautas para asegurar la calidad

Los médulos deben ser igualmente bien documentados, de
forma que otros desarrolladores puedan aprovecharlos

(0]

e =mr=m Fundamentos de la programacién: Programaciéon modular Pé4gina 828

[Luis Hernandez Yafiez
L.

Prueba y depuracion del software

Prueba exhaustiva

El software debe ser probado exhaustivamente
Debemos intentar descubrir todos los errores posible
Los errores deben ser depurados, corrigiendo el cédigo
Pruebas sobre listas:
v’ Lista inicialmente vacia
v’ Lista inicialmente llena
v’ Lista con un nimero intermedio de elementos
v’ Archivo no existente
Etcétera...
Se han de probar todas las opciones/situaciones del programa

En las clases practicas veremos como se depura el software

Luis Herndndez Yafiez

(0]

s =mr=m Fundamentos de la programacién: Programaciéon modular Pé4gina 829

Reutilizacion del software

No reinventemos la rueda

Desarrollar el software pensando en su posible reutilizacion
Un software de calidad debe poder ser facilmente reutilizado
Nuestros modulos deben ser facilmente usados y modificados

Por ejemplo: Nueva aplicacion que gestione una lista de longitud
variable de registros con NIF, nombre, apellidos y edad

Partiremos de los médulos registroy lista existentes

Las modificaciones basicamente afectaran al modulo registro

(0]

e =mr=m Fundamentos de la programacién: Programaciéon modular Péagina 830

[Luis Hernandez Yafiez
L.

Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacién: Programaciéon modular Pé4gina 831

Fundamentos de |la programacion

Ejemplo de

ANEXO

modularizacion

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

% Luis Hernandez Yafiez

(8)
@

Modularizacién de un programa

#include <iostream> string nombre;
#include <string> double precio;
using namespace std; int unidades;

} tProducto;

const int NCLI = 100;

const int NPROD = 200; typedef struct {
const int NVENTAS = 3000; tProducto productos[NPROD];
int cont;
typedef struct { } tListaProductos;
int id_cli;
string nif; typedef struct {
string nombre; int id;
string telefono; int id_prod;
} tCliente; int id_cli;
int unidades;
typedef struct { } tVenta;
tCliente clientes[NCLI];
int cont; typedef struct {
} tListaClientes; tVenta ventas[NVENTAS];
int cont;
typedef struct { } tListaVentas;

int id_prod;
string codigo;

Fundamentos de la programacion: Ejemplo de modularizacién

Pé4gina 833

Modularizacién de un programa

tCliente nuevoCliente();

bool valida(tCliente cliente); // Funcién interna

bool operator<(tCliente opIzq, tCliente opDer); // Por NIF

void mostrar(tCliente cliente);

void inicializar(tListaClientes &lista);

void cargar(tListaClientes &lista);

void insertar(tListaClientes &lista, tCliente cliente, bool &ok);
void buscar(const tListaClientes &lista, string nif, tCliente &cliente, bool &ok);
void eliminar(tListaClientes &lista, string nif, bool &ok);

void mostrar(const tListaClientes &lista);

tProducto nuevoProducto();

bool valida(tProducto producto); // Funcién interna

bool operator<(tProducto opIzq, tProducto opDer); // Por cédigo
void mostrar(tProducto producto);

void inicializar(tListaProductos &lista);

void cargar(tListaProductos &lista);

void insertar(tListaProductos &lista, tProducto producto, bool &ok);

void buscar(const tListaProductos &lista, string codigo, tProducto &producto,
bool &ok);

void eliminar(tListaProductos &lista, string codigo, bool &ok);

fiez

Luis Hernandez Ya

(0]

- Fundamentos de la programacion: Ejemplo de modularizacién Péagina 834

iﬁf
: (&)

Modularizacién de un programa

void mostrar(const tListaProductos &lista);
tVenta nuevaVenta(int id_prod, int id_cli, int unidades);
bool valida(tVenta venta); // Funcién interna

void mostrar(tVenta venta, const tListaClientes &clientes,
const tListaProductos &productos);

void inicializar(tListaVentas &lista);

void cargar(tListaVentas &lista);

void insertar(tListaVentas &lista, tVenta venta, bool &ok);

void buscar(const tListaVentas &lista, int id, tVenta &venta, bool &ok);
void eliminar(tListaVentas &lista, int id, bool &ok);

void ventasPorClientes(const tListaVentas &lista);

void ventasPorProductos(const tListaVentas &lista);

double totalVentas(const tListaVentas &ventas, string nif,
const tlListaClientes &clientes,
const tListaProductos &productos);
void stock(const tListaVentas &ventas, const tListaClientes &clientes,
const tListaProductos &productos);
int menu();

fiez

int main() {

Luis Hernandez Ya

(0]

@ Fundamentos de la programacion: Ejemplo de modularizacién Pé4gina 835

Estructuras de datos

#include <iostream>
#include <string>

string nombre;
double precio;

using namespace std; int unidades;

} tProducto;

Lista de productos

—— const int NCLI = 100;
const int NPROD = 200;
const int NVENTAS = 3000;

typedef struct {
tProducto productos[NPROD];
int cont;

} tListaProductos;

typedef struct {
int id_cli;
string nif;
string nombre;
string telefono;
} tCliente;

typedef struct {
int id;
int id_prod;
int id_cli;
int unidades;
} tVenta;

Lista de clientes

typedef struct {
tCliente clientes[NCLI];
int cont;

} tListaClientes;

Lista de ventas

typedef struct {
tVenta ventas[NVENTAS];
int cont;

} tListaVentas;

typedef struct {
int id_prod;
string codigo;

Producto

Luis Herndndez Yafiez

() BEE

el Fundamentos de la programacién: Ejemplo de modularizacion Pé4gina 836

Subprogramas de las estructuras de datos

tCliente nuevoCliente();
bool valida(tCliente cliente); // Funcién interna
bool operator<(tCliente opIzq, tCliente opDer); // Por NIF

void mostrar(tCliente cliente);

Lista de clientes

void inicializar(tListaClientes &lista);
void cargar(tListaClientes &lista);
void insertar(tListaClientes &lista, tCliente cliente, bool &ok);

void buscar(const tlListaClientes &lista, string nif, tCliente &cliente,
bool &ok);

void eliminar(tListaClientes &lista, string nif, bool &ok);

void mostrar(const tListaClientes &lista);

tProducto nuevoProducto();
bool valida(tProducto producto); // Funcién interna Producto

bool operator<(tProducto opIzq, tProducto opDer); // Por cédigo

void mostrar(tProducto producto);

Luis Hernandez Yafiez

() BEE

e m Fundamentos de la programacién: Ejemplo de modularizacion Péagina 837

Subprogramas de las estructuras de datos

Lista de productos

void inicializar(tListaProductos &lista);
void cargar(tListaProductos &lista);
void insertar(tListaProductos &lista, tProducto producto, bool &ok);

void buscar(const tListaProductos &lista, string codigo, tProducto &producto,
bool &ok);

void eliminar(tListaProductos &lista, string codigo, bool &ok);

void mostrar(const tlListaProductos &lista);

tVenta nuevaVenta(int id_prod, int id_cli, int unidades);
bool valida(tVenta venta); // Funcién interna

void mostrar(tVenta venta, const tListaClientes &clientes,
const tListaProductos &productos);

(0]

@ Fundamentos de la programacion: Ejemplo de modularizacion Pé4gina 838

P Luis Herndndez Yafiez
r
L4

Subprogramas de las estructuras de datos

Lista de ventas

void inicializar(tListaVentas &lista);

void cargar(tListaVentas &lista);

void insertar(tListaVentas &lista, tVenta venta, bool &ok);

void buscar(const tListaVentas &lista, int id, tVenta &venta, bool &ok);
void eliminar(tListaVentas &lista, int id, bool &ok);

void ventasPorClientes(const tListaVentas &lista);

void ventasPorProductos(const tListaVentas &lista);

double totalVentas(const tListaVentas &ventas, string nif,
const tListaClientes &clientes,
const tListaProductos &productos);

void stock(const tListaVentas &ventas, const tListaClientes &clientes,
const tListaProductos &productos);

int menu();

fiez

int main() {

Luis Hernandez Ya

(0]

@ Fundamentos de la programacion: Ejemplo de modularizacién Pé4gina 839

Modulos

v’ Cliente: cliente.hy cliente.cpp

Lista de clientes: 1istaclientes.hy listaclientes.cpp
Producto: producto.hy producto.cpp

Lista de productos: 1listaproductos.hy listaproductos.cpp
Venta: venta.hy venta.cpp

Lista de ventas: listaventas.hy listaventas.cpp

AN N NN

Programa principal: main.cpp
Distribucién del cédigo en los médulos:
v" Declaraciones de tipos y datos en el archivo de cabecera (. h)

v" Prototipos en el archivo de cabecera (. h) (excepto los de los
subprogramas privados -internos-, que iran en el . cpp)

v’ Implementacién de los subprogramas en el . cpp

7 Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Ejemplo de modularizacién Péagina 840

Modulos

Ventas
main.cpp

Cliente Lista de clientes Venta Lista de ventas
cliente.h listaclientes.h venta.h listaventas.h
cliente.cpp listaclientes.cpp venta.cpp listaventas.cpp

Producto Lista de productos
producto.h listaproductos.h
producto.cpp listaproductos.cpp

% Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Ejemplo de modularizacién Péagina 841

Luis Herndndez Yafiez

{E}

Dependencias entre mdédulos

Inclusiones (ademas de otras bibliotecas del sistema)

typedef struct {
int id cli;

string pif;

string hombre; cliente.h string
string [telefono;

} tCliente;

const int NCLI = 100;

clientes[NCLI];
int cont; _m
} tListaClientes;

void buscar(const tListaClientes &lista,|string|nif,[tCliente]
&cliente, bool &ok);

HEE

S Fundamentos de la programacion: Ejemplo de modularizacién Péagina 842

Dependencias entre mdédulos

Luis Hernandez Yafiez

{E}

typedef struct {
int id_prod;
string |[codigo;
string [nombre;
double precio;
int unidades;
} tProducto;

producto.h string

const int NPROD = 200;

typedef struct { listaproductos.h producto.h
tProducto|productos[NPROD]; _m

int cont;
} tListaProductos;

void buscar(const tListaProductos &lista,codigo, tProducto

&producto, bool &ok);

HEE

S—mrm Fundamentos de la programacion: Ejemplo de modularizacién Péagina 843

Luis Herndndez Yafiez

{E}

Dependencias entre mdédulos

typedef struct {

int id;

int id_prod; W listaclientes.h

int id_cli;

int unidades;
} tVenta;

listaproductos.h

void mostrar(tVenta venta, const [tListaClientes|&clientes,
const|tListaProductos|&productos);

const int NVENTAS = 3000;

listaventas.h
typedef struct {

ventas[NVENTAS]; listaclientes.h

int cont;
} tListaVentas; listaproductos.h

I

double totalVentas(const tListaVentas &ventas, string nif,
const tListaClientes|&clientes,
const[tListaProductos| &productos);

HEE

S Fundamentos de la programacion: Ejemplo de modularizacién Péagina 844

Proteccion frente a inclusiones miiltiples

Luis Hernandez Yafiez

{E}

#ifndef cliente_h
#define cliente_h

#include <string>
using namespace std;

typedef struct {
int id cli;
string nif;
string nombre;
string telefono;
} tCliente;

tCliente nuevoCliente();
bool operator<(tCliente opIzq, tCliente opDer); // Por NIF
void mostrar(tCliente cliente);

#tendif

HEE

S—mrm Fundamentos de la programacion: Ejemplo de modularizacién Pé4gina 845

Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya

(0]

=sr=m Fundamentos de la programacién: Ejemplo de modularizacién Pé4gina 846

Fundamentos de |la programacion

Punteros
y memoria dinamica

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

r4 [3
Indice

Direcciones de memoria y punteros 849
Operadores de punteros 854
Punteros y direcciones validas 864
Punteros no inicializados 866
Un valor seguro: NULL 867
Copia y comparacion de punteros 868
Tipos puntero 873
Punteros a estructuras 875
Punteros a constantes y punteros constantes 877
Punteros y paso de pardmetros 879
Punteros y arrays 883
Memoria y datos del programa 886
Memoria dinamica 891
Punteros y datos dindmicos 895
N Gestidn de la memoria 907
3§ Errores comunes 911
3 Arrays de datos dindmicos 916
g Arrays dinamicos 928

@ ? Fundamentos de la programacion: Punteros y memoria dindmica

Fundamentos de la programacion

Direcciones de memoria
Yy punteros

(0]

=mr=m Fundamentos de la programacion: Punteros y memoria dinamica Péagina 849

v, Luis Herndndez Yafiez
f

Direcciones de memoria

Los datos en la memoria

Todo dato se almacena en memoria:

Varios bytes a partir de una direccion OF03: 1437 _
i IERVEEN 00000000

int i = 5; 0F03:1A39

. .2 OF03:1A3A
Direcciéon base = = 7T e

CICERVELN 00000101

El dato (1) se accede a partir de su direccion base (0F93:1A38)
Direccion de la primera celda de memoria utilizada por el dato
El tipo del dato (int) indica cuantos bytes (4) requiere el dato:
00000000 000000 00V 0101 —> 5

(La codificacion de los datos puede ser diferente; y la de las direcciones también)

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 850

Luis Hernandez Yafiez

Variables punteros

Los punteros contienen direcciones de memoria

Un puntero sirve para acceder a traveés de €l a otro dato
El valor del puntero es la direccion de memoria base de otro dato

Indireccion:

i 0F03:1A38 | . .
Acceso indirecto a un dato

OF03:1A39
@F@3:1A3A punt punt apunta a 1
OF03:1A3B

punt ©oFe7:0417
OF07:0418
OF07:0419

€9 (De qué tipo es el dato apuntado?

OF07:041A

¢;Cuantas celdas ocupa?
;Como se interpretan los 0/17?

05
|-
e

Luis Herndndez Yafiez

(o) (0]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 851

Punteros

Los punteros contienen direcciones de memoria

;De que tipo es el dato apuntado?

La variable a la que apunta un puntero sera de un tipo concreto
;Cuanto ocupa? ;COmo se interpreta?

El tipo de variable apuntado se establece al declarar el puntero:
tipo *nombre;

El puntero nombre apuntara a una variable del tipo indicado

El asterisco (*) indica que es un puntero a datos de ese tipo

int * unt; // punt inicialmente contiene una direccion
p punt 1 t t
// que no es valida (no apunta a nada)

El puntero punt apuntara a una variable entera (int)
int i; // Dato entero vs. int *punt; // Puntero a entero

Luis Hernandez Yafiez

(o) (0]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 852

Punteros

Los punteros contienen direcciones de memoria

Las variables puntero tampoco se inicializan automaticamente
Al declararlas sin inicializador contienen direcciones no validas

int *punt; // punt inicialmente contiene una direcciodn
// que no es valida (no apunta a nada)

Un puntero puede apuntar a cualquier dato de su tipo base

Un puntero no tiene por qué apuntar necesariamente a un dato
(puede no apuntar a nada: valor NULL)

¢Para qué sirven los punteros?

v’ Para implementar el paso de parametros por referencia

v’ Para manejar datos dinamicos
(Datos que se crean y destruyen durante la ejecucién)

Luis Herndndez Yafiez

v’ Para implementar los arrays
03

e =sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 853

Fundamentos de la programacion

Operadores de punteros

(0]

e =mr=m ~undamentos de la programacion: Punteros y memoria dindmica Péagina 854

[Luis Hernandez Yafiez
L.

Operadores de punteros &

Obtener la direccion de memoria de ...

