Fuopeople I OF THE PEOPLE
U Tuition-Free Online University

Computer Systems

Daniel J. Taipala, Ph. D.

Copyright © 2013 by Daniel J. Taipala, University of the People,
Pasadena, California.

All rights reserved. Permission to reproduce or copy all or parts of
this material for non-profit use is granted on the condition that the
author, university, and source are credited. Suggestions and
comments are welcomed. Author may be contacted at:

University of the People
225 S. Lake Ave., Suite 300
Pasadena, CA 91101

www.uopeople.edu
Tel. +1 626 264 8880
dan.taipala@uopeople.rg

FIRST EDITION

Table of Contents

o (= = o= T PPN 10
Logic circuits and Digital Signals.......cceeeeieiiniiiiiiiiiiiiiiiiiiiiiiieeeas 15
Chemistry?...ooovueiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i 15
Transistor Operation Illustrated.........ooeeeeeeeieeeeeeieineineeneeeneeneneenne 19
From Transistors to Gates.........oeeeeeeeneiineeineeineeinenineeeenneeeiennnenene.. 20
The AND Gate CirCUit....oeeeeeeeeeeeneeneineeneeneeneenneeieeeineeeeeenneeeeneenes 21

Chapter 1 EXercise T..ceeeeeeeeeeeeeeeneaeennenneneennenneeeaeeieneenaeeeeneeeeneenes 29
Chapter 1 EXercise 2.....c.eeeeeeeeeeaneaeennennenneeneieeeneeieneenaeeeneeeeneeenes 30
Binary Arithmetic and Boolean algebra.........ccoiviiiiiiiiiiiiiiiiiiiiiiiiiieeees 35
NUmMber SyStemS. .eeeeeeeeeeeieeiieieeeeeeieeieeieeeeeieeeeneeiaeeeneeeeneeeneeenes. 35
ASCIl and Unicode ENcoding.....ocoeeeeieeineineineieineineineineineeneineenneeenes 37
Binary AAdition......o.eeeeeeeeeineeneeneenneneeneeieiiiieiiiiieiiiieiieiieinnee, 39
Subtraction Using Two’s Complement...........ceeeeeeeeeeeeeeeeeeeeeeeeeeaeennne. 40

Binary DiViSiOn......oeeeeeieeeieneieneieneiineiineiineiieiieiineiineiiieeieneeeene. 44
Encoding Floating Point Numbers.........oeeeeeeeieeneieeeeneeieeeeneeeennenne... 45
Boolean algebra.......oeeeeeeieeiieeneinneneeneeneeneeieeneiieieieieineeineeiene., 47
DeMorgan’s TheOremM. c.e.eeeeeeeeeeneeeeeeeeieeineieieieieeeineiaeineeeneeeenee. 50
Chapter 2 EXercise....o.eeeeeueeneineineieineieineineineineineeneineeeneneeneennenns 51
Combinational Logic and the ALUcoeiiiiiiiiiiiiiiiiiiiiiiiieeiieerennnnns 53

Adder Circuits: Half Adder, FUll Adder......ccoeeeeeiinnnneeeiiiiiiiiiiannennnnnn.. 54

Binary Subtractor Circuit.......ooeeeeeeeieeineeneineineeneeneieneeineeineeineenne.. 57
Control Circuits: Decoder, Multiplexor, and De-Multiplexor................... 59
MULLIDLEXON . ettt ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneaeeaneeaens 61
De-MUltiPLEXOr. . eueeeeieieeieitieieie ettt eneeeeeeeeneeieeieeineieeneennenns, 64
DECOAON. .ottt ittt ieeieeieeieeeeeeeeeeieeeiaeeeeneeiaeeeenee, 65
The ALU - Arithmetic Logic Unit......coeeeeeeeeeeeaeineneeeeeeneeaeeeeeaneaneaeenne 66
Chapter 3 EXercise 1..c.eeeeeeeeeeeeeneeneennennenneinenueeineeieneeieeeeineeeeneenes 70
Chapter 3 EXercise 2.....eeeeeeeeeeeeieeneeneenneneenneieeenneeeeneeneeeeeneeeeneenes 71
Sequential Logic: Registers, Memory, COUNLErsccovveeriiieieeeerrenennnnnnnnns 75
Processing Execution Stages........oeeeeeeeineieeneeineiineeneneeeneeinneenneennne. 75
Preserving State........ooeveeeieneiineiineiinenneeineeineeiieeineeiieeiieeiieeinene.. 77
D-RAMMEMOrY. . euvieieieianiiniiniieiiniiniiiiiiiiiiiei i iiiiineenne 81
Big and little endian.......ooeeeeeeeeeennennennennennenneneineineineieeiaeineiaeeene.. 84
ROM Memory = Program MEmMOrY......eeeeeeeeeeeeeeneeeneenneeieeneeeeeennneenen.. 86
RAM Memory = Data MEeMOrY...o.eeeeeeeeieeineineieeineineieieineieeeeneeeene.. 88
Binary Counter CirCUit.....eeeeeeeieeeneeneennenneieeieeneeineeieneeieeeeneenene.. 89
Divide by TWO CirCUit.....oveeeeeeneieeieineineineineineeieeieeeineeiieeneeenne.. 91
Chapter 4 EXercisecoeeeeeieeieeineineieineineineineineeneeneeneeneeneeeeneennes 92
Control System: Clock, Counter, and NPZcoitiiiiiiiiiiiiiiieiiiiieeaanees 95
Introduction to the von Neumann architecture...................oovveeneenn..... 95
Data and Signal BUSSES......eoeeeeeeieieeeeeeaeenneaeeaeeieeieeieeeeeieneeeneenene. 96
The System Clock and Program Counter.........cooeeeeieeeeeneeenneeeneeineenne. 98

Implementing N,P,Z functionality........oceoeeeeieeiaeeeeeeneeieneeiaeeeeneennes 102
Chapter 5 EXerciseooceeeeeiieeineineineineineeneenneeiieeiineeineeeaneenne.. 107
Computer ArChiteCtUre ...ovinniiiii i e e re e eeeraaeeees 110
The University of the People Architecture........cocooeeeeeeeeaeeeeeeennnn..... 112

ALU Arithmetic Logic UNniteeeeeeiieiiiiineeeiiiieiiiiineeeeeiiieiiiunneeennns 118
Control Uit eeeeeeeeeeeeeeiaeiieeeeeeeeeeaieeeeeeieeeiiiiieaeeeeeeeeeennnnnns 119
Instruction DECOder. ueeeeennneee et iieeaiiieeeeieeeeaiiieeeeeeeeeeeennnnnannnn. 119

MemOry REgiSterS. . ouueeeeeeteeeeeeeeeeaaeeeeeeeeeeeeeaeeueennaieeaeaaeaeeaeennn. 120

The StacK.....ooeeeeeeineineineineineineineiieiieineineiieiieeneeieeiieeiieeineeennes 124
Input and OUEPUEeoeeeeeineineineineineineieinieineineineineineeneeieenneneen. 125
Machine Language, Instruction Decoding, and Execution........................ 128
Machine Instruction TypeS......coeeueeeeieeneineeneeneenneiinniiineeineeinneenne.. 129
Instruction Decoding.eeeeeeeeenenneineieieineineieeieeineieeineeeeeiaeenne 130
Constructing a Machine Instruction........eeeeeeeeeeeeeeeeeeeeeeeneeneenene.... 131
Programming the Computer System.........oeeeveeeeeiieeieeeeeneeineienenne... 135
von Neumann’s Accumulator......eoeeeeeieeineeneieieineieneeieeeeeneeenneeene.. 138
Loading Data and Storing Valuesin Memory.........ooeeeeeeeenuueneeeeeenn..... 140
Implementing Conditional LOGiC. . ..eeueeeeeeneeneeneeieneeeneeieeeineeeineennes 141
Loops with For and While CharacteristicS.....oeeeeeeeeeeeeeieneeeaeeieneenne.... 144

Chapter 7 EXercise...ceeeeeeeeeenenneineieineineineineiaeiaeieeeiaeeeeneeieeeane.. 149
ASSEMDBLY LANGUAGE ..eenneieireiiiieiteiiteeteeteeteenteeneenaneeeerennneesennns 154
Operating and Understanding the Assembler.............coeeeeeeeeeeeennene.... 157
Assembly language mMNemONICS. ..o.eeeeeeeeeeeeeeieeeeeneeneeneeneeneeneennenne.. 161
One Pass and Two Pass Assemblers.ooeeeeeeeeeneinenneiniieieineennenn... 163
Chapter 8 EXercise....o.eeeeeneineineineineineineineineineineiineeiieeeineeeeneenee. 166
Bibliography....eoeeeeeeeeeneeeeineieieieineineieeineiaeieeiaeiieieeeeieeieeene. 169
1T 1= N 170

Table of Figures

[T={0] <30 I B o0 o 1] -\ o] 1 1 T P 15
Figure 1.2 SiliCOn ALOML...ciiiitiiii e eiiteeeiieeeeeeeeenaeennnnnnnnnnneees 16
Figure 1.3 P-Type and N-Type SiliCON.....ccoeiiitiiiiiiiiiiiinienieeeneenneenneeens 17
Figure 1.4 NPN and PNP Transistors......oeeeeeuieriereeneereeeeeeeeeeeeenneeens 17
Figure 1.5 Transistor Electrical Properties.........covveviiiiiiiiiiiiiiiieinnnnnnnn. 18
Figure 1.6 Transistor Circuit Turned ON........ccvvitiiiiiiiiiiieiiieiiieeraaneenns 19
Figure 1.7 Transistor Circuit Turned Off......ccviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeees 20
Figure 1.8 AND Gate Turned ON...cc.ueiiiiiiiiiiiiiiiiiiiiie et eeeeeeiiiinaaaaees 22
Figure 1.9 AND Gate Turned Off......ueiiiiiiiiiiiiiiii e eeireeeeees 23
Figure 1.10 Transistor AND Gate....ccuviiiiiiiiiiieiiiiitereieereieeeeanneerannneens 23
Figure 1.11 Transistor NAND Gate.......cccevviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieens 24
Figure 1.12 Transistor OR Gate.......viiiiiiiiiiiiiiii i eeeeeeeeiieeeees 25
Figure 1.13 Transistor NOR Gate@......cuviuiiiiiiiiiiiiiiiieeetiiiiiiiiiiinnnaneees 25
Figure 1.14 Transistor NOT Gate (Inverter)......ccoviiiiiiiiiiiiiiiiiiiiiiiieeees 26
Figure 1.15 Logic Gates and Truth Tables......ccviiiiiiiiiiiiiiiiiiiiiirineeeees 27
Figure 1.16 Digital Signal Cycle..cooiuiiiiiiiiiiiiiii e reeeees 28
Figure 1.17 Quartz CloCK Crystal....eeeeeeereereiiririiieeeeerreeeeennnnneneeeeens 29
Figure 1.18 NoNn Periodic PULSES. ... uviieieiiiiiiiiiiiiiiieetteeeeeiiiiienneaeees 29
Figure 1.19 Timing Diagram 1........eiiiiiiiiiii i e e eiieeeees 30
Figure 1.20 Timing Diagram 2.......c.eeiiiieiiiiitiriiiereaieereerneeeeenannnnneaees 30
Figure 1.21: Transistor Circuits for AND and OR Gates.........ccccvvviiiiniinnnnnnnn 31
Figure 1.22 NAND Gate Simulation.........ceeveeiiiiniiiniiiiniiireiieeeeeneeens 32
Figure 1.23 Logic Gates and Truth Tables......ccviiiiiiiiiiiiiiiiiiiiiiinineeeees 33
Figure 2.24 Decimal, Hexadecimal, and Binary Numbers...........ccvvvveveenennn 37
Figure 2.25 ASCH ENCOAING. . ..ueiriettreietreeteeeineeeeeeessenesennnnnnnnnneeees 38
Figure 2.26 Binary Addition With Carry......cceeiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeees 39
Figure 2.27 Logic Circuit and Truth Table.......ccovviiiiiiiiiiiiiiiiiiiiiiiieeennens 48
Figure 2.28 Boolean algebra AND.........ccciiitiiiiiieiitiiiiiieieieeeneeeaanneens 48
Figure 2.29 Logic CirCUI. .ueiiieiiiiii it iiiii e e et e e e e iraaaaaas 49

Figure 2.30 DeMorgan's TheOremMuiiiiniiiiii i it et e e e eeeiiaaaeaes 50

Figure 2.31 DeMorgan's Theorem for NAND and NOR...........cceviiiiiinnnnnnnnn. 50
Figure 3.32 Half Adder CirCUit. . oeeeeiriiee i it ieiiie e eeeeeeieiieneeaeees 55
Figure 3.33 Half Adder Truth Table........coveiiiiiiiiiiiiiiiiiii i 55
Figure 3.34 Exclusive OR CirCUit...oveueiiriitiiiiriiieneieeeieerennnnnneneees 56
Figure 3.35 Exclusive OR (XOR) Truth Table......ccceviiiiiiiiiiiiiiiiiiiiineen. 56
Figure 3.36 Full Adder CirCUit.....o.eiuiieiiniiniiiiiiiiii e eeeaee 57
Figure 3.37 Subtractor CirCUIt....oeeueiiii it et e e ercirreeeeees 57
Figure 3.38 Full Adder Component......cooeiiiiiiieiiiiiiiiieiieieiieeeeaaneenn. 58
Figure 3.39 Two Inputs to NOT Gate....oveeiiiiiiiiiiiiiiietieeeiiiiiiineeeeens 60
Figure 3.40 LOOP CirCUIT. . uueeietiiiiteiii i eeiieeeeeeeeteeeesnnnnnnnnnnneees 60
Figure 3.41 MULLIPLEXOT. ...uvntieii it eaee 61
Figure 3.42 Inside the MULLIPlEXOr......viiiiiiiii i e e irreeeees 62
Figure 3.43 Controlled Buffer.......ccoeuiiiiiiiiii i 63
Figure 3.44 Controlled Buffer CirCuUit.........coveviiiiiiiiiiiiiiiiiiiiiinieenes 63
Figure 3.45 De-MULtIPLEXOT .. .ueiiiit i eii e ee it e e e e eriraeaaees 64
Figure 3.46 DECOET .. c.uuiiiiii it et ettt et ettt e eeeiinaaaaes 65
Figure 3.47 Decoding the 7 Segment Display......cccevveieeieiiiiiiiiiiiinnneneenns 66
Figure 3.48 ALU (Arithmetic Logic UNit).....ccvviiiiiiiiiiiiiiiiiiiiiieennnneeees 67
Figure 3.49 ALU Circuit With OUEPUES......ccevuiiiiiiiiiiiiiiiiiiiei e 68
Figure 3.50 ALU GirCUit. . .coviiiniiiiiiiiiiiiiiiinn e 71
Figure 4.51 Fetch-Decode-Execute-Store Stages.......coveevieeenniineennnennnnnnnn. 75
Figure 4.52 D-LatCh...coeireiiiiiiiiii e e et et e e eaaneeens 78
Figure 4.53 D-Latch 1 Bit Memory Cell Implemented in Logisim.................. 79
Figure 4.54 Memory Register. ...cuuiuiiiii ittt e e e e iireaeees 80
Figure 4.55 D-RAM MemOory Cell.....cvrueiiiiiiiiiiiiiiiiiiieereeeenneeaennees 82
Figure 4.56 D-RAM MeMOry STrUCTUNE. . covuueiiiit it ieiieeeeeieerennnnaaeeees 83
Figure 4.57 Big and little Endian.......cccevveiiiiiiiiiiiiiiiiiiiiiiii it e 84
Figure 4.58 Little endian format.......ccceviiiiiiiiiiiiiiiiiiiiiiiiiiieeieeenees 85
Figure 4.59 Big endian format.......ccevieiiiiiiiiiiiiiiii i eeeeees 85
Figure 4.60 Read ONnly MEMOIY......veeutireiiteeteeeeeeeaneenneeeneenneeeneeaneens 87
Figure 4.61 Random ACCESS MEMOIY....uuiiineiiiiitiiiiieeeetteeeeennnnnnnaeeees 88

Figure 4.62 Binary Counter CirCUit.....coiiiiiiiiiiiiiiiiiiiie e ciiciiieeeeees 90

Figure 4.63 Divide by TWO CirCUit....c.veireeiiriiiiiiiiiiiiieteeeeeerriieeeeees 91
Figure 4.64 D-Latch Memory Cell......ovvriiiiiiiiiiiiiiiiiiiiiiiieiiieiiiaeeeees 92
Figure 5.65 von Neumann Architecture.........c..coieiiiiiiiiiiiiiiiiiiiinineennes 96
Figure 5.66 Instruction Fetch and Decoding.........cevvviiiiiiiiiiiiiiiiiiinnnnnnns 97
Figure 5.67 Bus Illustrated as Single Wire.......cccoiiiiiiiiiiiiiiiiiiiiiiiineen. 98
Figure 5.68 System Clock and Program Counter.........c.coceviuiiiiiiiiiinneennnns 99
Figure 5.69 Short Program in the C language........ccvvviiiiiiiiiiinneeeeennnnn. 100
Figure 5.70 Control Circuits using De-multiplexor and Decoder................. 102
Figure 5.71 N,P,Z, and the ALU......c.cooeviiiiiiiiiiiiiiiiiiiiiiiiiiinenaens 105
Figure 6.72 Complete Circuit for UoPeople Computer System................... 111
Figure 6.73 Color Coded CirCUit.......ocvveiiiiitiieiiiiiiiiieieiieiieeeeeaees 114
Figure 6.74 Photo of CPU Showing CirCUits.....cccvvvviieiirineirinnnnneeeeennnnns 115
Figure 6.75 Decoded INStrUCtioN.....covuerieirieiiiiiiii e eeiiieeeeeeeennns 120
Figure 6.76 Memory Register......oouiiiiiiiiiiiii i 121
Figure 6.77 Program COUNEEruuiiiiie it eeiieeteiteeeeeeiinreeaaeeeeeenns 121
Figure 6.78 Memory Address Register.......civiiuiiiiiiiiiiiiiiiiiiiiiiiiieeeeeanns 122
Figure 6.79 Memory Data Register......cvvviriiiiiiiiiiiiiiiiiiiiiiiieeeeeeanns 122
Figure 6.80 D-RegiSter. ciuutiiiieiiiieiiieieeeieeeeeeeeniinneeaaeeeeeeens 123
Figure 6.81 Jump Address Register.......cooeviiiiiiiiiiiiiiiiiiiiiiiieieeenee, 123
Figure 6.82 A-RegiSter. . ..t ieii ittt eee et eeeeeeiiereaeeeeeanss 123
Figure 6.83 MemMOry RegiSter......cviutiiitiiiiiiiiii e eeeeeaenes 124
Figure 6.84 Stack Operation.........coueieiieiiniieiiiiiiiiiiiieiieaaeenee, 124
Figure 6.85 Memory Addressing StruCture........ocvvevieeiiiiiiiiiineeeeeeeeenenns 126
Figure 7.86 Logisim ROM COMPONENT......ccuviuiriuiiiiiiiriiiieeaneeeanneaennns 129
Figure 7.87 ROM and Instruction Decoding........cccceeeveieiiiniiinnneneeeeeennnns 131
Figure 7.88 UoPeople Computer Data FlOW.......covveiiiiiiiiiiiiiiiiieinnnnnenn. 136
Figure 7.89 von Neumann Architecture.........c.ccooeiiiiiiiiiiiiiiiieiinnn... 139
Figure 8.90 Assembler Screen Part 1....ccoveiiiiiiiiiiieiiiiiiiiiiiiieeeeeeeenns 158
Figure 8.91 Assembler Screen Part 2.......cceviiiiiiiiiiiiiiiiiiiiiiiiieiiieenns 161

Preface

This book has been developed as a companion text to the
University of the People course CS1104 Computer Systems. The
University of the People is an accredited online university that
offers programs in business administration and computer science.
The university is unique in that it has no tuition, is tuition free,
non-profit, and serves students from around the world.

