

Facultad de Informática
Universidad Complutense

Apuntes de clase de la asignatura

Fundamentos de la programación

1º curso

Grado en Ingeniería en Informática

Grado en Ingeniería del Software

Grado en Ingeniería de Computadores

2013‐2014

Luis Hernández Yáñez

Licencia Creative Commons:
Reconocimiento, No comercial y Compartir igual.

http://creativecommons.org/licenses/by‐nc‐sa/3.0/

Esta publicación contiene los apuntes de clase de la asignatura

Fundamentos de la programación, asignatura de 1º curso de los grados

que se imparten en la Facultad de Informática de la UCM.

Durante los tres primeros cursos en los que se ha impartido la asignatura,

este material ha sido sometido a continuas revisiones y contribuciones

por parte de los profesores que han impartido los distintos grupos

de la asignatura. Aunque el trabajo ha quedado bastante consolidado,

estoy seguro de que todavía contiene muchas erratas. Si encuentras alguna,

no dudes, por favor, en hacérmelo saber y conseguir así

que la siguiente versión esté mejor depurada.

Quiero agradecer a todos los profesores que han impartido la asignatura

su contribución en el desarrollo del material, destacando especialmente

la labor de Pablo Moreno Ger y Carlos Cervigón Rückauer.

Luis Hernández Yáñez

Profesor de la Facultad de Informática de la UCM

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación

TC

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Tema 1 Computadoras y programación 1
Tema 2 Tipos e instrucciones I 48

Anexo: Detalles técnicos de los tipos 212
Tema 3 Tipos e instrucciones II 225

Anexo I: El operador ternario ? 398
Anexo II: Ejemplos de secuencias 402

Tema 4 La abstracción procedimental 425
Anexo: Más sobre subprogramas 496

Tema 5 Tipos de datos estructurados 512
Anexo: Cadenas al estilo de C 580

Tema 6 Recorrido y búsqueda en arrays 588
Tema 7 Algoritmos de ordenación 649

Anexo: Más sobre ordenación 742
Tema 8 Programación modular 755

Anexo: Ejemplo de modularización 832
Tema 9 Punteros y memoria dinámica 847

Anexo: Punteros y memoria dinámica 938
Tema 10 Introducción a la recursión 981
Apéndice: Archivos binarios 1049

Fundamentos de la programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Informática, computadoras y programación 3
Lenguaje máquina y ensamblador 12
Lenguajes de programación de alto nivel 15
Un poco de historia 19
Programación e Ingeniería del Software 24
El lenguaje de programación C++ 27
Sintaxis de los lenguajes de programación 30
Un primer programa en C++ 35
Herramientas de desarrollo 39
C++: Un mejor C 45

Fundamentos de la programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Un ejemplo de programación 50
El primer programa en C++ 64
Las líneas de código del programa 80
Cálculos en los programas 86
Variables 92
Expresiones 98
Lectura de datos desde el teclado 108
Resolución de problemas 119
Los datos de los programas 127
Identificadores 129
Tipos de datos 133
Declaración y uso de variables 142
Instrucciones de asignación 147
Operadores 152
Más sobre expresiones 160
Constantes 167
La biblioteca cmath 171
Operaciones con caracteres 174

Operadores relacionales 177
Toma de decisiones (if) 180
Bloques de código 183
Bucles (while) 186
Entrada/salida por consola 190
Funciones definidas

por el programador 199

Fundamentos de la programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int 214
float 216
Notación científica 217
double 218
char 220
bool 221
string 222
Literales con especificación de tipo 223

Fundamentos de la programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

Tipos, valores y variables 227
Conversión de tipos 232
Tipos declarados por el usuario 236
Tipos enumerados 238
Entrada/Salida

con archivos de texto 248
Lectura de archivos de texto 253
Escritura en archivos de texto 266

Flujo de ejecución 272
Selección simple 276
Operadores lógicos 282
Anidamiento de if 286
Condiciones 290
Selección múltiple 293

La escala if‐else‐if 295
La instrucción switch 302

Repetición 313
El bucle while 316

El bucle for 321
Bucles anidados 331

Ámbito y visibilidad 339
Secuencias 349

Recorrido de secuencias 355
Secuencias calculadas 363
Búsqueda en secuencias 370

Arrays de datos simples 374
Uso de variables arrays 379
Recorrido de arrays 382
Búsqueda en arrays 387
Arrays no completos 393

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

El operador ternario ? 399

Recorridos 404
Un aparcamiento 405
¿Paréntesis bien emparejados? 409
¿Dos secuencias iguales? 412
Números primos menores que N 413

Búsquedas 417
Búsqueda de un número en un archivo 419
Búsquedas en secuencias ordenadas 420

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

Diseño descendente: Tareas y subtareas 427
Subprogramas 434
Subprogramas y datos 441
Parámetros 446
Argumentos 451
Resultado de la función 467
Prototipos 473
Ejemplos completos 475
Funciones de operador 477
Diseño descendente (un ejemplo) 480
Precondiciones y postcondiciones 490

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: La abstracción procedimental (Anexo)

Archivos como parámetros 498
La función main() 501
Argumentos implícitos 504
Sobrecarga de subprogramas 508

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

Tipos de datos 514
Arrays de nuevo 517
Arrays y bucles for 520
Más sobre arrays 522

Inicialización de arrays 523
Enumerados como índices 524
Paso de arrays a subprogramas 525

Implementación de listas 528
Cadenas de caracteres 531
Cadenas de caracteres de tipo string 535

Entrada/salida con string 539
Operaciones con string 541

Estructuras 543
Estructuras dentro de estructuras 549
Arrays de estructuras 550
Arrays dentro de estructuras 551

Listas de longitud variable 552
Un ejemplo completo 558
El bucle do..while 562

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

Cadenas al estilo de C 582
E/S con cadenas al estilo de C 583
La biblioteca cstring 584
Ejemplo 585

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

Recorrido de arrays 590
Arrays completos 593
Arrays no completos con centinela 594
Arrays no completos con contador 595
Ejemplos 597
Generación de números aleatorios 601

Búsquedas en arrays 604
Arrays completos 606
Arrays no completos con centinela 607
Arrays no completos con contador 608
Ejemplo 610

Recorridos y búsquedas en cadenas 614
Más ejemplos de manejo de arrays 617
Arrays multidimensionales 630

Inicialización de arrays multidimensionales 638
Recorrido de un array bidimensional 641
Recorrido de un array N‐dimensional 644
Búsqueda en un array multidimensional 647

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

Algoritmos de ordenación 651
Algoritmo de ordenación por inserción 654

Ordenación de arrays por inserción 665
Algoritmo de ordenación por inserción

con intercambios 672
Claves de ordenación 680
Estabilidad de la ordenación 688
Complejidad y eficiencia 692

Ordenaciones naturales 694
Ordenación por selección directa 701
Método de la burbuja 716
Listas ordenadas 722
Búsquedas en listas ordenadas 729
Búsqueda binaria 731

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

Ordenación por intercambio 744
Mezcla de dos listas ordenadas 747

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

Programas multiarchivo y compilación separada 757
Interfaz frente a implementación 762
Uso de módulos de biblioteca 768
Ejemplo: Gestión de una lista ordenada I 770
Compilación de programas multiarchivo 778
El preprocesador 780
Cada cosa en su módulo 782
Ejemplo: Gestión de una lista ordenada II 784
El problema de las inclusiones múltiples 789

Compilación condicional 794
Protección frente a inclusiones múltiples 795

Ejemplo: Gestión de una lista ordenada III 796
Implementaciones alternativas 804
Espacios de nombres 808

Implementaciones alternativas 817
Calidad y reutilización del software 827

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

Modularización de un programa 833

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

Direcciones de memoria y punteros 849
Operadores de punteros 854
Punteros y direcciones válidas 864

Punteros no inicializados 866
Un valor seguro: NULL 867

Copia y comparación de punteros 868
Tipos puntero 873

Punteros a estructuras 875
Punteros a constantes y punteros constantes 877

Punteros y paso de parámetros 879
Punteros y arrays 883
Memoria y datos del programa 886
Memoria dinámica 891
Punteros y datos dinámicos 895
Gestión de la memoria 907
Errores comunes 911
Arrays de datos dinámicos 916
Arrays dinámicos 928

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

Aritmética de punteros 940
Recorrido de arrays con punteros 953
Referencias 962
Listas enlazadas 964

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

Concepto de recursión 983
Algoritmos recursivos 986

Funciones recursivas 987
Diseño de funciones recursivas 989

Modelo de ejecución 990
La pila del sistema 992
La pila y las llamadas a función 994
Ejecución de la función factorial() 1005

Tipos de recursión 1018
Recursión simple 1019
Recursión múltiple 1020
Recursión anidada 1022
Recursión cruzada 1026

Código del subprograma recursivo 1027
Parámetros y recursión 1032
Ejemplos de algoritmos recursivos 1034

Búsqueda binaria 1035
Torres de Hanoi 1038

Recursión frente a iteración 1043
Estructuras de datos recursivas 1045

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación

Flujos 1051
Archivos binarios 1054
Tamaño de los datos: El operador sizeof() 1056
Apertura de archivos binarios 1059
Lectura de archivos binarios (acceso secuencial) 1061
Escritura en archivos binarios (acceso secuencial) 1066
Acceso directo o aleatorio 1070
Ejemplos de uso de archivos binarios 1078

Ordenación de los registros del archivo 1079
Búsqueda binaria 1085
Inserción en un archivo binario ordenado 1088
Carga de los registro de un archivo en una tabla 1092
Almacenamiento de una tabla en un archivo 1093

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación

RB

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

 Programming.	Principles and	Practice Using	C++
B.	Stroustrup.	Pearson Education,	2009

 C++:	An Introduction to Computing (2ª	edición)
J.	Adams,	S.	Leestma,	L.	Nyhoff.	Prentice	Hall,	1998

 El	lenguaje	de	programación		C++ (Edición	especial)
B.	Stroustrup.	Addison‐Wesley,	2002

 Programación	y	resolución	de	problemas	con	C++
N.	Dale,	C.	Weems.	McGraw‐Hill	Interamericana,	2007

 Problem Solving,	Abstraction,	Design Using	C++ (3ª	edición)
F.L.	Friedman,	E.B.	Koffman.	Addison‐Wesley,	2000.

 Programación	en	C++	para	ingenieros
F.	Xhafa et	al.	Thomson,	2006

Fundamentos de la programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Programming.	Principles and	Practice Using	C++
Del	autor	del	lenguaje	C++,	un	amplio	tutorial	que	enseña	a	programar	
en	C++;	hace	un	uso	temprano	de	conceptos	de	orientación	a	objetos	y	
de	la	STL,	que	quedan	fuera	del	temario	de	este	curso

C++:	An Introduction to Computing (2ª	edición)
Buena	introducción	a	la	programación	en	C++;	buena	organización	de	
los	contenidos,	bien	desarrollado	y	con	secciones	prácticas

El	lenguaje	de	programación		C++ (Edición	especial)
Del	autor	del	lenguaje	C++,	la	referencia	absoluta	sobre	el	lenguaje	C++	
en	la	que	consultar	dudas	y	detalles	técnicos	sobre	los	elementos	del	
lenguaje

Fundamentos de la programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Programación	y	resolución	de	problemas	con	C++
Un	enfoque	práctico	al	desarrollo	de	programas	con	C++	con	
numerosos	ejemplos

Problem Solving,	Abstraction,	Design Using	C++ (3ª	edición)
Introducción	a	la	programación	en	C++	con	un	enfoque	de	desarrollo	
de	software	y	numerosos	casos	de	estudio

Programación	en	C++	para	ingenieros
Introducción	a	la	programación	en	C++	con	explicaciones	sencillas	y	
una	organización	clara

Fundamentos de la programación

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación

1

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Informática, computadoras y programación 3
Lenguaje máquina y ensamblador 12
Lenguajes de programación de alto nivel 15
Un poco de historia 19
Programación e Ingeniería del Software 24
El lenguaje de programación C++ 27
Sintaxis de los lenguajes de programación 30
Un primer programa en C++ 35
Herramientas de desarrollo 39
C++: Un mejor C 45

Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 3Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Informática	(Ciencia	de	la	computación)
Conjunto	de	conocimientos	científicos	y	técnicas	
que	hacen	posible	el	tratamiento	automático	
de	la	información	por	medio	de	ordenadores

Computadora
Máquina	electrónica,	analógica	o	digital,
dotada	de	una	memoria de	gran	capacidad	
y	de	métodos	de	tratamiento de	la	información,	
capaz	de	resolver	problemas matemáticos	y	lógicos
mediante	la	ejecución de	programas informáticos

Página 4Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

En	todas	partes	y	con	muchas	formas

Página 5Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Hardware
Componentes	que	integran
la	parte	material	
de	una	computadora

Software
Programas,	instrucciones	
y	reglas	informáticas	
para	ejecutar	tareas	
en	una	computadora

Página 6Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Programar
Indicar	a	la	computadora	qué	es	lo	que	tiene	que	hacer

Programa
 Secuencia	de	instrucciones
 Instrucciones	que	entiende	la	computadora
 Y	que	persiguen	un	objetivo:	¡resolver	un	problema!

Página 7Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Trabajo	en	equipo
Múltiples	roles...
 Gestores
 Analistas
 Diseñadores
 Programadores
 Probadores
 Administradores	de	
sistemas
...

Página 8Fundamentos de la programación: Computadoras y programación

Parque Jurásico

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Esquema	general

Página 9Fundamentos de la programación: Computadoras y programación

Memoria
temporal

Almacenamiento
permanente

Almacenamiento
permanente

Dispositivos
de	entrada

Teclado
Ratón
Escáner
Táctil
…

Dispositivos
de	salida

Monitor
Impresora
Altavoz

…

Monitor
Impresora
Altavoz

…

Dispositivos
de	salida

Monitor
Impresora
Altavoz

…

Unidad Central de Proceso
Central Processor Unit

C.P.U.

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	arquitectura	de	Von	Neumann

Página 10Fundamentos de la programación: Computadoras y programación

C.P.U.	(Procesador)

Dispositivos	de	E/S

Memoria

A.L.U.
Unidad	Aritmético‐Lógica

Unidad	de	Control

Una ALU de 2 bits (Wikipedia)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	memoria

Página 11Fundamentos de la programación: Computadoras y programación

Memoria

Bus
de

datos

01

02

03

04

05

06

07

08

. . .

Dirección

Cada		celda	en	una	dirección

Celdas	de	8	/	16	/	32	/	64	bits

Información	volátil

1	Bit	=	0	/	1
1	Byte	=	8	bits	=	1	carácter
1	Kilobyte	(KB)	=	1024	Bytes
1	Megabyte	(MB)	=	1024	KB
1	Gigabyte	(GB)	=	1024	MB
1	Terabyte	(TB)	=	1024	GB
1	Petabyte	(PB)	=	1024	TB

210 = 1024  1000

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 12Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Los	procesadores	trabajan	con	ceros	y	unos	(bits)
Unidad	de	memoria	básica:	Byte (8	bits)
(2	dígitos	hexadecimales:	01011011	 0101		1011	 5B)

Lenguaje	máquina
Códigos	hexadecimales	que	representan	instrucciones,
registros	de	la	CPU,	direcciones	de	memoria	o	datos

Instrucción Significado

A0 2F Acceder	a	la	celda	de	memoria	2F
3E 01 Copiarlo	el	registro	1	de	la	ALU	
A0 30 Acceder	a	la	celda	de	memoria	30
3E 02 Copiarlo	en	el	registro	2	de	la	ALU	
1D Sumar
B3 31 Guardar	el	resultado	en	la	celda	de	memoria	31

Página 13Fundamentos de la programación: Computadoras y programación

Lenguaje de bajo nivel

Dependiente de la máquina

Programación difícil

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Nemotécnicos	para	los	códigos	hexadecimales:
A0  READ 3E  REG 1D  ADD …

Mayor	legibilidad:
READ 2F
REG 01
READ 30
REG 02
ADD
WRITE 31

Lenguaje	de	nivel	medio

Página 14Fundamentos de la programación: Computadoras y programación

Código	objeto
(lenguaje	máquina)

Programa	
ensamblador

Código	fuente
(lenguaje	ensamblador)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 15Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

 Más	cercanos	a	los	lenguajes	natural	y	matemático
resultado = dato1 + dato2;

 Mayor	legibilidad,	mayor	facilidad	de	codificación
 Estructuración	de	datos	/	abstracción	procedimental

Página 16Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Traducción	

Compiladores:
Compilan	y	enlazan
programas	completos

Intérpretes:
Compilan,	enlazan
y	ejecutan	instrucción
a	instrucción

Página 17Fundamentos de la programación: Computadoras y programación

Compilador

Enlazador
Código
objeto	de
biblioteca

Código	fuente

#include <iostream>
using namespace std;

int main()
{

cout << "Hola Mundo!" << endl;
return 0;

}

Código	objeto 0100010100111010011100…

Programa
ejecutable

Para una arquitectura concreta
y un sistema operativo

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Genealogía	de	lenguajes

Página 18Fundamentos de la programación: Computadoras y programación

BASIC
1964
BASIC
1964
BASIC
1964

Logo
1968
Logo
1968
Logo
1968

Ruby
1993
Ruby
1993
Ruby
1993

Python
1991
Python
1991
Python
1991

Eiffel
1986
Eiffel
1986
Eiffel
1986

Modula
1975

Modula
1975

Modula
1975

Fuente:
http://www.levenez.com/lang/
Fuente:
http://www.levenez.com/lang/

Versiones / Estándares

Prolog
1970
Prolog
1970

Haskell
1987
Haskell
1987

C#
2000
C#
2000
C#
2000

Java
1995
Java
1995
Java
1995C++

1983
C++
1983
C++
1983

Smalltalk
1971

Smalltalk
1971

Smalltalk
1971

Scheme
1975

Scheme
1975

Scheme
1975

PL/I
1964
PL/I
1964
PL/I
1964

Simula
1964
Simula
1964
Simula
1964

Ada
1979
Ada
1979
Ada
1979

C
1971
C

1971
C

1971

Pascal
1970
Pascal
1970
Pascal
1970

CPL
1963
CPL
1963
CPL
1963

COBOL
1959
COBOL
1959

ALGOL
1958
ALGOL
1958
ALGOL
1958

FORTRAN
1954

FORTRAN
1954

Lisp
1958
Lisp
1958

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 19Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	prehistoria
El	ábaco

Siglo	XIX
Máquina	analítica	de	Charles	Babbage

Página 20Fundamentos de la programación: Computadoras y programación

Lady	Ada	Lovelace
es	considerada
la	primera
programadora

(Wikipedia)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Siglo	XX

1936 Máquina	de	Turing
1946 ENIAC:	Primera	computadora	digital

de	propósito	general
1947 El	transistor
1953 IBM	650:	Primera

computadora	a	gran	escala
1966 ARPANET:	Origen	de	Internet
1967 El	disquete
1970 Sistema	operativo	UNIX
1972 Primer	virus informático	(Creeper)

Lenguaje	de	programación	C
1974 Protocolo	TCP.	Primera	red	local

Página 21Fundamentos de la programación: Computadoras y programación

ENIAC (Wikipedia)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

1975 Se	funda	Microsoft

1976 Se	funda	Apple

1979 Juego	Pacman

1981 IBM	PC
Sistema	operativo	MS‐DOS

1983 Lenguaje	de	programación	C++

1984 CD‐ROM

1985 Windows 1.0

1990 Lenguaje	HTML
World Wide Web

1991 Sistema	operativo	Linux

Página 22Fundamentos de la programación: Computadoras y programación

Apple II (Wikipedia)

IBM PC (Wikipedia)
Linux

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

1992 Windows	3.1

1995 Lenguaje	de	programación	Java
DVD

1998 Se	funda	Google

1999 MSN	Messenger

Siglo	XXI
2001 Windows	XP

Mac	OS X

2002 Mozilla Firefox

2007 iPhone

2008 Android ...

Página 23Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 24Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Qué	es	programar?
Decirle	a	un	tonto	muy rápido	exactamente lo	que	tiene	que	hacer

Especificar	la	estructura y	el	comportamiento de	un	programa,	
así	como	probar que	el	programa	realiza	su	tarea	
adecuadamente y	con	un	rendimiento aceptable

Programa:	Transforma	entrada	en	salida

Algoritmo:	Secuencia	de	pasos	y	operaciones	que	debe	realizar	
el	programa	para	resolver	el	problema

El	programa	implementa	el	algoritmo	en	un	lenguaje	concreto

SalidaPrograma

Página 25Fundamentos de la programación: Computadoras y programación

Entrada

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	programación	es	sólo	una	etapa	del	proceso	de	desarrollo

Modelo	de	desarrollo	“en	cascada”:

Página 26Fundamentos de la programación: Computadoras y programación

MantenimientoMantenimiento

Prueba	y	depuraciónPrueba	y	depuración

ProgramaciónProgramación

DiseñoDiseño

AnálisisAnálisis

Planificación Recursos	necesarios,	presupuesto,	plan,	…

¿Qué?

¿Cómo?

Implementación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 27Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Bjarne Stroustrup (1983)

#include <iostream>

using namespace std;

int main()

{

cout << "Hola Mundo!" << endl;

// Muestra Hola Mundo!

return 0;

}

Página 28Fundamentos de la programación: Computadoras y programación

Hola Mundo!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Instrucciones

Datos:	literales,	variables,	tipos

Subprogramas	(funciones)

Comentarios

Directivas

...

Fundamentos de la programación: Computadoras y programación Página 29

#include <iostream>
using namespace std;

int main()
{

cout << "Hola Mundo!" << endl;
// Muestra Hola Mundo!

return 0;
}

#include <iostream>
using namespace std;

int main()
{

cout << "Hola Mundo!" << endl;
// Muestra Hola Mundo!

return 0;
}

DirectivaDirectiva

SubprogramaSubprograma

ComentarioComentario

InstrucciónInstrucción

InstrucciónInstrucción

Dato

Dato

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 30Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Sintaxis	y	semántica	de	los	lenguajes

Sintaxis
— Reglas	que	determinan	cómo	se	pueden	construir	

y	secuenciar	los	elementos	del	lenguaje

Semántica
— Significado	de	cada	elemento	del	lenguaje

¿Para	qué	sirve?

Fundamentos de la programación: Computadoras y programación Página 31

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Especificación
 Lenguajes	(BNF)
 Diagramas

Fundamentos de la programación: Computadoras y programación Página 32

<numero entero> ::= <signo opcional><secuencia de dígitos>
<signo opcional> ::= +|‐|<nada>
<secuencia de dígitos> ::= <dígito>|<dígito><secuencia de dígitos>
<dígito> ::= 0|1|2|3|4|5|6|7|8|9
<nada> ::=

BNF

| significa ó +23 
‐159 
1374 
1‐34 
3.4 
002 

Ejemplo:	Números	enteros	(sin	decimales)

+

0 .. 9

‐

+

0 .. 9

‐

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: Computadoras y programación Página 33

<numero entero> ::= <signo opcional><secuencia de dígitos>
<signo opcional> ::= +|‐|<nada>
<secuencia de dígitos> ::= <dígito>|<dígito><secuencia de dígitos>
<dígito> ::= 0|1|2|3|4|5|6|7|8|9
<nada> ::=

+23
<numero entero> ::= <signo opcional><secuencia de dígitos>

::= +<secuencia de dígitos> ::= +<dígito><secuencia de dígitos>

::= +2<secuencia de dígitos> ::= +2<dígito> ::= +23

1374
<numero entero> ::= <signo opcional><secuencia de dígitos>

::= <secuencia de dígitos> ::= <dígito><secuencia de dígitos>

::= 1<secuencia de dígitos> ::= 1<dígito><secuencia de dígitos>

::= 13<secuencia de dígitos> ::= 13<dígito><secuencia de dígitos>

::= 137<secuencia de dígitos> ::= 137<dígito> ::= 1374

1‐34
<numero entero> ::= <signo opcional><secuencia de dígitos>
::= <secuencia de dígitos> ::= <dígito><secuencia de dígitos>
::= 1<secuencia de dígitos> ::= ERROR (‐ no es <dígito>)







Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: Computadoras y programación Página 34

++2233 

113377 44

11‐‐ ??

+23+23

13741374

1‐341‐34

+
0 .. 90 .. 9

+

+

‐

‐

‐

0 .. 90 .. 9

0 .. 90 .. 9

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 35Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Hola	Mundo!
Un	programa	que	muestra	un	saludo	en	la	pantalla:

#include <iostream>

using namespace std;

int main()

// main() es donde empieza la ejecución

{

cout << "Hola Mundo!" << endl; // Muestra Hola Mundo!

return 0;

}

Página 36Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Análisis	del	programa

#include <iostream>

using namespace std;

int main()

{

cout << "Hola Mundo!" << endl;

return 0;

}

Página 37

Las instrucciones terminan en ;

Fundamentos de la programación: Computadoras y programación

Directiva

Instrucción

Declaración

Instrucción

Instrucción

Biblioteca

Espacio de nombres

Palabras reservadasTipo

Datos literales

Cuerpo de la función

Cabecera de la función

B
lo
q
u
e
d
e
có
d
ig
o Cadena de caracteres Constante

OperadorOperador

Variable

Número

Coloreado	sintácticoColoreado	sintáctico

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Hola	Mundo!
Casi	todo	es	infraestructura

Sólo
cout << "Hola Mundo!" << endl

hace	algo	palpable

La	infraestructura	(notación,	bibliotecas	y	otro	soporte)	
hace	nuestro	código	simple,	completo,	confiable	y	eficiente

¡El	estilo	importa!

Página 38Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 39Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Editor
 Bloc	de	notas,	Wordpad,	Word,	Writer,	Gedit,	Kwrite,	…

(texto	simple,	sin	formatos)

 Editores	específicos:	coloreado	sintáctico

 Recomendación:	Notepad++

Página 40

Instalación	y	uso:
Sección

Herramientas de desarrollo
en	el	Campus	Virtual

Instalación	y	uso:
Sección

Herramientas de desarrollo
en	el	Campus	Virtual

Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 41Fundamentos de la programación: Computadoras y programación

hola.cpp
(código fuente)

hola.obj
(código objeto)

Compilador

Código	objeto	de
la	biblioteca	iostream

hola.exe
(ejecutable)

Enlazador

Hola Mundo!

CargadorCargador

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Compilador
 Importante:	C++	estándar

 Recomendación:	GNU	G++	(MinGW en	Windows)

Página 42

Instalación	y	uso:
Sección

Herramientas de desarrollo
en	el	Campus	Virtual

Instalación	y	uso:
Sección

Herramientas de desarrollo
en	el	Campus	Virtual

Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Entornos	de	desarrollo
 Para	editar,	compilar	y	probar	el	código	del	programa

 Recomendaciones:	

— Windows:	MS	Visual	Studio	/	C++	Express	o	Eclipse

— Linux:	Netbeans o	Eclipse

Página 43

Instalación	y	uso:
Sección

Herramientas de desarrollo
en	el	Campus	Virtual

Instalación	y	uso:
Sección

Herramientas de desarrollo
en	el	Campus	Virtual

Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Qué	hace	el	programa?
 La	ejecución	del	programa	siempre	empieza	en	main()

 Se	ejecutan	las	instrucciones	en	secuencia	de	principio	a	fin

Página 44

_
Hola Mundo!Hola Mundo!

Pantalla (cout)

_

Muestra	Hola Mundo!
en	la	pantalla	y	salta	de	línea

Devuelve	0 como	código
de	terminación	del	programa

FinFin

return 0;return 0;

cout << "Hola Mundo!" << endl;cout << "Hola Mundo!" << endl;

Inicio

Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 45Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

El	lenguaje	C
 Lenguaje	creado	por	Dennis	M.	Ritchie en	1972

 Lenguaje	de	nivel	medio:

— Estructuras	típicas	de	los	lenguajes	de	alto	nivel

— Construcciones	para	control	a	nivel	de	máquina

 Lenguaje	sencillo	(pocas	palabras	reservadas)

 Lenguaje	estructurado	(no	estrictamente	estructurado	en	bloques)

 Compartimentalización	de	código (funciones) y	datos	(ámbitos)

 Componente	estructural	básico:	la	función	(subprograma)

 Programación	modular

 Distingue entre	mayúsculas	y	minúsculas

 Palabras	reservadas	(o	clave):	en	minúsculas

Página 46Fundamentos de la programación: Computadoras y programación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Computadoras y programación Página 47

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

2

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Un ejemplo de programación 50
El primer programa en C++ 64
Las líneas de código del programa 80
Cálculos en los programas 86
Variables 92
Expresiones 98
Lectura de datos desde el teclado 108
Resolución de problemas 119
Los datos de los programas 127
Identificadores 129
Tipos de datos 133
Declaración y uso de variables 142
Instrucciones de asignación 147
Operadores 152
Más sobre expresiones 160
Constantes 167
La biblioteca cmath 171
Operaciones con caracteres 174

Operadores relacionales 177
Toma de decisiones (if) 180
Bloques de código 183
Bucles (while) 186
Entrada/salida por consola 190
Funciones definidas

por el programador 199

Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 50Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Una	computadora	de	un	coche
Instrucciones	que	entiende:

<instrucción>	::=	<inst>	;
<inst>	::=	Start |	Stop |	<avanzar>
<avanzar>	::=	Go <dirección>	<num>	Blocks
<dirección>	::=	North |	East |	South |	West
<num>	::=	1 |	2 |	3 |	4 |	5

Ejemplos:

Start;

Go North 3 Blocks;

Stop;

Página 51Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Sintaxis	del	lenguaje	de	programación

Página 52Fundamentos de la programación: Tipos e instrucciones I

avanzaravanzar direcciónGo Blocksnum

=	Literales=	Literales

direccióndirección

North

East

South

West

instruccióninstrucción

Start

avanzar

Stop ;

numnum

1

2

3

4

5

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

El	problema	a	resolver
Estando	el	coche	en	la	posición	A,
conseguir	llegar	al	Cine	Tívoli (B)

¿Qué	pasos	hay	que	seguir?

Arrancar
Ir	un	bloque	al	Norte
Ir	dos	bloques	al	Este
Ir	cinco	bloques	al	Norte
Ir	dos	bloques	al	Este
Parar

Página 53Fundamentos de la programación: Tipos e instrucciones I

B

A

NN

Bloque:Bloque:

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

El	algoritmo
Secuencia	de	pasos	que	hay	que	
seguir	para	resolver	el	problema

Página 54Fundamentos de la programación: Tipos e instrucciones I

1.‐ Arrancar

NN

2.‐ Ir	un	bloque	al	Norte

3.‐ Ir	dos	bloques	al	Este

4.‐ Ir	cinco	bloques	al	Norte

5.‐ Ir	dos	bloques	al	Este

6.‐ Parar

Esos	pasos	sirven	tanto	para	
una	persona	como	para	una	computadora.



Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

El	programa
Instrucciones	escritas	en
el	lenguaje	de	programación

Start;

Go North 1 Blocks;

Go East 2 Blocks;

Go North 5 Blocks;

Go East 2 Blocks;

Stop;

Página 55Fundamentos de la programación: Tipos e instrucciones I

B

A

NN

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

El	programa
Escribimos	el	código	del	programa	en	un	editor
y	lo	guardamos	en	un	archivo:

Página 56Fundamentos de la programación: Tipos e instrucciones I

Stat;

Go North 1 Blocks

Go East Blocks;

Go Noth 5 Blocks;

Go West 2 Blocks;

Stop;

Copiamos	el	archivo
en	una	llave	USB	

y	lo	llevamos	al	coche

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	compilación
Introducimos	la	llave	USB	en	el	coche
y	pulsamos	el	botón	de	ejecutar	el	programa:

Página 57Fundamentos de la programación: Tipos e instrucciones I

Stat;
‐‐‐‐^ Unknown word.
Go North 1 Blocks
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐^ ; missing.
Go East Blocks;
‐‐‐‐‐‐‐‐^ Number missing.
Go Noth 5 Blocks;
‐‐‐‐‐‐‐^ Unknown word.
Go West 2 Blocks;
Stop;
There are errors. Impossible to run the program.

Errores
de	sintaxis
Errores
de	sintaxis

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Depuración
Editamos	el	código	para	corregir	los	errores	sintácticos:

Página 58Fundamentos de la programación: Tipos e instrucciones I

Stat;

Go North 1 Blocks

Go East Blocks;

Go Noth 5 Blocks;

Go West 2 Blocks;

Stop;

Start;

Go North 1 Blocks;

Go East 3 Blocks;

Go North 5 Blocks;

Go West 2 Blocks;

Stop;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	ejecución
Se	realiza	lo	que	pide
cada	instrucción:

Página 59Fundamentos de la programación: Tipos e instrucciones I

B

NN

Start;

Go North 1 Blocks;

Go East 3 Blocks;
!!

Error	de	ejecución
¡Una	instrucción	no	se	puede	ejecutar!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Depuración
Editamos	el	código	para	arreglar	el	error	de	ejecución:

Página 60Fundamentos de la programación: Tipos e instrucciones I

Start;

Go North 1 Blocks;

Go East 2 Blocks;

Go North 5 Blocks;

Go West 2 Blocks;

Stop;

Start;

Go North 1 Blocks;

Go East 3 Blocks;

Go North 5 Blocks;

Go West 2 Blocks;

Stop;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	ejecución
Se	realiza	lo	que	pide
cada	instrucción:

Página 61Fundamentos de la programación: Tipos e instrucciones I

B

NN

Start;

Go North 1 Blocks;

Go East 2 Blocks;

Error	lógico
¡El	programa	no	llega	al	resultado	deseado!

Go North 5 Blocks;

Go West 2 Blocks;

Stop;

??

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Depuración
Editamos	el	código	para	arreglar	el	error	lógico:

Página 62Fundamentos de la programación: Tipos e instrucciones I

Start;

Go North 1 Blocks;

Go East 2 Blocks;

Go North 5 Blocks;

Go West 2 Blocks;

Stop;

Start;

Go North 1 Blocks;

Go East 2 Blocks;

Go North 5 Blocks;

Go East 2 Blocks;

Stop;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	ejecución
Se	realiza	lo	que	pide
cada	instrucción:

Página 63Fundamentos de la programación: Tipos e instrucciones I

NN

Start;

Go North 1 Blocks;

Go East 2 Blocks;

Go North 5 Blocks;

Go East 2 Blocks;

Stop;



¡Conseguido!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 64Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Hola	Mundo!
De	vuelta	en	el	programa	que	muestra	un	saludo	en	la	pantalla:

#include <iostream>

using namespace std;

int main() // main() es donde empieza la ejecución

{

cout << "Hola Mundo!" << endl;

return 0;

}

Página 65Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Hola	Mundo!
La	única	instrucción	que	produce	algo	tangible:

#include <iostream>

using namespace std;

int main() // main() es donde empieza la ejecución

{

cout << "Hola Mundo!" << endl;

return 0;

}

Página 66Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

cout (iostream)
Visualización	en	la	pantalla:	operador	<< (insertor)

Página 67Fundamentos de la programación: Tipos e instrucciones I

cout << "Hola Mundo!" << endl;

cout

_
Hola Mundo!Hola Mundo!

<< "Hola Mundo!" << endl;

endl end lineendl end line

character output	streamcharacter output	stream

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Pantalla	en	modo	texto
 Líneas	de	80	caracteres	(textos)

Página 68Fundamentos de la programación: Tipos e instrucciones I

Aplicación en modo textoAplicación en modo texto

80 caracteres80 caracteres

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ventanas	de	consola	o	terminal
Las	aplicaciones	en	modo	texto	se	ejecutan	dentro	de	ventanas:

 Windows:	ventanas	de	consola	(Símbolo	del	sistema)

 Linux:	ventanas	de	terminal

Página 69Fundamentos de la programación: Tipos e instrucciones I

H o l a M u n d o !

Cursor	parpadeante:	Donde	se	colocará	el	siguiente	carácter.Cursor	parpadeante:	Donde	se	colocará	el	siguiente	carácter.

......

.
.
.

.
.
.

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

El	insertor	<<
Inserta	textos	en	la	pantalla	de	modo	texto

Representación	textual	de	los	datos

A	partir	de	la	posición	del	cursor

Line	wrap (continúa	en	la	siguiente	línea	si	no	cabe)

Se	pueden	encadenar:

cout << ... << ... << ...;

Página 70Fundamentos de la programación: Tipos e instrucciones I

cout << ...;

Recuerda: las instrucciones terminan en ;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Con	el	insertor	<< podemos	mostrar...
 Cadenas	de	caracteres	literales

Textos	encerrados	entre	comillas	dobles:	"..."

cout << "Hola Mundo!";

 Números	literales
Con	o	sin	decimales,	con	signo	o	no:	123,	‐37,	3.1416,	...

cout << "Pi = " << 3.1416;

Se	muestran	los	caracteres	que	representan	el	número

 endl

Página 71Fundamentos de la programación: Tipos e instrucciones I

¡Las comillas no se muestran!

¡Punto decimal, NO coma!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

El	programa	principal
La	función	main():	donde	comienza	la	ejecución...

#include <iostream>

using namespace std;

int main() // main() es donde empieza la ejecución

{

cout << "Hola Mundo!" << endl;
return 0;

}

Contiene	las	instrucciones	que	hay	que	ejecutar

Página 72Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

El	programa	principal
La	función	main():

int main()

{

...
return 0;

}

Página 73Fundamentos de la programación: Tipos e instrucciones I

Tipo	de	la	función	(int =	entero):	Tipo	de	valor	que	devuelveTipo	de	la	función	(int =	entero):	Tipo	de	valor	que	devuelve

Nombre	de	la	funciónNombre	de	la	función

Cuerpo	de	la	función	(bloque	de	código)Cuerpo	de	la	función	(bloque	de	código)

return 0; Devuelve	el	resultado	(0)	de	la	funciónDevuelve	el	resultado	(0)	de	la	función

¡Es	una	función!¡Es	una	función!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Documentando	el	código...

Comentarios	(se	ignoran):

#include <iostream>

using namespace std;

int main() // main() es donde empieza la ejecución

{

cout << "Hola Mundo!" << endl;

...

Hasta	el	final	de	la	línea:	 // Comentario de una línea

De	varias	líneas:	 /* Comentario de varias
líneas seguidas */

Página 74Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	infraestructura
Código	para	reutilizar:

#include <iostream>

using namespace std;

int main() // main() es donde empieza la ejecución

{

cout << "Hola Mundo!" << endl;
return 0;

}

Bibliotecas	de	funciones	a	nuestra	disposición

Página 75Fundamentos de la programación: Tipos e instrucciones I

Una	directiva:	empieza	por	#Una	directiva:	empieza	por	#

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Bibliotecas
Se	incluyen	con	la	directiva #include:

#include <iostream>

(Utilidades	de	entrada/salida	por	consola)
Para	mostrar	o	leer	datos	hay	que	incluir	la	biblioteca	iostream

Espacios	de	nombres
En	iostream hay	espacios	de	nombres;	¿cuál	queremos?
#include <iostream>
using namespace std;

Siempre	usaremos	el	espacio	de	nombres	estándar	(std)

Muchas	bibliotecas	no	tienen	espacios	de	nombres

Página 76Fundamentos de la programación: Tipos e instrucciones I

Es	una	instrucción:	termina	en	;Es	una	instrucción:	termina	en	;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Compilación	y	enlace

Página 77

hola.cpp
(código fuente)

hola.obj
(código objeto)

Compilador

Código	objeto	de
la	biblioteca	iostream

hola.exe
(ejecutable)

Enlazador

Fundamentos de la programación: Tipos e instrucciones I

Hola Mundo!

CargadorCargador

A menudo en un pasoA menudo en un paso

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Elementos	del	programa

#include <iostream>

using namespace std;

int main()

{

cout << "Hola Mundo!" << endl;

return 0;

}

Página 78

Las instrucciones terminan en ;

Fundamentos de la programación: Tipos e instrucciones I

Directiva

Instrucción

Declaración

Instrucción

Instrucción

Biblioteca

Espacio de nombres

Palabras reservadasTipo

Datos literales

Cuerpo de la función

Cabecera de la función

B
lo
q
u
e
d
e
có
d
ig
o Cadena de caracteres Constante

OperadorOperador

Variable

Número

Coloreado sintáctico:
Directivas Tipos
Palabras reservadas generales
Datos literales Comentarios

Coloreado sintáctico:
Directivas Tipos
Palabras reservadas generales
Datos literales Comentarios

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Uso	de	espacio	en	blanco
Separación	de	elementos	por	uno	o	más	espacios	en	blanco
(espacios,	tabuladores	y	saltos	de	línea)

El	compilador	los	ignora

Página 79

#include <iostream>

using namespace std;

int main()

{

cout << "Hola Mundo!" << endl;

return 0;

}

#include <iostream> using namespace std;

int main(){cout<<"Hola Mundo!"<<endl;

return 0;}

¿Cuál	se	lee	mejor?

Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 80Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Programa	con	E/S	por	consola
Una	plantilla	para	empezar:

#include <iostream>

using namespace std;

int main()

{

return 0;

}

Página 81Fundamentos de la programación: Tipos e instrucciones I

¡Tu	código	aquí!¡Tu	código	aquí!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...	recitado	en	la	consola
Mostrar	los	textos	con	cout <<:

#include <iostream>

using namespace std;

int main()

{

cout << "En un lugar de la Mancha," << endl;

cout << "de cuyo nombre no quiero acordarme," << endl;

cout << "no ha mucho tiempo que vivía un hidalgo de los de
lanza en astillero, ..." << endl;

return 0;

}

Página 82Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Introducción	del	código	del	programa
Terminamos	cada	línea	de	código	con	un	salto	de	línea	(↲):

#include <iostream> ↲

using namespace std; ↲

↲

int main() ↲

{ ↲

cout << "En un lugar de la Mancha," << endl; ↲

cout << "de cuyo nombre no quiero acordarme," << endl; ↲

cout << "no ha mucho tiempo que vivía un hidalgo de los de
lanza en astillero, ..." << endl; ↲

return 0; ↲

} ↲

Página 83Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Introducción	del	código	del	programa
No	hay	que	partir	una	cadena	literal	entre	dos	líneas:

cout << "no ha mucho tiempo que vivía un hidalgo de ↲

los de lanza en astillero, ..." << endl; ↲

¡La	cadena	no	termina	(1ª	línea)!

¡No	se	entiende	los (2ª	línea)!

Veamos	cómo	nos	muestra	los	errores	el	compilador...

Página 84Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Mantenimiento	y	reusabilidad
 Usa	espacio	en	blanco	para	separar	los	elementos:

cout << "En un lugar de la Mancha," << endl;

mejor	que
cout<<"En un lugar de la Mancha,"<<endl;

 Usa	sangría	(indentación)	para	el	código	de	un	bloque:
{

cout << "En un lugar de la Mancha," << endl;
...
return 0;

}

¡El	estilo	importa!

Página 85Fundamentos de la programación: Tipos e instrucciones I

Tab	
ó	

3	esp.

Tab	
ó	

3	esp.

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 86Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Operadores	aritméticos
+ Suma
‐ Resta
* Multiplicación
/ División

Operadores	binarios
operando_izquierdo operador operando_derecho

Operación Resultado
3 + 4 7

2.56 ‐ 3 ‐0.44

143 * 2 286

45.45 / 3 15.15

Página 87Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Números	literales	(concretos)
 Enteros:	sin	parte	decimal

Signo	negativo	(opcional)	+	secuencia	de	dígitos
3 143 ‐12 67321 ‐1234

 Reales:	con	parte	decimal

Signo	negativo	(opcional)	+	secuencia	de	dígitos	
+	punto	decimal	+	secuencia	de	dígitos
3.1416 357.0 ‐1.333 2345.6789 ‐404.1

Página 88Fundamentos de la programación: Tipos e instrucciones I

Punto	decimal	(3.1416),	NO	coma	(3,1416)

No	se	usan	puntos	de	millares

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ejemplo
#include <iostream>

using namespace std;

int main()

{

cout << "133 + 1234 = " << 133 + 1234 << endl;

cout << "1234 ‐ 111.5 = " << 1234 ‐ 111.5 << endl;

cout << "34 * 59 = " << 34 * 59 << endl;

cout << "3.4 * 5.93 = " << 3.4 * 5.93 << endl;

cout << "500 / 3 = " << 500 / 3 << endl; // Div. entera

cout << "500.0 / 3 = " << 500.0 / 3 << endl; // Div. real

return 0;

}

Página 89Fundamentos de la programación: Tipos e instrucciones I

cálculos.cppcálculos.cpp

Un	textoUn	texto Un	númeroUn	número

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 90Fundamentos de la programación: Tipos e instrucciones I

División	realDivisión	real

División	enteraDivisión	entera

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿División	entera	o	división	real?
Ambos	operandos	enteros		 División	entera

Algún	operando	real	 División	real

División Resultado
500 / 3 166

500.0 / 3 166.667

500 / 3.0 166.667

500.0 / 3.0 166.667

Página 91Fundamentos de la programación: Tipos e instrucciones I

Comprueba	siempre	que	el	tipo	de	división	sea	el	que	quieres

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 92Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	que	se	mantienen	en	memoria
Variable:	dato	que	se	accede	por	medio	de	un	nombre

Dato	literal:	un	valor	concreto

Variable:	puede	cambiar	de	valor	(variar)

edad = 19; // variable edad y literal 19

Las	variables	deben	ser	declaradas

¿Qué	tipo	de	dato	queremos	mantener?
 Valor	numérico	sin	decimales	(entero):	tipo	int

 Valor	numérico	con	decimales	(real):	tipo	double

Declaración:	tipo nombre;

Página 93Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Declaración	de	variables
int cantidad;

double precio;

Se	reserva	espacio	suficiente

LAS	VARIABLES	NO	SE	INICIALIZAN

No	se	deben	usar	hasta	que	se	les	haya	dado	algún	valor

¿Dónde	colocamos	las	declaraciones?

Siempre,	antes	del	primer	uso
Habitualmente	al	principio	de	la	función

Página 94Fundamentos de la programación: Tipos e instrucciones I

Memoria

cantidad ?

precio ?

...

tipo nombre;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Declaración	de	variables
#include <iostream>

using namespace std;

int main()

{

int cantidad;

double precio, total;

return 0;

}

Página 95Fundamentos de la programación: Tipos e instrucciones I

Memoria

cantidad ?

precio ?

total ?

...

Podemos	declarar	varias	de	un	mismo	tipo
separando	los	nombres	con	comas

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Capacidad	de	las	variables
int

‐2.147.483.648 ...	2.147.483.647
‐2147483648 ..	2147483647

double

2,23	x 10‐308 ...	1,79	x 10+308 y	sus	negativos

[+|‐] 2.23e‐308 ..	1.79e+308

Problemas	de	precisión

Página 96Fundamentos de la programación: Tipos e instrucciones I

Notación	científica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Asignación	de	valores	a	las	variables	(operador	=)

variable = expresión;

cantidad = 12; // int

precio = 39.95; // double

total = cantidad * precio; // Asigna 479.4

Concordancia	de	tipos: cantidad = 12.5;

¡¡¡A	la	izquierda	del	=	debe	ir	siempre	una	variable!!!

Página 97Fundamentos de la programación: Tipos e instrucciones I

Instrucción:	termina	en	;

cantidad 12

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 98Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Expresiones
Secuencias	de	operandos	y	operadores
operando operador operando operador operando ...

total = cantidad * precio * 1.18;

A	igual	prioridad	se	evalúan	de	izquierda	a	derecha

Paréntesis	para	forzar	ciertas	operaciones
total = cantidad1 + cantidad2 * precio;

total = (cantidad1 + cantidad2) * precio;

Unos	operadores	se	evalúan	antes	que	otros

Página 99Fundamentos de la programación: Tipos e instrucciones I

ExpresiónExpresión



Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Precedencia	de	los	operadores
cantidad1 = 10;
cantidad2 = 2;
precio = 40.0;

* y	/ se	evalúan	antes	que + y	‐

total = cantidad1 + cantidad2 * precio;

* antes	que	+  10	+	2	* 40,0	 10	+ 80,0	 90,0

total = (cantidad1 + cantidad2) * precio;

+ antes	que	*  (10	+ 2)	*	40,0	 12	* 40,0	 480,0

Página 100Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ejemplo	de	uso	de	variables	y	expresiones
#include <iostream>
using namespace std;

int main()
{

int cantidad;
double precio, total;
cantidad = 12;
precio = 39.95;
total = cantidad * precio;
cout << cantidad << " x " << precio << " = "

<< total << endl;

return 0;
}

Página 101Fundamentos de la programación: Tipos e instrucciones I

variables.cppvariables.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Memoria

...

Ejemplo	de	uso	de	variables
#include <iostream>
using namespace std;

int main()
{

int cantidad;
double precio, total;

Página 102Fundamentos de la programación: Tipos e instrucciones I

cantidad ?

precio ?

total ?

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ejemplo	de	uso	de	variables
#include <iostream>
using namespace std;

int main()
{

int cantidad;
double precio, total;
cantidad = 12;

Página 103Fundamentos de la programación: Tipos e instrucciones I

Memoria

...

cantidad 12

precio ?

total ?

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ejemplo	de	uso	de	variables
#include <iostream>
using namespace std;

int main()
{

int cantidad;
double precio, total;
cantidad = 12;
precio = 39.95;

Página 104Fundamentos de la programación: Tipos e instrucciones I

Memoria

...

cantidad 12

precio 39.95

total ?

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ejemplo	de	uso	de	variables
#include <iostream>
using namespace std;

int main()
{

int cantidad;
double precio, total;
cantidad = 12;
precio = 39.95;
total = cantidad * precio;

Página 105Fundamentos de la programación: Tipos e instrucciones I

Memoria

...

cantidad 12

precio 39.95

total 479.4

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ejemplo	de	uso	de	variables
#include <iostream>
using namespace std;

int main()
{

int cantidad;
double precio, total;
cantidad = 12;
precio = 39.95;
total = cantidad * precio;
cout << cantidad << " x " << precio << " = "

<< total << endl;

Página 106Fundamentos de la programación: Tipos e instrucciones I

Memoria

...

cantidad 12

precio 39.95

total 479.4

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ejemplo	de	uso	de	variables
#include <iostream>
using namespace std;

int main()
{

int cantidad;
double precio, total;
cantidad = 12;
precio = 39.95;
total = cantidad * precio;
cout << cantidad << " x " << precio << " = "

<< total << endl;

return 0;
}

Página 107Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 108Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

cin (iostream)
Lectura	de	valores	de	variables:	operador	>> (extractor)

Página 109Fundamentos de la programación: Tipos e instrucciones I

cin >> cantidad;

cin >> cantidad;

character input	streamcharacter input	stream

Memoria

cantidad ?

...

_

12

1 2 ↲
1 2

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

El	extractor	>>
Transforma	los	caracteres	introducidos	en	datos

Cursor	parpadeante:	lugar	de	lectura	del	siguiente	carácter
La	entrada	termina	con	Intro (cursor	a	la	siguiente	línea)

¡El	destino	del	extractor	debe	ser	SIEMPRE una	variable!

Se	ignoran	los	espacios	en	blanco	iniciales

Página 110Fundamentos de la programación: Tipos e instrucciones I

cin >> variable;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Lectura	de	valores	enteros	(int)
Se	leen	dígitos	hasta	encontrar	un	carácter	que	no	lo	sea

12abc↲ 12 abc↲ 12 abc↲ 12↲

Se	asigna	el	valor	12	a	la	variable

El	resto	queda	pendiente	para	la	siguiente	lectura
Recomendación:	Lee	cada	variable	en	una	línea 12↲

Lectura	de	valores	reales	(double)
Se	leen	dígitos,	el	punto	decimal	y	otros	dígitos

39.95.5abc↲ 39.95 abc↲ 39.95↲

Se	asigna	el	valor	39,95	a	la	variable;	el	resto	queda	pendiente
Recomendación:	Lee	cada	variable	en	una	línea 39.95↲

Página 111Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Qué	pasa	si	el	usuario	se	equivoca?
El	dato	no	será	correcto

Aplicación	profesional:	código	de	comprobación	y	ayuda

Aquí	supondremos	que	los	usuarios	no	se	equivocan

En	ocasiones	añadiremos	comprobaciones	sencillas

Página 112Fundamentos de la programación: Tipos e instrucciones I

Para	evitar	errores,	lee	cada	dato	en	una	instrucción	apartePara	evitar	errores,	lee	cada	dato	en	una	instrucción	aparte

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Qué	pasa	si	el	usuario	se	equivoca?
int cantidad;
double precio, total;
cout << "Introduce la cantidad: ";
cin >> cantidad;
cout << "Introduce el precio: ";
cin >> precio;
cout << "Cantidad: " << cantidad << endl;
cout << "Precio: " << precio << endl;

Página 113Fundamentos de la programación: Tipos e instrucciones I

No	se	puede	leer	un	entero	 0 para	cantidad y	Error
La	lectura	del	precio	falla:	precio no	toma	valor	(basura)
No	se	puede	leer	un	entero	 0 para	cantidad y	Error
La	lectura	del	precio	falla:	precio no	toma	valor	(basura)

¡Amigable	con	el	usuario!
¿Qué	tiene	que	introducir?

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Qué	pasa	si	el	usuario	se	equivoca?

Página 114Fundamentos de la programación: Tipos e instrucciones I

12 para	cantidad
No	se	puede	leer	un	real
 0 para	precio y	Error

12 para	cantidad
No	se	puede	leer	un	real
 0 para	precio y	Error

12 para	cantidad
.5 0,5 para	precio
Lo	demás	queda	pendiente

12 para	cantidad
.5 0,5 para	precio
Lo	demás	queda	pendiente

¡¡¡Lectura	correcta!!!¡¡¡Lectura	correcta!!!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

División	de	dos	números
Pedir	al	usuario	dos	números	y	mostrarle	el	resultado	
de	dividir	el	primero	entre	el	segundo

Algoritmo.‐

1. Pedir	el	numerador

2. Pedir	el	denominador

3. Realizar	la	división,	guardando	el	resultado

4. Mostrar	el	resultado

Página 115Fundamentos de la programación: Tipos e instrucciones I

Datos / cálculos

Variable denominador (double)

Variable resultado (double)
resultado = numerador / denominador

Variable numerador (double)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

ProcesamientoEntrada SalidaDeclaraciones

Entrada‐Proceso‐Salida
Muchos	programas	se	ajustan	a	un	sencillo	esquema:

Página 116Fundamentos de la programación: Tipos e instrucciones I

1. Leer	numerador

2. Leer	denominador

3. Calcular	división	en	resultado

4. Mostrar	resultado

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

División	de	dos	números
Pedir	al	usuario	dos	números	y	mostrarle	el	resultado	de	dividir	el	
primero	entre	el	segundo.

1. Leer	numerador

2. Leer	denominador

3. Calcular	división	en	resultado

4. Mostrar	resultado

Página 117Fundamentos de la programación: Tipos e instrucciones I

cin >> numerador;cin >> numerador;

cin >> denominador;cin >> denominador;

resultado = numerador / denominador;resultado = numerador / denominador;

cout << resultado;cout << resultado;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

División	de	dos	números
#include <iostream>

using namespace std;

int main()

{

double numerador, denominador, resultado;

cout << "Numerador: ";

cin >> numerador;

cout << "Denominador: ";

cin >> denominador;

resultado = numerador / denominador;

cout << "Resultado: " << resultado << endl;

return 0;

}

Salida

Procesamiento

Entrada

Declaraciones

Página 118Fundamentos de la programación: Tipos e instrucciones I

división.cppdivisión.cpp

_

_Resultado: _Resultado: _64.564.5

Numerador: _Numerador: _

Denominador: _Denominador: _

129129

22

_

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 119Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Problema
Dadas	la	base	y	la	altura	de	un	triángulo,	mostrar	su	área

Mostrar	en	la	pantalla	un	texto	que	pida	la	base	del	triángulo.	El	usuario	
introducirá	el	valor	con	el	teclado.	Mostrar	en	la	pantalla	un	texto	que	
pida	la	altura	del	triángulo.	El	usuario	introducirá	el	valor	con	el	teclado.	
Se	calculará	el	área	del	triángulo	y	se	mostrará	en	la	pantalla.

Página 120Fundamentos de la programación: Tipos e instrucciones I

RefinamientoRefinamiento

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Objetos:	Datos	que	maneja	el	programa

Mostrar	en	la	pantalla	un	texto	que	pida	la	base	del	triángulo.	El	usuario	
introducirá	la	base	con	el	teclado.	Mostrar	en	la	pantalla	un	texto	que	
pida	la	altura	del	triángulo.	El	usuario	introducirá	la	altura	con	el	
teclado.	Se	calculará	el	área	del	triángulo	y	se	mostrará	en	la	pantalla.

Página 121Fundamentos de la programación: Tipos e instrucciones I

coutcout cadena	literalcadena	literal

variablevariable cincin

cadena	literalcadena	literal variablevariable

variablevariable

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	que	maneja	el	programa:	tipos

Página 122Fundamentos de la programación: Tipos e instrucciones I

Objeto Tipo ¿Varía? Nombre

Pantalla Variable cout

"Introduzca la base del triángulo: " Constante ninguno

Base del triángulo double Variable base

Teclado Variable cin

"Introduzca la altura del triángulo: " Constante ninguno

Altura del triángulo double Variable altura

Área del triángulo double Variable area

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Operaciones	(acciones)

Mostrar	en	la	pantalla	un	texto	que	pida	la	base	del	triángulo.	El	usuario	
introducirá	la	base	con	el	teclado. Mostrar	en	la	pantalla	un	texto	que	
pida	la	altura	del	triángulo.	El	usuario	introducirá	la	altura	con	el	
teclado.	Se	calculará	el	área	del	triángulo	y	se	mostrará	en	la	pantalla.

Página 123Fundamentos de la programación: Tipos e instrucciones I

cout << ...cout << ... cin >> ...cin >> ...

area = base * altura / 2area = base * altura / 2

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Secuencia	de	acciones	que	ha	de	realizar	el	programa	
para	conseguir	resolver	el	problema

1. Mostrar	en	la	pantalla	el	texto	que	pida	la	base	del	triángulo

2. Leer	del	teclado	el	valor	para	la	base	del	triángulo

3. Mostrar	en	la	pantalla	el	texto	que	pida	la	altura

4. Leer	del	teclado	el	valor	para	la	altura	del	triángulo

5. Calcular	el	área	del	triángulo

6. Mostrar	el	área	del	triángulo

Página 124Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>

using namespace std;
int main()

{

return 0;

}

Página 125Fundamentos de la programación: Tipos e instrucciones I

Algoritmo
traducido
a	código
en	C++

Declaraciones
1. Mostrar	en	la	pantalla	el	texto	que	pida	la	base	del	triángulo

2. Leer	del	teclado	el	valor	para	la	base	del	triángulo

3. Mostrar	en	la	pantalla	el	texto	que	pida	la	altura	del	triángulo

4. Leer	del	teclado	el	valor	para	la	altura	del	triángulo

5. Calcular	el	área	del	triángulo

6. Mostrar	el	área	del	triángulo

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

El	programa:	implementación
#include <iostream>
using namespace std;

int main()
{

double base, altura, area; // Declaraciones
cout << "Introduzca la base del triángulo: "; // 1
cin >> base; // 2
cout << "Introduzca la altura del triángulo: "; // 3
cin >> altura; // 4
area = base * altura / 2; // 5
cout << "El área de un triángulo de base " << base // 6

<< " y altura " << altura << " es: " << area << endl;

return 0;
}

Página 126Fundamentos de la programación: Tipos e instrucciones I

triángulo.cpptriángulo.cpp

Recuerda:	las	instrucciones	terminan	en	;Recuerda:	las	instrucciones	terminan	en	;

¿triβngulo?

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 127Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Variabilidad	de	los	datos

Página 128Fundamentos de la programación: Tipos e instrucciones I

DatosDatos

ConstantesConstantes

LiteralesLiterales

Con	nombreCon	nombre

VariablesVariables

"Introduzca la base del triángulo: "
3.141592653589

base, altura, area

Pi = 3.141592653589

IdentificadoresIdentificadores

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 129Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Para	variables	y	constantes	con	nombre

— Nombre de	un	dato	(para	accederlo/modificarlo)

— Deben	ser	descriptivos

Sintaxis:

Página 130Fundamentos de la programación: Tipos e instrucciones I

Al	menos	32	caracteres	significativosAl	menos	32	caracteres	significativos

0..9, a..z, A..Z, _

a..z, A..Z, _

¡Ni	eñes	ni	vocales	acentuadas!¡Ni	eñes	ni	vocales	acentuadas!

 palabras	reservadas

cantidad prrecio total base altura area numeradorcantidad prrecio total base altura area numerador

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Palabras	reservadas	del	lenguaje	C++

asm auto bool break case catch char class const

const_cast continue default delete do double

dynamic_cast else enum explicit extern false

float for friend goto if inline int long

mutable namespace new operator private protected

public register reinterpret_cast return short

signed sizeof static static_cast struct switch

template this throw true try typedef typeid

typename union unsigned using virtual void

volatile while

Página 131Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Qué	identificadores	son	válidos?

balance interesAnual

_base_imponible años

EDAD12 salario_1_mes

__edad cálculoNómina

valor%100 AlgunValor

100caracteres valor?

_12_meses ____valor

Página 132Fundamentos de la programación: Tipos e instrucciones I






 











 

0..9, a..z, A..Z, _

a..z, A..Z, _
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 133Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Tipos
Cada	dato,	de	un	tipo	concreto

Cada	tipo	establece:

— El	conjunto	(intervalo)	de	valores	válidos

— El	conjunto	de	operaciones	que	se	pueden	realizar

Expresiones	con	datos	de	distintos	tipos	(compatibles):

Transformación	automática	de	tipos	(promoción	de	tipo)

Página 134Fundamentos de la programación: Tipos e instrucciones I

125
'a'

true
3.14159

"Hola"

Anexo	del	Tema	2:	detalles	técnicosAnexo	del	Tema	2:	detalles	técnicos

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int
Números	enteros	(sin	decimales) 1363,	‐12,	49

float
Números	reales 12.45,	‐3.1932,	1.16E+02

double
Números	reales	(mayores	intervalo	y	precisión)
char
Caracteres 'a' ,	'{',	'\t'

bool
Valores	lógicos	(verdadero/falso) true,	false

string
Cadenas	de	caracteres	(biblioteca	string) "Hola Mundo!"

void
Nada,	ausencia	de	tipo,	ausencia	de	dato	(funciones)

Página 135Fundamentos de la programación: Tipos e instrucciones I





Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Intervalo	de	valores:	Juego	de	caracteres	(ASCII)
Literales:
'a' '%' '\t'

Constantes	de	barra	invertida	(o	secuencias	de	escape):

Caracteres	de	control
'\t' =	tabulador			'\n' =	salto	de	línea			…

Página 136Fundamentos de la programación: Tipos e instrucciones I

ASCII	(códigos	32..127)ASCII	(códigos	32..127)

ISO‐8859‐1
(ASCII	extendido:	códigos	128..255)

ISO‐8859‐1
(ASCII	extendido:	códigos	128..255)

1	byte

Caracteres
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Sólo	dos	valores	posibles:

— Verdadero	(true)

— Falso	(false)

Literales:
true false

Cualquier	número	distinto	de	0 es	equivalente	a	true

El	0 es	equivalente	a	false

Página 137Fundamentos de la programación: Tipos e instrucciones I

Valores	lógicos

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

C++	distingue	entre	mayúsculas	y	minúsculas

int:	palabra	reservada	de	C++	para	declarar	datos	enteros

Int,	INT o	inT no	son	palabras	reservadas	de	C++

true:	palabra	reservada	de	C++	para	el	valor	verdadero

True o	TRUE no	son	palabras	reservadas	de	C++

Página 138Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

"Hola" "Introduce el numerador: " "X142FG5TX?%A"

Secuencias	de	caracteres

Programas	con	variables	de	tipo	string:

#include <string>
using namespace std;

Página 139Fundamentos de la programación: Tipos e instrucciones I

" "

Las	comillas	tipográficas	(apertura/cierre)	“…” NO	sirven
Asegúrate	de	utilizar	comillas	rectas:	"…"

char

Cadenas	de	caracteres

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 140Fundamentos de la programación: Tipos e instrucciones I

tipos.cpptipos.cpp

#include <iostream>
#include <string>
using namespace std; // Un solo using... para ambas bibliotecas

int main()
{

int entero = 3; // Podemos asignar (inicializar) al declarar
double real = 2.153;
char caracter = 'a';
bool cierto = true;
string cadena = "Hola";
cout << "Entero: " << entero << endl;
cout << "Real: " << real << endl;
cout << "Carácter: " << caracter << endl;
cout << "Booleano: " << cierto << endl;
cout << "Cadena: " << cadena << endl;

return 0;
}

¿Cuántos	números	hay	en	total	en	el	programa?
¿Y	caracteres?	¿Y	cadenas?	¿Y	booleanos?