Operador monario y prefijo

& devuelve la direccién de memoria base del dato al que precede
int 1i;

cout << &i; // Muestra la direccidn de memoria de i

Un puntero puede recibir la direccién de datos de su tipo base
int i; punt

int *punt; i
punt = &i; // punt contiene la direccidn de i
Ahora punt ya contiene una direccién de memoria valida

punt apunta a (contiene la direccion de) la variable i (int)

Luis Herndndez Yafiez

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 855

Operadores de punteros &

Obtener la direccion de memoria de ...

y
. . .. i QF03:1A38
int 1, J; OF03:1A39
OF03:1A3A

int *punt; OFO3:1A3B
Jj OFO@3:1A3C

OF03:1A3D

OF03:1A3E

OF03:1A3F

punt eore7:e417
OF07:0418
0F07:0419

OF07:041A
@l0Ele)

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 856

Luis Hernandez Yafiez

Operadores de punteros

Obtener la direccion de memoria de ...

.
. . .. i OF03:1A38
int 1, J; OF03:1A39
OF03:1A3A

int *punt; OF03:1A3B
Jj OFO@3:1A3C

i = 5; OF03:1A3D
OF03:1A3E

OF03:1A3F

punt ore7:e417

OF07:0418
i OF07:0419
OF07:041A

Fundamentos de la programacion: Punteros y memoria dindmica Pé4gina 857

7 Luis Herndndez Yafiez

Operadores de punteros

Obtener la direccion de memoria de ...

. . .. i QF03:1A38
int 1, J; @F03:1A39
OF03:1A3A

int *punt; OFO3:1A3B
Jj OFO@3:1A3C
OF03:1A3D
OF03:1A3E

OF03:1A3F

punt punt orFe7:e417

0F07:0418
0F07:0419

OF07:041A

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica Pé4gina 858

Operadores de punteros *

Obtener lo que hay en la direccion ...

Operador monario y prefijo

* accede a lo que hay en la direccion de memoria a la que precede
Permite acceder a un dato a través un puntero que lo apunte:
punt = &i;

cout << *punt; // Muestra lo que hay en la direccidn punt

*punt: lo que hay en la direccidén que contiene el puntero punt

punt contiene la direccion de memoria de la variable i
*punt accede al contenido de esa variable 1

Acceso indirecto al valor de i

Luis Herndndez Yafiez

(o) (0]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 859

Operadores de punteros *

Obtener lo que hay en la direccion ...

int i . i QF03:1A38
int 1 >
> 15 OF03:1A39
OF03:1A3A
int *punt; OFO3:1A3B
Jj OFO@3:1A3C
. OF03:1A3D
1 =05;
. OF03:1A3E
punt = &i;
OF03:1A3F
J = *punt;
punt eore7:e417
2 0F07:0418
\©
>
3 OF07:0419
° punt:
2 OF07:041A
[}
g
§
@l0ce

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 860

Operadores de punteros

Obtener lo que hay en la direccion ...

. . . —_—]
int 1, J;
: B " Direccionamiento
int *punt; indirecto
ce (indireccién) j
i=s5: Se accede al dato 1

? de forma indirecta
punt = &i;
Jj = *punt;

punt

*punt:

Fundamentos de la programacion: Punteros y memoria dindmica

oFo3

OF03:

OF03:

OF03:

OF03:

OF03:

OF03:

OF03:

OF07:

OF07:

OF07:

OF07:

:1A38

1A39

1A3A

1A3B

1A3C

1A3D

1A3E

1A3F

0417

0418

0419

041A

Pé4gina 861

Operadores de punteros

Obtener lo que hay en la direccion ...

. . i
int 1, J;
int *punt;

. >
1 =05;
punt = &i;
J = *punt;

punt

Fundamentos de la programacion: Punteros y memoria dindmica

OF03:

OF03:

OF03:

OF03:

OF03:

OF03:

OF03:

OF03:

OF07:

OF07:

OF07:

OF07:

1A38

1A39

1A3A

1A3B

1A3C

1A3D

1A3E

1A3F

0417

0418

0419

041A

Pégina 862

Operadores de punteros

Ejemplo de uso de punteros

#include <iostream>
using namespace std;

int main() {

int 1 = 5;

int j = 13;

int *punt;

punt = &i;

cout << *punt << endl; // Muestra el valor de i
punt = &j;

cout << *punt << endl; // Ahora muestra el valor de j
int *otro = &i;

cout << *otro + *punt << endl; // i + j
int k = *punt;

cout << k << endl; // Mismo valor que j

return 0;

}
(0]

e =sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 863

Luis Herndndez Yafiez

Fundamentos de la programacion

Punteros y direcciones validas

(0]

e =mr=m ~undamentos de la programacion: Punteros y memoria dindmica Péagina 864

[Luis Hernandez Yafiez
L.

Punteros y direcciones validas

Todo puntero ha de tener una direccion valida

Un puntero solo debe ser utilizado si tiene una direccion valida
Un puntero NO contiene una direccion valida tras ser definido
Un puntero obtiene una direccién valida:

v" Asignando la direccion de otro dato (operador &)

v" Asignando otro puntero (mismo tipo base) que ya sea valido
v’ Asignando el valor NULL (puntero nulo, no apunta a nada)
int 1i;

int *q; // q no tiene aun una direccidn valida

int *p = &i; // p toma una direccidn valida

q = p; // ahora q ya tiene una direccidén valida
q = NULL; // otra direccién véalida para q

Luis Herndndez Yafiez

(0]

e =sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 865

Punteros no inicializados

Punteros que apuntan a saber qué...

Un puntero no inicializado contiene una direccién desconocida
int *punt; // No inicializado

*punt = 12; // ¢A qué dato se esta asignando el valor?
¢Direccion de la zona de datos del programa?

iPodemos modificar inadvertidamente un dato del programa!

¢Direccion de la zona de cddigo del programa?
iPodemos modificar el cddigo del propio programa!

¢Direccion de la zona de cddigo del sistema operativa? c}.
iPodemos modificar el cédigo del propio S.0O.! 4&
—> Consecuencias imprevisibles (cuelgue)

(Los S.0. modernos protegen bien la memoria) -'.:':3

(0]

e =sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 866

Luis Hernandez Yafiez

Un valor seguro: NULL

Punteros que no apuntan a nada

Inicializando los punteros a NULL podemos detectar errores:
int *punt = NULL; -

ce punt ¢

*punt = 13;

punt ha sido inicializado a NULL: No apunta a nada!

Si no apunta a nada, ;;;qué significa *punt??? No tiene sentido
- ERROR: jAcceso a un dato a través de un puntero nulo!

Error de ejecucidn, lo que ciertamente no es bueno
Pero sabemos cudl ha sido el problema, lo que es mucho
Sabemos dénde y qué buscar para depurar

Luis Herndndez Yafiez

(0]

e =sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 867

Fundamentos de la programacion

Copia y comparacion de punteros

(0]

e =mr=m ~undamentos de la programacion: Punteros y memoria dindmica Pé4gina 868

[Luis Hernandez Yafiez
L.

Copia de punteros

Apuntando al mismo dato

Al copiar un puntero en otro, ambos apuntaran al mismo dato:
int x = 5;

int *puntl

NULL; // puntl no apunta a nada
int *punt2

&x; // punt2 apunta a la variable x

puntl punt2

Ig)

g

g

§ X

5}

T

§

Fundamentos de la programacion: Punteros y memoria dindmica Pagina 869

Copia de punteros

Apuntando al mismo dato

Al copiar un puntero en otro, ambos apuntaran al mismo dato:

int x = 5;

int *puntl = NULL; // puntl no apunta a nada
int *punt2 = &x; // punt2 apunta a la variable x

puntl = punt2; // ambos apuntan a la variable x

puntl punt2

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 870

v, Luis Hernandez Yafiez
f

Copia de punteros

Apuntando al mismo dato

Al copiar un puntero en otro, ambos apuntaran al mismo dato:
int x = 5;
int *puntl

NULL; // puntl no apunta a nada

&x; // punt2 apunta a la variable x
puntl = punt2; // ambos apuntan a la variable x
*puntl = 8;

int *punt2

puntl punt2

Al dato x ahora se puede
acceder de tres formas:

X *puntl *punt2

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 871

Comparaciéon de punteros

JApuntan al mismo dato?

Operadores relacionales ==y !=:
int x = 5;

int *puntl = NULL;
int *punt2 = &x;
if (puntl == punt2) {
cout << "Apuntan al mismo dato" << endl;
}
else {
cout << "No apuntan al mismo dato" << endl;
}

Gﬂ Sélo se pueden comparar punteros con el mismo tipo base

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 872

Luis Hernandez Yafiez

(0]

Fundamentos de la programacion

Tipos puntero

(0]

=mr=m ~undamentos de la programacion: Punteros y memoria dindmica Pé4gina 873

r Luis Herndndez Yafiez
L.

Tipos puntero

Declaracion de tipos puntero

Declaramos tipos para los punteros con distintos tipos base:

typedef int *tIntPtr;

typedef char *tCharPtr;

typedef double *tDoublePtr;

int entero = 5;

tIntPtr puntI = &entero;

char caracter = 'C';

tCharPtr puntC = &caracter;

double real = 5.23;

tDoublePtr puntD = ℜ

cout << *puntI << " " << *puntC <<

<< *puntD << endl;

Con *puntero podemos hacer lo que con otros datos del tipo base

Luis Hernandez Yafiez

(0]

e =sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pagina 874

Punteros a estructuras

Acceso a estructuras a través de punteros

Los punteros pueden apuntar también a estructuras:

typedef struct {
int codigo;
string nombre;
double sueldo;
} tRegistro;
tRegistro registro;
typedef tRegistro *tRegistroPtr;
tRegistroPtr puntero = ®istro;

Operador flecha (->):

Acceso a los campos a través de un puntero sin usar el operador *
puntero->codigo puntero->nombre puntero->sueldo
puntero->.. = (*puntero)...

Luis Herndndez Yafiez

(0]

e =sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 875

Punteros a estructuras

Acceso a estructuras a través de punteros

typedef struct {
int codigo;
string nombre;
double sueldo;
} tRegistro;
tRegistro registro;
typedef tRegistro *tRegistroPtr;
tRegistroPtr puntero = ®istro;

registro.codigo = 12345;

registro.nombre = "Javier";

registro.sueldo = 95000;

cout << punterd:)codigo <« """k punterd:]nombre

<< " " << punterd®Jsueldo << endl;

puntero->codigo = (*puntero).codigo # *puntero.codigo

b4

puntero seria una estructura con campo codigo de tipo puntero

Luis Hernandez Yafiez

(0]

e =sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 876

Punteros y el modificador const

Punteros a constantes y punteros constantes

El efecto del modificador de acceso const depende de su sitio:
const tipo *puntero; Puntero a una constante

tipo *const puntero; Puntero constante

Punteros a constantes:

typedef const int *tIntCtePtr; // Puntero a constante
int enterol = 5, entero2 = 13;

tIntCtePtr punt_a cte = &enterol;

(*punt_a_cte)++; // ERROR: jDato no modificable!
punt_a_cte = &entero2; // OK: El puntero no es cte.

Luis Herndndez Yafiez

(0]

e =sr=m Fundamentos de la programacién: Punteros y memoria dindmica Péagina 877

Punteros y el modificador const

Punteros a constantes y punteros constantes

El efecto del modificador de acceso const depende de su sitio:
const tipo *puntero; Puntero a una constante

tipo *const puntero; Puntero constante

Punteros constantes:

typedef int *const tIntPtrCte; // Puntero constante
int enterol = 5, entero2 = 13;

tIntPtrCte punt_cte = &enterol;

(*punt_cte)++; // OK: E1l puntero no apunta a cte.
punt_cte = &entero2; // ERROR: jPuntero constante!

Luis Hernandez Yafiez

(0]

e =sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 878

Fundamentos de la programacion

Punteros y paso de parametros

[Luis Herndndez Yafiez
L.

e @ Fundamentos de la programacion: Punteros y memoria dinamica Pé4gina 879
' 4
Punteros y paso de parametros

Paso de parametros por referencia o variable

En el lenguaje C no hay mecanismo de paso por referencia (&)
Sélo se pueden pasar parametros por valor

;. Como se simula el paso por referencia? Por medio de punteros:

void incrementa(int *punt);

void incrementa(int *punt) {
(*punt)++;

}

Paso por valor:
T El argumento (el puntero) no cambia
int entero = 5;

incrementa(&entero);
cout << entero << endl;

Aquello a lo que apunta (el entero)
S puede cambiar

Mostrara 6 en la consola

(0]

e =sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 880

Luis Hernandez Yafiez

Punteros y paso de parametros

Paso de parametros por referencia o variable

int entero = 5;
incrementa(&entero); entero
punt recibe la direccién de entero

void incrementa(int *punt) { punt
(*punt)++;

}

entero

cout << entero << endl; entero “

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 881

Luis Herndndez Yafiez

Punteros y paso de parametros

Paso de pardmetros por referencia o variable

;Cual es el equivalente en C a este prototipo de C++?

void foo(int ¶ml, double ¶m2, char ¶m3);

Prototipo equivalente:

void foo(int *paraml, double *param2, char *param3);

void foo(int *paraml, double *param2, char *param3) {
// Al primer argumento se accede con *paraml
// Al segundo argumento se accede con *param2
// Al tercer argumento se accede con *param3

}
;Cémo se llamaria?

int entero; double real; char caracter;

/]...

foo(&entero, &real, &caracter);

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica Péagina 882

Luis Hernandez Yafiez

Fundamentos de la programacion

Punteros y arrays

(0]

=mr=m Fundamentos de la programacion: Punteros y memoria dinamica Pé4gina 883

v, Luis Herndndez Yafiez
f

Punteros y arrays

Una intima relacion

Variable array = Puntero al primer elemento del array
Asi, si tenemos:

int dias[12] =
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},

Entonces:
cout << *dias << endl;

Muestra 31 en la consola, el primer elemento del array
€9 ;Unnombre de array es un puntero constante!

Siempre apunta al primer elemento (no se puede modificar)
Acceso a los elementos del array:

Por indice o con aritmética de punteros (Anexo)

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica Pagina 884

Luis Hernandez Yafiez

Punteros y paso de parametros arrays

Paso de arrays a subprogramas

jEsto explica por qué no usamos & con los pardmetros array!
El nombre del array es un puntero: ya es un paso por referencia

Prototipos equivalentes para parametros array:

const int N = ...;

void cuadrado(int arr[N]);

void cuadrado(int arr[], int size); // Array no delimitado
void cuadrado(int *arr, int size); // Puntero

Arrays no delimitados y punteros: se necesita la dimension
Elementos: se acceden con indice (arr[i]) o con puntero (*arr)

Una funcidn sélo puede devolver un array en forma de puntero:
intPtr inicializar();

Luis Herndndez Yafiez

(0]

e =sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 885

Fundamentos de la programacion

Memoria y datos del programa

(0]

e =mr=m ~undamentos de la programacion: Punteros y memoria dindmica Pé4gina 886

[Luis Hernandez Yafiez
L.

Memoria y datos del programa

Regiones de la memoria

El sistema operativo distingue varias regiones en la memoria:
Pila (Stack) } Datos locales
-~

WM L] = Datos dindmicos

J\

Datos globales

Cédigo del

> Memoria principal
programa

7 Luis Herndndez Yafiez

Pé4gina 887

Memoria y datos del programa

Memoria principal BT } oo oo

Datos globales del programa: Montén Datos dinémicos
Declarados fuera
de los subprogramas

Datos globales

Memoria principal

typedef struct {

} tRegistro;
const int[N]= 1000;
typedef tRegistro tArray[N];
typedef struct {
tArray registros;
int cont;
} tlista;

int main() {

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica P4gina 888

Memoria y datos del programa

La pila (stack)

Datos locales de subprogramas:
Parametros por valor
y variables locales

void func(tLista [lista] double &total)

{

tListaaux

} Datos locales
Datos dindmicos

Datos globales

Memoria principal

int[i}

Y los punteros temporales
que apuntan a los argumentos
de los parametros por referencia

7 Luis Hernandez Yafiez

&resultado

func(lista, resultado)

@ . Fundamentos de la programacion: Punteros y memoria dindmica Pé4gina 889
Memoria y datos del programa
EI montén (heap] “ } Datos locales

Datos dinamicos

Datos que se crean y se destruyen
durante la ejecucion del programa,
a medida que se necesita

Montoén Datos dindmicos

Datos globales

Memoria principal

Sistema de gestion de memoria dinamica (SGMD)
Cuando se necesita memoria para una variable se solicita
El SGMD reserva espacio y devuelve la direccion base
Cuando ya no se necesita mas la variable, se destruye
Se libera la memoria y el SGMD cuenta de nuevo con ella

% Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Punteros y memoria dindmica Péagina 890

Fundamentos de la programacion

Memoria dinamica

7 Luis Hernandez Yafiez

(3)
%

Fundamentos de la programacion: Punteros y memoria dindmica Pé4gina 891

Memoria dinamica

Datos dinamicos

Se crean y se destruyen durante la ejecucion del programa
Se les asigna memoria del montén

Creacién

Dato dindmico
Destruccion j

;Por qué utilizar memoria dindmica?

v Almacén de memoria muy grande: datos o listas de datos que
no caben en memoria principal pueden caber en el montéon

v El programa ajusta el uso de la memoria a las necesidades
de cada momento: ni le falta ni la desperdicia

% Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Punteros y memoria dindmica Péagina 892

Datos y asignacion de memoria

[Luis Herndndez Yafiez
L.