The computer systems course takes the student on a fascinating
journey that begins by learning the properties of conductors and
semiconductors, through an understanding of how these properties
are used to create transistors as switches. It continues with the
concepts of logic gates, which are assembled into circuits, and
eventually ends with the student developing their own computer
system and writing assembly language programs for the computer
system they design.

The text is in a tutorial format and is intended to be used in
conjunction with a course text. The course text is available from
the author’s web site at:

Computer Organization and Design Fundamentals, David L.
Tarnoff, Copyright (C) 2005-2007. All Rights Reserved. Text
used with permission of author. Available from
http://faculty.etsu.edu/tarnoff/138292/

Equally important is the use of the Logisim simulation tool.
Logisim is an educational tool for designing and simulating digital
logic circuits. With its simple toolbar interface and simulation of
circuits as you build them, it is simple enough to facilitate learning
the most basic concepts related to logic circuits. With the capacity
to build larger circuits from smaller sub circuits, and to draw
bundles of wires with a single mouse drag, Logisim is used to
design and simulate entire CPUs for educational purposes.

...,10..

http://ozark.hendrix.edu/~burch/logisim/download.html
http://faculty.etsu.edu/tarnoff/138292/
http://faculty.etsu.edu/tarnoff/138292/

Logisim can be downloaded from
http://ozark.hendrix.edu/~burch/logisim/download.html

Audience

This text has been primarily written as a companion text for
students in the University of the People’s CS1104 Computer
Systems course. This course is offered in both an open format and
as a credit earning course that is a part of the universities computer
science curriculum. The open format of the course is offered to
anyone as a MOOC (massively online open course). Anyone can
register to be a student of the open course. There is no fee for
participating in the course in keeping with the mission of the
University, which is to provide high quality tuition-free education.
Students interested in the open version of the course should contact
the University of the People administrative staff through the
website uopeople.edu.

The course does have some recommended pre-requisites, however.
The successful student will be one who is prepared for
undergraduate study by having strong communication skills in
English, and math preparedness comparable to a high school
graduate who has completed algebra. A further prerequisite would
be either the completion of an introductory course in programming
using a high-level imperative programming language such as C++,
Python, Java, JavaScript, or the equivalent. The ability to evaluate
a computing problem, break it down into computable steps, and
select the appropriate statements to solve the problem using the
syntax of the programming language is the skill-set that is
required.

Although the text has been written primarily for students of the

University of the People, any student with the necessary
prerequisite knowledge and skills can take advantage of this text.

...,11..

http://ozark.hendrix.edu/~burch/logisim/download.html

Approach and Organization

This book has been developed as a companion text to the
Computer Systems course offered by the University of the People.
The course follows a 9-week term that includes 8 weeks of
instruction and a final week for the comprehensive Final Exam.
Each of the eight chapters of the book corresponds to each of the
eight instructional weeks during the course term.

Chapter 1: Introduces transistors and the circuits that form logic
gates. This chapter also introduces basic concepts of digital
signals.

Chapter 2: Introduces number systems including binary, decimal,
and hexadecimal. The concepts of data encoding are discussed
along with binary addition and subtraction using two’s
complement. Finally, Boolean algebra is presented.

Chapter 3: Introduces combinational logic and covers half and full
adder circuits, decoder, multiplexor, and de-multiplexor circuits
and finally puts these circuits together as a simple ALU
(Arithmetic Logic Unit).

Chapter 4: In chapter 4, we explore sequential logic, introduce the
idea of feedback to maintain state within a logic circuit and then
examine important sequential logic circuits including the D-Latch,
memory register, binary counter, and the divide by two circuit.

Chapters 5 and 6: In chapters 5 and 6, we take the concepts and
circuits that we have learned about, built, and put them together to
form a functioning computer system implementing the von
Neumann architecture.

Chapters 7 and 8: In chapters 7 and 8, we look at how the
collection of circuits that form the computer can be programmed to

...,12..

perform specific computational tasks. In chapter 7, we learn the
relationship between machine instructions and the control unit and
ALU within our computer system. We learn to create programs
from machine instructions and we are introduced to assembly
language. In chapter 8, we explore assembly language for our
computer system, we learn about the assembler, and the difference
between one and two pass assemblers.

Chapter Exercises

Throughout the text there are exercises defined as learning tools to
build upon the knowledge gained from the chapter. These
assignments are designed to promote experiential learning and
directly relate to the CS1104 Computer Systems course content.
The assignments are assigned within the course and solutions are
provided as part of the course content.

Because the assignments and their associated solutions are a part of
the University of the People course, the solutions to the
assignments are not provided within the text, nor will they be
provided outside of the online course room.

The course is offered as an Open Course in addition to being
offered as part of the computer science curriculum, which means
that anyone is welcome to enroll in the course. Interested parties
should visit the University of the People web page
www.uopeople.edu for more details.

...,13..

http://www.uopeople.org/

(This page intentionally left blank)

...,14..

Logic circuits and Digital Signals

We begin this chapter by learning about chemistry. If you ever
wondered why you needed to take that high school chemistry
course, perhaps it was for this class. Following is a refresher on the
atomic structure.

Chemistry?

Within the atom are protons (positive charge) and neutrons (no
charge), which make up the nucleus of the atom, and electrons
(negative charge) that orbit the nucleus. The electrons reside in
consecutive orbits that move outward from the nucleus.

&
o %o
o e 1]
g » 2 ®
& &
L] L
@ @
® e = o
[] ® o
. _g @

Figure 1.1 éopper Atom

The outermost of these orbits of electrons is called the valance
shell and it is this shell that we are interested in. We know that
metals such as copper are good conductors of electricity. A
conductor is a material through which electricity can flow. In
contrast, some materials are not conductors but insulators that
restrict the flow of electricity. Ceramic materials are good
examples of materials that are insulators that restrict the flow of
electricity.

In copper (Figure 1.1), we notice that the shell has an unequal
number of electrons. This imbalance of electrons means that

...,15..

copper can easily gain and lose electrons. When a copper atom
forms a bond with another copper atom, they tend to share the
electrons in their valance shells. The bond that is formed between
atoms of copper is called metallic bonding and results in
conduction electrons, which means that these shared electrons
move freely between the atoms. Metallic bonds occur in metals
that are conductors of electricity. The sharing and movement of
electrons between the atoms is what we observe as electricity.

Copper is a conductor, but silicon is not. This should not be a
surprise as the principle component in glass is silica (silicon
dioxide) and we know that glass is an excellent insulator. Silicon
(Figure 1.2) has balanced electrons in its shell.

X | ®®
4.

Figure 1.2 Silicon Atom

This means that Silicon does not share electrons easily between
atoms in the way that copper does, and Silicon does not facilitate
the flow of electricity.

In computer circuits, we need to be able to control of the flow of
electricity; we need to be able to turn it on and off at will. This is
where the idea of a semi-conductor comes in. Silicon is NOT a
conductor, but we can alter silicon to make it conduct electricity
under the right conditions.

...,16..

We do this by doping the silicon. Silicon as an element forms a
crystalline structure. This means that it has strong bonds and the
atoms align in a rigid pattern. This atomic structure gives silicon
its shiny metallic appearance. In doping, we introduce elements
other than silicon into the crystalline structure.

n-doped silicon p-doped silicon
|

Figure 1.3 P-Type and N-Type Silicon

As we can see in Figure 1.3, doped silicon has an impurity (atoms
other than silicon) in it and these non-silicon atoms give silicon the
ability to become a conductor under the correct circumstances.

There are two kinds of doped silicon called p-type and n-type. P-
type silicon is doped with substances that can readily gain
electrons (boron, gallium, aluminum) while N-type silicon is doped
with substances that can readily lose electrons (arsenic,
phosphorus, antimony).

Collector

c 5 c
c [+
b b b b
Bosa Base
e e e e
Emi' Emittar
NPN TRANSISTOR PNP TRANSISTOR

Figure 1.4 NPN and PNP Transistors

By making a sandwich of p-type and n-type silicon a device is
created that can control the flow of electricity through the device.

..,17,...

We essentially create the ability to switch ON or OFF the flow of
electricity through the silicon. These sandwiches of p and n type
silicon are called transistors and they form the foundation of all
computer circuits.

Base Base

Emitter 4§ Collector Emitter ¢ Collector

P N P N P N

/‘ .\ /1 ’\

Forward Reverse Farward Reverse

Bias Bias Bias Bias

*1. H.L 1 l‘ i |+

] 1) | L L} l ll

Figure 1.5 Transistor Electrical Properties

There are two types of transistors. Each type receives its name
based upon the layers of silicon used to construct them. A
transistor that has p-type silicon between two layers of n-type
silicon is called a NPN transistor. A transistor that has n-type
silicon between two layers of p-type silicon is called a PNP
transistor.

Because the properties of p-type and n-type silicon differ in terms
of their ability to easily gain or lose electrons, the transistors that
are created using these layers require different polarities in the
circuits designed to use these transistors. In figure 1.5, we see that
the current to the base of a PNP transistor is negative while the
current to the base of a NPN transistor is positive. This
requirement for a positive base current is the reason that most logic
gates employ NPN transistors. It will become clear why this is, as
we begin to examine the logic circuits created using these
transistors.

If we look at the diagram in figure 1.5 of both the NPN and PNP
transistors, we see that current cannot flow through the transistor
because the “meat of the sandwich” type of silicon in the middle

...,18...

restricts the flow of electricity, because it has different properties
than the outer layers. The transistor functions as a switch when a
current is applied to this middle layer. This middle layer in the
transistor is called the base and is represented in electronic
schematics as a vertical bar and often abbreviated “b” as we can
see in the Figure 1.4. When the appropriate current flows to the
base, current (electricity) is allowed to flow through, thus turning
on the switch. When the current to the base is turned off, the
transistor switches off.

Transistor Operation Illustrated

The following diagrams provide a visual illustration of the
functioning of a transistor. The first circuit (Figure 1.6) has a
battery connected to the base of the transistor turning it on. We
can see that the transistor is turned on, because we see the current
flowing through it on the voltmeter, which indicates 5 volts. The
second circuit (Figure 1.7) has had the battery removed from the
base circuit turning the transistor off, as we see in the voltmeter,
which registers 0 volts.

+50

~Svelts

Figure 1.6 Transistor Circuit Turned On

...,19..

Figure 1.7 Transistor Circuit Turned Off
From Transistors to Gates

The transistor we now realize acts as a switch capable of turning
current on and off in a circuit, but how does this relate to computer
systems? To answer this question, we need to look at how
transistors are used to form logic gates. While considering each of
the following examples, remember, 1) that the bar is the base and,
2) when a current is applied to the base, that current flows from the
collector (the line that goes into the base) through the emitter (the
arrow that is leaving the bar).

This transistor structure is illustrated in Figure 1.4. In order for the
transistor to be turned “on,” a positive voltage must be applied to
the base as seen in the examples illustrated in Figure 1.6 and
Figure 1.7. When the positive end of the battery was connected to
the base of the transistor, the circuit was turned on. When the
battery was removed, the circuit was turned off.

You can think of this battery or positive voltage as a logical 1, and
the lack of voltage (0 voltage when the battery is removed) as

...,20..

logical 0. The inputs in each of the examples represent the signal
inputs into the gate and the output represents the signal output.

Later we will see that each of these gate circuits has a symbol to
represent it and these symbols have inputs and outputs, which
relate to the inputs in our circuits (the base of each transistor is an
input) and the output is how we determine whether voltage is
flowing through the circuit. The first gate that we will look at is
the AND gate.

The AND Gate Circuit

The following diagram (Figure 1.8) illustrates the circuit for the
AND gate. We can see that in order for current to flow through the
circuit, both transistors must be turned on by applying a voltage
(logical 1) to each transistor’s base. The output is tested after the
second transistor.

Output is the presence of an electrical current or lack of an
electrical current present at the “output” point. Imagine that you
had a circuit tester. If the gate was turned “on,” then we would be
able to measure a voltage at the point of output as illustrated in
Figure 1.8.

...,21..

Figure 1.8 AND Gate Turned On

Notice that in this circuit we have applied a 5 volt current to the
base of each transistor (the symbol with the + and — signs on it
represents a source of electricity (direct current to be precise such
as the current provided by a battery). We are using the voltmeter
to measure the current and we can see that we have +5 volts at the
output. The circuit is turned on because we have attached the
battery to the bases of both transistors. If the battery were not
attached to either or to neither of the transistor bases, the circuit
would be “off” and the voltmeter would register 0 volts.

In this next example circuit, no current is being applied to the base,
because the batteries that are not connected to the bases of the
transistors and the circuit is now turned off, because the voltage at
the point of output reads 0 volts.

...,22..

Figure 1.9 AND Gate Turned Off

The AND gate is normally “off,” meaning that the output has a 0
voltage UNLESS both of the transistors are turned on by applying a
logical 1 to the base of each transistor.

Figure 1.10 Transistor AND Gate

The NAND Gate Circuit

The NAND gate looks almost exactly like the AND gate with the
exception that in the NAND gate the output is measured before the
transistors. What this does is make the NAND gate have an
output of logical 1 UNLESS both of the transistors are turned on.
In this case, the voltmeter applied to the output would show +5

...,23..

volts unless both transistors had a voltage applied to them in which
case the output would show 0 volts.

The NAND gate takes on what is called computational
completeness. This means that ANY Boolean function can be
modeled using exclusively NAND gates. If you had a large
enough pile of NAND gates, you could build a computer system
from them.

Out

Figure 1.11 Transistor NAND Gate

The OR Gate Circuit

In the OR gate circuit we see that the gate can have a logical output
of 1 if either of the transistors are turned on or if both transistors
are turned on. If neither transistor base has a voltage applied, then
the circuit will be “off” (logical 0).

...,24..

AAA
Yyw

Aa—m—éﬁy

+—= Out

-

Figure 1.12 Transistor OR Gate

The NOR Gate Circuit

The NOR gate circuit is again the opposite or the negation of the
OR gate, because it has a logical output of 1; unless, either or both
of the transistors are turned on by applying a logical 1 to the base
of either or both transistors. In this case, the gate will have an

output of logical 0.

<
+—0

g Out
A

Figure 1.13 Transistor NOR Gate

The NOT Gate (Inverter) Circuit

The NOT gate is sometimes called an inverter because the output
is simply the opposite value as the input.

...,25..

+5V

ouT

Figure 1.14 Transistor NOT Gate (Inverter)

Each of these gate circuits has a behavior with respect to its inputs
and outputs. A voltage applied to the base of the transistor will
turn on the transistor. This positive voltage is represented as a
logical 1.

The lack of a positive voltage is represented as a logical 0.
Throughout the rest of this material, it is not important that we
keep track of the transistors in logic gates, because we can simply
use the symbols that have been created for each gate. However, it
is important that we realize the relationship between transistors and
the logic gates that are made out of the transistors. It is important
to realize that it is these transistor circuits that make the logic
gates, behave the way they do.

Moving forward, instead of looking at the transistors in the logic
gate circuits to determine when the gate will be turned on or off,
we can simply look at a truth table. The truth table is simply a
table that shows what the outputs will be for any given
combination of inputs using logical values 0 or 1.

This shorthand method of determining the behavior of a gate

becomes increasingly important as we begin to combine gates
together with other gates to make more complex circuits.

...,26..

Figure 1.15 shows the truth tables and symbols for all of the gates
that we have just learned about (along with a few additional gates).
Notice that the A and B inputs are simply the inputs to the
transistors and the truth table shows us what the output behavior of
each gate will be as the transistors are turned on, and off.

Each of the symbols is meant to represent the circuit. The logic
symbol is shorthand for drawing logic circuits without the need to
draw all of the components such as the batteries, transistors,
ground, or resistors. All of these components are assumed present
and correctly wired within the logic symbol.

AND A BIX NAND A BIX
oolo| A 001
(o 1(0 :Do-xn11
10|00 B 1 0|1
X=A-B 1111 X=A.0 11|0
OR A B[X NOR A B[X
A 000 A 00]1
:§>—-x011 :§>o—-}<u1o
B 10/1| B 100
¥X=A+B o I X=2+8 11]0
AOR A B[X
A:) 00|0
% S—eX|0 11
B 10]1
x=pae8 [11]0
Buffer Inverter (NOT)
AlX AlX
A-—|>—-){DCI A-—I>O—-}(U1
11 B 1{0
K=A K=A

Figure 1.15 Logic Gates and Truth Tables
Digital Signals
In this chapter, we also introduce the concept of digital signals.

The concepts of digital signals and logic gates are closely
associated.

~2’7~

We have already discussed the fact that transistors operate as
“switches” in logic gate circuits. When a current is applied to the
base circuit of the transistor, the transistor is turned on. When the
current is taken away from the base circuit of the transistor, the
transistor is turned off.

This process of turning a circuit on or off forms a pattern referred
to as a digital signal. Each transition from logic 0 (off) to logic 1
(on) or from logic 1 to logic 0 is called a cycle.