¿Cuántos	números	hay	en	total	en	el	programa?
¿Y	caracteres?	¿Y	cadenas?	¿Y	booleanos?

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

— signed /	unsigned :	con	signo	(por	defecto)	/	sin	signo

— short /	long :	menor	/	mayor	intervalo	de	valores

Página 141Fundamentos de la programación: Tipos e instrucciones I

Tipo Intervalo

int ‐2147483648 ..	2147483647

unsigned int 0 ..	4294967295

short int ‐32768 ..	32768

unsigned short int 0 ..	65535

long int ‐2147483648 ..	2147483647

unsigned long int 0 ..	4294967295

double +|‐ 2.23e‐308 ..	1.79e+308

long double +|‐ 3.37E‐4932 ..	1.18E+4932

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 142Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

[modificadores] tipo lista_de_variables;
Opcional

lista_de_variables

int i, j, l;
short int unidades;
unsigned short int monedas;
double balance, beneficio, perdida;

Página 143Fundamentos de la programación: Tipos e instrucciones I

Identificador

Programación	con	buen	estilo:
Identificadores	descriptivos
Espacio	tras	cada	coma
Nombres	de	las	variables	en	minúsculas
(Varias	palabras:	capitaliza	cada	inicial:	interesPorMes)

,

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Se	reserva	memoria	suficiente	para	cada	tipo	de	dato

int inicio;

short int unidades;

double balance;

Página 144Fundamentos de la programación: Tipos e instrucciones I

Memoria

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

. . .

inicio

unidades

balance

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¡En	C++	las	variables	no	se	inicializan	automáticamente!

¡Una	variable	debe	ser	haber	sido	inicializada	antes	de	ser	accedida!

¿Cómo	se	inicializa	una	variable?
— Al	leer	su	valor	(cin >>)
— Al	asignarle	un	valor	(instrucción	de	asignación)

— Al	declararla

Inicialización	en	la	propia	declaración:

Página 145Fundamentos de la programación: Tipos e instrucciones I

Expresión:	valor	compatibleExpresión:	valor	compatibleIdentificador Expresión…… =

En particular, una expresión
puede ser un literal

int i = 0, j, l = 26;

short int unidades = 100;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Obtención	del	valor	de	una	variable
 Nombre	de	la	variable	en	una	expresión

cout << balance;

cout << interesPorMes * meses / 100;

Modificación	del	valor	de	una	variable
 Nombre	de	la	variable	a	la	izquierda	del	=

balance = 1214;

porcentaje = valor / 30;

Las	variables	han	de	haber	sido	previamente	declaradas

Página 146Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 147Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

El	operador	=

A	la	izquierda,	SIEMPRE	una	variable

int i, j = 2;

i = 23 + j * 5; // i toma el valor 33

;Expresión=

Página 148Fundamentos de la programación: Tipos e instrucciones I

Variable

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Errores
int a, b, c;

5 = a;

// ERROR: un literal no puede recibir un valor

a + 23 = 5;

// ERROR: no puede haber una expresión a la izda.

b = "abc";

// ERROR: un entero no puede guardar una cadena

c = 23 5;

// ERROR: expresión no válida (falta operador)

Página 149Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int i, j = 2;

i = 23 + j * 5;

Página 150Fundamentos de la programación: Tipos e instrucciones I

Memoria

01

02

03

04

05

06

07

08

09

10

. . .

i

j
2

?

Memoria

01

02

03

04

05

06

07

08

09

10

. . .

i

j
2

3323 + 2 * 523 + 2 * 5

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Necesitamos	una	variable	auxiliar

double a = 3.45, b = 127.5, aux;

Página 151Fundamentos de la programación: Tipos e instrucciones I

a 3.45

b 127.5

aux ?

a 3.45

b 127.5

aux 3.45

a 127.5

b 127.5

aux 3.45

a 127.5

b 3.45

aux 3.45

aux = a;

a = b;

b = aux;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 152Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Operaciones	sobre	valores	de	los	tipos
Cada	tipo	determina	las	operaciones	posibles

Tipos	de	datos	numéricos	(int,	float y	double):

— Asignación	(=)

— Operadores	aritméticos

— Operadores	relacionales	(menor,	mayor,	igual,	...)
Tipo	de	datos	bool:

— Asignación	(=)

— Operadores	lógicos	(Y,	O,	NO)
Tipos	de	datos	char y	string:

— Asignación	(=)

— Operadores	relacionales	(menor,	mayor,	igual,	...)

Página 153Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Operadores	para	tipos	de	datos	numéricos

Página 154Fundamentos de la programación: Tipos e instrucciones I

Operador Operandos Posición int float /	double

‐ 1 (monario) Prefijo Cambio de signo

+ 2 (binario) Infijo Suma

‐ 2 (binario) Infijo Resta

* 2 (binario) Infijo Producto

/ 2 (binario) Infijo Div. entera División real

% 2 (binario) Infijo Módulo No aplicable

++ 1 (monario) Prefijo / postfijo Incremento

‐‐ 1 (monario) Prefijo / postfijo Decremento

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Operadores	monarios	y	operadores	binarios
Operadores	monarios (unarios)
— Cambio	de	signo	(‐):

Delante	de	variable,	constante	o	expresión	entre	paréntesis
‐saldo ‐RATIO ‐(3 * a ‐ b)

— Incremento/decremento	(sólo	variables)	(prefijo/postfijo):
++interes ‐‐meses j++ // 1 más ó 1 menos

Operadores	binarios

— Operando	izquierdo					operador					operando	derecho
Operandos:	literales,	constantes,	variables	o	expresiones
2 + 3 a * RATIO ‐a + b

(a % b) * (c / d)

Página 155Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿División	entera	o	división	real?

Ambos	operandos	enteros:	división	entera
int i = 23, j = 2;

cout << i / j; // Muestra 11

Algún	operando	real:	división	real
int i = 23;

double j = 2;

cout << i / j; // Muestra 11.5

Página 156Fundamentos de la programación: Tipos e instrucciones I

/

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Módulo	(resto	de	la	división	entera)

Ambos	operandos	han	de	ser	enteros
int i = 123, j = 5;

cout << i % j; // Muestra 3

División	entera:
No	se	obtienen	decimales	 Queda	un	resto

Página 157Fundamentos de la programación: Tipos e instrucciones I

%

123123 55

242433

123 % 5123 % 5

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Operadores	de	incremento	y	decremento
Incremento/decremento	de	la	variable numérica	en	una	unidad

Prefijo:	Antes	de	acceder
int i = 10, j;

j = ++i; // Incrementa antes de copiar

cout << i << " ‐ " << j; // Muestra 11 ‐ 11

Postfijo:	Después	de	acceder
int i = 10, j;

j = i++; // Copia y después incrementa

cout << i << " ‐ " << j; // Muestra 11 ‐ 10

Página 158Fundamentos de la programación: Tipos e instrucciones I

++/‐‐

No	mezcles	++ y	‐‐ con	otros	operadoresNo	mezcles	++ y	‐‐ con	otros	operadores

i=i+1;
j=i;
i=i+1;
j=i;

j=i;
i=i+1;
j=i;
i=i+1;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 159Fundamentos de la programación: Tipos e instrucciones I

operadores.cppoperadores.cpp#include <iostream>
using namespace std;

int main() {
int entero1 = 15, entero2 = 4;
double real1 = 15.0, real2 = 4.0;
cout << "Operaciones entre los números 15 y 4:" << endl;
cout << "División entera (/): " << entero1 / entero2 << endl;
cout << "Resto de la división (%): " << entero1 % entero2 << endl;
cout << "División real (/): " << real1 / real2 << endl;
cout << "Num = " << real1 << endl;
real1 = ‐real1;
cout << "Cambia de signo (‐): " << real1 << endl;
real1 = ‐real1;
cout << "Vuelve a cambiar (‐): " << real1 << endl;
cout << "Se incrementa antes (++ prefijo): " << ++real1 << endl;
cout << "Se muestra antes de incrementar (posfijo ++): "

<< real1++ << endl;
cout << "Ya incrementado: " << real1 << endl;
return 0;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 160Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿En	qué	orden	se	evalúan	los	operadores?

3 + 5 * 2 / 2 ‐ 1

¿De	izquierda	a	derecha?

¿De	derecha	a	izquierda?

¿Unos	antes	que	otros?

Precedencia	de	los	operadores	(prioridad):

Se	evalúan	antes	los	de	mayor	precedencia

¿Y	si	tienen	igual	prioridad?

Normalmente,	de	izquierda	a	derecha

Paréntesis:	fuerzan	a	evaluar	su	subexpresión

Página 161Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 162Fundamentos de la programación: Tipos e instrucciones I

Precedencia Operadores

Mayor	prioridad ++ ‐‐ (postfijos)

++ ‐‐ (prefijos)

‐ (cambio	de	signo)

* / %

Menor	prioridad + ‐

3 + 5 * 2 / 2 ‐ 1

Misma	precedencia:
Izquierda	antes

Misma	precedencia:
Izquierda	antes

Misma	precedencia:
Izquierda	antes

Misma	precedencia:
Izquierda	antes

Mayor
precedencia
Mayor

precedencia

 3 + 10 / 2 ‐ 1  3 + 5 ‐ 1  8 ‐ 1  7

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 163Fundamentos de la programación: Tipos e instrucciones I

Primero,	los	paréntesis...Primero,	los	paréntesis...((3 + 5) * 4 + 12) / 4 ‐ (3 * 2 ‐ 1)

* antes	que	‐* antes	que	‐
(8 * 4 + 12) / 4 ‐ (6 ‐ 1)

* antes	que	+* antes	que	+

(32 + 12) / 4 ‐ 5

44 / 4 ‐ 5

11 ‐ 5

6

/ antes	que	‐/ antes	que	‐

Pon	espacio	antes	y	después
de	cada	operador	binario
Pon	espacio	antes	y	después
de	cada	operador	binario

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>

using namespace std;

int main()

{

double x, f;

cout << "Introduce el valor de X: ";

cin >> x;

f = 3 * x * x / 5 + 6 * x / 7 ‐ 3;

cout << "f(x) = " << f << endl;

return 0;

}

Página 164Fundamentos de la programación: Tipos e instrucciones I

fórmula.cppfórmula.cpp

Usa	paréntesis	para	mejorar	la	legibilidad:
f = (3 * x * x / 5) + (6 * x / 7) ‐ 3;
Usa	paréntesis	para	mejorar	la	legibilidad:
f = (3 * x * x / 5) + (6 * x / 7) ‐ 3;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

variable = variable operador op_derecho;

variable operador= op_derecho;

Asignación Abreviatura

a = a + 12; a += 12;

a = a * 3; a *= 3;

a = a ‐ 5; a ‐= 5;

a = a / 37; a /= 37;

a = a % b; a %= b;

Página 165Fundamentos de la programación: Tipos e instrucciones I

Igual	precedencia
que	la	asignación

De	momento,
mejor	evitarlas

Igual	precedencia
que	la	asignación

De	momento,
mejor	evitarlas

La	mismaLa	misma 

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Valor	siguiente	al	máximo?
Valor	mayor	del	máximo	(o	menor	del	mínimo)	del	tipo

short int i = 32767; // Valor máximo para short int

i++; // 32768 no cabe en un short int

cout << i; // Muestra ‐32768

Bit	de	signo
0	=	positivo
1	=	negativo

Bit	de	signo
0	=	positivo
1	=	negativo

Página 166Fundamentos de la programación: Tipos e instrucciones I

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1++

3276732767

‐32768‐32768

+ 1+ 1

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 167Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Declaración	de	constantes Modificador	de	acceso	const

Variables	inicializadas	a	las	que	no	dejamos	variar

Página 168Fundamentos de la programación: Tipos e instrucciones I

Declaración de variable con inicializador

Programación	con	buen	estilo:
Pon	en	mayúscula	la	primera	letra
de	una	constante	o	todo	su	nombre

La	constante	no	podrá	volver	a	
aparecer	a	la	izquierda	de	un	=
La	constante	no	podrá	volver	a	
aparecer	a	la	izquierda	de	un	=

constconst

const short int Meses = 12;

const double Pi = 3.141592,

RATIO = 2.179 * Pi;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

 Aumentan	la	legibilidad	del	código

cambioPoblacion = (0.1758 ‐ 0.1257) * poblacion; vs.
cambioPoblacion = (RatioNacimientos ‐ RatioMuertes) * poblacion;

 Facilitan	la	modificación	del	código
double compra1 = bruto1 * 18 / 100;
double compra2 = bruto2 * 18 / 100;
double total = compra1 + compra2;
cout << total << " (IVA: " << 18 << "%)" << endl;

const int IVA = 18;
double compra1 = bruto1 * IVA / 100;
double compra2 = bruto2 * IVA / 100;
double total = compra1 + compra2;
cout << total << " (IVA: " << IVA << "%)" << endl;

Página 169Fundamentos de la programación: Tipos e instrucciones I

¿Cambio	del	IVA	al	21%?¿Cambio	del	IVA	al	21%?

3	cambios3	cambios3	cambios

1	cambio1	cambio1	cambio

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 170Fundamentos de la programación: Tipos e instrucciones I

constantes.cppconstantes.cpp

#include <iostream>
using namespace std;

int main() {
const double Pi = 3.141592;
double radio = 12.2, circunferencia;
circunferencia = 2 * Pi * radio;
cout << "Circunferencia de un círculo de radio "

<< radio << ": " << circunferencia << endl;
const double Euler = 2.718281828459; // Número e
cout << "Número e al cuadrado: " << Euler * Euler << endl;
const int IVA = 21;
int cantidad = 12;
double precio = 39.95, neto, porIVA, total;
neto = cantidad * precio;
porIVA = neto * IVA / 100;
total = neto + porIVA;
cout << "Total compra: " << total << endl;
return 0;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 171Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 172Fundamentos de la programación: Tipos e instrucciones I

abs(x) Valor	absoluto	de	x

pow(x, y) x	elevado	a	y

sqrt(x) Raíz	cuadrada	de	x

ceil(x) Menor	entero	que es	mayor	o	igual	que	x

floor(x) Mayor	entero	que	es	menor	o	igual	que	x

exp(x) ex

log(x) Ln x	(logaritmo	natural	de	x)

log10(x) Logaritmo	en	base	10 de	x

sin(x) Seno	de	x

cos(x) Coseno de	x

tan(x) Tangente	de	x

round(x) Redondeo	al	entero	más	próximo

trunc(x) Pérdida	de	la	parte	decimal	(entero)

#include <cmath>

Algunas	...Algunas	...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;
#include <cmath>

int main() {
double x, y, f;
cout << "Valor de X: ";
cin >> x;
cout << "Valor de Y: ";
cin >> y;
f = 2 * pow(x, 5) + sqrt(pow(x, 3) / pow(y, 2))

/ abs(x * y) ‐ cos(y);
cout << "f(x, y) = " << f << endl;
return 0;

}

Página 173Fundamentos de la programación: Tipos e instrucciones I

Pon	un	espacio	detrás	de	cada	coma	en	las	listas	de	argumentos

mates.cppmates.cpp

pow() con	argumento	entero:

Usa	el	molde	double():
pow(double(i), 5)

pow() con	argumento	entero:

Usa	el	molde	double():
pow(double(i), 5)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 174Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Asignación,	++/‐‐ y	operadores	relacionales

Funciones	para	caracteres (biblioteca	cctype)
isalnum(c) true si	c es	una	letra	o	un	dígito

isalpha(c) true si	c es	una	letra

isdigit(c) true si	c es	un	dígito

islower(c) true si	c es	una	letra	minúscula

isupper(c) true si	c es	una	letra	mayúscula

toupper(c) devuelve	la	mayúscula	de	c

tolower(c) devuelve	la	minúscula	de	c

…

Página 175Fundamentos de la programación: Tipos e instrucciones I

char

false en	caso	contrario

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...
#include <cctype>

int main() {
char caracter1 = 'A', caracter2 = '1', caracter3 = '&';
cout << "Carácter 1 (" << caracter1 << ").‐" << endl;
cout << "Alfanumérico? " << isalnum(caracter1) << endl;
cout << "Alfabético? " << isalpha(caracter1) << endl;
cout << "Dígito? " << isdigit(caracter1) << endl;
cout << "Mayúscula? " << isupper(caracter1) << endl;
caracter1 = tolower(caracter1);
cout << "En minúscula: " << caracter1 << endl;
cout << "Carácter 2 (" << caracter2 << ").‐" << endl;
cout << "Alfabético? " << isalpha(caracter2) << endl;
cout << "Dígito? " << isdigit(caracter2) << endl;
cout << "Carácter 3 (" << caracter3 << ").‐" << endl;
cout << "Alfanumérico? " << isalnum(caracter3) << endl;
cout << "Alfabético? " << isalpha(caracter3) << endl;
cout << "Dígito? " << isdigit(caracter3) << endl;
return 0;

}

Página 176Fundamentos de la programación: Tipos e instrucciones I

caracteres.cppcaracteres.cpp

1  true /	0  false1  true /	0  false

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 177Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Operadores	relacionales
Comparaciones	(condiciones)

Condición	simple	::=	Expresión		Operador_relacional Expresión

Concordancia	de	tipo	entre	las	expresiones

Resultado:	bool (true o	false)

Página 178Fundamentos de la programación: Tipos e instrucciones I

< menor	que

<= menor	o	igual	que

> mayor	que

>= mayor	o	igual	que

== igual	que

!= distinto	de

Operadores (prioridad)

...

* / %

+ ‐

< <= > >=

== !=

= += ‐= *= /= %=

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Menor	prioridad	que	los	operadores	aditivos	y	multiplicativos

bool resultado;

int a = 2, b = 3, c = 4;

resultado = a < 5; // 2 < 5  true

resultado = a * b + c >= 12; // 10 >= 12  false

resultado = a * (b + c) >= 12; // 14 >= 12  true

resultado = a != b; // 2 != 3  true

resultado = a * b > c + 5; // 6 > 9  false

resultado = a + b == c + 1; // 5 == 5  true

Página 179Fundamentos de la programación: Tipos e instrucciones I

No	confundas	el	operador	de	igualdad	(==)
con	el	operador	de	asignación	(=)
No	confundas	el	operador	de	igualdad	(==)
con	el	operador	de	asignación	(=)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 180Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 181Fundamentos de la programación: Tipos e instrucciones I

Selección:	bifurcación	condicional

truetrue

códigoT

falsefalse

códigoF

if (condición) {
códigoT

}

else {
códigoF

}

CondiciónCondición

int num;
cout << "Número: ";
cin >> num;
if (num % 2 == 0) {

cout << num << " es par";
}
else {

cout << num << " es impar";
}

Opcional: puede no haber elseOpcional: puede no haber else

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 182Fundamentos de la programación: Tipos e instrucciones I

#include <iostream>
using namespace std;

int main() {
int op1 = 13, op2 = 4;
int opcion;
cout << "1 ‐ Sumar" << endl;
cout << "2 ‐ Restar" << endl;
cout << "Opción: ";
cin >> opcion;
if (opcion == 1) {

cout << op1 + op2 << endl;
}
else {

cout << op1 ‐ op2 << endl;
}
return 0;

}

selección.cppselección.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 183Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

{
intrucción1
intrucción2
...
intrucciónN

}

{
intrucción1
intrucción2
...
intrucciónN

}

Página 184Fundamentos de la programación: Tipos e instrucciones I

Agrupación	de	instrucciones
Grupo	de	instrucciones	a	ejecutar	en	una	rama	del	if

Tab	ó

3	esp.

Tab	ó

3	esp.
int num, total = 0;
cin >> num;
if (num > 0)
{

cout << "Positivo";
total = total + num;

}
cout << endl;

Ámbito	local
(declaraciones	locales)
Ámbito	local
(declaraciones	locales)

}instrucción{

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 185Fundamentos de la programación: Tipos e instrucciones I

Posición	de	las	llaves:	cuestión	de	estilo
if (num > 0) if (num > 0) {
{ cout << "Positivo";

cout << "Positivo"; total = total + num;
total = total + num; }

} cout << endl;
cout << endl;

No	necesitamos	las	llaves	si	sólo	hay	una	instrucción
if (num > 0) { if (num > 0)

cout << "Positivo"; cout << "Positivo";
}

Usaremos	siempre	llaves	por	simplicidad...

Evita	poner	el	if y	la	instrucción	objetivo	en	la	misma	línea:
if (num > 0) cout << "Positivo";



Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 186Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 187Fundamentos de la programación: Tipos e instrucciones I

Repetición	o	iteración	condicional

while (condición) {
cuerpo

}
Cuerpo

truetrue falsefalse

Bloque	
de	código

Si	la	condición	es	false al	empezar,
no	se	ejecuta	el	cuerpo	ninguna	vez
Si	la	condición	es	false al	empezar,
no	se	ejecuta	el	cuerpo	ninguna	vez

cuerpo)condición(while

Condición

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 188Fundamentos de la programación: Tipos e instrucciones I

#include <iostream>
using namespace std;

int main() {
int i = 1, n = 0, suma = 0;
while (n <= 0) { // Sólo n positivo

cout << "¿Cuántos números quieres sumar? ";
cin >> n;

}
while (i <= n) {

suma = suma + i;
i++;

}
cout << "Sumatorio de i (1 a " << n << ") = "

<< suma << endl;
return 0;

}

serie.cppserie.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

falsefalse

Iteración	condicional

Página 189Fundamentos de la programación: Tipos e instrucciones I

while (i <= n) {
suma = suma + i;
i++;

}
n 5

i 1

suma 0

suma += i;
i++;

truetrue

5

2

1

5

3

3

5

4

6

5

5

10

5

6

15
i <= n

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 190Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

1 6 = l a t o T7 3 5 . 3 5 1

Flujos	de	texto	(streams)
Conectan	la	ejecución	del	programa	con	los	dispositivos	de	E/S

Son	secuencias	de	caracteres
Entrada	por	teclado:	flujo	de	entrada	cin (tipo	istream)

Salida	por	pantalla:	flujo	de	salida	cout (tipo	ostream)

Página 191Fundamentos de la programación: Tipos e instrucciones I

Programa

cincin coutcout

Biblioteca	iostream con	espacio	de	nombres	stdBiblioteca	iostream con	espacio	de	nombres	std

Flujo de entrada Variable>>

Flujo de salida Expresión<<

ExtractorExtractor

InsertorInsertor

#include <iostream>
using namespace std;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Salta	los	espacios	en	blanco	(espacios,	tabuladores	o	saltos	de	línea)

— char
Se	lee	un	carácter	en	la	variable

— int
Se	leen	dígitos	y	se	transforman	en	el	valor	a	asignar

— float/double:
Se	leen	dígitos	(quizá	el	punto	y	más	dígitos)	y	se	asigna	el	valor

— bool:
Si	se	lee	1,	se	asigna	true;	con	cualquier	otro	valor	se	asigna	false

Página 192Fundamentos de la programación: Tipos e instrucciones I

Variablecin >>

Se	amigable	con	el	usuario
Lee	cada	dato	en	una	línea	
Se	amigable	con	el	usuario
Lee	cada	dato	en	una	línea	

cout << "Introduce tu edad: ";
cin >> edad;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

cin >> cadena termina	con	el	primer	espacio	en	blanco

cin.sync() descarta	la	entrada	pendiente

Página 193Fundamentos de la programación: Tipos e instrucciones I

¿Cómo	leer	varias	palabras?
Siguiente	página...

¿Cómo	leer	varias	palabras?
Siguiente	página...

apellidos recibe	"Antonio"apellidos recibe	"Antonio"

string nombre, apellidos;
cout << "Nombre: ";
cin >> nombre;
cout << "Apellidos: ";
cin >> apellidos;
cout << "Nombre completo: "

<< nombre << " "
<< apellidos << endl;

string nombre, apellidos;
cout << "Nombre: ";
cin >> nombre;
cin.sync();
cout << "Apellidos: ";
cin >> apellidos;
cout << ...

#include <string>
using namespace std;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 194Fundamentos de la programación: Tipos e instrucciones I

Lectura	sin	saltar	los	espacios	en	blanco	iniciales
Llamada	a	funciones	con	el	operador	punto	(.)	:

El	operador	punto	permite	llamar	a	una	función	sobre	una	variable
variable.función(argumentos)

Lectura	de	un	carácter	sin	saltar	espacios	en	blanco:
cin.get(c); // Lee el siguiente carácter

Lectura	de	cadenas	sin	saltar	los	espacios	en	blanco:
getline(cin, cad);

Lee	todo	lo	que	haya	hasta	el	final	de	la	línea	(Intro)

Recuerda:
Espacios	en	blanco son	espacios,	tabuladores,	saltos	de	línea,	...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Representación	textual	de	los	datos
int meses = 7;
cout << "Total: " << 123.45 << endl << " Meses: " << meses;

El	valor	double 123.45 se	guarda	en	memoria	en	binario

Su	representación	textual	es:'1' '2' '3' '.' '4' '5'

Página 195Fundamentos de la programación: Tipos e instrucciones I

Expresión

La	biblioteca	iostream
define	la	constante	endl
como	un	salto	de	línea

La	biblioteca	iostream
define	la	constante	endl
como	un	salto	de	línea

cout <<

d 123.45

5 4 . 3 2 1

¡Un	número	real!¡Un	número	real!

¡Un	texto!
(secuencia	de	caracteres)

¡Un	texto!
(secuencia	de	caracteres)

double d = 123.45;

cout << d;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int meses = 7;

cout << "Total: " << 123.45 << endl << " Meses: " << meses;

Página 196Fundamentos de la programación: Tipos e instrucciones I

T o t a l : 1 2 3 . 4 5  M e s e s : 7 Programa

coutcout

cout << 123.45 << endl << " Meses: " << meses;

cout << endl << " Meses: " << meses;

cout << " Meses: " << meses;

cout << meses;
Total: 123.45
Meses: 7

Expresióncout <<
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Constantes	y	funciones	a	enviar	a	cout para	ajustar	el	formato	de	salida

Página 197Fundamentos de la programación: Tipos e instrucciones I

Biblioteca Constante/función Propósito

iostream
showpoint /
noshowpoint

Mostrar	o	no	el	punto	decimal	para	reales	sin	
decimales	(34.0)

fixed Notación	de	punto	fijo	(reales)	(123.5)

scientific Notación	científica (reales)	(1.235E+2)

boolalpha Valores	bool como	true /	false

left / right Ajustar	a	la	izquierda/derecha	(por	defecto)

iomanip setw(anchura)* Nº	de	caracteres	(anchura)	para	el	dato

setprecision(p)
Precisión:	Nº	de	dígitos	(en	total)
Con	fixed o	scientific,	nº	de	decimales

*setw() sólo	afecta	al	siguiente	dato	que	se	escriba,
mientras	que	los	otros	afectan	a	todos

*setw() sólo	afecta	al	siguiente	dato	que	se	escriba,
mientras	que	los	otros	afectan	a	todos

#include <iomanip>

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

bool fin = false;

cout << fin << "‐>" << boolalpha << fin << endl;

double d = 123.45;

char c = 'x';

int i = 62;

cout << d << c << i << endl;

cout << "|" << setw(8) << d << "|" << endl;

cout << "|" << left << setw(8) << d << "|" << endl;

cout << "|" << setw(4) << c << "|" << endl;

cout << "|" << right << setw(5) << i << "|" << endl;

double e = 96;

cout << e << " ‐ " << showpoint << e << endl;

cout << scientific << d << endl;

cout << fixed << setprecision(8) << d << endl;

Página 198Fundamentos de la programación: Tipos e instrucciones I

0‐>false

123.45x62

| 123.45|

|123.45 |

|x |

| 62|

96 ‐ 96.0000

1.234500e+002

123.45000000

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 199Fundamentos de la programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Los	programas	pueden	incluir	otras	funciones	además	de	main()

Forma	general	de	una	función	en	C++:

tipo nombre(parámetros) // Cabecera
{

// Cuerpo
}

 Tipo de	dato	que	devuelve	la	función	como	resultado

 Parámetros para	proporcionar	datos	a	la	función

Declaraciones	de	variables	separadas	por	comas

 Cuerpo:	secuencia	de	declaraciones	e	instrucciones
¡Un	bloque	de	código!

Página 200Fundamentos de programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

 Datos	locales:	declarados	en	el	cuerpo	de	la	función

Datos	auxiliares	que	utiliza	la	función	(puede	no	haber)

 Parámetros:	declarados	en	la	cabecera	de	la	función

Datos	de	entrada	de	la	función	(puede	no	haber)

Ambos	son	de	uso	exclusivo	de	la	función	y	no	se	conocen	fuera

double f(int x, int y) {
// Declaración de datos locales:
double resultado;

// Instrucciones:
resultado = 2 * pow(x, 5) + sqrt(pow(x, 3)

/ pow(y, 2)) / abs(x * y) ‐ cos(y);

return resultado; // Devolución del resultado
}

Página 201Fundamentos de programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Llamada	a	una	función	con	parámetros
Nombre(Argumentos)

Al	llamar	a	la	función:

— Tantos	argumentos	entre	los	paréntesis	como	parámetros

— Orden	de	declaración	de	los	parámetros

— Cada	argumento:	mismo	tipo	que	su	parámetro

— Cada	argumento:	expresión	válida	(se	pasa	el	resultado)

Se	copian	los	valores	resultantes	de	las	expresiones
en	los	correspondientes	parámetros

Llamadas	a	la	función:	en	expresiones	de	otras funciones
int valor = f(2, 3);

Página 202Fundamentos de programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Se	copian	los	argumentos	en	los	parámetros
int funcion(int x, double a) {

...

}

int main() {

int i = 124;

double d = 3;

funcion(i, 33 * d);

...

return 0; // main() devuelve 0 al S.O.

}

Página 203Fundamentos de programación: Tipos e instrucciones I

Memoria

i 124

d 3.0

...

...

x 124

a 99.0

...

Los	argumentos	no	se	modificanLos	argumentos	no	se	modifican

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	función	ha	de	devolver	un	resultado
La	función	termina	su	ejecución	devolviendo	un	resultado

La	instrucción	return (sólo	una	en	cada	función)

— Devuelve	el	dato	que	se	pone	a	continuación	(tipo	de	la	función)

— Termina	la	ejecución	de	la	función

El	dato	devuelto	sustituye	a	la	llamada	de	la	función:

int cuad(int x) { int main() {

return x * x; cout << 2 * cuad(16);

x = x * x;

} return 0;

}

Página 204Fundamentos de programación: Tipos e instrucciones I

256256
Esta	instrucción

no	se	ejecutará	nunca
Esta	instrucción

no	se	ejecutará	nunca

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Qué	funciones	hay	en	el	programa?
Colocaremos	las	funciones	después	de	main()

¿Son	correctas	las	llamadas	a	funciones	del	programa?

— ¿Existe	la	función?

— ¿Concuerdan	los	argumentos	con	los	parámetros?

 Prototipos	tras	las	inclusiones	de	bibliotecas

Prototipo	de	función:	Cabecera	de	la	función	terminada	en	;
double f(int x, int y);
int funcion(int x, double a)
int cuad(int x);
...

Página 205Fundamentos de programación: Tipos e instrucciones I

main() es	la	única	función
que	no	hay	que	prototipar
main() es	la	única	función
que	no	hay	que	prototipar

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;
#include <cmath>

// Prototipos de las funciones (excepto main())
bool par(int num);
bool letra(char car);
int suma(int num);
double formula(int x, int y);

int main() {
int numero, sum, x, y;
char caracter;
double f;
cout << "Entero: ";
cin >> numero;
if (par(numero)) {

cout << "Par";
}
...

Página 206Fundamentos de programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

else {
cout << "Impar";

}
cout << endl;
if (numero > 1) {

cout << "Sumatorio de 1 a " << numero << ": "
<< suma(numero) << endl;

}
cout << "Carácter: ";
cin >> caracter;
if (!letra(caracter)) {

cout << "no ";
}
cout << "es una letra" << endl;
cout << "f(x, y) = " << formula(x, y) << endl;
// Los argumentos pueden llamarse igual o no que los parámetros

return 0;
}
...

Página 207Fundamentos de programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

// Implementación de las funciones propias

bool par(int num) {
bool esPar;

if (num % 2 == 0) {
esPar = true;

}
else {

esPar = false;
}

return esPar;
}
...

Página 208Fundamentos de programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

bool letra(char car) {
bool esLetra;
if ((car >= 'a') && (car <= 'z') || (car >= 'A') && (car <= 'Z')) {

esLetra = true;
}
else {

esLetra = false;
}
return esLetra;

}

int suma(int num) {
int sum = 0, i = 1;
while (i < num) {

sum = sum + i;
i++;

}
return sum;

}
...

Página 209Fundamentos de programación: Tipos e instrucciones I

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

double formula(int x, int y) {
double f;

f = 2 * pow(x, 5) + sqrt(pow(x, 3) / pow(y, 2))
/ abs(x * y) ‐ cos(y);

return f;
}

Página 210Fundamentos de programación: Tipos e instrucciones I

funciones.cppfunciones.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Tipos e instrucciones I Página 211

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

2A

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int 214
float 216
Notación científica 217
double 218
char 220
bool 221
string 222
Literales con especificación de tipo 223

Fundamentos de la programación: Tipos e instrucciones I (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Intervalo	de	valores:
‐2147483648 ..	2147483647

Bytes	de	memoria:	4*

Literales:
1363,	‐12,	010 ,	0x1A

Página 214Fundamentos de la programación: Tipos e instrucciones I (Anexo)

01

02

03

04

05

06

07

08

09

. . .

Notación	hexadecimalNotación	hexadecimal

(*)Depende	de	la	máquina
4	bytes	es	lo	más	habitual

Se	puede	saber	cuántos
se	usan	con	la	función
sizeof(int)

(*)Depende	de	la	máquina
4	bytes	es	lo	más	habitual

Se	puede	saber	cuántos
se	usan	con	la	función
sizeof(int)

Notación	octalNotación	octal

+

‐

0

x 0..9,A..F0..9,A..F

0..9
0..9

0..7

Números	enteros
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Números	en	notación	octal	(base	8:	dígitos	entre	0	y	7):
‐010 =	‐8	en	notación	decimal

10	=	1	x 81 +	0	x 80 =	1	x 8	+	0

0423 =	275	en	notación	decimal
423	=	4	x 82 +	2	x 81 +	3	x 80 =	4	x 64	+	2	x 8	+	3	=	256	

+	16	+3

Números	en	notación	hexadecimal	(base	16):

Dígitos posibles:	0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	A,	B,	C,	D,	E,	F
0x1F =	31 en	notación	decimal

1F	=	1	x 161 +	F	x 160 =	1	x 16	+	15

0xAD =	173	en	notación	decimal
AD	=	A	x 161 +	D	x 160 =	10	x 16	+	13	=	160	+	13

Página 215Fundamentos de la programación: Tipos e instrucciones I (Anexo)

Números	enteros

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Intervalo	de	valores:
+/‐ 1.18e‐38 ..	3.40e+38

Bytes	de	memoria:	4*

Punto	flotante.	Precisión:	7 dígitos

Literales	(punto	decimal):
Notación	normal:	134.45,	‐1.1764

Notación	científica:	1.4E2,	‐5.23e‐02

Página 216Fundamentos de la programación: Tipos e instrucciones I (Anexo)

01

02

03

04

05

06

07

08

09

. . .

(*)sizeof(float)(*)sizeof(float)

0..90..9

+

‐

+

‐

+

‐
.

.

e,E

0..90..9

0..90..9 0..90..9 0..90..9

Números	reales	(con	decimales)
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Siempre	un	número	(con	o	sin	signo)	con	un	solo	dígito	de	parte	
entera,	seguido	del	exponente	(potencia	de	10):

‐5.23e‐2  ‐5,23	x 10‐2  ‐0,0523

1.11e2  1,11	x 102  111,0

7.4523e‐04  7,4523	x 10‐4  0,00074523

‐3.3333e+06  ‐3,3333	x 106  ‐3.333.300

Página 217Fundamentos de la programación: Tipos e instrucciones I (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Intervalo	de	valores:
+/‐ 2.23e‐308 ..	1.79e+308

Bytes	de	memoria:	8*

Punto	flotante.	Precisión:	15 dígitos

Literales	(punto	decimal):
Notación	normal:	134.45,	‐1.1764

Notación	científica:	1.4E2,	‐5.23e‐02

Página 218Fundamentos de la programación: Tipos e instrucciones I (Anexo)

01

02

03

04

05

06

07

08

09

. . .

(*)sizeof(double)(*)sizeof(double)

0..90..9

+

‐

‐

+

‐
.

.

e,E

0..90..9

0..90..9 0..90..9 0..90..9

+

Números	reales	(con	decimales)
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Intervalo	de	valores:
Juego	de	caracteres	(ASCII)

Bytes	de	memoria:	1 (FC)
Literales:
'a',	'%',	'\t'
Constantes	de	barra	invertida:
(O	secuencias	de	escape)
Para	caracteres	de	control
'\t' =	tabulador,	'\n' =	salto	de	línea,	…

Página 219Fundamentos de la programación: Tipos e instrucciones I (Anexo)

01

02

03

04

05

06

07

08

09

. . .

Carácter

n, t, v, b, r, f, a, \n, t, v, b, r, f, a, \
' '

\

Caracteres

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Juego	de	caracteres	ASCII:

American	Standard	Code for	Information Interchange (1963)

Caracteres	con	códigos	entre	0	y	127	(7	bits)

— Caracteres	de	control:
Códigos	del	0	al	31	y	127
Tabulación,	salto	de	línea,...

— Caracteres	imprimibles:
Códigos	del	32	al	126

Juego	de	caracteres	ASCII	extendido	(8	bits):

ISO‐8859‐1

+	Códigos	entre	128	y	255

Página 220Fundamentos de la programación: Tipos e instrucciones I (Anexo)

Multitud	de	codificaciones:
EBCDIC,	UNICODE,		UTF‐8,	...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Sólo	dos	valores	posibles:

— Verdadero	(true)

— Falso	(false)

Bytes	de	memoria:	1 (FC)

Literales:
true,	false

En	realidad,	cualquier	número	
distinto	de	0	es	equivalente	a	true
y	el	número	0	es	equivalente	a	false

Página 221Fundamentos de la programación: Tipos e instrucciones I (Anexo)

01

02

03

04

05

06

07

08

09

. . .

Valores	lógicos

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

"Hola",	"Introduce el numerador: ",	"X142FG5TX?%A"

Secuencias	de	caracteres

Se	asigna	la	memoria	que	se	necesita	para	la	secuencia	concreta
Requieren	la	biblioteca	string con	el	espacio	de	nombres	std:

#include <string>
using namespace std;

Página 222Fundamentos de la programación: Tipos e instrucciones I (Anexo)

Carácter

¡Ojo!
Las	comillas	tipográficas	(apertura/cierre)	“…”	te	darán	problemas
al	compilar.	Asegúrate	de	utilizar	comillas	rectas:	"…"

" "

Cadenas	de	caracteres
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Por	defecto	un	literal	entero	se	considera	un	dato	int
— long int:	35L,	1546l
— unsigned int:	35U,	1546u
— unsigned long int:	35UL,	1546ul
Por	defecto	un	literal	real	se	considera	un	dato	double
— float:	1.35F,	15.46f
— long double:	1.35L,	15.46l

Abreviaturas	para	modificadores	de	tipos
short  short int
long  long int
Es	preferible	evitar	el	uso	de	tales	abreviaturas:
Minimizar	la	cantidad	de	información	a	recordar
sobre	el	lenguaje

Página 223Fundamentos de la programación: Tipos e instrucciones I (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Tipos e instrucciones I (Anexo) Página 224

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

3

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: Tipos e instrucciones II

Tipos, valores y variables 227
Conversión de tipos 232
Tipos declarados por el usuario 236
Tipos enumerados 238
Entrada/Salida

con archivos de texto 248
Lectura de archivos de texto 253
Escritura en archivos de texto 266

Flujo de ejecución 272
Selección simple 276
Operadores lógicos 282
Anidamiento de if 286
Condiciones 290
Selección múltiple 293

La escala if‐else‐if 295
La instrucción switch 302

Repetición 313
El bucle while 316

El bucle for 321
Bucles anidados 331

Ámbito y visibilidad 339
Secuencias 349

Recorrido de secuencias 355
Secuencias calculadas 363
Búsqueda en secuencias 370

Arrays de datos simples 374
Uso de variables arrays 379
Recorrido de arrays 382
Búsqueda en arrays 387
Arrays no completos 393

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 227Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Tipo
Conjunto	de	valores	con	sus	posibles	operaciones

Valor
Conjunto	de	bits	interpretados	como	de	un	tipo	concreto

Variable (o	constante)
Cierta	memoria	con	nombre	para	valores	de	un	tipo

Declaración
Instrucción	que	identifica	un	nombre

Definición
Declaración	que	asigna	memoria	a	una	variable	o	constante

Página 228Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Memoria	suficiente	para	su	tipo	de	valores

short int i = 3;

int j = 9;

char c = 'a';

double x = 1.5;

El	significado	de	los	bits	depende	del	tipo	de	la	variable:
00000000 00000000 00000000 01111000

Interpretado	como	int es	el	entero	120

Interpretado	como	char (sólo	01111000)	es	el	carácter	'x'

Página 229Fundamentos de la programación: Tipos e instrucciones II

ii 3

jj 9

cc a

xx 1.5

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

 Simples

 Estándar:	int,	float,	double,	char,	bool
Conjunto	de	valores	predeterminado

 Definidos	por	el	usuario:	enumerados
Conjunto	de	valores	definido	por	el	programador

 Estructurados	(Tema	5)

 Colecciones	homogéneas:	arrays
Todos	los	elementos	de	la	colección	de	un	mismo	tipo

 Colecciones	heterogéneas:	estructuras
Elementos	de	la	colección	de	tipos	distintos

Página 230Fundamentos de programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Con	sus	posibles	modificadores:

[unsigned] [short] int

long long int

float

[long] double

char

bool

Página 231Fundamentos de la programación: Tipos e instrucciones II

Definición	de	variables:
tipo nombre [= expresión] [, ...];

Definición	de	constantes	con	nombre:
const tipo nombre = expresión;

long int  int

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 232Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Promoción	de	tipos
Dos	operandos	de	tipos	distintos:	
El	valor	del	tipo	menor se	promociona	al	tipo	mayor

short int i = 3;

int j = 2;

double a = 1.5, b;

b = a + i * j;

Página 233Fundamentos de la programación: Tipos e instrucciones II

long double

double

float

long int

int

short int

P
ro
m
o
ci
ó
n

P
ro
m
o
ci
ó
n

Valor	3 short int (2	bytes)	 int (4	bytes)Valor	3 short int (2	bytes)	 int (4	bytes)

Valor	6 int (4	bytes)	 double (8	bytes)Valor	6 int (4	bytes)	 double (8	bytes)

b = a + 3 * 2;

b = 1.5 + 6;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Conversión	segura:

De	un	tipo	menor	a	un	tipo	mayor
short int int long int ...

Conversión	no	segura:

De	un	tipo	mayor	a	un	tipo	menor
int entero = 1234;

char caracter;

caracter = entero; // Conversión no segura

Menor	memoria:	Pérdida	de	información	en	la	conversión

Página 234Fundamentos de la programación: Tipos e instrucciones II

long double

double

float

long int

int

short int

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fuerzan	una	conversión	de	tipo:
tipo(expresión)

El	valor	resultante	de	la	expresión se	trata	como	un	valor	del	tipo

int a = 3, b = 2;

cout << a / b; // Muestra 1 (división entera)

cout << double(a) / b; // Muestra 1.5 (división real)

Tienen	la	mayor	prioridad

Página 235Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 236Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Describimos	los	valores	de	las	variables	del	tipo
typedef descripción nombre_de_tipo;

Página 237Fundamentos de la programación: Tipos e instrucciones II

Nombres	de	tipos	propios:

tminúscula	seguida	de	una	o	varias	palabras	capitalizadas

Los	colorearemos	en	naranja,	para	remarcar	que	son	tipos

typedef descripción tMiTipo;
typedef descripción tMoneda;
typedef descripción tTiposDeCalificacion;

typedef descripción tMiTipo;
typedef descripción tMoneda;
typedef descripción tTiposDeCalificacion;

Identificador	válido

Declaración	de	tipo	frente	a	definición	de	variable

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 238Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Enumeración	del	conjunto	de	valores	posibles	para	las	variables:

enum { símbolo1, símbolo2, ..., símboloN }

enum { centimo, dos_centimos, cinco_centimos,
diez_centimos, veinte_centimos,
medio_euro, euro }

Valores	literales	que	pueden	tomar	las	variables	(en	amarillo)

Página 239Fundamentos de la programación: Tipos e instrucciones II

enumenum

,

{ Identificador }

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

typedef descripción nombre_de_tipo;

Elegimos	un	nombre	para	el	tipo:	tMoneda

typedef enum { centimo, dos_centimos, cinco_centimos,
diez_centimos, veinte_centimos,
medio_euro, euro } tMoneda;

Página 240Fundamentos de la programación: Tipos e instrucciones II

En	el	ámbito	de	la	declaración,	se	reconoce	un	nuevo	tipo	tMoneda

tMoneda moneda1, moneda2;

Cada	variable	de	ese	tipo	contendrá	alguno	de	los	símbolos
moneda1 = dos_centimos;
moneda2 = euro;

moneda1moneda1 dos_centimos

moneda2moneda2 euro

descripcióndescripción

Mejoran	la	legibilidadMejoran	la	legibilidad

(Internamente	se	usan	enteros)(Internamente	se	usan	enteros)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

typedef enum { enero, febrero, marzo, abril, mayo,
junio, julio, agosto, septiembre, octubre,
noviembre, diciembre } tMes;

tMes mes;

Lectura	de	la	variable	mes:

cin >> mes;

Se	espera	un	valor	entero
No	se	puede	escribir	directamente	enero o	junio

Y	si	se	escribe	la	variable	en	la	pantalla:
cout << mes;

Se	verá	un	número	entero

 Código	de	entrada/salida	específico

Página 241Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

typedef enum { enero, febrero, marzo, abril, mayo, junio, julio,
agosto, septiembre, octubre, noviembre, diciembre } tMes;

Página 242Fundamentos de la programación: Tipos e instrucciones II

int op;
cout << " 1 ‐ Enero" << endl;
cout << " 2 ‐ Febrero" << endl;
cout << " 3 ‐ Marzo" << endl;
cout << " 4 ‐ Abril" << endl;
cout << " 5 ‐ Mayo" << endl;
cout << " 6 ‐ Junio" << endl;
cout << " 7 ‐ Julio" << endl;
cout << " 8 ‐ Agosto" << endl;
cout << " 9 ‐ Septiembre" << endl;
cout << "10 ‐ Octubre" << endl;
cout << "11 ‐ Noviembre" << endl;
cout << "12 ‐ Diciembre" << endl;
cout << "Numero de mes: ";
cin >> op;
tMes mes = tMes(op ‐ 1);

int op;
cout << " 1 ‐ Enero" << endl;
cout << " 2 ‐ Febrero" << endl;
cout << " 3 ‐ Marzo" << endl;
cout << " 4 ‐ Abril" << endl;
cout << " 5 ‐ Mayo" << endl;
cout << " 6 ‐ Junio" << endl;
cout << " 7 ‐ Julio" << endl;
cout << " 8 ‐ Agosto" << endl;
cout << " 9 ‐ Septiembre" << endl;
cout << "10 ‐ Octubre" << endl;
cout << "11 ‐ Noviembre" << endl;
cout << "12 ‐ Diciembre" << endl;
cout << "Numero de mes: ";
cin >> op;
tMes mes = tMes(op ‐ 1);

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

typedef enum { enero, febrero, marzo, abril, mayo, junio, julio,
agosto, septiembre, octubre, noviembre, diciembre } tMes;

Página 243Fundamentos de la programación: Tipos e instrucciones II

if (mes == enero) {
cout << "enero";

}
if (mes == febrero) {

cout << "febrero";
}
if (mes == marzo) {

cout << "marzo";
}
...
if (mes == diciembre) {

cout << "diciembre";
}

if (mes == enero) {
cout << "enero";

}
if (mes == febrero) {

cout << "febrero";
}
if (mes == marzo) {

cout << "marzo";
}
...
if (mes == diciembre) {

cout << "diciembre";
}

También	podemos	utilizar	una	instrucción	switchTambién	podemos	utilizar	una	instrucción	switch

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Conjunto	de	valores	ordenado	(posición	en	la	enumeración)
typedef enum { lunes, martes, miercoles, jueves,

viernes, sabado, domingo } tDiaSemana;

tDiaSemana dia;

...

if (dia == jueves)...

bool noLaborable = (dia >= sabado);

No	admiten	operadores	de	incremento	y	decremento
Emulación	con	moldes:
int i = int(dia); // ¡dia no ha de valer domingo!
i++;
dia = tDiaSemana(i);

Página 244Fundamentos de la programación: Tipos e instrucciones II

lunes < martes < miercoles < jueves
< viernes < sabado < domingo

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;

typedef enum { enero, febrero, marzo, abril, mayo,
junio, julio, agosto, septiembre, octubre,
noviembre, diciembre } tMes;

typedef enum { lunes, martes, miercoles, jueves,
viernes, sabado, domingo } tDiaSemana;

string cadMes(tMes mes);
string cadDia(tDiaSemana dia);

int main() {
tDiaSemana hoy = lunes;
int dia = 21;
tMes mes = octubre;
int anio = 2013;
...

Página 245Fundamentos de la programación: Tipos e instrucciones II

Si	los	tipos	se	usan	en	varias	funciones,
los	declaramos	antes	de	los	prototipos

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

// Mostramos la fecha
cout << "Hoy es: " << cadDia(hoy) << " " << dia

<< " de " << cadMes(mes) << " de " << anio
<< endl;

cout << "Pasada la medianoche..." << endl;
dia++;
int i = int(hoy);
i++;
hoy = tDiaSemana(i);

// Mostramos la fecha
cout << "Hoy es: " << cadDia(hoy) << " " << dia

<< " de " << cadMes(mes) << " de " << anio
<< endl;

return 0;
}

Página 246Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

string cadMes(tMes mes) {
string cad;

if (mes == enero) {
cad = "enero";

}
if (mes == febrero) {

cad = "febrero";
}
...
if (mes == diciembre) {

cad = "diciembre";
}

return cad;
}

string cadDia(tDiaSemana dia);
string cad;

if (dia == lunes) {
cad = "lunes";

}
if (dia == martes) {

cad = "martes";
}
...
if (dia == domingo) {

cad = "domingo";
}

return cad;
}

Página 247Fundamentos de la programación: Tipos e instrucciones II

fechas.cppfechas.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 248Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	del	programa:	en	la	memoria	principal	(volátil)

Medios	(dispositivos)	de	almacenamiento	permanente:

— Discos	magnéticos	fijos	(internos)	o	portátiles	(externos)

— Cintas	magnéticas

— Discos	ópticos	(CD,	DVD,	BlueRay)

— Memorias	USB

…

Mantienen	la	información	en	archivos

Secuencias	de	datos

Página 249Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Archivo	de	texto:	secuencia	de	caracteres

Archivo	binario:	contiene	una	secuencia	de	códigos	binarios

Los	archivos	se	manejan	en	los	programas	por	medio	de	flujos

Archivos	de	texto:	flujos	de	texto
Similar	a	la	E/S		por	consola

(Más	adelante	veremos	el	uso	de	archivos	binarios)

Página 250Fundamentos de la programación: Tipos e instrucciones II

A0 25 2F 04 D6 FF 00 27 6C CA 49 07 5F A4 …

T o t a l : 1 2 3 . 4  A …

(Códigos	representados	en	notación	hexadecimal)(Códigos	representados	en	notación	hexadecimal)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Textos	dispuestos	en	sucesivas	líneas
Carácter	de	fin	de	línea	entre	línea	y	línea	(Intro)

Posiblemente	varios	datos	en	cada	línea

Ejemplo:	Compras	de	los	clientes

En	cada	línea,	NIF	del	cliente,	unidades	compradas,	precio	
unitario	y	descripción	de	producto,	separados	por	espacio
12345678F 2 123.95 Reproductor de DVD↲

00112233A 1 218.4 Disco portátil↲

32143567J 3 32 Memoria USB 16Gb↲

76329845H 1 134.5 Modem ADSL↲

...

Normalmente	terminan	con	un	dato	especial	(centinela)
Por	ejemplo,	un	NIF	que	sea	X

Página 251Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

 Lectura	del	archivo:	flujo	de	entrada

 Escritura	en	el	archivo:	flujo	de	salida

No	podemos	leer	y	escribir	en	un	mismo	flujo

Un	flujo	de	texto	se	puede	utilizar	para	lectura	o	para	escritura:

— Flujos	(archivos)	de	entrada:	variables	de	tipo	ifstream

— Flujos	(archivos)	de	salida	:	variables	de	tipo	ofstream

Biblioteca	fstream (sin	espacio	de	nombres)

Página 252Fundamentos de la programación: Tipos e instrucciones II

#include <fstream>

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 253Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Flujos	de	texto	de	entrada
Para	leer	de	un	archivo	de	texto:

Declara	una	variable	de	tipo	ifstream

Asocia	la	variable	con	el	archivo	de	texto	(apertura	del	archivo)

Realiza	las	operaciones	de	lectura

Desliga	la	variable	del	archivo	de	texto	(cierre	el	archivo)

Página 254Fundamentos de la programación: Tipos e instrucciones II

1

2

3

4

ifstream

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Apertura	del	archivo
Conecta	la	variable	con	el	archivo	de	texto	del	dispositivo

flujo.open(cadena_literal);

ifstream archivo;

archivo.open("abc.txt");

if (archivo.is_open()) ...

Cierre	del	archivo
Desconecta	la	variable	del	archivo	de	texto	del	dispositivo

flujo.close();

archivo.close();

Página 255Fundamentos de la programación: Tipos e instrucciones II

¡El	archivo	debe	existir!
is_open():
true si	el	archivo
se	ha	podido	abrir
false en	caso	contrario

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Operaciones	de	lectura
 Extractor	(>>) archivo >> variable;

Salta	primero	los	espacios	en	blanco	(espacio,	tab,	Intro,	...)

Datos	numéricos:	lee	hasta	el	primer	carácter	no	válido
Cadenas	(string):	lee	hasta	el	siguiente	espacio	en	blanco

 archivo.get(c)

Lee	el	siguiente	carácter	en	la	variable	c,	sea	el	que	sea

 getline(archivo, cadena)

Lee	en	la	cadena todos	los	caracteres	que	queden	en	la	línea

Incluidos	los	espacios	en	blanco

Hasta	el	siguiente	salto	de	línea	(descartándolo)

Con	los	archivos	no	tiene	efecto	la	función	sync()

Página 256Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Qué	debo	leer?
 Un	número

Usa	el	extractor archivo >> num;

 Un	carácter	(sea	el	que	sea)

Usa	la	función	get() archivo.get(c);

 Una	cadena	sin	espacios

Usa	el	extractor archivo >> cad;

 Una	cadena	posiblemente	con	espacios

Usa	la	función	getline() getline(archivo, cad);

Página 257Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Dónde	queda	pendiente	la	entrada?
 Número	leído	con	el	extractor

En	el	primer	carácter	no	válido	(inc.	espacios	en	blanco)

 Carácter	leído	con	get()

En	el	siguiente	carácter	(inc.	espacios	en	blanco)

 Una	cadena	leída	con	el	extractor
En	el	siguiente	espacio	en	blanco

 Una	cadena	leída	con	la	función	getline()

Al	principio	de	la	siguiente	línea

Página 258Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Programa

string nif, producto;

int unidades;

double precio;

char aux;

Página 259Fundamentos de la programación: Tipos e instrucciones II

7

6

5

4

3

2

1

Flujo	de	entrada
archivo
Flujo	de	entrada
archivo

1 ifstream archivo;

2 archivo.open("compras.txt"); // Apertura

3 archivo >> nif >> unidades >> precio;

getline(archivo, producto);

4 archivo.close(); // Cierre

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

archivo >> nif;

archivo >> unidades;

archivo >> precio;

getline(archivo, producto);

Página 260Fundamentos de la programación: Tipos e instrucciones II

productoproducto Reproductor de DVD precioprecio 123.95

unidadesunidades 2nifnif 12345678F

12345678F 2 123.95 Reproductor de DVD

EspacioEspacio

El	extractor	salta	los	espaciosEl	extractor	salta	los	espacios

getline() no	salta	espaciosgetline() no	salta	espacios

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

archivo >> nif;

archivo >> unidades;

archivo >> precio;

archivo.get(aux); // Salta el espacio en blanco

getline(archivo, producto);

Página 261Fundamentos de la programación: Tipos e instrucciones II

productoproducto Reproductor de DVD precioprecio 123.95

unidadesunidades 2nifnif 12345678F

12345678F 2 123.95 Reproductor de DVD

Sin	espacioSin	espacio

Leemos	el	espacio
(no	hacemos	nada	con	él)
Leemos	el	espacio
(no	hacemos	nada	con	él)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Cada	línea,	datos	de	una	compra

Mostrar	el	total	de	cada	compra
unidades	x precio	más	IVA	(21%)

Final:	"X" como	NIF

Bucle	de	procesamiento:

 Cada	paso	del	bucle	(ciclo)	procesa	una	línea	(compra)

 Podemos	usar	las	mismas	variables	en	cada	ciclo

Leer	primer	NIF

Mientras	el	NIF	no	sea	X:

Leer	unidades,	precio	y	descripción

Calcular	y	mostrar	el	total

Leer	el	siguiente	NIF

Página 262Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
#include <string>
using namespace std;
#include <fstream>
#include <iomanip> // Formato de salida

int main() {
const int IVA = 21;
string nif, producto;
int unidades;
double precio, neto, total, iva;
char aux;
ifstream archivo;
int contador = 0;

archivo.open("compras.txt"); // Apertura
...

Página 263Fundamentos de la programación: Tipos e instrucciones II

leer.cppleer.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

if (archivo.is_open()) { // Existe el archivo
archivo >> nif; // Primer NIF
while (nif != "X") {

archivo >> unidades >> precio;
archivo.get(aux); // Salta el espacio
getline(archivo, producto);
contador++;
neto = unidades * precio;
iva = neto * IVA / 100;
total = neto + iva;
cout << "Compra " << contador << ".‐" << endl;
cout << " " << producto << ": " << unidades

<< " x " << fixed << setprecision(2)
<< precio << " = " << neto << " ‐ I.V.A.: "
<< iva << " ‐ Total: " << total << endl;

archivo >> nif; // Siguiente NIF
} ...

Página 264Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

archivo.close(); // Cierre
}
else {

cout << "ERROR: No se ha podido abrir el archivo"
<< endl;

}
return 0;

}

Página 265Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 266Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Flujos	de	texto	de	salida
Para	crear	un	archivo	de	texto	y	escribir	en	él:

Declara	una	variable	de	tipo	ofstream

Asocia	la	variable	con	el	archivo	de	texto	(crea	el	archivo)

Realiza	las	escrituras	por	medio	del	operador	<< (insertor)

Desliga	la	variable	del	archivo	de	texto	(cierra	el	archivo)

Página 267Fundamentos de la programación: Tipos e instrucciones II

1

2

3

4

¡Atención!
Si	el	archivo	ya	existe,	se	borra	todo	lo	que	hubiera

¡Atención!
Si	no	se	cierra	el	archivo	se	puede	perder	información

ofstream

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int valor = 999;

Página 268Fundamentos de la programación: Tipos e instrucciones II

2

1

!

a

l

o

H

X

Flujo	de	salida
archivo
Flujo	de	salida
archivo

Programa

1 ofstream archivo;

2 archivo.open("output.txt"); // Apertura

3 archivo << 'X' << " Hola! " << 123.45

<< endl << valor << "Bye!";

4 archivo.close(); // Cierre

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
#include <string>
using namespace std;
#include <fstream>

int main() {
string nif, producto;
int unidades;
double precio;
char aux;
ofstream archivo;

archivo.open("output.txt"); // Apertura (creación)

cout << "NIF del cliente (X para terminar): ";
cin >> nif;
...

Página 269Fundamentos de la programación: Tipos e instrucciones II

escribir.cppescribir.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

while (nif != "X") {
// Queda pendiente el Intro anterior...
cin.get(aux); // Leemos el Intro
cout << "Producto: ";
getline(cin, producto);
cout << "Unidades: ";
cin >> unidades;
cout << "Precio: ";
cin >> precio;
// Escribimos los datos en una línea del archivo...
// Con un espacio de separación entre ellos
archivo << nif << " " << unidades << " "

<< precio << " " << producto << endl;
cout << "NIF del cliente (X para terminar): ";
cin >> nif;

}
...

Página 270Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

// Escribimos el centinela final...
archivo << "X";
archivo.close(); // Cierre del archivo

return 0;
}

Página 271Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 272Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 273Fundamentos de la programación: Tipos e instrucciones II

{

double oper1, oper2, prod;

cout << "Operando 1: ";

cin >> oper1;

cout << "Operando 2: ";

...

cout << "Producto: " << prod;

return 0;

}

F
lu
jo
	d
e
	e
je
cu
ci
ó
n

F
lu
jo
	d
e
	e
je
cu
ci
ó
n

Instrucción N

Instrucción 3

Instrucción 2

Instrucción 1

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Uno	entre	dos	o	más	caminos	de	ejecución
Selección	simple	(2	caminos) Selección	múltiple	(>	2	caminos)

Página 274Fundamentos de la programación: Tipos e instrucciones II

Instrucción T Instrucción F

Condición
truetrue falsefalse

truetrue

truetrue

truetrue

truetrue

falsefalse

falsefalse

falsefalse

falsefalse

Diagramas de flujoDiagramas de flujo

ifif
if‐else‐if

switch

if‐else‐if

switch

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Repetir	la	ejecución	de	una	o	más	instrucciones

Acumular,	procesar	colecciones,	...

Página 275Fundamentos de la programación: Tipos e instrucciones II

Código

¿Iterar?
SíSí NoNo

Inicialización

whilewhile forfor

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 276Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	instrucción	if

if (condición) {

códigoT

}

[else {

códigoF

}]

condición:	expresión	bool
Cláusula	else opcional

Página 277Fundamentos de la programación: Tipos e instrucciones II

BloqueT BloqueF

Condición
truetrue falsefalse

OpcionalOpcional

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int num;

cin >> num;

if (num < 0) {

cout << "Negativo";

}

else {

cout << "Positivo";

}

cout << endl;

Página 278Fundamentos de la programación: Tipos e instrucciones II

cout << "Negativo";

truetrue

cout << "Positivo";

falsefalse

cout << endl;

num < 0

cin >> num;

signo.cppsigno.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int num;

cin >> num;

if (num < 0) {

cout << "Negativo";

}

else {

cout << "Positivo";

}

cout << endl;

Página 279Fundamentos de la programación: Tipos e instrucciones II

cout << endl;

cout << "Positivo";

falsefalse
num < 0

cin >> num;

_
_129129

PositivoPositivo

_

num ?num 129

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

truetrue

cout << "Negativo";

int num;

cin >> num;

if (num < 0) {

cout << "Negativo";

}

else {

cout << "Positivo";

}

cout << endl;

Página 280Fundamentos de la programación: Tipos e instrucciones II

cout << endl;

num < 0

cin >> num;

‐5‐5

NegativoNegativo

_

num ?num ‐5

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

División	entre	dos	números	protegida	frente	a	intento	de	división	por	0

#include <iostream>
using namespace std;

int main() {
double numerador, denominador, resultado;
cout << "Numerador: ";
cin >> numerador;
cout << "Denominador: ";
cin >> denominador;
if (denominador == 0) {

cout << "Imposible dividir entre 0!";
}
else {

resultado = numerador / denominador;
cout << "Resultado: " << resultado << endl;

}
return 0;

}

Página 281Fundamentos de la programación: Tipos e instrucciones II

división.cppdivisión.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 282Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Se	aplican	a	valores	bool (condiciones)

El	resultado	es	de	tipo	bool

Página 283Fundamentos de la programación: Tipos e instrucciones II

! NO Monario
&& Y Binario
|| O Binario

Operadores (prioridad)

...