¢Cudndo se asigna memoria a los datos?

v" Datos globales
En memoria principal al comenzar la ejecucion del programa
Existen durante toda la ejecucion del programa

v" Datos locales de un subprograma
En la pila al ejecutarse el subprograma

Existen sélo durante la ejecuciéon de su subprograma

v' Datos dindmicos
En el montdn cuando el programa lo solicita

Existen a voluntad del programa

(0]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 893

Luis Hernandez Yafiez

s

Datos estaticos frente a datos dinamicos

Datos estaticos

v" Datos declarados como de un tipo concreto:
int i;

v’ Se acceden directamente a través del identificador:
cout << 1i;

Datos dinamicos

v' Datos accedidos a través de su direcciéon de memoria
Esa direccion de memoria debe estar el algiin puntero
Los punteros son la base del SGMD

Los datos estaticos también se pueden acceder a través de punteros
int *p = &i;
(03]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Péagina 894

Fundamentos de la programacion

Punteros y datos dinamicos

(0]

=mr=m ~undamentos de la programacion: Punteros y memoria dindmica Pé4gina 895

r Luis Herndndez Yafiez
L.

Creacion de datos dinamicos

El OpBI"CIdOI" new Devuelve NULL si no queda memoria suficiente

new tipo Reserva memoria del montdn para una variable del
tipo y devuelve la primera direccion de memoria
utilizada, que debe ser asignada a un puntero

int *p; // Todavia sin una direccidén valida

p = new int; // Ya tiene una direccién valida
%k _ .
p = 12;

La variable dinamica se accede exclusivamente por punteros

No tiene identificador asociado

int i; // i es una variable estatica
int *pl, *p2;
pl = &i; // Puntero que da acceso a la variable
// estatica i (accesible con i o con *pil)
p2 = new int; // Puntero que da acceso a una variable
// dindmica (accesible sélo a través de p2)

Luis Hernandez Yafiez

(0]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 896

©)
|:;

Inicializacion de datos dinamicos

Inicializacién con el operador new

El operador new admite un valor inicial para el dato creado:
int *p;

p = new int(12);

Se crea la variable, de tipo int, y se inicializa con el valor 12

#include <iostream>
using namespace std;
#include "registro.h"

int main() {
tRegistro reg; l
reg = nuevo();
tRegistro *punt = new tRegistro(reg);
mostrar(*punt);

Luis Herndndez Yafiez

) DE(E)

E=4 e ~undamentos de la programacion: Punteros y memoria dindmica Péagina 897

Eliminacion de datos dinamicos

El operador delete

delete puntero; Devuelve al montén la memoria usada por
la variable dinamica apuntada por puntero

int *p;
p = new int;
*p = 12;

delete p; // Ya no se necesita el entero apuntado por p

€9 El puntero deja de contener una direccién vélida!

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica Pé4gina 898

v, Luis Hernandez Yafiez
f

Ejemplo de variables dinamicas

#include <iostream>
using namespace std;

int main() {

—> double a = 1.5; pl
double *pl, *p2, *p3;
pl = &a; 41
p2 = new double; (a, p1, p2, p3)
*p2 = *pl;
p3 = new double;
*p3 = 123.45;
cout << *pl << endl; p2
cout << *p2 << endl;
cout << *p3 << endl;

Identificadores:

a

o)}

delete p2;
. p<s (+ *p2y *p3)
S delete p3;
>
]
E
: return 0;
= }
(&

(@ Fundamentos de la programacion: Punteros y memoria dindmica Péagina 899

Ejemplo de variables dinamicas

#include <iostream>
using namespace std; PILA

int main() {
double a = 1.5;
double *pl, *p2, *p3;

=
Ul

MONTON

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica P4gina 900

7 Luis Herndndez Yafiez

Ejemplo de variables dinamicas

#include <iostream>
using namespace std; PILA

=
(921
A

int main() {
double a = 1.5;
double *pl, *p2, *p3;
pl = &a;

IRRNARERES

MONTON

Fundamentos de la programacion: Punteros y memoria dindmica Pagina 901

7 Luis Herndndez Yafiez

Ejemplo de variables dinamicas

#include <iostream>
using namespace std; PILA

int main() {
double a = 1.5;
double *pl, *p2, *p3;
pl = &a;
p2 = new double;

BBRANRESI:

MONTON

Fundamentos de la programacion: Punteros y memoria dindmica Péagina 902

7 Luis Herndndez Yafiez

Ejemplo de variables dinamicas

#include <iostream>
using namespace std; PILA

=
U1
A

int main() {
double a = 1.5;
double *pl, *p2, *p3;
pl = &a;
p2 = new double;
*p2 = *pl;

S

MONTON

Fundamentos de la programacion: Punteros y memoria dindmica Pagina 903

7 Luis Herndndez Yafiez

Ejemplo de variables dinamicas

#include <iostream>
using namespace std; PILA

int main() {
double a = 1.5;
double *pl, *p2, *p3;

pl = &a;
p2 = new double;
*p2 = *pl;

p3 = new double;

A

MONTON

Fundamentos de la programacion: Punteros y memoria dindmica Pagina 904

Ejemplo de variables dinamicas

#include <iostream>
using namespace std;

int main() {
double a = 1.5;
double *pl, *p2, *p3;

pl = &a;
p2 = new double;
*p2 = *pl;

p3 = new double;
*p3 = 123.45;

PILA

Q

T T T

w N R
=
U1
A

3 123.45 e
% MONTON
Fundamentos de la programacion: Punteros y memoria dindmica P4gina 905
[] [] [] Y 4 []
Ejemplo de variables dinamicas
#include <iostream>
using namespace std; PILA
- I —
e nasn() p1 S ——
double a = 1.5;
double *p1, *p2, *p3; p2 -
pl = &a; p3
p2 = new double;
*p2 = *pl;

7 Luis Herndndez Yafiez

p3 = new double;

*p3 = 123.45;

cout << *pl << endl;
cout << *p2 << endl;
cout << *p3 << endl;
delete p2;

Fundamentos de la programacion: Punteros y memoria dindmica

123.45 S

MONTON

Péagina 906

7 Luis Herndndez Yafiez

Ejemplo de variables dinamicas

#include <iostream>
using namespace std;

int main() {

double a = 1.5;

double *pl, *p2, *p3;

pl = &a;
p2 = new double;
*p2 = *pl;

p3 = new double;

*p3 = 123.45;

cout << *pl << endl;
cout << *p2 << endl;
cout << *p3 << endl;
delete p2;

delete p3;

Fundamentos de la programacion: Punteros y memoria dindmica

PILA

A

——

MONTON

Péagina 907

7 Luis Herndndez Yafiez

Fundamentos de la programacion

Gestion de la memoria

Fundamentos de la programacion: Punteros y memoria dindmica

P4gina 908

Errores de asignacion de memoria

La memoria se reparte entre la pila y el montén
Crecen en direcciones opuestas
Al llamar a subprogramas la pila crece

Al crear datos dinamicos el monton crece

Monton

Colision pila-monton
Los limites de ambas regiones se encuentran
Se agota la memoria

Desbordamiento de la pila
La pila suele tener un tamafo maximo establecido
Si se sobrepasa se agota la pila

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica P4gina 909

Gestion de la memoria dinamica

Gestion del monton

Sistema de Gestion de Memoria Dinamica (SGMD)

Gestiona la asignacion de memoria a los datos dindmicos
Localiza secciones adecuadas y sigue la pista de lo disponible
No dispone de un recolector de basura, como el lenguaje Java
jHay que devolver toda la memoria solicitada!

Deben ejecutarse tantos delete como new se hayan ejecutado

La memoria disponible en el montén debe ser exactamente la
misma antes y después de la ejecucion del programa

Y todo dato dinamico debe tener algin acceso (puntero)
Es un grave error perder un dato en el montén

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica Pagina 910

Fundamentos de la programacion

Errores comunes

==z Luis Hernandez Yafiez
f

=mr=m ~undamentos de la programacion: Punteros y memoria dindmica P4gina 911

Mal uso de la memoria dinamica |

Olvido de destruccion de un dato dinamico

int main() {
tRegistro *p;
p = new tRegistro;
*p = nuevo();
mostrar(*p);

:

return 0;

}

G++ no indicara ningun error y el programa parecera terminar
correctamente, pero dejara memoria desperdiciada

Visual C++ si comprueba el uso de la memoria dinamica
y nos avisa si dejamos memoria sin liberar

Luis Hernandez Yafiez

(0]

- =sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pagina 912

Mal uso de la memoria dinamica Il

Intento de destruccion de un dato inexistente

int main() {
tRegistro *pl = new tRegistro;
*pl = nuevo();
mostrar(*pl); p2
tRegistro *p2;
p2 = pl; ot Wil i g Al f—
mostrar(*p2); @ s
delete p1; P e A o e
delete p2; i ;

pl tRegistro

return 0; €9 Solo se ha creado

una variable

7 Luis Hernandez Yafiez

P4gina 913

Mal uso de la memoria dinamica lll

Pérdida de un dato dinamico

int main() {
tRegistro *pl, *p2;
pl = new tRegistro(nuevo()); @
p2 = new tRegistro(nuevo());

tRegistro

mostrar(*pl);
pl = p2;

*n1) - e E.
mostrar(*pl); o
delete pl;

delete p2;

return ©; -ﬁﬂ Se pierde un dato en el monton
} Se intenta eliminar un dato ya eliminado

% Luis Hernandez Yafiez

Pagina 914

Mal uso de la memoria dinamica IV

Intento de acceso a un dato tras su eliminacion

int main() {
tRegistro *p;
p = new tRegistro(nuevo());

mostrar(*p);
delete p;

mostrar(*p); «<—— [== BRERSEL NI E

al dato dinamico destruido
return 0; - Acceso a memoria inexistente

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica

P4gina 915

Fundamentos de la programacion

Arrays de datos dinamicos

(0]

=mrm Fundamentos de la programacion: Punteros y memoria dinamica

v, Luis Hernandez Yafiez
f

Pagina 916

Arrays de datos dinamicos

Arrays de punteros a datos dindmicos

typedef struct {
int codigo;

string nombre; Los punteros ocupan
double valor; muy poco en memoria
} tRegistro; Los datos a los que apunten
typedef tRegistro *tRegPtr; estaran en el montén

const int N = 1000;
// Array de punteros a registros:
typedef tRegPtr tArray[N];
typedef struct {

tArray registros;

. int cont;

E } tlLista; Se crean a medida que se insertan

I Se destruyen a medida que se eliminan
@ ? Fundamentos de la programacion: Punteros y memoria dindmica Pagina 917

Arrays de datos dinamicos

tLista lista;
lista.cont = ©;

Luis Hernandez Yafiez

(o) (0]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica P4gina 918

7 Luis Herndndez Yafiez

Arrays de datos dinamicos

tLista lista;

lista.cont = ©;

lista.registros[lista.cont] = new tRegistro(nuevo());
lista.cont++;

A Fundamentos de la programacién: Punteros y memoria dindmica P4gina 919

7 Luis Herndndez Yafiez

Arrays de datos dinamicos

tLista lista;

lista.cont = ©;
lista.registros[lista.cont]
lista.cont++;
lista.registros[lista.cont]
lista.cont++;

new tRegistro(nuevo());

new tRegistro(nuevo());

Pagina 920

7 Luis Herndndez Yafiez

Arrays de datos dinamicos

tLista lista;

lista.cont = ©;
lista.registros[lista.cont]
lista.cont++;
lista.registros[lista.cont]
lista.cont++;
lista.registros[lista.cont]
lista.cont++;

new tRegistro(nuevo());

new tRegistro(nuevo());

new tRegistro(nuevo());

P4gina 921

7 Luis Herndndez Yafiez

Arrays de datos dinamicos

Los registros se acceden a través de los punteros (operador ->):
cout << lista.registros[@]->nombre;

Péagina 922

Arrays de datos dinamicos

No hay que olvidarse de devolver la memoria al monton:

for (int i = @; i < lista.cont; i++) {
delete lista.registros[i];

}

7 Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Punteros y memoria dindmica Pagina 923

Arrays de datos dinamicos

#ifndef lista_h
#define lista_h
#include "registro.h"

registro.h con el tipo puntero:

typedef tRegistro *tRegPtr;
const int N = 1000;

const string BD = "bd.dat";
typedef tRegPtr tArray[N];
typedef struct {

tArray registros;

int cont;
} tlLista;

void mostrar(const tLista &lista);

void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int code, bool &ok);

int buscar(const tlLista &lista, int code);

void cargar(tLista &lista, bool &ok);

void guardar(const tLista &lista);

void destruir(tLista &lista);

% Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Punteros y memoria dindmica Pagina 924

Arrays de datos dinamicos

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false;

}
else {

lista.cont++;

}
}

void eliminar(tLista &lista, int code, bool &ok) {
ok = true;
int ind = buscar(lista, code);
if (ind == -1) {
ok = false;
}

else

for (int i = ind + 1; 1 < lista.cont; i++) {

2 lista.registros[i - 1] = lista.registros[i];
= }
3 lista.cont--;
s }
£
2 }
§
Fundamentos de la programacion: Punteros y memoria dindmica Pagina 925

Arrays de datos dinamicos

int buscar(const tLista &lista, int code) {
// Devuelve el indice o -1 si no se ha encontrado
int ind = 9;
bool encontrado = false;
while ((ind < lista.cont) && !encontrado) {
if == code) {

}

else {
ind++;

encontrado = true;

if (!encontrado) {
ind = -1;
}

return ind;

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica Pagina 926

Arrays de datos dinamicos

#include <iostream>
using namespace std;
#include "registro.h"
#include "lista.h"

int main() {
tLista lista;
bool ok;
cargar(lista, ok);
if (ok) {
mostrar(lista);
destruir(lista);

}

return 0;

Luis Herndndez Yafiez

(0]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pagina 927

©)
|:;

Fundamentos de la programacion

Arrays dinamicos

(0]

=mr=m ~undamentos de la programacion: Punteros y memoria dindmica Pagina 928

r Luis Hernandez Yafiez
L.

Arrays dinamicos

Creacion y destruccion de arrays dindmicos

Array dindmico: array que se ubica en la memoria dinamica

Creacidon de un array dindmico:

tipo *puntero = new tipo[dimension];
int *p = new int[10];

Crea un array de 10 int en memoria dinamica

Los elementos se acceden a través del puntero: p[1]

Destruccidn del array:
delete [] p;

Luis Herndndez Yafiez

(o) (0]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica P4gina 929

Arrays dinamicos

#include <iostream>
using namespace std;
const int N = 10;

int main() {

int *p = new int[N];
for (int 1 = 0; i < N; i++) {
p[i] = i;

}
for (int 1 = 0; i < N; i++) {
cout << p[i] << endl;

€@ iNo olvides destruir el array dindmico!