Logic 1

Logic 0
Figure 1.16 Digital Signal Cycle

In the clock circuit that will be discussed in more detail in chapter
four, the cycle pattern of moving from logic 0 to logic 1 is
consistent. Each cycle is referred to as a hertz (often abbreviated
as Hz). The frequency of a signal is the measurement of hertz or
the number of hertz that occur in a time interval, which is usually 1
second.

A signal with a speed of 1 kilohertz (KHz) refers to 1,000 cycles
occurring in 1 second. A computer with a signal speed of 1 GHz
means that 1,000,000,000 cycles occur in 1 second.

The cycles in the clock are consistent, because these cycles are
controlled by the vibrations of a quartz crystal. The crystal only
vibrates at a specific frequency. These regular cycles or “pulses’
that result from the crystal’s vibrations are referred to as periodic
pulses because they occur at regular and precise intervals.

b

...,28..

Figure 1.17 Quartz Clock Crystal

We know that logic gates can turn on or turn off, based upon the
signal values to the inputs. The computer system relies on the
ability of logic gates to output high or low logic values as signals.
A low value (0 voltage) represents a logic 0 and a high value
(positive voltage) represents a logic 1. These high values and low
values are how we carry information in the computer system’s
circuits. These pulses are NOT regular, because the state (high or
low) carries information in binary bits as shown in the following
diagram (Figure 1.18).

|

-

Figure 1.18 Non Periodic Pulses

These irregular signals are called non-periodic pulses. Both
periodic and non-periodic pulses are essential in a computer
system. The periodic pulses are tied to the clock and they provide
the regular cadence of signal pulses that are used to control the
execution of instructions on the computer. The non-periodic
pulses carry the information that the computer system will process.

Chapter 1 Exercise 1

...,29..

Using the following two timing diagrams, construct both the truth
table AND a circuit composed ONLY of the primary logic gates
(AND, OR, NAND, NOR, XOR, NOT, etc.) to implement each of
these timing diagrams. To aid in your interpreting of the diagrams,
please note that in Timing Diagram 1, the initial values for A, B,
and C are 0, 0, and 1 where A and B are inputs and C represents
the output. In Timing Diagram 2, the initial values for A, B, and C
are 0, 0, and 0 where A and B are inputs and C represents the
output.

~ Timing Diagram 1

Slmewil

Figure 1.19 Timing Diagram 1

Timing Diagram 2

Higgil

[

Figure 1.20 Timing Diagram 2

Chapter 1 Exercise 2

For the second exercise, download and install the Logisim
software. Execute Logisim to ensure that it is working properly.

...,30..

If you have issues getting the software installed or working
correctly, please refer to the instructions and the help files located
on the Logisim website.

The Logisim site provides both a tutorial explaining the use of
Logisim, as well as a reference that provides details for each of the
gates and other components within Logisim that you can use to
build your circuits. The reference is available at the following
URL:

http://ozark.hendrix.edu/~burch/Logisim/docs/2.3.0/libs/index.html

When you have successfully installed and executed Logisim, or
accessed Logisim from the virtual computing lab, use Logisim to
simulate the following transistor circuits and each of the following
gates. This means that you should create the gate within Logisim,
assign both input, and output pins to it, and then experiment with
the circuits to understand their properties.

) Logisim: main of Untitled) = =

File Edit Project Simulate Window Help
[&]x» a|@ e =D >

R S R
+

Two Transistor
AND Gate

Twi Transistor
- OR Gate

uffer
3 cks:ie . . e . . o .
| L R @ @
[©]
— . L . . Lo . . Lo . .

100% Hit| < >

Figure 1.21: Transistor Circuits for AND and OR Gates

The following picture (Figure 1.22) illustrates the simulation of the
NAND gate:

..,31...

http://ozark.hendrix.edu/~burch/logisim/docs/2.3.0/libs/index.html
http://ozark.hendrix.edu/~burch/logisim/docs/2.3.0/libs/index.html

» Logisimz maln of Uniitled =lo] x|
Fie Edt Projct Simulate Window Hep

§|~ Alme DD
& B0

+

ENCR: Gate ﬂ

Pin

facrg :
fioow =
Figure 1.22 NAND Gate Simulation

East

In this example, we see the behavior of the NAND gate, which has
an output of 1 until both of the inputs are 1, when the output
becomes 0. As part of this exercise, simulate each of the gates in
the following diagram and validate their truth tables using the
Logisim simulation.

Please note that by clicking on the input pins you can change their
value from 0 to 1 or back to 0 when in simulation mode. Logisim
is in simulation mode when the Red Hand (see upper left part of
the screen in the figure above) has been selected. In order to build
the circuit, the arrow (to the right of the red hand) must be
selected. In order wire the logic gate into a circuit, you can select
input pins and place them on the screen. You can place the gates
in the same manner by selecting a gate from the menu and clicking
on the white portion of the screen to place it there. By clicking on
a component (input pin, gate, or other component) and dragging, a
wire will be created connecting the components together.

..,32...

Name Graphic Algebraic Truth

symbol function table

x y| F
0 0] 0

AND J::IZD—F F=xy 0 1|0
7 1 0] 0

1 1] 1

x y| F
0 0] 0

o IT] D>—r Fextr 011
1 0] 1

1 111

x| F

Inverter x—qDo_r Fmx < T
110

x| F

Buffer x—D—F Fux 5T
11

x y| F
x .) 0 0|1

NAND | F Fa(y) s 3l 3
1 0] 1

I 110

x y|F
x 0 0|1

NR] J—F FeG+» 0 1|0
1 010

1 1]0

x y|F

Exclusive-OR X:):D_F F=xy'+xy g o]0
(XOR) y =x@®y 1 é :
1 1]0

x y|F

Exclusive-NOR x - o 0 o1
SR ST e ¢ Fowaay T
equivalence 7 =x0y i ol
1 1)1

Figure 1.23 Logic Gates and Truth Tables

The preceding diagram details most of the common logic gates
along with their functional definitions and their respective truth
tables. Using Logisim, simulate each of these gates (in addition to
creating and simulating the transistor circuits for the AND and OR
gates) and verify that their operation matches the truth tables in the
graphic.

~33~

(This page intentionally left blank)

...,34..

Binary Arithmetic and Boolean algebra

In the previous chapter, we discussed the transistor as a switch and
the fact that we can construct gates from transistors and these gates
have specific output behaviors based upon the inputs to the gate.
We also learned about the idea of a digital signal, which is a signal
that moves from a logical 0 to a logical 1 and back again. The
ability to associate a signal voltage with a value of 0 or 1 is the
method that enables computation in a computer system.

We saw in chapter one that we have the ability to create electrical
circuits that represent numbers. Unfortunately, the only numbers
we can use are 0 and 1.

Number Systems

We all learned about numbers in school. We learned to count and
we learned that when counting we had a certain quantity of
numerals that we could use to count with. Our counting began
with the numeral 0 and continued with 1, 2, 3, 4, 5, 6, 7, 8, and 9.
When reaching 9 we discovered that we only had ten numerals, so
when we wanted to count to a number greater than 9, we had to
combine some of the numerals. The next number beyond 9
combined the numerals 1 and 0. Essentially, we moved a 1 into
the next digit space and began counting with our numerals again.

This system of counting and numbers is called the decimal system
because ten symbols or numerals represent numbers. Referring to
the ten symbols used for counting, the root of the word, “decimal”
is from the Latin, “decem,” meaning “ten.” The decimal system is
the most widely employed system for representing numbers and
numeric values, but it is not the only system.

...,35..

Consider “octal” derived from the Latin, “octo,” eight, or
hexadecimal where “hexa” is derived from the Greek, sixteen.
Another way of expressing these different number systems is by
describing the number of symbols that are used in the counting
system. Decimal has 10 symbols so we describe it as base 10,
Hexadecimal has 16 symbols so we describe it as base 16, and
finally there is base 2, which we commonly describe as the binary
number system.

The prefix “bi,” derived from the Latin, refers to two. Thus, the
binary or base 2 number system only 2 symbols to represent a

value.

The hexadecimal system has 16 symbols that are typically defined
tobe:0,1,2,3,4,5,6,7,8,and 9, A, B, C, D, E, and F.

In decimal, there are 10 symbols defined as 0, 1, 2, 3,4, 5, 6, 7, 8,
and 9.

In octal, there are eight symbols defined as 0, 1, 2, 3,4, 5, 6, and 7.
Do you see a pattern here?

In binary, there are 2 symbols defined as 0, 1.

Because the binary system only requires only 2 symbols (0 and 1)
and because we defined the input and output of circuits using the

values of 0 and 1, it should become clear that we can use logic
circuits to represent information using binary numbers.

...,36..

decimal |hexadecimal] binary
o o 0000
1 1 0001
2 2 0010
3 3 0011
1 4 0100
5 5 0101
6 6 0110
7 7 0111
a8 8 1000
9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 » 1111

Figure 2.24 Decimal, Hexadecimal, and Binary Numbers

As you can see from Figure 2.1, we can convert from hexadecimal
to decimal and binary.

ASCII and Unicode Encoding

It should be clear that we can use binary to represent numerical
values and that we can convert something that we know and
understand such as the number 13 into its equivalent in binary,
which is 1101. How do we represent other information? Numbers
are important, but we might also want to represent letters or words.

The answer to this is found in what we call ASCII and Unicode
coding. The ASCII (American Standard Code for Information
Interchange) code was based originally on the English language. It
essentially took both numbers and characters commonly used in
the English language and assigned an 8-bit number to each. For
example, the name, “Dan,” is comprised of the uppercase letter
"D,” which in ASCII is represented by the decimal number 65.

The lower case “a” is represented by the decimal number 97 and
the lower case “n” is represented by the decimal number 110.

Each of these can be converted to a binary equivalent as well. The
decimal number 65 in binary is 01000001. The decimal number 97
becomes 01100001 in binary, and finally, the decimal number 110

becomes 01101110.
~ 3’7 ~

Therefore, the binary equivalent of Dan is 01000001 01100001
01101110. However, that would not look right on a business card!

Figure 2.2 shows all of the symbols and their representative

numeric values for the ASCII code.

Decimal Hex ASCH | Decimal Hex ASCH | Decimal Hex ASCH | Decimal Hex ASCH
e —

0 00 UL K 70 (Dank) | o3 a0 7] ™ 4]

1 o SOH a3 21 ! 65 41 A a7 61 a
2 02 STX 34 22 . 66 a2 B 88 62 b
3 03 ETX 35 23 s 67 43 Cc %9 63 c
4 04 EOT 36 24 $ 68 44 D 100 (2] d
5 05 ENG 37 25 % 69 45 E 101 65 L
6 06 ACK 38 26 & 70 46 F 102 6 {
7 or BEL 39 2T y T 47 G 103 67]
B 08 BS 40 28 { T2 48 H 104 68 4]
] [HT 41 20) 73 49 | 105 69 i
10 oA LF 42 A . T4 4A J 106 6A |
1" 0B VT 43 28 . 75 48 K 107 68 K
12 oC FF 44 2 76 4C L 108 &C |
13 [L4] CR 45 20 L 40D M 106 60 m
14 OE SO 46 Z2E 18 4E N 110 GE n
15 OF St 47 2F ' 79 4F o] 1 €F o
16 10 DLE 48 30 0 80 50 P 112 70 P
17 " DC1 49 n] 81 51 Q 13 n q
18 12 DC2 50 2 2 a2 52 R 114 2 r
19 3 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 u 17 75 u
7l 16 SYN 54 36 6 86 56 v 118 76 v
23 17 ETB 55 h ' 87 57 W 19 44 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39] 89 59 Y 121 9 ¥
26 1A suB 58 3A 90 SA £ 122 TA z
an 1B ESC 59 - ~ 91 s8 | 123 78 {
28 - FS 60 aC < a9 sC \ 124 (™ |
29 1D GS 61 30 = b <] sD 1 125 0 }
30 iE RS 62 3E > o] SE A 126 TE -
31 1F us 63 aF ? a5 5F 127 ¥ (delete)

Figure 2.25 ASCII Encoding

ASCII was a useful code but had a problem. The problem was that
ASCII was designed around English. It had no ability to
accommodate other languages or the accent characters that exist in
many languages that are based upon the Latin character set. The
biggest challenge that ASCII faced was its size. ASCII is based

upon 8-bits (that means 8 binary digits) and could only
accommodate 255 different numbers and of course 255
corresponding characters. Languages such as Chinese have

thousands of characters, so an 8-bit (also known as a byte) based
coding scheme would not work.

~38~

The solution was Unicode. Unicode utilizes up to 4 bytes to
represent each character, which means that Unicode has the
potential to support millions of different characters.

Although the subject of coding systems is an important topic in
Computer Science, it could fill many books. The key to
understand is that all forms of information can be reduced to a
numeric format and those numbers can all be represented in any
number system including binary with its 2 numerals of 0 and 1.

Binary Addition

The binary (base 2) number system like the decimal system can be
used for mathematics. The rules and procedures of addition,
subtraction, multiplication, and division in binary are much the
same as the rules that we know in the decimal system.

In binary addition like in the decimal system, we can add two
numbers together.

’/ the carry into the column

=
(= B =
-
(=1 R= NN o
(=]
=]|O O M
=
Olb—'l—'o
o
HlHQO
o
D—'|Ol—'0
o
(=] ==

"
/»—-»—-n—-n—-

the carry out of the column

Figure 2.26 Binary Addition with Carry

In decimal addition, when we add two digits that exceed 9, we
need to carry a portion of the result to the next place. This same
rule is true when adding in binary. For example, if we were to add
1+1, the result would be 2. However, we do not have a 2 numeral
in binary, so we need to carry to the next place. In binary, the
result of 1+1 is 10. The most fundamental computation that a
computer can do is ADD two binary numbers together, and this
one small ability results in the complex computer systems that we
have today.

...,39..

If you are viewing this book with a handheld eBook reader, a or
tablet, or using a smartphone or computer, it may seem absurd to
consider deriving these capabilities from the addition of two
numbers in binary. However, by the time that you get to the end of
this book (and the end of CS1104 Computer Systems if you are
using this text as part of the class), it will seem sensible to you.
However, before getting into proving this statement, we need to
learn a bit more about the mathematics (addition) that can be
performed within the computer. Covering the concept of binary
addition has been relatively simple, because it is essentially, what
most of us have learned about addition of decimal numbers.

Addition is the most important thing that the computer does. One
of the reasons that this statement can be made is because addition
is integral to other mathematical operations. For example, in
subtracting one number from another, you are really adding a
negative number.

5-6="5+(-6)

To multiply two numbers we simply add numbers together, the
same number of times as the multiplier.

5 x 6 = 5+5+5+5+5+5

To divide using binary, we use a technique of shift and subtract in
which the divisor is repeatedly aligned with the dividend and
subtracted. Of course this technique uses subtraction which is
based upon addition.

Subtraction Using Two’s Complement

It has been established that addition and subtraction are needed to
perform all mathematical operations and it has been demonstrated
that subtraction is the addition of a negative number, but how does

...,40..

that work in binary? We subtract two binary numbers by adding
them together. The trick is that one of the numbers must be
converted into two’s complement format first. Two’s complement
transforms it into a negative number.

To convert a binary number into two’s complement; we must first
convert it into one’s complement. One’s complement is simply
taking every bit and inverting it. For every 0, you turn it into a 1
and for every 1 you turn it into a 0.

The NOT gate (which is also called the inverter) inverts a bit. We
already know how to convert a binary number into one’s
complement with a circuit: simply invert each bit with the NOT
gate!

The second step in the process is nearly as easy: adding binary one
to the one’s complement number results in two’s complement—
simple!

Two’s complement numbers have a unique feature. If the addition
of a binary number with a two’s complement number causes the
last bit in the calculation to carry, then the resulting number is
positive; otherwise it is negative.

If the resulting number is negative, then we need to put the number
through the same two’s complement conversion process again to
get a binary number for which we can determine the value.

Following are a couple of examples of two’s complement used to
subtract binary numbers.

0111 -The value of 7 in binary
1000 -The value of 7 converted into one’s complement
+ 1 - Add 1 to the one’s complement number

1001 - Two’s complement of 7 in binary

...,41..

Now, subtract 7 from 8 by adding the two’s complement of 7 to 8.
This is the same as (-7) + 8.

1001
+£1000
10001

Notice that we have a carry bit of 1 (the digit to the far left). When
we have a carry bit of 1, it means that the resulting number is
positive. If the carry bit were 0 (no carry bit), then the resulting
number would be negative.

In this case the number that we are left with is 0 0 0 1, which of
course is binary for 1, the expected result of 8-7.

Now, try another example. In this case, subtract 7 from 5 in
binary, which should result in a value of negative 2.

1001
+0101
01110

Notice in this case that there is a carry bit of 0, which means that
the result of the operation is a negative number. The problem is
that the resulting number is still in two’s complement, so it needs
to be converted to determine what the value is. Execute the same
procedure to convert from two’s complement. Convert into one’s
complement and then add 1 to the result.

1110-Thetwo’s complement value in binary
000 1-Converted to One’s complement

+ 1 —Add 1 tothe One’s complement
0010-Thevalue 2 in binary

It seems to work like magic. You can use any combination of
numbers to add and subtract in binary. Try it. It always works!

...,42..

Binary Multiplication

Binary multiplication is nearly as easy as binary addition. In order
multiply two numbers in binary, we need to know just a couple of
rules. Although we will get into Boolean Algebra in more detail a
bit later in this chapter, we need to remember that multiplication of
two bits is essentially the same as an AND operation. We know
that if we multiply 1*0 the output is 0 and if we multiply 1*1 the
output is 1. In binary, the multiplication of two bits can be
accomplish with the AND gate. Try it! The output of 0 AND 1 is
0 and the output of 1 AND 1 is 1 the same as in multiplication.
We can use this fact to develop a circuit to multiply two numbers
together.

We also need to know how to shift a bit. When we shift a bit to the
left, it simply means that we move all the bits one position to the
left as in the following example:

Left shifting 00000001 by 1 bit would result in 00000010
We can also shift bits to the right as in the following example:
Right shifting 10000000 by 1 bit would result in 01000000

Now that we know the rules and the process of bit shifting, we can
look at how to multiply two numbers in binary. Assume that we
wanted to multiply binary 1010 (10 in decimal) by 0010 (2 in
decimal) of course we know that the result of this operation should
be decimal 20.

1010 Multiplicand
X 0010 Multiplier

In our example, the multiplicand (the number on the top) will be
multiplied by the multiplier (the number on the bottom).

...,43..