!

* / %

+ ‐

< <= > >=

== !=

&&

||

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 284Fundamentos de la programación: Tipos e instrucciones II

!

true false

false true

&& true false

true true false

false false false

|| true false

true true true

false true false

NO	(Not)NO	(Not) Y	(And)Y	(And) O	(Or)O	(Or)

bool cond1, cond2, resultado;

int a = 2, b = 3, c = 4;

resultado = !(a < 5); // !(2 < 5)  !true  false

cond1 = (a * b + c) >= 12; // 10 >= 12  false

cond2 = (a * (b + c)) >= 12; // 14 >= 12  true

resultado = cond1 && cond2; // false && true  false

resultado = cond1 || cond2; // false || true  true

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 285Fundamentos de la programación: Tipos e instrucciones II

#include <iostream>
using namespace std;

int main()
{

int num;
cout << "Introduce un número entre 1 y 10: ";
cin >> num;
if ((num >= 1) && (num <= 10)) {

cout << "Número dentro del intervalo de valores válidos";
}
else {

cout << "Número no válido!";
}
return 0;

}

condiciones.cppcondiciones.cpp

((num >= 1) && (num <= 10))
((num > 0) && (num < 11))
((num >= 1) && (num < 11))
((num > 0) && (num <= 10))

¡Encierra	las	condiciones
simples	entre	paréntesis!
¡Encierra	las	condiciones
simples	entre	paréntesis!

Condiciones	equivalentesCondiciones	equivalentes

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 286Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 287Fundamentos de la programación: Tipos e instrucciones II

diasmes.cppdiasmes.cpp

int mes, anio, dias;
cout << "Número de mes: ";
cin >> mes;
cout << "Año: ";
cin >> anio;
if (mes == 2) {

if (bisiesto(mes, anio)) {
dias = 29;

}
else {

dias = 28;
}

}
else {

if ((mes == 1) || (mes == 3) || (mes == 5) || (mes == 7)
|| (mes == 8) || (mes == 10) || (mes == 12)) {
dias = 31;

}
else {

dias = 30;
}

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Calendario	Gregoriano:	bisiesto	si	divisible	por	4,	excepto	el	último	
de	cada	siglo	(divisible	por	100),	salvo	que	sea	divisible	por	400

Página 288Fundamentos de la programación: Tipos e instrucciones II

bool bisiesto(int mes, int anio) {
bool esBisiesto;
if ((anio % 4) == 0) { // Divisible por 4

if (((anio % 100) == 0) && ((anio % 400) != 0)) {
// Pero último de siglo y no múltiplo de 400
esBisiesto = false;

}
else {

esBisiesto = true; // Año bisiesto
}

}
else {

esBisiesto = false;
}
return esBisiesto;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Cada	else se	asocia	al	if anterior	más	cercano	sin	asociar	(mismo	bloque)

if (condición1) {

if (condición2) {...}

else {...}

}

else {

if (condición3) {

if (condición4) {...}

if (condición5) {...}

else {...}

}

else { ...

Página 289Fundamentos de la programación: Tipos e instrucciones II

La	sangría	ayuda	a	asociar	los	else con	sus	if

Una	mala	sangría	puede	confundir
if (x > 0) {

if (y > 0) {...}

else {...}

if (x > 0) {

if (y > 0) {...}

else {...}

Una	mala	sangría	puede	confundir
if (x > 0) {

if (y > 0) {...}

else {...}

if (x > 0) {

if (y > 0) {...}

else {...}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 290Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

• Condición	simple: Expresión	lógica	(true/false)	
Sin	operadores	lógicos

num < 0

car == 'a'

isalpha(car)

12

• Condición	compuesta:
Combinación	de	condiciones	simples	y	operadores	lógicos
!isalpha(car)

(num < 0) || (car == 'a')

(num < 0) && ((car == 'a') || !isalpha(car))

Página 291Fundamentos de la programación: Tipos e instrucciones II

No	confundas	el	operador	de	igualdad	(==)
con	el	operador	de	asignación	(=).

Compatibilidad	con	el	lenguaje	C:
0 es	equivalente	a	false
Cualquier	valor	distinto	de	0 es	equivalente	a	true

Compatibilidad	con	el	lenguaje	C:
0 es	equivalente	a	false
Cualquier	valor	distinto	de	0 es	equivalente	a	true

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Shortcut	Boolean	Evaluation

true || X  true

(n == 0) || (x >= 1.0 / n)

Si	n es	0:	¿división	por	cero?	(segunda	condición)
Como	la	primera	sería	true:	¡no	se	evalúa	la	segunda!

false && X  false

(n != 0) && (x < 1.0 / n)

Si	n es	0:	¿división	por	cero?	(segunda	condición)
Como	la	primera	sería	false:	¡no	se	evalúa	la	segunda!

Página 292Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 293Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 294Fundamentos de la programación: Tipos e instrucciones II

truetrue

truetrue

truetrue

truetrue

falsefalse

falsefalse

falsefalse

falsefalse

if‐else‐if

switch

if‐else‐if

switch

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 295Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ejemplo:
Calificación	(en	letras)	
de	un	estudiante	en	base
a	su	nota	numérica	(0‐10)

Página 296Fundamentos de la programación: Tipos e instrucciones II

truetrue
cout << "MH"

truetrue
cout << "SB"

truetrue
cout << "NT"

truetrue
cout << "AP"

falsefalse

cout << "SS"

falsefalse

>= 5

falsefalse

>= 7

falsefalse

>= 9

== 10

Si nota == 10 entonces	MH

si	no,	si nota >= 9 entonces	SB

si	no,	si nota >= 7 entonces	NT

si	no,	si nota >= 5 entonces	AP

si	no SS

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

double nota;
cin >> nota;
if (nota == 10) {

cout << "MH";
}
else {

if (nota >= 9) {
cout << "SB";

}
else {

if (nota >= 7) {
cout << "NT";

}
else {

if (nota >= 5) {
cout << "AP";

}
else {

cout << "SS";
}

}
}

}

Página 297Fundamentos de la programación: Tipos e instrucciones II

double nota;
cin >> nota;
if (nota == 10) {

cout << "MH";
}
else if (nota >= 9) {

cout << "SB";
}
else if (nota >= 7) {

cout << "NT";
}
else if (nota >= 5) {

cout << "AP";
}
else {

cout << "SS";
}



nota.cppnota.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¡Cuidado	con	el	orden	de	las	condiciones!
double nota;
cin >> nota;
if (nota < 5) { cout << "SS"; }
else if (nota < 7) { cout << "AP"; }
else if (nota < 9) { cout << "NT"; }
else if (nota < 10) { cout << "SB"; }
else { cout << "MH"; }

double nota;
cin >> nota;
if (nota >= 5) { cout << "AP"; }
else if (nota >= 7) { cout << "NT"; }
else if (nota >= 9) { cout << "SB"; }
else if (nota == 10) { cout << "MH"; }
else { cout << "SS"; }

Página 298Fundamentos de la programación: Tipos e instrucciones II




Sólo	muestra	AP	o	SSSólo	muestra	AP	o	SS

¡No	se	ejecutan	nunca!¡No	se	ejecutan	nunca!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Simplificación	de	las	condiciones

if (nota == 10) { cout << "MH"; }

else if ((nota < 10) && (nota >= 9)) { cout << "SB"; }

else if ((nota < 9) && (nota >= 7)) { cout << "NT"; }

else if ((nota < 7) && (nota >= 5)) { cout << "AP"; }

else if (nota < 5) { cout << "SS"; }

Página 299Fundamentos de la programación: Tipos e instrucciones II

00 55 77 99 1010

MHMH

SBSBNTNTAPAPSSSS

Siempre	true:	ramas	else
Si	no	es	10,	es	menor	que	10
Si	no	es	>=	9,	es	menor	que	9
Si	no	es	>=	7,	es	menor	que	7
…

true && X  X

Siempre	true:	ramas	else
Si	no	es	10,	es	menor	que	10
Si	no	es	>=	9,	es	menor	que	9
Si	no	es	>=	7,	es	menor	que	7
…

true && X  X

if (nota == 10) { cout << "MH"; }
else if (nota >= 9) {cout << "SB"; }
else if (nota >= 7) { cout << "NT"; }
else if (nota >= 5) { cout << "AP"; }
else { cout << "SS"; }

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 300Fundamentos de la programación: Tipos e instrucciones II

Si num == 4 entonces Muy alto
Si num == 3 entonces Alto
Si num == 2 entonces Medio
Si num == 1 entonces Bajo

nivel.cppnivel.cpp

#include <iostream>
using namespace std;
int main() {

int num;
cout << "Introduce el nivel: ";
cin >> num;
if (num == 4) {

cout << "Muy alto" << endl;
}
else if (num == 3) {

cout << "Alto" << endl;
}
else if (num == 2) {

cout << "Medio" << endl;
}
else if (num == 1) {

cout << "Bajo" << endl;
}
else {

cout << "Valor no válido" << endl;
}
return 0;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 301Fundamentos de la programación: Tipos e instrucciones II

if (num == 4) { cout << "Muy alto" << endl; }
else if (num == 3) { cout << "Alto" << endl; }
else if (num == 2) { cout << "Medio" << endl; }
else if (num == 1) { cout << "Bajo" << endl; }
else cout << "Valor no válido" << endl; }

if (num == 4) cout << "Muy alto";
else if (num == 3) cout << "Alto";
else if (num == 2) cout << "Medio";
else if (num == 1) cout << "Bajo";
else cout << "Valor no válido";
cout << endl;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 302Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Selección	entre	valores	posibles	de	una	expresión

Página 303Fundamentos de la programación: Tipos e instrucciones II

switch (expresión) {
case constante1:

{
código1

}
[break;]

case constante2:
{

código2
}
[break;]

...

case constanteN:
{

códigoN
}
[break;]

[default:
{

códigoDefault
}]

}

switch (expresión) {
case constante1:

{
código1

}
[break;]

case constante2:
{

código2
}
[break;]

...

case constanteN:
{

códigoN
}
[break;]

[default:
{

códigoDefault
}]

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 304Fundamentos de la programación: Tipos e instrucciones II

nivel2.cppnivel2.cpp

switch (num) {
case 4:

{
cout << "Muy alto";

}
break;

case 3:
{

cout << "Alto";
}
break;

case 2:
{

cout << "Medio";
}
break;

case 1:
{

cout << "Bajo";
}
break;

default:
{

cout << "Valor no válido";
}

}

Si	num == 4Muy	alto
Si	num == 3 Alto
Si	num == 2Medio
Si	num == 1 Bajo

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Interrumpe el	switch;	continúa	en	la	instrucción	que	le	siga

Num: 3
Alto
Num: 3
Alto

Página 305Fundamentos de la programación: Tipos e instrucciones II

switch (num) {
...
case 3:

{
cout << "Alto";

}
break;

case 2:
{

cout << "Medio";
}
break;

...
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 306Fundamentos de la programación: Tipos e instrucciones II

switch (num) {
...
case 3:

{
cout << "Alto";

}
case 2:

{
cout << "Medio";

}
case 1:

{
cout << "Bajo";

}
default:

{
cout << "Valor no válido";

}
}

Num: 3
Alto
Medio
Bajo
Valor no válido

Num: 3
Alto
Medio
Bajo
Valor no válido

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 307Fundamentos de la programación: Tipos e instrucciones II

num==4 Muy alto
truetrue

Alto
truetrue

Medio
truetrue

Bajo
truetrue

num==3

falsefalse

num==2

falsefalse

num==1

falsefalse

falsefalse

No válido
defaultdefault

break;

break;

break;

break;

Sin	break;

Sin	break;

Sin	break;

Sin	break;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int menu() {
int op = ‐1; // Cualquiera no válida

while ((op < 0) || (op > 4)) {
cout << "1 ‐ Nuevo cliente" << endl;
cout << "2 ‐ Editar cliente" << endl;
cout << "3 ‐ Baja cliente" << endl;
cout << "4 ‐ Ver cliente" << endl;
cout << "0 ‐ Salir" << endl;
cout << "Opción: ";
cin >> op;

if ((op < 0) || (op > 4)) {
cout << "¡Opción no válida!" << endl;

}
}

return op;
}

Página 308Fundamentos de la programación: Tipos e instrucciones II

1 ‐ Nuevo cliente
2 ‐ Editar cliente
3 ‐ Baja cliente
4 ‐ Ver cliente
0 ‐ Salir
Opción: 5
¡Opción no válida!
1 ‐ Nuevo cliente
2 ‐ Editar cliente
3 ‐ Baja cliente
4 ‐ Ver cliente
0 ‐ Salir
Opción: 3

1 ‐ Nuevo cliente
2 ‐ Editar cliente
3 ‐ Baja cliente
4 ‐ Ver cliente
0 ‐ Salir
Opción: 5
¡Opción no válida!
1 ‐ Nuevo cliente
2 ‐ Editar cliente
3 ‐ Baja cliente
4 ‐ Ver cliente
0 ‐ Salir
Opción: 3

1 ‐ Nuevo cliente
2 ‐ Editar cliente
3 ‐ Baja cliente
4 ‐ Ver cliente
0 ‐ Salir
Opción: 5
¡Opción no válida!
1 ‐ Nuevo cliente
2 ‐ Editar cliente
3 ‐ Baja cliente
4 ‐ Ver cliente
0 ‐ Salir
Opción: 3

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int opcion;
...
opcion = menu();
switch (opcion) {
case 1:

{
cout << "En la opción 1..." << endl;

}
break;

case 2:
{

cout << "En la opción 2..." << endl;
}
break;

case 3:
{

cout << "En la opción 3..." << endl;
}
break;

case 4:
{

cout << "En la opción 4..." << endl;
} // En la última no necesitamos break

}

Página 309Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int opcion;
...
opcion = menu();
while (opcion != 0) {

switch (opcion) {
case 1:

{
cout << "En la opción 1..." << endl;

}
break;

...
case 4:

{
cout << "En la opción 4..." << endl;

}
} // switch
...
opcion = menu();

} // while

Página 310Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int nota; // Sin decimales
cout << "Nota (0‐10): ";
cin >> nota;
switch (nota) {
case 0:
case 1:
case 2:
case 3:
case 4:

{
cout << "Suspenso";

}
break; // De 0 a 4: SS

case 5:
case 6:

{
cout << "Aprobado";

}
break; // 5 o 6: AP

case 7:
case 8:

{
cout << "Notable";

}
break; // 7 u 8: NT

case 9:
case 10:

{
cout << "Sobresaliente";

}
break; // 9 o 10: SB

default:
{

cout << "¡No válida!";
}

}

Página 311Fundamentos de la programación: Tipos e instrucciones II

nota2.cppnota2.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 312Fundamentos de la programación: Tipos e instrucciones II

typedef enum { enero, febrero, marzo, abril, mayo, junio,
julio, agosto, septiembre, octubre, noviembre, diciembre }

tMes;
tMes mes;
...
switch (mes) {
case enero:

{
cout << "enero";

}
break;

case febrero:
{

cout << "febrero";
}
break;

...
case diciembre:

{
cout << "diciembre";

}
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 313Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 314Fundamentos de la programación: Tipos e instrucciones II

Cuerpo

SíSí NoNo

Bucles	while y	for

¿Iterar?¿Iterar?

Inicialización

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Número	de	iteraciones	condicionado	(recorrido	variable):

— Bucle	while

while (condición) cuerpo

Ejecuta	el	cuerpomientras	la	condición sea	true

— Bucle	do‐while

Comprueba	la	condición	al	final	(lo	veremos	más	adelante)

Número	de	iteraciones	prefijado	(recorrido	fijo):

— Bucle	for

for (inicialización; condición; paso) cuerpo

Ejecuta	el	cuerpomientras	la	condición sea	true

Se	usa	una	variable	contadora	entera

Página 315Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 316Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Mientras	la	condición	sea	cierta,	ejecuta	el	cuerpo
while (condición) {

cuerpo
}

int i = 1; // Inicialización de la variable i

while (i <= 100) {

cout << i << endl;

i++;

}

Muestra	los	números	del	1	al	100

Página 317Fundamentos de la programación: Tipos e instrucciones II

while.cppwhile.cpp

Condición	al	principio	del	bucleCondición	al	principio	del	bucle

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int i = 1;
while (i <= 100) {

cout << i << endl;
i++;

}

Página 318Fundamentos de la programación: Tipos e instrucciones II

Cuerpo

CondiciónCondición
truetrue falsefalse

falsefalse

cout << i << endl;

truetrue

i++

i <= 100

i = 1

i ?123

_

_11

22

100100

33

4

9999

99100101

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Y	si	la	condición	es	falsa	al	comenzar?
No	se	ejecuta	el	cuerpo	del	bucle	ninguna	vez

int op;

cout << "Introduce la opción: ";

cin >> op;

while ((op < 0) || (op > 4)) {

cout << "¡No válida! Inténtalo otra vez" << endl;

cout << "Introduce la opción: ";

cin >> op;

}

Si	el	usuario	introduce	un	número	entre	0	y	4:

No	se	ejecuta	el	cuerpo	del	bucle	

Página 319Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Primer	entero	cuyo	cuadrado	es	mayor	que	1.000
#include <iostream>
using namespace std;

int main() {
int num = 1;

while (num * num <= 1000) {
num++;

}

cout << "1er. entero con cuadrado mayor que 1.000: "
<< num << endl;

return 0;
}

Página 320Fundamentos de la programación: Tipos e instrucciones II

¡Ejecuta	el	programa	para
saber	cuál	es	ese	número!
¡Ejecuta	el	programa	para
saber	cuál	es	ese	número!

primero.cppprimero.cpp

Recorre	la	secuencia de	números	1,	2,	3,	4,	5,	...Recorre	la	secuencia de	números	1,	2,	3,	4,	5,	...

Empezamos en 1

Incrementamos en 1

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 321Fundamentos de la programación: Tipos e instrucciones II

sumamedia.cppsumamedia.cpp

#include <iostream>
using namespace std;
int main() {

double num, suma = 0, media = 0;
int cont = 0;
cout << "Introduce un número (0 para terminar): ";
cin >> num;
while (num != 0) { // 0 para terminar

suma = suma + num;
cont++;
cout << "Introduce un número (0 para terminar): ";
cin >> num;

}
if (cont > 0) {

media = suma / cont;
}
cout << "Suma = " << suma << endl;
cout << "Media = " << media << endl;
return 0;

}

Recorre	la	secuencia
de	números	introducidos
Recorre	la	secuencia

de	números	introducidos

Leemos el primero

Leemos el siguiente

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 322Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Número	de	iteraciones	prefijado
Variable	contadora	que	determina	el	número	de	iteraciones:

for ([int] var = ini; condición; paso) cuerpo

La	condición compara	el	valor	de	var con	un	valor	final

El	paso incrementa	o	decrementa	el	valor	de	var

El	valor	de	var debe	ir	aproximándose	al	valor	final

for (int i = 1; i <= 100; i++)...

for (int i = 100; i >= 1; i‐‐)...

Tantos	ciclos	como	valores	toma	la	variable	contadora

Página 323Fundamentos de la programación: Tipos e instrucciones II

1, 2, 3, 4, 5, ..., 1001, 2, 3, 4, 5, ..., 100

100, 99, 98, 97, ..., 1100, 99, 98, 97, ..., 1

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

for (inicialización; condición; paso) cuerpo

for (int i = 1; i <= 100; i++) {
cout << i;

}

Página 324Fundamentos de la programación: Tipos e instrucciones II

falsefalse

cout << i;

truetrue

i++

i <= 100

i = 1

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

for (int i = 1; i <= 100; i++) {
cout << i << endl;

}

Página 325Fundamentos de la programación: Tipos e instrucciones II

_

11

i ?

falsefalsetruetrue

cout << i << endl;

i++

12

22

3

......

9999

100

100100

101

33

i <= 100i <= 100

i = 1

for1.cppfor1.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	variable	contadora
El	paso no	tiene	porqué	ir	de	uno	en	uno:
for (int i = 1; i <= 100; i = i + 2)

cout << i << endl;

Este	bucle	formuestra	los	números	impares	de	1	a	99

Garantía	de	terminación
Todo	bucle	debe	terminar	su	ejecución
Bucles	for:	la	variable	contadora	debe	converger	al	valor	final

Página 326Fundamentos de la programación: Tipos e instrucciones II

Muy	importante
El	cuerpo	del	bucle	NUNCA debe	alterar	el	valor	del	contador

for2.cppfor2.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 327Fundamentos de la programación: Tipos e instrucciones II

suma.cppsuma.cpp

#include <iostream>
using namespace std;

long long int suma(int n);

int main() {
int num;
cout << "Número final: ";
cin >> num;
if (num > 0) { // El número debe ser positivo

cout << "La suma de los números entre 1 y "
<< num << " es: " << suma(num);

}
return 0;

}

long long int suma(int n) {
long long int total = 0;
for (int i = 1; i <= n; i++) {

total = total + i;
}
return total;

}

Recorre	la	secuencia de	números
1,	2,	3,	4,	5,	...,	n

Recorre	la	secuencia de	números
1,	2,	3,	4,	5,	...,	n

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Incremento/decremento	prefijo	o	postfijo?
Es	indiferente

Estos	dos	bucles	producen	el	mismo	resultado:

for (int i = 1; i <= 100; i++) ...

for (int i = 1; i <= 100; ++i) ...

Bucles	infinitos

for (int i = 1; i <= 100; i‐‐) ...

1 0 ‐1 ‐2 ‐3 ‐4 ‐5 ‐6 ‐7 ‐8 ‐9 ‐10 ‐11 ...

Cada	vez	más	lejos	del	valor	final	(100)

Es	un	error	de	diseño/programación

Página 328Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Declarada	en	el	propio	bucle
for (int i = 1; ...)

Sólo	se	conoce	en	el	cuerpo	del	bucle	(su	ámbito)

No	se	puede	usar	en	instrucciones	que	sigan	al	bucle

Declarada	antes	del	bucle
int i;

for (i = 1; ...)

Se	conoce	en	el	cuerpo	del	bucle	y	después	del	mismo

Ámbito	externo	al	bucle

Página 329Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Los	bucles	for se	pueden	reescribir	como	bucles	condicionados

for (int i = 1; i <= 100; i++) cuerpo

Es	equivalente	a:

La	inversa	no	es	siempre	posible:
int i;
cin >> i;
while (i != 0) {

cuerpo
cin >> i;

}

Página 330Fundamentos de la programación: Tipos e instrucciones II

int i = 1;
while (i <= 100) {

cuerpo
i++;

}

¿Bucle	for equivalente?

¡No	sabemos	cuántos	números
introducirá	el	usuario!

¿Bucle	for equivalente?

¡No	sabemos	cuántos	números
introducirá	el	usuario!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 331Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Un	bucle	for en	el	cuerpo	de	otro	bucle	for

Cada	uno	con	su	propia	variable	contadora:
for (int i = 1; i <= 100; i++) {

for (int j = 1; j <= 5; j++) {

cuerpo

}

}

Para	cada	valor	de	i
el	valor	de	j varía	entre	1 y	5

j varía	más	rápido que	i

Página 332Fundamentos de la programación: Tipos e instrucciones II

i j
1 1
1 2
1 3
1 4
1 5
2 1
2 2
2 3
2 4
2 5
3 1
...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 333Fundamentos de la programación: Tipos e instrucciones II

1 x 1 = 1
1 x 2 = 2
1 x 3 = 3
1 x 4 = 4
...
1 x 10 = 10
2 x 1 = 2
2 x 2 = 4
...

10 x 7 = 70
10 x 8 = 80
10 x 9 = 90
10 x 10 = 100

1 x 1 = 1
1 x 2 = 2
1 x 3 = 3
1 x 4 = 4
...
1 x 10 = 10
2 x 1 = 2
2 x 2 = 4
...

10 x 7 = 70
10 x 8 = 80
10 x 9 = 90
10 x 10 = 100

1 x 1 = 1
1 x 2 = 2
1 x 3 = 3
1 x 4 = 4
...
1 x 10 = 10
2 x 1 = 2
2 x 2 = 4
...

10 x 7 = 70
10 x 8 = 80
10 x 9 = 90
10 x 10 = 100

tablas.cpptablas.cpp

#include <iostream>

using namespace std;

#include <iomanip>

int main() {

for (int i = 1; i <= 10; i++) {

for (int j = 1; j <= 10; j++) {

cout << setw(2) << i << " x "

<< setw(2) << j << " = "

<< setw(3) << i * j << endl;

}

}

return 0;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 334Fundamentos de la programación: Tipos e instrucciones II

tablas2.cpptablas2.cpp

#include <iostream>
using namespace std;
#include <iomanip>

int main() {
for (int i = 1; i <= 10; i++) {

cout << "Tabla del " << i << endl;
cout << "‐‐‐‐‐‐‐‐‐‐‐‐‐‐" << endl;
for (int j = 1; j <= 10; j++) {

cout << setw(2) << i << " x "
<< setw(2) << j << " = "
<< setw(3) << i * j << endl;

}
cout << endl;

}

return 0;
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 335Fundamentos de la programación: Tipos e instrucciones II

#include <iostream>
using namespace std;
#include <iomanip>

int menu(); // 1: Tablas de multiplicación; 2: Sumatorio
long long int suma(int n); // Sumatorio

int main() {
int opcion = menu();
while (opcion != 0) {

switch (opcion) {
case 1:

{
for (int i = 1; i <= 10; i++) {

for (int j = 1; j <= 10; j++) {
cout << setw(2) << i << " x "

<< setw(2) << j << " = "
<< setw(3) << i * j << endl;

}
}

}
break; ...

menú.cppmenú.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 336Fundamentos de la programación: Tipos e instrucciones II

case 2:
{

int num = 0;
while (num <= 0) {

cout << "Hasta (positivo)? ";
cin >> num;

}
cout << "La suma de los números del 1 al "

<< num << " es: " << suma(num) << endl;
}

} // switch
opcion = menu();

} // while (opcion != 0)
return 0;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 337Fundamentos de la programación: Tipos e instrucciones II

int menu() {
int op = ‐1;
while ((op < 0) || (op > 2)) {

cout << "1 ‐ Tablas de multiplicar" << endl;
cout << "2 ‐ Sumatorio" << endl;
cout << "0 ‐ Salir" << endl;
cout << "Opción: " << endl;
cin >> op;
if ((op < 0) || (op > 2)) {

cout << "¡Opción no válida!" << endl;
}

}
return op;

}
long long int suma(int n) {

long long int total = 0;
for (int i = 1; i <= n; i++) {

total = total + i;
}
return total;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

while (opcion != 0) {
...

for (int i = 1; i <= 10; i++) {
for (int j = 1; j <= 10; j++) {

...
}

}

while (num <= 0) {
...

}

for (int i = 1; i <= n; i++) {
...

}
while ((op < 0) || (op > 2)) {

...
}

}

Página 338Fundamentos de la programación: Tipos e instrucciones II

menu()menu()

suma()suma()

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 339Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Cada	bloque	crea	un	nuevo	ámbito:

int main() {

double d = ‐1, suma = 0;
int cont = 0;
while (d != 0) {

cin >> d;
if (d != 0) {

suma = suma + d;
cont++;

}

}

cout << "Suma = " << suma << endl;
cout << "Media = " << suma / cont << endl;
return 0;

}

Página 340Fundamentos de la programación: Tipos e instrucciones II

3	ámbitos	anidados3	ámbitos	anidados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Un	identificador	se	conoce
en	el	ámbito	en	el	que	está	declarado

(a	partir	de	su	instrucción	de	declaración)
y	en	los	subámbitos	posteriores

Página 341Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ámbito	de	la	variable	dÁmbito	de	la	variable	d
int main() {

double d;
if (...) {

int cont = 0;
for (int i = 0; i <= 10; i++) {

...
}

}
char c;
if (...) {

double x;
...

}
return 0;

}

Página 342Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int main() {
double d;
if (...) {

int cont = 0;
for (int i = 0; i <= 10; i++) {

...
}

}
char c;
if (...) {

double x;
...

}
return 0;

}

Ámbito	de	la	variable	contÁmbito	de	la	variable	cont

Página 343Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int main() {
double d;
if (...) {

int cont = 0;
for (int i = 0; i <= 10; i++) {

...
}

}
char c;
if (...) {

double x;
...

}
return 0;

}

Ámbito	de	la	variable	iÁmbito	de	la	variable	i

Página 344Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ámbito	de	la	variable	cÁmbito	de	la	variable	c

int main() {
double d;
if (...) {

int cont = 0;
for (int i = 0; i <= 10; i++) {

...
}

}
char c;
if (...) {

double x;
...

}
return 0;

}

Página 345Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ámbito	de	la	variable	xÁmbito	de	la	variable	x

int main() {
double d;
if (...) {

int cont = 0;
for (int i = 0; i <= 10; i++) {

...
}

}
char c;
if (...) {

double x;
...

}
return 0;

}

Página 346Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Si	en	un	subámbito	se	declara
un	identificador	con	idéntico	nombre
que	uno	ya	declarado	en	el	ámbito,
el	del	subámbito	oculta al	del	ámbito

(no	es	visible)

Página 347Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int main() {
int i, x;
if (...) {

int i = 0;
for(int i = 0; i <= 10; i++) {

...
}

}
char c;
if (...) {

double x;
...

}
return 0;

}

Página 348Fundamentos de la programación: Tipos e instrucciones II

Oculta	,	en	su	ámbito,	a	la	i anteriorOculta	,	en	su	ámbito,	a	la	i anterior

Oculta	,	en	su	ámbito,	a	la	i anteriorOculta	,	en	su	ámbito,	a	la	i anterior

Oculta	,	en	su	ámbito,	a	la	x anteriorOculta	,	en	su	ámbito,	a	la	x anterior

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 349Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Sucesión	de	elementos	de	un	mismo	tipo	que	se	acceden	linealmente

Página 350Fundamentos de la programación: Tipos e instrucciones II

elemento secuencia
secuenciasecuencia

(Secuencia	vacía)(Secuencia	vacía)

1 34 12 26 4 87 184 52

Comienza	en	un	primer elemento	(si	no	está	vacía)

A	cada	elemento	le	sigue	otra	secuencia	(vacía,	si	es	el	último)

Acceso	secuencial	(lineal)

Se	comienza	siempre	accediendo	al	primer	elemento

Desde	un	elemento	sólo	se	puede	acceder	a	su	elemento	siguiente	
(sucesor),	si	es	que	existe

Todos	los	elementos,	de	un	mismo	tipo

elemento

oo

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

No	tratamos	secuencias	infinitas:	siempre	hay	un	último	elemento

 Secuencias	explícitas:

— Sucesión	de	datos	de	un	dispositivo	(teclado,	disco,	sensor,	...)

 Secuencias	calculadas:

— Fórmula	de	recurrencia	que	determina	el	elemento	siguiente

 Listas	(más	adelante)

Secuencias	explícitas	que	manejaremos:

Datos	introducidos	por	el	teclado	o	leídos	de	un	archivo

Con	un	elemento	especial	al	final	de	la	secuencia	(centinela)

1 34 12 26 4 87 184 52 ‐1

Página 351Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

 Secuencia	explícita	leída	de	archivo:
— Detectar	la	marca	de	final	de	archivo	(Eof ‐ End of	file)

— Detectar	un	valor	centinela	al	final

 Secuencia	explícita	leída	del	teclado:

— Preguntar	al	usuario	si	quiere	introducir	un	nuevo	dato

— Preguntar	al	usuario	primero	cuántos	datos	va	a	introducir

— Detectar	un	valor	centinela	al	final

Valor	centinela:

Valor	especial	al	final	que	no	puede	darse	en	la	secuencia
(Secuencia	de	números	positivos	 centinela:	cualquier	negativo)

Página 352Fundamentos de la programación: Tipos e instrucciones II

12 4 37 23 8 19 83 63 2 35 17 76 15 ‐1

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 353Fundamentos de la programación: Tipos e instrucciones II

12 4 37 23 8 19 83 63 ‐1 35 17 76 15

Último	elementoÚltimo	elemento

No	se	procesanNo	se	procesan

Debe	haber	algún	valor	que	no	sea	un	elemento	válido

Secuencias	numéricas:

Si	se	permite	cualquier	número,	no	hay	centinela	posible

Cadenas	de	caracteres:

¿Caracteres	especiales	(no	imprimibles)?

En	realidad	el	valor	centinela	es	parte	de	la	secuencia,	
pero	su	significado	es	especial	y	no	se	procesa	como	el	resto

Significa	que	se	ha	alcanzado	el	final	de	la	secuencia
(Incluso	aunque	haya	elementos	posteriores)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Tratamiento	de	los	elementos	uno	a	uno	desde	el	primero

Recorrido
Un	mismo	tratamiento	para	todos	los	elementos	de	la	secuencia

Ej.‐ Mostrar	los	elementos	de	una	secuencia,	sumar	los	números	
de	una	secuencia,	¿par	o	impar	cada	número	de	una	secuencia?,	...

Termina	al	llegar	al	final	de	la	secuencia

Búsqueda
Recorrido	de	la	secuencia	hasta	encontrar	un	elemento	buscado

Ej.‐ Localizar	el	primer	número	que	sea	mayor	que	1.000

Termina	al	localizar	el	primer	elemento	que	cumple	la	condición	
o	al	llegar	al	final	de	la	secuencia	(no	encontrado)

Página 354Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 355Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Un	mismo	tratamiento	a	todos	los	elementos

Inicialización
Mientras	no	se	llegue	al	final	de	la	secuencia:
Obtener	el	siguiente	elemento
Procesar	el	elemento

Finalización

Al	empezar	se	obtiene	el	primer	elemento	de	la	secuencia

En	los	siguientes	pasos	del	bucle	se	van	obteniendo
los	siguientes	elementos	de	la	secuencia

Página 356Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 357Fundamentos de la programación: Tipos e instrucciones II

falsefalse

Procesar	elemento

Obtener	elemento

truetrue

Finalización

¿Al	final?

Inicialización

No	sabemos	cuántos
elementos	hay
 No	podemos

implementar	con	for

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Implementación	con	while
Inicialización

Obtener	el	primer	elemento

Mientras	no	sea	el	centinela:

Procesar	el	elemento

Obtener	el	siguiente	elemento

Finalización

Página 358Fundamentos de la programación: Tipos e instrucciones II

falsefalse

Procesar	elemento

Obtener	siguiente

truetrue

Finalización

¿Centinela?

Inicialización

Obtener	1º

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Secuencia	de	números	positivos
Siempre	se	realiza	al	menos	una	lectura
Centinela:	‐1

double d, suma = 0;

cout << "Valor (‐1 termina): ";

cin >> d;

while (d != ‐1) {

suma = suma + d;

cout << "Valor (‐1 termina): ";

cin >> d;

}

cout << "Suma = " << suma << endl;

Página 359Fundamentos de la programación: Tipos e instrucciones II

InicializaciónInicialización

Primer	elementoPrimer	elemento

Mientras	no	el	centinelaMientras	no	el	centinela

Procesar	elementoProcesar	elemento

Siguiente	elementoSiguiente	elemento

FinalizaciónFinalización

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Longitud	de	una	secuencia	de	caracteres
Centinela:	carácter	punto	(.)

Página 360Fundamentos de la programación: Tipos e instrucciones II

longitud.cpplongitud.cpp

int longitud() {
int l = 0;
char c;
cout << "Texto terminado en punto: ";
cin >> c; // Obtener primer carácter
while (c != '.') { // Mientras no el centinela

l++; // Procesar
cin >> c; // Obtener siguiente carácter

}
return l;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Cuántas	veces	aparece	un	carácter	en	una	cadena?
Centinela:	asterisco	(*)

Página 361Fundamentos de la programación: Tipos e instrucciones II

cont.cppcont.cpp

char buscado, c;
int cont = 0;
cout << "Carácter a buscar: ";
cin >> buscado;
cout << "Cadena: ";
cin >> c;
while (c != '*') {

if (c == buscado) {
cont++;

}
cin >> c;

}
cout << buscado << " aparece " << cont

<< " veces.";

Mientras	no	el	centinelaMientras	no	el	centinela

Procesar	elementoProcesar	elemento

Siguiente	elementoSiguiente	elemento

Primer	elementoPrimer	elemento

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Suma	de	los	números	de	la	secuencia
Centinela:	0

Página 362Fundamentos de la programación: Tipos e instrucciones II

suma2.cppsuma2.cpp

int sumaSecuencia() {
double d, suma = 0;
ifstream archivo; // Archivo de entrada (lectura)
archivo.open("datos.txt");
if (archivo.is_open()) {

archivo >> d; // Obtener el primero
while (d != 0) { // Mientras no sea el centinela

suma = suma + d; // Procesar el dato
archivo >> d; // Obtener el siguiente

}
archivo.close();

}
return suma;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 363Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Recurrencia: ei+1 =	ei +	1 e1 =	1
1 2 3 4 5 6 7 8 ...

Suma	de	los	números	de	la	secuencia	calculada:

int main() {
int num;
cout << "N = ";
cin >> num;
cout << "Sumatorio:" << suma(num);
return 0;

}
long long int suma(int n) {

int sumatorio = 0;
for (int i = 1; i <= n; i++) {

sumatorio = sumatorio + i;
}
return sumatorio;

}

Página 364Fundamentos de la programación: Tipos e instrucciones II

sumatorio.cppsumatorio.cpp

Último	elemento	de	la	secuencia:	nÚltimo	elemento	de	la	secuencia:	n

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

long long int suma(int n) {
int sumatorio = 0;
for (int i = 1; i <= n; i++) {

sumatorio = sumatorio + i;
}
...

Página 365Fundamentos de la programación: Tipos e instrucciones II

n ?

sumatorio 0

i 1

i <= n
01

2

5

3

3

6

4

10

5

15

6 12 13 2 14 3 2 15 4 3 2 1

SecuenciaSecuencia

falsefalse

truetrue

i = i + 1;

sumatorio += i;

int i = 1;

sumatorio = 0;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Definición
Fi =	Fi‐1 +	Fi‐2
F1 =	0

F2 =	1
0 1 1 2 3 5 8 13 21 34 55 89 ...

¿Fin	de	la	secuencia?
Primer	número	de	Fibonacci	mayor	que	un	número	dado

Ese	número	de	Fibonacci	actúa	como	centinela
Si	num es	50,	la	secuencia	será:

0 1 1 2 3 5 8 13 21 34

Página 366Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Recorrido	de	la	secuencia	calculada

Página 367Fundamentos de la programación: Tipos e instrucciones II

fibonacci.cppfibonacci.cpp

¿Demasiados	comentarios?
Para	no	oscurecer	el	código,	mejor	una	explicación	al	principio

int num, fib, fibMenos2 = 0, fibMenos1 = 1; // 1º y 2º
fib = fibMenos2 + fibMenos1; // Calculamos el tercero
cout << "Hasta: ";
cin >> num;
if (num >= 1) { // Ha de ser entero positivo

cout << "0 1 "; // Los dos primeros son <= num
while (fib <= num) { // Mientras no mayor que num

cout << fib << " ";
fibMenos2 = fibMenos1; // Actualizamos anteriores
fibMenos1 = fib; // para obtener...
fib = fibMenos2 + fibMenos1; // ... el siguiente

}
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

El	bucle	calcula	adecuadamente	la	secuencia:

while (fib <= num) {

cout << fib << " ";

fibMenos2 = fibMenos1;

fibMenos1 = fib;

fib = fibMenos2 + fibMenos1;

}

Página 368Fundamentos de la programación: Tipos e instrucciones II

num ?100

fib ?1

fibMenos1 ?1

fibMenos2 ?0

0 1 1

1

1

2
2

2

3
3

2

3

5
5 ...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 369Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Localización	del	primer	elemento	con	una	propiedad
Inicialización

Mientras	no	se	encuentre	el	elemento	
y no	se	esté	al	final	de	la	secuencia:

Obtener	el	siguiente	elemento

Comprobar	si	el	elemento	satisface	la	condición

Finalización
(tratar	el	elemento	encontrado	o	indicar	que	no	se	ha	encontrado)

Página 370Fundamentos de la programación: Tipos e instrucciones II

Elemento	que	se	busca:	satisfará	una	condición

Dos	condiciones	de	terminación	del	bucle:	se	encuentra	/	al	final

Variable	lógica	que	indique	si	se	ha	encontrado

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Localización	del	primer	elemento	con	una	propiedad

falsefalse

¿Encontrado?

Obtener	elemento

truetrue

Finalización

Página 371Fundamentos de la programación: Tipos e instrucciones II

Inicialización	/	encontrado = false;

¿Al	final	o	
encontrado?
¿Al	final	o	

encontrado?

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Implementación	con	while
Inicialización

Obtener	el	primer	elemento

Mientras	ni	encontrado	ni	el	centinela:

Obtener	el	siguiente	elemento

Finalización	(¿encontrado?)

Página 372Fundamentos de la programación: Tipos e instrucciones II

falsefalse

Obtener	siguiente

truetrue

Finalización

¿Encontrado	
o	centinela?
¿Encontrado	
o	centinela?

Obtener	1º

Inicialización

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Primer	número	mayor	que	uno	dado
Centinela:	‐1
double d, num;
bool encontrado = false;
cout << "Encontrar primero mayor que: ";
cin >> num;
cout << "Siguiente (‐1 para terminar): ";
cin >> d; // Obtener el primer elemento
while ((d != ‐1) && !encontrado) {
// Mientras no sea el centinela y no se encuentre

if (d > num) { // ¿Encontrado?
encontrado = true;

}
else {

cout << "Siguiente (‐1 para terminar): ";
cin >> d; // Obtener el siguiente elemento

}
}

Página 373Fundamentos de la programación: Tipos e instrucciones II

busca.cppbusca.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 374Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Colecciones	homogéneas
Un	mismo	tipo	de	dato	para	varios	elementos:
 Notas de los estudiantes de una clase
 Ventas de cada día de la semana
 Temperaturas de cada día del mes

...

En	lugar	de	declarar	N variables...

Página 375Fundamentos de la programación: Tipos e instrucciones II

125.40

vLunvLun

76.95

vMarvMar

328.80

vMievMie

254.62

vJuevJue

435.00

vVievVie

164.29

vSabvSab

0.00

vDomvDom

ventas 125.40 76.95 328.80 254.62 435.00 164.29 0.00

0 1 2 3 4 5 6

...	declaramos	una	tabla	de	N valores:

ÍndicesÍndices

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Estructura	secuencial
Cada	elemento	se	encuentra	en	una	posición	(índice):

 Los	índices	son	enteros	positivos

 El	índice	del	primer	elemento	siempre	es	0

 Los	índices	se	incrementan	de	uno	en	uno

Acceso	directo

A	cada	elemento	se	accede	a	través	de	su	índice:
ventas[4] accede	al	5º	elemento	(contiene	el	valor	435.00)
cout << ventas[4];

ventas[4] = 442.75;

Página 376Fundamentos de la programación: Tipos e instrucciones II

ventas 125.40 76.95 328.80 254.62 435.00 164.29 0.00

0 1 2 3 4 5 6

Datos	de	un	mismo	tipo	base:
Se	usan	como	cualquier	variable
Datos	de	un	mismo	tipo	base:
Se	usan	como	cualquier	variable

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Declaración	de	tipos	de	arrays
typedef tipo_base nombre_tipo[tamaño];

Ejemplos:
typedef double tTemp[7];

typedef short int tDiasMes[12];

typedef char tVocales[5];

typedef double tVentas[31];

typedef tMoneda tCalderilla[15]; // Enumerado tMoneda

Página 377Fundamentos de la programación: Tipos e instrucciones II

Recuerda: Adoptamos	el	convenio	de	comenzar	
los	nombres	de	tipo	con	una	tminúscula,	seguida	
de	una	o	varias	palabras,	cada	una	con	su	inicial	en	mayúscula

Recuerda: Adoptamos	el	convenio	de	comenzar	
los	nombres	de	tipo	con	una	tminúscula,	seguida	
de	una	o	varias	palabras,	cada	una	con	su	inicial	en	mayúscula

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Declaración	de	variables	arrays
tipo nombre;

Ejemplos:

Página 378Fundamentos de la programación: Tipos e instrucciones II

NO	se	inicializan	los	elementos	automáticamenteNO	se	inicializan	los	elementos	automáticamente

tempMax ? ? ? ? ? ? ?
0 1 2 3 4 5 6

typedef double tTemp[7];
typedef short int tDiasMes[12];
typedef char tVocales[5];
typedef double tVentas[31];

ventasFeb ? ? ? ? ? ? ? ? ? ? ? ? ? ... ?
0 1 2 3 4 5 6 7 8 9 10 11 12 30

vocales ? ? ? ? ?
0 1 2 3 4

diasMes ? ? ? ? ? ? ? ? ? ? ? ?
0 1 2 3 4 5 6 7 8 9 10 11

tTemp tempMax;

tDiasMes diasMes;

tVocales vocales;

tVentas ventasFeb;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 379Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

nombre[índice]

Cada	elemento	se	accede	a	través	de	su	índice	(posición	en	el	array)
tVocales vocales;

5	elementos,	índices	de	0	a	4:
vocales[0] vocales[1] vocales[2] vocales[3] vocales[4]

Procesamiento	de	cada	elemento:

Como	cualquier	otra	variable	del	tipo	base
cout << vocales[4];

vocales[3] = 'o';

if (vocales[i] == 'e') ...

Página 380Fundamentos de la programación: Tipos e instrucciones II

vocales 'a' 'e' 'i' 'o' 'u'

0 1 2 3 4

typedef char tVocales[5];

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¡IMPORTANTE!

¡No	se	comprueba	si	el	índice	es	correcto!

¡Es	responsabilidad	del	programador!

const int Dim = 100;
typedef double tVentas[Dim];
tVentas ventas;

Índices	válidos:	enteros	entre	0	y	Dim‐1
ventas[0] ventas[1] ventas[2] ... ventas[98] ventas[99]

¿Qué	es	ventas[100]?	¿O	ventas[‐1]?	¿O	ventas[132]?

¡Memoria	de	alguna	otra	variable	del	programa!

Página 381Fundamentos de la programación: Tipos e instrucciones II

Define	los	tamaños	de	los	arrays	con	constantesDefine	los	tamaños	de	los	arrays	con	constantes

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 382Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Arrays:	tamaño	fijo	 Bucle	de	recorrido	fijo	(for)

Ejemplo:	Media	de	un	array	de	temperaturas
const int Dias = 7;
typedef double tTemp[Dias];
tTemp temp;
double media, total = 0;
...
for (int i = 0; i < Dias; i++) {

total = total + temp[i];
}
media = total / Dias;

Página 383Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

tTemp temp;
double media, total = 0;
...
for (int i = 0; i < Dias; i++) {

total = total + temp[i];
}

Memoria

Dias 7

temp[0] 12.40

temp[1] 10.96

temp[2] 8.43

temp[3] 11.65

temp[4] 13.70

temp[5] 13.41

temp[6] 14.07

media ?

total 0.00

i 0

12.40

1

23.36

2

31.79

3

43.44

4

84.62

7

Página 384Fundamentos de la programación: Tipos e instrucciones II

12.40 10.96 8.43 11.65 13.70 13.41 14.07

0 1 2 3 4 5 6

falsefalsetruetrue

total+=temp[i]

i++

i<Dias

i = 0

......

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Los	usuarios	usan	de	1	a	7	para	numerar	los	días
La	interfaz	debe	aproximarse	a	los	usuarios,

aunque	internamente	se	usen	los	índices	de	0	a	6

#include <iostream>
using namespace std;

const int Dias = 7;
typedef double tTemp[Dias];

double media(const tTemp temp);

int main() {
tTemp temp;
for (int i = 0; i < Dias; i++) { // Recorrido del array

cout << "Temperatura del día " << i + 1 << ": ";
cin >> temp[i];

}
cout << "Temperatura media: " << media(temp) << endl;
return 0;

}
...

Página 385Fundamentos de la programación: Tipos e instrucciones II

mediatemp.cppmediatemp.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

double media(const tTemp temp) {
double med, total = 0;

for (int i = 0; i < Dias; i++) { // Recorrido del array
total = total + temp[i];

}
med = total / Dias;

return med;
}

Página 386Fundamentos de la programación: Tipos e instrucciones II

Los	arrays	se	pasan	a	las	funciones	como	constantes

Las	funciones	no	pueden	devolver	arrays

Los	arrays	se	pasan	a	las	funciones	como	constantes

Las	funciones	no	pueden	devolver	arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

const int Cuantas = 15;

typedef enum { centimo, dos_centimos, cinco_centimos,
diez_centimos, veinte_centimos, medio_euro, euro } tMoneda;

typedef tMoneda tCalderilla[Cuantas];

string aCadena(tMoneda moneda);
// Devuelve la cadena correspondiente al valor de moneda

tCalderilla bolsillo; // Exactamente llevo Cuantas monedas

bolsillo[0] = euro;

bolsillo[1] = cinco_centimos;

bolsillo[2] = medio_euro;

bolsillo[3] = euro;

bolsillo[4] = centimo;

...

for (int moneda = 0; moneda < Cuantas; moneda++)

cout << aCadena(bolsillo[moneda]) << endl;

Página 387Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 388Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Qué	día	las	ventas	superaron	los	1.000	€?
const int Dias = 365; // Año no bisiesto
typedef double tVentas[Dias];

int busca(const tVentas ventas) {
// Índice del primer elemento mayor que 1000 (‐1 si no hay)

bool encontrado = false;
int ind = 0;
while ((ind < Dias) && !encontrado) { // Esquema de búsqueda

if (ventas[ind] > 1000) {
encontrado = true;

}
else {

ind++;
}

}
if (!encontrado) {

ind = ‐1;
}
return ind;

}

Página 389Fundamentos de la programación: Tipos e instrucciones II

buscaarray.cppbuscaarray.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 390Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	capacidad	de	un	array	no	puede	ser	alterada	en	la	ejecución

El	tamaño	de	un	array	es	una	decisión	de	diseño:

 En	ocasiones	será	fácil	(días	de	la	semana)

 Cuando	pueda	variar	ha	de	estimarse	un	tamaño
Ni	corto	ni	con	mucho	desperdicio	(posiciones	sin	usar)

STL (Standard	Template	Library)	de	C++:
Colecciones	más	eficientes	cuyo	tamaño	puede	variar

Página 391Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

No	se	pueden	copiar	dos	arrays	(del	mismo	tipo)	con	asignación:
array2 = array1; // ¡¡¡ NO COPIA LOS ELEMENTOS !!!

Han	de	copiarse	los	elementos	uno	a	uno:
for (int i = 0; i < N; i++) {

array2[i] = array1[i];
}

Página 392Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 393Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Puede	que	no	necesitemos	todas	las	posiciones	de	un	array...

La	dimensión	del	array	será	el	máximo	de	elementos

Pero	podremos	tener	menos	elementos	del	máximo

Necesitamos	un	contador	de	elementos...
const int Max = 100;
typedef double tArray[Max];
tArray lista;
int contador = 0;

contador:	indica	cuántas	posiciones	del	array	se	utilizan

Sólo	accederemos	a	las	posiciones	entre	0	y	contador‐1

Las	demás	posiciones	no	contienen	información	del	programa

Página 394Fundamentos de la programación: Tipos e instrucciones II

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;
#include <fstream>

const int Max = 100;
typedef double tArray[Max];

double media(const tArray lista, int cont);

int main() {
tArray lista;
int contador = 0;
double valor, med;
ifstream archivo;
archivo.open("lista.txt");
if (archivo.is_open()) {

archivo >> valor;
while ((valor != ‐1) && (contador < Max)) {

lista[contador] = valor;
contador++;
archivo >> valor;

} ...

Página 395Fundamentos de la programación: Tipos e instrucciones II

lista.cpplista.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

archivo.close();
med = media(lista, contador);
cout << "Media de los elementos de la lista: " << med << endl;

}
else {

cout << "¡No se pudo abrir el archivo!" << endl;
}

return 0;
}

double media(const tArray lista, int cont) {
double med, total = 0;
for (int ind = 0; ind < cont; ind++) {

total = total + lista[ind];
}
med = total / cont;
return med;

}

Página 396Fundamentos de la programación: Tipos e instrucciones II

Sólo	recorremos	hasta	cont‐1Sólo	recorremos	hasta	cont‐1

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Tipos e instrucciones II Página 397

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

3A

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Expresión	condicional
Dos	alternativas

— Condición:	Expresión	lógica

— Exp1 y	Exp2:	Expresiones
Si	Condición se	evalúa	a	true,
el	resultado	es	Exp1;
si	Condición se	evalúa	a	false,	
el	resultado	es	Exp2.
int a = 5, b = 3, c;

c = (a + b == 10) ? 2 : 3;

c = (8 == 10) ? 2 : 3;

c = false ? 2 : 3;

c = 3;

Página 399Fundamentos de la programación: Tipos e instrucciones II (Anexo I)

Condición Exp1

Operadores (prioridad)

++ ‐‐ (postfijos)
Llamadas	a	funciones
Moldes

++ ‐‐ (prefijos) !
‐ (cambio	de	signo)

* / %

+ ‐

< <= > >=

== !=

&&

||

?:

= += ‐= *= /= %=

Exp2:?

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Equivalencia	con	un	if‐else

c = (a + b == 10) ? 2 : 3;

Es	equivalente	a:

if (a + b == 10) c = 2;

else c = 3;

Se	pueden	concatenar:

cout << (nota == 10 ? "MH" : (nota >= 9 ? "SB" :
(nota >= 7 ? "NT" : (nota >= 5 ? "AP" : "SS"))))

Esto	es	equivalente	a	la	escala	if‐else‐if de	la	siguiente	sección.

Página 400Fundamentos de la programación: Tipos e instrucciones II (Anexo I)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Escala	if ...	else if ...	equivalente
cout << (nota == 10 ? "MH" : (nota >= 9 ? "SB" :
(nota >= 7 ? "NT" : (nota >= 5 ? "AP" : "SS"))))

Si	nota == 10 entonces	MH
si	no,	si	nota >= 9 entonces	SB
si	no,	si	nota >= 7 entonces	NT
si	no,	si	nota >= 5 entonces	AP
si	no		SS

double nota;

cin >> nota;

if (nota == 10) { cout << "MH"; }

else if (nota >= 9) { cout << "SB"; }

else if (nota >= 7) { cout << "NT"; }

else if (nota >= 5) { cout << "AP"; }

else { cout << "SS"; }

Página 401Fundamentos de la programación: Tipos e instrucciones II (Anexo I)

"MH"

"SB">= 9

"NT">= 7

"AP">= 5

== 10

truetrue

truetrue

truetrue

truetrue

falsefalse

falsefalse

falsefalse

falsefalse

"SS"

3E

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

Recorridos 404
Un aparcamiento 405
¿Paréntesis bien emparejados? 409
¿Dos secuencias iguales? 412
Números primos menores que N 413

Búsquedas 417
Búsqueda de un número en un archivo 419
Búsquedas en secuencias ordenadas 420

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 404Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Secuencia	de	caracteres	E	y	S	en	archivo
E	=	Entra	un	coche;	S	=	Sale	un	coche

¿Cuántos	coches	quedan	al	final	de	la	jornada?

Varios	casos,	cada	uno	en	una	línea	y	terminado	en	punto

Final:	línea	sólo	con	punto

Página 405Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 406Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

#include <iostream>
using namespace std;
#include <fstream>

int main() {
int coches;
char c;
bool terminar = false;
ifstream archivo;
archivo.open("parking.txt");
if (!archivo.is_open()) {

cout << "¡No se ha podido abrir el archivo!" << endl;
}
else {

// Recorrido...
archivo.close();

}
return 0;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 407Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

while (!terminar) {
archivo >> c;
if (c == '.') { // . como primer carácter? (centinela)

terminar = true;
}
else {

coches = 0;
while (c != '.') { // Recorrido de la secuencia

cout << c;
if (c == 'E') {

coches++;
}
else if (c == 'S') {

coches‐‐;
}
archivo >> c;

}
...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 408Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

if (coches >= 0) {
cout << endl << "Quedan " << coches << " coches.";

}
else {

cout << endl << "Error: Más salidas que entradas!";
}
cout << endl;

}
}

parking.cppparking.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Cada	paréntesis,	con	su	pareja
Secuencia	de	caracteres	terminada	en	#	y	con	parejas	de	paréntesis:

a b (c (d e) f g h ((i (j k)) l m n) o p) (r s) #

Contador	del	nivel	de	anidamiento:

Al	encontrar	'(' incrementamos	– Al	encontrar	')' decrementamos

Al	terminar,	el	contador	deberá	tener	el	valor	0

Errores:

— Contador	‐1:	paréntesis	de	cierre	sin	uno	de	apertura	pendiente
abc)de(fgh(ij))#

— Contador	termina	con	un	valor	positivo
Más	paréntesis	de	apertura	que	de	cierre
Algún	paréntesis	sin	cerrar:	(a(b(cd(e)f)gh(i))jk#

Página 409Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Un	error	puede	interrumpir	el	recorrido:
char c;
int anidamiento = 0, pos = 0;
bool error = false;
cin >> c;
while ((c != '#') && !error) {

pos++;
if (c == '(') {

anidamiento++;
}
else if (c == ')') {

anidamiento‐‐;
}
if (anidamiento < 0) {

error = true;
}
if (!error) {

cin >> c;
}

}

Página 410Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

if (error) {
cout << "Error: cierre sin apertura (pos. " << pos

<< ")";
}
else if (anidamiento > 0) {

cout << "Error: Apertura sin cierre";
}
else {

cout << "Correcto";
}
cout << endl;

Página 411Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

parentesis.cppparentesis.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 412Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

iguales.cppiguales.cpp

bool iguales() {
bool sonIguales = true;
double d1, d2;
ifstream sec1, sec2;
bool final = false;
sec1.open("secuencia1.txt");
sec2.open("secuencia2.txt");
sec1 >> d1;
sec2 >> d2; // Al menos estarán los centinelas (0)
while (sonIguales && !final) {

sonIguales = (d1 == d2);
final = ((d1 == 0) || (d2 == 0));
if (!final) {

sec1 >> d1;
sec2 >> d2;

}
}
sec1.close();
sec2.close();
return sonIguales;

}

Cambia	secuencia2.txt por	secuencia3.txt
y	por	secuencia4.txt para	comprobar	otros	casos
Cambia	secuencia2.txt por	secuencia3.txt
y	por	secuencia4.txt para	comprobar	otros	casos

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Secuencia	calculada:	números	divisibles	sólo	por	1	y	ellos	mismos	(<	N)

Página 413Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

primos.cppprimos.cpp

#include <iostream>
using namespace std;
bool primo(int n);
int main() {

int num, candidato;
cout << "Entero en el que parar (>1): ";
cin >> num;
if (num > 1) {

candidato = 2; // El 1 no se considera un número primo
while (candidato < num) {

cout << candidato << " "; // Mostrar número primo
candidato++;
while (!primo(candidato)) { // Siguiente primo

candidato++;
}

}
}
return 0;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 414Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

bool primo(int n) {
bool esPrimo = true;

for (int i = 2; i <= n ‐ 1; i++) {
if (n % i == 0) {

esPrimo = false; // Es divisible por i
}

}

return esPrimo;
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Mejoras: probar	sólo	impares;	sólo	pueden	ser	divisibles	por	impares;	
no	pueden	ser	divisibles	por	ninguno	mayor	que	su	mitad

Página 415Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

primos2.cppprimos2.cpp

candidato = 2;
cout << candidato << " "; // Mostrar el número primo 2
candidato++; // Seguimos con el 3, que es primo
while (candidato < num) {

cout << candidato << " "; // Mostrar número primo
candidato = candidato + 2; // Sólo probamos impares
while (!primo(candidato)) { // Siguiente número primo

candidato = candidato + 2;
}

} ...

bool primo(int n) {
bool esPrimo = true;
for (int i = 3; i <= n / 2; i = i + 2) {

if (n % i == 0) {
esPrimo = false; // Es divisible por i

}
}...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Otra	mejora	más:	Paramos	al	encontrar	el	primer	divisor

Página 416Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

primos3.cppprimos3.cpp

bool primo(int n) {
bool esPrimo = true;

int i = 3;
while ((i <= n / 2) && esPrimo) {

if (n % i == 0) {
esPrimo = false;

}
i = i + 2;

}

return esPrimo;
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 417Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 418Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

buscaarch.cppbuscaarch.cpp#include <iostream>
using namespace std;
#include <fstream>

int busca(int n);
// Devuelve la línea en la que se encuentra o ‐1 si no está

int main() {
int num, linea;

cout << "Valor a localizar: ";
cin >> num;
linea = busca(num);
if (linea != ‐1) {

cout << "Encontrado (línea " << linea << ")" << endl;
}
else {

cout << "No encontrado" << endl;
}
return 0;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 419Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

int busca(int n) {
int i, linea = 0;
bool encontrado = false;
ifstream archivo;
archivo.open("enteros.txt");
if (!archivo.is_open()) {

linea = ‐1;
}
else {

archivo >> i;
while ((i != 0) && !encontrado) {

linea++;
if (i == n) {

encontrado = true;
}
archivo >> i;

}
if (!encontrado) {

linea = ‐1;
}
archivo.close();

}
return linea;

}

CentinelaCentinela

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 420Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Secuencia	ordenada	de	menor	a	mayor:
paramos	al	encontrar	uno	mayor	o	igual	al	buscado

Los	que	resten	serán	seguro	mayores:	¡no	puede	estar	el	buscado!

Página 421Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

buscaord.cppbuscaord.cpp

cout << "Valor a localizar: ";
cin >> num;
archivo >> i;
while ((i != 0) && (i < num)) {

cont++;
archivo >> i;

}
if (i == num) {

cout << "Encontrado (pos.: " << cont << ")";
}
else {

cout << "No encontrado";
}
cout << endl;
archivo.close();

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Si	el	elemento	está:	procesamiento	similar	a	secuencias	desordenadas

Página 422Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

falsefalse(i != 0)
&& (i < num)

truetrue

cont++;
archivo >> i;

2 5 9 15 16 24 41 73 78 82 123 153 159 ...

num ?

i ?2

9

59

archivo >> i;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Si	el	elemento	no	está:	evitamos	buscar	en	el	resto	de	la	secuencia

Página 423Fundamentos de la programación: Tipos e instrucciones II (Anexo II)

falsefalse(i != 0)
&& (i < num)

truetrue

cont++;
archivo >> i;

2 5 9 15 16 24 41 73 78 82 123 153 159 ...

num ?

i ?2

10

5915

No	se	procesa
el	resto
de	la	secuencia

No	se	procesa
el	resto
de	la	secuencia

archivo >> i;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Tipos e instrucciones II (Anexo II) Página 424

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

4

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: La abstracción procedimental

Diseño descendente: Tareas y subtareas 427
Subprogramas 434
Subprogramas y datos 441
Parámetros 446
Argumentos 451
Resultado de la función 467
Prototipos 473
Ejemplos completos 475
Funciones de operador 477
Diseño descendente (un ejemplo) 480
Precondiciones y postcondiciones 490

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 427Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Refinamientos	sucesivos
Tareas	que	ha	de	realizar	un	programa:

Se	pueden	dividir	en	subtareas	más	sencillas

Subtareas:

También	se	pueden	dividir	en	otras	más	sencillas...