Luis Hernandez Yafiez
-

(o) (0]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pagina 930

Ejemplo de array dinamico

#include "registro.h"
const int N = 1000;

// Lista: array dinamico (puntero) y contador
typedef struct {

tRegPtr registros;

int cont;
} tlLista;

fiez

(0]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica P4gina 931

r Luis Hernandez Ya
L.

Ejemplo de array dinamico

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {
ok = false;

No usamos new

elsi{ o : Se han creado todo
ista.registros[lista.cont] = registro;
lista.contet; el array al cargar

}
}
void eliminar(tLista &lista, int code, bool &ok) {
ok = true;
int ind = buscar(lista, code); No usamos delete
if (ind == -1) {
ok = false; Se destruye todo
} el array al final
else {
for (int i = ind + 1; i < lista.cont; i++) {
gg lista.registros[i - 1] = lista.registros[i];
5 }
% lista.cont--;
5 }
é }o...

(0]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Pagina 932

©)
E

Luis Herndndez Yafiez

{E}

Ejemplo de array dinamico

int buscar(tLista lista, int code) {
int ind = 9;
bool encontrado = false;
while ((ind < lista.cont) && !encontrado) {
if (ISEENRCEISEROSCINEeENEs -~ code) {
encontrado = true;
}

else {
ind++;
}
if (!encontrado) {
ind = -1;
}

return ind;

}

void destruir(tLista &lista) {

lista.cont = 0;

}

HEE

S—wmrm Fundamentos de la programacion: Punteros y memoria dinamica Pagina 933

Luis Hernandez Yafiez

{E}

Ejemplo de array dinamico

void cargar(tLista &lista, bool &ok) {
ifstream archivo;
char aux;
ok = true;
archivo.open(BD.c_str())
if (larchivo.is open())
ok = false;

{

else {

tRegistro registro;

lista.cont = 0;

lista.registros = new tRegistro[N];

archivo >> registro.codigo;

while ((registro.codigo != -1) && (lista.cont < N)) {
archivo >> registro.valor;
archivo.get(aux); // Saltamos el espacio
getline(archivo, registro.nombre);
lista.registros[lista.cont] = registro;
lista.cont++;
archivo >> registro.codigo;

/ Se crean todos a la vez

archivo.close();

HEE

Smrm Fundamentos de la programacion: Punteros y memoria dinamica Pagina 934

Ejemplo de array dinamico

Mismo programa principal que el del array de datos dinamicos
Pero incluyendo 1istaAD. h, en lugar de 1lista.h

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica Pé4gina 935

Arrays dinamicos vs. arrays de dinamicos

Array de datos dindmicos: Array de punteros a datos dindmicos
Array dindmico: Puntero a array en memoria dinamica

Array de datos dinamicos: Array dindmico:
Array de punteros Puntero a array
0 1 2 3 4 5 6 7

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica Péagina 936

Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya

(0]

=sr=m Fundamentos de la programacién: Punteros y memoria dindmica Péagina 937

Fundamentos de |la programacion

Punteros y memoria
dinamica

ANEXO

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

r4 [3
Indice
Aritmética de punteros 940
Recorrido de arrays con punteros 953
Referencias 962
Listas enlazadas 964
(o) (0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica (Anexo)

Fundamentos de la programacion

Aritmética de punteros

(0]

e =@ Fundamentos de la programacion: Punteros y memoria dinamica (Anexo) Pagina 940

[Luis Herndndez Yafiez
L.

Aritmética de punteros

Operaciones aritméticas con punteros

La aritmética de punteros es una aritmética un tanto especial...

Trabaja tomando como unidad de calculo el tamafio del tipo base
int dias[12] = { 31, 28, 31, 3e, 31, 30, 31, 31, 30, 31, 30, 31 };
typedef int* tIntPtr;
tIntPtr punt = dias;

punt empieza apuntando al primer elemento del array:
cout << *punt << endl; // Muestra 31 (primer elemento)
punt++;

punt++ hace que punt pase a apuntar al siguiente elemento
cout << *punt << endl; // Muestra 28 (segundo elemento)

A la direccion de memoria actual se le suman tantas unidades
como bytes (4) ocupe en memoria un dato de ese tipo (int)

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacién: Punteros y memoria dindmica (Anexo) Pagina 941

Aritmética de punteros

int dias[12] = { 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 }; dias[@] oF03:1A38
typedef int* tIntPtr; oros: 1A

OF03:1A3A
tIntPtr punt = dias; OF03:1A38
dias[1] @F@3:1A3C
OF03:1A3D
OF03:1A3E
OF03:1A3F
dias[2] OF03:1A40
OF03:1A41
OF03:1A42
OF03:1A43

dias 0@Fe7:0417

OF07:0418
OF07:0419
OF07:041A

N

3% punt @F@7:041B

E @F07:041C

§ OF07:041D

c

< OF07:041E

I

0

=)

)

Fundamentos de la programacion: Punteros y memoria dinamica (Anexo) Péagina 942

Aritmética de punteros

int dias[12] = { 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 }; dias[@] 6Fe3:1A38
. OF03:1A39
typedef int* tIntPtr;

OF03:1A3A

tIntPtr punt = dias; 0F03:1A38
dias[1] eFe3:1A3c

punt++; OF03:1A3D
OF03:1A3E

OF03:1A3F

dias[2] ©@F@3:1A40

OF03:1A41

OF03:1A42

OF03:1A43

dias OF07:0417
OF07:0418
OF07:0419
OF07:041A
punt OF07:041B
OF07:041C
OF07:041D
OF07:041E

punt-- hace que apunte al elemento anterior

Luis Hernandez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo) Pagina 943

Aritmética de punteros

int dias[12] = { 31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31 }; dias[@] @F@3:1A38
. OF03:1A39
typedef int* tIntPtr;

OF03:1A3A

tIntPtr punt = dias; 0F03:1A38
dias[1] eFe3:1A3c

punt = punt + 2; @F@3:1A3D
0FO3:1A3E

0F@3:1A3F

dias[2] @F@3:1A40

0FO3:1A41

0FO3:1A42

0FO3:1A43

dias OF07:0417
OF07:0418
OF07:0419
OF07:041A
punt 0OF07:041B
OF07:041C
OF07:041D

Restando pasamos a elementos anteriores oFo7:041E

7 Luis Hernandez Yafiez

Fundamentos de la programacion: Punteros y memoria dinamica (Anexo) Pagina 944

Aritmética de punteros

int dias[12] = { 31, 28, 31, 30, 31, 30,

31, 31, 3@, 31, 3@, 31 }; dias[@] ©F@3:1A38

N OF03:1A39

typedef int* tIntPtr; oFo3: 1A3A
tIntPtr punt = dias; 0F03:1A38
dias[1] ©F@3:1A3C

punt = punt + 2; 0F03:1A3D
OF03:1A3E

OF03:1A3F

int num = punt - dias; dias[2] ©Fe3:1A40
OF03:1A41

N¢ de elementos entre los punteros oF0s 1442

OF03:1A43

dias OF07:0417
OF07:0418
OF07:0419
OF07:041A
punt OF07:041B
OF07:041C
OF07:041D
OF07:041E

% Luis Hernandez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo) Péagina 945

Aritmética de punteros

Otro tipo base

short int (2 bytes)

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

tSIPtr punt = dias;

Luis Herndndez Yafiez

Fundamentos de la programacion: Punteros y memoria dinamica (Anexo)

dias[0]

dias[1]

dias[2]

dias[3]

dias[4]

dias

punt

OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:

0F07:
OF07:
0F07:
OF07:
OF07:
OF07:
0F07:
OF07:

1A38
1A39
1A3A
1A3B
1A3C
1A3D
1A3E
1A3F
1A40
1A41
0417
0418
0419
041A
041B
041C
041D
041E

Péagina 946

Aritmética de punteros

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

tSIPtr punt = dias;

punt++;

Luis Hernandez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo)

dias[0]

dias[1]

dias[2]

dias[3]

dias[4]

dias

punt

OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:

OF07:
OF07:
OF07:
OF07:
OF07:
OF07:
0F07:
OF07:

1A38
1A39
1A3A
1A3B
1A3C
1A3D
1A3E
1A3F
1A40
1A41
0417
0418
0419
041A
041B
041C
041D
041E

Péagina 947

Aritmética de punteros

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

tSIPtr punt = dias;

punt++;

punt = punt + 3;

Luis Herndndez Yafiez

Fundamentos de la programacion: Punteros y memoria dinamica (Anexo)

dias[0]

dias[1]

dias[2]

dias[3]

dias[4]

dias

punt

OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:

0F07:
OF07:
0F07:
OF07:
OF07:
OF07:
0F07:
OF07:

1A38
1A39
1A3A
1A3B
1A3C
1A3D
1A3E
1A3F
1A40
1A41
0417
0418
0419
041A
041B
041C
041D
041E

Pagina 948

Aritmética de punteros

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

tSIPtr punt = dias;

punt++;

punt = punt + 3;

punt--;

Luis Hernandez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo)

dias[0]

dias[1]

dias[2]

dias[3]

dias[4]

dias

punt

OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:

OF07:
OF07:
OF07:
OF07:
OF07:
OF07:
0F07:
OF07:

1A38
1A39
1A3A
1A3B
1A3C
1A3D
1A3E
1A3F
1A40
1A41
0417
0418
0419
041A
041B
041C
041D
041E

Pagina 949

Aritmética de punteros

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

dias[0]

typedef short int* tSIPtr;
tSIPtr punt = dias;

dias[1]

punt++; dias[2]

punt = punt + 3; dias[3]

punt--;

dias[4]

tSIPtr punt2;

7 Luis Hernandez Yafiez

Fundamentos de la programacion: Punteros y memoria dinamica (Anexo)

dias

punt

punt2

OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:

0F07:
OF07:
0F07:
OF07:
OF07:
OF07:
0F07:
OF07:
0F07:

1A38
1A39
1A3A
1A3B
1A3C
1A3D
1A3E
1A3F
1A40
1A41
0417
0418
0419
041A
041B
041C
041D
041E
041F

Pé4gina 950

Aritmética de punteros

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr; d
siPtr punt = dias; ’
punt++; d
punt = punt + 3; d
punt--; ,
tSIPtr punt2;

punt2 = dias;

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo)

% Luis Hernandez Yafiez

ias[0]

ias[1]

ias[2]

ias[3]

ias[4]

dias

punt

punt2

OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:
OF03:

OF07:
OF07:
OF07:
OF07:
OF07:
OF07:
0F07:
OF07:
0F07:

1A38
1A39
1A3A
1A3B
1A3C
1A3D
1A3E
1A3F
1A40
1A41
0417
0418
0419
041A
041B
041C
041D
041E
041F

P4gina 951

Aritmética de punteros

short int dias[12] = {31, 28, 31, 30,
31, 30, 31, 31, 30, 31, 30, 31};

dias[0]
typedef short int* tSIPtr;
siPtr punt = dias; ; diestd]
punt++; dias[2]
punt = punt + 3; dias[3]
punt--; dias[4]
tSIPtr punt2;
punt2 = dias; diae
cout << punt - punt2; // 3
punt
§ punt2

(3)
:

Fundamentos de la programacion: Punteros y memoria dinamica (Anexo)

OF03:1A38
OF03:1A39
OF03:1A3A
OF03:1A3B
OF03:1A3C
OF03:1A3D
OF03:1A3E
OF03:1A3F
OF03:1A40
OF03:1A41

OF07:0417
0OF07:0418
OF07:0419
OF07:041A
OF07:041B
OF07:041C
OF07:041D
OF07:041E
OFQ7:041F

P4gina 952

Fundamentos de la programacion

Recorrido de arrays con punteros

% Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo)

Pé4gina 953

Recorrido de arrays con punteros

Punteros como iteradores para arrays

const int MAX = 100;
typedef int tArray[MAX];
typedef struct {

tArray elementos;

int cont;
} tlLista;
typedef int* tIntPtr;
tlLista lista;

Usamos un puntero como iterador para recorrer el array:

tIntPtr punt = lista.elementos;

for (int i = @; i < lista.cont; i++) {
cout << *punt << endl;

punt++;

7 Luis Hernandez Yafiez
—

Fundamentos de la programacion: Punteros y memoria dinamica (Anexo) Pagina 954

Punteros como iteradores para arrays

intPtr punt = lista.elementos;

punt

(4|3 ar|safas|7fas] | | | |

% Luis Hernandez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo) Pé4gina 955

7 Luis Hernandez Yafiez

Punteros como iteradores para arrays

for (int 1 = @; i < lista.cont; i++) {
cout << *punt << endl;
punt++;

(4|3 ar|s3fas|7fas] | | | |

Fundamentos de la programacion: Punteros y memoria dinamica (Anexo) Pé4gina 956

% Luis Hernandez Yafiez

Punteros como iteradores para arrays

for (int 1 = @; i < lista.cont; i++) {
cout << *punt << endl;
punt++;

(4|3 ar|safas|7fas] | | | |

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo) Péagina 957

7 Luis Hernandez Yafiez

Punteros como iteradores para arrays

for (int 1 = @; i < lista.cont; i++) {
cout << *punt << endl;
punt++;

(4|3 ar|s3fas|7fas] | | | |

Fundamentos de la programacion: Punteros y memoria dinamica (Anexo) P4gina 958

% Luis Hernandez Yafiez

Punteros como iteradores para arrays

for (int 1 = @; i < lista.cont; i++) {
cout << *punt << endl;
punt++;

(4|3 ar|safas|7fas] | | | |

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo) Pé4gina 959

Punteros como iteradores para arrays

for (int 1 = @; i < lista.cont; i++) {
cout << *punt << endl;
punt++;

(4|3 ar|s3fas|7fas] | | | |

7 Luis Hernandez Yafiez

Fundamentos de la programacion: Punteros y memoria dinamica (Anexo) Pé4gina 960

Punteros como iteradores para arrays

for (int 1 = @; i < lista.cont; i++) {
cout << *punt << endl;
punt++;

(4|3 ar|safas|7fas] | | | |

% Luis Hernandez Yafiez

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo) Pagina 961

Fundamentos de la programacion

Referencias

(0]

=@ Fundamentos de la programacion: Punteros y memoria dinamica (Anexo) Péagina 962

==z Luis Hernandez Yafiez
f

Referencias

Nombres alternativos para los datos

Una referencia es una nueva forma de llamar a una variable

Nos permiten referirnos a una variable con otro identificador:
int x = 10;

int &z = x;

X y z son ahora la misma variable (comparten memoria)
Cualquier cambio en x afecta a z y cualquier cambio en z afecta a x

z = 30;
cout << x;

Las referencias se usan en el paso de parametros por referencia

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica (Anexo) Péagina 963

r Luis Hernandez Yafiez
L.

Fundamentos de la programacion

Listas enlazadas

(0]

=mrm Fundamentos de la programacidn: Punteros y memoria dindmica (Anexo) Pagina 964

v, Luis Herndndez Yafiez
f

Listas enlazadas

Una implementacion dindmica de listas enlazadas

Cada elemento de la lista apunta al siguiente elemento:

struct tNodo; // Declaracién anticipada
typedef tNodo *tlLista;
struct tNodo { reg sig

tLista sig;
}s

Una lista (tLista) es un puntero a un nodo
Si el puntero vale NULL, no apunta a ningiin nodo: lista vacia

Un nodo (tNodo) es un elemento seguido de una lista

Vacia
Lista iDefinicién recursiva!
Elemento seguido de una lista

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica (Anexo) Péagina 965

Implementacidn dinamica de listas enlazadas

Cada elemento de la lista en su nodo

Apuntara al siguiente elemento o a ninguno (NULL)

struct tNodo; // Declaracidén anticipada
typedef tNodo *tLista;
struct tNodo {

tRegistro reg;

tLista sig;

¥
Ademas, un puntero al primer elemento (nodo) de la lista
tLista lista = NULL; // Lista vacia

lista .

(0]

- =@ Fundamentos de la programacion: Punteros y memoria dinamica (Anexo) Pé4gina 966

r Luis Herndndez Yafiez
L.