Typically, to multiply two numbers we would multiply the top
number by the first digit in the bottom number. In this case, we
would multiply 01010 by 0. The result of this we would shift one
bit to the left. Next, we multiply by the second big in the bottom
number, in this case 1 and of course shift again to the left. This
process is completed until all of the bits in the multiplier have

1010
X 0010
0000
1010
0000
0000
0010100

Of course, our result is 0010100 binary, which is 20 in decimal.
When implementing binary multiplication remember that after
multiplying each bit, the resulting product is shifted 1 bit to the left
and this number is then used as the multiplicand in the next
iteration. Also keep in mind that the multiplication of two bits is
nothing more than an AND operation.

Binary Division

We have already suggested that dividing numbers in binary will
require two operations, shift and subtract. In division, the number
to be divided is called the dividend, the number that you will
divide into the dividend and the result of the division operation is
called the quotient.

The division process is relatively simple. The divisor is compared
with the first digit of the dividend and if it is larger then add a 0 to
the quotient and then shift to the right until the dividend is larger

than the dividend. Subtract the divisor from the dividend, add a 1

...,44..

to the quotient and process all over again as illustrated in the
following.

101 Quotient

Divisor 10 1010 Dividend
-10
-10
10
00

This process is repeated until there are no more digits in the
dividend to be divided. Any amount remaining from the last
subtraction is the remainder and the accumulated quotient bits is
the quotient of division.

Encoding Floating Point Numbers

Representing both characters and integer numbers in binary has
been rather straight forward. However, we cannot rely upon the
fact that we can always use an integer when representing numeric
data. We often will need to represent numeric values that are
fractions and expressed using a decimal point.

Consider the following number:
100.25

This number might represent a price in US dollars where the
portion to the left of the decimal point represents the total number
of whole dollars the portion to the right of the decimal point
representing the factional amount of a dollar. In US currency, this
portion to the right of the decimal point is called cents and each
cent is 1/100 of a dollar.

The problem with such decimal numbers is the fact that need at
least two pieces of information to convey the amount. First, we

...,45..

need the value that is to the left of the decimal point. Then we
need the portion that is to the right of the decimal point and of
course, if the value represents a negative amount then we also will
need to have some way to keep track of the sign so that we know if
the value is positive or negative.

Of course, we could simply keep three binary numbers one for the
portion to the left of the decimal point, one for the portion to the
right of the decimal point and one for the sign of the number. The
problem with this approach is that sometime we need to account
for very large or very small numbers.

In mathematics, we typically represent such numbers with an
exponent. For example if we had a very large number such as
3,600,000,000,000 we could use a shorthand known as scientific
notation where we keep just the relevant portion of the number
which is 3.6 and then define how many 0’s follow it with an

3.6x10% .
exponent such as * . This means that there are 12 digits

that really appear to the right of the decimal point. Very small
numbers can also be represented in the same way except that the

exponent is a negative number, which means that you move the
decimal point to the left instead of the right.

When encoding fraction numbers, which we often refer to as
floating point number because of the fact that the decimal point
can move (or float) to the left, or the right based upon the exponent
value we need to keep three pieces of information.

First, we need to keep the sign. Since the sign of a number can
only be positive or negative we can represent this with a single bit.
If the value of the sign bit is 1, then the number of positive. If the
value of the sign bit is 0, then the number is negative. Ok that was
pretty easy.

...,46..

Next, we need to keep the value of the exponent. In our example
12

3.
of 3.6 trillion, which we represented as , the value of the

exponent was 12. The size of the exponent varies based upon the
data type that is being used. When we are using a data size that is
32 bits (4 bytes) then the exponent portion will often occupy 8 bits.
This means that we can represent a very large number with an
exponent up to 255. Think about a number with 1 followed by 255
zeros ... that is a very large number indeed!

The final piece of information that we need is called the mantissa.
The mantissa simply contains the relevant portion of the number to
which we will add zeros to either the left or the right with the
exponent. In our case of 3.6 Trillion, the mantissa would be 36
(with a corresponding exponent of 11 and a sign bit of 1).

All of these pieces of information are put together by convention
so that the information can be accurately extracted. The way the
pieces are typically put together is as follows. The example show
us the structure for a 32 bit number but this could change when we
are using 8, 16, or 64 bit numbers.

[18it] 8 Bits | 23 Bits |

Sign Exponent Mantissa

Boolean algebra
Boolean algebra provides us with mathematical shorthand to

represent the functions of logic gates and circuits. Consider the
following:

...,4’7..

0 d; do V
0[0]0]O0
0|0 | 1
0 1]1]0}]0
0 1 1 1
110]01]10
1 0 1] 0
| P 1013
1 1 1 1

d,

5)

d,

Figure 2.27 Logic Circuit and Truth Table

This is a simple circuit and yet it becomes quite complex to
represent this circuit using either a diagram of logic gates or the
truth table of its behavior. Boolean algebra provides us with a way
to represent our logic circuits mathematically, using the symbols
of Boolean algebra. The first symbol (Figure 2.5) is a way to
represent AND. The logic gate representation of AND is on the
left and the Boolean algebra expression on the right. Obviously,
the expression on the right is much easier to write.

D—X=A-B

Figure 2.28 Boolean algebra AND

B

~48...

The AND gate is represented in Boolean algebra as the
multiplication of A and B. The following are the Boolean algebra
expressions equivalent to all of the logic gates that we have learned
about.

AND AeB=X
OR A+B=X
NOT X=A4
NAND X=A4-B
XOR X=A®B
XNOR X=A®B

In application, we can combine these expressions to represent any
logic circuit. For example, consider the following circuit.

—>
D[-
}

d e
&

Figure 2.29 Logic Circuit

Evaluating this we have oD and the output of this AND with
A resulting in A COMMIAT, We also have odIMIEIAND with NOT

D which is oI 9 . Both of these terms are then added (OR)
to get our result A CoBIMIAN oJIMIHT) (o . Using the

Distributive law of Boolean algebra, we can simply the expression

as (A+6) Cod NI,

Boolean algebra has many of the same laws as we have learned
about in algebra including:

Commutative Law: Which can be described as either
A+B=B+A or AB=BA

...,49..

Associative Law: Which can be described as either
A+(B+C)= (A+B)+C or A-(B-C)=(AB) C

Distributive Law: Which can be described as
A (B+C)=AB+A-C

DeMorgan’s Theorem

DeMorgan’s theorem recognizes the relationship that exists
between the truth tables of the NAND and NOR gates. Essentially
DeMorgan’s theorem recognizes the fact that if you invert the
output of the NAND gate it is a NOR gate and if you invert the
output of the NOR gate it is the equivalent of a NAND gate.

NAND NOR
A|B| A-B A|B| A+B
olo 1 Inverted o lo 0

Inputs
01 1 Becomes 0|1 1
1(0 1 —_— 10 1
1(1 0 11 1

Figure 2.30 DeMorgan's Theorem

What DeMorgan’s theorem represents is the distribution an
inverter in the output of an NAND or NOR gate back to its inputs.

break! break!

.r - ' —

FoA X

NAND 0 Negative-OR NOR o Negative-AND

Figure 2.31 DeMorgan's Theorem for NAND and NOR

...,50..

DeMorgan’s theorem is an important and valuable tool because it
allows us to simplify our logic circuits. The ability to convert a
NAND into a NOR (and vice versa) can often be used to simplify
circuits making them faster and requiring fewer components.

Chapter 2 Exercise

For the Chapter 2 exercise, you must complete all three of the
following assignments:

First assignment: Develop a circuit using combinational logic
(putting together two or more logic gates) for an alarm system.
The following truth table describes the operation of the logic
circuit.

If the alarm is Armed (value of 1) and any of the following occurs:
the door opens, the glass is broken, or motion is detected (all
indicated by a value of 1 when any of these items are true), THEN
the value of Alarm is 1, meaning that the alarm will be sounded.

Challenge Question: If you want to try something a bit more
challenging to test yourself, try to make the circuit enable the
alarm ONLY if two or more of the following events occur (door
opens, glass breaks, and motion is detected).

Ammed Door Glass Motion | Alamm
0 0 0 0 0
0 0 1]
0 0 0
1] 1 0
0 0 0
0 | 0
0
1

oo

0 0
0 0

0
0
0
1
1
| 0 0 0

0

O OO -

)
1
1
)
)
1
1
0
0
1
1

1
1
1 1
0 1
1 1
1
1

...,51..

Second Assignment: Given the following circuit, determine what

the truth table is and document it in truth table format. Your truth
table must be formatted in the same way that the truth table above
is formatted.

A .- 1DO_\

: b
s D

('\
Third Assignment: Construct the truth table and Logisim circuit
for a three input Exclusive NOR gate.

Do not use either the XNOR or the XOR gates for this assignment;
you must build the functionality using other gates. For this
assignment, complete both the truth table and the circuit.

~52~

Combinational Logic and the ALU

In chapter three, we will be learning about combinational logic
circuits. Combinational logic circuits are essentially circuits that
we build by combining logic gates together. Combinational logic
circuits have inputs and outputs, the same as logic gates do. In
chapter one, we looked at the truth table for individual logic gates.
Chapter 2 introduced Boolean algebra as a way of evaluating more
complex logic expressions. In this chapter, we develop
combinational logic circuits where we leverage what we have
learned about logic gates with our ability to evaluate the Boolean
logic of circuits developed using multiple gates.

Combinational logic circuits are simply circuits built from logic
gates that are designed to evaluate a Boolean algebra expression.

In the chapter 2 development project, we had an assignment to
develop a circuit using logic gates to evaluate the truth table for an
alarm system. The alarm system had a series of rules that dictated
under what conditions the alarm would be triggered.

One of those conditions was that the alarm system had to be
enabled. A second condition was that any two of the triggers
(door, glass, motion) had to be triggered. The alarm would be
triggered only when both of these conditions were met.

We can see how this problem can be reduced into a Boolean logic
expression. We know that the alarm must be armed AND two of
the triggers had to be triggered. If we consider the problem of
determining when two of the triggers have been triggered we
realize that we will need to use a combination of both AND and
OR expressions. For example, we could state the following
Boolean expression to capture this condition.

...,53..

((door OR glass) AND motion) OR ((door OR motion) AND glass)

Combinational logic circuits are used to evaluate these kinds of
Boolean expressions. One of the characteristics of a combinational
logic circuit is that it does not hold any form of state. What this
means is that when we apply inputs to the circuit it will produce
some output. When we take away the input, the outputs are also
removed. This might seem absurd, but as we will learn in the next
chapter, there are also sequential logic circuits where an input will
create an output and the value of the output is preserved, even
when the input values are removed.

Throughout this chapter, we will look at three key topics. The first
is combinational logic circuits that are used for control. These
include decoders, multiplexors, and de-multiplexors. Second we
will look at the half and full adder circuits. Finally, we will look at
the structure of the ALU (Arithmetic Logic Unit) which will utilize
both the adder circuits and the control circuits.

Adder Circuits: Half Adder, Full Adder

If someone told you that the primary thing that your computer does
is add, you might have a hard time believing them, however as we
explore the design of computer systems further you will come to
realize that this is true. Consider that the basic operation of all
mathematics is to add. To subtract we merely add a negative
number. To multiply we add the number of times the value of the
multiplier. The key operation in each case is, “add.”

More than anything else, what makes the computer possible is the

ease of adding binary numbers using logic circuits. Consider the
following circuit (Figure 3.1).

...,54..

A ?
BE D—@ Output
DTDOJ- @ Carry

Figure 3.32 Half Adder Circuit

The truth table for the circuit is as follows (Figure 3.2). In the
truth table we see that when input A=0 and B=0, then the output is
0. Think of this as adding input A and B. When either A=1 or
B=1, then the output is 1. Finally, if A=1 and B=1 we would
assume that since we are adding binary numbers and since we only
have 2 numerals, 0 and 1, adding 1+1 would equal 2. However,
since we do not have the 2 numeral we will need to carry it to the
next digit, which is what occurs.

A|B Qutput | Carry
oo 0 0
110 1 0
0|1 1 0
311 0 1

Figure 3.33 Half Adder Truth Table

The circuit in Figure 3.6 is an adder because what it does is add
two binary numbers each 1 digit in length. This is excellent! We
can build a circuit using transistors to form logic gates and this
circuit can add two single digit binary numbers.

This example shows that we can add numbers in binary with just a
few simple gates. Of course, we need to be able to add more than
1 binary digit. In order to do this, we need to be able to carry the
value from one digit to the next. To accomplish this we extend the
half-adder to make it a full-adder.

Before we get into looking at the full-adder circuit however, we
need to review the truth table for the exclusive OR logic gate.

~55~

Recall that the characteristics of the OR gate were such that if
either or both of the inputs had a value of logic 1 then the output
was logic 1. There is a modification to the behavior of the OR
gate that is defined as the Exclusive OR gate. In the exclusive OR
gate, the output will be a logical 1 if one or the other input is
logical one, BUT NOT BOTH. In Figure 3.3 we see both the
symbol for the exclusive OR gate on the left and the exclusive OR
circuit built with AND, OR, and NOT gates.

Figure 3.34 Exclusive OR Circuit

The following table illustrates the truth table of the exclusive OR
gate (XOR).

A | B | Output
1|0 1
01 1
0|0 0
3|3 0

Figure 3.35 Exclusive OR (XOR) Truth Table

The reason that we covered the operation of the XOR gate is
because the XOR gate simplifies the circuit of the full adder.

The full adder circuit is shown in the next diagram (Figure 3.5).
The full adder has the additional feature over the half adder that the
carry from operation can be brought into the next digit, and
multiple full adder circuits can be constructed in series to
accommodate a number for any quantity of bits required.

~56~

f'__)D—r)D_@

=
Carmyin L

Cary

Figure 3.36 Full Adder Circuit
Binary Subtractor Circuit

Now that we know how to add binary numbers using logic circuits,
what about subtract? The answer is relatively simple. Remember
our discussion of one’s and two’s complement? To subtract two
numbers we only need to convert the subtrahend into two’s
complement form and then add the two operands together.

Getting a number into two’s complement we know is easy, as we
simply need to invert the bits and then add 1 to the resulting one’s
complement number.

we B
P4
e
ZEE—JD—' l+—®
=

5

Carry
Figure 3.37 Subtractor Circuit

~57~

This can be accomplished several ways, but the circuit illustrated
in figure 3.6 is a simple but elegant way to implement subtraction
in binary.

In figure 3.6, we see four full adder circuits in series. The full
adder is represented by the box with the + sign on it. We know
that the full adder circuit has three inputs and two outputs all of
which are represented in the full adder component. The full adder
has an A and B input representing the two bits that will be added
together. It also has a carry in input. There are two outputs, the
sum bit, and the carry out. In the full adder component, the two
inputs on the left of the box represent inputs A and B. The input
coming into the top of the box is the carry in flag and the line
coming out of the bottom of the box is the carry out flag. Finally,
the line coming out the right side of the box is the sum bit.

Carry in

Imput A
Input B

"= p— Sub bit - cutput

¢ out

Carry out

Figure 3.38 Full Adder Component

We know that to subtract two numbers we need to convert one of
them into two’s complement which involves inverting the bits and
then adding 1 to the result.

As we examine the circuit in Figure 3.6, the first thing we notice is
the subtract / add input near the top of the circuit. When this value
is 1, which means that the circuit should subtract, a value of logic 1
is sent to the input of EACH of the XOR gates on the B inputs.

...,58..

This exclusive OR has the effect of inverting all of the bits in the B
input, which of course will convert the B input into one’s
complement. To finish the process we simply need to add one to
the result. We accomplish this elegantly by taking the same
subtract input and sending it into the carry in on the first full adder
circuit. Essentially this adds binary 1 to the number.

Intuitively, it may not seem correct, because we are adding the 1 as
we add the two numbers together. However, recall the associative
law which states that A+(B+C) = (A+B)+C, and realize that we
can complete each of these operations (invert bits, add 1, add
operands) in any order.

Control Circuits: Decoder, Multiplexor, and De-
Multiplexor

Control circuits are important logic circuits in that they allow us to
control where and when we send digital signals. We have been
learning about logic circuits and we know that these circuits are
constructed from logic gates and we know that these logic gates
are constructed from transistors. Although we may represent
digital circuits using logic gates, the reality is that they are simply
electrical circuits and as such, this imposes certain limitations in
their design.

One limitation is that we can never have two (2) inputs into the
same gate input that are active at the same time. The following
diagram, Figure 3.8 should make it clear why this cannot be
allowed. Assume that input A was to have a value of 1. How are
we to evaluate the resulting logical expression?

...,59..

A
>0 @ Output
B

Figure 3.39 Two Inputs to NOT gate

Assume that input A were to have a value of 1, how are we to
evaluate the resulting logical expression?

The problem that we have is that the expression is no longer valid.
A Boolean expression cannot be evaluated if the inputs are
inconsistent. If input A is 1 and input B is 0, then what really is
the input? Again, this discontinuity is invalid and cannot be
implemented in logic circuits. Within Logisim, this circuit would
be flagged with an error.

Another limitation is that we must make sure that if we open a
circuit it does not create a loop where the output of a circuit
becomes its input as well (Figure 3.9). This problem is actually
related to the first one in that it creates a situation where there are
two potential inputs into the same logic component.

« @ y
g [o}—

Figure 3.40 Loop Circuit

Later in this chapter, we will look at the structure of the Arithmetic
Logic Unit (ALU) and one of the things that we will see is that the

...,60..

design of the ALU is based upon the potential ability to route the
output of the ALU back to its inputs. As we will see, we need
some careful planning to prevent this from violating the two input
rule and the way that we will be able to prevent having this issue is
by carefully controlling what signals are allowed to impact which
circuits and when. Important groups of circuits that can help us to
accomplish this are the Decoders, Multiplexors, and De-
Multiplexors.

Multiplexor

The multiplexor is a simple concept. It has multiple inputs and
one output. The basic idea is that you use a multiplexor whenever
you need to make a choice between different inputs. The way that
the multiplexor works is that it has two types of inputs. The first is
a data input. In the diagram below, we can see eight different lines
coming into the multiplexor. Each of these lines represents an
input signal.

Figure 3.41 Multiplexor

One point that we should emphasize at this stage in the book is the
fact that we can assume that we have 1 or more bits as an input.
We have dwelt with logic gates that have had a single input (or
single bit). Imagine that we have 8, 16, or 32 of the same gate in
series, one for each bit of information that we need to carry. It
would get very cumbersome to draw a circuit diagram with each of

...,61..

these gates on it, so the Logisim tool provides us with a shortcut
because we can specify the number of bits for the input of any
gate. This will be very important as we construct an ALU circuit
for an 8-bit computer system that uses a 16-bit instruction.