 Refinamientos	sucesivos

Diseño	en	sucesivos	pasos	en	los	se	amplía	el	detalle

Ejemplos:

Dibujar	

Mostrar	la	cadena	HOLA	MAMA	en	letras	gigantes

Página 428Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

1.Dibujar

2.Dibujar

3.Dibujar

Página 429Fundamentos de la programación: La abstracción procedimental

1.Dibujar

2.Dibujar

2.1.		Dibujar

2.2.		Dibujar

3.Dibujar

1.Dibujar

2.Dibujar

2.1.		Dibujar

2.2.		Dibujar

3.Dibujar

REFINAMIENTOREFINAMIENTO

Misma	tareaMisma	tarea

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

1.Dibujar

2.Dibujar

2.1.		Dibujar

2.2.		Dibujar

3.Dibujar

Página 430Fundamentos de la programación: La abstracción procedimental

4 tareas, pero dos de ellas son iguales

Nos basta con saber cómo dibujar:

4 tareas, pero dos de ellas son iguales

Nos basta con saber cómo dibujar:

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 431Fundamentos de la programación: La abstracción procedimental

Dibujar Dibujar

Dibujar Dibujar Dibujar

Dibujar

void dibujarCirculo()
{ ... }

void dibujarSecantes()
{ ... }

void dibujarLinea()
{ ... }

void dibujarTriangulo()
{

dibujarSecantes();
dibujarLinea();

}

int main() {
dibujarCirculo();
dibujarTriangulo();
dibujarSecantes();
return 0;

}

void dibujarCirculo()
{ ... }

void dibujarSecantes()
{ ... }

void dibujarLinea()
{ ... }

void dibujarTriangulo()
{

dibujarSecantes();
dibujarLinea();

}

int main() {
dibujarCirculo();
dibujarTriangulo();
dibujarSecantes();
return 0;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Mostrar	la	cadena	HOLA	MAMA	en	letras	gigantes

Página 432Fundamentos de la programación: La abstracción procedimental

H O L A M A

Mostrar HOLA Espacio en blanco Mostrar MAMA

Mostrar HOLA MAMA

MH O L A Espacio en blanco

Tareas	básicasTareas	básicas

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 433Fundamentos de la programación: La abstracción procedimental

void mostrarH() {
cout << "* *" << endl;
cout << "* *" << endl;
cout << "*****" << endl;
cout << "* *" << endl;
cout << "* *" << endl << endl;

}

void mostrarO() {
cout << "*****" << endl;
cout << "* *" << endl;
cout << "* *" << endl;
cout << "* *" << endl;
cout << "*****" << endl << endl;

}

void mostrarL()
{ ... }

void mostrarA()
{ ...}

void mostrarH() {
cout << "* *" << endl;
cout << "* *" << endl;
cout << "*****" << endl;
cout << "* *" << endl;
cout << "* *" << endl << endl;

}

void mostrarO() {
cout << "*****" << endl;
cout << "* *" << endl;
cout << "* *" << endl;
cout << "* *" << endl;
cout << "*****" << endl << endl;

}

void mostrarL()
{ ... }

void mostrarA()
{ ...}

void espaciosEnBlanco() {
cout << endl << endl << endl;

}

void mostrarM()
{ ...}

int main() {
mostrarH();
mostrarO();
mostrarL();
mostrarA();
espaciosEnBlanco();
mostrarM();
mostrarA();
mostrarM();
mostrarA();

return 0;
}

void espaciosEnBlanco() {
cout << endl << endl << endl;

}

void mostrarM()
{ ...}

int main() {
mostrarH();
mostrarO();
mostrarL();
mostrarA();
espaciosEnBlanco();
mostrarM();
mostrarA();
mostrarM();
mostrarA();

return 0;
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 434Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Subprogramas
Pequeños	programas	dentro	de	otros	programas

 Unidades	de	ejecución	independientes

 Encapsulan	código	y	datos

 Se	comunican	con	otros	subprogramas	(datos)

Subrutinas,	procedimientos,	funciones,	acciones,	...

 Realizan	tareas	individuales	del	programa

 Funcionalidad	concreta,	identificable	y	coherente	(diseño)

 Se	ejecutan	de	principio	a	fin	cuando	se	llaman	(invocan)

 Terminan	devolviendo	el	control	al	punto	de	llamada

Página 435Fundamentos de la programación: La abstracción procedimental

Aumentan	el	nivel	de	abstracción	del	programa
Facilitan	la	prueba,	la	depuración	y	el	mantenimiento
Aumentan	el	nivel	de	abstracción	del	programa
Facilitan	la	prueba,	la	depuración	y	el	mantenimiento

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Flujo	de	ejecución

Página 436Fundamentos de la programación: La abstracción procedimental

int main()

{

mostrarH();

mostrarO();

...

}

void mostrarH()
{

...
}

void mostrarO()
{

...
}

...

int main()

{

mostrarH();

mostrarO();

...

}

void mostrarH()
{

...
}

void mostrarO()
{

...
}

...









Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Subprogramas	en	C++
Forma	general	de	un	subprograma	en	C++:

tipo nombre(parámetros) // Cabecera
{

// Cuerpo
}

 Tipo de	dato	que	devuelve	el	subprograma	como	resultado

 Parámetros para	la	comunicación	con	el	exterior

 Cuerpo:	¡Un	bloque	de	código!

Página 437Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Tipos	de	subprogramas
Procedimientos	(acciones):

NO	devuelven	ningún	resultado	de	su	ejecución	con	return
Tipo:	void
Llamada:	instrucción	independiente
mostrarH();

Funciones:
SÍ	devuelven	un	resultado	con	la	instrucción	return
Tipo	distinto	de	void
Llamada:	dentro	de	cualquier	expresión
x = 12 * y + cuadrado(20) ‐ 3;
Se	sustituye	en	la	expresión	por	el	valor	que	devuelve

¡Ya	venimos	utilizando	funciones	desde	el	Tema	2!

Página 438Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Funciones
Subprogramas	de	tipo	distinto	de	void

...
int menu()
{

int op;
cout << "1 – Editar" << endl;
cout << "2 – Combinar" << endl;
cout << "3 – Publicar" << endl;
cout << "0 – Cancelar" << endl;
cout << "Elija: ";
cin >> op;
return op;

}

Página 439Fundamentos de la programación: La abstracción procedimental

int main()

{

...

int opcion;

opcion = menu() ;

...

int main()

{

...

int opcion;

opcion = menu() ;

...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Procedimientos
Subprogramas	de	tipo	void

...
void menu()
{

int op;
cout << "1 – Editar" << endl;
cout << "2 – Combinar" << endl;
cout << "0 – Cancelar" << endl;
cout << "Opción: ";
cin >> op;
if (op == 1) {

editar();
}
else if (op == 2) {

combinar();
}

}

Página 440Fundamentos de la programación: La abstracción procedimental

int main()

{

...

menu();

...

int main()

{

...

menu();

...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 441Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

De	uso	exclusivo	del	subprograma
tipo nombre(parámetros) // Cabecera
{

Declaraciones locales // Cuerpo
}

 Declaraciones	locales	de	tipos,	constantes	y	variables

Dentro	del	cuerpo	del	subprograma

 Parámetros	declarados	en	la	cabecera	del	subprograma

Comunicación	del	subprograma	con	otros	subprogramas

Página 442Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	en	los	programas
 Datos	globales:	declarados	fuera	de	todos	los	subprogramas

Existen	durante	toda	la	ejecución	del	programa

 Datos	locales:	declarados	en	algún	subprograma
Existen	sólo	durante	la	ejecución	del	subprograma

Ámbito	y	visibilidad	de	los	datos Tema	3
— Ámbito	de	los	datos	globales:	resto	del	programa

Se	conocen	dentro	de	los	subprogramas	que	siguen

— Ámbito	de	los	datos	locales:	resto	del	subprograma
No	se	conocen	fuera	del	subprograma

— Visibilidad	de	los	datos
Datos	locales	a	un	bloque	ocultan	otros	externos	homónimos

Página 443Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;

const int MAX = 100;
double ingresos;

...
void proc() {

int op;
double ingresos;
...

}

int main() {
int op;
...
return 0;

}

Página 444Fundamentos de la programación: La abstracción procedimental

Datos	globalesDatos	globales

Datos	locales	a	proc()Datos	locales	a	proc()

Datos	locales	a	main()Datos	locales	a	main()

Se	conocen	MAX (global),	op (local)	
e	ingresos (local	que	oculta	la	global)
Se	conocen	MAX (global),	op (local)	
e	ingresos (local	que	oculta	la	global)

Se	conocen	MAX (global),	op (local)	
e	ingresos (global)
Se	conocen	MAX (global),	op (local)	
e	ingresos (global)

op de	proc()
es	distinta	
de	op de	main()

op de	proc()
es	distinta	
de	op de	main()

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Sobre	el	uso	de	datos	globales	en	los	subprogramas
NO	SE	DEBEN	USAR	datos	globales	en	subprogramas

 ¿Necesidad	de	datos	externos?

Define	parámetros	en	el	subprograma

Los	datos	externos	se	pasan	como	argumentos	en	la	llamada

Uso	de	datos	globales	en	los	subprogramas:

Riesgo	de	efectos	laterales

Modificación	inadvertida	de	esos	datos	afectando	otros	sitios

Excepciones:

Constantes	globales	(valores	inalterables)

Tipos	globales	(necesarios	en	varios	subprogramas)

Página 445Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 446Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	de	entrada,	datos	de	salida	y	datos	de	entrada/salida

Datos	de	entrada:	Aceptados
Subprograma	que	dado	un	número
muestra	en	la	pantalla	su	cuadrado:

Datos	de	salida:	Devueltos
Subprograma	que	dado	un	número
devuelve	su	cuadrado:

Datos	de	entrada/salida:
Aceptados	y	modificados
Subprograma	que	dada	una	variable
numérica	la	eleva	al	cuadrado:

Página 447Fundamentos de la programación: La abstracción procedimental

Subprograma

Subprograma

Subprograma

cuadrado()
xx

55

cuadrado()
xx y (=x2)y (=x2)

55

cuadrado()
xx xx

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Declaración	de	parámetros
Sólo	dos	clases	de	parámetros	en	C++:

— Sólo	de	entrada	(por	valor)

— De	salida	(sólo	salida	o	E/S)	(por	referencia /	por	variable)

Lista	de	parámetros	formales
Entre	los	paréntesis	de	la	cabecera	del	subprograma

tipo nombre(parámetros)

Página 448Fundamentos de la programación: La abstracción procedimental

identificadortipo

,

parámetrosparámetros

De	salidaDe	salida
&

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Reciben	copias	de	los	argumentos	usados	en	la	llamada

int cuadrado(int num)

double potencia(double base, int exp)

void muestra(string nombre, int edad, string nif)

void proc(char c, int x, double a, bool b)

Reciben	sus	valores	en	la	llamada	del	subprograma

Argumentos:	Expresiones	en	general

Variables,	constantes,	literales,	llamadas	a	función,	operaciones

Se	destruyen	al	terminar	la	ejecución	del	subprograma

¡Atención!	Los	arrays	se	pasan	por	valor	como	constantes:
double media(const tArray lista)

Página 449Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Misma	identidad	que	la	variable	pasada	como	argumento

void incrementa(int &x)

void intercambia(double &x, double &y)

void proc(char &c, int &x, double &a, bool &b)

Reciben	las	variables	en	la	llamada	del	subprograma:	¡Variables!

Los	argumentos	pueden	quedar	modificados

¡No	usaremos	parámetros	por	valor	en	las	funciones!

Sólo	en	procedimientos

¡Atención! Los	arrays	se	pasan	por	referencia	sin	utilizar	&
void insertar(tArray lista, int &contador, double item)

El	argumento	de	lista (variable	tArray)	quedará	modificado

Página 450Fundamentos de la programación: La abstracción procedimental

&&

Puede	haber	tanto	por	valor	como	por	referenciaPuede	haber	tanto	por	valor	como	por	referencia

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 451Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

nombre(argumentos)

— Tantos	argumentos	como	parámetros	y	en	el	mismo	orden

— Concordancia	de	tipos	argumento‐parámetro

— Por	valor:	Expresiones	válidas	(se	pasa	el	resultado)

— Por	referencia:	¡Sólo	variables!

Se	copian	los	valores	de	las	expresiones	pasadas	por	valor
en	los	correspondientes	parámetros

Se	hacen	corresponder	los	argumentos	pasados	por	referencia
(variables)	con	sus	correspondientes	parámetros

Página 452Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Expresiones	válidas	con	concordancia	de	tipo:

void proc(int x, double a)  proc(23 * 4 / 7, 13.5);

 double d = 3;
proc(12, d);

 double d = 3;
int i = 124;
proc(i, 33 * d);

 double d = 3;
int i = 124;
proc(cuad(20) * 34 + i, i * d);

Página 453Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void proc(int x, double a)

{ ... }

int main()

{

int i = 124;

double d = 3;

proc(i, 33 * d);

...

return 0;

}

Página 454Fundamentos de la programación: La abstracción procedimental

Memoria

i 124

d 3.0

...

...

x 124

a 99.0

...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void proc(int &x, double &a)

{ ... }

int main()

{

int i = 124;

double d = 3;

proc(i, d);

...

return 0;

}

Página 455Fundamentos de la programación: La abstracción procedimental

Memoria

i 124

d 3.0

...

xx

aa

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Dadas	las	siguientes	declaraciones:
int i;

double d;

void proc(int x, double &a);

¿Qué	pasos	de	argumentos	son	correctos?	¿Por	qué	no?

proc(3, i, d);

proc(i, d);

proc(3 * i + 12, d);

proc(i, 23);

proc(d, i);

proc(3.5, d);

proc(i);

Página 456Fundamentos de la programación: La abstracción procedimental

 Nº	de	argumentos	≠	Nº	de	parámetrosNº	de	argumentos	≠	Nº	de	parámetros



 Parámetro	por	referencia	 ¡variable!Parámetro	por	referencia	 ¡variable!

 ¡Argumento	double para	parámetro	int!¡Argumento	double para	parámetro	int!

 ¡Argumento	double para	parámetro	int!¡Argumento	double para	parámetro	int!

 Nº	de	argumentos	≠	Nº	de	parámetrosNº	de	argumentos	≠	Nº	de	parámetros

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...
void divide(int op1, int op2, int &div, int &rem) {
// Divide op1 entre op2 y devuelve el cociente y el resto

div = op1 / op2;
rem = op1 % op2;

}

int main() {
int cociente, resto;
for (int j = 1; j <= 4; j++) {

for (int i = 1; i <= 4; i++) {
divide(i, j, cociente, resto);
cout << i << " entre " << j << " da un cociente de "

<< cociente << " y un resto de " << resto << endl;
}

}

return 0;
}

Página 457Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...
void divide(int op1, int op2, int &div, int &rem) {
// Divide op1 entre op2 y devuelve el cociente y el resto

div = op1 / op2;
rem = op1 % op2;

}

int main() {
int cociente, resto;
for (int j = 1; j <= 4; j++) {

for (int i = 1; i <= 4; i++) {
divide(i, j, cociente, resto);
...

}
}

return 0;
}

Página 458Fundamentos de la programación: La abstracción procedimental

Memoria

cociente ?

resto ?

i 1

j 1

...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...
void divide(int op1, int op2, int &div, int &rem) {
// Divide op1 entre op2 y devuelve el cociente y el resto

div = op1 / op2;
rem = op1 % op2;

}

int main() {
int cociente, resto;
for (int j = 1; j <= 4; j++) {

for (int i = 1; i <= 4; i++) {
divide(i, j, cociente, resto);
...

}
}

return 0;
}

Página 459Fundamentos de la programación: La abstracción procedimental

Memoria

cociente ?

resto ?

i 1

j 1

...

divdiv

remrem

op1 1

op2 1

...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...
void divide(int op1, int op2, int &div, int &rem) {
// Divide op1 entre op2 y devuelve el cociente y el resto

div = op1 / op2;
rem = op1 % op2;

}

int main() {
int cociente, resto;
for (int j = 1; j <= 4; j++) {

for (int i = 1; i <= 4; i++) {
divide(i, j, cociente, resto);
...

}
}

return 0;
}

Página 460Fundamentos de la programación: La abstracción procedimental

Memoria

cociente 1

resto 0

i 1

j 1

...

divdiv

remrem

op1 1

op2 1

...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 461Fundamentos de la programación: La abstracción procedimental

Memoria

cociente 1

resto 0

i 1

j 1

...

...
void divide(int op1, int op2, int &div, int &rem) {
// Divide op1 entre op2 y devuelve el cociente y el resto

div = op1 / op2;
rem = op1 % op2;

}

int main() {
int cociente, resto;
for (int j = 1; j <= 4; j++) {

for (int i = 1; i <= 4; i++) {
divide(i, j, cociente, resto);
...

}
}

return 0;
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...
void intercambia(double &valor1, double &valor2) {
// Intercambia los valores

double tmp; // Variable local (temporal)
tmp = valor1;
valor1 = valor2;
valor2 = tmp;

}

int main() {
double num1, num2;
cout << "Valor 1: ";
cin >> num1;
cout << "Valor 2: ";
cin >> num2;
intercambia(num1, num2);
cout << "Ahora el valor 1 es " << num1

<< " y el valor 2 es " << num2 << endl;
return 0;

}

Página 462Fundamentos de la programación: La abstracción procedimental

Memoria temporal
del procedimiento

tmp ?

...

Memoria de main()

num1 13.6

num2 317.14

...

valor1valor1

valor2valor2

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...
// Prototipo
void cambio(double precio, double pago, int &euros, int ¢50,

int ¢20, int ¢10, int ¢5, int ¢2, int ¢1);

int main() {
double precio, pago;
int euros, cent50, cent20, cent10, cent5, cent2, cent1;
cout << "Precio: ";
cin >> precio;
cout << "Pago: ";
cin >> pago;
cambio(precio, pago, euros, cent50, cent20, cent10, cent5, cent2,

cent1);
cout << "Cambio: " << euros << " euros, " << cent50 << " x 50c., "

<< cent20 << " x 20c., " << cent10 << " x 10c., "
<< cent5 << " x 5c., " << cent2 << " x 2c. y "
<< cent1 << " x 1c." << endl;

return 0;
}

Página 463Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void cambio(double precio, double pago, int &euros, int ¢50,
int ¢20, int ¢10, int ¢5, int ¢2, int ¢1) {
if (pago < precio) { // Cantidad insuficiente

cout << "Error: El pago es inferior al precio" << endl;
}
else {

int cantidad = int(100.0 * (pago ‐ precio) + 0.5);
euros = cantidad / 100;
cantidad = cambio % 100;
cent50 = cantidad / 50;
cantidad = cantidad % 50;
cent20 = cantidad / 20;
cantidad = cantidad % 20;
cent10 = cantidad / 10;
cantidad = cantidad % 10;
cent5 = cantidad / 5;
cantidad = cantidad % 5;
cent2 = cantidad / 2;
cent1 = cantidad % 2;

}
}

Página 464Fundamentos de la programación: La abstracción procedimental

Explicación	en	el	libro	de
Adams/Leestma/Nyhoff
Explicación	en	el	libro	de
Adams/Leestma/Nyhoff

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

En	los	subprogramas	se	pueden	detectar	errores

Errores	que	impiden	realizar	los	cálculos:
void cambio(double precio, double pago, int &euros, int ¢50,

int ¢20, int ¢10, int ¢5, int ¢2, int ¢1) {
if (pago < precio) { // Cantidad insuficiente

cout << "Error: El pago es inferior al precio" << endl;
}
...

¿Debe	el	subprograma	notificar	al	usuario	o	al	programa?

Mejor	notificarlo	al	punto	de	llamada	y	allí	decidir	qué	hacer
void cambio(double precio, double pago, int &euros, int ¢50,

int ¢20, int ¢10, int ¢5, int ¢2, int ¢1,
bool &error) {
if (pago < precio) { // Cantidad insuficiente

error = true;
}
else {

error = false;
...

Página 465Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Al	volver	de	la	llamada	se	decide	qué	hacer	si	ha	habido	error...

 ¿Informar	al	usuario?

 ¿Volver	a	pedir	los	datos?

 Etcétera
int main() {

double precio, pago;
int euros, cent50, cent20, cent10, cent5, cent2, cent1;
bool error;
cout << "Precio: ";
cin >> precio;
cout << "Pago: ";
cin >> pago;
cambio(precio, pago, euros, cent50, cent20, cent10, cent5, cent2,

cent1, error);
if (error) {

cout << "Error: El pago es inferior al precio" << endl;
}
else {

...

Página 466Fundamentos de la programación: La abstracción procedimental

cambio.cppcambio.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 467Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Una	función	ha	de	devolver	un	resultado
La	función	ha	de	terminar	su	ejecución	devolviendo	el	resultado

La	instrucción	return:

— Devuelve	el	dato	que	se	indica	a	continuación	como	resultado

— Termina	la	ejecución	de	la	función

El	dato	devuelto	sustituye	a	la	llamada	de	la	función	en	la	expresión

int cuad(int x) { int main() {

return x * x; cout << 2 * cuad(16);

x = x * x;

} return 0;

}

Página 468Fundamentos de la programación: La abstracción procedimental

256256Esta	instrucción
no	se	ejecutará	nunca
Esta	instrucción

no	se	ejecutará	nunca

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Factorial (N) = 1 x 2 x 3 x ... x (N‐2) x (N‐1) x N
long long int factorial(int n); // Prototipo

int main() {
int num;
cout << "Num: ";
cin >> num;
cout << "Factorial de " << num << ": " << factorial(num) << endl;
return 0;

}

long long int factorial(int n) {
long long int fact = 1;
if (n < 0) {

fact = 0;
}
else {

for (int i = 1; i <= n; i++) {
fact = fact * i;

}
}
return fact;

}

Página 469Fundamentos de la programación: La abstracción procedimental

factorial.cppfactorial.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 470Fundamentos de la programación: La abstracción procedimental

int compara(int val1, int val2) {
// ‐1 si val1 < val2, 0 si iguales, +1 si val1 > val2

if (val1 == val2) {
return 0;

}
else if (val1 < val2) {

return ‐1;
}
else {

return 1;
}

}

int compara(int val1, int val2) {
// ‐1 si val1 < val2, 0 si iguales, +1 si val1 > val2

if (val1 == val2) {
return 0;

}
else if (val1 < val2) {

return ‐1;
}
else {

return 1;
}

}

¡3	puntos	de	salida!¡3	puntos	de	salida!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 471Fundamentos de la programación: La abstracción procedimental

int compara(int val1, int val2) {
// ‐1 si val1 < val2, 0 si iguales, +1 si val1 > val2

int resultado;

if (val1 == val2) {
resultado = 0;

}
else if (val1 < val2) {

resultado = ‐1;
}
else {

resultado = 1;
}

return resultado;
}

int compara(int val1, int val2) {
// ‐1 si val1 < val2, 0 si iguales, +1 si val1 > val2

int resultado;

if (val1 == val2) {
resultado = 0;

}
else if (val1 < val2) {

resultado = ‐1;
}
else {

resultado = 1;
}

return resultado;
}

Punto	de	salida	únicoPunto	de	salida	único 

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Procedimientos	(tipo	void):

— Al	encontrar	la	llave	de	cierre	que	termina	el	subprograma					o
— Al	encontrar	una	instrucción	return (sin	resultado)

Funciones	(tipo	distinto	de	void):

— SÓLO	al	encontrar	una	instrucción	return (con	resultado)

Nuestros	subprogramas	siempre	terminarán	al	final:
 No	usaremos	return en	los	procedimientos

 Funciones:	sólo	un	return y	estará	al	final

Página 472Fundamentos de la programación: La abstracción procedimental

Para	facilitar	la	depuración	y	el	mantenimiento,
codifica	los	subprogramas	con	un	único	punto	de	salida
Para	facilitar	la	depuración	y	el	mantenimiento,
codifica	los	subprogramas	con	un	único	punto	de	salida

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 473Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Dónde	los	ponemos?	¿Antes	de	main()?	¿Después	de	main()?

 Los	pondremos	después	de	main()

¿Son	correctas	las	llamadas	a	subprogramas?
En	main() o	en	otros	subprogramas

— ¿Existe	el	subprograma?

— ¿Concuerdan	los	argumentos	con	los	parámetros?

Deben	estar	los	prototipos	de	los	subprogramas	antes	de	main()

Prototipo:	cabecera	del	subprograma	terminada	en	;
void dibujarCirculo();
void mostrarM();
void proc(double &a);
int cuad(int x);
...

Página 474Fundamentos de la programación: La abstracción procedimental

main() es	el	único	subprograma
que	no	hay	que	prototipar
main() es	el	único	subprograma
que	no	hay	que	prototipar

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;

void intercambia(double &valor1, double &valor2); // Prototipo

int main() {
double num1, num2;
cout << "Valor 1: ";
cin >> num1;
cout << "Valor 2: ";
cin >> num2;
intercambia(num1, num2);
cout << "Ahora el valor 1 es " << num1

<< " y el valor 2 es " << num2 << endl;
return 0;

}

void intercambia(double &valor1, double &valor2) {
double tmp; // Variable local (temporal)
tmp = valor1;
valor1 = valor2;
valor2 = tmp;

}

Página 475Fundamentos de la programación: La abstracción procedimental

intercambia.cppintercambia.cpp

Asegúrate	de	que	los	prototipos
coincidan	con	las	implementaciones
Asegúrate	de	que	los	prototipos
coincidan	con	las	implementaciones

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;

// Prototipos
long long int factorial(int n);
int sumatorio(int n);

int main() {
int num;
cout << "Num: ";
cin >> num;
cout << "Factorial de "

<< num << ": "
<< factorial(num)
<< endl
<< "Sumatorio de 1 a "
<< num << ": "
<< sumatorio(num)
<< endl;

return 0;
}

long long int factorial(int n) {
long long int fact = 1;

if (n < 0) {
fact = 0;

}
else {

for (int i = 1; i <= n; i++) {
fact = fact * i;

}
}

return fact;
}

int sumatorio(int n) {
int sum = 0;

for (int i = 1; i <= n; i++) {
sum = sum + i;

}

return sum;
}

Página 476Fundamentos de la programación: La abstracción procedimental

mates.cppmates.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 477Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Notación	infija	(de	operador)

operandoIzquierdo operador			operandoDerecho
a + b

Se	ejecuta	el	operador	con	los	operandos	como	argumentos

Los	operadores	se	implementan	como	funciones:

tipo operatorsímbolo(parámetros)

Si	es	un	operador	monario	sólo	habrá	un	parámetro

Si	es	binario	habrá	dos	parámetros

El	símbolo es	un	símbolo	de	operador	(uno	o	dos	caracteres):
+,	‐,	*,	/,	‐‐,	<<,	%,	...

Página 478Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

tMatriz suma(tMatriz a, tMatriz b);

tMatriz a, b, c;

c = suma(a, b);

tMatriz operator+(tMatriz a, tMatriz b);

tMatriz a, b, c;

c = a + b;

¡La	implementación	será	exactamente	la	misma!

Mayor	aproximación	al	lenguaje	matemático

Página 479Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 480Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Especificación	inicial	(Paso	0).‐

Desarrollar	un	programa	que	haga	operaciones	de	conversión	
de	medidas	hasta	que	el	usuario	decida	que	no	quiere	hacer	más

Análisis	y	diseño	aumentando	el	nivel	de	detalle	en	cada	paso

¿Qué	operaciones	de	conversión?

Paso	1.‐

Desarrollar	un	programa	que	haga	operaciones	de	conversión	
de	medidas	hasta	que	el	usuario	decida	que	no	quiere	hacer	más

 Pulgadas	a	centímetros

 Libras	a	gramos

 Grados	Fahrenheit	a	centígrados

 Galones	a	litros

Página 481Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Paso	2.‐

Desarrollar	un	programa	que	muestre	al	usuario	un	menú	con	
cuatro	operaciones	de	conversión	de	medidas:

 Pulgadas	a	centímetros

 Libras	a	gramos

 Grados	Fahrenheit	a	centígrados

 Galones	a	litros

Y	lea	la	elección	del	usuario	y	proceda	con	la	conversión,	hasta	que	
el	usuario	decida	que	no	quiere	hacer	más

6	grandes	tareas:
Menú,	cuatro	funciones	de	conversión	y	main()

Página 482Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Paso	2.‐

Página 483Fundamentos de la programación: La abstracción procedimental

Menú Libras a gr. Galones a l.Pulgadas a cm. ºF a ºC

Conversiones

main()

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Paso	3.‐

 Menú:
Mostrar	las	cuatro	opciones	más	una	para	salir
Validar	la	entrada	y	devolver	la	elegida

 Pulgadas	a	centímetros:
Devolver	el	equivalente	en	centímetros	del	valor	en	pulgadas

 Libras	a	gramos:
Devolver	el	equivalente	en	gramos	del	valor	en	libras

 Grados	Fahrenheit	a	centígrados:
Devolver	el	equivalente	en	centígrados	del	valor	en	Fahrenheit

 Galones	a	litros:
Devolver	el	equivalente	en	litros	del	valor	en	galones

 Programa	principal	(main())

Página 484Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Paso	3.‐ Cada	tarea,	un	subprograma

Comunicación	entre	los	subprogramas:

Página 485Fundamentos de la programación: La abstracción procedimental

Función Entrada Salida Valor devuelto

menu() ― ― int

pulgACm() double pulg ― double

lbAGr() double libras ― double

grFAGrC() double grF ― double

galALtr() double galones ― double

main() ― ― int

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Paso	4.‐ Algoritmos	detallados	de	cada	subprograma	 Programar

Página 486Fundamentos de la programación: La abstracción procedimental

.

#include <iostream>
using namespace std;
// Prototipos
int menu();
double pulgACm(double pulg);
double lbAGr(double libras);
double grFAGrC(double grF);
double galALtr(double galones);

int main() {
double valor;
int op = ‐1;
while (op != 0) {

op = menu();
switch (op) {
case 1:

{
cout << "Pulgadas: ";
cin >> valor;
cout << "Son " << pulgACm(valor) << " cm." << endl;

}
break;

#include <iostream>
using namespace std;
// Prototipos
int menu();
double pulgACm(double pulg);
double lbAGr(double libras);
double grFAGrC(double grF);
double galALtr(double galones);

int main() {
double valor;
int op = ‐1;
while (op != 0) {

op = menu();
switch (op) {
case 1:

{
cout << "Pulgadas: ";
cin >> valor;
cout << "Son " << pulgACm(valor) << " cm." << endl;

}
break;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 487Fundamentos de la programación: La abstracción procedimental

.

case 2:
{

cout << "Libras: ";
cin >> valor;
cout << "Son " << lbAGr(valor) << " gr." << endl;

}
break;

case 3:
{

cout << "Grados Fahrenheit: ";
cin >> valor;
cout << "Son " << grFAGrC(valor) << " ºC" << endl;

}
break;

case 4:
{

cout << "Galones: ";
cin >> valor;
cout << "Son " << galALtr(valor) << " l." << endl;

}
break;

}
}
return 0;

}

case 2:
{

cout << "Libras: ";
cin >> valor;
cout << "Son " << lbAGr(valor) << " gr." << endl;

}
break;

case 3:
{

cout << "Grados Fahrenheit: ";
cin >> valor;
cout << "Son " << grFAGrC(valor) << " ºC" << endl;

}
break;

case 4:
{

cout << "Galones: ";
cin >> valor;
cout << "Son " << galALtr(valor) << " l." << endl;

}
break;

}
}
return 0;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 488Fundamentos de la programación: La abstracción procedimental

int menu() {
int op = ‐1;

while ((op < 0) || (op > 4)) {
cout << "1 ‐ Pulgadas a Cm." << endl;
cout << "2 ‐ Libras a Gr." << endl;
cout << "3 ‐ Fahrenheit a ºC" << endl;
cout << "4 ‐ Galones a L." << endl;
cout << "0 ‐ Salir" << endl;
cout << "Elige: ";
cin >> op;
if ((op < 0) || (op > 4)) {

cout << "Opción no válida" << endl;
}

}

return op;
}

double pulgACm(double pulg) {
const double cmPorPulg = 2.54;
return pulg * cmPorPulg;

}

int menu() {
int op = ‐1;

while ((op < 0) || (op > 4)) {
cout << "1 ‐ Pulgadas a Cm." << endl;
cout << "2 ‐ Libras a Gr." << endl;
cout << "3 ‐ Fahrenheit a ºC" << endl;
cout << "4 ‐ Galones a L." << endl;
cout << "0 ‐ Salir" << endl;
cout << "Elige: ";
cin >> op;
if ((op < 0) || (op > 4)) {

cout << "Opción no válida" << endl;
}

}

return op;
}

double pulgACm(double pulg) {
const double cmPorPulg = 2.54;
return pulg * cmPorPulg;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 489Fundamentos de la programación: La abstracción procedimental

double lbAGr(double libras) {
const double grPorLb = 453.6;
return libras * grPorLb;

}

double grFAGrC(double grF) {
return ((grF ‐ 32) * 5 / 9);

}

double galALtr(double galones) {
const double ltrPorGal = 4.54609;
return galones * ltrPorGal;

}

double lbAGr(double libras) {
const double grPorLb = 453.6;
return libras * grPorLb;

}

double grFAGrC(double grF) {
return ((grF ‐ 32) * 5 / 9);

}

double galALtr(double galones) {
const double ltrPorGal = 4.54609;
return galones * ltrPorGal;

}

.

conversiones.cppconversiones.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 490Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Integridad	de	los	subprogramas
Condiciones	que	se	deben	dar	antes	de	comenzar	su	ejecución

 Precondiciones

 Quien	llame	al	subprograma	debe	garantizar	que	se	satisfacen

Condiciones	que	se	darán	cuando	termine	su	ejecución

 Postcondiciones

 En	el	punto	de	llamada	se	pueden	dar	por	garantizadas

Aserciones:

Condiciones	que	si	no	se	cumplen	interrumpen	la	ejecución

Función	assert()

Página 491Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Precondiciones
Por	ejemplo,	no	realizaremos	conversiones	de	valores	negativos:
double pulgACm(double pulg) {

assert(pulg > 0);

double cmPorPulg = 2.54;

return pulg * cmPorPulg;
}

La	función	tiene	una	precondición:	pulg debe	ser	positivo

assert(pulg > 0); interrumpirá	la	ejecución	si	no	es	cierto

Página 492Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Precondiciones
Es	responsabilidad	del	punto	de	llamada	garantizar	la	precondición:

int main() {
double valor;
int op = ‐1;
while (op != 0) {

op = menu();
switch (op) {
case 1:

{
cout << "Pulgadas: ";
cin >> valor;
if (valor < 0) {

cout << "¡No válido!" << endl;
}
else { // Se cumple la precondición...

...

Página 493Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Postcondiciones
Un	subprograma	puede	garantizar	condiciones	al	terminar:

int menu() {
int op = ‐1;
while ((op < 0) || (op > 4)) {

...
cout << "Elige: ";
cin >> op;
if ((op < 0) || (op > 4)) {

cout << "Opción no válida" << endl;
}

}
assert ((op >= 0) && (op <= 4));
return op;

}

El	subprograma	debe	asegurarse	de	que	se	cumpla

Página 494Fundamentos de la programación: La abstracción procedimental

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: La abstracción procedimental Página 495

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

4A

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: La abstracción procedimental (Anexo)

Archivos como parámetros 498
La función main() 501
Argumentos implícitos 504
Sobrecarga de subprogramas 508

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 498Fundamentos de la programación: La abstracción procedimental (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;
#include <fstream>

void sumatorio_archivo(ifstream &arch, double &suma);

int main() {
double resultado;
ifstream archivo;
archivo.open("datos.txt");
if (!archivo.is_open()) {

cout << "ERROR DE APERTURA" << endl;
}
else {

sumatorio_archivo(archivo, resultado)
cout << "Suma = " << resultado << endl;
archivo.close();

}

return 0;
}

Página 499Fundamentos de la programación: La abstracción procedimental (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void sumatorio_archivo(ifstream &arch, double &suma) {
double dato;

suma = 0;
arch >> dato;

while (dato != ‐1) {
suma = suma + dato;
arch >> dato;

}
}

Página 500Fundamentos de la programación: La abstracción procedimental (Anexo)

Los	archivos	siempre	se	pasan	por	referenciaLos	archivos	siempre	se	pasan	por	referencia

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 501Fundamentos de la programación: La abstracción procedimental (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Comunicación	con	el	sistema	operativo
Parámetros	opcionales	de	la	función	main():

int main(int argc, char *argv[])

Para	obtener	datos	proporcionados	al	ejecutar	el	programa:
C:\>prueba cad1 cad2 cad3

Ejecuta	prueba.exe con	tres	argumentos	(cadenas)

Parámetros	de	main():

— argc:	número	de	argumentos	que	se	proporcionan

4	en	el	ejemplo	(primero:	nombre	del	programa	con	su	ruta)
— argv:	array	con	las	cadenas	proporcionadas	como	argumentos

Página 502Fundamentos de la programación: La abstracción procedimental (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Cómo	ha	ido	la	función?
La	función	main() devuelve	al	S.O.	un	código	de	terminación

— 0:	Todo	OK

— Distinto	de	0:	¡Ha	habido	un	error!

Si	la	ejecución	llega	al	final	de	la	función	main(),	todo	OK:

...

return 0; // Fin del programa

}

Página 503Fundamentos de la programación: La abstracción procedimental (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 504Fundamentos de la programación: La abstracción procedimental (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Valores	predeterminados	para	parámetros	por	valor
Valor	por	defecto	para	un	parámetro:

Tras	un	=	a	continuación	del	nombre	del	parámetro:
void proc(int i = 1);

Si	no	se	proporciona	argumento,	el	parámetro	toma	ese	valor
proc(12); i toma	el	valor	explícito	12

proc(); i toma	el	valor	implícito	(1)

Sólo	puede	haber	argumentos	implícitos	en	los	parámetros	finales:
void p(int i, int j = 2, int k = 3); // CORRECTO

void p(int i = 1, int j, int k = 3); // INCORRECTO

Página 505Fundamentos de la programación: La abstracción procedimental (Anexo)

Una vez asignado un valor implícito, todos los que siguen
han de tener también valor implícito

Una vez asignado un valor implícito, todos los que siguen
han de tener también valor implícito

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Parámetros	y	argumentos	implícitos

void p(int i, int j = 2, int k = 3);

Se	copian	los	argumentos	en	los	parámetros	del	primero	al	último

 los	que	no	tengan	correspondencia	tomarán	los	implícitos

void p(int i, int j = 2, int k = 3);

...

p(13); // i toma 13, j y k sus valores implícitos

p(5, 7); // i toma 5, j toma 7 y k su valor implícito

p(3, 9, 12); // i toma 3, j toma 9 y k toma 12

Página 506Fundamentos de la programación: La abstracción procedimental (Anexo)

Los	argumentos	implícitos	se	declaran	en	el	prototipo
(preferible)	o	en	la	cabecera	del	subprograma,	pero	NO	en	ambos

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;

double f(double x, double y, int signo = 1, double delta = 1.0);

int main() {
double x, y;
cout << "X = ";
cin >> x;
cout << "Y = ";
cin >> y;
cout << "signo y delta por defecto: " << f(x, y) << endl;
cout << "signo ‐1 y delta por defecto: " << f(x, y, ‐1) << endl;
cout << "signo y delta concretos: " << f(x, y, 1, 1.25) << endl;

return 0;
}

double f(double x, double y, int signo, double delta) {
return signo * delta * x / y;

}

Página 507Fundamentos de la programación: La abstracción procedimental (Anexo)

Por	defecto,	signo	+

Por	defecto,	Δ es	1

Por	defecto,	signo	+

Por	defecto,	Δ es	1

No	podemos	dejar	signo por	defecto
y	concretar	delta
No	podemos	dejar	signo por	defecto
y	concretar	delta

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 508Fundamentos de la programación: La abstracción procedimental (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Igual	nombre,	distintos	parámetros
Funciones	o	procedimientos	con	igual	nombre	y	distintos	parámetros:
int abs(int n);

double abs(double n);

long int abs(long int n);

Se	ejecutará	la	función	que	corresponda	al	tipo	de	argumento:
abs(13) // argumento int ‐‐> primera función

abs(‐2.3) // argumento double ‐‐> segunda función

abs(3L) // argumento long int ‐‐> tercera función

Página 509Fundamentos de la programación: La abstracción procedimental (Anexo)

Para	indicar	que	es	un	literal	long int,	en	lugar	de	intPara	indicar	que	es	un	literal	long int,	en	lugar	de	int

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;

void intercambia(int &x, int &y);
void intercambia(double &x,

double &y);
void intercambia(char &x, char &y);

void intercambia(int &x, int &y) {
int tmp;
tmp = x;
x = y;
y = tmp;

}

void intercambia(double &x,
double &y) {

double tmp;
tmp = x;
x = y;
y = tmp;

}

void intercambia(char &x, char &y) {
char tmp;
tmp = x;
x = y;
y = tmp;

}

int main() {
int i1 = 3, i2 = 7;
double d1 = 12.5, d2 = 35.9;
char c1 = 'a', c2 = 'b';
cout << i1 << " ‐ " << i2 << endl;
cout << d1 << " ‐ " << d2 << endl;
cout << c1 << " ‐ " << c2 << endl;
intercambia(i1, i2);
intercambia(d1, d2);
intercambia(c1, c2);
cout << i1 << " ‐ " << i2 << endl;
cout << d1 << " ‐ " << d2 << endl;
cout << c1 << " ‐ " << c2 << endl;
return 0;

}

Página 510Fundamentos de la programación: La abstracción procedimental (Anexo)

inter.cppinter.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: La abstracción procedimental (Anexo) Página 511

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

5

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez/Pablo	Moreno	Ger

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Fundamentos de la programación: Tipos de datos estructurados

Tipos de datos 514
Arrays de nuevo 517
Arrays y bucles for 520
Más sobre arrays 522

Inicialización de arrays 523
Enumerados como índices 524
Paso de arrays a subprogramas 525

Implementación de listas 528
Cadenas de caracteres 531
Cadenas de caracteres de tipo string 535

Entrada/salida con string 539
Operaciones con string 541

Estructuras 543
Estructuras dentro de estructuras 549
Arrays de estructuras 550
Arrays dentro de estructuras 551

Listas de longitud variable 552
Un ejemplo completo 558
El bucle do..while 562

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 514Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Clasificación	de	tipos

 Simples
 Estándar:	int,	float,	double,	char,	bool

Conjunto	de	valores	predeterminado

 Definidos	por	el	usuario:	enumerados
Conjunto	de	valores	definido	por	el	programador

 Estructurados
 Colecciones	homogéneas:	arrays

Todos	los	elementos	del	mismo	tipo

 Colecciones	heterogéneas:	estructuras
Los	elementos	pueden	ser	de	tipos	distintos

Página 515Fundamentos de la programación: Tipos de datos estructurados







Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Colecciones	o	tipos	aglomerados

Agrupaciones	de	datos	(elementos):
 Todos del mismo tipo: array o tabla

 De tipos distintos: estructura, registro o tupla

Arrays	(tablas)
 Elementos	organizados	por	posición:	0,	1,	2,	3,	...

 Acceso	por	índice:	0,	1,	2,	3,	...

 Una	o	varias	dimensiones

Estructuras	(tuplas,	registros)
 Elementos	(campos)	sin	orden	establecido

 Acceso	por	nombre

Página 516Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 517Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 518Fundamentos de la programación: Tipos de datos estructurados

[]

Estructura	secuencial
Cada	elemento	se	encuentra	en	una	posición	(índice):

 Los	índices	son	enteros	positivos

 El	índice	del	primer	elemento	siempre	es	0

 Los	índices	se	incrementan	de	uno	en	uno

Acceso	directo

A	cada	elemento	se	accede	a	través	de	su	índice:
ventas[4] accede	al	5º	elemento	(contiene	el	valor	435.00)
cout << ventas[4];

ventas[4] = 442.75;

ventas 125.40 76.95 328.80 254.62 435.00 164.29 0.00

0 1 2 3 4 5 6

Datos	de	un	mismo	tipo	base:
Se	usan	como	cualquier	variable
Datos	de	un	mismo	tipo	base:
Se	usan	como	cualquier	variable

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Declaración	de	tipos	de	arrays
const int Dimensión = ...;

typedef tipo_base tNombre[Dimensión];

Ejemplo:
const int Dias = 7;

typedef double tVentas[Dias];

Declaración	de	variables	de	tipos	array:	como	cualquier	otra
tVentas ventas;

¡NO	se	inicializan	los	elementos	automáticamente!

¡Es	responsabilidad	del	programador	usar	índices	válidos!
No	se	pueden	copiar	arrays	directamente	(array1 = array2)

Hay	que	copiarlos	elemento	a	elemento

Página 519Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Procesamiento	de	arrays
 Recorridos
 Búsquedas
 Ordenación etcétera...

Recorrido	de	arrays	con	bucles	for
Arrays:	tamaño	fijo	 Bucles	de	recorrido	fijo	(for)
tVentas ventas;
double media, total = 0;
...
for (int i = 0; i < Dias; i++) {

total = total + ventas[i];
}
media = total / Dias;

Página 520Fundamentos de la programación: Tipos de datos estructurados

const int Dias = 7;

typedef double tVentas[Dias];

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

tVentas ventas;
double media, total = 0;
...
for (int i = 0; i < Dias; i++) {

total = total + ventas[i];
}

Memoria

Dias 7

ventas[0] 12.40

ventas[1] 10.96

ventas[2] 8.43

ventas[3] 11.65

ventas[4] 13.70

ventas[5] 13.41

ventas[6] 14.07

media ?

total 0.00

i 0

12.40

1

23.36

2

31.79

3

43.44

4

84.62

7

Página 521Fundamentos de la programación: Tipos de datos estructurados

12.40 10.96 8.43 11.65 13.70 13.41 14.07

0 1 2 3 4 5 6

falsefalsetruetrue

total+=ventas[i]

i++

i<Dias

i = 0

......

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 522Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Podemos	inicializar	los	elementos	de	los	arrays	en	la	declaración

Asignamos una	serie	de	valores	al	array:
const int DIM = 10;

typedef int tTabla[DIM];

tTabla i = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

Se	asignan	los	valores	por	su	orden:
i[0] i[1] i[2] i[3] i[4] ... i[9]

1º 2º 3º 4º 5º ... 10º

Si	hay	menos	valores	que	elementos,	los	restantes	se	ponen	a	0

tTabla i = { 0 }; // Pone todos los elementos a 0

Página 523Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

const int Colores = 3,

typedef enum { rojo, verde, azul } tRGB;

typedef int tColor[Colores];

tColor color;

...

cout << "Cantidad de rojo (0‐255): ";

cin >> color[rojo];

cout << "Cantidad de verde (0‐255): ";

cin >> color[verde];

cout << "Cantidad de azul (0‐255): ";

cin >> color[azul];

Página 524Fundamentos de la programación: Tipos de datos estructurados

Recuerda	que	internamente	se	asignan	enteros	a	partir	de	0
a	los	distintos	símbolos	del	enumerado

rojo	 0			verde	 1			azul	 2

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Simulación	de	paso	de	parámetro	por	referencia

Sin	poner	&	en	la	declaración	del	parámetro

Los	subprogramas	reciben	la	dirección	en	memoria	del	array

const int Max = 10;

typedef int tTabla[Max];

void inicializa(tTabla tabla); // Sin poner &

Las	modificaciones	del	array	quedan	reflejadas	en	el	argumento

inicializa(array);

Si	inicializa()modifica	algún	elemento	de	tabla,	
automáticamente	queda	modificado	ese	elemento	de	array

¡Son	el	mismo	array!

Página 525Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 526Fundamentos de la programación: Tipos de datos estructurados

0 1 2 3 4 5 6 7 8 9

const int Dim = 10;
typedef int tTabla[Dim];
void inicializa(tTabla tabla); // no se usa &

void inicializa(tTabla tabla) {
for (int i = 0; i < Dim; i++)

tabla[i] = i;
}
int main() {

tTabla array;
inicializa(array); // array queda modificado
for (int i = 0; i < Dim; i++)

cout << array[i] << " ";
...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

¿Cómo	evitar	que	se	modifique	el	array?
Usando	el	modificador	const en	la	declaración	del	parámetro:

const tTabla tabla Un	array	de	constantes

void muestra(const tTabla tabla);

El	argumento	se	tratará	como	un	array	de	constantes

Si	en	el	subprograma	hay	alguna	instrucción	que	intente	
modificar	un	elemento	del	array:	error	de	compilación
void muestra(const tTabla tabla) {

for (int i = 0; i < Dim; i++) {
cout << tabla[i] << " ";
// OK. Se accede, pero no se modifica

}
}

Página 527Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 528Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Listas	con	un	número	fijo	de	elementos
Array	con	el	nº	de	elementos	como	dimensión
const int NUM = 100;

typedef double tLista[NUM]; // Exactamente 100 double

tLista lista;

Recorrido	de	la	lista:
for (int i = 0; i < NUM; i++) {

...

Búsqueda	en	la	lista:
while ((i < NUM) && !encontrado) {

...

Página 529Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Listas	con	un	número	variable	de	elementos
Array	con	un	máximo	de	elementos	+	Contador	de	elementos
const int MAX = 100;

typedef double tLista[MAX]; // Hasta 100 elementos

tLista lista;

int contador = 0; // Se incrementa al insertar

Recorrido	de	la	lista:
for (int i = 0; i < contador; i++) {

...

Búsqueda	en	la	lista:
while ((i < contador) && !encontrado) {

...

Página 530Fundamentos de la programación: Tipos de datos estructurados

¿Array	y	contador	por	separado?	 Estructuras

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 531Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Arrays	de	caracteres
Cadenas:	secuencias	de	caracteres	de	longitud	variable

"Hola" "Adiós" "Supercalifragilístico" "1234 56 7"

Variables	de	cadena:	contienen	secuencias	de	caracteres

Se	guardan	en	arrays	de	caracteres:	tamaño	máximo	(dimensión)

No	todas	las	posiciones	del	array	son	relevantes:

 Longitud	de	la	cadena:	número	de	caracteres,	desde	el	
primero,	que	realmente	constituyen	la	cadena:

Longitud	actual:	4

Página 532Fundamentos de la programación: Tipos de datos estructurados

H o l a

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Longitud	de	la	cadena

Longitud:	5

Longitud:	21

Necesidad	de	saber	dónde	terminan	los	caracteres	relevantes:

 Mantener	la	longitud	de	la	cadena	como	dato	asociado

 Colocar	un	carácter	de	terminación	al	final	(centinela)

Página 533Fundamentos de la programación: Tipos de datos estructurados

A d i ó s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

S u p e r c a l i f r a g i l í s t i c o

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A d i ó s \0

0 1 2 3 4 5 6 7 8 9 10

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Cadenas	de	caracteres	en	C++
Dos	alternativas	para	el	manejo	de	cadenas:

 Cadenas	al	estilo	de	C	(terminadas	en	nulo)
 Tipo	string

Cadenas	al	estilo	de	C Anexo	del	tema
 Arrays	de	tipo	char con	una	longitud	máxima

 Un	último	carácter	especial	al	final:	'\0'

Tipo	string

 Cadenas	más	sofisticadas

 Sin	longitud	máxima	(gestión	automática	de	la	memoria)
 Multitud	de	funciones	de	utilidad	(biblioteca	string)

Página 534Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 535Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

El	tipo	string
 El	tipo	asume	la	responsabilidad	de	la	gestión	de	memoria

 Define	operadores	sobrecargados	(+	para	concatenar)

 Cadenas	más	eficientes	y	seguras	de	usar

Biblioteca	string

Requiere	establecer	el	espacio	de	nombres	a std

 Se	pueden	inicializar	en	la	declaración

 Se	pueden	copiar	con	el	operador	de	asignación

 Se	pueden	concatenar	con	el	operador	+

 Multitud	de	funciones	de	utilidad

Página 536Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

#include <iostream>
#include <string>
using namespace std;

int main() {
string cad1("Hola"); // inicialización
string cad2 = "amigo"; // inicialización
string cad3;
cad3 = cad1; // copia
cout << "cad3 = " << cad3 << endl;
cad3 = cad1 + " "; // concatenación
cad3 += cad2; // concatenación
cout << "cad3 = " << cad3 << endl;
cad1.swap(cad2); // intercambio
cout << "cad1 = " << cad1 << endl;
cout << "cad2 = " << cad2 << endl;

return 0;
}

Página 537Fundamentos de la programación: Tipos de datos estructurados

string.cppstring.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Longitud	de	la	cadena:
cadena.length() o	cadena.size()

Se	pueden	comparar	con	los	operadores	relacionales:
if (cad1 <= cad2) { ...

Acceso	a	los	caracteres	de	una	cadena:
 Como	array	de	caracteres:	cadena[i]

Sin	control	de	acceso	a	posiciones	inexistentes	del	array

Sólo	debe	usarse	si	se	está	seguro	de	que	el	índice	es	válido
 Función	at(índice):	cadena.at(i)

Error		de	ejecución	si	se	accede	a	una	posición	inexistente

Página 538Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

 Se	muestran	en	la	pantalla	con	cout <<

 Lectura	con	cin >>:	termina	con	espacio	en	blanco	(inc.	Intro)

El	espacio	en	blanco	queda	pendiente

 Descartar	el	resto	de	los	caracteres	del	búfer:
cin.sync();

 Lectura	incluyendo	espacios	en	blanco:
getline(cin, cadena)

Guarda	en	la	cadena los	caracteres	leídos	hasta	el	fin	de	línea

 Lectura	de	archivos	de	texto:
Igual	que	de	consola;	sync() no	tiene	efecto
archivo >> cadena getline(archivo, cadena)

Página 539Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 540Fundamentos de la programación: Tipos de datos estructurados

string2.cppstring2.cpp

#include <iostream>
#include <string>
using namespace std;

int main() {
string nombre, apellidos;
cout << "Introduzca un nombre: ";
cin >> nombre;
cout << "Introduzca los apellidos: ";
cin.sync();
getline(cin, apellidos);
cout << "Nombre completo: " << nombre << " "

<< apellidos << endl;

return 0;
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

 cadena.substr(posición, longitud)

Subcadena	de	longitud caracteres	desde	posición
string cad = "abcdefg";
cout << cad.substr(2, 3); // Muestra cde

 cadena.find(subcadena)

Posición	de	la	primera	ocurrencia	de	subcadena en	cadena
string cad = "Olala";
cout << cad.find("la"); // Muestra 1

(Recuerda		que	los	arrays	de	caracteres	comienzan	con	el	índice	0)

 cadena.rfind(subcadena)

Posición	de	la	última	ocurrencia	de	subcadena en	cadena
string cad = "Olala";
cout << cad.rfind("la"); // Muestra 3

Página 541Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

 cadena.erase(ini, num)

Elimina	num caracteres	a	partir	de	la	posición	ini
string cad = "abcdefgh";
cad.erase(3, 4); // cad ahora contiene "abch"

 cadena.insert(ini, cadena2)

Inserta	cadena2 a	partir	de	la	posición	ini
string cad = "abcdefgh";
cad.insert(3, "123"); // cad ahora contiene "abc123defgh"

http://www.cplusplus.com/reference/string/string/

Página 542Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 543Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Colecciones	heterogéneas	(tuplas,	registros)
Elementos	de	(posiblemente)	distintos	tipos:	campos

Campos	identificados	por	su	nombre

Información	relacionada	que	se	puede	manejar	como	una	unidad
Acceso	a	cada	elemento	por	su	nombre	de	campo	(operador.)

Página 544Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

typedef struct {
... // declaraciones de campos (como variables)

} tTipo; // nombre de tipo ‐ ¡al final!

typedef struct {
string nombre;
string apellidos;
int edad;
string nif;

} tPersona;

Campos:

Tipos	estándar	o	previamente	declarado

Página 545Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

tPersona persona;

Las	variables	de	tipo	tPersona contienen	cuatro	datos	(campos):
nombre apellidos edad nif

Acceso	a	los	campos	con	el	operador	punto	(.):
persona.nombre // una cadena (string)

persona.apellidos // una cadena (string)

persona.edad // un entero (int)

persona.nif // una cadena (string)

Podemos	copiar	dos	estructuras	directamente:
tPersona persona1, persona2;

...

persona2 = persona1;

Se	copian	todos	los	campos	a	la	vez

Página 546Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

typedef struct {
string nombre;
string apellidos;
int edad;
string nif;

} tPersona;
tPersona persona;

Página 547Fundamentos de la programación: Tipos de datos estructurados

Luis Antonionombre Luis Antonionombrenombre

Hernández Yáñezapellidos Hernández Yáñezapellidosapellidos

22edad 22edadedad

00223344Fnif 00223344Fnifnif

Memoria

persona.nombre
Luis

Antonio

persona.apellidos
Hernández

Yáñez

persona.edad 22

persona.nif 00223344F

personapersona

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

typedef struct {
string nombre;
string apellidos;
int edad;
string nif;

} tPersona;
tPersona persona;

Los	campos	no	siguen	ningún	orden	establecido
Acceso	directo	por	nombre	de	campo	(operador	.)