Implementacidn dinamica de listas enlazadas

struct tNodo;
typedef tNodo *tLista;
struct tNodo {
tRegistro reg;
tLista sig;
¥
tLista lista = NULL; // Lista vacia
lista = new tNodo;
lista->reg = nuevo();
lista->sig = NULL;

(0]

- =mr=m Fundamentos de la programacién: Punteros y memoria dindmica (Anexo) Péagina 967

r Luis Hernandez Yafiez
L.

Implementacidn dinamica de listas enlazadas

tLista lista = NULL; // Lista vacia
lista = new tNodo;

lista->reg = nuevo();

lista->sig = NULL;

tLista p;

p = lista;

(0]

=mr™m Fundamentos de la programacion: Punteros y memoria dinamica (Anexo) P4gina 968

v, Luis Herndndez Yafiez
f

Implementacidn dinamica de listas enlazadas

tLista lista = NULL; // Lista vacia
lista = new tNodo;

lista->reg = nuevo();

lista->sig = NULL;

tLista p;

p = lista;

p->sig = new tNodo;

p->sig->reg = nuevo();

p->sig->sig = NULL;

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica (Anexo) Pagina 969

v, Luis Hernandez Yafiez
f

Implementacidn dinamica de listas enlazadas

Luis Herndndez Yafiez

{E}

tLista lista = NULL; // Lista vacia
lista = new tNodo;
lista->reg = nuevo();
lista->sig = NULL;
tLista p;

p = lista;

p->sig = new tNodo;
p->sig->reg = nuevo();
p->sig->sig = NULL;

p = p->sig;

p->sig = new tNodo;
p->sig->reg = nuevo();

p->sig->sig = NULL; p
lista tRegistro tRegistro tRegistro
= Fundamentos de la programacion: Punteros y memoria dinamica (Anexo) Pagina 970

Implementacidn dinamica de listas enlazadas

Luis Hernandez Yafiez

{E}

Usamos la memoria que necesitamos, ni mas ni menos

lista tRegistro tRegistro tRegistro

Tantos elementos, tantos nodos hay en la lista
jPero perdemos el acceso directo!
Algunas operaciones de la lista se complican y otras no

A continuacién tienes el médulo de lista implementado
como lista enlazada...

HEE

S—mrm ~undamentos de la programacion: Punteros y memoria dindmica (Anexo) Pagina 971

Ejemplo de lista enlazada

struct tNodo;

typedef tNodo *tLista;

struct tNodo {
tRegistro reg;
tLista sig;

}s
const string BD = "bd.txt";

void mostrar(tLista lista);

void insertar(tLista &lista, tRegistro registro, bool &ok);

void eliminar(tLista &lista, int code, bool &ok);

tLista buscar(tLista lista, int code); // Devuelve puntero

void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);

Luis Herndndez Yafiez

ﬂﬂ-

HEE

Smrm Fundamentos de la programacion: Punteros y memoria dinamica (Anexo)

void destruir(tLista &lista); // Liberar la memoria dindmica

Péagina 972

Ejemplo de lista enlazada

void insertar(tlLista &lista, tRegistro registro, bool &ok) {

ok = true;
tLista nuevo = new tNodo;
if (nuevo == NULL) {
ok = false; // No hay mas memoria dinamica

}

else {
nuevo->reg = registro;
nuevo->sig = NULL;

if (lista == NULL) { // Lista vacia
lista = nuevo;
(1 , o
else {
tlLista p = lista;
// Localizamos el ultimo nodo...
while (p->sig != NULL) {

lista

nuevo

2] p = p->sig; nuevo [IH—>NDA

) p
- p->sig = nuevo; (2)

E }

£ lista

3 }

i)

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo)

Pagina 973

Ejemplo de lista enlazada

void eliminar(tLista &lista, int code, bool &ok) {
ok = true;
tlLista p = lista;
if (p == NULL) {
ok = false; // Lista vacia

else if (p->reg.codigo == code) { // El primero
lista = p->sig;
(1 delete p;
}

else { 0o
tLista ant = p; lista
p = p->sig;

bool encontrado = false;
while ((p !'= NULL) && !encontrado) {
if (p->reg.codigo == code) {

ant
encontrado = true; P
2 else { 1ista >
s ista
5 (2 ant = p; (2
3 .
£ p = p->s18;
c
5 ¥
I
(e) (HE(E) 3 o -
C="SrTarmrs -undamentos de la programacion: Punteros y memoria dinamica (Anexo) Pagina 974

Ejemplo de lista enlazada

if (!encontrado) {
ok = false; // No existe ese cédigo

}
else {
ant->sig = p->sig;
delete p;
}
}
}
ant p

lista .—) . -_)

% Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo) Péagina 975

Ejemplo de lista enlazada

tLista buscar(tLista lista, int code) {
// Devuelve un puntero al nodo, o NULL si no se encuentra
tLista p = lista;
bool encontrado = false;
while ((p !'= NULL) && !encontrado) {
if (p->reg.codigo == code) {
encontrado = true;

else {
p = p->sig;
}
}
return p;

}

void mostrar(tLista lista) {
cout << endl << "Elementos de la lista:" << endl
K Mo - " << endl;
tLista p = lista;
while (p != NULL) {

fiez

\©

- mostrar(p->reg);

E p = p->sig;

2

t

:

I E E

Fundamentos de la programacion: Punteros y memoria dindmica (Anexo) Pagina 976

Ejemplo de lista enlazada

void cargar(tLista &lista, bool &ok) {
ifstream archivo;
char aux;
ok = true;
lista = NULL;
archivo.open(BD.c_str());
if (larchivo.is open()) {
ok = false;
}
else {
tRegistro registro;
tlLista ult = NULL;
archivo >> registro.codigo;
while (registro.codigo != -1) {
archivo >> registro.valor;
archivo.get(aux); // Saltamos el espacio
getline(archivo, registro.nombre);

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica (Anexo) Péagina 977

r Luis Hernandez Yafiez
L.

Ejemplo de lista enlazada

if (lista == NULL) {
lista = new tNodo;
ult = lista;

¥

else {
ult->sig = new tNodo;
ult = ult->sig;

}

ult->reg registro;

ult->sig = NULL;

archivo >> registro.codigo;

}
archivo.close();
}
return ok;

fiez

(0]

=@ Fundamentos de la programacion: Punteros y memoria dinamica (Anexo)

r Luis Hernandez Ya
L.

Pagina 978

Ejemplo de lista enlazada

void guardar(tLista lista) {
ofstream archivo;
archivo.open(BD);
tlLista p = lista;
while (p != NULL) {

archivo << p->registro.codigo << " ";
archivo << p->registro.valor << " ";
archivo << p->registro.nombre << endl;
p = p->sig;
}
archivo.close();
}
void destruir(tLista &lista) {
tLista p;
while (lista != NULL) {
N p = lista;
% lista = lista->sig;
3 delete p;
I }

(0]

=mr=m Fundamentos de la programacién: Punteros y memoria dindmica (Anexo)

©)
|:;

Péagina 979

Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

fiez

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Ya

(0]

=@ Fundamentos de la programacion: Punteros y memoria dinamica (Anexo) Pé4gina 980

Fundamentos de |la programacion

Introduccion
a la recursion

10

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

r4 [3
Indice

Concepto de recursion 983
Algoritmos recursivos 986
Funciones recursivas 987
Diseino de funciones recursivas 989
Modelo de ejecucién 990
La pila del sistema 992
La pila y las llamadas a funcién 994
Ejecucion de la funcidn factorial() 1005
Tipos de recursién 1018
Recursion simple 1019
Recursion multiple 1020
Recursion anidada 1022
Recursion cruzada 1026
Cddigo del subprograma recursivo 1027
Parametros y recursion 1032
Ejemplos de algoritmos recursivos 1034
2 Busqueda binaria 1035
- Torres de Hanoi 1038
Tg Recursion frente a iteracion 1043
g Estructuras de datos recursivas 1045

@ ? Fundamentos de la programacion: Introduccidn a la recursion

Fundamentos de la programacion

Recursion

7 Luis Hernandez Yafiez

Fundamentos de la programacion: Introduccion a la recursion P4gina 983

Concepto de recursion

Recursion (recursividad, recurrencia)

Definicion recursiva: En la definicion aparece lo que se define
Factorial(N) = N x Factorial(N-1) (N>=0)

Cada tridngulo esta
formado por otros
triangulos mas pequefios

¥,
La cAmara graba lo que graba 4 A
(http://farm1.static.flickr.com/83 __._-. i ". Al
/229219543 _edf740535b.jpg) A b A A ACK AA
N ' (wikipedia.org)
2 La imagen del paquete
B .
3 aparece dentro del propio
£ paquete,... jhasta el infinito! |
c
[
g e . .
= (wikipedia.org) Las matrioskas rusas
)

Fundamentos de la programacion: Introduccidn a la recursion Pagina 984

Definiciones recursivas

Factorial(N) = N x Factorial(N-1)

El factorial se define en funcién de si mismo

Los programas no pueden manejar la recursion infinita

La definicién recursiva debe adjuntar uno o mas casos base
Caso base: aquel en el que no se utiliza la definicidn recursiva

Proporcionan puntos finales de calculo:

N x Factorial(N-1) siN>0 Caso recursivo (induccion)
Factorial(N)

1 siN=0 Caso base (o de parada)

El valor de N se va aproximando al valor del caso base (0)

Luis Herndndez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Introduccion a la recursion Pé4gina 985

Fundamentos de la programacion

Algoritmos recursivos

(0]

e =@ ~undamentos de la programacion: Introduccidn a la recursion Pé4gina 986

[Luis Hernandez Yafiez
L.

Algoritmos recursivos

Funciones recursivas

Una funcidon puede implementar un algoritmo recursivo

La funcién se llamara a si misma si no se ha llegado al caso base

1 siN=0
Factorial(N)
N x Factorial(N-1) SiN>0

long long int factorial(int n) {
long long int resultado;
if (n == @) { // Caso base
resultado = 1;

}
else {

resultado = n * factorial(n - 1);
}

return resultado;

Luis Herndndez Yafiez

-

(0]

=mr=m Fundamentos de la programacion: Introduccion a la recursion Péagina 987

f
©

Algoritmos recursivos

Funciones recursivas

long long int factorial(int n) {
long long int resultado;
if (n == @) { // Caso base
resultado = 1;

}
else {

resultado = n * factorial(n - 1);
b

return resultado;

}
factorial(5) = 5 x factorial(4) = 5 x 4 x factorial(3)

= 5x 4 x 3 x factorial(2) = 5 x4 x 3 x 2 x factorial(1)
2 5x4x3x2x1xfactorial(0) > 5x4x3x2x1x1
-2 120 Caso base

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Introduccion a la recursion P4gina 988

Algoritmos recursivos

Diserio de funciones recursivas

Una funcidn recursiva debe satisfacer tres condiciones:

v’ Caso(s) base: Debe haber al menos un caso base de parada

v" Induccidn: Paso recursivo que provoca una llamada recursiva
Debe ser correcto para distintos parametros de entrada

v' Convergencia: Cada paso recursivo debe acercar a un caso base

Se describe el problema en términos de problemas mads sencillos

1 sSiN=0
Factorial(N)
N x Factorial(N-1) siN>0

Funciéon factorial(): tiene caso base (N = 0), siendo correcta
para N es correcta para N+1 (induccién) y se acerca cada vez
mas al caso base (N-1 esta mas cerca de 0 que N)

(0]

e =mr=m Fundamentos de la programacion: Introduccion a la recursion P4gina 989

Luis Herndndez Yafiez

Fundamentos de la programacion

Modelo de ejecucion

(0]

e =@ ~undamentos de la programacion: Introduccidn a la recursion P4gina 990

[Luis Hernandez Yafiez
L.

Modelo de ejecucidn

long long int factorial(int n) {
long long int resultado;
if (n == @) { // Caso base
resultado = 1;

}
else {

resultado = n * 'Factor‘ial(n - 1);
}

return resultado;

}

Cada llamada recursiva fuerza una nueva ejecucién de la funcion

Cada llamada utiliza sus propios parametros por valor
y variables locales (n y resultado en este caso)

En las llamadas a la funcion se utiliza la pila del sistema para
mantener los datos locales y la direccidon de vuelta

7 Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Introduccidn a la recursion Pagina 991

La pila del sistema (stack)

Regiones de memoria que distingue el sistema operativo:

Pila (Stack) } Llamadas a subprogramas
~

Montén (Heap) >~ Memoria dindmica (Tema 9)

Datos del programa

> Memoria principal

% Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Introduccidn a la recursion Péagina 992

La pila del sistema (stack)

Mantiene los datos locales de la funcién y la direccion de vuelta
Estructura de tipo pila: lista LIFO (last-in first-out)

El Gltimo que entra es el primero que sale:

7 Luis Herndndez Yafiez

P4gina 993

La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {

return Xx;

}
int funcA(int a) {
int b;

<DIR2> b = funcB(a);

return b;
¥

int main() {

Llamada a funcién: Pila
<~

<< funcA(4);
<DIR1> cout uncA(4); Entra la direccién de vuelta

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Introduccidn a la recursion Pagina 994

La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {
return Xx;
¥

int funcA(int a) {

. Entrada en la funcién:
int b;

Se alojan los datos locales
<DIR2> b = funcB(a);
return b;
}

int main() {

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez

<DIR1>
Pila

Fundamentos de la programacion: Introduccidn a la recursion P4gina 995

La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {

return Xx;

by
int funcA(int a) {
int b;
<DIR2> b = funcB(a); ¢ Llamada a funcién:
Entra la direccién de vuelta
return b;
¥

int main() {

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez

<DIR1>

e~}
=
[Y)

Fundamentos de la programacion: Introduccidn a la recursion Péagina 996

La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) { Entrada en la funcién:

D —

. Se alojan los datos locales
return Xx;
}

int funcA(int a) {
int b;

<DIR2> b = funcB(a);
return b;
¥

int main() { <DIR1>
Pila

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Introduccidn a la recursion Péagina 997

La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {

return Xx; <« ‘S/:eellti?n(iirel;i: 1;1;2((5112;5 locales -
}
int funcA(int a) { -
int b; IIIIIIII
o
<DIR2> b = funcB(a);
return b; “
, a2
int main() {
Pila

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Introduccidn a la recursion Péagina 998

La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {

return x; < Vuelta de la funcion:
} Sale la direccién de vuelta

int funcA(int a) {
int b;

<DIR2> b = funcB(a);
return b;
¥

int main() { <DIR1>
Pila

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Introduccidn a la recursion Pagina 999

La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {

return Xx;

) [1]
int funcA(int a) { -
e o [1]
<DIR2> b = funcB(a); <« Laejecg.cién.cf)ntinﬁa -
en esa direcciéon -
; B

int main() { P

Pila

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1000

La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {
return Xx;
¥

int funcA(int a) {
int b;

<DIR2> b = funcB(a);

return b: € Vuelta de la funcién:
} ? Se eliminan los datos locales

int main() {

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez

<DIR1>
Pila

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1001

La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {
return Xx;
¥

int funcA(int a) {
int b;

<DIR2> b = funcB(a);

return b: ¢ Vuelta de la funcion:
} ? Sale la direccién de vuelta

int main() {

<DIR1> cout << funcA(4);

7 Luis Herndndez Yafiez

<DIR1>

e~}
=
[Y)

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1002

La pila y las llamadas a funcién

Datos locales y direcciones de vuelta

int funcB(int x) {
return Xx;
¥

int funcA(int a) {
int b;

<DIR2> b = funcB(a);

return b;

¥

. int main() {
= .
3 L La ejecucion continda Pila
L <DIR1> cout << funcA(4); €—)
X en esa direccién
z
§

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1003

La pila y las llamadas a funcién

Mecanismo de pila adecuado para llamadas a funciones anidadas:

Las llamadas terminan en el orden contrario a como se llaman

int funcC(...) { <€

—)
int funcB(...) { €——0r
v
<
... funcC(...
= = uncC(...) <
- } a
= int funcA(...) { €— <
> > - funcB(...) <
v ! —
3 int main() { —
g 3 cout << funcA(...); — Pila

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1004

Ejecucion de la funcion factorial()

long long int factorial(int n) {
long long int resultado;
if (n == @) { // Caso base
resultado = 1;

}
else {

resultado = n * 'Factor‘ial(n - 1);
}

return resultado;

cout << factorial(5) << endl;

€9 Obviaremos las direcciones de vuelta en la pila

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1005

7 Luis Herndndez Yafiez

Ejecucion de la funcién factorial()

factorial(5)

resultado = ?