In the multiplexor circuit, each of the eight inputs can carry a
signal value but we want to select just one of the inputs. This is
where the second type of input comes in. The second input is
represented in the diagram above (Figure 3.10) as the line
extending down from the multiplexor gate. These are called the
select bits. The select bits will allow us to specify which input to
select for output. In this multiplexor, we have three select bits,
which means that the multiplexor can support up to eight inputs.
The select bits control a series of gates that either enable or disable
a particular input. The following diagram (Figure 3.11) details a
multiplexor circuit built using AND and OR gates. This example
shows a multiplexor with two select bits, which means it can
support up to four inputs.

I

L

L

I

Figure 3.42 Inside the multiplexor

Notice that when both of the select bits are 0, the inverters on the
first AND gate will both have a value of 1, which sends a signal to

...,62..

the controlled buffer turning on input one and sending it to the
output. The controlled buffer is not a gate that we have used yet,
but its operation is simple.

When a logical 1 signal is applied to the control bit then the buffer
will pass the input signal to the output.

The symbol for the controlled buffer is shown in the following
diagram (Figure 3.12) and the transistor circuit that implements it
is shown in Figure 3.13. You have probably noticed that the
circuit looks a lot like the circuit for the inverter, which it does,
with the exception that the use of the inputs and outputs is
different.

SELECT

INFUT OUTPUT

Figure 3.43 Controlled Buffer
The buffer has an input and an output. The gate will not pass the
signal unless the control bit (represented by select) has a logical

value of 1.

INPUT

SELECT—'\N\/\:—@:

OUTPUT
Figure 3.44 Controlled Buffer Circuit

...,63..

Control buffers like other gates can have multiple bit inputs. This
way we can use the buffer as a way of turning on and turning off a
particular signal path. When used within a multiplexor or de-
multiplexor and when used in conjunction with them, the goal of
controlling when (and where) a signal is allowed to pass from or
to, can be realized.

De-Multiplexor

The de-multiplexor is much like the multiplexor with the exception
that instead of selecting one of many inputs to pass to the output,
the de-multiplexor is used to select one of many outputs to send a
single input signal through.
i T Ensble

¥ | ¥L
-

Figure 3.45 De-multiplexor

The de-multiplexor has select bits just as the multiplexor does and
they work in exactly the same way. Both the multiplexor and de-
multiplexor are capable of supporting signals that contain more
than one bit. As such, these gates are often used as part of the
computer bus to send data bits represented as signals, across many
wires from one location in the computer system to another.

The ability to carry more than 1 bit of information is one of the

things that differentiates the multiplexor (and de-multiplexor) from
the decoder.

..,64...

Decoder

The decoder circuit is a bit different from the multiplexor and de-
multiplexor circuits. The objective of the decoder is to use some
input value to generate or decode one or more outputs.

Decoders are often described using terms such as 1-to-2 decoder or
2-of-4 decoder. These terms describe how the decoder maps input
values into a set of signals as output. When we say that the
decoder maps an input value into a set of signals as output, it
means that the output of the decoder is typically a single bit signal
that has a 1-True or 0-False value.

Decd =4

Figure 3.46 Decoder

For example, the input signal might be the number 2 in binary (X3
in Figure 3.13 is the input bits) so the function of the decoder
would be to enable the signal on output number 2 of the decoder.

Other decoders may have more sophisticated logic. For example
you could use a decoder to convert a binary number into the LED’s
that must be lighted on a seven segment display, to represent a
decimal or hexadecimal number that is the equivalent of the binary
input.

...,65..

' T-Segment Display |

Binary Inputs Decoder Outputs O‘np““
D c &8 Ala b ¢ d o 1 g| '
IIj a l}.ﬂ.l 1 1 1 1 Il:l. i)
[¢ @ o 1|06 1 1 o o 00 1
'0 [| Oll i 0 1 1 0 1 2
Il} [| |'| i 1 1 0 0 1 3
IO 1 0 0|6 1 1 0 0 11 4
[0 1 @ 1]1 0 1 1 0 11 5
fa 1 1 o1 0 9 1 1 11 8 o |
[0 1 1 1|1 1 1 00 00 7
1 8 @ ol1 1+ 9 1 1 11 g
[T ¢ 0 11 1 1 1 0 11 g

Figure 3.47 Decoding the 7 Segment Display
The ALU — Arithmetic Logic Unit

Throughout this chapter, we have learned about some important
combinational logic circuits including multiplexors, de-
multiplexors, decoders, and of course adders. We will now look
at one way to put these circuits together to create the heart of a
computer system, the ALU.

The ALU or Arithmetic Logic Unit is the portion of the computer
system that actually performs computations. Many ALU’s can
have relatively sophisticated sets of instructions, but we are going
to keep it simple and explore the design of a very simple ALU
circuit that performs addition, subtraction, bitwise AND, and
bitwise OR operations for two binary numbers.

Although we do not have a standard gate that we can use for an

ALU, a symbol is often used to represent the ALU. The symbol is
shown in the diagram (Figure 3.17) below.

...,66..

ALU operation

- Zero

Result
= Overflow

i L=

CarryQOut
Figure 3.48 ALU (Arithmetic Logic Unit)

By looking at this diagram, we can see the common inputs and
outputs of the ALU. First, the ALU has two data inputs that are
labeled A and B. These two inputs are multi-bit inputs that contain
binary numbers. The ALU will perform its functions against these
two operands. Ifthe ALU is performing an ADD operation, it will
add the value of B to the value of A. If a Subtract operation is
called for, then the value of B will be subtracted from A.

The ALU operation either is the input to a multiplexor or de-
multiplexor. These select bits are used to select which operation is
to be performed. If our ALU can perform ADD, Subtract, AND,
or OR operations, then these bits will be used to select which ONE
operation will be executed.

There are four outputs identified. The first is the result, which is a
multi-bit binary number, and this output contains the result of the
ALU operation. Some of the other outputs are called flags, which
provide us with information about the operation performed by the
ALU. For example, if you recall our discussion on the use of
two’s complement to add two binary numbers together, you will
recall that we needed to be able to check the value of the carry bit
to determine if the resulting number was positive or negative. The
carry out flag is essentially this carry bit.

...,6’7..

Another flag is the zero flag, which determines if the output of the
ALU operation is zero. Finally, we see an overflow flag. This can
be useful in addition operations to determine if an operation was
requested that resulted in a number that was too large to represent
in the number of bits available and resulted in an overflow.

These flags will become important to understand in chapter 5,
when we look at how to implement N, P, and Z functionality.
N,P,Z refers to flags that our computer system will need to support.
This abbreviation stands for Negative, Positive and Zero. When
the ALU computes a mathematical operation (add or subtract) we
will determine if the result of that operation was a negative
number, positive number, or zero, and set the appropriate
Negative, Positive, or Zero flags. These flags are simply signals
that contain either a logical 0 or logical 1. If the result is positive,
then the positive flag will have a logical 1, if the result is negative,
then the negative flag will have a logical 1, and if the result of the
operation is 0, then the zero flag will have a value of logical 1.

We can create a simple ALU circuit using Logisim that matches
the functionality that we have just discussed. The circuit will look
very much like the following.

Overflow Carry Out Zero
@
Alnput (Operand) add T
| w4 : | Cofy
1

oot

Subtract
.
1in

B Input {Operand)

Bitwise ARD

Bitwise OR

@—

Figure 3.49 ALU Circuit with Outputs

Select Bits

...,68..

In this circuit (a 4-bit ALU) we have an adder circuit, subtract
circuit, an AND circuit, and an OR circuit. We see the source of
the flags, such as the overflow flag and the carry out flag.

The Add component and the subtract component are represented as
square boxes with the + sign for Add and the — sign for subtract.
As you design your ALU circuit in the chapter exercise, you
should use these components.

We also see an implementation of the zero flag. In this example,
we took the output (result) of the ALU, then inverted the bits and
ANDed it. If all of the bits are 0, then the zero flag will be 1.

Notice that we have two inputs, operand A and operand B. These
inputs go to every operation, but we use a multiplexor to send the
result of ONLY the operation that has been selected. The particular
operation is selected using the select bits for the multiplexor. In
this example, bits 00 select ADD, bits 01 select subtract, bits 10
select bitwise AND, and bits 11 select bitwise OR.

A bitwise AND is simply where every bit of operand A and every
bit of operand B are used as inputs to an AND gate. Essentially
the output of each bit is the output of the AND operation on each
pair of bits (one from A and one from B). A bitwise OR is the
same thing except that each pair of bits are used as inputs to an OR
gate.

Assuming two 8-bit binary numbers, the bitwise AND would work
like the following example:

01011001 AND
11110111
01010001

Assuming two 8-bit binary numbers, the bitwise OR would work
like the following example:

...,69..

01011001 OR
11110111
11111111

In subsequent chapters, we will learn to use this simple ALU, and
add additional functionality to it, such as the ability to pass the
value of the A operand to the result or, to pass the value of the B
operand to the result and integrate this ALU functionality with
control functionality to create a complete computer system.

What is relevant is that an ALU circuit as simple as this one is
capable of supporting just about any type of computation, as we
will learn in subsequent chapters of this course.

Chapter 3 Exercise 1

For the first part of the Chapter 3 exercise, create a circuit using
Logisim that implements a Full Adder circuit capable of adding 2 —
4-bit binary numbers and subtracting 2 — 4-bit binary numbers.

The circuit must use a multiplexor that will select between the add
and subtract operations.

The subtract circuit will convert the second of your two input
numbers into 2’s complement format and then add the resulting
binary number to the first number as this will effectively subtract
the second binary number from the first binary number.

Your circuit should look similar to the following diagram with the
two binary numbers to be added on the left, a bit selector that will
select the operation to be performed. When it is 0, the adder
circuit should be selected and when 1, the subtraction circuit
should be selected. The output of the computation should be on
the right.

...,’70..

Your circuit should follow this basic format, but you must design
all of the actual circuits to perform addition and subtraction. You
must design the actual connections between components. The
representation below is an idea of where the inputs, outputs belong,
and the processing that occurs between them. You can only basic
logic gates including AND, OR, NAND, NOR, NOT, XOR, and
XNOR, and the multiplexor, de-multiplexor, or decoder
components within Logisim to construct your circuits.

Adder

Subtroct

E] E]E]E]

[017 T0I7

Figure 3.50 ALU Circuit
Chapter 3 Exercise 2

In the second part of the Chapter 3 exercise, you will construct an
ALU (Arithmetic Logic Unit) circuit. At a minimum, your ALU
must support the following functions. You are welcome to add
additional functionality; however, this may require additional work
in future assignments or you may need to modify your ALU circuit
to be consistent with the remainder of the course assignments.

Required ALU Functionality

. ADD

. Subtract

. Bitwise AND
. Bitwise OR

...,’71..

. Pass through Register A
. Pass through Register D

Your ALU must support two operands. For this assignment, you
should use the input pin tool within Logisim. The input pin tool

will look like the following.

Your ALU must support operating on 8-bit numbers. This means
that you will need to select the bits on the gates and components

that you use within Logisim.

The following is an example of

selecting 8-bits on the Adder gate, input pin, and the AND gate.

I

Selection: Pin

Facing

Three-state?
Pull Behavior
Label

Labeal Location
Label Font

Selection: Adder
Data Bits &

Selecting 8-bits for the Adder component

~72~

[‘T;‘ Divicler

£ Negator

31 Camnacatre =
_Selection: AND Gate

Selecting 8-bits for the ADD gate

As part of your ALU circuit, you must use at least one of the
following components: decoder, multiplexor, or de-multiplexor to
control which operation (Add, Subtract, AND, OR, pass through A
input, pass through B input) is executed.

With the exception of the two pass-through operations (a pass-
through simply passes the input value to the output without doing
anything to it), the rest of the operations must all be applied to two
operands. Assume that these two inputs will be identified as input
(operand) A and input (operand) B.

~73~

(This page intentionally left blank)

...,’74..

Sequential Logic: Registers, Memory, Counters

In the previous chapter, we learned about the ALU and its ability
to perform simple computations such as ADD, subtract, bitwise
AND, and bitwise OR. The ALU is part of what is called the
execute cycle. In a computer system, there are many stages of
execution. Modern CPU’s have relatively complicated cycles and
instructions can often span multiple cycles.

For the purposes of what we will learn in this class however, we
will only consider a computer system that has a single cycle
design, which means that an instruction can be completed within a
single cycle.

Processing Execution Stages

Within that cycle, at least the following four stages must be
completed. The first stage is fetch.

Decode

Figure 4.51 Fetch-Decode-Execute-Store Stages
The basic idea of the fetch cycle is that an instruction is retrieved

from ROM memory. We know that in most modern architectures,
there is no actual ROM memory. Rather the program instructions

~’75~

are stored in an area of RAM that is mapped as the ROM memory
space.

However, for the purposes of this class we will assume there is a
separate ROM memory where the program instructions are stored.
These instructions are just binary numbers where each bit or group
of bits has a specific meaning.

In the previous chapter, we learned how we could select the
particular operation to be performed in the ALU with the select
bits. Well, these select bits actually come from the instruction that
is located in ROM memory!

The fetch cycle essentially loads an address into the ROM address
register and positions to read a value at that address from ROM
memory.

Following the fetch stage, we need to decode the instruction that
we just fetched from memory. This is called the decode stage. In
the decode stage, we must extract the groups of bits that make up a
machine language instruction, and use those bits to control which
signals are active, and in so doing, we can control what function in
the ALU will be executed, where the results of the computation
will be sent, and whether to execute a jump instruction.

Although some of these terms may not make sense right now, rest
assured that as we proceed through the book, they will make
perfect sense.

The decode stage allows the instruction fetched from ROM to set
the correct selection bits to control the execution of the ALU. The
execution of a particular function within the ALU is known as the
execution stage.

...,’76..

Finally, when the ALU has computed a result from the instruction
we need to know where to send the results of the computation.
This is known as the store stage.

A computer’s design must take advantage of both the clock signal
and the design of the logic circuits to control each of these stages.
Some stages such as the fetch, decode and execution stages are
typically done first, so one way to manage the timing is to ensure
that they are executed on the rising edge of the clock signal. The
store phase can only be completed after the ALU has computed the
instruction, so the store phase have to rely upon the falling edge of
the cycle to ensure that each stage is completed in the proper order.

Remember that the rising edge of the cycle is when the clock
cycles from logical 0 to logical 1 and the falling edge of the cycle
is when the clock moves from logical 1 back to logical 0.

Preserving State

The problem that we will quickly encounter is the challenge of
ensuring that we have the right set of signals in the right place at
the right time. We need to ensure that we can maintain state, or
maintain a set of signals until we can process them. Further, we
need to have some way to implement structures such as ROM
(read only memory) and RAM (random access memory) which
must maintain a set of signals, indefinitely.

The purpose of sequential logic circuits is to maintain such state.
We have learned that combinational logic circuits can take inputs
and produce outputs based upon the design of the logic within the
circuit, but we also know that the outputs persist only as long as
the inputs are present. So how do we maintain state? In this
context, state refers to the ability to maintain a set of signals
indefinitely, even after the inputs that generated the signals are no
longer present.

...,’77..

We can see how this might be useful. Imagine that we have an
instruction that we fetch, decode, and send to the ALU to be
computed. The resulting value will be lost the moment that the
inputs change, perhaps when we move to execute the next
instruction.

Therefore, we need to maintain the state of the signals. The secret
to doing this is called feedback. Imagine creating a circuit that
when a value is applied, this value is immediately fed back as an
input into the gate, thus sustaining the state of the value. That is
exactly what we do with the D-Latch, which we see in the
following diagram.

l [——0-

Figure 4.52 D-Latch

In this D-Latch circuit (figure 4.2), we see that we can apply a
signal to S (store) and when toggling the R (reset), the value is
maintained. In the D-Latch, we refer to the S input as the data
input and the R input as Clock. The behavior is that the signal on
the Data when the clock is toggled from 0 to 1 is stored in the
latch. The Q value will contain the data from the D input and Q
will contain the complement (inverse) of the data.

Throughout the remainder of this book, we will be using the
memory gate in Logisim to represent a single bit D-Latch. The
inputs and outputs of this gate are detailed in the following
diagram.

...,’78..

D Latch - Memory Bit

Clock Signal
I—@ Output

el L@
Compl nt
Data Input I pene

1
i Reset

Figure 4.53 D-Latch 1 Bit Memory Cell Implemented in Logisim

o

The clock signal provides timing for the memory circuit.
Essentially the value in the memory gate or cell can ONLY be
updated when the clock signal has a value of logical 1. This signal
can be used to control when the value in the memory cell can be
updated.

The data input is the value to be stored in the memory cell. Of
course, the only time that this value will be stored is when the
clock signal is high or has a value of 1.

The output is the value that is stored in the memory cell and the
complement is the complement of what is stored in the cell. For
example, if the memory cell were to store the value of 1, then the
complement would be 0; and if the cell stored 0, then the
complement would be 1.

This memory D-latch circuit relies on feedback to maintain the
state, or in other words, to store a value. We may need at times to
interrupt this feedback circuit, which will cause the memory cell to
be reset. This is what occurs when a value of logical 1 is applied
to the reset input. The feedback circuit is interrupted and the
memory cell is reset.

...,’79..

Although important, a memory cell that stores one bit is limited in
its use. We need to be able to store numbers larger than a single
bit in order to build effective computer systems. The solution to
this problem is to put several of these 1-bit memory cells (D-
Latches) together. One example of putting a series of D-Latches
together is the register. In the register, there is one D-Latch for
each bit required. Consider an example like the one below where
we have 8-bits of information. The register would be built by
putting eight D-latches together in series.

Memory Register

Data Input Data Output

[e] e)

[}]
Clock Signal Reset Signal

Figure 4.54 Memory Register

The register gate in Logisim looks like the device in the above
diagram (Figure 4.4). It has three inputs and one output.

The data input is a binary number that has 1 or more bits. In the
above example, we see a device that has eight input bits
(represented by the x8). The signals on these eight bits will be
stored in the register only when the value of the clock signal is
logical 1.

The clock signal input is a single bit signal that toggles between 0
and 1. When the value rises to logic 1, the data input is stored in

the register.

The reset signal that provides the interruption in the feedback
circuit is required to reset the D-Latch. When this input has a

...,80..

value of logic 1, the circuit is interrupted and the register is reset.
This sets the value in the register bits to all zeros.