Con	cada	campo	se	puede	hacer	lo	que	permita	su	tipo

Página 548Fundamentos de la programación: Tipos de datos estructurados

Las	estructuras	se	pasan	por	valor	(sin	&)
o	por	referencia	(con	&)	a	los	subprogramas
Las	estructuras	se	pasan	por	valor	(sin	&)
o	por	referencia	(con	&)	a	los	subprogramas

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

typedef struct { typedef struct {
string dni; ...
char letra; tNif nif;

} tNif; } tPersona;

tPersona persona;

Acceso	al	NIF	completo:
persona.nif // Otra estructura

Acceso	a	la	letra	del	NIF:
persona.nif.letra

Acceso	al	DNI:
persona.nif.dni

Página 549Fundamentos de la programación: Tipos de datos estructurados

nombre

apellidos

edad

nif

tPersona

nombrenombre

apellidosapellidos

edadedad

nifnif

tPersonatPersona

dnidni

letraletra

tNiftNif

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

const int DIM = 100;
typedef struct {

string nombre;
string apellidos;
int edad;
string nif;

} tPersona;
typedef tPersona tArray[DIM];
tArray personal;

Nombre	de	la	tercera	persona:
personal[2].nombre

Edad	de	la	duodécima	persona:
personal[11].edad

NIF	de	la	primera	persona:	
personal[0].nif

Página 550Fundamentos de la programación: Tipos de datos estructurados

nombre

apellidos

edad

nif

tPersona

nombrenombre

apellidosapellidos

edadedad

nifnif

tPersonatPersona
nombre

apellidos

edad

nif

nombre

apellidos

edad

nif

nombre

apellidos

edad

nif

nombre

apellidos

edad

nif

1

0

2

DIM‐1

personal
nombrenombre

apellidosapellidos

edadedad

nifnif

nombrenombre

apellidosapellidos

edadedad

nifnif

nombrenombre

apellidosapellidos

edadedad

nifnif

nombrenombre

apellidosapellidos

edadedad

nifnif

11

00

22

DIM‐1DIM‐1

personalpersonal

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

const int MAX = 100;
typedef struct {

string nombre;
string apellidos;
int edad;
string nif;

} tPersona;
typedef tPersona tArray[MAX];
typedef struct {

tArray elementos;
int contador;

} tLista;
tLista lista;

Nombre	de	la	tercera	persona:	lista.elementos[2].nombre

Edad	de	la	duodécima	persona:	lista.elementos[11].edad

NIF	de	la	primera	persona:	lista.elementos[0].nif

Página 551Fundamentos de la programación: Tipos de datos estructurados

nombre

apellidos

edad

nif

nombre

apellidos

edad

nif

nombre

apellidos

edad

nif

nombre

apellidos

edad

nif

1

0

2

MAX‐1

elementos

nombrenombre

apellidosapellidos

edadedad

nifnif

nombrenombre

apellidosapellidos

edadedad

nifnif

nombrenombre

apellidosapellidos

edadedad

nifnif

nombrenombre

apellidosapellidos

edadedad

nifnif

11

00

22

MAX‐1MAX‐1

elementoselementos contadorcontadorcontadorlistalista

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 552Fundamentos de la programación: Tipos de datos estructurados

/
P
ab
lo
 M

o
re
n
o
 G
er

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Estructura	que	agrupe	el	array	y	el	contador:
const int MAX = 10;
typedef double tArray[MAX];
typedef struct {

tArray elementos;
int contador;

} tLista;

Operaciones	principales:	inserción	y	eliminación	de	elementos

6contador 6contadorcontador

Página 553Fundamentos de la programación: Tipos de datos estructurados

elementos

12.0 ‐2.2 5.4 0.0 36.2 35.0 X X X X

0 1 2 3 4 5 6 7 8 9

Nº	de	elementos	(y	primer	índice	sin	elemento)Nº	de	elementos	(y	primer	índice	sin	elemento)Nº	de	elementos	(y	primer	índice	sin	elemento)

Elementos	sin	usar
(datos	basura)

Elementos	sin	usar
(datos	basura)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Insertar	un	nuevo	elemento	en	una	posición
Posiciones	válidas:	0	a	contador

Hay	que	asegurarse	de	que	haya	sitio	(contador	<	máximo)

Operación	en	3	pasos:

1.‐ Abrir	hueco	para	el	nuevo	elemento	(desde	la	posición)

2.‐ Colocar	el	elemento	nuevo	en	la	posición

3.‐ Incrementar	el	contador

6

12.0 ‐2.2 5.4 0.0 36.2 35.0 X X X X

0 1 2 3 4 5 6 7 8 9

42.0

nuevonuevo

Página 554Fundamentos de la programación: Tipos de datos estructurados

3

pospos

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

if (lista.contador < N) {
// Abrir hueco
for (int i = lista.contador; i > pos; i‐‐) {

lista.elementos[i] = lista.elementos[i ‐ 1];
}
// Insertar e incrementar contador
lista.elementos[pos] = nuevoElemento;
lista.contador++;

}

Página 555Fundamentos de la programación: Tipos de datos estructurados

7

12.0 ‐2.2 5.4 42.0 0.0 36.2 35.0 X X X

0 1 2 3 4 5 6 7 8 9

42.0

nuevonuevo

3

pospos

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Eliminar	el	elemento	en	una	posición
Posiciones	válidas:	0	a	contador‐1

Desplazar	a	la	izquierda	desde	el	siguiente	y	decrementar	el	contador:

for (int i = pos; i < lista.contador ‐ 1 ; i++) {

lista.elementos[i] = lista.elementos[i + 1];

}

lista.contador‐‐;

6

12.0 ‐2.2 5.4 0.0 36.2 35.0 X X X X

0 1 2 3 4 5 6 7 8 9

Página 556Fundamentos de la programación: Tipos de datos estructurados

3

pospos

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

5

3

pospos

for (int i = pos; i < lista.contador ‐ 1 ; i++) {

lista.elementos[i] = lista.elementos[i + 1];

}

lista.contador‐‐;

6

12.0 ‐2.2 5.4 0.0 36.2 35.0 X X X X

0 1 2 3 4 5 6 7 8 9

Página 557Fundamentos de la programación: Tipos de datos estructurados

3

pospos

12.0 ‐2.2 5.4 36.2 35.0 35.0 X X X X

0 1 2 3 4 5 6 7 8 9

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 558Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 559Fundamentos de la programación: Tipos de datos estructurados

Descripción
Programa	que	mantenga	una	lista	de	los	estudiantes	de	una	clase

De	cada	estudiante:	nombre,	apellidos,	edad,	NIF	y	nota

 Se	desconoce	el	número	total	de	estudiantes	(máximo	100)

 La	información	de	la	lista	se	mantiene	en	un	archivo	clase.txt

Se	carga	al	empezar	y	se	guarda	al	finalizar

 El	programa	debe	ofrecer	estas	opciones:

— Añadir	un	nuevo	alumno

— Eliminar	un	alumno	existente

— Calificar	a	los	estudiantes

— Listado	de	notas,	identificando	la	mayor	y	la	media

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

#include <iostream>
#include <string>
using namespace std;
#include <fstream>
#include <iomanip>

const int MAX = 100;
typedef struct {

string nombre;
string apellidos;
int edad;
string nif;
double nota;

} tEstudiante;
typedef tEstudiante tArray[MAX];
typedef struct {

tArray elementos;
int contador;

} tLista;

Página 560Fundamentos de la programación: Tipos de datos estructurados

bd.cppbd.cpp

Declaraciones	de	constantes
y	tipos	globales

Tras	las	bibliotecas

Declaraciones	de	constantes
y	tipos	globales

Tras	las	bibliotecas

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

// Prototipos
int menu(); // Menú del programa ‐ devuelve la opción elegida
void cargar(tLista &lista, bool &ok); // Carga del archivo
void guardar(const tLista &lista); // La guarda en el archivo
void leerEstudiante(tEstudiante &estudiante); // Lee los datos
void insertarEstudiante(tLista &lista, tEstudiante estudiante,

bool &ok); // Inserta un nuevo estudiante en la lista
void eliminarEstudiante(tLista &lista, int pos, bool &ok);
// Elimina el estudiante en esa posición
string nombreCompleto(tEstudiante estudiante);
void calificar(tLista &lista); // Notas de los estudiantes
double mediaClase(const tLista &lista); // Nota media
int mayorNota(const tLista &lista);
// Índice del estudiante con mayor nota
void mostrarEstudiante(tEstudiante estudiante);
void listado(const tLista &lista, double media, int mayor);
// Listado de la clase

Página 561Fundamentos de la programación: Tipos de datos estructurados

Los	prototipos,	después	de	los	tipos	globales

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 562Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

El	bucle	do..while
do cuerpo while (condición);

int i = 1;
do {

cout << i << endl;
i++;

} while (i <= 100);

El	cuerpo siempre	se	ejecuta	al	menos	una	vez

El	cuerpo es	un	bloque	de	código

Página 563Fundamentos de la programación: Tipos de datos estructurados

Condición	al	final	del	bucleCondición	al	final	del	bucle

condicióncuerpodo () ;while

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

int i = 1;
do {

cout << i << endl;
i++;

} while (i <= 100);

Página 564Fundamentos de la programación: Tipos de datos estructurados

truetrue

falsefalse

Condición

Cuerpo

falsefalse

truetrue
i <= 100

cout << i << endl;
i++;

i = 1;

El	cuerpo	
se	ejecuta	
al	menos	
una	vez

El	cuerpo	
se	ejecuta	
al	menos	
una	vez

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

¿Ha	de	ejecutarse	al	menos	una	vez	el	cuerpo	del	bucle?
cin >> d; // Lectura del 1º do {

while (d != 0) { cin >> d;

suma = suma + d; if (d != 0) { // ¿Final?

cont++; suma = suma + d;

cin >> d; cont++;

} }

} while (d != 0);

cout << "Opción: "; do { // Más simple

cin >> op; // Lectura del 1º cout << "Opción: ";

while ((op < 0) || (op > 4)) { cin >> op;

cout << "Opción: "; } while ((op < 0) || (op > 4));

cin >> op;

}

Página 565Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

int menu() {
int op;

do {
cout << "1 ‐ Añadir un nuevo estudiante" << endl;
cout << "2 ‐ Eliminar un estudiante" << endl;
cout << "3 ‐ Calificar a los estudiantes" << endl;
cout << "4 ‐ Listado de estudiantes" << endl;
cout << "0 ‐ Salir" << endl;
cout << "Opción: ";
cin >> op;

} while ((op < 0) || (op > 4));

return op;
}

Página 566Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 567Fundamentos de la programación: Tipos de datos estructurados

El	archivo	clase.txt
Un	dato	en	cada	línea

Por	cada	estudiante:
 Nombre	(cadena)

 Apellidos	(cadena)

 Edad	(entero)

 NIF	(cadena)

 Nota	(real;	‐1	si	no	calificado)

Termina	con	XXX	como	nombre

El	archivo	se	supone	correcto

↲
↲

↲
↲

↲
↲

↲
↲

↲
↲

↲
↲

↲
↲

↲
↲
↲

↲
↲

↲
↲

↲
↲

↲
↲

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 568Fundamentos de la programación: Tipos de datos estructurados

Lectura	de	la	información	de	un	estudiante
Nombre	y	apellidos:
Puede	haber	varias	palabras	 getline()

Edad	 extractor	(>>)

NIF:	Una	sola	palabra	 extractor	(>>)

Nota	 extractor	(>>)

Queda	pendiente	de	leer	el	Intro

Hay	que	saltar	(leer)	ese	carácter	con	get()

Si	no,	en	el	siguiente	nombre	se	leería	una	cadena	vacía	(Intro)

No	leas	directamente	en	la	lista:
getline(archivo, lista.elementos[lista.contador].nombre);

Lee	en	una	variable	auxiliar	de	tipo	tEstudiante

No	leas	directamente	en	la	lista:
getline(archivo, lista.elementos[lista.contador].nombre);

Lee	en	una	variable	auxiliar	de	tipo	tEstudiante

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 569Fundamentos de la programación: Tipos de datos estructurados

void cargar(tLista &lista, bool &ok) {
tEstudiante estudiante; // Variable auxiliar para leer
ifstream archivo;
char aux;
lista.contador = 0; // Inicializamos la lista
archivo.open("clase.txt");
if (!archivo.is_open()) {

ok = false;
}
else {

ok = true;
getline(archivo, estudiante.nombre); // Leemos el primer nombre
while ((estudiante.nombre != "XXX") && (lista.contador < MAX)) {

getline(archivo, estudiante.apellidos);
archivo >> estudiante.edad;
archivo >> estudiante.nif;
archivo >> estudiante.nota;
archivo.get(aux); // Saltamos el Intro
lista.elementos[lista.contador] = estudiante; // Al final
lista.contador++;
getline(archivo, estudiante.nombre); // Siguiente nombre

} // Si hay más de MAX estudiantes, ignoramos el resto
archivo.close();

}
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 570Fundamentos de la programación: Tipos de datos estructurados

Simplemente,	un	dato	en	cada	línea	y	en	orden:

void guardar(const tLista &lista) {
ofstream archivo;
archivo.open("clase.txt");
for (int i = 0; i < lista.contador; i++) {

archivo << lista.elementos[i].nombre << endl;
archivo << lista.elementos[i].apellidos << endl;
archivo << lista.elementos[i].edad << endl;
archivo << lista.elementos[i].nif << endl;
archivo << lista.elementos[i].nota << endl;

}
archivo << "XXX" << endl; // Centinela final
archivo.close();

}

const tLista &lista Referencia	constante
Paso	por	referencia	pero	como	constante	 Paso	por	valor

Evita	la	copia	del	argumento	en	el	parámetro	(estructuras	grandes)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

void leerEstudiante(tEstudiante &estudiante) {
cin.sync(); // Descartamos cualquier entrada pendiente
cout << "Nombre: ";
getline(cin, estudiante.nombre);
cout << "Apellidos: ";
getline(cin, estudiante.apellidos);
cout << "Edad: ";
cin >> estudiante.edad;
cout << "NIF: ";
cin >> estudiante.nif;
estudiante.nota = ‐1; // Sin calificar de momento
cin.sync(); // Descartamos cualquier entrada pendiente

}

Página 571Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

void insertarEstudiante(tLista &lista, tEstudiante estudiante,
bool &ok) {

ok = true;
if (lista.contador == MAX) {

ok = false;
}
else {

lista.elementos[lista.contador] = estudiante;
// Insertamos al final
lista.contador++;

}
}

Página 572Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

void eliminarEstudiante(tLista &lista, int pos, bool &ok) {
// Espera el índice del elemento en pos

if ((pos < 0) || (pos > lista.contador ‐ 1)) {
ok = false; // Elemento inexistente

}
else {

ok = true;
for (int i = pos; i < lista.contador ‐ 1; i++) {

lista.elementos[i] = lista.elementos[i + 1];
}
lista.contador‐‐;

}
}

Página 573Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

string nombreCompleto(tEstudiante estudiante) {
return estudiante.nombre + " " + estudiante.apellidos;

}

void calificar(tLista &lista) {

for (int i = 0; i < lista.contador; i++) {
cout << "Nota del estudiante "

<< nombreCompleto(lista.elementos[i]) << ": ";
cin >> lista.elementos[i].nota;

}
}

Página 574Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

double mediaClase(const tLista &lista) {
double total = 0.0;
for (int i = 0; i < lista.contador; i++) {

total = total + lista.elementos[i].nota;
}
return total / lista.contador;

}

int mayorNota(const tLista &lista) {
double max = 0;
int pos = 0;
for (int i = 0; i < lista.contador; i++) {

if (lista.elementos[i].nota > max) {
max = lista.elementos[i].nota;
pos = i;

}
}
return pos;

}

Página 575Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Página 576Fundamentos de la programación: Tipos de datos estructurados

void mostrarEstudiante(tEstudiante estudiante) {
cout << setw(35) << left << nombreCompleto(estudiante);
cout << estudiante.nif << " ";
cout << setw(2) << estudiante.edad << " años ";
cout << fixed << setprecision(1) << estudiante.nota;

}

void listado(const tLista &lista, double media, int mayor) {
for (int i = 0; i < lista.contador; i++) {

cout << setw(3) << i << ": ";
mostrarEstudiante(lista.elementos[i]);
if (i == mayor) {

cout << " <<< Mayor nota!";
}
cout << endl;

}
cout << "Media de la clase: " << fixed << setprecision(1)

<< media << endl << endl;
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

int main() {
tLista lista;
tEstudiante estudiante;
bool exito;
int op, pos;

cargar(lista, exito);
if (!exito) {

cout << "No se ha podido cargar la lista!" << endl;
}
else {

do { // El bucle do evita tener que leer antes la primera opción
op = menu();
switch (op) {
case 1:

{
leerEstudiante(estudiante);
insertarEstudiante(lista, estudiante, exito);
if (!exito) {

cout << "Lista llena: imposible insertar" << endl;
}

}
break;

Página 577Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

case 2:
{

cout << "Posición: ";
cin >> pos;
eliminarEstudiante(lista, pos ‐ 1, exito);
if (!exito) {

cout << "Elemento inexistente!" << endl;
}

}
break;

case 3:
{

calificar(lista);
}
break;

case 4:
{

listado(lista, mediaClase(lista), mayorNota(lista));
}

}
} while (op != 0);
guardar(lista);

}
return 0;

}

Página 578Fundamentos de la programación: Tipos de datos estructurados

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Tipos de datos estructurados Página 579

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

5A

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez/Pablo	Moreno	Ger

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Fundamentos de la programación: Cadenas al estilo de C (Anexo)

Cadenas al estilo de C 582
E/S con cadenas al estilo de C 583
La biblioteca cstring 584
Ejemplo 585

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Arrays	de	caracteres	terminados	en	nulo
const Max = 15;
typedef char tCadena[Max];
tCadena cadena = "Adiós"; // Inicialización al declarar

Siempre	hay	al	final	un	carácter	nulo	(código	ASCII	0 – '\0')

Indica	que	en	esa	posición	termina	la	cadena	(exclusive)

En	el	array	caben	MAX‐1	caracteres	significativos
Longitud	máxima	de	la	variable	cadena:	14

No se	pueden	asignar	cadenas	literales:	cadena = "Hola";

Ni copiar	cadenas	directamente:	cad2 = cad1;

Ni comparar	con	op.	relacionales:	if (cad1 < cad2) ...

Página 582Fundamentos de la programación: Cadenas al estilo de C (Anexo)

cadena A d i ó s \0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

tCadena cadena;

cin >> cadena; // Se añade un nulo al final

Extractor:	la	lectura	termina	en	el	primer	espacio	en	blanco

¡No	se	comprueba	si	se	leen	más	caracteres	de	los	que	caben!
setw():	máximo	de	caracteres	a	colocar	(incluyendo	el	nulo)
cin >> setw(15) >> cadena;

cin.getline(cadena_estilo_C, máx):

Para	leer	también	los	espacios	en	blanco	y	no	más	de	máx‐1
cin.getline(cadena, 15); // Hasta 14 caracteres

cout << cadena << endl; // El nulo no se muestra

Página 583Fundamentos de la programación: Cadenas al estilo de C (Anexo)

cin.getline(cad, máx) Cadenas	al	estilo	de	C	
getline(cin, cad) Cadenas	de	tipo	string
cin.getline(cad, máx) Cadenas	al	estilo	de	C	
getline(cin, cad) Cadenas	de	tipo	string

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

 strlen(cadena):	longitud	actual	de	la	cadena
cout << "Longitud: " << strlen(cadena);

 strcpy(destino, origen):	copia	origen en	destino
strcpy(cad2, cad1); strcpy(cad, "Me gusta C++");

 strcat(destino, origen):	añade	origen al	final	de	destino
tCadena cad1 = "Hola", cad2 = "Adiós";
strcat(cad1, cad2); // cad1 contiene "HolaAdiós"

 strcmp(cad1, cad2):	compara	lexicográficamente	las	cadenas
0 si	son	iguales,	1 si	cad1 >	cad2 ó	‐1 si	cad1 <	cad2
tCadena cad1 = "Hola", cad2 = "Adiós";
strcmp(cad1, cad2) // Devuelve 1 ("Hola" > "Adiós")

.	.	.
http://www.cplusplus.com/reference/clibrary/cstring/

Página 584Fundamentos de la programación: Cadenas al estilo de C (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

#include <iostream>
using namespace std;
#include <cstring>

int main() {
const int MAX = 20;
typedef char tCad[MAX];
tCad cadena = "Me gusta C++";
cout << cadena << endl;
cout << "Cadena: ";
cin >> cadena; // Lee hasta el primer espacio en blanco
cout << cadena << endl;
cin.sync(); // Sincronizar la entrada
cout << "Cadena: ";
cin.getline(cadena, MAX);
cout << cadena << endl;
cout << "Longitud: " << strlen(cadena) << endl;
strcpy(cadena, "Hola");
...

Página 585Fundamentos de la programación: Cadenas al estilo de C (Anexo)

cadenas.cppcadenas.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

tCad cadena2 = " amigo";
strcat(cadena, cadena2);
cout << cadena << endl;
if (strcmp(cadena, cadena2) == 0) {

cout << "Iguales";
}
else if (strcmp(cadena, cadena2) > 0) {

cout << cadena << " es mayor que " << cadena2;
}
else {

cout << cadena << " es menor que " << cadena2;
}
cout << endl;

return 0;
}

Página 586Fundamentos de la programación: Cadenas al estilo de C (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez
/P
ab
lo
 M

o
re
n
o
 G
er

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Cadenas al estilo de C (Anexo) Página 587

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

6

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez	/	Pablo	Moreno	Ger

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: Recorrido y búsqueda en arrays

Recorrido de arrays 590
Arrays completos 593
Arrays no completos con centinela 594
Arrays no completos con contador 595
Ejemplos 597
Generación de números aleatorios 601

Búsquedas en arrays 604
Arrays completos 606
Arrays no completos con centinela 607
Arrays no completos con contador 608
Ejemplo 610

Recorridos y búsquedas en cadenas 614
Más ejemplos de manejo de arrays 617
Arrays multidimensionales 630

Inicialización de arrays multidimensionales 638
Recorrido de un array bidimensional 641
Recorrido de un array N‐dimensional 644
Búsqueda en un array multidimensional 647

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 590Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

truetrue

Finalización

Esquema	de	recorrido
Inicialización

Mientras	no	al	final	de	la	secuencia:

Obtener	el	siguiente	elemento

Procesar	el	elemento

Finalización

Página 591Fundamentos de la programación: Recorrido y búsqueda en arrays

InicializaciónInicialización

false

Procesar	elemento

Obtener	elemento

falsefalse

Procesar	elemento

Obtener	elemento

¿Al	final?¿Al	final?

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Recorrido	de	secuencias	en	arrays
 Todas	las	posiciones	ocupadas:

Tamaño	del	array	=	longitud	de	la	secuencia

N	elementos	en	un	array	de	N	posiciones:

Recorrer	el	array	desde	la	primera	posición	hasta	la	última

 Posiciones	libres	al	final	del	array:

Tamaño	del	array	>	longitud	de	la	secuencia

 Con	centinela:

Recorrer	el	array	hasta	encontrar	el	valor	centinela

 Con	contador de	elementos:

Recorrer	el	array	hasta	el	índice	contador – 1

Página 592Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Recorrido	de	arrays	completos
Todas	las	posiciones	del	array	ocupadas
const int N = 10;
typedef double tVentas[N];
tVentas ventas;

...

double elemento;
for (int i = 0; i < N; i++) {

elemento = ventas[i];
// Procesar el elemento ...

}

Página 593Fundamentos de la programación: Recorrido y búsqueda en arrays

ventas 125.40 76.95 328.80 254.62 435.00 164.29 316.05 219.99 93.45 756.62

0 1 2 3 4 5 6 7 8 9

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Recorrido	de	arrays	no	completos	– con	centinela
No	todas	las	posiciones	del	array	están	ocupadas
const int N = 10;
typedef double tArray[N];
tArray datos; // Datos positivos: centinela = ‐1

...

int i = 0;
double elemento = datos[i];
while (elemento != ‐1) {

// Procesar el elemento ...
i++;
elemento = datos[i];

}

Página 594Fundamentos de la programación: Recorrido y búsqueda en arrays

int i = 0;
double elemento;
do {

elemento = datos[i];
if (elemento != ‐1) {

// Procesar el elemento...
i++;

}
} while (elemento != ‐1);

datos 125.40 76.95 328.80 254.62 435.00 164.29 316.05 ‐1.0

0 1 2 3 4 5 6 7 8 9

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

7contadorcontador

Recorrido	de	arrays	no	completos	– con	contador
Array	y	contador	íntimamente	relacionados:	estructura

const int N = 10;
typedef double tArray[N];
typedef struct {

tArray elementos;
int contador;

} tLista;

Página 595Fundamentos de la programación: Recorrido y búsqueda en arrays

elementos

125.40 76.95 328.80 254.62 435.00 164.29 316.05

0 1 2 3 4 5 6 7 8 9

Nº	de	elementos	(primer	índice	sin	elemento)Nº	de	elementos	(primer	índice	sin	elemento)

Listas	de	elementos	de	longitud	variableListas	de	elementos	de	longitud	variable

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Recorrido	de	arrays	no	completos	– con	contador
const int N = 10;
typedef double tArray[N];
typedef struct {

tArray elementos;
int contador;

} tLista;
tLista lista;
...
double elemento;
for (int i = 0; i < lista.contador; i++) {

elemento = lista.elementos[i];
// Procesar el elemento...

}

Página 596Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 597Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Array	con	los	N	primeros	números	de	Fibonacci
const int N = 50;

typedef long long int tFibonacci[N]; // 50 números

tFibonacci fib;

fib[0] = 1;

fib[1] = 1;

for (int i = 2; i < N; i++) {

fib[i] = fib[i ‐ 1] + fib[i ‐ 2];

}

for (int i = 0; i < N; i++) {

cout << fib[i] << " ";

}

Página 598Fundamentos de la programación: Recorrido y búsqueda en arrays

fibonacci.cppfibonacci.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Cuenta	de	valores	con	k	dígitos
Recorrer	una	lista	de	N	enteros	contabilizando	cuántos	son	
de	1	dígito,	cuántos	de	2	dígitos,	etcétera	(hasta	5	dígitos)

2	arrays:	array	con	los	números	y	array	de	contadores
const int NUM = 100;
typedef int tNum[NUM]; // Exactamente 100 números
tNum numeros;
const int DIG = 5;
typedef int tDig[DIG]; // i ‐‐> números de i+1 dígitos
tDig numDig = { 0 };

Página 599Fundamentos de la programación: Recorrido y búsqueda en arrays

numeros 123 2 46237 2345 236 11234 33 999 ... 61

0 1 2 3 4 5 6 7 99

numDig 0 0 0 0 0 0

0 1 2 3 4 5

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Cuenta	de	valores	con	k	dígitos
Función	que	devuelve	el	número	de	dígitos	de	un	entero:

int digitos(int dato) {

int n_digitos = 1; // Al menos tiene un dígito

// Recorremos la secuencia de dígitos...

while (dato >= 10) {

dato = dato / 10;

n_digitos++;

}

return n_digitos;

}

Página 600Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Generación	de	números	pseudoaleatorios
Probemos	con	una	secuencia	de	enteros	generada	aleatoriamente
Función	rand() (cstdlib):	entero	aleatorio	entre	0	y	32766

srand() (cstdlib):	inicia	la	secuencia	de	números	aleatorios

Acepta	un	entero	que	usa	como	semilla	para	iniciar	la	secuencia

¿Qué	valor	usar?	Uno	distinto	en	cada	ejecución

 El	instante	de	tiempo	actual	(diferente	cada	vez)
Función	time() (ctime):	segundos	transcurridos	desde	1970

Requiere	un	argumento,	que	en	nuestro	caso	será	NULL

srand(time(NULL)); // Inicia la secuencia
...
numeros[0] = rand(); // Entre 0 y 32766

Página 601Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Cuenta	de	valores	con	k	dígitos
#include <iostream>
using namespace std;
#include <cstdlib> // srand() y rand()
#include <ctime> // time()

int digitos(int dato);

int main() {
const int NUM = 100;
typedef int tNum[NUM]; // Exactamente 100 números
const int DIG = 5;
typedef int tDig[DIG];
tNum numeros;
tDig numDig = { 0 }; // Inicializa todo el array a 0

srand(time(NULL)); // Inicia la secuencia aleatoria
...

Página 602Fundamentos de la programación: Recorrido y búsqueda en arrays

digitos.cppdigitos.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

for (int i = 0; i < NUM; i++) { // Creamos la secuencia
numeros[i] = rand(); // Entre 0 y 32766

}

for (int i = 0; i < NUM; i++) {
// Recorremos la secuencia de enteros

numDig[digitos(numeros[i]) ‐ 1]++;
}

for (int i = 0; i < DIG; i++) {
// Recorremos la secuencia de contadores

cout << "De " << i + 1 << " díg. = " << numDig[i]
<< endl;

}
return 0;

}

int digitos(int dato) {
...

Página 603Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 604Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Esquema	de	búsqueda
Inicialización

Mientras	no	se	encuentre	el	elemento	
y	no	se	esté	al	final	de	la	secuencia:

Obtener	el	siguiente	elemento

Comprobar	si	el	elemento	
satisface	la	condición

Finalización
(tratar	el	elemento	encontrado
o	indicar	que	no	se	ha	encontrado)

Página 605Fundamentos de la programación: Recorrido y búsqueda en arrays

falsefalse

truetrue

Inicialización	/	encontrado = false;

¿Encontrado?

¿Al	final	o	
encontrado?

Obtener	elemento

Finalización

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Todas	las	posiciones	ocupadas

int buscado;
bool encontrado = false;
cout << "Valor a buscar: ";
cin >> buscado;
int pos = 0;
while ((pos < N) && !encontrado) {
// Mientras no se llegue al final y no encontrado

if (lista[pos] == buscado) {
encontrado = true;

}
else {

pos++;
}

}
if (encontrado) // ...

Página 606Fundamentos de la programación: Recorrido y búsqueda en arrays

const int N = 100;
typedef int tArray[N];
tArray lista;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Con	centinela

int buscado;
cout << "Valor a buscar: ";
cin >> buscado;
int pos = 0;
bool encontrado = false;
while ((array[pos] != centinela) && !encontrado) {

if (array[pos] == buscado) {
encontrado = true;

}
else {

pos++;
}

}
if (encontrado) // ...

Página 607Fundamentos de la programación: Recorrido y búsqueda en arrays

const int N = 10;
typedef int tArray[N];
tArray array;
const int centinela = ‐1;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Con	contador

int buscado;
cout << "Valor a buscar: ";
cin >> buscado;
int pos = 0;
bool encontrado = false;
while ((pos < miLista.contador)

&& !encontrado) {
// Mientras no al final y no encontrado
if (miLista.elementos[pos] == buscado) {

encontrado = true;
}
else {

pos++;
}

}
if (encontrado) // ...

Página 608Fundamentos de la programación: Recorrido y búsqueda en arrays

const int N = 10;
typedef double tArray[N];
typedef struct {

tArray elementos;
int contador;

} tLista;
tLista miLista;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Acceso	directo	a	cualquier	posición
Acceso	directo:	array[posición]

Si	se	puede	calcular	la	posición	del	elemento,	su	acceso	es	directo

typedef double tVentaMes[DIAS][SUCURSALES];
typedef struct {

tVentaMes ventas;
int dias;

} tMes;
typedef tMes tVentaAnual[MESES];
tVentaAnual anual;

Ventas	del	cuarto	día	del	tercer	mes	en	la	primera	sucursal:
anual[2].ventas[3][0]

Página 609Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 610Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;
#include <fstream>

const int N = 100;
typedef double tArray[N];
typedef struct {

tArray elementos;
int contador;

} tLista;

void cargar(tLista &lista, bool &ok);

int main() {
tLista lista;
bool ok;
cargar(lista, ok);
if (!ok) {

cout << "Error: no hay archivo o demasiados datos"
<< endl;

}

Página 611Fundamentos de la programación: Recorrido y búsqueda en arrays

umbral.cppumbral.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

else {
double umbral;
cout << "Valor umbral: "; cin >> umbral;
bool encontrado = false;
int pos = 0;
while ((pos < lista.contador) && !encontrado) {

if (lista.elementos[pos] > umbral) {
encontrado = true;

}
else {

pos++;
}

}
if (encontrado) {

cout << "Valor en pos. " << pos + 1 << " ("
<< lista.elementos[pos] << ")" << endl;

}
else {

cout << "¡No encontrado!" << endl;
}

}
return 0;

}

Página 612Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void cargar(tLista &lista, bool &ok) {
ifstream archivo;
double dato;
bool abierto = true, overflow = false;
lista.contador = 0;
archivo.open("datos.txt");
if (!archivo.is_open()) {

abierto = false;
}
else {

archivo >> dato;
while ((dato >= 0) && !overflow) {

if (lista.contador == N) {
overflow = true; // ¡Demasiados!

}
else {

lista.elementos[lista.contador] = dato;
lista.contador++;
archivo >> dato;

}
}
archivo.close();

}
ok = abierto && !overflow;

}

Página 613Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 614Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Recorridos	y	búsquedas	en	cadenas	de	caracteres
Longitud	de	la	cadena:	size() o	length()

Caso	similar	a	los	arrays	con	contador	de	elementos

Ejemplo:	Recorrido	de	una	cadena	generando	otra	invertida

string cadena, inversa = "";
int pos;
char car;
// ... (lectura de cadena)
pos = 0;
while (pos < cadena.size()) {

// Mientras no se llegue al final de la cadena
car = cadena.at(pos);
inversa = car + inversa; // Inserta car al principio
pos++;

} // ...

Página 615Fundamentos de la programación: Recorrido y búsqueda en arrays

inversa.cppinversa.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Búsqueda	de	un	carácter	en	una	cadena
string cadena;
char buscado;
int pos;
bool encontrado;
// ... (lectura de cadena)
cout << "Introduce el carácter a buscar: ";
cin >> buscado;
pos = 0;
encontrado = false;
while ((pos < cadena.size()) && !encontrado) {

if (cadena.at(pos) == buscado) {
encontrado = true;

}
else {

pos++;
}

}
if (encontrado) // ...

Página 616Fundamentos de la programación: Recorrido y búsqueda en arrays

busca.cppbusca.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 617Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 618Fundamentos de la programación: Recorrido y búsqueda en arrays

Tipo	tVector para	representar	secuencias	de	N	enteros:

const int N = 10;
typedef int tVector[N];

Subprogramas:

 Dado	un	vector,	mueve	sus	componentes	un	lugar	a	la	derecha;
el	último	componente	se	moverá	al	1er lugar

 Dado	un	vector,	calcula	y	devuelve	la	suma	de	los	elementos	que	se	
encuentran	en	las	posiciones	pares	del	vector

 Dado	un	vector,	encuentra	y	devuelve	la	componente	mayor

 Dados	dos	vectores,	devuelve	un	valor	que	indique	si	son	iguales

 Dado	un	vector,	determina	si	alguno	de	los	valores	almacenados	en	
el	vector	es	igual	a	la	suma	del	resto	de	los	valores	del	mismo;
devuelve	el	índice	del	primero	encontrado	o	‐1	si	no	se	encuentra

 Dado	un	vector,	determina	si	alguno	de	los	valores	almacenados	
en	el	vector	está	repetido

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void desplazar(tVector v) {
int aux = v[N ‐ 1];

for (int i = N ‐ 1; i > 0; i‐‐) {
v[i] = v[i ‐ 1];

}
v[0] = aux;

}

int sumaPares(const tVector v) {
int suma = 0;

for (int i = 0; i < N; i = i + 2) {
suma = suma + v[i];

}

return suma;
}

Página 619Fundamentos de la programación: Recorrido y búsqueda en arrays

vectores.cppvectores.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int encuentraMayor(const tVector v) {
int max = v[0], posMayor = 0;
for (int i = 1; i < N; i++) {

if (v[i] > max) {
posMayor = i;
max = v[i];

}
}
return posMayor;

}

bool sonIguales(const tVector v1, const tVector v2) {
//Implementación como búsqueda del primer elemento distinto

bool encontrado = false;
int i = 0;
while ((i<N) && !encontrado) {

encontrado = (v1[i] != v2[i]);
i++;

}
return !encontrado;

}

Página 620Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int compruebaSuma(const tVector v) {
// ¿Alguno igual a la suma del resto?

bool encontrado = false;
int i = 0;
int suma;
while ((i < N) && !encontrado) {

suma = 0;
for (int j = 0; j < N; j++) {

if (j != i) {
suma = suma + v[j];

}
}
encontrado = (suma == v[i]);
i++;

}
if (!encontrado) {

i = 0;
}
return i ‐ 1;

}

Página 621Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

bool hayRepetidos(const tVector v) {
bool encontrado = false;
int i = 0, j;

while ((i < N) && !encontrado) {
j = i + 1;
while ((j < N) && !encontrado) {

encontrado = (v[i] == v[j]);
j++;

}
i++;

}

return encontrado;
}

Página 622Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 623Fundamentos de la programación: Recorrido y búsqueda en arrays

Dado	un	vector	de	N	caracteres	v1,	en	el	que	no	hay	elementos	
repetidos,	y	otro	vector	de	M	caracteres	v2,	donde	N	≤	M,	se	
quiere	comprobar	si	todos	los	elementos	del	vector	v1	están	
también	en	el	vector	v2

Por	ejemplo,	si:
v1= 'a' 'h' 'i' 'm'

v2= 'h' 'a' 'x' 'x' 'm' 'i'

El	resultado	sería	cierto,	ya	que	todos	los	elementos	de	v1	están	
en	v2

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;

const int N = 3;
const int M = 10;
typedef char tVector1[N];
typedef char tVector2[M];

bool esta(char dato, const tVector2 v2);
bool vectorIncluido(const tVector1 v1, const tVector2 v2);

int main() {
tVector1 v1 = { 'a', 'b', 'c' };
tVector2 v2 = { 'a', 'r', 'e', 't', 'z', 's', 'a', 'h', 'b', 'x' };
bool ok = vectorIncluido(v1, v2);
if (ok) {

cout << "OK: v1 esta incluido en v2" << endl;
}
else {

cout << "NO: v1 no esta incluido en v2" << endl;
}
return 0;

}

Página 624Fundamentos de la programación: Recorrido y búsqueda en arrays

incluidos.cppincluidos.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

bool esta(char dato, const tVector2 v2) {
int i = 0;
bool encontrado = (dato == v2[0]);

while (!encontrado && (i < M ‐ 1)) {
i++;
encontrado = (dato == v2[i]);

}

return encontrado;
}

bool vectorIncluido(const tVector1 v1, const tVector2 v2) {
int i = 0;
bool encontrado = esta(v1[0], v2);

while (encontrado && (i < N ‐ 1)) {
i++;
encontrado = esta(v1[i], v2);

}

return encontrado;
}

Página 625Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 626Fundamentos de la programación: Recorrido y búsqueda en arrays

Un	programa	que	lea	dos	cadenas	del	teclado	y	determine	si	una	es	
un	anagrama	de	la	otra,	es	decir,	si	una	cadena	es	una	permutación	
de	los	caracteres	de	la	otra.
Por	ejemplo,	"acre" es	un	anagrama	de	"cera" y	de	"arce".	Ten	
en	cuenta	que	puede	haber	letras	repetidas	("carro",	"llave").

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
#include <string>
using namespace std;

int buscaCaracter(string cad, char c); // Índice o ‐1 si no está

int main() {
string cad1, cad2;
bool sonAnagramas = true;
int numCar, posEnCad2;

cout << "Introduce la primera cadena: ";
getline(cin, cad1);
cout << "Introduce la segunda cadena: ";
getline(cin, cad2);
if (cad1.length() != cad2.length()) { // No son anagramas

sonAnagramas = false;
}
else {

numCar = 0; // Contador de caracteres de la primera cadena
while (sonAnagramas && (numCar < cad1.length())) {

posEnCad2 = buscaCaracter(cad2, cad1.at(numCar));

Página 627Fundamentos de la programación: Recorrido y búsqueda en arrays

anagramas.cppanagramas.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

if (posEnCad2 == ‐1) { //No se ha encontrado el caracter
sonAnagramas = false;

}
else {

cad2.erase(posEnCad2, 1);
}
numCar++;

}
}

if (sonAnagramas) {
cout << "Las palabras introducidas son anagramas" << endl;

}
else {

cout << "Las palabras introducidas NO son anagramas" << endl;
}

return 0;
}

Página 628Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int buscaCaracter(string cad, char c) {
int pos = 0, lon = cad.length();
bool encontrado = false;

while ((pos < lon) && !encontrado) {
if (cad.at(pos) == c) {

encontrado = true;
}
else {

pos++;
}

}
if (!encontrado) {

pos = ‐1;
}

return pos;
}

Página 629Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 630Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Arrays	de	varias	dimensiones
Varios	tamaños	en	la	declaración:	cada	uno	con	sus	corchetes
typedef tipo_base nombre[tamaño1][tamaño2]...[tamañoN];

Varias	dimensiones,	tantas	como	tamaños	se	indiquen
typedef double tMatriz[50][100];
tMatriz matriz;

Tabla	bidimensional	de	50	filas	por	100	columnas:

Página 631Fundamentos de la programación: Recorrido y búsqueda en arrays

0 1 2 3 ... 98 99

0 ...

1 ...

2 ...

...

48 ...

49 ...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

0 1 2 3 ... 98 99

0 ...

1 ...

2 ...

...

48 ...

49 ...

0 1 2 3 ... 98 99

0 ...

1 ...

2 ...

...

48 ...

49 ...

Arrays	de	varias	dimensiones
typedef double tMatriz[50][100];
tMatriz matriz;

Cada	elemento	se	localiza	con	dos	índices,	uno	por	dimensión
cout << matriz[2][98];

Página 632Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Arrays	de	varias	dimensiones
Podemos	definir	tantas	dimensiones	como	necesitemos
typedef double tMatriz[5][10][20][10];
tMatriz matriz;

Necesitaremos	tantos	índices	como	dimensiones:
cout << matriz[2][9][15][6];

Página 633Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ejemplo	de	array	bidimensional
Temperaturas	mínimas	y	máximas

Matriz	bidimensional	de	días	y	mínima/máxima:
const int MaxDias = 31;
const int MED = 2; // Nº de medidas
typedef double tTemp[MaxDias][MED]; // Día x mín./máx.
tTemp temp;

Ahora:
 temp[i][0] es	la	temperatura	mínima del	día	i+1

 temp[i][1] es	la	temperatura	máxima del	día	i+1

Página 634Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int main() {
const int MaxDias = 31;
const int MED = 2; // Nº de medidas
typedef double tTemp[MaxDias][MED]; // Día x mín./máx.
tTemp temp;
double tMaxMedia = 0, tMinMedia = 0,

tMaxAbs = ‐100, tMinAbs = 100;
int dia = 0;
double max, min;
ifstream archivo;

archivo.open("temp.txt");
if (!archivo.is_open()) {

cout << "No se ha podido abrir el archivo!" << endl;
}
else {

archivo >> min >> max;
// El archivo termina con ‐99 ‐99
...

Página 635Fundamentos de la programación: Recorrido y búsqueda en arrays

temp.cpptemp.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

while (!((min == ‐99) && (max == ‐99))
&& (dia < MaxDias)) {

temp[dia][0] = min;
temp[dia][1] = max;
dia++;
archivo >> min >> max;

}
archivo.close();
for (int i = 0; i < dia; i++) {

tMinMedia = tMinMedia + temp[i][0];
if (temp[i][0] < tMinAbs) {

tMinAbs = temp[i][0];
}
tMaxMedia = tMaxMedia + temp[i][1];
if (temp[i][1] > tMaxAbs) {

tMaxAbs = temp[i][1];
}

}
...

Página 636Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

tMinMedia = tMinMedia / dia;
tMaxMedia = tMaxMedia / dia;
cout << "Temperaturas mínimas.‐" << endl;
cout << " Media = " << fixed << setprecision(1)

<< tMinMedia << " C Mínima absoluta = "
<< setprecision(1) << tMinAbs << " C" << endl;

cout << "Temperaturas máximas.‐" << endl;
cout << " Media = " << fixed << setprecision(1)

<< tMaxMedia << " C Máxima absoluta = "
<< setprecision(1) << tMaxAbs << " C" << endl;

}

return 0;
}

Página 637Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Podemos	dar	valores	a	los	elementos	de	un	array	al	declararlo

Arrays	bidimensionales:
typedef int tArray[5][2];
tArray cuads = {1,1, 2,4, 3,9, 4,16, 5,25};

Se	asignan	en	el	orden	en	el	que	los	elementos	están	en	memoria

La	memoria	es	de	una	dimensión:	secuencia	de	celdas

En	memoria	varían	más	rápidamente	los	índices	de	la	derecha:
cuads[0][0] cuads[0][1] cuads[1][0] cuads[1][1] cuads[2][0]...

Para	cada	valor	del	primer	índice:	todos	los	valores	del	segundo

Página 638Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Inicialización	de	un	array	bidimensional
typedef int tArray[5][2];
tArray cuads = {1,1, 2,4, 3,9, 4,16, 5,25};

Página 639Fundamentos de la programación: Recorrido y búsqueda en arrays

Memoria

cuads[0][0] 1

cuads[0][1] 1

cuads[1][0] 2

cuads[1][1] 4

cuads[2][0] 3

cuads[2][1] 9

cuads[3][0] 4

cuads[3][1] 16

cuads[4][0] 5

cuads[4][1] 25

Si	hay	menos	valores	que	elementos,
el	resto	se	inicializan	a	cero

Inicialización	a	cero	de	todo	el	array:

int cuads[5][2] = { 0 };

Si	hay	menos	valores	que	elementos,
el	resto	se	inicializan	a	cero

Inicialización	a	cero	de	todo	el	array:

int cuads[5][2] = { 0 };

0 1

0 1 1

1 2 4

2 3 9

3 4 16

4 5 25

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

typedef double tMatriz[3][4][2][3];

tMatriz matriz =

{1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12};

Página 640Fundamentos de la programación: Recorrido y búsqueda en arrays

Memoria

matriz[0][0][0][0] 1

matriz[0][0][0][1] 2

matriz[0][0][0][2] 3

matriz[0][0][1][0] 4

matriz[0][0][1][1] 5

matriz[0][0][1][2] 6

matriz[0][1][0][0] 7

matriz[0][1][0][1] 8

matriz[0][1][0][2] 9

matriz[0][1][1][0] 10

matriz[0][1][1][1] 11

matriz[0][1][1][2] 12

matriz[0][2][0][0] 0

... 0

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

const int FILAS = 10;
const int COLUMNAS = 5;
typedef double tMatriz[FILAS][COLUMNAS];
tMatriz matriz;

Para	cada	fila (de	0	a	FILAS	– 1):

Para	cada	columna (de	0	a	COLUMNAS	– 1):

Procesar	el	elemento	en	[fila][columna]

for (int fila = 0; fila < FILAS; fila++) {
for (int columna = 0; columna < COLUMNAS; columna++) {

// Procesar matriz[fila][columna]
}

}

Página 641Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ventas	de	todos	los	meses	de	un	año

Página 642Fundamentos de la programación: Recorrido y búsqueda en arrays

const int Meses = 12;
const int MaxDias = 31;
typedef double tVentas[Meses][MaxDias];
tVentas ventas; // Ventas de todo el año
typedef short int tDiasMes[Meses];
tDiasMes diasMes;
inicializa(diasMes); // Nº de días de cada mes
// Pedimos las ventas de cada día del año...

for (int mes = 0; mes < Meses; mes++) {
for (int dia = 0; dia < diasMes[mes]; dia++) {

cout << "Ventas del día " << dia + 1
<< " del mes " << mes + 1 << ": ";

cin >> ventas[mes][dia];
}

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ventas	de	todos	los	meses	de	un	año

Página 643Fundamentos de la programación: Recorrido y búsqueda en arrays

0 1 2 3 4 ... 28 29 30

0 201 125 234 112 156 ... 234 543 667

1 323 231 675 325 111 ...

2 523 417 327 333 324 ... 444 367 437

3 145 845 654 212 562 ... 354 548

4 327 652 555 222 777 ... 428 999 666

5 854 438 824 547 175 ... 321 356

6 654 543 353 777 437 ... 765 678 555

7 327 541 164 563 327 ... 538 159 235

8 333 327 432 249 777 ... 528 529

9 524 583 333 100 334 ... 743 468 531

10 217 427 585 218 843 ... 777 555

11 222 666 512 400 259 ... 438 637 879

DíasDías

MesesMeses
Celdas	no	
utilizadas
Celdas	no	
utilizadas

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

const int DIM1 = 10;
const int DIM2 = 5;
const int DIM3 = 25;
const int DIM4 = 50;

typedef double tMatriz[DIM1][DIM2][DIM3][DIM4];

tMatriz matriz;

Bucles	anidados,	desde	la	primera	dimensión	hasta	la	última:
for (int n1 = 0; n1 < DIM1; n1++) {

for (int n2 = 0; n2 < DIM2; n2++) {
for (int n3 = 0; n3 < DIM3; n3++) {

for (int n4 = 0; n4 < DIM4; n4++) {
// Procesar matriz[n1][n2][n3][n4]

}
}

}
}

Página 644Fundamentos de la programación: Recorrido y búsqueda en arrays

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ventas	diarias	de	cuatro	sucursales
Cada	mes	del	año:	ingresos	de	cada	sucursal	cada	día	del	mes

Meses	con	distinto	nº	de	días	 junto	con	la	matriz	de	ventas	
mensual	guardamos	el	nº	de	días	del	mes	concreto	 estructura
const int DIAS = 31;
const int SUCURSALES = 4;
typedef double tVentaMes[DIAS][SUCURSALES];
typedef struct {

tVentaMes ventas;
int dias;

} tMes;

const int MESES = 12;
typedef tMes tVentaAnual[MESES];
tVentaAnual anual;

Página 645Fundamentos de la programación: Recorrido y búsqueda en arrays

anual  tVentaAnual

anual[i]  tMes

anual[i].dias  int

anual[i].ventas  tVentaMes

anual[i].ventas[j][k]  double

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Cálculo	de	las	ventas
de	todo	el	año:

Para	cada	mes...

Para	cada	día	del	mes...

Para	cada	sucursal...

Acumular	las	ventas

double total = 0;
for (int mes = 0; mes < MESES; mes++) {

for (int dia = 0; dia < anual[mes].dias; dia++) {
for (int suc = 0; suc < SUCURSALES; suc++) {

total = total + anual[mes].ventas[dia][suc];
}

}
}

Página 646Fundamentos de la programación: Recorrido y búsqueda en arrays

const int DIAS = 31;
const int SUCURSALES = 4;
typedef double
tVentaMes[DIAS][SUCURSALES];
typedef struct {

tVentaMes ventas;
int dias;

} tMes;

const int MESES = 12;
typedef tMes tVentaAnual[MESES];
tVentaAnual anual;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

bool encontrado = false;
int mes = 0, dia, suc;
while ((mes < MESES) && !encontrado) {

dia = 0;
while ((dia < anual[mes].dias) && !encontrado) {

suc = 0;
while ((suc < SUCURSALES) && !encontrado) {

if (anual[mes].ventas[dia][suc] > umbral) {
encontrado = true;

}
else {

suc++;
}

}
if (!encontrado) {

dia++;
}

}
if (!encontrado) {

mes++;
}

}
if (encontrado) { ...

Página 647Fundamentos de la programación: Recorrido y búsqueda en arrays

Primer	valor	>	umbral

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Recorrido y búsqueda en arrays Página 648

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

7

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: Algoritmos de ordenación

Algoritmos de ordenación 651
Algoritmo de ordenación por inserción 654

Ordenación de arrays por inserción 665
Algoritmo de ordenación por inserción

con intercambios 672
Claves de ordenación 680
Estabilidad de la ordenación 688
Complejidad y eficiencia 692

Ordenaciones naturales 694
Ordenación por selección directa 701
Método de la burbuja 716
Listas ordenadas 722
Búsquedas en listas ordenadas 729
Búsqueda binaria 731

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 651Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ordenación	de	listas

Mostrar	los	datos	en	orden,	facilitar		las	búsquedas,	...

Variadas	formas	de	hacerlo	(algoritmos)

Página 652Fundamentos de la programación: Algoritmos de ordenación

array

125.40 76.95 328.80 254.62 435.00 164.29 316.05 219.99 93.45 756.62

0 1 2 3 4 5 6 7 8 9

array

76.95 93.45 125.40 164.29 219.99 254.62 316.05 328.80 435.00 756.62

0 1 2 3 4 5 6 7 8 9

Algoritmo	de	ordenación
(de	menor	a	mayor)

Algoritmo	de	ordenación
(de	menor	a	mayor)

array[i] <= array[i + 1]array[i] <= array[i + 1]

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ordenación	de	listas
Los	datos	de	la	lista	deben	poderse	comparar	entre	sí

Sentido	de	la	ordenación:

 Ascendente	(de	menor	a	mayor)

 Descendente	(de	mayor	a	menor)

Algoritmos	de	ordenación	básicos:

 Ordenación	por	inserción

 Ordenación	por	selección	directa

 Ordenación	por	el	método	de	la	burbuja

Los	algoritmos	se	basan	en	comparaciones	e	intercambios

Hay	otros	algoritmos	de	ordenación	mejores

Página 653Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 654Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

613829

Algoritmo	de	ordenación	por	inserción
Partimos	de	una	lista	vacía

Vamos	insertando	cada	elemento	en	el	lugar	que	le	corresponda

Baraja	de	nueve	cartas	numeradas	del	1	al	9

Las	cartas	están	desordenadas

Ordenaremos	de	menor	a	mayor	(ascendente)

Página 655Fundamentos de la programación: Algoritmos de ordenación

475

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	inserción

Página 656Fundamentos de la programación: Algoritmos de ordenación

613829475 Lista	ordenada:Lista	ordenada:

5

Colocamos	el	primer	elemento	en	la	lista	vacíaColocamos	el	primer	elemento	en	la	lista	vacía

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	inserción

Página 657Fundamentos de la programación: Algoritmos de ordenación

61382947

5 7

El	7	es	mayor	que	todos	los	elementos	de	la	lista

Lo	insertamos	al	final

Lista	ordenada:Lista	ordenada:

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	inserción

Página 658Fundamentos de la programación: Algoritmos de ordenación

Primer	elemento	(5)	mayor	que	el	nuevo	(4):

Desplazamos	todos	una	posición	a	la	derecha

Insertamos	el	nuevo	en	la	primera	posición

6138294

5 7 754

Hemos	insertado	el	elemento	en	su	lugarHemos	insertado	el	elemento	en	su	lugar

Lista	ordenada:Lista	ordenada:

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

4 5 7

Algoritmo	de	ordenación	por	inserción

Página 659Fundamentos de la programación: Algoritmos de ordenación

613829

9

9	es	mayor	que	todos	los	elementos	de	la	lista

Lo	insertamos	al	final

Lista	ordenada:Lista	ordenada:

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	inserción

Página 660Fundamentos de la programación: Algoritmos de ordenación

61382

9 94 5 7 7542

Primer	elemento	(4)	mayor	que	el	nuevo	(2):

Desplazamos	todos	una	posición	a	la	derecha

Insertamos	el	nuevo	en	la	primera	posición

Lista	ordenada:Lista	ordenada:

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	inserción

Página 661Fundamentos de la programación: Algoritmos de ordenación

6138

974 542 98

El	9	es	el	primer	elemento	mayor	que	el	nuevo	(8):

Desplazamos	desde	ese	hacia	la	derecha

Insertamos	donde	estaba	el	9

Lista	ordenada:Lista	ordenada:

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

8

Algoritmo	de	ordenación	por	inserción

Página 662Fundamentos de la programación: Algoritmos de ordenación

613

74 542 9 987543

Lista	ordenada:Lista	ordenada:

Segundo	elemento	(4)	mayor	que	el	nuevo	(3):

Desplazamos	desde	ese	hacia	la	derecha

Insertamos	donde	estaba	el	4

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

2 3

Algoritmo	de	ordenación	por	inserción

Página 663Fundamentos de la programación: Algoritmos de ordenación

61

9 94 5 87 8754321

Lista	ordenada:Lista	ordenada:

Primer	elemento	(2)	mayor	que	el	nuevo	(1):

Desplazamos	todos	una	posición	a	la	derecha

Insertamos	el	nuevo	en	la	primera	posición

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	inserción

Página 664Fundamentos de la programación: Algoritmos de ordenación

6

9 91 3 4 5 7 82 876

¡¡¡	LISTA	ORDENADA	!!!¡¡¡	LISTA	ORDENADA	!!!

Lista	ordenada:Lista	ordenada:

El	7	es	el	primer	elemento	mayor	que	el	nuevo	(6):

Desplazamos	desde	ese	hacia	la	derecha

Insertamos	donde	estaba	el	7

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ordenación	de	arrays	por	inserción
El	array	contiene	inicialmente	la	lista	desordenada:

A	medida	que	insertamos:	dos	zonas	en	el	array

Parte	ya	ordenada	y	elementos	por	procesar

Página 665Fundamentos de la programación: Algoritmos de ordenación

20 7 14 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

7 14 20 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

Parte	ya	ordenadaParte	ya	ordenada Elementos	por	insertarElementos	por	insertar

Siguiente	elemento	a	insertar	en	la	parte	ya	ordenadaSiguiente	elemento	a	insertar	en	la	parte	ya	ordenada

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ordenación	de	arrays	por	inserción
Situación	inicial:	Lista	ordenada	con	un	solo	elemento	(primero)

Desde	el	segundo	elemento	del	array	hasta	el	último:

Localizar	el	primer	elemento	mayor	en	lo	ya	ordenado

Página 666Fundamentos de la programación: Algoritmos de ordenación

20 7 14 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

20 7 14 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

Primer	elemento	mayor	o	igual:	índice	0Primer	elemento	mayor	o	igual:	índice	0
7nuevonuevo

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ordenación	de	arrays	por	inserción
.	.	.

Desplazar	a	la	derecha	los	ordenados	desde	ese	lugar

Insertar	el	nuevo	en	la	posición	que	queda	libre

Página 667Fundamentos de la programación: Algoritmos de ordenación

20 7 14 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

7nuevonuevo

7 20 14 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

7nuevonuevo

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Implementación
...
int nuevo, pos;
// Desde el segundo elemento hasta el último...
for (int i = 1; i < N; i++) {

nuevo = lista[i];
pos = 0;
while ((pos < i) && !(lista[pos] > nuevo)) {

pos++;
}
// pos: índice del primer mayor; i si no lo hay
for (int j = i; j > pos; j‐‐) {

lista[j] = lista[j ‐ 1];
}
lista[pos] = nuevo;

}

Página 668Fundamentos de la programación: Algoritmos de ordenación

const int N = 15;
typedef int tLista[N];
tLista lista;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 669Fundamentos de la programación: Algoritmos de ordenación

20 7 14 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

20 20 14 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

20 7 14 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

7nuevonuevo0pospos1ii

7 20 14 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9



Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 670Fundamentos de la programación: Algoritmos de ordenación

7 14 20 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

7 14 20 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

7 7 14 20 32 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

5 7 14 20 32 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9



5nuevonuevo0pospos4ii

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 671Fundamentos de la programación: Algoritmos de ordenación

5 7 14 20 32 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

5 7 14 20 32 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

5 7 14 20 20 32 27 12 13 15

0 1 2 3 4 5 6 7 8 9

5 7 14 14 20 32 27 12 13 15

0 1 2 3 4 5 6 7 8 9



14nuevonuevo3pospos5ii

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 672Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

La	inserción	de	cada	elemento	se	puede	realizar
con	comparaciones	e	intercambios

Desde	el	segundo	elemento	hasta	el	último:

Desde	la	posición	del	nuevo	elemento	a	insertar:

Mientras	el	anterior	sea	mayor,	intercambiar

Página 673Fundamentos de la programación: Algoritmos de ordenación

5 7 14 20 32 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

5 7 14 20 14 32 27 12 13 15

0 1 2 3 4 5 6 7 8 9

5 7 14 14 20 32 27 12 13 15

0 1 2 3 4 5 6 7 8 9



Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 674Fundamentos de la programación: Algoritmos de ordenación

7 14 20 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

7 14 20 5 32 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

7 14 5 20 32 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

7 5 14 20 32 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

5 7 14 20 32 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9



Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...
int tmp, pos;
// Desde el segundo elemento hasta el último...
for (int i = 1; i < N; i++) {

pos = i;
// Mientras no al principio y anterior mayor...
while ((pos > 0) && (lista[pos ‐ 1] > lista[pos])) {

// Intercambiar...
tmp = lista[pos];
lista[pos] = lista[pos ‐ 1];
lista[pos ‐ 1] = tmp;
pos‐‐; // Posición anterior

}
}

Página 675Fundamentos de la programación: Algoritmos de ordenación

const int N = 15;
typedef int tLista[N];
tLista lista;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;
#include <fstream>

const int N = 100;
typedef int tArray[N];
typedef struct { // Lista de longitud variable

tArray elementos;
int contador;

} tLista;

int main() {
tLista lista;
ifstream archivo;
int dato, pos, tmp;
lista.contador = 0;
...

Página 676Fundamentos de la programación: Algoritmos de ordenación

insercion.cppinsercion.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

archivo.open("insercion.txt");
if (!archivo.is_open()) {

cout << "Error de apertura de archivo!" << endl;
}
else {

archivo >> dato;
while ((lista.contador < N) && (dato != ‐1)) {
// Centinela ‐1 al final

lista.elementos[lista.contador] = dato;
lista.contador++;
archivo >> dato;

}
archivo.close();
// Si hay más de N ignoramos el resto
cout << "Antes de ordenar:" << endl;
for (int i = 0; i < lista.contador; i++) {

cout << lista.elementos[i] << " ";
}
cout << endl; ...

Página 677Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

for (int i = 1; i < lista.contador; i++) {
pos = i;
while ((pos > 0)
&& (lista.elementos[pos‐1] > lista.elementos[pos]))
{

tmp = lista.elementos[pos];
lista.elementos[pos] = lista.elementos[pos ‐ 1];
lista.elementos[pos ‐ 1] = tmp;
pos‐‐;

}
}
cout << "Después de ordenar:" << endl;
for (int i = 0; i < lista.contador; i++) {

cout << lista.elementos[i] << " ";
}
cout << endl;

}
return 0;

}

Página 678Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Consideración	de	implementación
¿Operador	relacional	adecuado?

lista[pos ‐ 1] ¿	> o	>= ? lista[pos]

Con	>= se	realizan	intercambios	inútiles:

Página 679Fundamentos de la programación: Algoritmos de ordenación

5 7 14 20 32 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

5 7 14 20 14 32 27 12 13 15

0 1 2 3 4 5 6 7 8 9

5 7 14 14 20 32 27 12 13 15

0 1 2 3 4 5 6 7 8 9

¡Intercambio	inútil!¡Intercambio	inútil!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 680Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Claves	de	ordenación
Elementos	que	son	estructuras	con	varios	campos:
const int N = 15;
typedef struct {

int codigo;
string nombre;
double sueldo;

} tDato;
typedef tDato tLista[N];
tLista lista;

Clave	de	ordenación:

Campo	en	el	que	se	basan	las	comparaciones

Página 681Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Claves	de	ordenación
tDato tmp;
while ((pos > 0)

&& (lista[pos ‐ 1].nombre > lista[pos].nombre)) {
tmp = lista[pos];
lista[pos] = lista[pos ‐ 1];
lista[pos ‐ 1] = tmp;
pos‐‐;

}

Comparación:	campo	concreto

Intercambio:	elementos	completos

Página 682Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Claves	de	ordenación
Función	para	la	comparación:
bool operator>(tDato opIzq, tDato opDer) {

return (opIzq.nombre > opDer.nombre);
}

tDato tmp;
while ((pos > 0) && (lista[pos ‐ 1] > lista[pos])) {

tmp = lista[pos];
lista[pos] = lista[pos ‐ 1];
lista[pos ‐ 1] = tmp;
pos‐‐;

}

Página 683Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Claves	de	ordenación
#include <iostream>
#include <string>
using namespace std;
#include <fstream>
#include <iomanip>
const int N = 15;
typedef struct {

int codigo;
string nombre;
double sueldo;

} tDato;
typedef tDato tArray[N];
typedef struct {

tArray datos;
int cont;

} tLista;
...

Página 684Fundamentos de la programación: Algoritmos de ordenación

claves.cppclaves.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void mostrar(tLista lista);
bool operator>(tDato opIzq, tDato opDer);

int main() {
tLista lista;
ifstream archivo;
lista.cont = 0;
archivo.open("datos.txt");
if (!archivo.is_open()) {

cout << "Error de apertura del archivo!" << endl;
}
else {

tDato dato;
archivo >> dato.codigo;
while ((lista.cont < N) && (dato.codigo != ‐1)) {

archivo >> dato.nombre >> dato.sueldo;
lista.datos[lista.cont] = dato;
lista.cont++;
archivo >> dato.codigo;

}
archivo.close(); ...

Página 685Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

cout << "Antes de ordenar:" << endl;
mostrar(lista);
for (int i = 1; i < lista.cont; i++) {
// Desde el segundo elemento hasta el último

int pos = i;
while ((pos > 0)

&& (lista.datos[pos‐1] > lista.datos[pos])) {
tDato tmp;
tmp = lista.datos[pos];
lista.datos[pos] = lista.datos[pos ‐ 1];
lista.datos[pos ‐ 1] = tmp;
pos‐‐;

}
}
cout << "Después de ordenar:" << endl;
mostrar(lista);

}
return 0;

} ...

Página 686Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void mostrar(tLista lista) {
for (int i = 0; i < lista.cont; i++) {

cout << setw(10)
<< lista.datos[i].codigo
<< setw(20)
<< lista.datos[i].nombre
<< setw(12)
<< fixed
<< setprecision(2)
<< lista.datos[i].sueldo
<< endl;

}
}

bool operator>(tDato opIzq, tDato opDer) {
return (opIzq.nombre > opDer.nombre);

}

Página 687Fundamentos de la programación: Algoritmos de ordenación

Cambia	a	codigo o	sueldo para	ordenar	por	otros	camposCambia	a	codigo o	sueldo para	ordenar	por	otros	campos

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 688Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmos	de	ordenación	estables
Al	ordenar	por	otra	clave	una	lista	ya	ordenada,	
la	segunda	ordenación	preserva	el	orden	de	la	primera
tDato:	tres	posibles	claves	de	ordenación	(campos)

Codigo
Nombre
Sueldo

Lista	ordenada	por	Nombre

Página 689Fundamentos de la programación: Algoritmos de ordenación

12345 Álvarez 120000
11111 Benítez 100000
21112 Domínguez 90000
11111 Durán 120000
22222 Fernández 120000
12345 Gómez 100000
10000 Hernández 150000
21112 Jiménez 100000
11111 Pérez 90000
12345 Sánchez 90000
10000 Sergei 100000
33333 Tarazona 120000
12345 Turégano 100000
11111 Urpiano 90000

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ordenamos	ahora	por	el	campo	Codigo:

Página 690Fundamentos de la programación: Algoritmos de ordenación

10000 Sergei 100000
10000 Hernández 150000
11111 Urpiano 90000
11111 Benítez 100000
11111 Pérez 90000
11111 Durán 120000
12345 Sánchez 90000
12345 Álvarez 120000
12345 Turégano 100000
12345 Gómez 100000
21112 Domínguez 90000
21112 Jiménez 100000
22222 Fernández 120000
33333 Tarazona 120000

10000 Hernández 150000
10000 Sergei 100000
11111 Benítez 100000
11111 Durán 120000
11111 Pérez 90000
11111 Urpiano 90000
12345 Álvarez 120000
12345 Gómez 100000
12345 Sánchez 90000
12345 Turégano 100000
21112 Domínguez 90000
21112 Jiménez 100000
22222 Fernández 120000
33333 Tarazona 120000

No	estable:
Los	nombres	no	mantienen
sus	posiciones	relativas

No	estable:
Los	nombres	no	mantienen
sus	posiciones	relativas

Estable:
Los	nombres	mantienen
sus	posiciones	relativas

Estable:
Los	nombres	mantienen
sus	posiciones	relativas

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ordenación	por	inserción
Estable	siempre	que	utilicemos	< o	> Con	<= o	>= no	es	estable

Ordenamos	por	sueldo:

A	igual	sueldo,	ordenado	por	códigos	y	a	igual	código,	por	nombres

Página 691Fundamentos de la programación: Algoritmos de ordenación

10000 Hernández 150000
10000 Sergei 100000
11111 Benítez 100000
11111 Durán 120000
11111 Pérez 90000
11111 Urpiano 90000
12345 Álvarez 120000
12345 Gómez 100000
12345 Sánchez 90000
12345 Turégano 100000
21112 Domínguez 90000
21112 Jiménez 100000
22222 Fernández 120000
33333 Tarazona 120000

11111 Pérez 90000
11111 Urpiano 90000
12345 Sánchez 90000
21112 Domínguez 90000
10000 Sergei 100000
11111 Benítez 100000
12345 Gómez 100000
12345 Turégano 100000
21112 Jiménez 100000
11111 Durán 120000
12345 Álvarez 120000
22222 Fernández 120000
33333 Tarazona 120000
10000 Hernández 150000

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 692Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Casos	de	estudio	para	los	algoritmos	de	ordenación
 Lista	inicialmente	ordenada

 Lista	inicialmente	ordenada	al	revés

 Lista	con	disposición	inicial	aleatoria

¿Trabaja	menos,	más	o	igual	la	ordenación	en	cada	caso?

Página 693Fundamentos de la programación: Algoritmos de ordenación

5 7 12 13 14 14 15 20 27 32

0 1 2 3 4 5 6 7 8 9

32 27 20 15 14 14 13 12 7 5

0 1 2 3 4 5 6 7 8 9

13 20 7 14 12 32 27 14 5 15

0 1 2 3 4 5 6 7 8 9

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ordenaciones	naturales
Si	el	algoritmo	trabaja	menos	cuanto	más	ordenada está	
inicialmente	la	lista,	se	dice	que	la	ordenación	es	natural

Ordenación	por	inserción	con	la	lista	inicialmente	ordenada:

 Versión	que	busca	el	lugar	primero	y	luego	desplaza:
No	hay	desplazamientos;	mismo	número	de	comparaciones
Comportamiento	no	natural

 Versión	con	intercambios:
Trabaja	mucho	menos;	basta	una	comparación	cada	vez
Comportamiento	natural

Página 694Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Elección	de	un	algoritmo	de	ordenación
¿Cómo	de	bueno	es	cada	algoritmo?

¿Cuánto	tarda	en	comparación	con	otros	algoritmos?