Pila

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1006

Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)

resultado = ?

resultado = ?

Pila

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1007

Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(3)

resultado = ?
n =3

resultado = ?

=}
]

resultado = ?

n=>5
Pila

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1008

Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(B)

Factorial(2) I
n =
:
18
3 .
§ Pila
5]
I
§
Fundamentos de la programacion: Introduccidn a la recursion Pagina 1009

Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(3)
factorial(2)
L—)-Factorial(l)

resultado = ?

S
[}

resultado = ?

)
L}

resultado = ?
n =3

resultado = ?

=}
]

resultado = ?

n=>5
Pila

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1010

Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(B)

f rial(2
actorlal(2)
L> factorial(1) T
Ls factorial(e)
n =
:
18
g .
§ Pila
5]
I
§
Fundamentos de la programacion: Introduccidn a la recursion Pagina 1011

Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(3)

factortal(2) ——
L factorial(1) L
Ls factorial(e)

n =
—

)
L}

resultado = ?
n =3

resultado = ?

=}
]

resultado = ?

n=>5
Pila

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1012

Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(B)
factorial(2)
L—)-Factorial(l)
L—)-Factorial(@)

PR
—

1 resultado = ?

resultado = 2

S
L}

n =3

resultado = ?

resultado = ?

=} =}
]]
v

Pila

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1013

Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(3)
factorial(2)
L—)-Factorial(l)
l—) factorial(9)

PR
—
I 1 resultado = 6

2 n=3

resultado = ?

=}
]

resultado = ?

n=>5
Pila

7 Luis Herndndez Yafiez

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1014

Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(B)
factorial(2)
L—)-Factorial(l)
L—)-Factorial(@)

PR
—
—1 !
(_I 2 resultado = 24

6
n =
:
18
]
2 .
£ Pila
c
[
I
wv
£
A Fundamentos de la programacion: Introduccion a la recursion Pagina 1015

Ejecucion de la funcién factorial()

factorial(5)
L—>—factorial(4)
L—)—factorial(3)
factorial(2)
L—)-Factorial(l)
l—) factorial(9)

]
—
1
12
—J°

24 resultado = 120

=}
n
v

Pila

7 Luis Herndndez Yafiez

A Fundamentos de la programacién: Introduccion a la recursion Pagina 1016

Ejecucion de la funcién factorial()

factorial(5)
|—) factorial(4)
|—) factorial(3)

factorial(2) =

L factorial(1)]

|—) factorial(9) I

| I

— —_

11 I

| 2]

1 ° —_

: 24]
f l 120 Pila
. Pagina 1017

Fundamentos de la programacion

Tipos de recursion

7 Luis Herndndez Yafiez

A Fundamentos de la programacion: Introduccidn a la recursion Pagina 1018

Recursidon simple

Sélo hay una llamada recursiva
Ejemplo: Calculo del factorial de un namero entero positivo

long long int factorial(int n) {
long long int resultado;
if (n == @) { // Caso base
resultado = 1;

}
else {

resultado = n * factorial(n - 1);
}

return resultado;

Una sola llamada recursiva

(0]

=mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1019

==z Luis Hernandez Yafiez
L
() -

Recursion multiple

Varias llamadas recursivas

Ejemplo: Calculo de los numeros de Fibonacci

0 sin=0
Fib(n) 1 sin=1
Fib(n-1) + Fib(n-2) sin>1

N/

Dos llamadas recursivas

(0]

=mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1020

r Luis Hernandez Yafiez
L.

Recursidon multiple

0 sin=0
int main() { Fib(n) 1 sin=1
for (int i = @; i < 20; i++) { Fib(n-1) + Fib(n-2) sin>1

cout << fibonacci(i) << endl;
}

return 0;

}

int fibonacci(int n) {
int resultado;
if (n == 09) {
resultado = 0;
}
else if (n == 1) {
resultado = 1;

}

N else {

5 resultado = fibonacci(n - 1) + fibonacci(n - 2);
}

return resultado;

-

Luis Hernandez Ya

(0]

=mr=m Fundamentos de la programacion: Introduccion a la recursion Pdgina 1021

©)
E

Recursion anidada

En una llamada recursiva alguno de los argumentos es otra llamada

Ejemplo: Calculo de los nimeros de Ackermann:

n+1l sim=0
Ack(m, n) Ack(m-1, 1) sim>0yn=0
Ack(m-1, Ack(m,n-1)) sim>0yn>0

AN

Argumento que es una llamada recursiva

(0]

=mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1022

r Luis Hernandez Yafiez
L.

Luis Herndndez Yafiez

{E}

Recursidn anidada

n+1 sim=0
Ack(m, n) Ack(m-1, 1) sim>0yn=0
Ack(m-1, Ack(m,n-1)) sim>0yn>0

Numeros de Ackermann

int ackermann(int m, int n) {
int resultado;
if (m == 09) {
resultado = n + 1;
¥
else if (n == 0) {
resultado = ackermann(m - 1, 1);

else {
resultado = ackermann(m - 1, ackermann(m, n - 1));
return resultado;
€@ Pruébalo con nimeros muy bajos:
Se generan MUCHAS llamadas recursivas
SECarTm Fundamentos de la programacion: Introduccion a la recursién Pagina 1023

Recursion anidada

Luis Hernandez Yafiez

{E}

n+1 sim=0
Ack(m, n) Ack(m-1, 1) sim>0yn=0
Ack(m-1, Ack(m,n-1)) sim>0yn>0

Numeros de Ackermann

ackermann(1, 1)
L)»ackermann(@, ackermann(1, 0))
12
3 ackermann(o, 1)

ackermann(@, 2)

E:a

Smrm Fundamentos de la programacion: Introduccion a la recursion Pagina 1024

Recursion anidada

, n+1 sim=0
NumerOS de ACkermann Ack(m, n) { Ack(m-1, 1) sim>0yn=0
Ack(m-1, Ack(m,n-1)) sim>0yn>0

ackermann(2, 1)
0 |—)acker‘mann(1, ackermann(2, 0))
13
5 ackermann(1, 1)
I} ackermann(@, ackermann(l, 0))

(P

ackermann(@, 1)
ackermann(e, 2)

L ackermann(1, 3)
1 La»ackermann(e, ackermann(1, 2))
L)»ackermann(@, ackermann(1, 1))

ackermann(@, ackermann(1, 9))
A2
ackermann(0, 1)

ackermann(0, 2)
ackermann(@, 3)

—— ackermann(@, 4)

(0]

=mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1025

r Luis Herndndez Yafiez
L.

Fundamentos de la programacion

Codigo del subprograma recursivo

(0]

=@ ~undamentos de la programacion: Introduccidn a la recursion Pagina 1026

r Luis Hernandez Yafiez
L.

Caddigo del subprograma recursivo

Codigo anteriory posterior a la llamada recursiva

{
Codigo anterior
Llamada recursiva
Codigo posterior

}

Codigo anterior

Se ejecuta para las distintas entradas antes que el cédigo posterior
Codigo posterior

Se ejecuta para las distintas entradas tras llegarse al caso base

El c6digo anterior se ejecuta en orden directo para las distintas
entradas, mientras que el cédigo posterior lo hace en orden inverso

Si no hay cédigo anterior: recursién por delante

Luis Herndndez Yafiez

Si no hay cddigo posterior: recursion por detrds

(0]

s =mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1027

Caddigo del subprograma recursivo

Cddigo anteriory posterior a la llamada recursiva

void func(int n) {
if (n > @) { // Caso base: n
cout << "Entrando (" << n << ")" << endl; // Cédigo anterior
func(n - 1); // Llamada recursiva
cout << "Saliendo (" << n << ")" << endl; // Cédigo posterior

1]
1]
ER)

}
}

- func(5);

El c6digo anterior se ejecuta
para los sucesivos valores de n (5, 4, 3, ...)

El codigo posterior al revés (1, 2, 3, ...)

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1028

Cédigo del subprograma recursivo

Recorrido de los elementos de una lista (directo)

El codigo anterior a la llamada procesa la lista en su orden:

void mostrar(tLista lista, int pos);

int main() {
tlLista lista;
lista.cont = 0;
// Carga del array...
mostrar(lista, 9);

return 0;

}

void mostrar(tLista lista, int pos) {
if (pos < lista.cont) {
lcout << lista.elementos[pos] << endl;]
mostrar(lista, pos + 1);

}

—

Luis Herndndez Yafiez

(0]

=mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1029

©)
E

Cédigo del subprograma recursivo

Recorrido de los elementos de una lista (inverso)

El codigo posterior procesa la lista en el orden inverso:

void mostrar(tLista lista, int pos);

int main() {
tLista lista;
lista.cont = 0;
// Carga del array...
mostrar(lista, 9);

return 0;

}

void mostrar(tLista lista, int pos) {
if (pos < lista.cont) {

)

s mostrar(lista, pos + 1);

% lcout << lista.elementos[pos] << endl;]

T }

é

I E E

Fundamentos de la programacion: Introduccién a la recursion Pagina 1030

Fundamentos de la programacion

Parametros y recursion

(0]

s =@ ~undamentos de la programacion: Introduccidn a la recursion Pagina 1031

[Luis Herndndez Yafiez
L.

Parametros y recursion

Parametros por valor y por referencia

Parametros por valor: cada llamada usa los suyos propios
Parametros por referencia: misma variable en todas las llamadas
Recogen resultados que transmiten entre las llamadas

void factorial(int n, int &fact) {

if (n == 0) {
fact = 1;

}

else {

factorial(n - 1, fact);
fact = n * fact;

}
Cuando n es 0, el argumento de fact toma el valor 1

Al volver se le va multiplicando por los demas n (distintos)
(03]

e =mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1032

Luis Hernandez Yafiez

7 Luis Herndndez Yafiez

Fundamentos de la programacion

Ejemplos de algoritmos recursivos

A Fundamentos de la programacion: Introduccidn a la recursion Pagina 1033

7 Luis Herndndez Yafiez

Busqueda binaria

Parte el problema en subproblemas mas pequefios
Aplica el mismo proceso a cada subproblema
Naturaleza recursiva (casos base: encontrado o no queda lista)

Partimos de la lista completa
Si no queda lista... terminar (lista vacia: no encontrado)
En caso contrario...
Comprobar si el elemento en la mitad es el buscado
Si es el buscado... terminar (encontrado)
Si no...
Si el buscado es menor que el elemento mitad...
Repetir con la primera mitad de la lista
Si el buscado es mayor que el elemento mitad...
Repetir con la segunda mitad de la lista

—> La repeticion se consigue con las llamadas recursivas

A Fundamentos de la programacién: Introduccion a la recursion Pagina 1034

Busqueda binaria

Dos indices que indiquen el inicio y el final de la sublista:

int buscar(tLista lista, int buscado, int ini, int fin)
// Devuelve el indice (0, 1, ...) o -1 si no esta
;Cuales son los casos base?

v" Que ya no quede sublista (ini > fin) = No encontrado

v Que se encuentre el elemento

€9 Repasaen el Tema 7 cémo funciona y cémo se implement6

iterativamente la busqueda binaria (comparala con esta)

7 Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1035

Busqueda binaria

int buscar(tLista lista, int buscado, int ini, int fin) {
int pos = -1;
if (ini <= fin) {
int mitad = (ini + fin) / 2;
if (buscado == lista.elementos[mitad]) {
pos = mitad;

}

else if (buscado < lista.elementos[mitad]) {
pos = buscar(lista, buscado, ini, mitad - 1);

}
else {

pos = buscar(lista, buscado, mitad + 1, fin);
}

}

return pos;

}

Llamada: pos = buscar(lista, valor, @, lista.cont - 1);

% Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1036

Las Torres de Hanoi

Cuenta una leyenda que en un templo de Hanoi se dispusieron tres
pilares de diamante y en uno de ellos 64 discos de oro, de distintos
tamarios y colocados por orden de tamario con el mayor debajo

Torre de ocho discos (wikipedia.org)

Cada monje, en su turno, debia mover un unico disco de un pilar

a otro, para con el tiempo conseguir entre todos llevar la torre del
pilar inicial a uno de los otros dos; respetando una unica regla:
nunca poner un disco sobre otro de menor tamario

Cuando lo hayan conseguido, jse acabard el mundo!

[Se requieren al menos 2°4-1 movimientos; si se hiciera uno por segundo,
se terminaria en mas de 500 mil millones de afios]

7 Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1037

Las Torres de Hanoi

Queremos resolver el juego en el menor nimero de pasos posible
;Qué disco hay que mover en cada paso y a donde?
Identifiquemos los elementos (torre de cuatro discos):

A B C
Cada pilar se identifica con una letra
Mover del pilar X al pilar Y:

Coger el disco superior de Xy ponerlo encima de los que hayaen Y

% Luis Hernandez Yafiez

(3)
:

Fundamentos de la programacion: Introduccidn a la recursion Pagina 1038

Las Torres de Hanoi

Resolucion del problema en base
a problemas mas pequeios

Mover N discos del pilar A al pilar C:
Mover N-1 discos del pilar A al pilar B
Mover el disco del pilar A al pilar C
Mover N-1 discos del pilar B al pilar C

Para llevar N discos de un pilar origen a
otro destino se usa el tercero como auxiliar

Mover N-1 discos del origen al auxiliar
Mover el disco del origen al destino

Mover N-1 discos del auxiliar al destino

(0]

e =mr=m Fundamentos de la programacion: Introduccion a la recursion

[Luis Herndndez Yafiez
L.

Mover 4 discosde Aa C
A B C
|]| |
A B C
| I |
A B C
A B C

Pagina 1039

Las Torres de Hanoi

Mover N-1 discos se hace igual, pero
usando ahora otros origen y destino

Mover N-1 discos del pilar A al pilar B:
Mover N-2 discos del pilar A al pilar C
Mover el disco del pilar A al pilar B
Mover N-2 discos del pilar C al pilar B

Naturaleza recursiva de la soluciéon

&

Simulacién para 4 discos (wikipedia.org)

(0]

e =mr=m Fundamentos de la programacion: Introduccion a la recursion

[Luis Hernandez Yafiez
L.

Mover 3 discosde AaB

A B C

=

[

A

I |
A

I | I
A

B C

I
B C

|
B C

Pagina 1040

Luis Herndndez Yafiez

Las Torres de Hanoi

Caso base: no quedan discos que mover

void hanoi(int n, char origen, char destino, char auxiliar) {
if (n > 0) {
hanoi(n - 1, origen, auxiliar, destino);
cout << origen << " --> << destino << endl;
hanoi(n - 1, auxiliar, destino, origen);

¥
}
int main() {
int n;
cout << "Numero de torres: ";
cin >> n;

hanoi(n, 'A', 'C', 'B');

return 0;

-

(0]

©)
|::

=mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1041

Fundamentos de la programacion

r Luis Hernandez Yafiez
L.

Recursion frente a iteracion

(0]

=@ ~undamentos de la programacion: Introduccidn a la recursion Pagina 1042

Recursion frente a iteracion

long long int factorial(int n) { long long int factorial(int n) {
long long int fact; long long int fact = 1;
assert(n >= 0); assert(n >= 0);
if (n == 0) { for (int i = 1; i <= n; i++) {
fact = 1; fact = fact * i;
} }
else {
fact = n * factorial(n - 1); return fact;
} }
return fact;
}

fiez

(0]

=mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1043

r Luis Hernandez Ya
L.