Finally, we have one output which is the data output. This group
of signals contains the value stored in the memory register.

There is an important concept that we need to understand when
looking at the register circuit. We see that both the input and the
output is a group of bits. In the case of the example that we see
above, there are 8-bits in the input and 8-bits in the output. You
have to realize that the one input or output line actually represents
eight different wires to carry the eight different 1-bit signals.

This idea of having a bundle of wires that can be used to carry
multiple bits of information simultaneously into or out of a gate or
circuit, is called a BUS. As we continue to design our computer
system throughout this course, we will be using many such busses.
We will need a bus to carry signals from memory to the ALU and
to carry the result of the ALU to memory, to the ALU registers (A
Register or D Register), or the address registers.

We have explored a single bit of memory and the register that has
several bits of memory in series. We should also recognize larger
memory structures such as ROM (Read Only Memory) and RAM
(Random Access Memory). We can think of ROM and RAM as
being similar to the register in that we have a group of memory
cells that are in series. However, unlike the register, RAM and
ROM have a second dimension typically, which is like having an
entire array of registers.

D-RAM Memory

RAM Memory, and in particular the D-RAM that is used in most
modern computers, does not rely upon the D-Latch circuit to store
a bit of memory. The D-Latch requires at least 9 transistors to
store a single bit of memory. This number of transistors can add

...,81..

up quickly. Imagine a computer with 1 gigabyte of memory. A
gigabyte is 1 billion (1,000,000,000) bytes, each byte has 8-bits,
and using D-Latch circuits, each of those 8-bits has at least nine
transistors, which totals 77,309,411,328 transistors. Additional
transistors would be required for decoding and addressing, but we
will not consider this now.

The alternative to the D-Latch circuit is an innovative approach
that couples a transistor with a capacitor. A capacitor is an
electronic component that can store an electrical charge between
two conductor plates. In circuit diagrams with a capacitor, two
parallel lines represent the two conductor plates separated by an
insulator. The capacitor acts as a battery, storing an electrical
charge. When reading the memory, this stored electrical charge
provides the signal current. Writing into the memory is storing the
electrical charge. The circuit for the D-Ram bit of memory is
shown in Figure 4.5

You might notice in Figure 4.5 that the transistor looks different
from the ones previously studied. This transistor is different; it
does not have the arrow representing the emitter or the line
representing the collector.

This is because D-Ram cells use a special kind of transistor called
a Field Effect Transistor, which is often abbreviated FET.

- T
FET Transistor
Storage
Capacitor

DATA

Figure 4.55 D-RAM Memory Cell

...,82..

Although we will not cover it here, you might want to do some
further research on the internet to understand the properties of field
effect transistors.

The benefit of the D-Ram cell is clearly the reduction in the
number of transistors. The D-Latch required at least nine and the
D-Ram circuit requires only one.

L =l e e L il o HE
fts, BT @i g B B8 - R iR
= = = = = = < L
C T I 3 T ok 5
e e e ko e e il HE
st Lirney) L il | e | Sner el | drmse | Senla | denth
T ae! e T T S T =
2 I rem | = | Eomm |25 e [P e
= PSR Lara) | P L o, i, =
E (0 [[| [[
-]
= e T iy ot e [ey o ey g e
< Tl Ak i = Ak P T L i
T ar. IE e T S e T
es
B) [o [] [P = e o oo e
St s | Ui | i B |] { e | i | i
o= = = ==l =¥ T T oz
0 2 3 4 5 6

Data

Figure 4.56 D-RAM Memory Structure

Figure 4.6) provides an illustration of the structure of random
access memory. We see that the memory cells are arranged in a
matrix. The dimension across is the number of bits of data. The
dimension down represents locations in memory. Each row of
memory cells make up a memory location. We access memory by
accessing a specific row. This row in memory is the memory
address. Each row represents 8-bits, or one byte of memory.

Historically, in order to save larger data structures in memory, the

data would need to be separated into bytes. For example, a number
that required 32-bits would have to be broken up into 4 bytes. In

..,83...

older computer system architectures, the order of these bytes in
memory was very important.

Big and little endian

Once upon a time in the land of Endian there were two races of
people. One was the Big endians and the other was the Little

BiGendian LITTLEendian

Figure 4.57 Big and little Endian

Actually, big-endian and little-endian are terms used to describe
the order in memory by which values are stored. If all values that
we stored in memory were only one byte, 8-bits in size, then there
would not be a problem, however, that is not the case.

Traditionally, computer architectures have adopted an approach
which breaks down any data item to be stored that is LARGER than
one byte, into byte-sized pieces. In the little endian approach, the
less significant byte appears first in memory and the most
significant byte appears last.

For example, assume that we need to store in memory, a very large
number, such as 69,349,146. This large number requires 32-bits
to store, because the binary equivalent is
00000100001000100010111100011010. How would we store this
number?

We need to take the number and break it down into bytes. The
byte at the far left is called the high order or most significant byte.

...,84...

The byte at the far right is called the low order or least significant
byte.

00000100 00100010 00101111 00011010
High Order Low Order
Byte Byte

In little endian, the byte 00011010 is the least significant byte, so it
will appear in memory first. When we say it “appears in memory

first,” we mean that it is stored at the lowest address. The address
is the row in the D-RAM array where the byte will be stored.

Address0 | 00011010 |
Address1 | 00101111

Address 2 | 00100010
Addross 3 WODOWO
Address & :

Figure 4.58 Little endian format

Big endian is the opposite. In big endian, the most significant byte
appears first and the least significant byte appears last.

Address0 | 00000100

Address 1 ‘ 00100010 I
Address 2 ‘00101111 I
Address 3 ‘ 00011010 ’

Address 4

Figure 4.59 Big endian format

This concept of endian-ness was a big issue when different formats
of files or programs supported only one type of endian-ness. Most
modern computer architectures no longer struggle with this issue
and many can support memory stored in either direction.

If you were wondering where the term "endian" came from, it was
from the author, Jonathan Swift. Jonathan Swift was a satirist (he
poked fun at society through his writings). His most famous book

~85~

is Gulliver’s Travels, a story about a mythical land where certain
people prefer to eat their hard-boiled eggs from the little end first
(little endian), while others prefer to eat from the big end (big
endian) and how this led to wars between these people. For years,
the computer industry warred over big-endian and little-endian
much like the characters in Jonathan Swift’s novel.

ROM Memory = Program Memory

The idea of memory addressing is now simple to understand, as the
memory address is simply the row of memory that we either must
update or from which we retrieve a value. Typically, the address
or row in memory is selected by using a decoder circuit. The
decoder enables a particular row within the memory array from
which only the values from the selected row of memory cells are
sent to the output. This is another great example of the use of the
decoder circuit or the controlled buffer to enable or disable a
particular group of signal wires.

In the Logisim tool, we have been provided with two additional
components that we will use. The first is the ROM component,
which represents read-only memory and the second is the RAM
component, which represents random-access memory.

In the projects specified within this text, we will use ROM as the
memory where we place the instructions to be executed (the
program). In many computer systems, an area of RAM is actually
mapped to be ROM, or more accurately, is the place where our
program instructions are stored. As we progress through the text,
we will develop an understanding of how the program counter is
used to point to the next instruction that the computer must
process. In our simple computer system where we have all of our
instructions in a ROM memory model, this is quite simple to
implement. However, in the typical computer system with an
operating system and multiple programs, this becomes more
complex.

...,86..

One of the roles of the operating system is to help coordinate the
flow of instructions to be processed. When memory is mapped to
be ROM, or the location of program instructions, an offset is
applied to all of the instructions that utilize addresses. Instead of
going to line 5 in memory and executing the instruction, since the
program may start at position 22000 in memory, the instructions
and addresses will be remapped to start at 22000. The instruction
to go to line 5 would become an instruction to go to line 22005.

Read Only Memory (ROM)

[J—1a 2568moM D

1
Figure 4.60 Read Only Memory

The Logisim component for ROM memory is rather simple as we
can see in the above diagram. It supports one input and one
output. The input is an address (A on the component) which
simply points to the row of memory bits that should be enabled to
send output. The address is nothing more than a simple offset.
The first row has an address of 0, the second row an address of 1
and so on.

The output (D on the component) is the bus that contains the value
in ROM memory that is pointed to by the address. We will learn
in subsequent chapters that this ROM address is typically tied to a
structure called the program counter and the combination of the
program counter pointing to the ROM address is the mechanism
used to fetch the next instruction from ROM memory to execute.

...,8’7..

RAM Memory = Data Memory

The RAM memory component is a bit more complicated in that
not only do we need to be able to address and read the RAM
memory much like we have seen with the ROM memory, but we
also need the ability to load values into memory and store them.

The RAM memory is where we store data values. The following
diagram details all of the inputs and outputs of the RAM memory
component that is available in Logisim.

Random Access Mamory (RAM)

Memory Address Output Data

[F——a zseeram D

1o 1
Input Data - I T Reset
-—| 4

Load to output enabled

Data Load Clock Input

Figure 4.61 Random Access Memory

For inputs, we have a memory address, input data, data load, clock
input, reset, and load to output, which operate as follows.

The memory address for RAM works the same way as the address
did for ROM. This is simply a bus that contains a binary number.
A decoder in the RAM component will select one of the rows in
the array of memory cells to activate, based upon this address. In
the ROM component however, we could only read the memory
that was in the component, while in RAM, we can either read the
value already in memory or change the value.

The input data is a bus that contains a binary number to be stored
into memory. The value will be stored into the memory location
pointed to by the memory address. Data is stored into RAM only

...,88..

when the Data Load input has a value of logical 1 and when the
clock input is cycled (moves from logical 0 to logical 1).

The clock input is typically tied to the system clock. Memory
values can only be retrieved (loaded to output) or updated during a
clock cycle change.

The reset input performs the same function for RAM as it did for
memory bit cells and registers when it has a value of logical 1, the
contents of memory are cleared.

The load to output enabled controls WHEN a value in memory can
be made visible as output data. This can be an important
functionality in terms of controlling when data signals are moved
within a computer system. We will find that this is important as
we begin building our own control system.

Binary Counter Circuit

We briefly mentioned how we use the output of the program
counter as the address to ROM memory to control the execution of
instructions in a computer system. If we think of ROM memory
as an array where each row in the array is an instruction to be
executed, then executing a program is as simple as sequentially
pointing to each row, fetching the instruction from ROM memory
and executing it via the ALU.

However to do this, we need an important circuit, which is the
program counter. The program counter does not use the adder
circuit. This might be a bit surprising, but there is actually a more
efficient way to count in our computer system.

The binary counter uses the principal that each D-Latch circuit
stores both a number and its complement. If we take the
complement from a memory bit and feed it back into the data input
of the memory bit AND use this same signal to toggle the input on

...,89..

the next memory bit in sequence, it has the effect of counting in
binary.

The circuit for such a binary counter is shown in the following
diagram (Figure 4.12).
ama lu!

Binary Counter Circuit Current Counter

Load Counter Value

. § 1 |

&] Setinitial Counter Value

Figure 4.62 Binary Counter Circuit

Notice in the circuit that the system clock is used as an input to the
binary counter. This means that every time the clock executes a
cycle (moves from logical 0 to logical 1); the counter will be
incremented by one.

The output of this counter (current counter value) is sent via a bus
to the address register for the ROM memory creating a simple
control system to execute instructions on our computer. You
might be asking the question “what happens if I need to loop or
branch?”

That is a good question, and it has a relatively simple answer. If
the counter simply points to an instruction in ROM memory (one
of the rows) and if we could put a new value in the counter, then it
would point to a new address, allowing us to jump to any location
we within our program. One thing we could do with this is

...,90..

implement a loop or a branching circuit. In figure 4.12, we see
how the ability to load a new value into the counter is
implemented. The new value is set from the load counter value.
This value would typically come from the jump address register.
These signals are directed to the data input on the D-Latch. You
will notice that we use a couple of AND gates and NOT gates
which essentially disable the clock while the new value is being
loaded and enable the signal on the D-Latch to load a new value.

Divide by Two Circuit

We have discussed circuits that all operate within a single clock
cycle. We will be building and discussing a computer system that
is designed to be able to complete the fetch-decode-execute-store
stages within a single cycle of the clock.

Most modern computers, however, are not designed to have such a
simple single cycle design. In many cases, there are operations
that may span two, four, or more cycles.

We need to be able to control and manage the timing of these types
of computer systems and one technique that we can employ is the
use of divide-by-two circuits.

The divide-by-two circuit is designed to cut the clock frequency in
half. By cutting the frequency in half; it takes twice as long to
complete one cycle. Consider the following circuit example:

Divide by Two Circuit

QF b a D)

Denl
11

Figure 4.63 Divide by Two Circuit

...,91..

Notice how we are using a D-Latch and we are feeding the
complement value (complement of the value stored in the memory
cell) back to the data input value. If you run this circuit using
Logisim, what you will see is that this feedback loop will only
allow the output value x1 to be logical 1 every second clock cycle.
You should recognize that this circuit operates on the same
principle as the counter circuit.

We call this a divide-by-two circuit because it reduces the
frequency of the clock signal by 2. We can create other clock
cycle frequencies by feeding the output of the circuit into another
divide-by-two circuit to divide-by-four; adding another circuit will
divide by eight, and so on.

By using the divide-by-two circuit, we can create a timing signal
that will generate a logical 1 as output, every 2, 4, or more clock
cycles.

Chapter 4 Exercise
For the Chapter 4 exercise, you must create a circuit using Logisim
that implements a memory register capable of storing a 4-bit binary

number. Your register circuit must be able to support the inputs
detailed in the following diagram:

Data

Data In = D Q_’Out

Control —»

Basic Memory Device
Figure 4.64 D-Latch Memory Cell

...,92..

Each bit of the register circuit must support a data in, a data out,
and a control. The control functions such that the data value will
only be changed when the control bit is toggled on.

The value in the register must be persistent and can only be
changed when the control input has been toggled (cycled from
logic 0 to logic 1).

You should develop and test the 4-bit register using Logisim.
YOU CAN ONLY USE THE BASIC GATES including AND, OR,
NAND, NOR, NOT, Exclusive OR, and Exclusive NOR when
building your circuit.

When you have successfully developed a functioning 4-bit register,
you should duplicate the circuit and add it to the two inputs of the
ALU circuit that you developed as part of the assignment from the
previous chapter.

...,93..

(This page intentionally left blank)

...,94..

Control System: Clock, Counter, and NPZ

In this chapter, we will begin to put together the components of a
computer architecture. We will look specifically at elements of the
control unit such as data and signal busses, the system clock,
program counter and the N,P,Z functionality, but before we can get
into those topics we need to develop an understanding of what a
computer architecture is and in particular the von Neumann
architecture.

Introduction to the von Neumann architecture

John von Neumann and the computer architecture that bears his
name incorporate the basic idea of a flexible general purpose
computing device (computer) where both instructions and the data
they operate upon are stored in memory. This is called a stored-
program computer. The basic von Neumann computer had
memory, an ALU (arithmetic logic unit), and a control unit, to
control the execution of a program loaded into memory. It is the
responsibility of the control unit to fetch instructions from memory
and load them into the ALU for processing.

Memory
Arithmetic
| + Logic
Control k
Unit e Unit
|

Input | | Output

...,95..

Figure 5.65 von Neumann Architecture

The arrows in von Neumann’s architecture refer to the data and
signal busses that the control unit uses to control the execution of
the computer.

The von Neumann architecture was a revolutionary idea because it
made possible modern general purpose computing. Prior to the
development of the von Neumann architecture, all computing
devices had to be hard wired to perform a specific task. The
innovation of von Neumann was the use of memory and a control
system so that both instructions and data could be stored and
retrieved from memory and sent to the appropriate place for
processing along a data bus. The idea that the program or the set
of computations that the computer performed were simply
instructions that were loaded into memory and could be retrieved
automatically using signal and data busses, transformed the
computer from a specific purpose device capable of a single
computational task into general purpose computing devices that
could be programmed to complete any computing task.

Data and Signal Busses

One of the key innovations introduced by von Neumann was the
data and signal busses to move data and instructions around the
computer architecture. The basic difference between a data bus
and a signal bus is in how they are used. A data bus is a group of 1
or more signal wires used to carry the data of the computer system
between memory, registers, the ALU, and input/output devices.
Data busses typically have the same number of bits (wires to carry
a signal value) as the inputs to the ALU, registers, and word size in
memory. A computer system that has an ALU designed to
process 32-bit words will need to have a 32-bit data bus.

Perhaps at this point it might make sense to define a word as it
relates to computer architecture. A word is the largest unit within

...,96..

a computer system comprised of bits. It is the number of bits used
in a particular operation and transferred using a bus. For example
if the ALU of a computer system operated using a 32 bit operand,
then the word size of the system would be 32 bits.

Consider the following diagram. In this diagram, we see a simple
example of ROM memory, and Instruction decoding. Not only can
we learn how to fetch an instruction from ROM and decode it from
this circuit, but we also see examples of both Data and Signal
busses.

The output from the
program counter
becomes input to Dt 15 ARegistér

ROM to specify the = Destinsfon ump mswuson
next instruction to tertcad SetectBits

execute (] @
Signaigus

In this area we see an
instruction with the different
groups of signal bits extracted

Data Bus

T—m—@

This line is an example of a data
bus that is carrying the contents
of ROM memory pointed to by
the program counter

Destnason

Ul

ALL Ingtrutton

MOy | A Register
Decode Instruction|

Figure 5.66 Instruction Fetch and Decoding

We see in this circuit, that the data bus carries a value in binary.
The size of the bus (number of bits) is typically defined by the
architecture of the ALU. In this case, the size of the ROM is 16-
bits wide. Each row in the ROM memory contains a 16-bit
number that we can fetch. We also can see that this binary number
must be decoded in order for us to use it. Decoding simply means
that we need to extract the information in the binary word to set the
correct signals to process the instruction.

In this example, which is the architecture to which we will be
building our computer systems, each location in ROM can be

~9’7~

either a data value or an instruction. We can see that each is
processed differently. Data values are extracted and sent to the A
register (we will see how to integrate registers into this shortly),
while instructions are decoded and used to control the computer’s
processing.

The term decode is used because most computer systems use
decoder circuits to extract the information from an instruction for
processing. To simplify the circuit in the above example, we are
using a fan-out. The fan-out takes the bus, which appears as a
single line, then splits out each bit (wire) that is in the bus.