Algoritmos	más	eficientes:	los	de	menor	complejidad

Tardan	menos	en	realizar	la	misma	tarea
Comparamos	en	orden	de	complejidad:	O()

En	función	de	la	dimensión	de	la	lista	a	ordenar:	N

O() = f (N)

Operaciones	que	realiza	el	algoritmo	de	ordenación:

 Comparaciones

 Intercambios

Asumimos	que	tardan	un	tiempo	similar

Página 695Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Cálculo	de	la	complejidad
Ordenación	por	inserción	(con	intercambios):
...
for (int i = 1; i < N; i++) {
int pos = i;
while ((pos > 0) && (lista[pos ‐ 1] > lista[pos])) {

int tmp;
tmp = lista[pos];
lista[pos] = lista[pos ‐ 1];
lista[pos ‐ 1] = tmp;
pos‐‐;

}
}

Intercambios	y	comparaciones:
Tantos	como	ciclos	realicen	los	correspondientes	bucles

Página 696Fundamentos de la programación: Algoritmos de ordenación

ComparaciónComparación

IntercambioIntercambio

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Cálculo	de	la	complejidad

...
for (int i = 1; i < N; i++) {
int pos = i;
while ((pos > 0) && (lista[pos ‐ 1] > lista[pos])) {

int tmp;
tmp = lista[pos];
lista[pos] = lista[pos ‐ 1];
lista[pos ‐ 1] = tmp;
pos‐‐;

}
}

Caso	en	el	que	el	while se	ejecuta	más:	caso	peor
Caso	en	el	que	se	ejecuta	menos:	caso	mejor

Página 697Fundamentos de la programación: Algoritmos de ordenación

N	‐ 1	ciclosN	‐ 1	ciclos

Nº	variable	de	ciclosNº	variable	de	ciclos

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Cálculo	de	la	complejidad
 Caso	mejor:	lista	inicialmente	ordenada

La	primera	comparación	falla:	ningún	intercambio
(N	‐ 1)	*	(1	comparación	+	0	intercambios)	=	N	‐ 1	 O(N)

 Caso	peor:	lista	inicialmente	ordenada	al	revés
Para	cada	pos,	entre	i y	1:	1	comparación	y	1	intercambio
1	+	2	+	3	+	4	+	...	+	(N	‐ 1)
((N	‐ 1)	+	1)	x (N	‐ 1)	/	2
N	*	(N	‐ 1)	/	2
(N2 ‐ N)	/	2	 O(N2)

Notación	O	grande:	orden	de	complejidad	en	base	a	N
El	término	en	N	que	más	rápidamente	crece	al	crecer	N
En	el	caso	peor,	N2 crece	más	rápido	que	N	 O(N2)
(Ignoramos	las	constantes,	como	2)

Página 698Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ordenación	por	inserción	(con	intercambios)
 Caso	mejor:	O(N)

 Caso	peor:	O(N2)

Caso	medio	(distribución	aleatoria	de	los	elementos):	O(N2)

Hay	algoritmos	de	ordenación	mejores

Página 699Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Órdenes	de	complejidad

O(log	N) <	O(N) <	O(N	log	N) <	O(N2) <	O(N3) ...

N log2 N N2

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
1 0 1
2 1 4
4 2 16
8 3 64

16 4 256
32 5 1024
64 6 4096

128 7 16384
256 8 65536
...

Página 700Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 701Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	selección	directa

Página 702Fundamentos de la programación: Algoritmos de ordenación

Seleccionar	el	siguiente	elemento	menor	de	los	que	quedenSeleccionar	el	siguiente	elemento	menor	de	los	que	queden

613829475

Lista	ordenada:Lista	ordenada:

Lista	desordenada:Lista	desordenada:

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	selección	directa

Página 703Fundamentos de la programación: Algoritmos de ordenación

6

1

3829475

Lista	ordenada:Lista	ordenada:

Lista	desordenada:Lista	desordenada:

Seleccionar	el	siguiente	elemento	menor	de	los	que	quedenSeleccionar	el	siguiente	elemento	menor	de	los	que	queden

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 704Fundamentos de la programación: Algoritmos de ordenación

6

1

38

2

9475

Lista	ordenada:Lista	ordenada:

Lista	desordenada:Lista	desordenada:

Seleccionar	el	siguiente	elemento	menor	de	los	que	quedenSeleccionar	el	siguiente	elemento	menor	de	los	que	queden

Algoritmo	de	ordenación	por	selección	directa

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	selección	directa

Página 705Fundamentos de la programación: Algoritmos de ordenación

6

1 3

8

2

9475

Lista	ordenada:Lista	ordenada:

Lista	desordenada:Lista	desordenada:

Seleccionar	el	siguiente	elemento	menor	de	los	que	quedenSeleccionar	el	siguiente	elemento	menor	de	los	que	queden

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	selección	directa

Página 706Fundamentos de la programación: Algoritmos de ordenación

6

1 3

8

2

9

4

75

Lista	ordenada:Lista	ordenada:

Lista	desordenada:Lista	desordenada:

Seleccionar	el	siguiente	elemento	menor	de	los	que	quedenSeleccionar	el	siguiente	elemento	menor	de	los	que	queden

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	selección	directa

Página 707Fundamentos de la programación: Algoritmos de ordenación

6

1 3

8

2

9

4

7

5Lista	ordenada:Lista	ordenada:

Lista	desordenada:Lista	desordenada:

Seleccionar	el	siguiente	elemento	menor	de	los	que	quedenSeleccionar	el	siguiente	elemento	menor	de	los	que	queden

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	selección	directa

Página 708Fundamentos de la programación: Algoritmos de ordenación

61 3

8

2

9

4

7

5Lista	ordenada:Lista	ordenada:

Lista	desordenada:Lista	desordenada:

Seleccionar	el	siguiente	elemento	menor	de	los	que	quedenSeleccionar	el	siguiente	elemento	menor	de	los	que	queden

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	selección	directa

Página 709Fundamentos de la programación: Algoritmos de ordenación

61 3

8

2

9

4 75Lista	ordenada:Lista	ordenada:

Lista	desordenada:Lista	desordenada:

Seleccionar	el	siguiente	elemento	menor	de	los	que	quedenSeleccionar	el	siguiente	elemento	menor	de	los	que	queden

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	selección	directa

Página 710Fundamentos de la programación: Algoritmos de ordenación

61 3 82

9

4 75Lista	ordenada:Lista	ordenada:

Lista	desordenada:Lista	desordenada:

Seleccionar	el	siguiente	elemento	menor	de	los	que	quedenSeleccionar	el	siguiente	elemento	menor	de	los	que	queden

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	selección	directa

Página 711Fundamentos de la programación: Algoritmos de ordenación

61 3 82 94 75Lista	ordenada:Lista	ordenada:

Lista	desordenada:Lista	desordenada:

¡¡¡	LISTA	ORDENADA	!!!¡¡¡	LISTA	ORDENADA	!!!

Seleccionar	el	siguiente	elemento	menor	de	los	que	quedenSeleccionar	el	siguiente	elemento	menor	de	los	que	queden

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ordenación	de	un	array	por	selección	directa

Desde	el	primer	elemento	(i =	0)	hasta	el	penúltimo	(N‐2):

Menor	elemento	(en	m)	entre	i +	1	y	el	último	(N‐1)

Intercambiar	los	elementos	en	i y	m si	no	son	el	mismo

Página 712Fundamentos de la programación: Algoritmos de ordenación

20 7 14 32 5 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

mmii

5 7 14 32 20 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

mmii

Sólo	intercambiamos	si	no	es	la	misma	posiciónSólo	intercambiamos	si	no	es	la	misma	posición

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ordenación	de	un	array	por	selección	directa

Página 713Fundamentos de la programación: Algoritmos de ordenación

5 7 14 32 20 14 27 12 13 15

0 1 2 3 4 5 6 7 8 9

mmii

5 7 12 32 20 14 27 14 13 15

0 1 2 3 4 5 6 7 8 9

mmii

5 7 12 13 20 14 27 14 32 15

0 1 2 3 4 5 6 7 8 9

mmii

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Implementación

// Desde el primer elemento hasta el penúltimo...
for (int i = 0; i < N ‐ 1; i++) {

int menor = i;
// Desde i + 1 hasta el final...
for (int j = i + 1; j < N; j++) {

if (lista[j] < lista[menor]) {
menor = j;

}
}
if (menor > i) {

int tmp;
tmp = lista[i];
lista[i] = lista[menor];
lista[menor] = tmp;

}
}

Página 714Fundamentos de la programación: Algoritmos de ordenación

seleccion.cppseleccion.cpp

const int N = 15;
typedef int tLista[N];
tLista lista;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Complejidad	de	la	ordenación	por	selección	directa
¿Cuántas	comparaciones	se	realizan?

Bucle	externo:	N	‐ 1	ciclos

Tantas	comparaciones	como	elementos	queden	en	la	lista:

(N	‐ 1)	+	(N	‐ 2)	+	(N	‐ 3)	+	...	+	3	+	2	+	1	=
N	x (N	‐ 1)	/	2	=	(N2 ‐ N)	/	2	 O(N2)

Mismo	número	de	comparaciones	en	todos	los	casos

Complejidad:	O(N2) Igual	que	el	método	de	inserción

Algo	mejor	(menos	intercambios;	uno	en	cada	paso)

No	es	estable:	intercambios	“a	larga	distancia”
No	se	garantiza	que	se	mantenga	el	mismo	orden	relativo	original

Comportamiento	no	natural	(trabaja	siempre	lo	mismo)

Página 715Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 716Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	el	método	de	la	burbuja
Variación	del	método	de	selección	directa

El	elemento	menor	va	ascendiendo hasta	alcanzar	su	posición

Página 717Fundamentos de la programación: Algoritmos de ordenación

6

3

1

9

4

6

3

1

9

4

6

1

3

9

4

6

4

3

9

1

6

4

3

1

9

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 718Fundamentos de la programación: Algoritmos de ordenación

12 32 14 5 14 7

0 1 2 3 4 5

12 32 14 5 7 14

0 1 2 3 4 5

12 32 14 5 7 14

0 1 2 3 4 5

12 32 5 14 7 14

0 1 2 3 4 5

12 5 32 14 7 14

0 1 2 3 4 5

5 12 32 14 7 14

0 1 2 3 4 5

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ordenación	de	un	array	por	el	método	de	la	burbuja
Desde	el	primero	(i =	0),	hasta	el	penúltimo	(N	‐ 2):
Desde	el	último	(j =	N	– 1),	hasta	i +	1:
Si	elemento	en	j <	elemento	en	j ‐ 1,	intercambiarlos

...
int tmp;
// Del primero al penúltimo...
for (int i = 0; i < N ‐ 1; i++) {

// Desde el último hasta el siguiente a i...
for (int j = N ‐ 1; j > i; j‐‐) {

if (lista[j] < lista[j ‐ 1]) {
tmp = lista[j];
lista[j] = lista[j ‐ 1];
lista[j ‐ 1] = tmp;

}
}

}

Página 719Fundamentos de la programación: Algoritmos de ordenación

burbuja.cppburbuja.cpp

const int N = 10;
typedef int tLista[N];
tLista lista;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	el	método	de	la	burbuja
Complejidad:	O(N2)

Comportamiento	no	natural

Estable	(mantiene	el	orden	relativo)

Mejora:

Si	en	un	paso	del	bucle	exterior	no	ha	habido	intercambios:

La	lista	ya	está	ordenada	(no	es	necesario	seguir)

14 14 14 12

16 16 12 14

35 12 16 16

12 35 35 35

50 50 50 50

Página 720Fundamentos de la programación: Algoritmos de ordenación

La	lista	ya	está	ordenada

No	hace	falta	seguir

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

bool inter = true;
int i = 0;
// Desde el 1º hasta el penúltimo si hay intercambios...
while ((i < N ‐ 1) && inter) {

inter = false;
// Desde el último hasta el siguiente a i...
for (int j = N ‐ 1; j > i; j‐‐) {

if (lista[j] < lista[j ‐ 1]) {
int tmp;
tmp = lista[j];
lista[j] = lista[j ‐ 1];
lista[j ‐ 1] = tmp;
inter = true;

}
}
if (inter) {

i++;
}

}

Página 721Fundamentos de la programación: Algoritmos de ordenación

burbuja2.cppburbuja2.cpp

Esta	variación	sí	tiene	un	comportamiento	natural

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 722Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	listas	ordenadas
Casi	todas	las	tareas	se	realizan	igual	que	en	listas	sin	orden

Operaciones	que	tengan	en	cuenta	el	orden:

 Inserción	de	un	nuevo	elemento:	debe	seguir	en	orden

 Búsquedas	más	eficientes

¿Y	la	carga	desde	archivo?

 Si	los	elementos	se	guardaron	en	orden:	se	lee	igual

 Si	los	elementos	no	están	ordenados	en	el	archivo:	insertar

Página 723Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Declaraciones:	Iguales	que	para	listas	sin	orden
const int N = 20;

typedef struct {
int codigo;
string nombre;
double sueldo;

} tRegistro;

typedef tRegistro tArray[N];

typedef struct {
tArray registros;
int cont;

} tLista;

Página 724Fundamentos de la programación: Algoritmos de ordenación

lista.cpplista.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Subprogramas:	Misma	declaración	que	para	listas	sin	orden
void mostrarDato(int pos, tRegistro registro);

void mostrar(tLista lista);

bool operator>(tRegistro opIzq, tRegistro opDer);

bool operator<(tRegistro opIzq, tRegistro opDer);

tRegistro nuevo();

void insertar(tLista &lista, tRegistro registro, bool &ok);

void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..N

int buscar(tLista lista, string nombre);

void cargar(tLista &lista, bool &ok);

void guardar(tLista lista);

Página 725Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Nuevas	implementaciones:

 Operadores	relacionales

 Inserción	(mantener	el	orden)

 Búsqueda	(más	eficiente)

Se	guarda	la	lista	en	orden,	por	lo	que	cargar() no	cambia

bool operator>(tRegistro opIzq, tRegistro opDer) {

return opIzq.nombre > opDer.nombre;

}

bool operator<(tRegistro opIzq, tRegistro opDer) {

return opIzq.nombre < opDer.nombre;

}

Página 726Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {

ok = false; // lista llena
}
else {

int i = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {

i++;
}
// Insertamos en la posición i (primer mayor o igual)
for (int j = lista.cont; j > i; j‐‐) {
// Desplazamos una posición a la derecha

lista.registros[j] = lista.registros[j ‐ 1];
}
lista.registros[i] = registro;
lista.cont++;

}
}

Página 727Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 728Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Búsqueda	de	un	elemento	en	una	secuencia
No	ordenada:	recorremos	hasta	encontrarlo	o	al	final

Ordenada:	recorremos	hasta	encontrarlo	o	mayor /	al	final

Buscamos	el	36:	al	llegar	al	final	sabemos	que	no	está

Buscamos	el	17:	al	llegar	al	20	ya	sabemos	que	no	está

Condiciones	de	terminación:

 Se	llega	al	final

 Se	encuentra	el	elemento	buscado

 Se	encuentra	uno	mayor

Mientras	no	al	final	y	el	valor	sea	menor	que	el	buscado

Página 729Fundamentos de la programación: Algoritmos de ordenación

5 7 12 13 14 14 15 20 27 32

0 1 2 3 4 5 6 7 8 9

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int buscado;
cout << "Valor a buscar: ";
cin >> buscado;
int i = 0;
while ((i < N) && (lista[i] < buscado)) {

i++;
}
// Ahora, o estamos al final o lista[i] >= buscado
if (i == N) { // Al final: no se ha encontrado

cout << "No encontrado!" << endl;
}
else if (lista[i] == buscado) { // Encontrado!

cout << "Encontrado en posición " << i + 1 << endl;
}
else { // Hemos encontrado uno mayor

cout << "No encontrado!" << endl;
}

Página 730Fundamentos de la programación: Algoritmos de ordenación

Complejidad:	O(N)

const int N = 10;
typedef int tLista[N];
tLista lista;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 731Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Búsqueda	mucho	más	rápida	que	aprovecha	la	ordenación

Comparar	con	el	valor	que	esté	en	el	medio	de	la	lista:
Si	es	el	que	se	busca,	terminar
Si	no,	si	es	mayor,	buscar	en	la	primera	mitad	de	la	lista
Si	no,	si	es	menor,	buscar	en	la	segunda	mitad	de	la	lista
Repetir	hasta	encontrarlo	o	no	quede	sublista	donde	buscar

Página 732Fundamentos de la programación: Algoritmos de ordenación

5 7 12 14 14 15 18 20 27 32

0 1 2 3 4 5 6 7 8 9

5 7 12 14 14 15 18 20 27 32

0 1 2 3 4 5 6 7 8 9

Buscamos	el	12

5 7 12 14 14 15 18 20 27 32

0 1 2 3 4 5 6 7 8 9



Elemento	mitadElemento	mitad

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Vamos	buscando	en	sublistas	cada	vez	más	pequeñas	(mitades)

Delimitamos	el	segmento	de	la	lista	donde	buscar

Inicialmente	tenemos	toda	la	lista:

Índice	del	elemento	en	la	mitad:	mitad = (ini + fin) / 2

Si	no	se	encuentra,	¿dónde	seguir	buscando?
Buscado	<	elemento	en	la	mitad:	fin = mitad ‐ 1

Buscado	>	elemento	en	la	mitad:	ini = mitad + 1

Si	ini >	fin,	no	queda	dónde	buscar

Página 733Fundamentos de la programación: Algoritmos de ordenación

5 7 12 14 14 15 18 20 27 32

0 1 2 3 4 5 6 7 8 9

iniini finfinmitadmitad

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

12 < lista[mitad]  fin = mitad – 1

12 > lista[mitad]  ini = mitad + 1

Página 734Fundamentos de la programación: Algoritmos de ordenación

5 7 12 14 14 15 18 20 27 32

0 1 2 3 4 5 6 7 8 9

iniini finfinmitadmitad

Buscamos	el	12

5 7 12 14 14 15 18 20 27 32

0 1 2 3 4 5 6 7 8 9

iniini finfinmitadmitad

5 7 12 14 14 15 18 20 27 32

0 1 2 3 4 5 6 7 8 9

iniini finfin

mitadmitad ¡Encontrado!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Si	el	elemento	no	está,	nos	quedamos	sin	sublista:	ini > fin

13 > lista[mitad]  ini = mitad + 1

13 < lista[mitad]  fin = mitad – 1  2

¡¡¡	ini > fin !!!	 No	hay	dónde	seguir	buscando	 No	está

Página 735Fundamentos de la programación: Algoritmos de ordenación

5 7 12 14 14 15 18 20 27 32

0 1 2 3 4 5 6 7 8 9

mitadmitad
iniini finfin

5 7 12 14 14 15 18 20 27 32

0 1 2 3 4 5 6 7 8 9

iniini
finfin

mitadmitad

Para	el	13:

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Implementación
int buscado;
cout << "Valor a buscar: ";
cin >> buscado;
int ini = 0, fin = N – 1, mitad;
bool encontrado = false;
while ((ini <= fin) && !encontrado) {

mitad = (ini + fin) / 2; // División entera
if (buscado == lista[mitad]) {

encontrado = true;
}
else if (buscado < lista[mitad]) {

fin = mitad ‐ 1;
}
else {

ini = mitad + 1;
}

} // Si se ha encontrado, está en [mitad]

Página 736Fundamentos de la programación: Algoritmos de ordenación

const int N = 10;
typedef int tLista[N];
tLista lista;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;
#include <fstream>

const int N = 100;
typedef int tArray[N];
typedef struct {

tArray elementos;
int cont;

} tLista;

int buscar(tLista lista, int buscado);

int main() {
tLista lista;
ifstream archivo;
int dato;
lista.cont = 0;
archivo.open("ordenados.txt"); // Existe y es correcto
archivo >> dato;
...

Página 737Fundamentos de la programación: Algoritmos de ordenación

binaria.cppbinaria.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

while ((lista.cont < N) && (dato != ‐1)) {
lista.elementos[lista.cont] = dato;
lista.cont++;
archivo >> dato;

}
archivo.close();
for (int i = 0; i < lista.cont; i++) {

cout << lista.elementos[i] << " ";
}
cout << endl;
int buscado, pos;
cout << "Valor a buscar: ";
cin >> buscado;
pos = buscar(lista, buscado);
if (pos != ‐1) {

cout << "Encontrado en la posición " << pos + 1 << endl;
}
else {

cout << "No encontrado!" << endl;
}
return 0;

} ...

Página 738Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int buscar(tLista lista, int buscado) {
int pos = ‐1, ini = 0, fin = lista.cont ‐ 1, mitad;
bool encontrado = false;
while ((ini <= fin) && !encontrado) {

mitad = (ini + fin) / 2; // División entera
if (buscado == lista.elementos[mitad]) {

encontrado = true;
}
else if (buscado < lista.elementos[mitad]) {

fin = mitad ‐ 1;
}
else {

ini = mitad + 1;
}

}
if (encontrado) {

pos = mitad;
}
return pos;

}

Página 739Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Complejidad
¿Qué	orden	de	complejidad	tiene	la	búsqueda	binaria?

Caso	peor:

No	está	o	se	encuentra	en	una	sublista	de	1	elemento

Nº	de	comparaciones	=	Nº	de	mitades	que	podemos	hacer

N	/	2,	N	/	4,	N	/	8,	N	/	16,	...,	8,	4,	2,	1

 1,	2,	4,	8,	...,	N	/	16,	N	/	8,	N	/	4,	N	/	2
Si	hacemos	que	N	sea	igual	a	2k:

20,	21,	22,	23,	...,	2k‐4,	2k‐3,	2k‐2,	2k‐1

Nº	de	elementos	de	esa	serie:	k

Nº	de	comparaciones	=	k N	=	2k k	=	log2 N

Complejidad:	O(log2 N) Mucho	más	rápida	que	O(N)

Página 740Fundamentos de la programación: Algoritmos de ordenación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Algoritmos de ordenación Página 741

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

7A

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: Algoritmos de ordenación (Anexo)

Ordenación por intercambio 744
Mezcla de dos listas ordenadas 747

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 744Fundamentos de la programación: Algoritmos de ordenación (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Algoritmo	de	ordenación	por	intercambio
Variación	del	método	de	selección	directa

Se	intercambia	el	elemento	de	la	posición	que	se	trata	en	cada	
momento	siempre	que	se	encuentra	uno	que	es	menor:

Página 745Fundamentos de la programación: Algoritmos de ordenación (Anexo)

14 7 12 32 20 14 27 5 13 15
0 1 2 3 4 5 6 7 8 9

7 14 12 32 20 14 27 5 13 15
0 1 2 3 4 5 6 7 8 9

5 14 12 32 20 14 27 7 13 15
0 1 2 3 4 5 6 7 8 9

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

const int N = 10;
typedef int tLista[N];
tLista lista;
...
for (int i = 0; i < N ‐ 1; i++) {
// Desde el primer elemento hasta el penúltimo

for (int j = i + 1; j < N; j++) {
// Desde i+1 hasta el final

if (lista[j] < lista[i]) {
int tmp;
tmp = lista[i];
lista[i] = lista[j];
lista[j] = tmp;

}

}

}

Igual	número	de	comparaciones,	muchos	más	intercambios
No	es	estable

Página 746Fundamentos de la programación: Algoritmos de ordenación (Anexo)

intercambio.cppintercambio.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 747Fundamentos de la programación: Algoritmos de ordenación (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Mezcla	de	dos	listas	ordenadas	en	arrays
const int N = 100;
typedef struct {
int elementos[N];
int cont;

} tLista;

Un	índice	para	cada	lista,	inicializados	a	0	(principio	de	las	listas)

Mientras	que	no	lleguemos	al	final	de	alguna	de	las	dos	listas:

Elegimos	el	elemento	menor	de	los	que	tienen	los	índices

Lo	copiamos	en	la	lista	resultado	y	avanzamos	su	índice	una	posición

Copiamos	en	la	lista	resultado	los	que	queden	en	la	lista	no	acabada

Página 748Fundamentos de la programación: Algoritmos de ordenación (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void mezcla(tLista lista1, tLista lista2, tLista &listaM) {
int pos1 = 0, pos2 = 0;
listaM.cont = 0;

while ((pos1 < lista1.cont) && (pos2 < lista2.cont)
&& (listaM.cont < N)) {

if (lista1.elementos[pos1] < lista2.elementos[pos2]) {
listaM.elementos[listaM.cont] = lista1.elementos[pos1];
pos1++;

}
else {

listaM.elementos[listaM.cont] = lista2.elementos[pos2];
pos2++;

}
listaM.cont++;

}
...

Página 749Fundamentos de la programación: Algoritmos de ordenación (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

// Pueden quedar datos en alguna de las listas
if (pos1 < lista1.cont) {

while ((pos1 < lista1.cont) && (listaM.cont < N)) {
listaM.elementos[listaM.cont] = lista1.elementos[pos1];
pos1++;
listaM.cont++;

}
}
else { // pos2 < lista2.cont

while ((pos2 < lista2.cont) && (listaM.cont < N)) {
listaM.elementos[listaM.cont] = lista2.elementos[pos2];
pos2++;
listaM.cont++;

}
}

}

Página 750Fundamentos de la programación: Algoritmos de ordenación (Anexo)

mezcla1.cppmezcla1.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Mezcla	de	dos	listas	ordenadas	en	archivos
void mezcla(string nombre1, string nombre2, string nombreM) {
// Mezcla las secuencias en los archivos nombnre1 y nombre2
// generando la secuencia mezclada en el archivo nombreM

ifstream archivo1, archivo2;
ofstream mezcla;
int dato1, dato2;

// Los archivos existen y son correctos
archivo1.open(nombre1.c_str());
archivo2.open(nombre2.c_str());
mezcla.open(nombreM.c_str());
archivo1 >> dato1;
archivo2 >> dato2;
while ((dato1 != ‐1) && (dato2 != ‐1)) {
// Mientras quede algo en ambos archivos

...

Página 751Fundamentos de la programación: Algoritmos de ordenación (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

if (dato1 < dato2) {
mezcla << dato1 << endl;
archivo1 >> dato1;

} else {
mezcla << dato2 << endl;
archivo2 >> dato2;

}
} // Uno de los dos archivos se ha acabado
if (dato1 != ‐1) { // Quedan en el primer archivo

while (dato1 != ‐1) {
mezcla << dato1 << endl;
archivo1 >> dato1;

}
}
else { // Quedan en el segundo archivo

while (dato2 != ‐1) {
mezcla << dato2 << endl;
archivo2 >> dato2;

}
}
...

Página 752Fundamentos de la programación: Algoritmos de ordenación (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

archivo2.close();
archivo1.close();
mezcla << ‐1 << endl;
mezcla.close();

}

Página 753Fundamentos de la programación: Algoritmos de ordenación (Anexo)

mezcla2.cppmezcla2.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Algoritmos de ordenación (Anexo) Página 754

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

8

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: Programación modular

Programas multiarchivo y compilación separada 757
Interfaz frente a implementación 762
Uso de módulos de biblioteca 768
Ejemplo: Gestión de una lista ordenada I 770
Compilación de programas multiarchivo 778
El preprocesador 780
Cada cosa en su módulo 782
Ejemplo: Gestión de una lista ordenada II 784
El problema de las inclusiones múltiples 789

Compilación condicional 794
Protección frente a inclusiones múltiples 795

Ejemplo: Gestión de una lista ordenada III 796
Implementaciones alternativas 804
Espacios de nombres 808

Implementaciones alternativas 817
Calidad y reutilización del software 827

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 757Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Programas	multiarchivo
Código	fuente	repartido	entre	varios	archivos	(módulos)

Cada	módulo	con	sus	declaraciones	y	sus	subprogramas

Módulo:	Unidad	funcional	(estructura	de	datos,	utilidades,	...)

Página 758Fundamentos de la programación: Programación modular

const int N = 10;
typedef double tArray[N];
typedef struct {
tArray elem;
int cont;

} tArray;

void init(tArray &lista);

void insert(tArray &lista,
double elem, bool &ok);

void remove(tArray &lista,
int pos, bool &ok);
...

ListaLista
bool cargar(tArray &lista,
string nombre);

bool guardar(tArray lista,
string nombre);

bool mezclar(string arch1,
string arch2);

int size(string nombre);

bool exportar(string nombre);

ArchivosArchivos
double mean(tArray lista);

double min(tArray lists);

double max(tArray lista);

double desv(tArray lista);

int minIndex(tArray lista);

int maxIndex(tArray lista);

double sum(tArray lista);

CálculosCálculos
int main() {
tArray lista;
bool ok;
init(lista);
cargar(lista, "bd.txt");
sort(lista);
double dato;
cout << "Dato: ";
cin >> dato;
insert(lista, dato, ok);
cout << min(lista) << endl;
cout << max(lista) << endl;
cout << sum(lista) << endl;
guardar(lista, "bd.txt");

return 0;
}

PrincipalPrincipal

EjecutableEjecutable

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Compilación	separada
Cada	módulo	se	compila	a	código	objeto	de	forma	independiente

Página 759Fundamentos de la programación: Programación modular

const int N = 10;
typedef double tArray[N];
typedef struct {
tArray elem;
int cont;

} tArray;

void init(tArray &lista);

void insert(tArray &lista,
double elem, bool &ok);

void remove(tArray &lista,
int pos, bool &ok);
...

ListaLista

bool cargar(tArray &lista,
string nombre);

bool guardar(tArray lista,
string nombre);

bool mezclar(string arch1,
string arch2);

int size(string nombre);

bool exportar(string nombre);

ArchivosArchivos

double mean(tArray lista);

double min(tArray lists);

double max(tArray lista);

double desv(tArray lista);

int minIndex(tArray lista);

int maxIndex(tArray lista);

double sum(tArray lista);

CálculosCálculos

00101110101011001010010010101
00101010010101011111010101000
10100101010101010010101010101
01100101010101010101010101001
01010101010100000101010101101
01001010101010101000010101011
11001010101010111100110010101
01101010101010010010101001111
00101010101001010100101010010
10100101010100101000010011110
10010101011001010101001010100
10101010101010010101001010101
01000010101011100101010010100
01110101011101001101010100101
01011111110101011001101010111
00001001010100101010101010110

lista.objlista.obj

01011001010010010101001010100
10101011111010101000101001010
10101010010101010101011001010
10101010101010101001010101010
10100000101010101101010010101
01010101000010101011110010101
01010111100110010101011010101
01010010010101001111001010101
01001010100101010010101001010
10100101000010011110100101010
11001010101001010100101010101
01010010101001010101010000101
01011100101010010100011101010
11101001101010100101010111111
10101011001101010111000010010
10100101010101010110001111010

calculos.objcalculos.obj

11101010110010100100101010010
10100101010111110101010001010
01010101010100101010101010110
01010101010101010101010010101
01010101000001010101011010100
10101010101010000101010111100
10101010101111001100101010110
10101010100100101010011110010
10101010010101001010100101010
01010101001010000100111101001
01010110010101010010101001010
10101010100101010010101010100
00101010111001010100101000111
01010111010011010101001010101
11111101010110011010101110000
10010101001010101010101101111

archivos.objarchivos.obj

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Compilación	separada
Al	compilar	el	programa	principal,	se	adjuntan	los	módulos	compilados

Página 760Fundamentos de la programación: Programación modular

int main() {
tArray lista;
bool ok;
init(lista);
cargar(lista, "bd.txt");
sort(lista);
double dato;
cout << "Dato: ";
cin >> dato;
insert(lista, dato, ok);
cout << min(lista) << endl;
cout << max(lista) << endl;
cout << sum(lista) << endl;
guardar(lista, "bd.txt");

return 0;
}

PrincipalPrincipal

EjecutableEjecutable

lista.obj

calculos.obj

archivos.obj

Módulos	del	programaMódulos	del	programa

......

iostream.obj

fstream.obj

math.obj

Bibliotecas	del	sistemaBibliotecas	del	sistema

......

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Compilación	separada
¡Sólo	los	archivos	fuente	modificados	necesitan	ser	recompilados!

Página 761Fundamentos de la programación: Programación modular

EjecutableEjecutable

PrincipalPrincipal

main.cpplista.cpp

main.obj

COMPILACIÓNCOMPILACIÓN

ENLACEENLACE

iostream.obj

fstream.obj

math.obj

lista.obj

calculos.obj

archivos.obj




Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 762Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Creación	de	módulos	de	biblioteca
Código	de	un	programa	de	un	único	archivo:

 Definiciones	de	constantes

 Declaraciones	de	tipos	de	datos

 Prototipos	de	los	subprogramas

 Implementación	de	los	subprogramas
 Implementación	de	la	función	main()

Constantes,	tipos	y	prototipos	indican	cómo	se	usa:	Interfaz

 Estructura	de	datos	con	los	subprogramas	que	la	gestionan
 Conjunto	de	utilidades	(subprogramas)	de	uso	general
 Etcétera

+	Implementación de	los	subprogramas	(cómo	se	hace)

Página 763Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Creación	de	módulos	de	biblioteca
Interfaz:	Definiciones/declaraciones	de	datos	y	prototipos

¡Todo	lo	que	el	usuario	de	la	unidad	funcional	necesita	saber!

Implementación:	Código	de	los	subprogramas	que	hacen	el	trabajo

No	hay	que	conocerlo	para	usarlo:	¡Seguro	que	es	correcto!

Interfaz	e	implementación	en	dos	archivos	separados:

 Cabecera:	Definiciones/declaraciones	de	datos	y	prototipos

 Implementación:	Implementación	de	los	subprogramas.
Archivo	de	cabecera:	extensión	.h

Archivo	de	implementación:	extensión	.cpp

Repartimos	el	código	entre	ambos	archivos	(lista.h/lista.cpp)

Página 764Fundamentos de la programación: Programación modular

Mismo	nombreMismo	nombre

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Creación	de	módulos	de	biblioteca
Interfaz frente	a	implementación

Si	otro	módulo	quiere	usar	algo	de	esa	biblioteca:
Debe	incluir	el	archivo	de	cabecera

Página 765Fundamentos de la programación: Programación modular

const int N = 10;
typedef double tArray[N];
typedef struct {
tArray elem;
int cont;

} tArray;

void init(tArray &lista);

void insert(tArray &lista,
double elem, bool &ok);

void remove(tArray &lista,
int pos, bool &ok);
...

lista.hlista.h

#include "lista.h"

void init(tArray &lista) {
lista.cont = 0;

}

void insert(tArray &lista,
double elem, bool &ok) {
if (lista.cont == N) {
ok false;

}
else {
...

lista.cpplista.cpp
Módulo
Unidad
Biblioteca

Módulo
Unidad
Biblioteca

#include "lista.h"
...

main.cppmain.cpp

Los	nombres	de	archivos	de	cabecera
propios	(no	del	sistema)	se	encierran
entre	dobles	comillas,	no	entre	ángulos

Los	nombres	de	archivos	de	cabecera
propios	(no	del	sistema)	se	encierran
entre	dobles	comillas,	no	entre	ángulos

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Creación	de	módulos	de	biblioteca
Interfaz
Archivo	de	cabecera	(.h):	todo	lo	que	necesita	
conocer	otro	módulo	(o	programa	principal)
que	quiera	utilizar	sus	servicios	(subprogramas)
La	directiva	#include añade	las	declaraciones	del	archivo
de	cabecera	en	el	código	del	módulo	(preprocesamiento):

Todo	lo	que	se	necesita	saber	para
comprobar	si	el	código	de	main.cpp
hace	un	uso	correcto	de	la	lista
(declaraciones	y	llamadas)

Página 766Fundamentos de la programación: Programación modular

const int N = 10;
typedef double tArray[N];
typedef struct {
tArray elem;
int cont;

} tArray;

void init(tArray &lista);

void insert(tArray &lista,
double elem, bool &ok);

void remove(tArray &lista,
int pos, bool &ok);
...

lista.hlista.h

#include "lista.h"
...

main.cppmain.cpp

const int N = 10;
typedef double tArray[N];
typedef struct {
tArray elem;
int cont;

} tArray;

void init(tArray &lista);

void insert(tArray &lista, double elem,
bool &ok);

void remove(tArray &lista, int pos,
bool &ok);
...

main.cppmain.cpp
PreprocesadorPreprocesador

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Creación	de	módulos	de	biblioteca
Implementación

Compilar	el	módulo	significa	compilar	
su	archivo	de	implementación	(.cpp)

También	necesita	conocer	sus	propias	declaraciones:

Al	compilar	el	módulo	se	genera	el	código	objeto

Si	no	se	modifica	no	hay	necesidad	de	recompilar

Código	que	usa	el	módulo:

 Necesita	sólo	el	archivo	de	cabecera	para	compilar

 Se	adjunta	el	código	objeto	del	módulo	durante	el	enlace

Página 767Fundamentos de la programación: Programación modular

#include "lista.h"

void init(tArray &lista) {
lista.cont = 0;

}

void insert(tArray &lista,
double elem, bool &ok) {
if (lista.cont == N) {
ok false;

}
else {
...

lista.cpplista.cpp

00101110101011001010010010101
00101010010101011111010101000
10100101010101010010101010101
01100101010101010101010101001
01010101010100000101010101101
01001010101010101000010101011
11001010101010111100110010101
01101010101010010010101001111
00101010101001010100101010010
10100101010100101000010011110
10010101011001010101001010100
10101010101010010101001010101
01000010101011100101010010100
01110101011101001101010100101
01011111110101011001101010111
00001001010100101010101010110

lista.objlista.obj#include "lista.h"
...

lista.cpplista.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 768Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Uso	de	módulos	de	biblioteca
Ejemplo:	Gestión	de	una	lista	ordenada	(Tema	7)

Todo	lo	que	tenga	que	ver	con	la	lista	estará	en	su	propio	módulo

Ahora	el	código	estará	repartido	en	tres	archivos:

 lista.h:	archivo	de	cabecera	del	módulo	de	lista

 lista.cpp:	implementación	del	módulo	de	lista

 bd.cpp:	programa	principal	que	usa	la	lista

Tanto	lista.cpp como	bd.cpp deben	incluir	al	principio	lista.h
Módulo	propio:	dobles	comillas	en	la	directiva	#include

#include "lista.h"

Archivos	de	cabecera	de	bibliotecas	del	sistema:	entre	ángulos
Y	no	tienen	necesariamente	que	llevar	extensión	.h

Página 769Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Módulo:	Gestión	de	una	lista	ordenada	I
#include <string>
using namespace std;

const int N = 100;
typedef struct {

int codigo;
string nombre;
double sueldo;

} tRegistro;
typedef tRegistro tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;
const string BD = "bd.txt";
...

Página 770Fundamentos de la programación: Programación modular

lista.hlista.hArchivo de cabeceraArchivo de cabecera

¡Documenta	bien	el	código!¡Documenta	bien	el	código!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void mostrar(int pos, tRegistro registro);

void mostrar(const tLista &lista);

bool operator>(tRegistro opIzq, tRegistro opDer);

bool operator<(tRegistro opIzq, tRegistro opDer);

tRegistro nuevo();

void insertar(tLista &lista, tRegistro registro, bool &ok);

void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..N

int buscar(tLista lista, string nombre);

void cargar(tLista &lista, bool &ok);

void guardar(tLista lista);

Cada	prototipo,	con	un	comentario	que	explique	su	utilidad/uso
(Aquí	se	omiten	por	cuestión	de	espacio)

Página 771Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Módulo:	Gestión	de	una	lista	ordenada	I
#include <iostream>
#include <string>
using namespace std;
#include <fstream>
#include <iomanip>
#include "lista.h"

tRegistro nuevo() {
tRegistro registro;
cout << "Introduce el código: ";
cin >> registro.codigo;
cout << "Introduce el nombre: ";
cin >> registro.nombre;
cout << "Introduce el sueldo: ";
cin >> registro.sueldo;
return registro;

} ...

Página 772Fundamentos de la programación: Programación modular

lista.cpplista.cppImplementaciónImplementación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {

ok = false; // Lista llena
}
else {

int i = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {

i++;
}
// Insertamos en la posición i
for (int j = lista.cont; j > i; j‐‐) {

// Desplazamos a la derecha
lista.registros[j] = lista.registros[j ‐ 1];

}
lista.registros[i] = registro;
lista.cont++;

}
} ...

Página 773Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void eliminar(tLista &lista, int pos, bool &ok) { // pos = 1..
ok = true;
if ((pos < 1) || (pos > lista.cont)) {

ok = false; // Posición inexistente
}
else {

pos‐‐; // Pasamos a índice del array
for (int i = pos + 1; i < lista.cont; i++) {

// Desplazamos a la izquierda
lista.registros[i ‐ 1] = lista.registros[i];

}
lista.cont‐‐;

}
}

...

Página 774Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Módulo:	Gestión	de	una	lista	ordenada	I
#include <iostream>
using namespace std;
#include "lista.h"

int menu();

int main() {
tLista lista;
bool ok;
int op, pos;
cargar(lista, ok);
if (!ok) {

cout << "No se ha podido abrir el archivo!" << endl;
}
else {

do {
mostrar(lista);
op = menu(); ...

Página 775Fundamentos de la programación: Programación modular

bd.cppbd.cppPrograma principalPrograma principal
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

if (op == 1) {
tRegistro registro = nuevo();
insertar(lista, registro, ok);
if (!ok) {

cout << "Error: Lista llena!" << endl;
}

}
else if (op == 2) {

cout << "Posición: ";
cin >> pos;
eliminar(lista, pos, ok);
if (!ok) {

cout << "Error: Posicion inexistente!" << endl;
}

}
else if (op == 3) {

string nombre;
cin.sync();
cout << "Nombre: ";
cin >> nombre;
int pos = buscar(lista, nombre);
...

Página 776Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

if (pos == ‐1) {
cout << "No se ha encontrado!" << endl;

}
else {

cout << "Encontrado en la posición " << pos << endl;
}

}
} while (op != 0);
guardar(lista);

}
return 0;

}

int menu() {
cout << endl;
cout << "1 ‐ Insertar" << endl;
cout << "2 ‐ Eliminar" << endl;
cout << "3 ‐ Buscar" << endl;
cout << "0 ‐ Salir" << endl;
int op;
do {

...

Página 777Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 778Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

G++
Archivos	de	cabecera	e	implementación	en	la	misma	carpeta
Listamos	todos	los	.cpp en	la	orden	g++:

D:\FP\Tema08>g++ ‐o bd.exe lista.cpp bd.cpp

Recuerda	que	sólo	se	compilan	los	.cpp

Visual	C++/Studio
Archivos	de	cabecera	e	implementación	en	grupos	distintos:

Página 779Fundamentos de la programación: Programación modular

A	los	archivos	de	cabecera
los	llama	de	encabezado
Con	Depurar ‐> Generar solución
se	compilan	todos	los	.cpp

A	los	archivos	de	cabecera
los	llama	de	encabezado
Con	Depurar ‐> Generar solución
se	compilan	todos	los	.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 780Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <string>
using namespace std;

const int N = 100;

typedef struct {
int codigo;
string nombre;
double sueldo;

} tRegistro;

typedef tRegistro
tArray[N];

typedef struct {
tArray registros;
int cont;

} tLista;
...

Directivas:	#...

Antes	de	compilar	se	pone	en	marcha	el	preprocesador

Interpreta	las	directivas	y	genera	un	único	archivo	temporal	con	
todo	el	código	del	módulo	o	programa
Como	en	la	inclusión	(directiva	#include):

Página 781Fundamentos de la programación: Programación modular

#include "lista.h"

int menu();

...

#include <string>
using namespace std;

const int N = 100;

typedef struct {
int codigo;
string nombre;
double sueldo;

} tRegistro;

typedef tRegistro
tArray[N];

typedef struct {
tArray registros;
int cont;

} tLista;
...

int menu();
...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 782Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Distribuir	la	funcionalidad	del	programa	en	módulos
Encapsulación	de	un	conjunto	de	subprogramas	relacionados:

 Por	la	estructura	de	datos	sobre	la	que	trabajan

 Subprogramas	de	utilidad

A	menudo	las	estructuras	de	datos	contienen	otras	estructuras:
const int N = 100;
typedef struct {

int codigo;
string nombre;
double sueldo;

} tRegistro;
typedef tRegistro tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;

Página 783Fundamentos de la programación: Programación modular

Lista	de	registros:

 Estructura	tRegistro

 Estructura	tLista
(contiene	tRegistro)

Cada	estructura,	en	su	módulo

Lista	de	registros:

 Estructura	tRegistro

 Estructura	tLista
(contiene	tRegistro)

Cada	estructura,	en	su	módulo

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	II
#include <string>
using namespace std;

typedef struct {
int codigo;
string nombre;
double sueldo;

} tRegistro;

tRegistro nuevo();
bool operator>(tRegistro opIzq, tRegistro opDer);
bool operator<(tRegistro opIzq, tRegistro opDer);
void mostrar(int pos, tRegistro registro);

Página 784Fundamentos de la programación: Programación modular

registro.hregistro.hCabeceraCabecera

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	II
#include <iostream>
#include <string>
using namespace std;
#include <iomanip>
#include "registro.h"

tRegistro nuevo() {
tRegistro registro;
cout << "Introduce el código: ";
cin >> registro.codigo;
cout << "Introduce el nombre: ";
cin >> registro.nombre;
cout << "Introduce el sueldo: ";
cin >> registro.sueldo;
return registro;

}

bool operator>(tRegistro opIzq, tRegistro opDer) {
return opIzq.nombre > opDer.nombre;

} ...

Página 785Fundamentos de la programación: Programación modular

registro.cppregistro.cppImplementaciónImplementación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	II
#include <string>
using namespace std;
#include "registro.h"

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;
const string BD = "bd.txt";

void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..N
int buscar(tLista lista, string nombre);
void mostrar(const tLista &lista);
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);

Página 786Fundamentos de la programación: Programación modular

lista2.hlista2.hCabeceraCabecera

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	II
#include <iostream>
using namespace std;
#include <fstream>
#include "lista2.h"

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {

ok = false; // Lista llena
}
else {

int i = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {

i++;
}
// Insertamos en la posición i
for (int j = lista.cont; j > i; j‐‐) {// Desplazar a la derecha

lista.registros[j] = lista.registros[j ‐ 1];
}
...

Página 787Fundamentos de la programación: Programación modular

lista2.cpplista2.cppImplementaciónImplementación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	II
#include <iostream>
using namespace std;
#include "registro.h"
#include "lista2.h"

int menu();

int main() {
tLista lista;
bool ok;
int op, pos;

cargar(lista, ok);
if (!ok) {

cout << "No se pudo abrir el archivo!" << endl;
}
else {

do {
mostrar(lista);
op = menu();
...

Página 788Fundamentos de la programación: Programación modular

bd2.cppbd2.cpp

¡No	intentes	compilar	este	ejemplo!

Tiene	errores

¡No	intentes	compilar	este	ejemplo!

Tiene	errores

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 789Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	II
2	módulos	y	el	programa	principal:

Página 790Fundamentos de la programación: Programación modular

#include <string>
...

registro.hregistro.h

...
#include "registro.h"
...

registro.cppregistro.cpp

...
#include "registro.h"
...

lista2.hlista2.h

...
#include "lista2.h"
...

lista2.cpplista2.cpp

...
#include "registro.h"
#include "lista2.h"
...

bd2.cppbd2.cpp

Incluye...Incluye...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	II
Preprocesamiento	de	#include:
#include <iostream>
using namespace std;

#include "registro.h"

#include "lista2.h"

int menu();

...

Página 791Fundamentos de la programación: Programación modular

#include <string>
using namespace std;

typedef struct {
...

} tRegistro;
...

#include <string>
using namespace std;
#include "registro.h"

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;
...

#include <string>
using namespace std;

typedef struct {
...

} tRegistro;
...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	II
Preprocesamiento	de	#include:
#include <iostream>
using namespace std;

#include <string>
using namespace std;

typedef struct {
...

} tRegistro;
...

#include "lista2.h"

int menu();

...

Página 792Fundamentos de la programación: Programación modular

#include <string>
using namespace std;
#include <string>
using namespace std;

typedef struct {
...

} tRegistro;
...

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;
...

SustituidoSustituido

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	II

Página 793Fundamentos de la programación: Programación modular

#include <iostream>
using namespace std;

#include <string>
using namespace std;

typedef struct {
...

} tRegistro;
...

#include <string>
using namespace std;
#include <string>
using namespace std;

typedef struct {
...

} tRegistro;
...

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;
...

int menu();

...

¡Identificador	duplicado!¡Identificador	duplicado!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Compilación	condicional
Directivas	#ifdef,	#ifndef,	#else y	#endif

Se	usan	en	conjunción	con	la	directiva	#define
#define X #define X
#ifdef X #ifndef X
... // Código if ... // Código if
[#else [#else
... // Código else ... // Código else
]]
#endif #endif

La	directiva	#define define	un	símbolo	(identificador)

Izquierda:	se	compilará	el	“Código	if”	y	no	el	“Código	else”
Derecha:	al	revés,	o	nada	si	no	hay	else

Las	cláusulas	else	son	opcionales

Página 794Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Protección	frente	a	inclusiones	múltiples

lista2.cpp y	bd2.cpp incluyen	registro.h
 ¡Identificadores	duplicados!

Cada	módulo	debe	incluirse	una	y	sólo	una	vez

Protección	frente	a	inclusiones	múltiples:
#ifndef X
#define X
... // Módulo
#endif

La	primera	vez	no	está	definido	el	símbolo	X:	se	incluye	y	define

Las	siguientes	veces	el	símbolo	X ya	está	definido:	no	se	incluye

Símbolo	X:	nombre	del	archivo	con	_	en	lugar	de	.

registro_h,	lista2_h,	...

Página 795Fundamentos de la programación: Programación modular

El	símbolo	X	debe	ser	único
para	cada	módulo	de	la	aplicación
El	símbolo	X	debe	ser	único
para	cada	módulo	de	la	aplicación

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada III
#ifndef registrofin_h

#define registrofin_h

#include <string>

using namespace std;

typedef struct {

int codigo;

string nombre;

double sueldo;

} tRegistro;

tRegistro nuevo();

bool operator>(tRegistro opIzq, tRegistro opDer);

bool operator<(tRegistro opIzq, tRegistro opDer);

void mostrar(int pos, tRegistro registro);

#endif

Página 796Fundamentos de la programación: Programación modular

registrofin.hregistrofin.hCabeceraCabecera

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	III
#include <iostream>
#include <string>
using namespace std;
#include <iomanip>
#include "registrofin.h"

tRegistro nuevo() {
tRegistro registro;
cout << "Introduce el código: ";
cin >> registro.codigo;
cout << "Introduce el nombre: ";
cin >> registro.nombre;
cout << "Introduce el sueldo: ";
cin >> registro.sueldo;
return registro;

}

bool operator>(tRegistro opIzq, tRegistro opDer) {

return opIzq.nombre > opDer.nombre;

} ...

Página 797Fundamentos de la programación: Programación modular

registrofin.cppregistrofin.cppImplementaciónImplementación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	III
#ifndef listafin_h
#define listafin_h
#include <string>
using namespace std;
#include "registrofin.h"

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;
const string BD = "bd.txt";
void mostrar(const tLista &lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..N
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);
#endif

Página 798Fundamentos de la programación: Programación modular

listafin.hlistafin.hCabeceraCabecera

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	III
#include <iostream>
using namespace std;
#include <fstream>
#include "listafin.h"

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {

ok = false; // lista llena
}
else {

int i = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {

i++;
}
// Insertamos en la posición i
for (int j = lista.cont; j > i; j‐‐) {

// Desplazamos a la derecha
lista.registros[j] = lista.registros[j ‐ 1];

}
...

Página 799Fundamentos de la programación: Programación modular

listafin.cpplistafin.cppImplementaciónImplementación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	III
#include <iostream>
using namespace std;
#include "registrofin.h"
#include "listafin.h"

int menu();

int main() {
tLista lista;
bool ok;
int op, pos;

cargar(lista, ok);
if (!ok) {

cout << "No se pudo abrir el archivo!" << endl;
}
else {

do {
mostrar(lista);
op = menu();
...

Página 800Fundamentos de la programación: Programación modular

bdfin.cppbdfin.cpp

¡Ahora	ya	puedes	compilarlo!¡Ahora	ya	puedes	compilarlo!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	III
Preprocesamiento	de	#include en	bdfin.cpp:
#include <iostream>
using namespace std;

#include "registrofin.h"

#include "listafin.h"

int menu();

...

Página 801Fundamentos de la programación: Programación modular

#ifndef registrofin_h

#define registrofin_h

#include <string>
using namespace std;

typedef struct {
...

} tRegistro;
...

registrofin_h no	se	ha	definido	todavíaregistrofin_h no	se	ha	definido	todavía

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	III
Preprocesamiento	de	#include en	bdfin.cpp:
#include <iostream>
using namespace std;

#define registrofin_h
#include <string>
using namespace std;

typedef struct {
...

} tRegistro;
...

#include "listafin.h"

int menu();

...

Página 802Fundamentos de la programación: Programación modular

#ifndef listafin_h
#define listafin_h
#include <string>
using namespace std;
#include "registrofin.h"

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;
...

listafin_h no	se	ha	definido	todavíalistafin_h no	se	ha	definido	todavía

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Gestión	de	una	lista	ordenada	III
Preprocesamiento	de	#include en	bdfin.cpp:
#include <iostream>
using namespace std;
#define registrofin_h
#include <string>
using namespace std;

typedef struct {
...

} tRegistro;
...

#define listafin_h
#include <string>
using namespace std;
#include "registrofin.h"

...
int menu();
...

Página 803Fundamentos de la programación: Programación modular

#ifndef registrofin_h

#define registrofin_h

#include <string>
using namespace std;

typedef struct {
...

} tRegistro;
...

¡registrofin_h ya	está	definido!¡registrofin_h ya	está	definido!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 804Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Misma	interfaz,	implementación	alternativa

Página 805Fundamentos de la programación: Programación modular

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {

ok = false; // Lista llena
}
else {

int i = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {

i++;
}
// Insertamos en la posición i
for (int j = lista.cont; j > i; j‐‐) {
// Desplazamos a la derecha

lista.registros[j] = lista.registros[j ‐ 1];
...

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {

ok = false; // Lista llena
}
else {

lista.registros[lista.cont] = registro;
lista.cont++;

}
}

Lista
ordenada
Lista

ordenada
Lista

no	ordenada
Lista

no	ordenada

#include <string>
using namespace std;
#include "registrofin.h"

const int N = 100;
typedef tRegistro tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;

void insertar(tLista &lista, tRegistro registro, bool &ok);

lista.hlista.h

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Misma	interfaz,	implementación	alternativa

Página 806Fundamentos de la programación: Programación modular

...
#include "lista.h"

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {

ok = false; // Lista llena
}
else {

int i = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {

i++;
}
// Insertamos en la posición i
for (int j = lista.cont; j > i; j‐‐) {
// Desplazamos a la derecha

lista.registros[j] = lista.registros[j ‐ 1];
}
lista.registros[i] = registro;
...

listaORD.cpp:	Lista	ordenadalistaORD.cpp:	Lista	ordenada

...
#include "lista.h"

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {

ok = false; // Lista llena
}
else {

lista.registros[lista.cont] = registro;
lista.cont++;

}
}
...

listaDES.cpp:	Lista	no	ordenadalistaDES.cpp:	Lista	no	ordenada

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Misma	interfaz,	implementación	alternativa
Al	compilar,	incluimos	un	archivo	de	implementación	u	otro:

¿Programa	con	lista	ordenada	o	con	lista	desordenada?

g++ ‐o programa.exe registrofin.cpp listaORD.cpp ...

Incluye	la	implementación	de	la	lista	con	ordenación

g++ ‐o programa.exe registrofin.cpp listaDES.cpp ...

Incluye	la	implementación	de	la	lista	sin	ordenación

Página 807Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 808Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Agrupaciones	lógicas	de	declaraciones
Espacio	de	nombres:	agrupación	de	declaraciones	
(tipos,	datos,	subprogramas)	bajo	un	nombre	distintivo

Forma	de	un	espacio	de	nombres:
namespace nombre {

// Declaraciones
}

Por	ejemplo:
namespace miEspacio {

int i;
double d;

}

Variables	i y	d declaradas	en	el	espacio	de	nombres	miEspacio

Página 809Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Acceso	a	miembros	de	un	espacio	de	nombres
Operador	de	resolución	de	ámbito (::)

Acceso	a	las	variables	del	espacio	de	nombres	miEspacio:

Nombre	del	espacio	y	operador		de	resolución	de	ámbito
miEspacio::i
miEspacio::d

Puede	haber	entidades	con	el	mismo	identificador	en	distintos	
módulos	o	en	ámbitos	distintos	de	un	mismo	módulo

Cada	declaración	en	un	espacio	de	nombres	distinto:
namespace primero { namespace segundo {

int x = 5; double x = 3.1416;
} }

Ahora	se	distingue	entre	primero::x y	segundo::x

Página 810Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

using

Introduce un	nombre	de un espacio	de	nombres	en el	ámbito	actual:
#include <iostream>
using namespace std;
namespace primero {

int x = 5;
int y = 10;

}
namespace segundo {

double x = 3.1416;
double y = 2.7183;

}
int main() {

using primero::x;
using segundo::y;
cout << x << endl; // x es primero::x
cout << y << endl; // y es segundo::y
cout << primero::y << endl; // espacio explícito
cout << segundo::x << endl; // espacio explícito
return 0;

}

Página 811Fundamentos de la programación: Programación modular

5

2.7183

10

3.1416

5

2.7183

10

3.1416

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

using namespace

Introduce todos	los	nombres	de un espacio	en el	ámbito	actual:
#include <iostream>
using namespace std;
namespace primero {

int x = 5;
int y = 10;

}
namespace segundo {

double x = 3.1416;
double y = 2.7183;

}
int main() {

using namespace primero;
cout << x << endl; // x es primero::x
cout << y << endl; // y es primero::y
cout << segundo::x << endl; // espacio explícito
cout << segundo::y << endl; // espacio explícito
return 0;

}

Página 812Fundamentos de la programación: Programación modular

5

10

3.1416

2.7183

5

10

3.1416

2.7183

using [namespace]
sólo	tiene	efecto	
en el bloque
en	que se	encuentra

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#ifndef listaEN_h
#define listaEN_h
#include "registrofin.h"

namespace ord { // Lista ordenada
const int N = 100;
typedef tRegistro tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;
const string BD = "bd.txt";
void mostrar(const tLista &lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int pos, bool &ok); // 1..N
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);

} // namespace

#endif

Página 813Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Implementación
#include <iostream>
#include <fstream>
using namespace std;
#include "listaEN.h"

void ord::insertar(tLista &lista, tRegistro registro, bool &ok) {
// ...

}

void ord::eliminar(tLista &lista, int pos, bool &ok) {
// ...

}

int ord::buscar(tLista lista, string nombre) {
// ...

}

...

Página 814Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Uso	del	espacio	de	nombres
Quien	utilice	listaEN.h debe	poner	el	nombre	del	espacio:
#include <iostream>
using namespace std;
#include "registrofin.h"
#include "listaEN.h"

int menu();

int main() {
ord::tLista lista;
bool ok;
ord::cargar(lista, ok);
if (!ok) {

cout << "No se pudo abrir el archivo!" << endl;
}
else {

ord::mostrar(lista);
...

O	usar	una	instrucción	using namespace ord;

Página 815Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Uso	del	espacio	de	nombres
#include <iostream>
using namespace std;
#include "registrofin.h"
#include "listaEN.h"
using namespace ord;

int menu();

int main() {
tLista lista;
bool ok;
cargar(lista, ok);
if (!ok) {

cout << "No se pudo abrir el archivo!" << endl;
}
else {

mostrar(lista);
...

Página 816Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Implementaciones	alternativas
Distintos	espacios	de	nombres	para	distintas	implementaciones

¿Lista	ordenada	o	lista	desordenada?
namespace ord { // Lista ordenada

const int N = 100;
typedef tRegistro tArray[N];
...
void mostrar(const tLista &lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);
...

} // namespace

namespace des { // Lista desordenada
const int N = 100;
typedef tRegistro tArray[N];
...
void mostrar(const tLista &lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);
...

} // namespace

Página 817Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Implementaciones	alternativas
Todo	lo	común	puede	estar	fuera	de	la	estructura	namespace:
#ifndef listaEN_H
#define listaEN_H

#include "registrofin.h"

const int N = 100;

typedef tRegistro tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;

void mostrar(const tLista &lista);
void eliminar(tLista &lista, int pos, bool &ok); // pos = 1..N

...

Página 818Fundamentos de la programación: Programación modular

listaEN.hlistaEN.hCabeceraCabecera

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

namespace ord { // Lista ordenada
const string BD = "bd.txt";
void insertar(tLista &lista, tRegistro registro, bool &ok);
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);

} // namespace

namespace des { // Lista desordenada
const string BD = "bddes.txt";
void insertar(tLista &lista, tRegistro registro, bool &ok);
int buscar(tLista lista, string nombre);
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);

} // namespace

#endif

Página 819Fundamentos de la programación: Programación modular

cargar() y	guardar() se	distinguen	porque	usan
su	propia	BD,	pero	se	implementan	exactamente	igual
cargar() y	guardar() se	distinguen	porque	usan
su	propia	BD,	pero	se	implementan	exactamente	igual

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
using namespace std;
#include <fstream>
#include "listaEN.h"

// IMPLEMENTACIÓN DE LOS SUBPROGRAMAS COMUNES
void eliminar(tLista &lista, int pos, bool &ok) { // ...
}

void mostrar(const tLista &lista) { // ...
}

// IMPLEMENTACIÓN DE LOS SUBPROGRAMAS DEL ESPACIO DE NOMBRES ord
void ord::insertar(tLista &lista, tRegistro registro, bool &ok) {

ok = true;
if (lista.cont == N) {

ok = false; // Lista llena
}
else {

int i = 0;
while ((i < lista.cont) && (lista.registros[i] < registro)) {

i++;
} ...

Página 820Fundamentos de la programación: Programación modular

listaEN.cpplistaEN.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

for (int j = lista.cont; j > i; j‐‐) {
lista.registros[j] = lista.registros[j ‐ 1];

}
lista.registros[i] = registro;
lista.cont++;

}
}

int ord::buscar(tLista lista, string nombre) {
int ini = 0, fin = lista.cont ‐ 1, mitad;
bool encontrado = false;
while ((ini <= fin) && !encontrado) {

mitad = (ini + fin) / 2;
if (nombre == lista.registros[mitad].nombre) {

encontrado = true;
}
else if (nombre < lista.registros[mitad].nombre) {

fin = mitad ‐ 1;
}
else {

ini = mitad + 1;
}

} ...

Página 821Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

if (encontrado) {
mitad++;

}
else {

mitad = ‐1;
}
return mitad;

}

void ord::cargar(tLista &lista, bool &ok) { // ...
}

void ord::guardar(tLista lista) { // ...
}
...

Página 822Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

// IMPLEMENTACIÓN DE LOS SUBPROGRAMAS DEL ESPACIO DE NOMBRES des

void des::insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {

ok = false; // Lista llena
}
else {

lista.registros[lista.cont] = registro;
lista.cont++;

}
}

int des::buscar(tLista lista, string nombre) {
int pos = 0;
bool encontrado = false;
while ((pos < lista.cont) && !encontrado) {

if (nombre == lista.registros[pos].nombre) {
encontrado = true;

}
else {

pos++;
}

} ...

Página 823Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

if (encontrado) {
pos++;

}
else {

pos = ‐1;
}
return pos;

}

void des::cargar(tLista &lista, bool &ok) { // ...
}

void des::guardar(tLista lista) { // ...
}

Página 824Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Programa	principal
#include <iostream>
using namespace std;
#include "registrofin.h"
#include "listaEN.h"
using namespace ord;

int menu();

int main() {
tLista lista;
bool ok;
...
tRegistro registro = nuevo();
insertar(lista, registro, ok);
if (!ok) {

...

Página 825Fundamentos de la programación: Programación modular

bdEN.cppbdEN.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Programa	principal
#include <iostream>
using namespace std;
#include "registrofin.h"
#include "listaEN.h"
using namespace des;

int menu();

int main() {
tLista lista;
bool ok;
...
tRegistro registro = nuevo();
insertar(lista, registro, ok);
if (!ok) {

...