Recursion frente a iteracion

¢/ Qué es preferible?
Cualquier algoritmo recursivo tiene uno iterativo equivalente
Los recursivos son menos eficientes que los iterativos:
Sobrecarga de las llamadas a subprograma
Si hay una versidn iterativa sencilla, sera preferible a la recursiva
En ocasiones la version recursiva es mucho mas simple
Sera preferible si no hay requisitos de rendimiento

Compara las versiones recursivas del factorial o de los nimeros
de Fibonacci con sus equivalentes iterativas

;Y qué tal una version iterativa para los niimeros de Ackermann?

fiez

(0]

=mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1044

r Luis Hernandez Ya
L.

Fundamentos de la programacion

Estructuras de datos recursivas

(0]

s =@ ~undamentos de la programacion: Introduccidn a la recursion Pagina 1045

[Luis Herndndez Yafiez
L.

Estructuras de datos recursivas

Definicion recursiva de listas

Ya hemos definido de forma recursiva alguna estructura de datos:

elemento seguido de una secuencia
Secuencia

secuencia vacia (ningun elemento)
Las listas son secuencias:

elemento seguido de una lista
Lista

lista vacia (ninguin elemento) (Caso base)

Lalista 1, 2, 3 consiste en el elemento 1 seguido de la lista 2, 3, que,
a su vez, consiste en el elemento 2 seguido de la lista 3, que, a su vez,
consiste en el elemento 3 seguido de la lista vacia (caso base)

Hay otras estructuras con naturaleza recursiva (p.e., los arboles)
que estudiaras en posteriores cursos

(0]

e =mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1046

Luis Hernandez Yafiez

Estructuras de datos recursivas

Procesamiento de estructuras de datos recursivas

Naturaleza recursiva de las estructuras: procesamiento recursivo
Procesar (lista):
Si lista no vacia (caso base):
Procesar el primer elemento de la lista // Cédigo anterior
Procesar (resto(lista))

Procesar el primer elemento de la lista // Cédigo posterior

resto(lista): sublista tras quitar el primer elemento

(0]

- =mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1047

r Luis Herndndez Yafiez
L.

Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacién de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Hernandez Yafiez

(0]

- =mr=m Fundamentos de la programacion: Introduccion a la recursion Pagina 1048

Fundamentos de |la programacion

Apendice:
Archivos binarios

Grado en Ingenieria Informatica
Grado en Ingenieria del Software
Grado en Ingenieria de Computadores

Luis Hernandez Yaiiez
Facultad de Informatica

Universidad Complutense

r4 [3
Indice
Flujos 1051
Archivos binarios 1054
Tamafio de los datos: El operador sizeof() 1056
Apertura de archivos binarios 1059
Lectura de archivos binarios (acceso secuencial) 1061
Escritura en archivos binarios (acceso secuencial) 1066
Acceso directo o aleatorio 1070
Ejemplos de uso de archivos binarios 1078
Ordenacion de los registros del archivo 1079
Busqueda binaria 1085
Insercion en un archivo binario ordenado 1088
Carga de los registro de un archivo en una tabla 1092
Almacenamiento de una tabla en un archivo 1093
@ ? Fundamentos de la programacion: Archivos binarios

Fundamentos de la programacion

Flujos

7 Luis Herndndez Yafiez

Fundamentos de programacién: Archivos binarios Pagina 1051

Entrada/salida

Flujos

Canalizan la E/S entre los dispositivos y el programa

En forma de secuencias de caracteres

La entrada puede proceder de un dispositivo o de un archivo
La salida puede dirigirse a un dispositivo o a un archivo

Siempre por medio de flujos
Dispositivos/archivos

Dispositivos/archivos de salida
de entrada

| | | IIIIIII--?"
ﬂ -

Fundamentos de programacioén: Archivos binarios Pagina 1052

7 Luis Herndndez Yafiez

Flujos

Flujos de texto y binarios

v" Flujo de texto: contiene una secuencia de caracteres
(Tloltlalll:] (11203 el Al
v" Flujo binario: contiene una secuencia de cddigos binarios.

A0 | 25 2F |04 [D6 | FF 10027 |6C | CA |49 07| 5F | As [

(Cédigos representados en notacidén hexadecimal.)
Lo que signifiquen los cddigos dependera del programa que use el archivo
En ambos casos se trata de una secuencia de caracteres
En el segundo caso se interpretan como cdédigos binarios
Sin contemplar caracteres especiales como \n o \t

Ya hemos usado flujos de texto para E/S por consola/archivos

7 Luis Hernandez Yafiez

(3)
:

Fundamentos de programacién: Archivos binarios Pagina 1053

Fundamentos de la programacion

Archivos binarios

% Luis Hernandez Yafiez

(3)
:

Fundamentos de programacién: Archivos binarios Pagina 1054

Archivos

Codificacion textual y binaria

Datos numéricos: se pueden guardar en forma textual o binaria
int dato = 124567894;

Representac1on como texto: caracteres '1' '2' '4' '5' '6'

Flujo de texto -ﬂﬂﬂﬂ-ﬂﬂﬂ--

O caracteres (se guarda el c6digo ASCII de cada uno)

Representacién binaria:
00000111 01101100 11000001 010101160 Hex: 07 6C C1 56

Flujo binario - [CZ IS G IEE N N I N O

4 caracteres interpretados como cédigos binarios

7 Luis Hernandez Yafiez

(o) (0]

=@ Fundamentos de programacién: Archivos binarios Pagina 1055

Archivos binarios

El operador sizeof ()

En los archivos binarios se manejan codigos binarios (bytes)
sizeof () (palabra clave): bytes que ocupa en memoria algo

Se aplica a un dato o a un tipo char = byte
const int Max = 80;
typedef char tCadena[Max];
typedef struct {
int codigo;
tCadena item;
double valor;
} tRegistro;
const int SIZE = sizeof(tRegistro);

En un archivo binario un dato del tipo tRegistro
ocupara exactamente SIZE caracteres

(o) (0]

=mr=m Fundamentos de programacion: Archivos binarios Pagina 1056

% Luis Hernandez Yafiez

El operador sizeof()

typedef struct {
int COd; MEMORIA
double val;

. reg [oro3:1a38)
} tReglstr\o; g s 100 I
tRegistro reg; orosi1ass [= » reg.cod
ConS't lnt SIZE — SiZGO'F(r‘eg); oros:1azs [SER) (4)
OF03:1A3C)
. . . OF03:1A3D
Posiciones de memoria usadas - SIZE < wrosi10se |
(12) '
OF03:1A3F
oros: 1010 |8 }E\Zi.val
‘3:1A41
Se guardan los SIZE bytes: | s
L BFE3:1A43 b,

FEE3:1A44 _
Flujo binario

oo | 00 | o0 o5 | 0a |37 | ac | oF |03 [92 [59 loe | | |

Luis Herndndez Yafiez

=@ Fundamentos de programacién: Archivos binarios Pagina 1057

Alineamiento a tamaiio de palabra

Por eficiencia, algunos campos de una estructura se pueden
forzar a ocupar un multiplo del tamafio de palabra del sistema

Tamafio de palabra (4, 8, 16, ... bytes): dato mas pequefio que se
lee de la memoria (aunque se usen sélo algunos de los bytes)

Asi, el tamafio real de las estructuras puede ser mayor que la
simple suma de los tamafios de cada tipo

Por ejemplo:

typedef struct {
char c;
int i;
} tRegistro;
const int SIZE = sizeof(tRegistro);

char (1 byte) + int (4 bytes) SIZE toma el valor 8 (4 + 4),no 5

Luis Hernandez Yafiez

char + int + double - 24 bytes (8 + 8 + 8)
NOTA: El tamafio de palabra y los tamafios de los tipos dependen del sistema concreto
() DEE

=mr=m Fundamentos de programacion: Archivos binarios Pagina 1058

Fundamentos de la programacion

Apertura de archivos binarios

7 Luis Herndndez Yafiez

Fundamentos de programacién: Archivos binarios Pagina 1059

Apertura de archivos binarios siblioteca fstrean

Archivos binarios: tipo fstream
Apertura: funciéon open(nombre, modo)
Nombre: char[] (funcién c_str() para cadenas de tipo string)

Modos de apertura del archivo:

Truncar: borrar todo lo que haya y empezar de nuevo

Concatenacion de modos: operador | (O binaria: suma bit a bit)
archivo.open("entrada.dat", ios::in | ios::binary);

7 Luis Herndndez Yafiez

A Fundamentos de programacién: Archivos binarios Pagina 1060

Fundamentos de la programacion

Lectura de archivos binarios
(acceso secuencial)

(0]

s =mrm ~undamentos de programacién: Archivos binarios Pagina 1061

[Luis Herndndez Yafiez
L.

Lectura de archivos binarios

archivo.read(puntero_al bufer, numero)

bufer: variable destino de los caracteres leidos
Pasado como puntero a secuencia de caracteres
Referencia (&) a la variable destino
Molde de puntero a caracter (char *)

numero: cantidad de caracteres a extraer del archivo
- Operador sizeof ()

Archivo abierto con los modos ios::in e ios::binary

archivo.read((char *) ®istro, sizeof(tRegistro));

Los caracteres leidos se interpretan como codigos binarios

Luis Hernandez Yafiez

(0]

e =mr=m Fundamentos de programacion: Archivos binarios Pagina 1062

Lectura de archivos binarios

Exito o fallo de la lectura
Funcidén gcount ()
N¢ de caracteres realmente leidos en la ultima operacion
Si coincide con el numero que se solicitaron leer: OK

Si son menos, se ha alcanzado el final del archivo: Fallo

tRegistro registro;
fstream archivo;
archivo.open("entrada.dat", ios::in | ios::binary);
archivo.read((char *) ®istro, sizeof(tRegistro));
if (archivo.gcount() < sizeof(tRegistro)) {
// Fallo en la lectura
}
else {
// Lectura OK

Luis Herndndez Yafiez

(0]

s =mr=m Fundamentos de programacion: Archivos binarios Pagina 1063

Lectura de archivos binarios

#include <iostream>
using namespace std;
#include <fstream>
#include "registro.h"

int main() {
tRegistro registro;
fstream archivo;
archivo.open("bd.dat", ios::in | ios::binary);
archivo.read((char *) ®istro, SIZE);
int cuantos = archivo.gcount();
while (cuantos == SIZE) {
mostrar(registro);
archivo.read((char *) ®istro, SIZE);
cuantos = archivo.gcount();

3

y o

2 archivo.close(); <= No olvides cerrar el archivo!
£ return 0;

g

}
(0]

e =mr=m Fundamentos de programacion: Archivos binarios Pagina 1064

Lectura de archivos binarios

El tipo tRegistro

const int Max = 80;
typedef char tCadena[Max];

typedef struct {
int codigo;
tCadena item;
double valor;
} tRegistro;

const int SIZE = sizeof(tRegistro);
¢ Por qué usamos cadenas al estilo de C?
string: tamafo variable en memoria
Requieren un proceso de serializacion

Las cadenas al estilo de C siempre ocupan lo mismo en memoria

Luis Herndndez Yafiez

(0]

s =mr=m Fundamentos de programacion: Archivos binarios Pagina 1065

Fundamentos de la programacion

Escritura en archivos binarios
(acceso secuencial)

(0]

e =@ ~undamentos de programacién: Archivos binarios Pagina 1066

[Luis Hernandez Yafiez
L.

Escritura en archivos binarios

archivo.write(puntero _al bufer, numero)

bufer: origen de los caracteres a escribir en el archivo
Pasado como puntero a secuencia de caracteres
Referencia (&) a la variable destino
Molde de puntero a caracter (char *)

numero: cantidad de caracteres a escribir en el archivo
- Operador sizeof ()

Archivo abierto con los modos ios: :out e ios: :binary

archivo.write((char *) ®istro, sizeof(tRegistro));

Se escriben tantos caracteres como celdas de memoria ocupe
la variable registro

Luis Herndndez Yafiez

Fundamentos de programacién: Archivos binarios Pagina 1067
Escritura en archivos binarios

#include <iostream>
using namespace std;
#include <fstream>
#include "registro.h"

int main() {
tRegistro registro;
fstream archivo;
archivo.open("bd2.dat", ios::out | ios::binary);
bool seguir = true;
while (seguir) {
cout << "Codigo: ";
cin.sync();
cin >> registro.codigo;
cout << "Nombre: ";
cin.sync();
cin.getline(registro.item, Max); // Max: 80

(0]

=mr=m Fundamentos de programacion: Archivos binarios Pagina 1068

r Luis Hernandez Yafiez
L.

Escritura en archivos binarios

cout << "Precio: ";

cin.sync();

cin >> registro.valor;

archivo.write((char *) ®istro, SIZE);
cout << "Otro [S/N]? “;

char c;

cin >> c;

if ((c == "'n") || (c == "'N")) {

seguir = false;

archivo.close(); <= iNo olvides cerrar el archivo!
(jpérdida de datos!)
return 0;
Z(E
53
2
5
T
I E E
Fundamentos de programacién: Archivos binarios Pagina 1069

Fundamentos de la programacion

Acceso directo o aleatorio

(0]

e =@ ~undamentos de programacién: Archivos binarios Pagina 1070

[Luis Hernandez Yafiez
L.

Archivos binarios: acceso directo

Acceso secuencial: empezando en el primero pasando a siguiente

Acceso directo (también llamado aleatorio):

Para localizar registros individuales necesitamos otras rutinas:

v' tellg():lugar donde se encuentra el puntero del archivo
Siguiente posicion donde se realizard una lectura o escritura

v seekg(desplazamiento, origen):

Lleva el puntero del archivo a una posicién concreta:
desplazamiento caracteres desde el origen indicado

Origen:
ios: :beg: principio del archivo
ios: :cur: posicion actual

ios: :end: final del archivo

7 Luis Hernandez Yafiez

Fundamentos de programacién: Archivos binarios Pagina 1071

Archivos binarios: acceso directo

os::beg ios::end
SIZE 2*SIZE 3*SIZE 4*SIZE 5*SIZE 6*SIZE

\l, SIZE \1, SIZE \l, SIZE \1, SIZE SIZE \l, SIZE

tRegistro | tRegistro | tRegistro | tRegistro | tRegistro | tRegistro

const int SIZE = sizeof(tRegistro);

Cada registro ocupa SIZE caracteres en el archivo

;Cuantos registros hay en el archivo?
archivo.seekg(@, ios::end); // © car. desde el final -> final

int pos = archivo.tellg(); // Total de caracteres del archivo
int numReg = pos / SIZE;

% Luis Hernandez Yafiez

Fundamentos de programacioén: Archivos binarios Pagina 1072

Archivos binarios: acceso directo

os::beg ios::end
SIZE 2*SIZE 3*SIZE 4*SIZE 5*SIZE 6*SIZE

\1, SIZE \1, SIZE \l, SIZE \1, SIZE SIZE \l, SIZE

tRegistro | tRegistro | tRegistro | tRegistro | tRegistro | tRegistro

const int SIZE = sizeof(tRegistro);

Poner el puntero del archivo en un n? de registro:
archivo.seekg((num - 1) * SIZE, ios::beg);

7 Luis Hernandez Yafiez

Fundamentos de programacién: Archivos binarios Pagina 1073

Archivos binarios: acceso directo

Lecturas y escrituras

Una vez ubicado el puntero al principio de un registro,
se puede leer el registro o actualizar (escribir) el registro

Si se ubica al final, se puede afiadir (escribir) un nuevo registro

Archivos binarios de lectura/escritura:
Se han de abrir con los modos ios: :in, ios::out e ios: :binary
archivo.open("bd.dat", ios::in | ios::out | ios::binary);

Ahora podemos tanto leer como escribir

% Luis Hernandez Yafiez

Fundamentos de programacioén: Archivos binarios Pagina 1074

Acceso directo

actualizar.cpp

// Actualizacidén de un registro
#include <iostream>

using namespace std;

#include <fstream>

#include "registro.h"

int main() {
tRegistro registro;
fstream archivo;

archivo.open("bd.dat", ios::in
archivo.seekg(@, ios::end);
int pos = archivo.tellg();

int numReg = pos / SIZE;

cout << "Numero de registros:
int num;

cout << "Registro numero? ";
cin >> num;

(0]

-

r Luis Herndndez Yafiez
|
L.