Data bus: multiple Bus lllustratedas a
wires all carryinga single bundle of 8
signal wires

0

i

2z

3 il
4 >

5

6

7

Figure 5.67 Bus lllustrated as Single Wire

We see from the circuit that when we have split out the relevant
bits, we use those bits as control signals (signal bus). Examples in
this circuit of signal busses include the bits that are selected out to
specify the jump instruction, destination, or the ALU instruction.

If you recall in the previous chapter where we used a de-
multiplexor to select which operation (Add, Subtract, AND, OR)
the ALU would perform, we now see where those select bits to
choose the operation come from. In this case, we extract the bits
from an instruction fetched from ROM and extract and decode the
correct bits of data to create a signal bus.

The System Clock and Program Counter

...,98..

The system clock coupled with the program counter, form the
heartbeat of the computer system, which brings it to life. As we
have already learned, the system clock is not a clock in the sense of
a device that keeps track of and communicates time in terms of
hours, minutes, and seconds, but rather is a device that generates a
digital signal cycle that occur during regular periodic intervals.

We use this signal for a number of purposes within the computer
system, the most important of which, is the program counter. In
the following diagram (figure 5.4), we see a simple circuit that
combines a system clock with a counter. Each cycle of the clock
sends a signal to the counter, which causes the counter to
increment by one.

Load Address D
x1

Signal
<J
Qutput (result)
System Clock From ALU
cir When Destination
(8b)
| >0 ROM Address
sel
Program Counter g aeiecivd
| X8 I
ROM Address

Figure 5.68 System Clock and Program Counter
The counter, which in this case we are calling the program counter,

sends the output value of the counter to the ROM memory as its
address.

..,99..

3int main ()

41

5 int counter;

=]

7 counter = 1; // Initialize counter.

8

K do {

10 printf ("=d ", counter); // Print current number.
11 counter = counter + 1; // Get ready for next number.
12 } while (counter == 10 };

13

14 printf(*\n");

15

16 return O;

17}

Figure 5.69 Short Program in the C language

This address in ROM points to each instruction that the computer
must execute in sequence. Imagine the following short program
(Figure 5.5).

It is easy to imagine the program counter beginning at 0, receiving
the clock signal and incrementing to 1. The program counter now
points to the first instruction in ROM, which is then executed. As
the counter increments to 2, 3, 4, 5, and so on, each line of code is
executed.

Of course, our computer system will be executing machine
language instructions and NOT the C code that we see in this
example, but it does help us to understand how the program
counter works to facilitate the execution of a program.

Looking at the code in the preceding figure (Figure 5.5), we see
that there is a loop in lines 9 through 12 of the code. You might
be wondering how our simple program counter circuit can
accommodate a loop or conditional logic, such as an if-then
statement.

The answer is rather simple. A loop is nothing more than causing

the program counter to be set back to some value. If our program
reached the end of the loop in line 12 and needed to go back to line

~ 100 ~

9 and execute the loop again, all that we would need to do is load 9
into the program counter.

We see how this can be accomplished in the circuit (Figure 5.4) by
simply sending a value to the counter circuit, in this case the ROM
address or the line in ROM memory to which we need to move.

In order to load a value into the counter we need to send a signal to
load and not increment, which is what the load address signal does.
We see that if the load address signal is logic 0 (meaning that we
do not want to load an address now), we are sending a value of
logic 1 using an inverter to the signal that enables the counter to
increment. Otherwise, if the load address signal has a value of
logic 1, then the load signal on the counter circuit is enabled, and
the increment is disabled allowing a new value to be loaded into
the counter.

Using De-Multiplexors, Multiplexors, and Decoders for
Control

One of the important innovations introduced by von Neumann was
the use of data and signal busses to control the flow of data and
signals. Of course these busses are subject to the issues that we
discussed in chapter three where we cannot have two inputs active
to any input of a gate and that we also must avoid the situation
where a loop is formed where the output of one gate can also
become the input to the same gate

~ 101 ~

Ll e]

Destination Select Quiput from ALU
bits from decoded

instruction
Destination Select, / E
X3 : DM Decd
De-multiplexor sends Decoder enatjles signal
System Clogk Program Chunter Results from ALU based upon destination
14 to Destination selectbits
Pod (60) specified by selecibits

I
I 8
Output of program

counter to ROM address
register

Figure 5.70 Control Circuits using De-multiplexor and Decoder
Implementing N,P,Z functionality

If you are wondering what N,P,Z functionality is, let’s begin by
defining N,P,Z as Negative, Positive, and Zero. We have been
studying the various circuits and components that together make
up a computer system. We have discovered that it is relatively
easy to add numbers together in binary using logic gates, and we
have discovered that since addition is the basis of other
mathematical operations such as Subtraction, Multiplication, and
Division that our ability to do addition provides us with the ability
to compute almost anything.

What we have NOT seen so far is how we can accommodate the
idea of conditional logic or expressions within the design of our
computer system.

We all know from our experience with programming languages
that we need to be able to evaluate conditional expressions. For
example, most programming languages will have an if statement
that looks something like the following:

~ 102 ~

If (a < 5) then
a=a+l;
else
a=a-l;

This is a classic example of a conditional expression. If the value
contained in variable a is less than 5, we want to compute one
thing, and if the value is equal to 5 or greater than 5, we want to
compute something else.

The question is, how do we create a circuit that can help us to
evaluate this expression?

The answer is that we cannot. No circuit can evaluate this kind of
conditional expression. What we need to do is change this
problem into something that we can do well with our computer
system—Math.

Let us assume for a moment that the value contained in the
variable @ was 4. One way that we could determine if 4 was less
than 5 would be to subtract 4 from 5 and if the resulting value was
a positive number, then 4 would be smaller than 5. If the result of
subtracting the value of @ from 5 was 0, then we would know that
the value in @ would have to be EQUAL to 5, and likewise, if we
subtracted the value of a from 5 and the result was negative, then
we would know that the value of a was larger than 5.

We have just discussed three cases where we evaluated
expressions and based upon whether the result was Negative,
Positive or Zero we could take the appropriate action. This is the
purpose of the N, P, Z flags.

Considering our if-then-else statement, the way to implement it
using our ALU and control unit design, is by taking the expression
to be evaluated, turning it into a mathematical operation and, based
upon the N,P,Z of the result of this operation, we would jump to

~ 103 ~

the appropriate place in the code to continue executing the
program.

In our program, the “then” portion of the code would be at one
memory location and the “else” part of the code would be at
another, and we would simply use our ability to load the
appropriate location into the program counter to “jump” to that
location, thereby implementing a conditional expression.

Now that we understand WHY we need to have N,P,Z flags and
how we can use them, we now need to learn how to create these
flags.

Consider the following circuit diagram (figure 5.7). In this circuit,
we have included the ALU and the gates that we are using in our
example, UoPeople computer system to implement the N,P,Z
functionality. You will notice that the entire N,P,Z system is used
only to determine when to execute a jump. A jump is nothing
more than sending a new address to the program counter to move
to a new position (row) in ROM memory and using this as the next
instruction to execute.

~ 104 ~

ROM Mdressz
1o Program Counter xd

Output (result)

Megative Posilive Zero
From ALY
) Q@ © O
N,P.Z System
Determines if output
S value is negative
Positive or Zero
/ for Jump
D Register reg
reg -‘-B-h".
&0 Jump

Register

Ce] H—

Jurmnp Instruction

A Register

Memory

Use A Register or

* ALU Instruction
Signals
Memaory Signal

Figure 5.71 N,P,Z, and the ALU

You will notice that there are two distinct types of N,P,Z
functionality. On one hand, we have the functionality to determine
if the result of a computation in the ALU is Negative, Positive or
Zero. Notice that we use a decoder circuit to enable checking for
Negative or Positive results only when the operation of the ALU is
either ADD or SUBTRACT.

You will see that we take the carry bit signal from the Subtract
gate to check if the result is negative. Remember from chapter 2,
that we discovered that when subtracting two binary numbers
using 2’s complement that the value of the carry bit tells us if the

~ 105 ~

result is either negative (Logic 0) or Positive (Logic 1). This carry
bit is used in the subtract gate to generate the signal value that is
the negative flag. If the result is not negative then an inverter
creates the positive flag.

For the zero flag, we take the output of the ALU into an OR gate
and invert the output of this gate. If any bit into the OR gate is
logic 1 then the zero flag is NOT set.

The second type of N,P,Z functionality is represented by the
decoder and the AND gates in the upper left hand portion of the
circuit. What this portion of the circuit is doing is implementing a
jump based upon the N,P,Z flags.

The decoder in this circuit is decoding the jump instruction bits,
which are as follows:

Jump Instruction

000 no jump

001 Jump less than O
010 Jump greater than 0
011 Jump equal to zero
100 Unconditional Jump

When you examine the circuit you will notice that the 0 output on

the decoder is not used, which means that if 000 is specified, no
jump will occur.

The next three outputs from the decoder are interesting. The first
output (select bits 0 0 1) or position 1 on the decoder, becomes the
input to an AND gate and a second input into the gate comes from
the Negative flag.

This operates as follows. When the select bits for the decoder are
0 0 1, which we can see is defined as jump less than 0, then output
1 on the decoder will have a value of logical 1. If the Negative
flag is also set (has a value of logical 1) then the bus that takes the
value in the jump address register is enabled and the address is sent

~ 106 ~

to the program counter effectively causing it to point to a new
location in ROM memory, in other words, executing a jump. The
AND gate evaluates the condition that both the jump less than 0
signal has a logical 1 and the Negative flag has a logical 1.

We see a similar design for select bits 0 1 0, or position 2 on the
decoder, which are ANDed with the Positive flag implementing the
“jump greater than 0” instruction.

We also see that when the select bits are 0 1 1, (position 3 on the
decoder) the decoder output is ANDed with the Zero flag
implementing the “jump equal to zero” instruction.

The final output from the decoder has no conditions. If the select
bits are 1 0 0 (position 4 on the decoder) for Unconditional jump,
then the address in the jump address register is sent to the program
counter. This final jump instruction is called an unconditional
jump because it will always jump, as it has no conditions on it.

Chapter 5 Exercise

For the Chapter 5 exercise, you will begin by downloading the
provided circuits (if you are enrolled in the CS1104 course) or
constructing them by referring to the figure in which they appear:

« the Logisim ALU (Arithmetic Logic Unit) circuit file (Figure
5.7)

« System Clock and Program Counter Circuit File (Figure 5.4)
+ Instruction Decoder Circuit File (Figure 5.2)

As part of this assignment, first determine how to integrate the
functionality of the Instruction decoder circuit with the ALU

circuit and System Clock and Program Counter circuit.

Next, develop a circuit that implements the N,P,Z functionality.

~ 107 ~

Implement both a ROM memory and a RAM memory

Finally, ensure that all of these circuits are integrated together and
controlled through both data busses and signal busses.

Your system should be able to implement the following machine
instructions, which means that your decoder circuit must be able to
leverage the following signals extracted from a 16 bit word (from
the ROM memory component) and used to implement destination
functionality, jump functionality, and the ALU instructions.

Keep in mind that the first bit of each instruction will specify if the
instruction is an A instruction meaning that it simply loads a value
into the A register or a C instruction which specifies a computation
to be performed. You can look ahead to the next chapter if you
want more details.

Use Memory Register or A Register bit
0 Use A Register
1 Use Memory

ALU Instruction

000 No operation (Does Nothing)

001 Add D+A (or D+M if the M/A bit is set)
010 Subtract D-A (or D-M if the M/A bit is set)
o J 1 A AND D (or D AND M if the M/A bit is set)
100 A ORD (or D OR M if the M/A bit is set)
101 Pass through Register D

110 Pass through Register A

~ 108 ~

Destination

000
001
010
011
100
101
110

111

No operation (does nothing)

A Register

ROM Address (points to location in ROM memory)

D Register

Memory (memory location in RAM)

RAM Address (points to location in RAM Memory)
Jump Address Register (sends to register which contains
the jump address that will be used in a subsequent
operation)

Output Register (the register for output where we can
send the output of a computation to examine)

Jump Instruction

000
001
010
el
100

no jump

Jump less than 0
Jump greater than 0
Jump equal to zero
Unconditional Jump

~ 109 ~

Computer Architecture

We all know some of the common computer architectures. Most
of us recognize names such as Intel, Advanced Micro Devices
(AMD), ARM, SPARC, Integrity, Motorola, or Power. Each of
these CPU architectures defines the architecture of a computer
system. In this course, we have been working towards building
the University of the People (UoPeople) architecture, which is a
simplified CPU architecture that supports a simple machine
language.

At this point, we have either studied or created the circuits using
Logisim that implement core functionality including:

« the ALU (Arithmetic Logic Unit)

« the N, P, Z flag system and the circuits to implement jump
capabilities

« the system clock and program counter, the ROM memory system
and an instruction decoder

the multiplexors, de-multiplexors, and decoders necessary to
direct the results of the ALU to a destination such as memory,
RAM address, ROM address, registers, or the jump address
register

All of these assignments and learning exercises have been building
to the point where we put these elements together into a complete
computer architecture, which of course we have called the
University of the People architecture (After all we would not want
Intel, HP, and ARM to have ALL the fun).

~ 110 ~

8 Bit UoPeople Architecture Computer System

Els

o

A 1
= |
FNF

]
—e]
IS

RAN Memory

2y
4 I5EBRAM DM

‘. I"’I_. ”
1

—

25EBROM

7 L

ROM Mamery

. - sstion
- . o
= =
r — emnany {4 Ragrith ALU with Add, Subtract, OR and AND Functions
Extract Decode Instruction|
Data
1

Figure 6.72 Complete Circuit for UoPeople Computer System

In the preceding diagram (Figure 6.1), we see a completed circuit
that takes these elements and puts them together into a complete
computer architecture. The basic idea behind this architecture is
that it fills in the details to show how we get from Adder Circuits,
Memory Circuits, and Registers. It also helps in understanding
multiplexors, de-multiplexors, and decoders, by putting these
elements together with the clock and program counter circuits, the
N, P, Z functionality, and the rest of the essential control circuitry
to create a functioning computer.

Some of these circuits should be familiar, as we have reviewed
them in previous chapters. Others might be new. Together they

~ 111 ~

form a functioning computer system that can be used to develop
and execute programs.

In this chapter, we will be learning a couple of important concepts.
First, we will learn to distinguish which circuits are typically
included within the CPU (Central Processing Unit) and which are a
part of the remaining chip set of the computer architecture.

Further, we will begin to understand how this circuit functions to
execute general-purpose programs by exploring how each element
of the Fetch-Decode-Execute-Store cycle is implemented within
the circuit.

Finally, we will establish the foundation that will enable you to
build YOUR OWN computer system circuit. Although it would be
possible to recreate the circuit that appears above, it is
recommended that you attempt to wire up your own computer
system using the circuits provided and the knowledge that you
have gained so far. Doing this will enhance your understanding of
exactly how this computer system functions as well as how every
von Neumann based computer architecture functions.

The University of the People Architecture

To get us acquainted with the various components of a computer
architecture, we will examine a few elements of the UoPeople
architecture using color codes. For those who are reading this text
on a device that only supports greyscale, each color has been
labeled so that you can identify the sections.

In the diagram below (Figure 6.2), we see a section colored in light
grey. This section contains two things, the system clock, and the
program counter. We have already discussed the role of the
system clock and we know that it produces a digital signal cycle on
a regular periodic basis. During each cycle, the clock will change

~ 112 ~

state from 0 to 1 and then from 1 to 0. You will see that there is a
need for such timing.

Some of the registers that are being used need to know when to
update the value in the register, and the clock signal (when the
value goes from 0 to 1) is used to signal the register to load a new
value. The RAM component, the ALU output register, and the
ROM address register in particular, rely upon the rising and falling
signals of the clock

You might also notice that there is an output register in this grey
shaded area. Essentially this register demonstrates the integration
of input and output into a computer system. In this case, we can
send a value that has been computed to the output register where it
will be displayed until it has been changed by moving another
value into the register. This output device is useful when we want
to compute some value and then see what the result of the
computation is, to ensure that the computation was performed
successfully.

You will notice that this output register along with the A, D, and,
Memory registers are not controlled by the clock as we want to
make sure that values are loaded into the registers to be consistent
with the processing of instructions. These registers are triggered
when the clock input on the register (the small triangle on the
bottom of the component) is toggled from Logic 0 to Logic 1. By
controlling the clock update on the register, we can control when to
load a new value.

If you study the circuit carefully, you will notice that we are using
signals from the decoded instruction and in particular the
destination bits of the instruction. When a particular register or
memory is the destination for the output from the ALU, we send
the data via a data bus to the input of the register and a signal from
the decoder to the clock input on the register component to update
simultaneously, the value in the register. This offers a great

~ 113 ~

example of the use of both data and signal busses in our computer
architecture.

The RAM and ROM memory components are located in the green
shaded area. You will notice that we are using a register to hold
the address of each type of memory so that it is consistent between
clock cycles. Essentially this register ensures that the address for
the memory component will not change until a new address has
been set.

You will see that the address to the ROM memory is actually just
the output from the program counter. The ROM is the memory
that contains our program instructions.

8 Bit UoPeople Ci

|
o

1 Naguine Fuiter e
2 R w.hm : 1 '
S e

ALY witn R3¢ SuBtract OR ang AND Funitient

Figure 6.73 Color Coded Circuit

The program is created by taking the machine instructions that the
computer understands (in binary) converting these binary
instructions to a hexadecimal format and putting them in a file that
can be loaded into the ROM memory.

~ 114 ~

Speaking of machine instructions, the section in blue is the
functionality that we have in the computer to determine if the
current instruction fetched from ROM is an A instruction or C
instruction and what to do with it. In the case of the A instruction,
we can see that we strip off the 8-bits of data following the first bit
and send it to the A register. We use the fan out in Logisim to do
this, which allows us to break out the bits and decide what to do
with each bit or group of bits. In the case of the C instruction, we
can see how we split out the bits for each component of the
instruction (M/A, instruction, destination, jump) and use these
groups of bits as the signal busses to control the ALU instruction,
destination decoder, and jump functionality.