Página 826Fundamentos de la programación: Programación modular

bdEN.cppbdEN.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 827Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Software	de	calidad
El	software	debe	ser	desarrollado	con	buenas	prácticas	de	
ingeniería	del	software	que	aseguren	un	buen	nivel	de	calidad

Los	distintos	módulos	de	la	aplicación	deben	ser	probados	
exhaustivamente,	tanto	de	forma	independiente	como	en	su	
relación	con	los	demás	módulos

La	prueba	y	depuración	es	muy	importante	y	todos	los	equipos	
deberán	seguir	buenas	pautas	para	asegurar	la	calidad

Los	módulos	deben	ser	igualmente	bien	documentados,	de	
forma	que	otros	desarrolladores	puedan	aprovecharlos

Página 828Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Prueba	exhaustiva
El	software	debe	ser	probado	exhaustivamente

Debemos	intentar	descubrir	todos	los	errores	posible

Los	errores	deben	ser	depurados,	corrigiendo	el	código

Pruebas	sobre	listas:

 Lista	inicialmente	vacía

 Lista	inicialmente	llena

 Lista	con	un	número	intermedio	de	elementos

 Archivo	no	existente

Etcétera...

Se	han	de	probar	todas	las	opciones/situaciones	del	programa

En	las	clases	prácticas	veremos	cómo	se	depura	el	software

Página 829Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

No	reinventemos	la	rueda
Desarrollar	el	software	pensando	en	su	posible	reutilización

Un	software	de	calidad	debe	poder	ser	fácilmente	reutilizado

Nuestros	módulos	deben	ser	fácilmente	usados	y	modificados

Por	ejemplo:	Nueva	aplicación	que	gestione	una	lista	de	longitud	
variable	de	registros	con	NIF,	nombre,	apellidos	y	edad
Partiremos	de	los	módulos	registro y	lista existentes

Las	modificaciones	básicamente	afectarán	al	módulo	registro

Página 830Fundamentos de la programación: Programación modular

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Programación modular Página 831

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

8A

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#include <iostream>
#include <string>
using namespace std;

const int NCLI = 100;
const int NPROD = 200;
const int NVENTAS = 3000;

typedef struct {
int id_cli;
string nif;
string nombre;
string telefono;

} tCliente;

typedef struct {
tCliente clientes[NCLI];
int cont;

} tListaClientes;

typedef struct {
int id_prod;
string codigo;

string nombre;
double precio;
int unidades;

} tProducto;

typedef struct {
tProducto productos[NPROD];
int cont;

} tListaProductos;

typedef struct {
int id;
int id_prod;
int id_cli;
int unidades;

} tVenta;

typedef struct {
tVenta ventas[NVENTAS];
int cont;

} tListaVentas;

...

Página 833Fundamentos de la programación: Ejemplo de modularización

ventas.cppventas.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

tCliente nuevoCliente();

bool valida(tCliente cliente); // Función interna

bool operator<(tCliente opIzq, tCliente opDer); // Por NIF

void mostrar(tCliente cliente);

void inicializar(tListaClientes &lista);

void cargar(tListaClientes &lista);

void insertar(tListaClientes &lista, tCliente cliente, bool &ok);

void buscar(const tListaClientes &lista, string nif, tCliente &cliente, bool &ok);

void eliminar(tListaClientes &lista, string nif, bool &ok);

void mostrar(const tListaClientes &lista);

tProducto nuevoProducto();

bool valida(tProducto producto); // Función interna

bool operator<(tProducto opIzq, tProducto opDer); // Por código

void mostrar(tProducto producto);

void inicializar(tListaProductos &lista);

void cargar(tListaProductos &lista);

void insertar(tListaProductos &lista, tProducto producto, bool &ok);

void buscar(const tListaProductos &lista, string codigo, tProducto &producto,
bool &ok);

void eliminar(tListaProductos &lista, string codigo, bool &ok);

...

Página 834Fundamentos de la programación: Ejemplo de modularización

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void mostrar(const tListaProductos &lista);

tVenta nuevaVenta(int id_prod, int id_cli, int unidades);

bool valida(tVenta venta); // Función interna

void mostrar(tVenta venta, const tListaClientes &clientes,
const tListaProductos &productos);

void inicializar(tListaVentas &lista);

void cargar(tListaVentas &lista);

void insertar(tListaVentas &lista, tVenta venta, bool &ok);

void buscar(const tListaVentas &lista, int id, tVenta &venta, bool &ok);

void eliminar(tListaVentas &lista, int id, bool &ok);

void ventasPorClientes(const tListaVentas &lista);

void ventasPorProductos(const tListaVentas &lista);

double totalVentas(const tListaVentas &ventas, string nif,
const tListaClientes &clientes,
const tListaProductos &productos);

void stock(const tListaVentas &ventas, const tListaClientes &clientes,
const tListaProductos &productos);

int menu();

int main() {

...

Página 835Fundamentos de la programación: Ejemplo de modularización

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Lista	de	ventas

#include <iostream>
#include <string>
using namespace std;

const int NCLI = 100;
const int NPROD = 200;
const int NVENTAS = 3000;

typedef struct {
int id_cli;
string nif;
string nombre;
string telefono;

} tCliente;

typedef struct {
tCliente clientes[NCLI];
int cont;

} tListaClientes;

typedef struct {
int id_prod;
string codigo;

string nombre;
double precio;
int unidades;

} tProducto;

typedef struct {
tProducto productos[NPROD];
int cont;

} tListaProductos;

typedef struct {
int id;
int id_prod;
int id_cli;
int unidades;

} tVenta;

typedef struct {
tVenta ventas[NVENTAS];
int cont;

} tListaVentas;

...

Página 836Fundamentos de la programación: Ejemplo de modularización

Cliente

Lista	de	clientes

Producto

Lista	de	productos

Venta

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

tCliente nuevoCliente();

bool valida(tCliente cliente); // Función interna

bool operator<(tCliente opIzq, tCliente opDer); // Por NIF

void mostrar(tCliente cliente);

void inicializar(tListaClientes &lista);

void cargar(tListaClientes &lista);

void insertar(tListaClientes &lista, tCliente cliente, bool &ok);

void buscar(const tListaClientes &lista, string nif, tCliente &cliente,
bool &ok);

void eliminar(tListaClientes &lista, string nif, bool &ok);

void mostrar(const tListaClientes &lista);

tProducto nuevoProducto();

bool valida(tProducto producto); // Función interna

bool operator<(tProducto opIzq, tProducto opDer); // Por código

void mostrar(tProducto producto);

...

Página 837Fundamentos de la programación: Ejemplo de modularización

Cliente

Lista	de	clientes

Producto

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void inicializar(tListaProductos &lista);

void cargar(tListaProductos &lista);

void insertar(tListaProductos &lista, tProducto producto, bool &ok);

void buscar(const tListaProductos &lista, string codigo, tProducto &producto,
bool &ok);

void eliminar(tListaProductos &lista, string codigo, bool &ok);

void mostrar(const tListaProductos &lista);

tVenta nuevaVenta(int id_prod, int id_cli, int unidades);

bool valida(tVenta venta); // Función interna

void mostrar(tVenta venta, const tListaClientes &clientes,
const tListaProductos &productos);

...

Página 838Fundamentos de la programación: Ejemplo de modularización

Venta

Lista	de	productos

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

void inicializar(tListaVentas &lista);

void cargar(tListaVentas &lista);

void insertar(tListaVentas &lista, tVenta venta, bool &ok);

void buscar(const tListaVentas &lista, int id, tVenta &venta, bool &ok);

void eliminar(tListaVentas &lista, int id, bool &ok);

void ventasPorClientes(const tListaVentas &lista);

void ventasPorProductos(const tListaVentas &lista);

double totalVentas(const tListaVentas &ventas, string nif,
const tListaClientes &clientes,
const tListaProductos &productos);

void stock(const tListaVentas &ventas, const tListaClientes &clientes,
const tListaProductos &productos);

int menu();

int main() {

...

Página 839Fundamentos de la programación: Ejemplo de modularización

Lista	de	ventas

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

 Cliente:	cliente.h y	cliente.cpp

 Lista	de	clientes:	listaclientes.h y	listaclientes.cpp

 Producto:	producto.h y	producto.cpp

 Lista	de	productos:	listaproductos.h y	listaproductos.cpp

 Venta:	venta.h y	venta.cpp

 Lista	de	ventas:	listaventas.h y	listaventas.cpp

 Programa	principal:	main.cpp

Distribución	del	código	en	los	módulos:
 Declaraciones	de	tipos	y	datos	en	el	archivo	de	cabecera	(.h)

 Prototipos	en	el	archivo	de	cabecera	(.h)	(excepto	los	de	los	
subprogramas	privados	–internos–,	que	irán	en	el	.cpp)

 Implementación	de	los	subprogramas	en	el	.cpp

Página 840Fundamentos de la programación: Ejemplo de modularización

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 841Fundamentos de la programación: Ejemplo de modularización

Ventas
main.cpp

Producto
producto.h

producto.cpp

Lista	de	productos
listaproductos.h

listaproductos.cpp

Cliente
cliente.h

cliente.cpp

Lista	de	clientes
listaclientes.h

listaclientes.cpp

Venta
venta.h

venta.cpp

Lista	de	ventas
listaventas.h

listaventas.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Inclusiones	(además	de	otras	bibliotecas	del	sistema)
typedef struct {

int id_cli;
string nif;
string nombre;
string telefono;

} tCliente;

const int NCLI = 100;

typedef struct {
tCliente clientes[NCLI];
int cont;

} tListaClientes;

void buscar(const tListaClientes &lista, string nif, tCliente
&cliente, bool &ok);

Página 842Fundamentos de la programación: Ejemplo de modularización

cliente.h string

listaclientes.h cliente.h

string

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

typedef struct {
int id_prod;
string codigo;
string nombre;
double precio;
int unidades;

} tProducto;

const int NPROD = 200;

typedef struct {
tProducto productos[NPROD];
int cont;

} tListaProductos;

void buscar(const tListaProductos &lista, string codigo, tProducto
&producto, bool &ok);

Página 843Fundamentos de la programación: Ejemplo de modularización

producto.h string

listaproductos.h producto.h

string

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

typedef struct {
int id;
int id_prod;
int id_cli;
int unidades;

} tVenta;

void mostrar(tVenta venta, const tListaClientes &clientes,
const tListaProductos &productos);

const int NVENTAS = 3000;

typedef struct {
tVenta ventas[NVENTAS];
int cont;

} tListaVentas;

double totalVentas(const tListaVentas &ventas, string nif,
const tListaClientes &clientes,

const tListaProductos &productos);

Página 844Fundamentos de la programación: Ejemplo de modularización

venta.h listaclientes.h

listaproductos.h

listaventas.h venta.h

listaclientes.h

listaproductos.h

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

#ifndef cliente_h
#define cliente_h

#include <string>
using namespace std;

typedef struct {
int id_cli;
string nif;
string nombre;
string telefono;

} tCliente;

tCliente nuevoCliente();
bool operator<(tCliente opIzq, tCliente opDer); // Por NIF
void mostrar(tCliente cliente);

#endif

Página 845Fundamentos de la programación: Ejemplo de modularización

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Ejemplo de modularización Página 846

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

9

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: Punteros y memoria dinámica

Direcciones de memoria y punteros 849
Operadores de punteros 854
Punteros y direcciones válidas 864

Punteros no inicializados 866
Un valor seguro: NULL 867

Copia y comparación de punteros 868
Tipos puntero 873

Punteros a estructuras 875
Punteros a constantes y punteros constantes 877

Punteros y paso de parámetros 879
Punteros y arrays 883
Memoria y datos del programa 886
Memoria dinámica 891
Punteros y datos dinámicos 895
Gestión de la memoria 907
Errores comunes 911
Arrays de datos dinámicos 916
Arrays dinámicos 928

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 849Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Los	datos	en	la	memoria
Todo	dato	se	almacena	en	memoria:

Varios	bytes	a	partir	de	una	dirección

int i = 5;

El	dato	(i)	se	accede	a	partir	de	su	dirección	base (0F03:1A38)

Dirección	de	la	primera	celda	de	memoria	utilizada	por	el	dato
El	tipo	del	dato	(int)	indica	cuántos	bytes	(4)	requiere	el	dato:

00000000 00000000 00000000 00000101  5
(La	codificación	de	los	datos	puede	ser	diferente;	y	la	de	las	direcciones	también)

Página 850Fundamentos de la programación: Punteros y memoria dinámica

0F03:1A37 ...

i 0F03:1A38 00000000

0F03:1A39 00000000

0F03:1A3A 00000000

0F03:1A3B 00000101

0F03:1A3C ...

Dirección	baseDirección	base

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Los	punteros	contienen	direcciones	de	memoria
Un	puntero sirve	para	acceder	a	través	de	él	a	otro	dato

El	valor	del	puntero	es	la	dirección	de	memoria	base	de	otro	dato

Página 851Fundamentos de la programación: Punteros y memoria dinámica

...

i 0F03:1A38 00

0F03:1A39 00

0F03:1A3A 00

0F03:1A3B 05

...

punt 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

...

Indirección:
Acceso	indirecto	a	un	dato
Indirección:
Acceso	indirecto	a	un	dato

puntpunt

5ii

punt apunta a	ipunt apunta a	i

¿De	qué	tipo	es	el	dato	apuntado?
¿Cuántas	celdas	ocupa?
¿Cómo	se	interpretan	los	0/1?

¿De	qué	tipo	es	el	dato	apuntado?
¿Cuántas	celdas	ocupa?
¿Cómo	se	interpretan	los	0/1?

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Los	punteros	contienen	direcciones	de	memoria
¿De	qué	tipo	es	el	dato	apuntado?

La	variable	a	la	que	apunta	un	puntero	será	de	un	tipo	concreto

¿Cuánto	ocupa?	¿Cómo	se	interpreta?

El	tipo	de	variable	apuntado	se	establece	al	declarar	el	puntero:
tipo *nombre;

El	puntero	nombre apuntará	a	una	variable	del	tipo indicado

El	asterisco	(*)	indica	que	es	un	puntero	a	datos	de	ese	tipo
int *punt; // punt inicialmente contiene una dirección

// que no es válida (no apunta a nada)

El	puntero	punt apuntará	a	una	variable	entera	(int)
int i; // Dato entero vs.	 int *punt; // Puntero a entero

Página 852Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Los	punteros	contienen	direcciones	de	memoria
Las	variables	puntero	tampoco	se	inicializan	automáticamente

Al	declararlas	sin	inicializador	contienen	direcciones	no	válidas
int *punt; // punt inicialmente contiene una dirección

// que no es válida (no apunta a nada)

Un	puntero	puede	apuntar	a	cualquier	dato	de	su	tipo	base

Un	puntero	no	tiene	por	qué	apuntar	necesariamente	a	un	dato
(puede	no	apuntar	a	nada:	valor	NULL)

¿Para	qué	sirven	los	punteros?

 Para	implementar	el	paso	de	parámetros	por	referencia

 Para	manejar	datos	dinámicos
(Datos	que	se	crean	y	destruyen	durante	la	ejecución)

 Para	implementar	los	arrays

Página 853Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 854Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Obtener	la	dirección	de	memoria	de	...
Operador	monario	y	prefijo
& devuelve	la	dirección	de	memoria	base	del	dato	al	que	precede
int i;

cout << &i; // Muestra la dirección de memoria de i

Un	puntero	puede	recibir	la	dirección	de	datos	de	su	tipo	base

int i;

int *punt;

punt = &i; // punt contiene la dirección de i

Ahora	punt ya	contiene	una	dirección	de	memoria	válida

punt apunta a	(contiene	la	dirección	de)	la	variable	i (int)

Página 855Fundamentos de la programación: Punteros y memoria dinámica

&&

puntpunt

ii

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Obtener	la	dirección	de	memoria	de	...

int i, j;

...

int *punt;

Página 856Fundamentos de la programación: Punteros y memoria dinámica

...

i 0F03:1A38

0F03:1A39

0F03:1A3A

0F03:1A3B

j 0F03:1A3C

0F03:1A3D

0F03:1A3E

0F03:1A3F

...

punt 0F07:0417

0F07:0418

0F07:0419

0F07:041A

...

&&

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Obtener	la	dirección	de	memoria	de	...

int i, j;

...

int *punt;

...

i = 5;

Página 857Fundamentos de la programación: Punteros y memoria dinámica

...

i 0F03:1A38 00

0F03:1A39 00

0F03:1A3A 00

0F03:1A3B 05

j 0F03:1A3C

0F03:1A3D

0F03:1A3E

0F03:1A3F

...

punt 0F07:0417

0F07:0418

0F07:0419

0F07:041A

...

&&

5ii

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Obtener	la	dirección	de	memoria	de	...

int i, j;

...

int *punt;

...

i = 5;

punt = &i;

Página 858Fundamentos de la programación: Punteros y memoria dinámica

...

i 0F03:1A38 00

0F03:1A39 00

0F03:1A3A 00

0F03:1A3B 05

j 0F03:1A3C

0F03:1A3D

0F03:1A3E

0F03:1A3F

...

punt 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

...

&&

puntpunt

5ii

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Obtener	lo	que	hay	en	la	dirección	...
Operador	monario	y	prefijo
* accede	a	lo	que	hay	en	la	dirección	de	memoria	a	la	que	precede

Permite	acceder	a	un	dato	a	través	un	puntero	que	lo	apunte:
punt = &i;

cout << *punt; // Muestra lo que hay en la dirección punt

*punt:	lo	que	hay	en	la	dirección	que	contiene	el	puntero	punt

punt contiene	la	dirección	de	memoria	de	la	variable	i

*punt accede	al	contenido	de	esa	variable	i

Acceso	indirecto	al	valor	de	i

Página 859Fundamentos de la programación: Punteros y memoria dinámica

**
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Obtener	lo	que	hay	en	la	dirección	...

int i, j;

...

int *punt;

...

i = 5;

punt = &i;

j = *punt;

Página 860Fundamentos de la programación: Punteros y memoria dinámica

...

i 0F03:1A38 00

0F03:1A39 00

0F03:1A3A 00

0F03:1A3B 05

j 0F03:1A3C

0F03:1A3D

0F03:1A3E

0F03:1A3F

...

punt 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

...

0F0F

0303

1A1A

3838
punt:punt:

**

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Obtener	lo	que	hay	en	la	dirección	...

int i, j;

...

int *punt;

...

i = 5;

punt = &i;

j = *punt;

Página 861Fundamentos de la programación: Punteros y memoria dinámica

...

i 0F03:1A38 00

0F03:1A39 00

0F03:1A3A 00

0F03:1A3B 05

j 0F03:1A3C

0F03:1A3D

0F03:1A3E

0F03:1A3F

...

punt 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

...

0000

0000

0000

0505

*punt:*punt:

**

Direccionamiento
indirecto

(indirección)
Se accede al dato i
de forma indirecta

Direccionamiento
indirecto

(indirección)
Se accede al dato i
de forma indirecta

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Obtener	lo	que	hay	en	la	dirección	...

int i, j;

...

int *punt;

...

i = 5;

punt = &i;

j = *punt;

Página 862Fundamentos de la programación: Punteros y memoria dinámica

...

i 0F03:1A38 00

0F03:1A39 00

0F03:1A3A 00

0F03:1A3B 05

j 0F03:1A3C

0F03:1A3D

0F03:1A3E

0F03:1A3F

...

punt 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

...

0000

0000

0000

0505

**

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Ejemplo	de	uso	de	punteros
#include <iostream>
using namespace std;

int main() {
int i = 5;
int j = 13;
int *punt;
punt = &i;
cout << *punt << endl; // Muestra el valor de i
punt = &j;
cout << *punt << endl; // Ahora muestra el valor de j
int *otro = &i;
cout << *otro + *punt << endl; // i + j
int k = *punt;
cout << k << endl; // Mismo valor que j

return 0;
}

Página 863Fundamentos de la programación: Punteros y memoria dinámica

punteros.cpppunteros.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 864Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Todo	puntero	ha	de	tener	una	dirección	válida
Un	puntero	sólo	debe	ser	utilizado	si	tiene	una	dirección	válida

Un	puntero	NO	contiene	una	dirección	válida	tras	ser	definido

Un	puntero	obtiene	una	dirección	válida:
 Asignando	la	dirección	de	otro	dato	(operador	&)

 Asignando	otro	puntero	(mismo	tipo	base)	que	ya	sea	válido
 Asignando	el	valor	NULL (puntero	nulo,	no	apunta	a	nada)

int i;

int *q; // q no tiene aún una dirección válida

int *p = &i; // p toma una dirección válida

q = p; // ahora q ya tiene una dirección válida

q = NULL; // otra dirección válida para q

Página 865Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Punteros	que	apuntan	a	saber	qué...
Un	puntero	no	inicializado	contiene	una	dirección	desconocida
int *punt; // No inicializado
*punt = 12; // ¿A qué dato se está asignando el valor?

¿Dirección	de	la	zona	de	datos	del	programa?

¡Podemos	modificar	inadvertidamente	un	dato	del	programa!

¿Dirección	de	la	zona	de	código	del	programa?

¡Podemos	modificar	el	código	del	propio	programa!

¿Dirección	de	la	zona	de	código	del	sistema	operativo?

¡Podemos	modificar	el	código	del	propio	S.O.!

 Consecuencias	imprevisibles	(cuelgue)

(Los	S.O.	modernos	protegen	bien	la	memoria)

Página 866Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Punteros	que	no	apuntan	a	nada
Inicializando	los	punteros	a	NULL podemos	detectar	errores:
int *punt = NULL;
...
*punt = 13;

punt ha	sido	inicializado	a	NULL:	¡No	apunta	a	nada!

Si	no	apunta	a	nada,	¿¿¿qué	significa	*punt???	No	tiene	sentido

 ERROR:	¡Acceso	a	un	dato	a	través	de	un	puntero	nulo!

Error	de	ejecución,	lo	que	ciertamente	no	es	bueno

Pero	sabemos	cuál	ha	sido	el	problema,	lo	que	es	mucho

Sabemos	dónde	y	qué	buscar	para	depurar

Página 867Fundamentos de la programación: Punteros y memoria dinámica

Xpuntpunt

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 868Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Apuntando	al	mismo	dato
Al	copiar	un	puntero	en	otro,	ambos	apuntarán	al	mismo	dato:

int x = 5;

int *punt1 = NULL; // punt1 no apunta a nada

int *punt2 = &x; // punt2 apunta a la variable x

Página 869Fundamentos de la programación: Punteros y memoria dinámica

Xpunt1punt1 punt2punt2

5xx

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Apuntando	al	mismo	dato
Al	copiar	un	puntero	en	otro,	ambos	apuntarán	al	mismo	dato:

int x = 5;

int *punt1 = NULL; // punt1 no apunta a nada

int *punt2 = &x; // punt2 apunta a la variable x

punt1 = punt2; // ambos apuntan a la variable x

Página 870Fundamentos de la programación: Punteros y memoria dinámica

punt1punt1 punt2punt2

5xx

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

5xx

Apuntando	al	mismo	dato
Al	copiar	un	puntero	en	otro,	ambos	apuntarán	al	mismo	dato:

int x = 5;

int *punt1 = NULL; // punt1 no apunta a nada

int *punt2 = &x; // punt2 apunta a la variable x

punt1 = punt2; // ambos apuntan a la variable x

*punt1 = 8;

Página 871Fundamentos de la programación: Punteros y memoria dinámica

Al	dato	x ahora	se	puede
acceder	de	tres	formas:

x *punt1 *punt2

Al	dato	x ahora	se	puede
acceder	de	tres	formas:

x *punt1 *punt2

punt1punt1 punt2punt2

8

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¿Apuntan	al	mismo	dato?
Operadores	relacionales	== y	!=:
int x = 5;
int *punt1 = NULL;
int *punt2 = &x;
...
if (punt1 == punt2) {

cout << "Apuntan al mismo dato" << endl;
}
else {

cout << "No apuntan al mismo dato" << endl;
}

Página 872Fundamentos de la programación: Punteros y memoria dinámica

Sólo	se	pueden	comparar	punteros	con	el	mismo	tipo	baseSólo	se	pueden	comparar	punteros	con	el	mismo	tipo	base

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 873Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Declaración	de	tipos	puntero
Declaramos	tipos	para	los	punteros	con	distintos	tipos	base:
typedef int *tIntPtr;
typedef char *tCharPtr;
typedef double *tDoublePtr;
int entero = 5;
tIntPtr puntI = &entero;
char caracter = 'C';
tCharPtr puntC = &caracter;
double real = 5.23;
tDoublePtr puntD = ℜ
cout << *puntI << " " << *puntC << " " << *puntD << endl;

Con	*puntero podemos	hacer	lo	que	con	otros	datos	del	tipo	base

Página 874Fundamentos de la programación: Punteros y memoria dinámica

tipos.cpptipos.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Acceso	a	estructuras	a	través	de	punteros
Los	punteros	pueden	apuntar	también	a	estructuras:
typedef struct {

int codigo;
string nombre;
double sueldo;

} tRegistro;
tRegistro registro;
typedef tRegistro *tRegistroPtr;
tRegistroPtr puntero = ®istro;

Operador	flecha	(‐>):

Acceso	a	los	campos	a	través	de	un	puntero	sin	usar	el	operador	*
puntero‐>codigo puntero‐>nombre puntero‐>sueldo

puntero‐>...			 (*puntero)....

Página 875Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Acceso	a	estructuras	a	través	de	punteros
typedef struct {

int codigo;
string nombre;
double sueldo;

} tRegistro;
tRegistro registro;
typedef tRegistro *tRegistroPtr;
tRegistroPtr puntero = ®istro;
registro.codigo = 12345;
registro.nombre = "Javier";
registro.sueldo = 95000;
cout << puntero‐>codigo << " " << puntero‐>nombre

<< " " << puntero‐>sueldo << endl;

puntero‐>codigo  (*puntero).codigo  *puntero.codigo

Página 876Fundamentos de la programación: Punteros y memoria dinámica

structPtr.cppstructPtr.cpp

puntero sería	una	estructura	con	campo	codigo de	tipo	punteropuntero sería	una	estructura	con	campo	codigo de	tipo	puntero

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Punteros	a	constantes	y	punteros	constantes
El	efecto	del	modificador	de	acceso	const depende	de	su	sitio:

const tipo *puntero; Puntero	a	una	constante

tipo *const puntero; Puntero	constante

Punteros	a	constantes:
typedef const int *tIntCtePtr; // Puntero a constante

int entero1 = 5, entero2 = 13;

tIntCtePtr punt_a_cte = &entero1;

(*punt_a_cte)++; // ERROR: ¡Dato no modificable!

punt_a_cte = &entero2; // OK: El puntero no es cte.

Página 877Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Punteros	a	constantes	y	punteros	constantes
El	efecto	del	modificador	de	acceso	const depende	de	su	sitio:

const tipo *puntero; Puntero	a	una	constante

tipo *const puntero; Puntero	constante

Punteros	constantes:
typedef int *const tIntPtrCte; // Puntero constante

int entero1 = 5, entero2 = 13;

tIntPtrCte punt_cte = &entero1;

(*punt_cte)++; // OK: El puntero no apunta a cte.

punt_cte = &entero2; // ERROR: ¡Puntero constante!

Página 878Fundamentos de la programación: Punteros y memoria dinámica

constPtr.cppconstPtr.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 879Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Paso	de	parámetros	por	referencia	o	variable
En	el	lenguaje	C	no	hay	mecanismo	de	paso	por	referencia	(&)

Sólo	se	pueden	pasar	parámetros	por	valor

¿Cómo	se	simula	el	paso	por	referencia?	Por	medio	de	punteros:

void incrementa(int *punt);

void incrementa(int *punt) {
(*punt)++;

}
...
int entero = 5;
incrementa(&entero);
cout << entero << endl;

Mostrará	6 en	la	consola

Página 880Fundamentos de la programación: Punteros y memoria dinámica

Paso	por	valor:
El	argumento	(el	puntero)	no	cambia

Aquello	a	lo	que	apunta	(el	entero)
SÍ	puede	cambiar

Paso	por	valor:
El	argumento	(el	puntero)	no	cambia

Aquello	a	lo	que	apunta	(el	entero)
SÍ	puede	cambiar

param.cppparam.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Paso	de	parámetros	por	referencia	o	variable
int entero = 5;
incrementa(&entero);

Página 881Fundamentos de la programación: Punteros y memoria dinámica

5enteroentero

puntpunt

6enteroentero

punt recibe	la	dirección	de	enteropunt recibe	la	dirección	de	entero

6enteroentero

void incrementa(int *punt) {
(*punt)++;

}

cout << entero << endl;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Paso	de	parámetros	por	referencia	o	variable
¿Cuál	es	el	equivalente	en	C	a	este	prototipo	de	C++?
void foo(int ¶m1, double ¶m2, char ¶m3);

Prototipo	equivalente:

void foo(int *param1, double *param2, char *param3);

void foo(int *param1, double *param2, char *param3) {
// Al primer argumento se accede con *param1
// Al segundo argumento se accede con *param2
// Al tercer argumento se accede con *param3

}

¿Cómo	se	llamaría?
int entero; double real; char caracter;
//...
foo(&entero, &real, &caracter);

Página 882Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 883Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Una	íntima	relación
Variable	array		 Puntero	al	primer	elemento	del	array

Así,	si	tenemos:
int dias[12] =
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

Entonces:
cout << *dias << endl;

Muestra		31 en	la	consola,	el	primer	elemento	del	array

Siempre	apunta	al	primer	elemento	(no	se	puede	modificar)

Acceso	a	los	elementos	del	array:

Por	índice	o	con	aritmética	de	punteros	(Anexo)

Página 884Fundamentos de la programación: Punteros y memoria dinámica

¡Un	nombre	de	array	es	un	puntero	constante!¡Un	nombre	de	array	es	un	puntero	constante!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Paso	de	arrays	a	subprogramas
¡Esto	explica	por	qué	no	usamos	&	con	los	parámetros	array!

El	nombre	del	array	es	un	puntero:	ya	es	un	paso	por	referencia

Prototipos	equivalentes	para	parámetros	array:
const int N = ...;
void cuadrado(int arr[N]);
void cuadrado(int arr[], int size); // Array no delimitado
void cuadrado(int *arr, int size); // Puntero

Arrays	no	delimitados	y	punteros:	se	necesita	la	dimensión

Elementos:	se	acceden	con	índice	(arr[i])	o	con	puntero	(*arr)

Una	función	sólo	puede	devolver	un	array	en	forma	de	puntero:
intPtr inicializar();

Página 885Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 886Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 887Fundamentos de la programación: Punteros y memoria dinámica

Regiones	de	la	memoria
El	sistema	operativo	distingue	varias	regiones	en	la	memoria:

Pila (Stack)

Montón (Heap)

Datos globales

Código del
programa

S.O.

Datos	localesDatos	locales

Datos	dinámicosDatos	dinámicos

Memoria	principalMemoria	principal

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 888Fundamentos de la programación: Punteros y memoria dinámica

Memoria	principal
Datos	globales	del	programa:
Declarados	fuera	
de	los	subprogramas

typedef struct {
...

} tRegistro;
const int N = 1000;
typedef tRegistro tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;

int main() {
...

Pila

Montón

Datos globales

Código del programa

S.O.

Datos	localesDatos	locales

Datos	dinámicosDatos	dinámicos

Memoria	principalMemoria	principal

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 889Fundamentos de la programación: Punteros y memoria dinámica

La	pila	(stack)
Datos	locales	de	subprogramas:
Parámetros	por	valor
y	variables	locales

void func(tLista lista, double &total)
{
tLista aux;
int i;
...

Y	los	punteros	temporales
que	apuntan	a	los	argumentos
de	los	parámetros	por	referencia

Pila

Montón

Datos globales

Código del programa

S.O.

Datos	localesDatos	locales

Datos	dinámicosDatos	dinámicos

Memoria	principalMemoria	principal

func(lista, resultado)

&resultado

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 890Fundamentos de la programación: Punteros y memoria dinámica

El	montón	(heap)
Datos	dinámicos

Datos	que	se	crean	y	se	destruyen	
durante	la	ejecución	del	programa,
a	medida	que	se	necesita

Sistema	de	gestión	de	memoria	dinámica	(SGMD)

Cuando	se	necesita	memoria	para	una	variable	se	solicita

El	SGMD reserva	espacio	y	devuelve	la	dirección	base

Cuando	ya	no	se	necesita	más	la	variable,	se	destruye

Se	libera	la	memoria	y	el	SGMD cuenta	de	nuevo	con	ella

Pila

Montón

Datos globales

Código del programa

S.O.

Datos	localesDatos	locales

Datos	dinámicosDatos	dinámicos

Memoria	principalMemoria	principal

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 891Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 892Fundamentos de la programación: Punteros y memoria dinámica

Datos	dinámicos
Se	crean	y	se	destruyen	durante	la	ejecución	del	programa

Se	les	asigna	memoria	del	montón

¿Por	qué	utilizar	memoria	dinámica?

Almacén	de	memoria	muy	grande:	datos	o	listas	de	datos	que	
no	caben	en	memoria	principal	pueden	caber	en	el	montón

El	programa	ajusta	el	uso	de	la	memoria	a	las	necesidades	
de	cada	momento:	ni	le	falta	ni	la	desperdicia

CreaciónCreación

DestrucciónDestrucción

Montón
Dato dinámicoDato dinámico

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 893Fundamentos de la programación: Punteros y memoria dinámica

¿Cuándo	se	asigna	memoria	a	los	datos?

 Datos	globales

En	memoria	principal	al	comenzar	la	ejecución	del	programa

Existen	durante	toda	la	ejecución	del	programa

 Datos	locales de	un	subprograma

En	la	pila	al	ejecutarse	el	subprograma

Existen	sólo	durante	la	ejecución	de	su	subprograma

 Datos	dinámicos

En	el	montón	cuando	el	programa	lo	solicita

Existen	a	voluntad del	programa

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 894Fundamentos de la programación: Punteros y memoria dinámica

Datos	estáticos
 Datos	declarados	como	de	un	tipo	concreto:

int i;

 Se	acceden	directamente	a	través	del	identificador:
cout << i;

Datos	dinámicos
 Datos	accedidos	a	través	de	su	dirección	de	memoria

Esa	dirección	de	memoria	debe	estar	el	algún	puntero

Los	punteros	son	la	base	del	SGMD

Los	datos	estáticos	también	se	pueden	acceder	a	través	de	punteros
int *p = &i;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 895Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 896Fundamentos de la programación: Punteros y memoria dinámica

El	operador	new
new tipo Reserva	memoria	del	montón	para	una	variable	del

tipo y	devuelve	la	primera	dirección	de	memoria
utilizada,	que	debe	ser	asignada	a	un	puntero

int *p; // Todavía sin una dirección válida
p = new int; // Ya tiene una dirección válida
*p = 12;

La	variable	dinámica	se	accede	exclusivamente	por	punteros

No	tiene	identificador	asociado
int i; // i es una variable estática
int *p1, *p2;
p1 = &i; // Puntero que da acceso a la variable

// estática i (accesible con i o con *p1)
p2 = new int; // Puntero que da acceso a una variable

// dinámica (accesible sólo a través de p2)

Devuelve	NULL si	no	queda	memoria	suficienteDevuelve	NULL si	no	queda	memoria	suficiente

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 897Fundamentos de la programación: Punteros y memoria dinámica

Inicialización	con	el	operador	new
El	operador	new admite	un	valor	inicial	para	el	dato	creado:
int *p;
p = new int(12);

Se	crea	la	variable,	de	tipo	int,	y	se	inicializa	con	el	valor	12
#include <iostream>
using namespace std;
#include "registro.h"

int main() {
tRegistro reg;
reg = nuevo();
tRegistro *punt = new tRegistro(reg);
mostrar(*punt);
...

registros.cppregistros.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 898Fundamentos de la programación: Punteros y memoria dinámica

El	operador	delete
delete puntero; Devuelve	al	montón	la	memoria	usada	por

la	variable	dinámica	apuntada	por	puntero
int *p;
p = new int;
*p = 12;
...
delete p; // Ya no se necesita el entero apuntado por p

¡El	puntero	deja	de	contener	una	dirección	válida!¡El	puntero	deja	de	contener	una	dirección	válida!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Montón	(heap)Montón	(heap)

Página 899Fundamentos de la programación: Punteros y memoria dinámica

#include <iostream>
using namespace std;

int main() {
double a = 1.5;
double *p1, *p2, *p3;
p1 = &a;
p2 = new double;
*p2 = *p1;
p3 = new double;
*p3 = 123.45;
cout << *p1 << endl;
cout << *p2 << endl;
cout << *p3 << endl;
delete p2;
delete p3;

return 0;
}

dinamicas.cppdinamicas.cpp

1.5aa

p1p1

p2p2

p3p3

Identificadores:

4
(a,	p1,	p2,	p3)

Variables:

6
(+	*p2 y	*p3)

Identificadores:

4
(a,	p1,	p2,	p3)

Variables:

6
(+	*p2 y	*p3)

1.51.5

123.45123.45

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 900Fundamentos de la programación: Punteros y memoria dinámica

#include <iostream>
using namespace std;

int main() {
double a = 1.5;
double *p1, *p2, *p3;

PILA

a 1.5

p1 ?

p2 ?

p3 ?

MONTÓN

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 901Fundamentos de la programación: Punteros y memoria dinámica

#include <iostream>
using namespace std;

int main() {
double a = 1.5;
double *p1, *p2, *p3;
p1 = &a;

PILA

a 1.5

p1

p2 ?

p3 ?

MONTÓN

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 902Fundamentos de la programación: Punteros y memoria dinámica

#include <iostream>
using namespace std;

int main() {
double a = 1.5;
double *p1, *p2, *p3;
p1 = &a;
p2 = new double;

PILA

a 1.5

p1

p2

p3 ?

MONTÓN

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 903Fundamentos de la programación: Punteros y memoria dinámica

#include <iostream>
using namespace std;

int main() {
double a = 1.5;
double *p1, *p2, *p3;
p1 = &a;
p2 = new double;
*p2 = *p1;

PILA

a 1.5

p1

p2

p3 ?

1.5

MONTÓN

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 904Fundamentos de la programación: Punteros y memoria dinámica

#include <iostream>
using namespace std;

int main() {
double a = 1.5;
double *p1, *p2, *p3;
p1 = &a;
p2 = new double;
*p2 = *p1;
p3 = new double;

PILA

a 1.5

p1

p2

p3

1.5

MONTÓN

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 905Fundamentos de la programación: Punteros y memoria dinámica

#include <iostream>
using namespace std;

int main() {
double a = 1.5;
double *p1, *p2, *p3;
p1 = &a;
p2 = new double;
*p2 = *p1;
p3 = new double;
*p3 = 123.45;

PILA

a 1.5

p1

p2

p3

123.45

1.5

MONTÓN

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 906Fundamentos de la programación: Punteros y memoria dinámica

#include <iostream>
using namespace std;

int main() {
double a = 1.5;
double *p1, *p2, *p3;
p1 = &a;
p2 = new double;
*p2 = *p1;
p3 = new double;
*p3 = 123.45;
cout << *p1 << endl;
cout << *p2 << endl;
cout << *p3 << endl;
delete p2;

PILA

a 1.5

p1

p2 ?

p3

123.45

MONTÓN

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 907Fundamentos de la programación: Punteros y memoria dinámica

#include <iostream>
using namespace std;

int main() {
double a = 1.5;
double *p1, *p2, *p3;
p1 = &a;
p2 = new double;
*p2 = *p1;
p3 = new double;
*p3 = 123.45;
cout << *p1 << endl;
cout << *p2 << endl;
cout << *p3 << endl;
delete p2;
delete p3;

PILA

a 1.5

p1

p2 ?

p3 ?

MONTÓN

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 908Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 909Fundamentos de la programación: Punteros y memoria dinámica

La	memoria	se	reparte	entre	la	pila	y	el	montón

Crecen	en	direcciones	opuestas

Al	llamar	a	subprogramas	la	pila	crece

Al	crear	datos	dinámicos	el	montón	crece

Colisión	pila‐montón

Los	límites	de	ambas	regiones	se	encuentran

Se	agota	la	memoria

Desbordamiento	de	la	pila

La	pila	suele	tener	un	tamaño	máximo	establecido

Si	se	sobrepasa	se	agota	la	pila

Pila

Montón

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 910Fundamentos de la programación: Punteros y memoria dinámica

Gestión	del	montón
Sistema	de	Gestión	de	Memoria	Dinámica	(SGMD)

Gestiona	la	asignación	de	memoria	a	los	datos	dinámicos

Localiza	secciones	adecuadas	y	sigue	la	pista	de	lo	disponible

No	dispone	de	un	recolector	de	basura,	como	el	lenguaje	Java

¡Hay	que	devolver	toda	la	memoria	solicitada!
Deben	ejecutarse	tantos	delete como	new se	hayan	ejecutado

La	memoria	disponible	en	el	montón	debe	ser	exactamente	la	
misma	antes	y	después	de	la	ejecución	del	programa

Y	todo	dato	dinámico	debe	tener	algún	acceso	(puntero)

Es	un	grave	error	perder un	dato	en	el	montón

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 911Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 912Fundamentos de la programación: Punteros y memoria dinámica

Olvido	de	destrucción	de	un	dato	dinámico
...
int main() {

tRegistro *p;
p = new tRegistro;
*p = nuevo();
mostrar(*p);

return 0;
}

G++	no	indicará	ningún	error	y	el	programa	parecerá	terminar	
correctamente,	pero	dejará	memoria	desperdiciada

Visual	C++	sí	comprueba	el	uso	de	la	memoria	dinámica	
y	nos	avisa	si	dejamos	memoria	sin	liberar

Falta		delete p;Falta		delete p;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 913Fundamentos de la programación: Punteros y memoria dinámica

Intento	de	destrucción	de	un	dato	inexistente
...
int main() {

tRegistro *p1 = new tRegistro;
*p1 = nuevo();
mostrar(*p1);
tRegistro *p2;
p2 = p1;
mostrar(*p2);
delete p1;
delete p2;

return 0;
}

p1p1 tRegistro

p2p2

Sólo	se	ha	creado
una	variable
Sólo	se	ha	creado
una	variable

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

¡Perdido!

Página 914Fundamentos de la programación: Punteros y memoria dinámica

Pérdida	de	un	dato	dinámico
...
int main() {

tRegistro *p1, *p2;
p1 = new tRegistro(nuevo());
p2 = new tRegistro(nuevo());

mostrar(*p1);
p1 = p2;
mostrar(*p1);

delete p1;
delete p2;

return 0;
}

p2p2 tRegistro

p1p1 tRegistro







Se	pierde	un	dato	en	el	montón
Se	intenta	eliminar	un	dato	ya	eliminado
Se	pierde	un	dato	en	el	montón
Se	intenta	eliminar	un	dato	ya	eliminado

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 915Fundamentos de la programación: Punteros y memoria dinámica

Intento	de	acceso	a	un	dato	tras	su	eliminación
...
int main() {

tRegistro *p;
p = new tRegistro(nuevo());

mostrar(*p);
delete p;
...
mostrar(*p);

return 0;
}

p ha	dejado	de	apuntar
al	dato	dinámico	destruido
 Acceso	a	memoria	inexistente

p ha	dejado	de	apuntar
al	dato	dinámico	destruido
 Acceso	a	memoria	inexistente

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 916Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 917Fundamentos de la programación: Punteros y memoria dinámica

Arrays	de	punteros	a	datos	dinámicos
typedef struct {

int codigo;
string nombre;
double valor;

} tRegistro;
typedef tRegistro *tRegPtr;

const int N = 1000;
// Array de punteros a registros:
typedef tRegPtr tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;

Los	punteros	ocupan
muy	poco	en	memoria

Los	datos	a	los	que	apunten
estarán	en	el	montón

Los	punteros	ocupan
muy	poco	en	memoria

Los	datos	a	los	que	apunten
estarán	en	el	montón

Se	crean	a	medida	que	se	insertan

Se	destruyen	a	medida	que	se	eliminan

Se	crean	a	medida	que	se	insertan

Se	destruyen	a	medida	que	se	eliminan

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 918Fundamentos de la programación: Punteros y memoria dinámica

tLista lista;
lista.cont = 0;

0 1 2 3 4 5 6 998 999

lista.registroslista.registros

0lista.contlista.cont

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 919Fundamentos de la programación: Punteros y memoria dinámica

tLista lista;
lista.cont = 0;
lista.registros[lista.cont] = new tRegistro(nuevo());
lista.cont++;

0 1 2 3 4 5 6 998 999

lista.registroslista.registros

1lista.contlista.cont

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 920Fundamentos de la programación: Punteros y memoria dinámica

tLista lista;
lista.cont = 0;
lista.registros[lista.cont] = new tRegistro(nuevo());
lista.cont++;
lista.registros[lista.cont] = new tRegistro(nuevo());
lista.cont++;

0 1 2 3 4 5 6 998 999

lista.registroslista.registros

2lista.contlista.cont

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 921Fundamentos de la programación: Punteros y memoria dinámica

tLista lista;
lista.cont = 0;
lista.registros[lista.cont] = new tRegistro(nuevo());
lista.cont++;
lista.registros[lista.cont] = new tRegistro(nuevo());
lista.cont++;
lista.registros[lista.cont] = new tRegistro(nuevo());
lista.cont++;

0 1 2 3 4 5 6 998 999

lista.registroslista.registros

3lista.contlista.cont

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 922Fundamentos de la programación: Punteros y memoria dinámica

Los	registros	se	acceden	a	través	de	los	punteros	(operador	‐>):
cout << lista.registros[0]‐>nombre;

0 1 2 3 4 5 6 998 999

lista.registroslista.registros

3lista.contlista.cont

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 923Fundamentos de la programación: Punteros y memoria dinámica

No	hay	que	olvidarse	de	devolver	la	memoria	al	montón:
for (int i = 0; i < lista.cont; i++) {

delete lista.registros[i];
}

0 1 2 3 4 5 6 998 999

lista.registroslista.registros

3lista.contlista.cont

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 924Fundamentos de la programación: Punteros y memoria dinámica

#ifndef lista_h
#define lista_h
#include "registro.h"

const int N = 1000;
const string BD = "bd.dat";
typedef tRegPtr tArray[N];
typedef struct {

tArray registros;
int cont;

} tLista;

void mostrar(const tLista &lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int code, bool &ok);
int buscar(const tLista &lista, int code);
void cargar(tLista &lista, bool &ok);
void guardar(const tLista &lista);
void destruir(tLista &lista);

#endif

lista.hlista.h

registro.h con	el	tipo	puntero:

typedef tRegistro *tRegPtr;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 925Fundamentos de la programación: Punteros y memoria dinámica

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {

ok = false;
}
else {

lista.registros[lista.cont] = new tRegistro(registro);
lista.cont++;

}
}

void eliminar(tLista &lista, int code, bool &ok) {
ok = true;
int ind = buscar(lista, code);
if (ind == ‐1) {

ok = false;
}
else {

delete lista.registros[ind];
for (int i = ind + 1; i < lista.cont; i++) {

lista.registros[i ‐ 1] = lista.registros[i];
}
lista.cont‐‐;

}
}

lista.cpplista.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 926Fundamentos de la programación: Punteros y memoria dinámica

int buscar(const tLista &lista, int code) {
// Devuelve el índice o ‐1 si no se ha encontrado

int ind = 0;
bool encontrado = false;
while ((ind < lista.cont) && !encontrado) {

if (lista.registros[ind]‐>codigo == code) {
encontrado = true;

}
else {

ind++;
}

if (!encontrado) {
ind = ‐1;

}
return ind;

}

void destruir(tLista &lista) {
for (int i = 0; i < lista.cont; i++) {

delete lista.registros[i];
}
lista.cont = 0;

}
...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 927Fundamentos de la programación: Punteros y memoria dinámica

#include <iostream>
using namespace std;
#include "registro.h"
#include "lista.h"

int main() {
tLista lista;
bool ok;
cargar(lista, ok);
if (ok) {

mostrar(lista);
destruir(lista);

}

return 0;
}

listadinamica.cpplistadinamica.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 928Fundamentos de la programación: Punteros y memoria dinámica

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 929Fundamentos de la programación: Punteros y memoria dinámica

Creación	y	destrucción	de	arrays	dinámicos
Array	dinámico:	array	que	se	ubica	en	la	memoria	dinámica

Creación	de	un	array	dinámico:
tipo *puntero = new tipo[dimensión];

int *p = new int[10];

Crea	un	array	de	10	int en	memoria	dinámica

Los	elementos	se	acceden	a	través	del	puntero:	p[i]

Destrucción	del	array:
delete [] p;

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 930Fundamentos de la programación: Punteros y memoria dinámica

#include <iostream>
using namespace std;
const int N = 10;

int main() {
int *p = new int[N];
for (int i = 0; i < N; i++) {

p[i] = i;
}
for (int i = 0; i < N; i++) {

cout << p[i] << endl;
}
delete [] p;

return 0;
}

¡No	olvides	destruir	el	array	dinámico!¡No	olvides	destruir	el	array	dinámico!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 931Fundamentos de la programación: Punteros y memoria dinámica

...
#include "registro.h"

const int N = 1000;

// Lista: array dinámico (puntero) y contador
typedef struct {

tRegPtr registros;
int cont;

} tLista;

...

listaAD.hlistaAD.h
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 932Fundamentos de la programación: Punteros y memoria dinámica

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
if (lista.cont == N) {

ok = false;
}
else {

lista.registros[lista.cont] = registro;
lista.cont++;

}
}

void eliminar(tLista &lista, int code, bool &ok) {
ok = true;
int ind = buscar(lista, code);
if (ind == ‐1) {

ok = false;
}
else {

for (int i = ind + 1; i < lista.cont; i++) {
lista.registros[i ‐ 1] = lista.registros[i];

}
lista.cont‐‐;

}
} ...

listaAD.cpplistaAD.cpp

No	usamos	new

Se	han	creado	todo
el	array	al	cargar

No	usamos	new

Se	han	creado	todo
el	array	al	cargar

No	usamos	delete

Se	destruye	todo
el	array	al	final

No	usamos	delete

Se	destruye	todo
el	array	al	final

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 933Fundamentos de la programación: Punteros y memoria dinámica

int buscar(tLista lista, int code) {
int ind = 0;
bool encontrado = false;
while ((ind < lista.cont) && !encontrado) {

if (lista.registros[ind].codigo == code) {
encontrado = true;

}
else {

ind++;
}

}
if (!encontrado) {

ind = ‐1;
}
return ind;

}

void destruir(tLista &lista) {
delete [] lista.registros;
lista.cont = 0;

}
...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 934Fundamentos de la programación: Punteros y memoria dinámica

void cargar(tLista &lista, bool &ok) {
ifstream archivo;
char aux;
ok = true;
archivo.open(BD.c_str());
if (!archivo.is_open()) {

ok = false;
}
else {

tRegistro registro;
lista.cont = 0;
lista.registros = new tRegistro[N];
archivo >> registro.codigo;
while ((registro.codigo != ‐1) && (lista.cont < N)) {

archivo >> registro.valor;
archivo.get(aux); // Saltamos el espacio
getline(archivo, registro.nombre);
lista.registros[lista.cont] = registro;
lista.cont++;
archivo >> registro.codigo;

}
archivo.close();

}
}

Se	crean	todos	a	la	vezSe	crean	todos	a	la	vez

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 935Fundamentos de la programación: Punteros y memoria dinámica

Mismo	programa	principal	que	el	del	array	de	datos	dinámicos
Pero	incluyendo	listaAD.h,	en	lugar	de	lista.h

ejemploAD.cppejemploAD.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 936Fundamentos de la programación: Punteros y memoria dinámica

Array	de	datos	dinámicos:	Array	de	punteros	a	datos	dinámicos

Array	dinámico:	Puntero	a	array	en	memoria	dinámica

Montón

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Array	de	datos	dinámicos:
Array	de	punteros

Array	de	datos	dinámicos:
Array	de	punteros

Array	dinámico:
Puntero	a	array
Array	dinámico:
Puntero	a	array

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Punteros y memoria dinámica Página 937

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

9A

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

Aritmética de punteros 940
Recorrido de arrays con punteros 953
Referencias 962
Listas enlazadas 964

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 940Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Operaciones	aritméticas	con	punteros
La	aritmética	de	punteros	es	una	aritmética	un	tanto	especial...

Trabaja	tomando	como	unidad	de	cálculo	el	tamaño	del	tipo	base
int dias[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

typedef int* tIntPtr;

tIntPtr punt = dias;

punt empieza	apuntando	al	primer	elemento	del	array:
cout << *punt << endl; // Muestra 31 (primer elemento)

punt++;

punt++ hace	que	punt pase	a	apuntar	al	siguiente	elemento
cout << *punt << endl; // Muestra 28 (segundo elemento)

A	la	dirección	de	memoria	actual	se	le	suman	tantas	unidades	
como	bytes	(4)	ocupe	en	memoria	un	dato	de	ese	tipo	(int)

Página 941Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int dias[12] = { 31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31 };

typedef int* tIntPtr;

tIntPtr punt = dias;

Página 942Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

...

dias[0] 0F03:1A38

0F03:1A39

0F03:1A3A

0F03:1A3B

dias[1] 0F03:1A3C

0F03:1A3D

0F03:1A3E

0F03:1A3F

dias[2] 0F03:1A40

0F03:1A41

0F03:1A42

0F03:1A43

...

dias 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

punt 0F07:041B 0F

0F07:041C 03

0F07:041D 1A

0F07:041E 38

...

3131

2828

3131

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int dias[12] = { 31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31 };

typedef int* tIntPtr;

tIntPtr punt = dias;

punt++;

punt‐‐ hace	que	apunte	al	elemento	anterior

Página 943Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

...

dias[0] 0F03:1A38

0F03:1A39

0F03:1A3A

0F03:1A3B

dias[1] 0F03:1A3C

0F03:1A3D

0F03:1A3E

0F03:1A3F

dias[2] 0F03:1A40

0F03:1A41

0F03:1A42

0F03:1A43

...

dias 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

punt 0F07:041B 0F

0F07:041C 03

0F07:041D 1A

0F07:041E 3C

...

3131

2828

3131

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int dias[12] = { 31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31 };

typedef int* tIntPtr;

tIntPtr punt = dias;

punt = punt + 2;

Restando	pasamos	a	elementos	anteriores

Página 944Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

...

dias[0] 0F03:1A38

0F03:1A39

0F03:1A3A

0F03:1A3B

dias[1] 0F03:1A3C

0F03:1A3D

0F03:1A3E

0F03:1A3F

dias[2] 0F03:1A40

0F03:1A41

0F03:1A42

0F03:1A43

...

dias 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

punt 0F07:041B 0F

0F07:041C 03

0F07:041D 1A

0F07:041E 40

...

3131

2828

3131

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

int dias[12] = { 31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31 };

typedef int* tIntPtr;

tIntPtr punt = dias;

punt = punt + 2;

int num = punt ‐ dias;

Nº	de	elementos	entre	los	punteros

Página 945Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

...

dias[0] 0F03:1A38

0F03:1A39

0F03:1A3A

0F03:1A3B

dias[1] 0F03:1A3C

0F03:1A3D

0F03:1A3E

0F03:1A3F

dias[2] 0F03:1A40

0F03:1A41

0F03:1A42

0F03:1A43

...

dias 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

punt 0F07:041B 0F

0F07:041C 03

0F07:041D 1A

0F07:041E 3C

...

3131

2828

3131

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Otro	tipo	base
short int (2	bytes)
short int dias[12] = {31, 28, 31, 30,

31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

tSIPtr punt = dias;

Página 946Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

...

dias[0] 0F03:1A38

0F03:1A39

dias[1] 0F03:1A3A

0F03:1A3B

dias[2] 0F03:1A3C

0F03:1A3D

dias[3] 0F03:1A3E

0F03:1A3F

dias[4] 0F03:1A40

0F03:1A41

...

dias 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

punt 0F07:041B 0F

0F07:041C 03

0F07:041D 1A

0F07:041E 38

...

3131

2828

3131

3030

3131

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

short int dias[12] = {31, 28, 31, 30,

31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

tSIPtr punt = dias;

punt++;

Página 947Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

...

dias[0] 0F03:1A38

0F03:1A39

dias[1] 0F03:1A3A

0F03:1A3B

dias[2] 0F03:1A3C

0F03:1A3D

dias[3] 0F03:1A3E

0F03:1A3F

dias[4] 0F03:1A40

0F03:1A41

...

dias 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

punt 0F07:041B 0F

0F07:041C 03

0F07:041D 1A

0F07:041E 3A

...

3131

2828

3131

3030

3131

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

short int dias[12] = {31, 28, 31, 30,

31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

tSIPtr punt = dias;

punt++;

punt = punt + 3;

Página 948Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

...

dias[0] 0F03:1A38

0F03:1A39

dias[1] 0F03:1A3A

0F03:1A3B

dias[2] 0F03:1A3C

0F03:1A3D

dias[3] 0F03:1A3E

0F03:1A3F

dias[4] 0F03:1A40

0F03:1A41

...

dias 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

punt 0F07:041B 0F

0F07:041C 03

0F07:041D 1A

0F07:041E 40

...

3131

2828

3131

3030

3131

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

short int dias[12] = {31, 28, 31, 30,

31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

tSIPtr punt = dias;

punt++;

punt = punt + 3;

punt‐‐;

Página 949Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

...

dias[0] 0F03:1A38

0F03:1A39

dias[1] 0F03:1A3A

0F03:1A3B

dias[2] 0F03:1A3C

0F03:1A3D

dias[3] 0F03:1A3E

0F03:1A3F

dias[4] 0F03:1A40

0F03:1A41

...

dias 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

punt 0F07:041B 0F

0F07:041C 03

0F07:041D 1A

0F07:041E 3E

...

3131

2828

3131

3030

3131

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

short int dias[12] = {31, 28, 31, 30,

31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

tSIPtr punt = dias;

punt++;

punt = punt + 3;

punt‐‐;

tSIPtr punt2;

Página 950Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

...

dias[0] 0F03:1A38

0F03:1A39

dias[1] 0F03:1A3A

0F03:1A3B

dias[2] 0F03:1A3C

0F03:1A3D

dias[3] 0F03:1A3E

0F03:1A3F

dias[4] 0F03:1A40

0F03:1A41

...

dias 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

punt 0F07:041B 0F

0F07:041C 03

0F07:041D 1A

0F07:041E 3E

punt2 0F07:041F ?

3131

2828

3131

3030

3131

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

short int dias[12] = {31, 28, 31, 30,

31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

siPtr punt = dias;

punt++;

punt = punt + 3;

punt‐‐;

tSIPtr punt2;

punt2 = dias;

Página 951Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

...

dias[0] 0F03:1A38

0F03:1A39

dias[1] 0F03:1A3A

0F03:1A3B

dias[2] 0F03:1A3C

0F03:1A3D

dias[3] 0F03:1A3E

0F03:1A3F

dias[4] 0F03:1A40

0F03:1A41

...

dias 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

punt 0F07:041B 0F

0F07:041C 03

0F07:041D 1A

0F07:041E 3E

punt2 0F07:041F 0F

3131

2828

3131

3030

3131

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

short int dias[12] = {31, 28, 31, 30,

31, 30, 31, 31, 30, 31, 30, 31};

typedef short int* tSIPtr;

siPtr punt = dias;

punt++;

punt = punt + 3;

punt‐‐;

tSIPtr punt2;

punt2 = dias;

cout << punt – punt2; // 3

Página 952Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

...

dias[0] 0F03:1A38

0F03:1A39

dias[1] 0F03:1A3A

0F03:1A3B

dias[2] 0F03:1A3C

0F03:1A3D

dias[3] 0F03:1A3E

0F03:1A3F

dias[4] 0F03:1A40

0F03:1A41

...

dias 0F07:0417 0F

0F07:0418 03

0F07:0419 1A

0F07:041A 38

punt 0F07:041B 0F

0F07:041C 03

0F07:041D 1A

0F07:041E 3E

punt2 0F07:041F 0F

3131

2828

3131

3030

3131

33

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 953Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Punteros	como	iteradores	para	arrays
const int MAX = 100;
typedef int tArray[MAX];
typedef struct {

tArray elementos;
int cont;

} tLista;
typedef int* tIntPtr;
tLista lista;

Usamos	un	puntero	como	iterador para	recorrer	el	array:
tIntPtr punt = lista.elementos;
for (int i = 0; i < lista.cont; i++) {

cout << *punt << endl;
punt++;

}

Página 954Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

arraypunt.cpparraypunt.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...
intPtr punt = lista.elementos;

Página 955Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

0 1 2 3 4 5 6 7 8 ... 98 99

4 13 3 47 53 19 7 48lista.elementoslista.elementos

puntpunt

8lista.contlista.cont

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...
for (int i = 0; i < lista.cont; i++) {

cout << *punt << endl;
punt++;

}

Página 956Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

0 1 2 3 4 5 6 7 8 ... 98 99

4 13 3 47 53 19 7 48lista.elementoslista.elementos

puntpunt

8lista.contlista.cont

0ii

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 957Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

0 1 2 3 4 5 6 7 8 ... 98 99

4 13 3 47 53 19 7 48lista.elementoslista.elementos

puntpunt

8lista.contlista.cont

1ii

44

...
for (int i = 0; i < lista.cont; i++) {

cout << *punt << endl;
punt++;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 958Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

0 1 2 3 4 5 6 7 8 ... 98 99

4 13 3 47 53 19 7 48lista.elementoslista.elementos

puntpunt

8lista.contlista.cont

2ii

4
13
4
13

...
for (int i = 0; i < lista.cont; i++) {

cout << *punt << endl;
punt++;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...
for (int i = 0; i < lista.cont; i++) {

cout << *punt << endl;
punt++;

}

Página 959Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

0 1 2 3 4 5 6 7 8 ... 98 99

4 13 3 47 53 19 7 48lista.elementoslista.elementos

puntpunt

8lista.contlista.cont

3ii

.

4
13
3

4
13
3

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...
for (int i = 0; i < lista.cont; i++) {

cout << *punt << endl;
punt++;

}

Página 960Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

0 1 2 3 4 5 6 7 8 ... 98 99

4 13 3 47 53 19 7 48lista.elementoslista.elementos

puntpunt

8lista.contlista.cont

7ii

4
13
3
47
53
19
7

4
13
3
47
53
19
7

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

...
for (int i = 0; i < lista.cont; i++) {

cout << *punt << endl;
punt++;

}

Página 961Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

0 1 2 3 4 5 6 7 8 ... 98 99

4 13 3 47 53 19 7 48lista.elementoslista.elementos

puntpunt

8lista.contlista.cont

8ii

4
13
3
47
53
19
7
48

4
13
3
47
53
19
7
48

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 962Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Nombres	alternativos	para	los	datos
Una	referencia	es	una	nueva	forma	de	llamar	a	una	variable

Nos	permiten	referirnos	a	una	variable	con	otro	identificador:
int x = 10;
int &z = x;

x y	z son	ahora	la	misma	variable	(comparten	memoria)

Cualquier	cambio	en	x afecta	a	z y	cualquier	cambio	en	z afecta	a	x
z = 30;
cout << x;

Las	referencias	se	usan	en	el	paso	de	parámetros	por	referencia

Página 963Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 964Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 965Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

Una	implementación	dinámica	de	listas	enlazadas
Cada	elemento	de	la	lista	apunta	al	siguiente	elemento:
struct tNodo; // Declaración anticipada
typedef tNodo *tLista;
struct tNodo {

tRegistro reg;
tLista sig;

};

Una	lista	(tLista)	es	un	puntero	a	un	nodo

Si	el	puntero	vale	NULL,	no	apunta	a	ningún	nodo:	lista	vacía

Un	nodo	(tNodo)	es	un	elemento	seguido	de	una	lista

tRegistro tListatLista

regreg sigsig

Elemento	seguido	de	una	lista
Lista

Vacía
¡Definición	recursiva!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 966Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

Cada	elemento	de	la	lista	en	su	nodo

Apuntará	al	siguiente	elemento	o	a	ninguno	(NULL)
struct tNodo; // Declaración anticipada
typedef tNodo *tLista;
struct tNodo {

tRegistro reg;
tLista sig;

};

Además,	un	puntero	al	primer	elemento	(nodo)	de	la	lista
tLista lista = NULL; // Lista vacía

listalista

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 967Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

struct tNodo;
typedef tNodo *tLista;
struct tNodo {

tRegistro reg;
tLista sig;

};

tLista lista = NULL; // Lista vacía
lista = new tNodo;
lista‐>reg = nuevo();
lista‐>sig = NULL;

listalista ítem1

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 968Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

tLista lista = NULL; // Lista vacía
lista = new tNodo;
lista‐>reg = nuevo();
lista‐>sig = NULL;
tLista p;
p = lista;

listalista ítem1

pp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 969Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

tLista lista = NULL; // Lista vacía
lista = new tNodo;
lista‐>reg = nuevo();
lista‐>sig = NULL;
tLista p;
p = lista;
p‐>sig = new tNodo;
p‐>sig‐>reg = nuevo();
p‐>sig‐>sig = NULL;

listalista ítem1

pp

ítem2

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 970Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

tLista lista = NULL; // Lista vacía
lista = new tNodo;
lista‐>reg = nuevo();
lista‐>sig = NULL;
tLista p;
p = lista;
p‐>sig = new tNodo;
p‐>sig‐>reg = nuevo();
p‐>sig‐>sig = NULL;
p = p‐>sig;
p‐>sig = new tNodo;
p‐>sig‐>reg = nuevo();
p‐>sig‐>sig = NULL;
...

listalista tRegistro tRegistro

pp

tRegistro

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 971Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

Usamos	la	memoria	que	necesitamos,	ni	más	ni	menos

Tantos	elementos,	tantos	nodos	hay	en	la	lista

¡Pero	perdemos	el	acceso	directo!