Fundamentos de programacién: Archivos binarios

ios::out | ios::binary);

<< numReg << endl;

Pagina 1075

Acceso directo

if ((num > @) && (num <= numReg)) {
archivo.seekg((num - 1) * SIZE, ios::beg);
archivo.read((char *) ®istro, SIZE);

mostrar(registro);

cout << endl << "Cambiar nombre [S/N]? ";

char c;
cin.sync();
cin >> c;

if ((c =="s") [] (c ST A

",
J

cout << "Nombre:
cin.sync();

cin.getline(registro.item, 890);

}

cout << endl <<
cin.sync();
cin >> c;
if ((c =="s") || (c
cout << "Precio: ";
cin >> registro.valor;

ISI

(0]

r Luis Hernandez Yafiez
|
L.

Fundamentos de programacioén: Archivos binarios

[

Cambiar precio [S/N]? ";

Pagina 1076

Acceso directo

archivo.
archivo.

cout <«

archivo.
archivo.

seekg((num - 1) * SIZE, ios::beg);
write((char *) ®istro, SIZE);

endl << "Registro actualizado:" << endl;
seekg((num - 1) * SIZE, ios::beg);

read((char *) ®istro, SIZE);

mostrar(registro);

}

archivo.close();

return 0;

(0]

r Luis Herndndez Yafiez
L.

=@ Fundamentos de programacién: Archivos binarios Pagina 1077

Fundamentos de la programacion

Ejemplos de uso

de archivos binarios

(0]

r Luis Hernandez Yafiez
L.

=@ ~undamentos de programacién: Archivos binarios Pagina 1078

Ordenacion de los registros

r Luis Herndndez Yafiez
L.

Mediante un acceso directo a los registros del archivo

Ordenaremos por el campo item

#include <iostream>
using namespace std;
#include <fstream>
#include <iomanip>
#include <cstring>
#include "registro.h"

const char BD[] = "lista.dat";

void mostrar();

(@l Fundamentos de programacién: Archivos binarios Pagina 1079
[Y & []
Ordenacion de los registros
void mostrar() {
fstream archivo;
tRegistro registro;
int cuantos;
archivo.open(BD, ios::in | ios::binary);
archivo.read((char *) ®istro, SIZE);
cuantos = archivo.gcount();
while (cuantos == SIZE) {
mostrar(registro);
archivo.read((char *) ®istro, SIZE);
cuantos = archivo.gcount();
}
archivo.close();
.}
Fundamentos de programacién: Archivos binarios Pagina 1080

Luis Herndndez Yafiez

ﬂﬂ-

Ordenacidn de los registros

int main() {

mostrar();

Orden inicial

fstream archivo;

archivo.open(BD, ios::in | ios::out | ios::binary);
archivo.seekg(9, ios::end);

int pos = archivo.tellg();

int numReg = pos / SIZE;

HEE

Smrm Fundamentos de programacidn: Archivos binarios Pagina 1081

Luis Hernandez Yafiez

ﬂﬂ-

Ordenacidn de los registros

// Ordenamos con el método de seleccidn directa
tRegistro regMenor, reg;
for (int i = @; i < numReg - 1; i++) {
int menor = i;
for (int j =i + 1; j < numReg; j++) {
archivo.seekg(menor * SIZE, ios::beg);
archivo.read((char *) ®Menor, SIZE);
archivo.seekg(j * SIZE, ios::beg);
archivo.read((char *) ®, SIZE);
if (strcmp(reg.item, regMenor.item) < 0) {
menor = j;

regMenor reg

1 J
l I - -
- -
- -
.

HEE

S—mrm Fundamentos de programacion: Archivos binarios Pagina 1082

Ordenacidn de los registros

if (menor > i) { // Intercambiamos
archivo.seekg(i * SIZE, ios::beg);
archivo.read((char *) ®, SIZE);
archivo.seekg(menor * SIZE, ios::beg);
archivo.read((char *) ®Menor, SIZE);
archivo.seekg(i * SIZE, ios::beg);
archivo.write((char *) ®Menor, SIZE);
archivo.seekg(menor * SIZE, ios::beg);
archivo.write((char *) ®, SIZE);

© ® 0 0C

reg regMenor

Luis Herndndez Yafiez
. A

ﬂﬂ-

HEE

Smrm Fundamentos de programacidn: Archivos binarios Pagina 1083

Ordenacidn de los registros

archivo.close();

cout << endl << "Tras ordenar:
mostrar();

<< endl << endl;

return 0;

Luis Hernandez Yafiez

ﬂﬂ-

HEE

S—mrm Fundamentos de programacion: Archivos binarios Pagina 1084

Busqueda binaria

Archivo binario ordenado; por codigo

#include <iostream>
using namespace std;
#include <fstream>
#include "registro.h"

const char BD[] = "ord.dat";

void mostrar();

int main() {

(0]

-

r Luis Herndndez Yafiez
L.

mostrar();
tRegistro registro;
fstream archivo;

Fundamentos de programacién: Archivos binarios

Pagina 1085

Busqueda binaria

(0]

-

r Luis Hernandez Yafiez
L.

archivo.open(BD, ios::in | ios::binary);
archivo.seekg(9, ios::end);
int pos = archivo.tellg();
int numReg = pos / SIZE;
int buscado;
cout << "Codigo a buscar: ";
cin >> buscado;
int ini = @, fin = numReg - 1, mitad;
bool encontrado = false;
while ((ini <= fin) && !encontrado) {
mitad = (ini + fin) / 2;
archivo.seekg(mitad * SIZE, ios::beg);
archivo.read((char *) ®istro, SIZE);
if (buscado == registro.codigo) {
encontrado = true;
}
else if (buscado < registro.codigo) {
fin = mitad - 1;

}

Fundamentos de programacioén: Archivos binarios

Pagina 1086

Busqueda binaria

else {
ini = mitad + 1;
}
}
if (encontrado) {
int pos = mitad + 1;
cout << "Encontrado en la posicion "
mostrar(registro);
}
else {
cout << "No encontrado!" << endl;
}

archivo.close();

return 0;

fiez
—

Luis Hernandez Ya

(0]

-

©)
|:;

Fundamentos de programacién: Archivos binarios

<< pos << endl;

Pagina 1087

Inserciéon en un archivo ordenado

Ordenado por el campo codigo

#include <iostream>
using namespace std;
#include <fstream>
#include "registro.h"

const char BD[] = "ord2.dat";
void mostrar();

int main() {
mostrar();
tRegistro nuevoRegistro =
fstream archivo;

archivo.seekg(@, ios::end);
int pos = archivo.tellg();
int numReg = pos / SIZE;

(0]

-

r Luis Hernandez Yafiez
L.

Fundamentos de programacioén: Archivos binarios

nuevo(), registro;

archivo.open(BD, ios::in | ios::out | ios::binary);

Pagina 1088

Insercion en un archivo ordenado

pos = 0;
bool encontrado = false;
archivo.seekg(9, ios::beg);
while ((pos < numReg) && !encontrado) {
archivo.read((char *) ®istro, SIZE);
if (registro.codigo > nuevoRegistro.codigo) {
encontrado = true;

¥

else {
pOS++;

¥

}
if (pos == numReg) { // Debe ir al final

archivo.seekg(@, ios::end);
archivo.write((char *) &nuevoRegistro, SIZE);

7 Luis Hernandez Yafiez

(3)
:

Fundamentos de programacién: Archivos binarios Pagina 1089

Insercion en un archivo ordenado

else { // Hay que hacer hueco

for (int i = numReg - 1; i >= pos; i--) {
archivo.seekg(i * SIZE, ios::beg);
archivo.read((char *) ®istro, SIZE);
archivo.seekg((i + 1) * SIZE, ios::beg);
archivo.write((char *) ®istro, SIZE);

}

archivo.seekg(pos * SIZE, ios::beg);

archivo.write((char *) &nuevoRegistro, SIZE);

}

archivo.close();
mostrar(); nuevoRegistr‘o

return 0; (3] (2] (1)

| ----fff

Fundamentos de programacioén: Archivos binarios Pagina 1090

% Luis Hernandez Yafiez

(3)
:

Insercion en un archivo ordenado

Al principio

Por el medio

Al final

(0]

s =@ Fundamentos de programacién: Archivos binarios Pagina 1091

[Luis Herndndez Yafiez
L.

Carga de los registros en una tabla

void cargar(tTabla &tabla, bool &ok) {
ok = true;
fstream archivo;
archivo.open(BD, ios::in | ios::binary);
if (larchivo.is open()) {
ok = false;
}

else {

archivo.seekg(@, ios::end);

int pos = archivo.tellg();

int numReg = pos / SIZE;

tabla.cont = 9;

tRegistro registro;

archivo.seekg(@, ios::beg);

for (int i = @; i < numReg; i++) {
archivo.read((char *) ®istro, SIZE);
tabla.registros[tabla.cont] = registro;
tabla.cont++;

}

archivo.close();

}
(0]

e =mx=m Fundamentos de programacion: Archivos binarios Pagina 1092

[Luis Hernandez Yafiez
L.

Almacenamiento de la tabla

void guardar(tTabla tabla) {
fstream archivo;
archivo.open(BD, ios::out | ios::binary | ios::trunc);
for (int i = @; i < tabla.cont; i++) {
archivo.write((char *) &tabla.registros[i], SIZE);

}

archivo.close();

(0]

=@ Fundamentos de programacién: Archivos binarios Pagina 1093

r Luis Herndndez Yafiez
L.

Carga y almacenamiento

#include <iostream>
using namespace std;
#include "registro.h"
#include "tabla.h"

int main() {
tTabla tabla;
tTabla ok;
cargar(tabla, ok);
if (lok) {
cout << "Error al abrir el archivo!" << endl;
}

else {
mostrar(tabla);
insertar(tabla, nuevo(), ok);
mostrar(tabla);
guardar(tabla);

}

return 0;

-

Luis Hernandez Yafiez

(0]

=mr=m Fundamentos de programacion: Archivos binarios Pagina 1094

©)
|:;

Acerca de Creative Commons !@@@@‘

Licencia CC (Creative Commons)

Este tipo de licencias ofrecen algunos derechos a terceras personas
bajo ciertas condiciones.

Este documento tiene establecidas las siguientes:

Reconocimiento (Attribution):
En cualquier explotacion de la obra autorizada por la licencia
hara falta reconocer la autoria.

No comercial (Non commercial):
La explotacion de la obra queda limitada a usos no comerciales.

Compartir igual (Share alike):
La explotacion autorizada incluye la creacion de obras derivadas
siempre que mantengan la misma licencia al ser divulgadas.

Pulsa en la imagen de arriba a la derecha para saber mas.

Luis Herndndez Yafiez

(0]

=mr'm Fundamentos de programacion: Archivos binarios Pagina 1095

	Índice general

	Referencias bibliográficas

	Tema 1: Computadoras y programación

	Informática, computadoras y programación

	Lenguaje máquina y ensamblador

	Lenguajes de programación de alto nivel

	Un poco de historia

	Programación e I
ngeniería del Software
	El lenguaje de programación C++

	Sintaxis de los lenguajes de programación

	Un primer programa en C++

	Herramientas de desarrollo

	C++: Un mejor C

	Tema 2: Tipos e instrucciones I
	Un ejemplo de programación

	El primer programa en C++

	Las líneas de código del programa

	Cálculos en los pro
gramas
	Variables

	Expresiones

	Lectura de datos desde el teclado

	Resolución de problemas

	Los datos de los programas

	Identificadores

	Tipos de datos

	Declaración y uso de variables

	Instrucciones de asignación

	Operadores

	Más sobre expresiones

	Constantes

	La biblioteca cmath

	Operaciones con caracteres

	Operadores relacionales

	Toma de decisiones (if)

	Bloques de código

	Bucles (while)

	Entrada/salida por consola

	Funciones definidas por
 el programador

	Tema 2 (Anexo): Detalles técnicos

	Tema 3: Tipos e instrucciones II

	Tipos, valores y variables

	Conversión de tipos

	Tipos declarados por el usuario

	Tipos enumerados

	E/S con archivos de texto

	Lectura de archivos de texto

	Escritura en archivos de texto

	Flujo de ejecución

	Selección simple

	Operadores lógicos

	Anidamiento de if

	Condiciones

	Selección múltiple

	La escala if-else-if

	La instrucción switch

	Repetición

	El bucle while

	El bucle for

	Bucles anidados

	Ámbito y visibilidad

	Secuencias

	Recorrido de secuencias

	Secuencias calculadas

	Búsqueda en secuencias

	Arrays de tipos simples

	Uso de variables arrays

	Recorrido de arrays

	Búsqueda en arrays

	Capacidad y copia de arrays

	Arrays no completos

	Tema 3 (Anexo I
): El operador ternario ?
	Tema 3 (Anexo II): Ejemplos de secuencias

	Recorridos

	Búsquedas

	Búsquedas en secuencias ordenadas

	Tema 4: La abstracción procedimental

	Diseño descendente: tareas y subtareas

	Subprogramas

	Subprogramas y datos

	Parámetros

	Argumentos

	Resultado de la función

	Prototipos

	Funciones de operador

	Diseño descendente (un ejemplo)

	Precondiciones y postcondiciones

	Tema 4 (Anexo): Más sobre subprogramas

	Archivos como parámetros

	La función main()

	Argumentos implícitos

	Sobrecarga de subprogramas

	Tema 5: Tipos de datos estructurados

	Tipos de datos

	Arrays de nuevo

	Más sobre arrays

	Implementación de listas

	Cadenas de caracteres

	Cadenas de caracteres de tipo string

	Estructuras

	Listas de longitud variable

	Un ejemplo concreto

	El bucle do-while

	Tema 5 (Anexo): Cadenas de caracteres al estilo de C

	Tema 6: Recorrido y búsqueda en arrays

	Recorrido de arrays

	Ejemplos

	Búsquedas en arrays

	Ejemplo

	Recorridos y búsquedas en cadenas de caracteres

	Más ejemplos de manejo de arrays

	Arrays multidimensionales

	Tema 7: Algoritmos de ordenación

	Algoritmos de ordenación

	Ordenación por inserción

	Ordenación por inserción con intercambios

	Claves de ordenación

	Estabilidad de la ordenación

	Complejidad y eficiencia

	Ordenación por selección directa

	Método de la burbuja

	Listas ordenadas

	Búsquedas en listas ordenadas

	Búsqueda binaria

	Tema 7 (Anexo): Más sobre ordenación

	Ordenación por intercambio

	Mezcla de listas ordenadas

	Tema 8: Programación modular

	Programas multiarchivo y compilación separada

	Interfaz frente a implementación

	Uso de módulos de biblioteca

	Compilación de programas multiarchivo

	El preprocesador

	Cada cosa en su módulo

	El problema de las inclusiones múltiples

	Implementaciones alternativas

	Espacios de nombres

	Calidad y reutilización del software

	Tema 8 (Anexo): Ejemplo de modularización

	Tema 9: Punteros y memoria dinámica

	Direcciones de memoria y punteros

	Operadores de punteros

	Punteros y direcciones válidas

	Copia y comparación de punteros

	Tipos puntero

	Punteros y paso de parámetros

	Punteros y arrays

	Memoria y datos del programa

	Memoria dinámica

	Punteros y datos dinámicos

	Gestión de la memoria

	Errores comunes

	Arrays de datos dinámicos

	Arrays dinámicos

	Tema 9 (Anexo): Más sobre punteros y memoria dinámica

	Aritmética de punteros

	Recorrido de arrays con punteros

	Referencias

	Listas enlazadas

	Tema 10: Introducción a la recursión

	Recursión

	Algoritmos recursivos

	Modelo de ejecución

	Tipos de recursión

	Código del subprograma recursivo

	Parámetros y recursión

	Ejemplos de algoritmos recursivos

	Recursión frente a iteración

	Estructuras de datos recursivas

	Apéndice: Archivos binarios

	Flujos

	Archivos binarios

	Apertura de archivos binarios

	Lectura de archivos binarios (secuencial)

	Escritura en archivos binarios (secuencial)

	Acceso directo o aleatorio

	Ejemplos de uso de archivos binarios