Algunas	operaciones	de	la	lista	se	complican	y	otras	no

A	continuación	tienes	el	módulo	de	lista	implementado	
como	lista	enlazada...

listalista tRegistro tRegistro tRegistro

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 972Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

struct tNodo;
typedef tNodo *tLista;
struct tNodo {

tRegistro reg;
tLista sig;

};

const string BD = "bd.txt";

void mostrar(tLista lista);
void insertar(tLista &lista, tRegistro registro, bool &ok);
void eliminar(tLista &lista, int code, bool &ok);
tLista buscar(tLista lista, int code); // Devuelve puntero
void cargar(tLista &lista, bool &ok);
void guardar(tLista lista);
void destruir(tLista &lista); // Liberar la memoria dinámica

listaenlazada.hlistaenlazada.h
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 973Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

void insertar(tLista &lista, tRegistro registro, bool &ok) {
ok = true;
tLista nuevo = new tNodo;
if (nuevo == NULL) {

ok = false; // No hay más memoria dinámica
}
else {

nuevo‐>reg = registro;
nuevo‐>sig = NULL;
if (lista == NULL) { // Lista vacía

lista = nuevo;
}
else {

tLista p = lista;
// Localizamos el último nodo...
while (p‐>sig != NULL) {

p = p‐>sig;
}
p‐>sig = nuevo;

}
}

} ...

listaenlazada.cpplistaenlazada.cpp

 listalista

nuevonuevo




listalista

nuevonuevo

pp



Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 974Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

void eliminar(tLista &lista, int code, bool &ok) {
ok = true;
tLista p = lista;
if (p == NULL) {

ok = false; // Lista vacía
}
else if (p‐>reg.codigo == code) { // El primero

lista = p‐>sig;
delete p;

}
else {

tLista ant = p;
p = p‐>sig;
bool encontrado = false;
while ((p != NULL) && !encontrado) {

if (p‐>reg.codigo == code) {
encontrado = true;

}
else {

ant = p;
p = p‐>sig;

}
} ...



 listalista

pp



antant

pp

listalista


Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 975Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

if (!encontrado) {
ok = false; // No existe ese código

}
else {

ant‐>sig = p‐>sig;
delete p;

}
}

}
...

listalista

ppantant

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 976Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

tLista buscar(tLista lista, int code) {
// Devuelve un puntero al nodo, o NULL si no se encuentra

tLista p = lista;
bool encontrado = false;
while ((p != NULL) && !encontrado) {

if (p‐>reg.codigo == code) {
encontrado = true;

}
else {

p = p‐>sig;
}

}
return p;

}

void mostrar(tLista lista) {
cout << endl << "Elementos de la lista:" << endl

<< "‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐" << endl;
tLista p = lista;
while (p != NULL) {

mostrar(p‐>reg);
p = p‐>sig;

}
} ...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 977Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

void cargar(tLista &lista, bool &ok) {
ifstream archivo;
char aux;
ok = true;
lista = NULL;
archivo.open(BD.c_str());
if (!archivo.is_open()) {

ok = false;
}
else {

tRegistro registro;
tLista ult = NULL;
archivo >> registro.codigo;
while (registro.codigo != ‐1) {

archivo >> registro.valor;
archivo.get(aux); // Saltamos el espacio
getline(archivo, registro.nombre);
...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 978Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

if (lista == NULL) {
lista = new tNodo;
ult = lista;

}
else {

ult‐>sig = new tNodo;
ult = ult‐>sig;

}
ult‐>reg = registro;
ult‐>sig = NULL;
archivo >> registro.codigo;

}
archivo.close();

}
return ok;

} ...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 979Fundamentos de la programación: Punteros y memoria dinámica (Anexo)

void guardar(tLista lista) {
ofstream archivo;
archivo.open(BD);
tLista p = lista;
while (p != NULL) {

archivo << p‐>registro.codigo << " ";
archivo << p‐>registro.valor << " ";
archivo << p‐>registro.nombre << endl;
p = p‐>sig;

}
archivo.close();

}

void destruir(tLista &lista) {
tLista p;
while (lista != NULL) {

p = lista;
lista = lista‐>sig;
delete p;

}
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Punteros y memoria dinámica (Anexo) Página 980

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

10

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: Introducción a la recursión

Concepto de recursión 983
Algoritmos recursivos 986

Funciones recursivas 987
Diseño de funciones recursivas 989

Modelo de ejecución 990
La pila del sistema 992
La pila y las llamadas a función 994
Ejecución de la función factorial() 1005

Tipos de recursión 1018
Recursión simple 1019
Recursión múltiple 1020
Recursión anidada 1022
Recursión cruzada 1026

Código del subprograma recursivo 1027
Parámetros y recursión 1032
Ejemplos de algoritmos recursivos 1034

Búsqueda binaria 1035
Torres de Hanoi 1038

Recursión frente a iteración 1043
Estructuras de datos recursivas 1045

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 983Fundamentos de la programación: Introducción a la recursión

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 984Fundamentos de la programación: Introducción a la recursión

Recursión	(recursividad,	recurrencia)
Definición	recursiva:	En	la	definición	aparece	lo	que	se	define
Factorial(N)	=	N	x Factorial(N‐1) (N	>=	0)

(wikipedia.org)(wikipedia.org)

La	imagen	del	paquete
aparece	dentro	del	propio
paquete,...	¡hasta	el	infinito!

La	imagen	del	paquete
aparece	dentro	del	propio
paquete,...	¡hasta	el	infinito!

(wikipedia.org)(wikipedia.org)

Cada	triángulo	está
formado	por	otros	

triángulos	más	pequeños

Cada	triángulo	está
formado	por	otros	

triángulos	más	pequeños

La	cámara	graba	lo	que	graba
(http://farm1.static.flickr.com/83
/229219543_edf740535b.jpg)

La	cámara	graba	lo	que	graba
(http://farm1.static.flickr.com/83
/229219543_edf740535b.jpg)

Las	matrioskas rusasLas	matrioskas rusas

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 985Fundamentos de la programación: Introducción a la recursión

Factorial(N)	=	N	x Factorial(N‐1)

El	factorial	se	define	en	función	de	sí	mismo

Los	programas	no	pueden	manejar	la	recursión	infinita

La	definición	recursiva	debe	adjuntar	uno	o	más	casos	base

Caso	base:	aquel	en	el	que	no	se	utiliza	la	definición	recursiva

Proporcionan	puntos	finales	de	cálculo:

El	valor	de	N	se	va	aproximando	al	valor	del	caso	base	(0)

N	x Factorial(N‐1) si	N	>	0 Caso	recursivo	(inducción)
Factorial(N)

1 si	N	=	0 Caso	base	(o	de	parada)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 986Fundamentos de la programación: Introducción a la recursión

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 987Fundamentos de la programación: Introducción a la recursión

Funciones	recursivas
Una	función	puede	implementar	un	algoritmo	recursivo

La	función	se	llamará	a	sí	misma	si	no	se	ha	llegado	al	caso	base

long long int factorial(int n) {
long long int resultado;
if (n == 0) { // Caso base

resultado = 1;
}
else {

resultado = n * factorial(n ‐ 1);
}
return resultado;

}

N	x Factorial(N‐1) si	N	>	0
Factorial(N)

1 si	N	=	0

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 988Fundamentos de la programación: Introducción a la recursión

Funciones	recursivas
long long int factorial(int n) {

long long int resultado;
if (n == 0) { // Caso base

resultado = 1;
}
else {

resultado = n * factorial(n ‐ 1);
}
return resultado;

}

factorial(5) 5	x factorial(4) 5	x 4	x factorial(3)

 5	x 4	x 3	x factorial(2) 5	x 4	x 3	x 2	x factorial(1)

 5	x 4	x 3	x 2	x 1	x factorial(0) 5	x 4	x 3	x 2	x 1	x 1

 120 Caso	baseCaso	base

factorial.cppfactorial.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 989Fundamentos de la programación: Introducción a la recursión

Diseño	de	funciones	recursivas
Una	función	recursiva	debe	satisfacer	tres	condiciones:

 Caso(s)	base:	Debe	haber	al	menos	un	caso	base	de	parada

 Inducción:	Paso	recursivo	que	provoca	una	llamada	recursiva

Debe	ser	correcto	para	distintos	parámetros	de	entrada

 Convergencia:	Cada	paso	recursivo	debe	acercar	a	un	caso	base

Se	describe	el	problema	en	términos	de	problemas	más	sencillos

Función	factorial():	tiene	caso	base	(N	=	0),	siendo	correcta	
para	N	es	correcta	para	N+1	(inducción)	y	se	acerca	cada	vez	
más	al	caso	base	(N‐1	está	más	cerca	de	0	que	N)

N	x Factorial(N‐1) si	N	>	0
Factorial(N)

1 si	N	=	0

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 990Fundamentos de la programación: Introducción a la recursión

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 991Fundamentos de la programación: Introducción a la recursión

long long int factorial(int n) {
long long int resultado;
if (n == 0) { // Caso base

resultado = 1;
}
else {

resultado = n * factorial(n ‐ 1);
}
return resultado;

}

Cada	llamada	recursiva	fuerza	una	nueva	ejecución	de	la	función

Cada	llamada	utiliza	sus	propios	parámetros	por	valor	
y	variables	locales	(n y	resultado en	este	caso)

En	las	llamadas	a	la	función	se	utiliza	la	pila	del	sistema	para	
mantener	los	datos	locales	y	la	dirección	de	vuelta

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 992Fundamentos de la programación: Introducción a la recursión

Regiones	de	memoria	que	distingue	el	sistema	operativo:

Pila (Stack)

Montón (Heap)

Datos del programa

Código del programa

S.O.

Llamadas	a	subprogramasLlamadas	a	subprogramas

Memoria	dinámica	(Tema	9)Memoria	dinámica	(Tema	9)

Memoria	principalMemoria	principal

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 993Fundamentos de la programación: Introducción a la recursión

Mantiene	los	datos	locales	de	la	función	y	la	dirección	de	vuelta

Estructura	de	tipo	pila:	lista	LIFO	(last‐in	first‐out)

El	último	que	entra	es	el	primero	que	sale:

Entra
4

Entra
4

4

Entra
7

Entra
7

7

4

Entra	
2

Entra	
2

2

7

4

Sale	
2

Sale	
2

7

4

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 994Fundamentos de la programación: Introducción a la recursión

Datos	locales	y	direcciones	de	vuelta
...
int funcB(int x) {

...
return x;

}

int funcA(int a) {
int b;
...
b = funcB(a);
...
return b;

}

int main() {
...
cout << funcA(4);
...

PilaPila
<DIR1><DIR1>

<DIR2><DIR2>

Llamada	a	función:
Entra	la	dirección	de	vuelta
Llamada	a	función:
Entra	la	dirección	de	vuelta

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	locales	y	direcciones	de	vuelta
...
int funcB(int x) {

...
return x;

}

int funcA(int a) {
int b;
...
b = funcB(a);
...
return b;

}

int main() {
...
cout << funcA(4);
...

Página 995Fundamentos de la programación: Introducción a la recursión

<DIR1>

PilaPila
<DIR1><DIR1>

<DIR2><DIR2>

Entrada	en	la	función:
Se	alojan	los	datos	locales
Entrada	en	la	función:
Se	alojan	los	datos	locales

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	locales	y	direcciones	de	vuelta
...
int funcB(int x) {

...
return x;

}

int funcA(int a) {
int b;
...
b = funcB(a);
...
return b;

}

int main() {
...
cout << funcA(4);
...

Página 996Fundamentos de la programación: Introducción a la recursión

b

a

<DIR1>

PilaPila
<DIR1><DIR1>

<DIR2><DIR2> Llamada	a	función:
Entra	la	dirección	de	vuelta
Llamada	a	función:
Entra	la	dirección	de	vuelta

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	locales	y	direcciones	de	vuelta
...
int funcB(int x) {

...
return x;

}

int funcA(int a) {
int b;
...
b = funcB(a);
...
return b;

}

int main() {
...
cout << funcA(4);
...

Página 997Fundamentos de la programación: Introducción a la recursión

<DIR2>

b

a

<DIR1>

PilaPila
<DIR1><DIR1>

<DIR2><DIR2>

Entrada	en	la	función:
Se	alojan	los	datos	locales
Entrada	en	la	función:
Se	alojan	los	datos	locales

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	locales	y	direcciones	de	vuelta
...
int funcB(int x) {

...
return x;

}

int funcA(int a) {
int b;
...
b = funcB(a);
...
return b;

}

int main() {
...
cout << funcA(4);
...

Página 998Fundamentos de la programación: Introducción a la recursión

x

<DIR2>

b

a

<DIR1>

PilaPila
<DIR1><DIR1>

<DIR2><DIR2>

Vuelta	de	la	función:
Se	eliminan	los	datos	locales
Vuelta	de	la	función:
Se	eliminan	los	datos	locales

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	locales	y	direcciones	de	vuelta
...
int funcB(int x) {

...
return x;

}

int funcA(int a) {
int b;
...
b = funcB(a);
...
return b;

}

int main() {
...
cout << funcA(4);
...

Página 999Fundamentos de la programación: Introducción a la recursión

<DIR2>

b

a

<DIR1>

PilaPila
<DIR1><DIR1>

<DIR2><DIR2>

Vuelta	de	la	función:
Sale	la	dirección	de	vuelta
Vuelta	de	la	función:
Sale	la	dirección	de	vuelta

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	locales	y	direcciones	de	vuelta
...
int funcB(int x) {

...
return x;

}

int funcA(int a) {
int b;
...
b = funcB(a);
...
return b;

}

int main() {
...
cout << funcA(4);
...

Página 1000Fundamentos de la programación: Introducción a la recursión

b

a

<DIR1>

PilaPila
<DIR1><DIR1>

<DIR2><DIR2> La	ejecución	continúa
en	esa	dirección
La	ejecución	continúa
en	esa	dirección

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	locales	y	direcciones	de	vuelta
...
int funcB(int x) {

...
return x;

}

int funcA(int a) {
int b;
...
b = funcB(a);
...
return b;

}

int main() {
...
cout << funcA(4);
...

Página 1001Fundamentos de la programación: Introducción a la recursión

b

a

<DIR1>

PilaPila
<DIR1><DIR1>

<DIR2><DIR2>

Vuelta	de	la	función:
Se	eliminan	los	datos	locales
Vuelta	de	la	función:
Se	eliminan	los	datos	locales

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	locales	y	direcciones	de	vuelta
...
int funcB(int x) {

...
return x;

}

int funcA(int a) {
int b;
...
b = funcB(a);
...
return b;

}

int main() {
...
cout << funcA(4);
...

Página 1002Fundamentos de la programación: Introducción a la recursión

<DIR1>

PilaPila
<DIR1><DIR1>

<DIR2><DIR2>

Vuelta	de	la	función:
Sale	la	dirección	de	vuelta
Vuelta	de	la	función:
Sale	la	dirección	de	vuelta

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Datos	locales	y	direcciones	de	vuelta
...
int funcB(int x) {

...
return x;

}

int funcA(int a) {
int b;
...
b = funcB(a);
...
return b;

}

int main() {
...
cout << funcA(4);
...

Página 1003Fundamentos de la programación: Introducción a la recursión

PilaPila
<DIR1><DIR1>

<DIR2><DIR2>

La	ejecución	continúa
en	esa	dirección
La	ejecución	continúa
en	esa	dirección

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1004Fundamentos de la programación: Introducción a la recursión

Mecanismo	de	pila	adecuado	para	llamadas	a	funciones	anidadas:

Las	llamadas	terminan	en	el	orden	contrario	a	como	se	llaman
...
int funcC(...) {
...

}

int funcB(...) {
...
... funcC(...)

}

int funcA(...) {
...
... funcB(...)

}

int main() {
...
cout << funcA(...);
...

funcC

funcB

funcA

PilaPila

L
L
A
M
A
D
A
S

L
L
A
M
A
D
A
SV

U
E
L
T
A
S

V
U
E
L
T
A
S

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1005Fundamentos de la programación: Introducción a la recursión

long long int factorial(int n) {
long long int resultado;
if (n == 0) { // Caso base

resultado = 1;
}
else {

resultado = n * factorial(n ‐ 1);
}
return resultado;

}

cout << factorial(5) << endl;

Obviaremos	las	direcciones	de	vuelta	en	la	pilaObviaremos	las	direcciones	de	vuelta	en	la	pila

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1006Fundamentos de la programación: Introducción a la recursión

factorial(5)

resultado = ?

n = 5

PilaPila

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1007Fundamentos de la programación: Introducción a la recursión

factorial(5)

factorial(4)

resultado = ?

n = 4

resultado = ?

n = 5

PilaPila

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1008Fundamentos de la programación: Introducción a la recursión

factorial(5)

factorial(4)

factorial(3)

resultado = ?

n = 3

resultado = ?

n = 4

resultado = ?

n = 5

PilaPila

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1009Fundamentos de la programación: Introducción a la recursión

factorial(5)

factorial(4)

factorial(3)

factorial(2)

resultado = ?

n = 2

resultado = ?

n = 3

resultado = ?

n = 4

resultado = ?

n = 5

PilaPila

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1010Fundamentos de la programación: Introducción a la recursión

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

resultado = ?

n = 1

resultado = ?

n = 2

resultado = ?

n = 3

resultado = ?

n = 4

resultado = ?

n = 5

PilaPila

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1011Fundamentos de la programación: Introducción a la recursión

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

resultado = 1

n = 0

resultado = ?

n = 1

resultado = ?

n = 2

resultado = ?

n = 3

resultado = ?

n = 4

resultado = ?

n = 5

PilaPila

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1012Fundamentos de la programación: Introducción a la recursión

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0) resultado = 1

n = 1

resultado = ?

n = 2

resultado = ?

n = 3

resultado = ?

n = 4

resultado = ?

n = 5

PilaPila

11

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1013Fundamentos de la programación: Introducción a la recursión

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

resultado = 2

n = 2

resultado = ?

n = 3

resultado = ?

n = 4

resultado = ?

n = 5

PilaPila

11

11

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1014Fundamentos de la programación: Introducción a la recursión

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

resultado = 6

n = 3

resultado = ?

n = 4

resultado = ?

n = 5

PilaPila

11

11

22

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1015Fundamentos de la programación: Introducción a la recursión

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

resultado = 24

n = 4

resultado = ?

n = 5

PilaPila

11

11

22

66

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1016Fundamentos de la programación: Introducción a la recursión

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

resultado = 120

n = 5

PilaPila

11

11

22

66

2424

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1017Fundamentos de la programación: Introducción a la recursión

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

PilaPila
120120

11

11

22

66

2424

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1018Fundamentos de la programación: Introducción a la recursión

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1019Fundamentos de la programación: Introducción a la recursión

Sólo	hay	una	llamada	recursiva

Ejemplo:	Cálculo	del	factorial	de	un	número	entero	positivo

long long int factorial(int n) {
long long int resultado;
if (n == 0) { // Caso base

resultado = 1;
}
else {

resultado = n * factorial(n ‐ 1);
}
return resultado;

}
Una	sola	llamada	recursivaUna	sola	llamada	recursiva

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1020Fundamentos de la programación: Introducción a la recursión

Varias	llamadas	recursivas

Ejemplo:	Cálculo	de	los	números	de	Fibonacci

1 si	n	=	1Fib(n)

0 si	n	=	0

Fib(n‐1)	+	Fib(n‐2) si	n	>	1

Dos	llamadas	recursivasDos	llamadas	recursivas

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1021Fundamentos de la programación: Introducción a la recursión

...
int main() {

for (int i = 0; i < 20; i++) {
cout << fibonacci(i) << endl;

}
return 0;

}

int fibonacci(int n) {
int resultado;
if (n == 0) {

resultado = 0;
}
else if (n == 1) {

resultado = 1;
}
else {

resultado = fibonacci(n ‐ 1) + fibonacci(n ‐ 2);
}
return resultado;

}

1 si	n	=	1Fib(n)

0 si	n	=	0

Fib(n‐1)	+	Fib(n‐2) si	n	>	1

fibonacci.cppfibonacci.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1022Fundamentos de la programación: Introducción a la recursión

En	una	llamada	recursiva	alguno	de	los	argumentos	es	otra	llamada

Ejemplo:	Cálculo	de	los	números	de	Ackermann:

Ack(m‐1,	1) si	m	>	0	y	n	=	0Ack(m,	n)

n	+	1 si	m	=	0

Ack(m‐1,	Ack(m,	n‐1)) si	m	>	0	y	n	>	0

Argumento	que	es	una	llamada	recursivaArgumento	que	es	una	llamada	recursiva

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1023Fundamentos de la programación: Introducción a la recursión

Números	de	Ackermann
...
int ackermann(int m, int n) {

int resultado;
if (m == 0) {

resultado = n + 1;
}
else if (n == 0) {

resultado = ackermann(m ‐ 1, 1);
}
else {

resultado = ackermann(m ‐ 1, ackermann(m, n ‐ 1));
}
return resultado;

}

Ack(m‐1,	1) si	m	>	0	y	n	=	0Ack(m,	n)

n	+	1 si	m	=	0

Ack(m‐1,	Ack(m,	n‐1)) si	m	>	0	y	n	>	0

ackermann.cppackermann.cpp

Pruébalo	con	números	muy	bajos:

Se	generan	MUCHAS	llamadas	recursivas

Pruébalo	con	números	muy	bajos:

Se	generan	MUCHAS	llamadas	recursivas

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1024Fundamentos de la programación: Introducción a la recursión

Números	de	Ackermann

22

33

ackermann(1, 1)

ackermann(0, ackermann(1, 0))

ackermann(0, 1)

ackermann(0, 2)

Ack(m‐1,	1) si	m	>	0	y	n	=	0Ack(m,	n)

n	+	1 si	m	=	0

Ack(m‐1,	Ack(m,	n‐1)) si	m	>	0	y	n	>	0

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1025Fundamentos de la programación: Introducción a la recursión

Números	de	Ackermann

33

55

44
55

ackermann(2, 1)

ackermann(1, ackermann(2, 0))

ackermann(1, 1)

ackermann(1, 3)

ackermann(0, ackermann(1, 2))

ackermann(0, ackermann(1, 1))

ackermann(0, 3)

ackermann(0, 4)

22
33

ackermann(0, ackermann(1, 0))

ackermann(0, 1)

ackermann(0, 2)

22
33

ackermann(0, ackermann(1, 0))

ackermann(0, 1)

ackermann(0, 2)

Ack(m‐1,	1) si	m	>	0	y	n	=	0Ack(m,	n)

n	+	1 si	m	=	0

Ack(m‐1,	Ack(m,	n‐1)) si	m	>	0	y	n	>	0

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1026Fundamentos de la programación: Introducción a la recursión

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1027Fundamentos de la programación: Introducción a la recursión

Código	anterior	y	posterior	a	la	llamada	recursiva
{

Código	anterior
Llamada	recursiva
Código	posterior

}

Código	anterior

Se	ejecuta	para	las	distintas	entradas	antes	que	el	código	posterior

Código	posterior

Se	ejecuta	para	las	distintas	entradas	tras	llegarse	al	caso	base

El	código	anterior	se	ejecuta	en	orden	directo	para	las	distintas	
entradas,	mientras	que	el	código	posterior	lo	hace	en	orden	inverso

Si	no	hay	código	anterior:	recursión	por	delante

Si	no	hay	código	posterior:	recursión	por	detrás

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1028Fundamentos de la programación: Introducción a la recursión

Código	anterior	y	posterior	a	la	llamada	recursiva
void func(int n) {

if (n > 0) { // Caso base: n == 0
cout << "Entrando (" << n << ")" << endl; // Código anterior
func(n ‐ 1); // Llamada recursiva
cout << "Saliendo (" << n << ")" << endl; // Código posterior

}
}

 func(5);

El	código	anterior	se	ejecuta
para	los	sucesivos	valores	de	n	(5,	4,	3,	...)

El	código	posterior	al	revés	(1,	2,	3,	...)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1029Fundamentos de la programación: Introducción a la recursión

Recorrido	de	los	elementos	de	una	lista	(directo)
El	código	anterior	a	la	llamada	procesa	la	lista	en	su	orden:
...
void mostrar(tLista lista, int pos);

int main() {
tLista lista;
lista.cont = 0;
// Carga del array...
mostrar(lista, 0);

return 0;
}

void mostrar(tLista lista, int pos) {
if (pos < lista.cont) {

cout << lista.elementos[pos] << endl;
mostrar(lista, pos + 1);

}
}

directo.cppdirecto.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1030Fundamentos de la programación: Introducción a la recursión

Recorrido	de	los	elementos	de	una	lista	(inverso)
El	código	posterior	procesa	la	lista	en	el	orden	inverso:
...
void mostrar(tLista lista, int pos);

int main() {
tLista lista;
lista.cont = 0;
// Carga del array...
mostrar(lista, 0);

return 0;
}

void mostrar(tLista lista, int pos) {
if (pos < lista.cont) {

mostrar(lista, pos + 1);
cout << lista.elementos[pos] << endl;

}
}

inverso.cppinverso.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1031Fundamentos de la programación: Introducción a la recursión

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1032Fundamentos de la programación: Introducción a la recursión

Parámetros	por	valor	y	por	referencia
Parámetros	por	valor:	cada	llamada	usa	los	suyos	propios

Parámetros	por	referencia:	misma	variable	en	todas	las	llamadas

Recogen	resultados	que	transmiten	entre	las	llamadas

void factorial(int n, int &fact) {
if (n == 0) {

fact = 1;
}
else {

factorial(n ‐ 1, fact);
fact = n * fact;

}
}

Cuando	n es	0,	el	argumento	de	fact toma	el	valor	1
Al	volver	se	le	va	multiplicando	por	los	demás	n (distintos)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1033Fundamentos de la programación: Introducción a la recursión

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1034Fundamentos de la programación: Introducción a la recursión

Parte	el	problema	en	subproblemas	más	pequeños

Aplica	el	mismo	proceso	a	cada	subproblema

Naturaleza	recursiva	(casos	base:	encontrado	o	no	queda	lista)

 La	repetición	se	consigue	con	las	llamadas	recursivas

Partimos	de	la	lista	completa
Si	no	queda	lista...	terminar	(lista	vacía:	no	encontrado)
En	caso	contrario...
Comprobar	si	el	elemento	en	la	mitad	es	el	buscado
Si	es	el	buscado...	terminar	(encontrado)
Si	no...
Si	el	buscado	es	menor	que	el	elemento	mitad...
Repetir	con	la	primera	mitad	de	la	lista

Si	el	buscado	es	mayor	que	el	elemento	mitad...
Repetir	con	la	segunda	mitad	de	la	lista

Partimos	de	la	lista	completa
Si	no	queda	lista...	terminar	(lista	vacía:	no	encontrado)
En	caso	contrario...
Comprobar	si	el	elemento	en	la	mitad	es	el	buscado
Si	es	el	buscado...	terminar	(encontrado)
Si	no...
Si	el	buscado	es	menor	que	el	elemento	mitad...
Repetir	con	la	primera	mitad	de	la	lista

Si	el	buscado	es	mayor	que	el	elemento	mitad...
Repetir	con	la	segunda	mitad	de	la	lista

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1035Fundamentos de la programación: Introducción a la recursión

Dos	índices	que	indiquen	el	inicio	y	el	final	de	la	sublista:

int buscar(tLista lista, int buscado, int ini, int fin)
// Devuelve el índice (0, 1, ...) o ‐1 si no está

¿Cuáles	son	los	casos	base?
 Que	ya	no	quede	sublista	(ini > fin)	 No	encontrado

 Que	se	encuentre	el	elemento

Repasa	en	el	Tema	7	cómo	funciona	y	cómo	se	implementó
iterativamente	la	búsqueda	binaria	(compárala	con	esta)
Repasa	en	el	Tema	7	cómo	funciona	y	cómo	se	implementó
iterativamente	la	búsqueda	binaria	(compárala	con	esta)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1036Fundamentos de la programación: Introducción a la recursión

int buscar(tLista lista, int buscado, int ini, int fin) {
int pos = ‐1;
if (ini <= fin) {

int mitad = (ini + fin) / 2;
if (buscado == lista.elementos[mitad]) {

pos = mitad;
}
else if (buscado < lista.elementos[mitad]) {

pos = buscar(lista, buscado, ini, mitad ‐ 1);
}
else {

pos = buscar(lista, buscado, mitad + 1, fin);
}

}
return pos;

}

Llamada:	pos = buscar(lista, valor, 0, lista.cont ‐ 1);

binaria.cppbinaria.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1037Fundamentos de la programación: Introducción a la recursión

Cuenta	una	leyenda	que	en	un	templo	de	Hanoi	se	dispusieron	tres	
pilares	de	diamante	y	en	uno	de	ellos	64	discos	de	oro,	de	distintos	
tamaños	y	colocados	por	orden	de	tamaño	con	el	mayor	debajo

Cada	monje,	en	su	turno,	debía	mover	un	único	disco	de	un	pilar	
a	otro,	para	con	el	tiempo	conseguir	entre	todos	llevar	la	torre	del	
pilar	inicial	a	uno	de	los	otros	dos;	respetando	una	única	regla:	
nunca	poner	un	disco	sobre	otro	de	menor	tamaño

Cuando	lo	hayan	conseguido,	¡se	acabará	el	mundo!
[Se	requieren	al	menos	264‐1	movimientos;	si	se	hiciera	uno	por	segundo,
se	terminaría	en	más	de	500	mil	millones	de	años]

Torre	de	ocho	discos	(wikipedia.org)Torre	de	ocho	discos	(wikipedia.org)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1038Fundamentos de la programación: Introducción a la recursión

Queremos	resolver	el	juego en	el	menor	número	de	pasos	posible

¿Qué	disco	hay	que	mover	en	cada	paso	y	a	dónde?

Identifiquemos	los	elementos	(torre	de	cuatro	discos):

Cada	pilar	se	identifica	con	una	letra

Mover	del	pilar	X	al	pilar	Y:

Coger	el	disco	superior	de	X	y	ponerlo	encima	de	los	que	haya	en	Y

AA BB CC

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1039Fundamentos de la programación: Introducción a la recursión

Resolución	del	problema	en	base
a	problemas	más	pequeños

Mover	N	discos	del	pilar	A	al	pilar	C:

Mover	N‐1	discos	del	pilar	A	al	pilar	B

Mover	el	disco	del	pilar	A	al	pilar	C

Mover	N‐1	discos	del	pilar	B	al	pilar	C

Para	llevar	N	discos	de	un	pilar	origen a
otro	destino se	usa	el	tercero	como	auxiliar

Mover	N‐1	discos	del	origen al	auxiliar

Mover	el	disco	del	origen al	destino

Mover	N‐1	discos	del	auxiliar al	destino

AA BB CC

AA BB CC

AA BB CC

AA BB CC

Mover	4	discos	de	A	a CMover	4	discos	de	A	a C

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1040Fundamentos de la programación: Introducción a la recursión

Mover	N‐1	discos	se	hace	igual,	pero
usando	ahora	otros	origen	y	destino

Mover	N‐1	discos	del	pilar	A	al	pilar	B:

Mover	N‐2	discos	del	pilar	A	al	pilar	C

Mover	el	disco	del	pilar	A	al	pilar	B

Mover	N‐2	discos	del	pilar	C	al	pilar	B

Naturaleza	recursiva	de	la	solución

AA BB CC

AA BB CC

AA BB CC

AA BB CCSimulación	para	4	discos	(wikipedia.org)Simulación	para	4	discos	(wikipedia.org)

Mover	3	discos	de	A	a BMover	3	discos	de	A	a B

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1041Fundamentos de la programación: Introducción a la recursión

Caso	base:	no	quedan	discos	que	mover
...
void hanoi(int n, char origen, char destino, char auxiliar) {

if (n > 0) {
hanoi(n ‐ 1, origen, auxiliar, destino);
cout << origen << " ‐‐> " << destino << endl;
hanoi(n ‐ 1, auxiliar, destino, origen);

}
}

int main() {
int n;
cout << "Número de torres: ";
cin >> n;
hanoi(n, 'A', 'C', 'B');

return 0;
}

hanoi.cpphanoi.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1042Fundamentos de la programación: Introducción a la recursión

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1043Fundamentos de la programación: Introducción a la recursión

long long int factorial(int n) {
long long int fact;

assert(n >= 0);

if (n == 0) {
fact = 1;

}
else {

fact = n * factorial(n ‐ 1);
}

return fact;
}

long long int factorial(int n) {
long long int fact = 1;

assert(n >= 0);

for (int i = 1; i <= n; i++) {
fact = fact * i;

}

return fact;
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1044Fundamentos de la programación: Introducción a la recursión

¿Qué	es	preferible?
Cualquier	algoritmo	recursivo	tiene	uno	iterativo	equivalente

Los	recursivos	son	menos	eficientes	que	los	iterativos:

Sobrecarga	de	las	llamadas	a	subprograma

Si	hay	una	versión	iterativa	sencilla,	será	preferible	a	la	recursiva

En	ocasiones	la	versión	recursiva	es	mucho	más	simple

Será	preferible	si	no	hay	requisitos	de	rendimiento

Compara	las	versiones	recursivas	del	factorial	o	de	los	números	
de	Fibonacci	con	sus	equivalentes	iterativas

¿Y	qué	tal	una	versión	iterativa	para	los	números	de	Ackermann?

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1045Fundamentos de la programación: Introducción a la recursión

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1046Fundamentos de la programación: Introducción a la recursión

Definición	recursiva	de	listas
Ya	hemos	definido	de	forma	recursiva	alguna	estructura	de	datos:

Las	listas	son	secuencias:

La	lista	1,	2,	3	consiste	en	el	elemento	1	seguido	de	la	lista	2,	3,	que,
a	su	vez,	consiste	en	el	elemento	2	seguido	de	la	lista	3,	que,	a	su	vez,
consiste	en	el	elemento	3	seguido	de	la	lista	vacía	(caso	base)

Hay	otras	estructuras	con	naturaleza	recursiva	(p.e.,	los	árboles)
que	estudiarás	en	posteriores	cursos

secuencia	vacía	(ningún	elemento)

elemento	seguido	de	una	secuencia
Secuencia

lista	vacía	(ningún	elemento) (Caso	base)

elemento	seguido	de	una	lista
Lista

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1047Fundamentos de la programación: Introducción a la recursión

Procesamiento	de	estructuras	de	datos	recursivas
Naturaleza	recursiva	de	las	estructuras:	procesamiento	recursivo

Procesar	(lista):

Si	lista	no	vacía	(caso	base):

Procesar	el	primer	elemento	de	la	lista	//	Código	anterior

Procesar	(resto(lista))

Procesar	el	primer	elemento	de	la	lista	//	Código	posterior

resto(lista):	sublista	tras	quitar	el	primer	elemento

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de la programación: Introducción a la recursión Página 1048

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

AP

Grado	en	Ingeniería	Informática
Grado	en	Ingeniería	del	Software

Grado	en	Ingeniería	de	Computadores

Luis	Hernández	Yáñez

Facultad	de	Informática
Universidad	Complutense

Fundamentos de la programación
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Fundamentos de la programación: Archivos binarios

Flujos 1051
Archivos binarios 1054
Tamaño de los datos: El operador sizeof() 1056
Apertura de archivos binarios 1059
Lectura de archivos binarios (acceso secuencial) 1061
Escritura en archivos binarios (acceso secuencial) 1066
Acceso directo o aleatorio 1070
Ejemplos de uso de archivos binarios 1078

Ordenación de los registros del archivo 1079
Búsqueda binaria 1085
Inserción en un archivo binario ordenado 1088
Carga de los registro de un archivo en una tabla 1092
Almacenamiento de una tabla en un archivo 1093

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1051Fundamentos de programación: Archivos binarios

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1052Fundamentos de programación: Archivos binarios

Flujos
Canalizan	la	E/S	entre	los	dispositivos	y	el	programa

En	forma	de	secuencias	de	caracteres

La	entrada	puede	proceder	de	un	dispositivo	o	de	un	archivo

La	salida	puede	dirigirse	a	un	dispositivo	o	a	un	archivo

Siempre	por	medio	de	flujos

Programa

Dispositivos/archivos
de	entrada

Dispositivos/archivos
de	entrada

Dispositivos/archivos
de	salida

Dispositivos/archivos
de	salida

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1053Fundamentos de programación: Archivos binarios

Flujos	de	texto	y	binarios
 Flujo	de	texto:	contiene	una	secuencia	de	caracteres

 Flujo	binario:	contiene	una	secuencia	de	códigos	binarios.

Lo	que	signifiquen	los	códigos	dependerá	del	programa	que	use	el	archivo

En	ambos	casos	se	trata	de	una	secuencia	de	caracteres

En	el	segundo	caso	se	interpretan	como	códigos	binarios
Sin	contemplar	caracteres	especiales	como	\n o	\t

Ya	hemos	usado	flujos	de	texto	para	E/S	por	consola/archivos

A0 25 2F 04 D6 FF 00 27 6C CA 49 07 5F A4 …

T o t a l : 1 2 3 . 4  A …

(Códigos	representados	en	notación	hexadecimal.)(Códigos	representados	en	notación	hexadecimal.)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1054Fundamentos de programación: Archivos binarios

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1055Fundamentos de programación: Archivos binarios

Codificación	textual	y	binaria
Datos	numéricos:	se	pueden	guardar	en	forma	textual	o	binaria
int dato = 124567894;

Representación	como	texto:	caracteres	'1' '2' '4' '5' '6' ...

9 caracteres	(se	guarda	el	código	ASCII	de	cada	uno)

Representación	binaria:
00000111 01101100 11000001 01010110 Hex:	07 6C C1 56

4 caracteres interpretados	como	códigos	binarios

1 2 4 5 6 7 8 9 4

07 6C C1 56

Flujo	de	textoFlujo	de	texto

Flujo	binarioFlujo	binario

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1056Fundamentos de programación: Archivos binarios

El	operador	sizeof()
En	los	archivos	binarios	se	manejan	códigos	binarios	(bytes)
sizeof() (palabra	clave):	bytes	que	ocupa	en	memoria	algo

Se	aplica	a	un	dato	o	a	un	tipo char	 byte
const int Max = 80;

typedef char tCadena[Max];

typedef struct {

int codigo;

tCadena item;

double valor;

} tRegistro;

const int SIZE = sizeof(tRegistro);

En	un	archivo	binario	un	dato	del	tipo	tRegistro
ocupará	exactamente	SIZE caracteres

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1057Fundamentos de programación: Archivos binarios

typedef struct {
int cod;
double val;

} tRegistro;
tRegistro reg;
const int SIZE = sizeof(reg);

...

Posiciones	de	memoria	usadas	

Se	guardan	los	SIZE bytes:

MEMORIA

...

0F03:1A38 00

0F03:1A39 00

0F03:1A3A 00

0F03:1A3B 05

0F03:1A3C 0A

0F03:1A3D 37

0F03:1A3E 1C

0F03:1A3F DF

0F03:1A40 03

0F03:1A41 92

0F03:1A42 99

0F03:1A43 0E

0F03:1A44 ...

SIZE
(12)
SIZE
(12)

reg.cod
(4)
reg.cod
(4)

reg.val
(8)
reg.val
(8)

regreg

00 00 00 05 0A 37 1C DF 03 92 99 0E

Flujo	binarioFlujo	binario

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1058Fundamentos de programación: Archivos binarios

Por	eficiencia,	algunos	campos	de	una	estructura	se	pueden	
forzar	a	ocupar	un	múltiplo	del	tamaño	de	palabra	del	sistema

Tamaño	de	palabra	(4,	8,	16,	...	bytes):	dato	más	pequeño	que	se	
lee	de	la	memoria	(aunque	se	usen	sólo	algunos	de	los	bytes)

Así,	el	tamaño	real	de	las	estructuras	puede	ser	mayor	que	la	
simple	suma	de	los	tamaños	de	cada	tipo

Por	ejemplo:
typedef struct {

char c;
int i;

} tRegistro;
const int SIZE = sizeof(tRegistro);

char	(1	byte)	+	int	(4	bytes) SIZE	toma	el	valor	8	(4	+	4),	no	5

char	+	int	+	double  24	bytes	(8	+	8	+	8)
NOTA:	El	tamaño	de	palabra	y	los	tamaños	de	los	tipos	dependen	del	sistema	concreto

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1059Fundamentos de programación: Archivos binarios

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1060Fundamentos de programación: Archivos binarios

Archivos	binarios:	tipo	fstream

Apertura:	función	open(nombre, modo)
Nombre:	char[] (función	c_str() para	cadenas	de	tipo	string)

Modos	de	apertura	del	archivo:

Concatenación	de	modos:	operador	| (O binaria:	suma	bit	a	bit)
archivo.open("entrada.dat", ios::in | ios::binary);

Modo Significado

ios::app Añadir:	permite	seguir	escribiendo	a	partir	del	final

ios::binary Binario:	tratar	el	archivo como	archivo	binario

ios::in Entrada:	archivo	para	leer	de	él

ios::out Salida:	archivo para	escribir	en	él

ios::trunc Truncar:	borrar	todo	lo	que	haya	y	empezar	de	nuevo

Biblioteca	fstreamBiblioteca	fstream

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1061Fundamentos de programación: Archivos binarios

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1062Fundamentos de programación: Archivos binarios

archivo.read(puntero_al_búfer, número)

búfer:	variable	destino	de	los	caracteres	leídos

Pasado	como	puntero	a	secuencia	de	caracteres
Referencia	(&)	a	la	variable	destino

Molde	de	puntero	a	carácter	(char *)

número:	cantidad	de	caracteres	a	extraer	del	archivo
 Operador	sizeof()

Archivo	abierto	con	los	modos	ios::in e	ios::binary

archivo.read((char *) ®istro, sizeof(tRegistro));

Los	caracteres	leídos	se	interpretan	como	códigos	binarios

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1063Fundamentos de programación: Archivos binarios

Éxito	o	fallo	de	la	lectura
Función	gcount()

Nº	de	caracteres	realmente	leídos	en	la	última	operación

Si	coincide	con	el	número	que	se	solicitaron	leer:	OK

Si	son	menos,	se	ha	alcanzado	el	final	del	archivo:	Fallo
tRegistro registro;
fstream archivo;
archivo.open("entrada.dat", ios::in | ios::binary);
archivo.read((char *) ®istro, sizeof(tRegistro));
if (archivo.gcount() < sizeof(tRegistro)) {

// Fallo en la lectura
}
else {

// Lectura OK
...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1064Fundamentos de programación: Archivos binarios

#include <iostream>
using namespace std;
#include <fstream>
#include "registro.h"

int main() {
tRegistro registro;
fstream archivo;
archivo.open("bd.dat", ios::in | ios::binary);
archivo.read((char *) ®istro, SIZE);
int cuantos = archivo.gcount();
while (cuantos == SIZE) {

mostrar(registro);
archivo.read((char *) ®istro, SIZE);
cuantos = archivo.gcount();

}
archivo.close();
return 0;

}

leer.cppleer.cpp

¡No	olvides	cerrar	el	archivo!¡No	olvides	cerrar	el	archivo!

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1065Fundamentos de programación: Archivos binarios

El	tipo	tRegistro
const int Max = 80;

typedef char tCadena[Max];

typedef struct {
int codigo;
tCadena item;
double valor;

} tRegistro;

const int SIZE = sizeof(tRegistro);

¿Por	qué	usamos	cadenas	al	estilo	de	C?
string:	tamaño	variable	en	memoria

Requieren	un	proceso	de	serialización

Las	cadenas	al	estilo	de	C	siempre	ocupan	lo	mismo	en	memoria

registro.hregistro.h
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1066Fundamentos de programación: Archivos binarios

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1067Fundamentos de programación: Archivos binarios

archivo.write(puntero_al_búfer, número)

búfer:	origen	de	los	caracteres	a	escribir	en	el	archivo

Pasado	como	puntero	a	secuencia	de	caracteres
Referencia	(&)	a	la	variable	destino

Molde	de	puntero	a	carácter	(char *)

número:	cantidad	de	caracteres	a	escribir	en	el	archivo
 Operador	sizeof()

Archivo	abierto	con	los	modos	ios::out e	ios::binary

archivo.write((char *) ®istro, sizeof(tRegistro));

Se	escriben	tantos	caracteres	como	celdas	de	memoria	ocupe
la	variable	registro

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1068Fundamentos de programación: Archivos binarios

#include <iostream>
using namespace std;
#include <fstream>
#include "registro.h"

int main() {
tRegistro registro;
fstream archivo;
archivo.open("bd2.dat", ios::out | ios::binary);
bool seguir = true;
while (seguir) {

cout << "Código: ";
cin.sync();
cin >> registro.codigo;
cout << "Nombre: ";
cin.sync();
cin.getline(registro.item, Max); // Máx: 80
...

escribir.cppescribir.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1069Fundamentos de programación: Archivos binarios

cout << "Precio: ";
cin.sync();
cin >> registro.valor;
archivo.write((char *) ®istro, SIZE);
cout << "Otro [S/N]? ";
char c;
cin >> c;
if ((c == 'n') || (c == 'N')) {

seguir = false;
}

}
archivo.close();

return 0;
}

¡No	olvides	cerrar	el	archivo!
(¡pérdida	de	datos!)
¡No	olvides	cerrar	el	archivo!
(¡pérdida	de	datos!)

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1070Fundamentos de programación: Archivos binarios

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1071Fundamentos de programación: Archivos binarios

Acceso	secuencial:	empezando	en	el	primero	pasando	a	siguiente

Acceso	directo	(también	llamado	aleatorio):

Para	localizar	registros	individuales	necesitamos	otras	rutinas:

 tellg():	lugar	donde	se	encuentra	el	puntero	del	archivo

Siguiente	posición	donde	se	realizará	una	lectura	o	escritura
 seekg(desplazamiento, origen):

Lleva	el	puntero	del	archivo	a	una	posición	concreta:	
desplazamiento caracteres	desde	el	origen indicado

Origen:

ios::beg:	principio	del	archivo

ios::cur:	posición	actual

ios::end:	final	del	archivo

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1072Fundamentos de programación: Archivos binarios

Cada	registro	ocupa	SIZE caracteres	en	el	archivo

¿Cuántos	registros	hay	en	el	archivo?
archivo.seekg(0, ios::end); // 0 car. desde el final ‐> final

int pos = archivo.tellg(); // Total de caracteres del archivo

int numReg = pos / SIZE;

tRegistro tRegistro tRegistro tRegistro tRegistro tRegistro

ios::begios::beg ios::endios::end

SIZESIZE SIZESIZE SIZESIZE SIZESIZE SIZESIZE SIZESIZE

SIZESIZE 2*SIZE2*SIZE 3*SIZE3*SIZE 4*SIZE4*SIZE 5*SIZE5*SIZE 6*SIZE6*SIZE00

const int SIZE = sizeof(tRegistro);

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1073Fundamentos de programación: Archivos binarios

Poner	el	puntero	del	archivo	en	un	nº	de	registro:
archivo.seekg((num ‐ 1) * SIZE, ios::beg);

tRegistro tRegistro tRegistro tRegistro tRegistro tRegistro

ios::begios::beg ios::endios::end

SIZESIZE SIZESIZE SIZESIZE SIZESIZE SIZESIZE SIZESIZE

SIZESIZE 2*SIZE2*SIZE 3*SIZE3*SIZE 4*SIZE4*SIZE 5*SIZE5*SIZE 6*SIZE6*SIZE00

const int SIZE = sizeof(tRegistro);

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1074Fundamentos de programación: Archivos binarios

Lecturas	y	escrituras
Una	vez	ubicado	el	puntero	al	principio	de	un	registro,
se	puede	leer	el	registro	o	actualizar	(escribir)	el	registro

Si	se	ubica	al	final,	se	puede	añadir	(escribir)	un	nuevo	registro

Archivos	binarios	de	lectura/escritura:

Se	han	de	abrir	con	los	modos	ios::in,	ios::out e	ios::binary
archivo.open("bd.dat", ios::in | ios::out | ios::binary);

Ahora	podemos	tanto	leer	como	escribir

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1075Fundamentos de programación: Archivos binarios

// Actualización de un registro
#include <iostream>
using namespace std;
#include <fstream>
#include "registro.h"

int main() {
tRegistro registro;
fstream archivo;

archivo.open("bd.dat", ios::in | ios::out | ios::binary);
archivo.seekg(0, ios::end);
int pos = archivo.tellg();
int numReg = pos / SIZE;
cout << "Número de registros: " << numReg << endl;
int num;
cout << "Registro número? ";
cin >> num;
...

actualizar.cppactualizar.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1076Fundamentos de programación: Archivos binarios

if ((num > 0) && (num <= numReg)) {
archivo.seekg((num ‐ 1) * SIZE, ios::beg);
archivo.read((char *) ®istro, SIZE);
mostrar(registro);
cout << endl << "Cambiar nombre [S/N]? ";
char c;
cin.sync();
cin >> c;
if ((c == 's') || (c == 'S')) {

cout << "Nombre: ";
cin.sync();
cin.getline(registro.item, 80);

}
cout << endl << "Cambiar precio [S/N]? ";
cin.sync();
cin >> c;
if ((c == 's') || (c == 'S')) {

cout << "Precio: ";
cin >> registro.valor;

}
...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1077Fundamentos de programación: Archivos binarios

archivo.seekg((num ‐ 1) * SIZE, ios::beg);
archivo.write((char *) ®istro, SIZE);
cout << endl << "Registro actualizado:" << endl;
archivo.seekg((num ‐ 1) * SIZE, ios::beg);
archivo.read((char *) ®istro, SIZE);
mostrar(registro);

}
archivo.close();
return 0;

}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1078Fundamentos de programación: Archivos binarios

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1079Fundamentos de programación: Archivos binarios

Mediante	un	acceso	directo	a	los	registros	del	archivo
Ordenaremos	por	el	campo	item

#include <iostream>
using namespace std;
#include <fstream>
#include <iomanip>
#include <cstring>
#include "registro.h"

const char BD[] = "lista.dat";

void mostrar();

...

ordenar.cppordenar.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1080Fundamentos de programación: Archivos binarios

void mostrar() {
fstream archivo;
tRegistro registro;
int cuantos;

archivo.open(BD, ios::in | ios::binary);
archivo.read((char *) ®istro, SIZE);
cuantos = archivo.gcount();
while (cuantos == SIZE) {

mostrar(registro);
archivo.read((char *) ®istro, SIZE);
cuantos = archivo.gcount();

}
archivo.close();

}
...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1081Fundamentos de programación: Archivos binarios

int main() {

mostrar();

fstream archivo;
archivo.open(BD, ios::in | ios::out | ios::binary);
archivo.seekg(0, ios::end);
int pos = archivo.tellg();
int numReg = pos / SIZE;
...

Orden	inicialOrden	inicial

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1082Fundamentos de programación: Archivos binarios

// Ordenamos con el método de selección directa
tRegistro regMenor, reg;
for (int i = 0; i < numReg ‐ 1; i++) {

int menor = i;
for (int j = i + 1; j < numReg; j++) {

archivo.seekg(menor * SIZE, ios::beg);
archivo.read((char *) ®Menor, SIZE);
archivo.seekg(j * SIZE, ios::beg);
archivo.read((char *) ®, SIZE);
if (strcmp(reg.item, regMenor.item) < 0) {

menor = j;
}

}
...

menor
i

menor
i jj

regMenorregMenor regreg

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1083Fundamentos de programación: Archivos binarios

if (menor > i) { // Intercambiamos
archivo.seekg(i * SIZE, ios::beg);
archivo.read((char *) ®, SIZE);
archivo.seekg(menor * SIZE, ios::beg);
archivo.read((char *) ®Menor, SIZE);
archivo.seekg(i * SIZE, ios::beg);
archivo.write((char *) ®Menor, SIZE);
archivo.seekg(menor * SIZE, ios::beg);
archivo.write((char *) ®, SIZE);

}
}
...

ii jj

regreg regMenorregMenor

menormenor 
 









Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1084Fundamentos de programación: Archivos binarios

archivo.close();

cout << endl << "Tras ordenar:" << endl << endl;
mostrar();

return 0;
}

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1085Fundamentos de programación: Archivos binarios

Archivo	binario	ordenado;	por	código

#include <iostream>
using namespace std;
#include <fstream>
#include "registro.h"

const char BD[] = "ord.dat";

void mostrar();

int main() {
mostrar();
tRegistro registro;
fstream archivo;
...

buscar.cppbuscar.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1086Fundamentos de programación: Archivos binarios

archivo.open(BD, ios::in | ios::binary);
archivo.seekg(0, ios::end);
int pos = archivo.tellg();
int numReg = pos / SIZE;
int buscado;
cout << "Código a buscar: ";
cin >> buscado;
int ini = 0, fin = numReg ‐ 1, mitad;
bool encontrado = false;
while ((ini <= fin) && !encontrado) {

mitad = (ini + fin) / 2;
archivo.seekg(mitad * SIZE, ios::beg);
archivo.read((char *) ®istro, SIZE);
if (buscado == registro.codigo) {

encontrado = true;
}
else if (buscado < registro.codigo) {

fin = mitad ‐ 1;
}
...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1087Fundamentos de programación: Archivos binarios

else {
ini = mitad + 1;

}
}
if (encontrado) {

int pos = mitad + 1;
cout << "Encontrado en la posición " << pos << endl;
mostrar(registro);

}
else {

cout << "No encontrado!" << endl;
}
archivo.close();

return 0;
}

...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1088Fundamentos de programación: Archivos binarios

Ordenado	por	el	campo	codigo

#include <iostream>
using namespace std;
#include <fstream>
#include "registro.h"

const char BD[] = "ord2.dat";

void mostrar();

int main() {
mostrar();
tRegistro nuevoRegistro = nuevo(), registro;
fstream archivo;
archivo.open(BD, ios::in | ios::out | ios::binary);
archivo.seekg(0, ios::end);
int pos = archivo.tellg();
int numReg = pos / SIZE;
...

insertar.cppinsertar.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1089Fundamentos de programación: Archivos binarios

pos = 0;
bool encontrado = false;
archivo.seekg(0, ios::beg);
while ((pos < numReg) && !encontrado) {

archivo.read((char *) ®istro, SIZE);
if (registro.codigo > nuevoRegistro.codigo) {

encontrado = true;
}
else {

pos++;
}

}
if (pos == numReg) { // Debe ir al final

archivo.seekg(0, ios::end);
archivo.write((char *) &nuevoRegistro, SIZE);

}
...

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1090Fundamentos de programación: Archivos binarios

else { // Hay que hacer hueco
for (int i = numReg ‐ 1; i >= pos; i‐‐) {

archivo.seekg(i * SIZE, ios::beg);
archivo.read((char *) ®istro, SIZE);
archivo.seekg((i + 1) * SIZE, ios::beg);
archivo.write((char *) ®istro, SIZE);

}
archivo.seekg(pos * SIZE, ios::beg);
archivo.write((char *) &nuevoRegistro, SIZE);

}
archivo.close();

mostrar();

return 0;
}

nuevoRegistronuevoRegistro

 

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1091Fundamentos de programación: Archivos binarios

Al	principioAl	principioAl	principio

Por	el	medioPor	el	medioPor	el	medio

Al	finalAl	finalAl	final

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1092Fundamentos de programación: Archivos binarios

void cargar(tTabla &tabla, bool &ok) {
ok = true;
fstream archivo;
archivo.open(BD, ios::in | ios::binary);
if (!archivo.is_open()) {

ok = false;
}
else {

archivo.seekg(0, ios::end);
int pos = archivo.tellg();
int numReg = pos / SIZE;
tabla.cont = 0;
tRegistro registro;
archivo.seekg(0, ios::beg);
for (int i = 0; i < numReg; i++) {

archivo.read((char *) ®istro, SIZE);
tabla.registros[tabla.cont] = registro;
tabla.cont++;

}
archivo.close();

}
}

tabla.cpptabla.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1093Fundamentos de programación: Archivos binarios

void guardar(tTabla tabla) {
fstream archivo;
archivo.open(BD, ios::out | ios::binary | ios::trunc);
for (int i = 0; i < tabla.cont; i++) {

archivo.write((char *) &tabla.registros[i], SIZE);
}
archivo.close();

}

tabla.cpptabla.cpp
Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Página 1094Fundamentos de programación: Archivos binarios

#include <iostream>
using namespace std;
#include "registro.h"
#include "tabla.h"

int main() {
tTabla tabla;
tTabla ok;
cargar(tabla, ok);
if (!ok) {

cout << "Error al abrir el archivo!" << endl;
}
else {

mostrar(tabla);
insertar(tabla, nuevo(), ok);
mostrar(tabla);
guardar(tabla);

}
return 0;

}

bd.cppbd.cpp

Lu
is
 H
er
n
án
d
ez
 Y
áñ
ez

Licencia	CC	(Creative Commons)
Este	tipo	de	licencias	ofrecen	algunos	derechos	a	terceras	personas	
bajo	ciertas	condiciones.

Este	documento	tiene	establecidas	las	siguientes:

Pulsa	en	la	imagen	de	arriba	a	la	derecha	para	saber	más.

Fundamentos de programación: Archivos binarios Página 1095

Reconocimiento	(Attribution):	
En	cualquier	explotación	de	la	obra	autorizada	por	la	licencia
hará	falta	reconocer	la	autoría.	

No	comercial	(Non	commercial):	
La	explotación	de	la	obra	queda	limitada	a	usos	no	comerciales.

Compartir	igual	(Share	alike):
La	explotación	autorizada	incluye	la	creación	de	obras	derivadas	
siempre	que	mantengan	la	misma	licencia	al	ser	divulgadas.

	Índice general

	Referencias bibliográficas

	Tema 1: Computadoras y programación

	Informática, computadoras y programación

	Lenguaje máquina y ensamblador

	Lenguajes de programación de alto nivel

	Un poco de historia

	Programación e I
ngeniería del Software
	El lenguaje de programación C++

	Sintaxis de los lenguajes de programación

	Un primer programa en C++

	Herramientas de desarrollo

	C++: Un mejor C

	Tema 2: Tipos e instrucciones I
	Un ejemplo de programación

	El primer programa en C++

	Las líneas de código del programa

	Cálculos en los pro
gramas
	Variables

	Expresiones

	Lectura de datos desde el teclado

	Resolución de problemas

	Los datos de los programas

	Identificadores

	Tipos de datos

	Declaración y uso de variables

	Instrucciones de asignación

	Operadores

	Más sobre expresiones

	Constantes

	La biblioteca cmath

	Operaciones con caracteres

	Operadores relacionales

	Toma de decisiones (if)

	Bloques de código

	Bucles (while)

	Entrada/salida por consola

	Funciones definidas por
 el programador

	Tema 2 (Anexo): Detalles técnicos

	Tema 3: Tipos e instrucciones II

	Tipos, valores y variables

	Conversión de tipos

	Tipos declarados por el usuario

	Tipos enumerados

	E/S con archivos de texto

	Lectura de archivos de texto

	Escritura en archivos de texto

	Flujo de ejecución

	Selección simple

	Operadores lógicos

	Anidamiento de if

	Condiciones

	Selección múltiple

	La escala if-else-if

	La instrucción switch

	Repetición

	El bucle while

	El bucle for

	Bucles anidados

	Ámbito y visibilidad

	Secuencias

	Recorrido de secuencias

	Secuencias calculadas

	Búsqueda en secuencias

	Arrays de tipos simples

	Uso de variables arrays

	Recorrido de arrays

	Búsqueda en arrays

	Capacidad y copia de arrays

	Arrays no completos

	Tema 3 (Anexo I
): El operador ternario ?
	Tema 3 (Anexo II): Ejemplos de secuencias

	Recorridos

	Búsquedas

	Búsquedas en secuencias ordenadas

	Tema 4: La abstracción procedimental

	Diseño descendente: tareas y subtareas

	Subprogramas

	Subprogramas y datos

	Parámetros

	Argumentos

	Resultado de la función

	Prototipos

	Funciones de operador

	Diseño descendente (un ejemplo)

	Precondiciones y postcondiciones

	Tema 4 (Anexo): Más sobre subprogramas

	Archivos como parámetros

	La función main()

	Argumentos implícitos

	Sobrecarga de subprogramas

	Tema 5: Tipos de datos estructurados

	Tipos de datos

	Arrays de nuevo

	Más sobre arrays

	Implementación de listas

	Cadenas de caracteres

	Cadenas de caracteres de tipo string

	Estructuras

	Listas de longitud variable

	Un ejemplo concreto

	El bucle do-while

	Tema 5 (Anexo): Cadenas de caracteres al estilo de C

	Tema 6: Recorrido y búsqueda en arrays

	Recorrido de arrays

	Ejemplos

	Búsquedas en arrays

	Ejemplo

	Recorridos y búsquedas en cadenas de caracteres

	Más ejemplos de manejo de arrays

	Arrays multidimensionales

	Tema 7: Algoritmos de ordenación

	Algoritmos de ordenación

	Ordenación por inserción

	Ordenación por inserción con intercambios

	Claves de ordenación

	Estabilidad de la ordenación

	Complejidad y eficiencia

	Ordenación por selección directa

	Método de la burbuja

	Listas ordenadas

	Búsquedas en listas ordenadas

	Búsqueda binaria

	Tema 7 (Anexo): Más sobre ordenación

	Ordenación por intercambio

	Mezcla de listas ordenadas

	Tema 8: Programación modular

	Programas multiarchivo y compilación separada

	Interfaz frente a implementación

	Uso de módulos de biblioteca

	Compilación de programas multiarchivo

	El preprocesador

	Cada cosa en su módulo

	El problema de las inclusiones múltiples

	Implementaciones alternativas

	Espacios de nombres

	Calidad y reutilización del software

	Tema 8 (Anexo): Ejemplo de modularización

	Tema 9: Punteros y memoria dinámica

	Direcciones de memoria y punteros

	Operadores de punteros

	Punteros y direcciones válidas

	Copia y comparación de punteros

	Tipos puntero

	Punteros y paso de parámetros

	Punteros y arrays

	Memoria y datos del programa

	Memoria dinámica

	Punteros y datos dinámicos

	Gestión de la memoria

	Errores comunes

	Arrays de datos dinámicos

	Arrays dinámicos

	Tema 9 (Anexo): Más sobre punteros y memoria dinámica

	Aritmética de punteros

	Recorrido de arrays con punteros

	Referencias

	Listas enlazadas

	Tema 10: Introducción a la recursión

	Recursión

	Algoritmos recursivos

	Modelo de ejecución

	Tipos de recursión

	Código del subprograma recursivo

	Parámetros y recursión

	Ejemplos de algoritmos recursivos

	Recursión frente a iteración

	Estructuras de datos recursivas

	Apéndice: Archivos binarios

	Flujos

	Archivos binarios

	Apertura de archivos binarios

	Lectura de archivos binarios (secuencial)

	Escritura en archivos binarios (secuencial)

	Acceso directo o aleatorio

	Ejemplos de uso de archivos binarios