It is interesting to note that if you look at a magnified view of a
modern CPU (Figure 6.3) you can begin to see the similarity with
our color-coded circuit in Figure 6.2 above. We can distinguish
the CPUs, which contain the ALU, registers, and control unit, we
can also see cache memory, and other I/O devices. We can also
see the wires connecting the different components together and
these wires form the basis of both data and signal busses within the
CPU. These busses are extended out of the CPU in the computer
system and implemented using the rest of the chip set, however,
this view does help us to understand that what we see in the Figure
6.23 circuit is implemented in an actual modern CPU.

e) Sl B ﬂ:ﬁl
Figure 6.74 Photo of CPU Showing Circuits

~ 115 ~

The destination bits from the blue section are split out and sent up
to the section in yellow where we have a de-multiplexor and a
decoder. These two components work together and what they do is
take the data coming from the output of the ALU and direct it to
the proper destination. The de-multiplexor simply directs the data
down different paths while the decoder provides us with an ability
to turn circuits on or off to receive the data. An example of this is
that the decoder might send a value of 1 to the clock input on the D
register because this tells the register to update the value. The de-
multiplexor sends the value and the decoder sends the signal that
enables the value to be updated.

The key registers in the computer system,, which include the A
register, D register, and the Memory register are in the purple
section. A register for memory is not necessary, but it makes the
operation easier to understand by staying consistent with the A and
D registers. All operations performed by the ALU will operate on
the D register AND either the A register or the Memory Register.
The second bit in the machine instruction determines if the A
register or Memory Register will be used.

The section in red should be familiar because it is the ALU and it
should look like the ALU that you designed as part of the
assignment in chapter three. You will see that our ALU has four
functions including ADD, SUBTRACT, bitwise AND, and bitwise
OR. The ALU also supports two pass through operations that will
allow the contents of the D register to pass through the ALU or
that will allow either the Memory Register or the A Register to
pass through the ALU and to the destination specified by the
destination select bits.

Finally, the section in orange implements the N, P, Z functionality
for our system. The way that we can implement conditional logic
within our computer system is with N,P,Z. These stand for
negative, positive, and zero. Assume that we want to compare
two numbers. The first number is larger than the second is and we

~ 116 ~

want to branch to a location in our program. We implement this is
by subtracting the first number from the second. Consider the
following example. To test if 5 is greater than 4, subtract 4 from 5
and if the output of this operation is positive, then the expression is
true; if the output is 0 or negative, then the expression is false.

Using this process of arithmetic with two numbers and with the
knowledge of whether the output is Positive, Negative, or Zero, we
can take action. This action is implemented with the jump
functionality. What happens is that we load an address into the
jump address register, test our number, and based upon the
positive, negative, ,or zero outcome of that operation, we can
implement a jump.

Implementing the Computer Architecture

A complete computer system is built from the CPU, Memory, and
the supporting components that make up the chip set of the
computer system. Many of the components that we have been
designing reside directly within the CPU. Other components, such
as RAM Memory, ROM

Memory, input and output devices, and elements of the bus exist
outside of the CPU. In the following section, we will identify
those components that are typically found WITHIN the CPU.

The CPU or Central Processing Unit is the heart of any computer
system. The CPU typically has the ALU or Arithmetic Logic Unit,
Control Unit, Instruction Decoder, and Registers. Many modern
CPU’s also include components that we have not explored such as
Cache Memory, the Stack and a variety of registers that we have
not implemented within our computer system.

The stack is a useful structure and one that we will explore in a bit

more detail in this chapter. To summarize the stack, it is RAM
memory dedicated within the CPU and its purpose is to provide a

~ 117 ~

place to temporarily store some work while the processor
completes some other work.

The Cache Memory has become a common element of all modern
CPU’s. We have previously discussed the fact that in many
modern computer systems, some operations may require more than
one clock cycle to complete. For example, it can often take more
than one clock cycle to fetch data from memory. The cache is a
very fast form of RAM memory that is located right on the CPU
chip. Access to the cache memory tends to be much faster than
access to the main memory of the computer. The way that the
cache memory is used is that the cache might be loaded up with the
instructions that need to be executed or the data that is required in
an operation. Once the instructions are loaded to the cache, the
CPU can access them much faster (often within a single cycle) and
this improves the overall performance of the CPU and the
computer system.

ALU Arithmetic Logic Unit

We have already described the ALU as the heart of the computer
system. Much like the heart is the pump that gives us life by
pumping blood through it and throughout the body. The ALU is
the heart of the computer system because all data flows through it
and to the rest of the computer system. Some of the data flowing
through the ALU is subjected to computation and we have
implemented an ALU circuit that is capable of computing Add,
Subtract, Bitwise AND, and Bitwise OR operations.

Modern ALU designs will incorporate additional, but similar
functions. For example, the ALU could implement an inverter,
which inverts all of the bits of an input number. Perhaps one could
add a circuit that increments or decrements an input value by 1.
Others may implement various comparative circuits. While all of
these features are possible, the core capability of the ALU is the
Add operation.

~ 118 ~

In the project from chapter three, we implemented a relatively
simple ALU design in which we use signal bits to enable a single
operation against one or both input operands. An alternative to this
simple approach that many ALU designs employ is to use
consecutive operations. For example, the ALU might add the two
input operands and then have the ability to invert the result or
perhaps decrement the result or perform any of a number of
operations upon the results of the basic operation. In these cases,
the ALU design can be thought of as a processing pipeline where a
number of computations are applied within the ALU, and not the
single operation that we have modeled in our ALU design.

Control Unit

As you may have realized at this point, the control unit is not a
specific component within the computer architecture but rather the
collection of busses and circuits that control the operation and
execution of the computer system.

The control unit is what coordinates the Fetch-Decode-Execute-
Store cycle within the computer system. The control unit
coordinates the fetch of an instruction, and decoding of the
instruction, which is simply the process of setting the appropriate
control signals to facilitate the execution of the instruction.
Included in the execution of the instruction is the need to activate
the appropriate function within the ALU, send the control signals
and data to load registers, direct the output of the ALU
computation, and enable the execution of a jump operation when
required.

Instruction Decoder

Instruction decoding is a complicated sounding term, but in
practice, it is quite simple. Our computer system instruction
decoding is accomplished by splitting out the various control bits

~ 119 ~

or groups of control bits that select the function within the ALU,
determining the use of the Memory register or the A Register,
directing the result of the ALU computation to a destination
register, and enabling jump capabilities.

16 Bit Machine Instruction

| 1010100100100000 |

\~.
e

s
/

Decoded Instruction —Split Out Control Signals

Figure 6.75 Decoded Instruction

In modern computer architectures, there are a variety of different
instruction decoding techniques used including the use of
Microcode and other techniques developed to make CPU’s more
efficient and improve performance. For our purposes, however,
we will consider decoding as the process of retrieving an
instruction from ROM and using this instruction to activate the
control signals that facilitate the operation of the computer.

Memory Registers

Registers are memory devices designed to buffer the end of a bus.
We know that data and control signals exist only as long as the
signal is being sent. They are not persistent. Registers are
essentially memory devices that can maintain the state of a bus
until a new state is provided.

~ 120 ~

Register — Temporary Storage for Data

Figure 6.76 Memory Register

It is sometimes helpful to think of a register as a box at the end of a
pipe. The data flows down the pipe and into the box where it says
until it is emptied out.

Although the number, size, and use of registers varies from one
computer architecture to the next, some registers are present in all
computer systems, including the one that we created. These
include:

The Program counter (PC) — The program counter is an
incrementing counter that keeps track of the memory address of the
instruction that is to be executed. The program counter is
essentially a memory circuit very similar to other registers with the
exception that it can increment its value with each cycle of the

clock.
-

Figure 6.77 Program Counter

Memory address register (MAR) — The MAR holds the address of
a memory block to be read from or written to. The MAR in our
computer system is identified as the register that is located just to
the left of the RAM component as we can see in Figure 6.7.

~ 121 ~

MAR
Figure 6.78 Memory Address Register

Memory data register (MDR) - register that holds data fetched
from memory (and ready for the CPU to process). We see this
register in Figure 6.8. The M/A bit in the instruction determines
whether to use this register or the A Register in ALU
computations.

—

A Register

1
Figure 6.79 Memory Data Register

Instruction register (IR) - a temporary holding ground for the
instruction that has just been fetched from memory. Our computer
system design has not implemented the IR. An IR would be
required in a design that requires more than 1 cycle to complete the
processing of an instruction.

The D register - The D register stores the value that is used as one
of the two operands that are used as input to the ALU. The D
register is the stationary register as it is always one of the operands
to the ALU while the other one can be either the Memory register
or the A Register. Although we will not cover this in detail until

~ 122 ~

chapter seven, be aware that the D register is also called the
accumulator in the von Neumann architecture.

D Register |
reg 1
1 = (B0)
=

Figure 6.80 D-Register

The Jump address register is used to hold an address that is used in
conjunction with the jump functionality. When one of the jump
instructions are executed, they essentially activate the signals that
send the value from the jump address register to the program
counter resetting the position in ROM memory which controls
which instruction is fetched to executed.

A |
I_I eg
Lk (Eb) Jump
Register
1=

Figure 6.81 Jump Address Register

The A register is the register that can be used to load data into the
computer system. The A instruction in our computer system loads
a value into the A register. The A register can be used as an
operand with the D Register as input into the ALU.

A Register

Figure 6.82 A-Register

~ 123 ~

The memory register is the register that can be used to load data
values from RAM memory as an operand that can be used with the
D Register. Essentially the Memory or A-Register bit in the
machine instruction controls whether the A-Register or the
Memory register is used in ALU operations.

Memory

reg

e (51)

1=in

M

Figure 6.83 Memory Register

The Stack

The stack is an advanced concept that we have not implemented in
our computer system, however it is important that we understand
how the stack functions and is used because most modern CPU
architectures do employ a stack.

The stack is a memory structure that is used to store information
temporarily. A stack is a data structure that operates as last in, first
out (LIFO).

[B |

Push \" / Pop

Figure 6.84 Stack Operation

Think of a stack of plates. You can place a plate on the stack and
then take it back off. In the case of the stack within the CPU, the
stack is used to push memory items on the stack and then pop them
back off as required.

~ 124 ~

The way that the stack is used varies, but one use of the stack is in
maintaining state. There are many conditions where some
processing on the CPU needs to be suspended while other things
are processed.

One example might be subroutines. Imagine you are running a
program and in the program, you call a subroutine. Executing the
subroutine suspends the current process. While the code in the
subroutine is occupying the CPU, we need to have a way to keep
track of what the program was doing, where it left off, to save the
values in the registers and perhaps the position of the program
counter. The stack provides an excellent solution to address this
problem. As processes interrupt the CPU, current work is pushed
on the stack while the CPU addresses the more pressing
processing. When the subroutine or other urgent processing is
completed, the state is popped off the stack, restoring the point
where processing left off and processing continues where it left
off.

The use of the stack is one of the features that makes modern
computer systems capable of running multi-user, multi-tasking
operating systems that are capable of servicing many programs and
users.

Input and Output

The final topic that we will address in this chapter is the subject of
I/O (input and output). Most of us are familiar with a typical
computing model which has input and output devices such as
secondary storage (disk drives, USB drives), output devices such
as graphical displays, input devices such as the keyboard, mouse,
camera, and devices that facilitate network connectivity such as
LAN interfaces, Bluetooth devices, wireless interfaces, and serial
based devices (USB).

~ 125 ~

It might come as a surprise, but to the computer system, all of
these devices are memory. So far, we have implemented both
ROM memory and RAM memory devices in our circuits. We have
discussed the fact that in most general-purpose computer systems,
ROM memory or the memory that we use to store program
instructions is simply a region of memory that has been reserved
for program code.

FFFF|
i IO Expansion Area Fixed 'O areas
PCI Bus, user apps :
ions

C————"]

COM 1
Floppy disk

CGI_adapter

03
037 LET1

033 Variable Port
p220p—Hard disk || IO instuctions

Com systen
Bus 030
and ISA Bus s COM2

0064

008 8155(PPT)

004 -
004 Timer Fixed Pont

G024 IO instuctions
o zojnterrupt __controller

001
_ gnool—_DMA_controller

Figure 6.85 Memory Addressing Structure

What we quickly discover is that all memory in a computer system
tends to be addressed using a common addressing scheme
(memory starts at zero and extends to the limit of memory). Some
of these addresses do not contain RAM memory but rather are
addresses that provide an interface to the various I/O devices. The
diagram above (Figure 6.14) provides an example of how different
I/O devices are mapped into the memory addressing scheme.

In figure 6.14, when memory location 0320 (hexadecimal) is
accessed we are accessing the hard disk. When we put data into
location 0378, it is being sent to the printer.

The graphics system of your personal computer, phone, or tablet is

another example, as all of the data is mapped as memory addresses
in this system. Each pixel of the graphics display has both color

~ 126 ~

and intensity information that is stored in memory) is mapped as
memory addresses in the computer..

In our computer system circuit from Figure 6.1, we only have a
single register that we use to display output. However, in most
modern computer systems all of the I/O devices are mapped as
memory addresses in the memory address scheme.

~ 127 ~

Machine Language, Instruction Decoding, and
Execution

Our computer system, like any computer system, has a set of
instructions that it can execute. We now know that these
instructions are actually a set of bits in a binary word that are used
to send control signals to the ALU to select the different
computations that the ALU can perform to control the destination
of the result of the ALU computation or to implement jump
functionality. A particular instruction in our computer system, is
made up of a number of elements including specifying whether to
use the Memory Register or the A register in an operation, and the
ALU computation to perform. We also specify the destination (A
Register, D Register, ROM Address, RAM Address, and Memory
at the current RAM address) to send the results of the operation,
and the conditions under which a jump should be executed.

We will be using the ROM component within Logisim as the
location to store our program instructions. Logisim requires that
the contents of both the RAM and ROM components be loaded
using Hexadecimal codes. In our design, we are using a 16-bit
binary number to specify an instruction, and 16-bits in binary
require four digits in hexadecimal. The inputs and outputs of these
devices are in binary, but Logisim uses hexadecimal because it can
represent each location with fewer digits as we can see in the
following diagram (figure 7.1), which shows us the ROM module.

- Logisim ROM Component - -

00[10000 - 0000
.02 0000 . 0000 53
1A 04| 0000 0000 | D} - -
06(0000 . 0000 | .

Figure 7.86 Logisim ROM Component

Machine Instruction Types

Each of the 4-digit hexadecimal numbers in our ROM component
is either an A instruction, which is a number to be loaded into the
A register or a C instruction, which is a machine instruction that
the system can execute. You will notice that each instruction is
16-bits in length, but we are not using all of the bits. The A
instruction for example, uses the first bit to indicate that it is an A
instruction (has value of 0), the next 8-bits hold the value to be
loaded into the A register and the rest of the bits are ignored and
not used.

A Address/Value Not Used
0 00000000 0000000

We should realize by now that this means that our computer
system has an 8-bit data architecture, so all of our data busses
should have 8-bits in them. The A instruction is very important
because it is the primary means to get data into the computer
system. The only way that we can introduce a data value is by
loading it using the A instruction, which will load the data value
into the A register. We can then move this data value to wherever
it is required.

The data value could be a number that is being used in a
computation or it could be an address to either RAM or ROM that
will allow us to reference a particular location in memory to either
retrieve (in the case of RAM or ROM) or to update (in the case of
RAM).

The C instruction, on the other hand, is a computation instruction.

C M/A Instruction Dest IMP Not Used
1 0 000 000 000 00000

~ 129 ~

The C instruction uses the first bit to indicate that it is a C
instruction (has value of 1). The next bit indicates whether the
computation should use the memory register or the A register.
The next 3-bits define which instruction the ALU should perform.

Following this, we have three bits to specify the destination to
which the output of the ALU computation should be sent. Finally,
we have 3-bits to define the conditions under which a jump is to be
executed. The remaining 5-bits in the instruction are ignored and
not used.

Instruction Decoding

Our computer system has two types of instructions: the A
instruction and the C instruction. The A instruction is used to load
data into the A register. The C instruction is used to specify the
computations that our computer system will execute. In the
example computer system that we reviewed in Chapter 6 (Figure
6.1), we can easily see that we have these two types of instructions
when we examine the instruction decoding section of the circuit.

In the expanded view of this section of the computer system circuit
(Figure 7.2), we clearly see the instruction carried on a data bus
that is output from the ROM memory component (the data output
is represented by D on the ROM component).

We then see a Logisim fan out component used to extract the first
bit in the instruction and this bit is used as the select bit on a De-
Multiplexor. What this bit is doing is selecting between the left
hand portion of the circuit which decodes the A instruction and the
right hand portion of the circuit that decodes the C instruction.

~ 130 ~

ok
=TT e

n
- (8) A 2568 ROM D

|
1
ROM Memory

Memory
| rag
1

1 |Jump Instruction
3

Destination

ALU Instruction

Memory | A Registin

Extract Decode Instruction)
Data

Figure 7.87 ROM and Instruction Decoding

In this example, our decoder is relatively simple. We are using the
fan out to select the groups of bits that we need either populate a
data bus, which is the case in the A instruction, or to populate the
various signal busses for the ALU instruction, Destination, Jump
Instruction or the bit, which selects to use either the Memory
register or the A register.

Constructing a Machine Instruction

We now turn our attention to how a machine instruction is actually
constructed. We know that we have a variety of bits in an
instruction that control different functions within our computer
system. The process of creating a machine instruction is simply
one of determining which functionality we want to execute for a
particular instruction and then constructing a 16-bit binary word
that contains the required bits.

For the A instruction this is relatively easy. The first bit will
always be a “0.” Next, we add the value we want to load to the A
Register as an 8-bit binary word. Finally, we simply add the rest
of the digits as zeros. As an example, assume we want to load the
value of decimal 9 to the A register. What would the A instruction

~ 131 ~

look like? First, we need to convert decimal 9 into its binary
equivalent.

You should be able to do this conversion manually, however, there
is also a simple online converter that you could use that is available

at http://www.binaryhexconverter.com/decimal-to-binary-
converter

The binary equivalent of decimal 9, is 1001. We need an 8-bit
binary number for our data so we would need to add some zeros to
the beginning of this, which would result in the binary number,
00001001. Now we can construct the instruction as follows

Specify A Instruction Data Value Unused bits
0 00001001 0000000

The resulting instruction would then be:
0000010010000000

Of course, in order to load this instruction into the computer
system’s ROM component, we need to convert it into hexadecimal
format. You should be able to do this conversion manually as
well, however, there is a simple online converter that you could
use available at http://www.binaryhexconverter.com/binary-to-
hex-converter

The resulting instruction in hex is 0480, which could be entered
into the ROM module of our computer system circuit and
executed.

The A instruction is rather easy, so we will now tackle something a
bit more difficult, the C instruction.

For the C instruction, the first bit will always be a “1.” To this, we
will add a number of different signal bits. The options include:

~ 132 ~

http://www.binaryhexconverter.com/binary-to-hex-converter
http://www.binaryhexconverter.com/binary-to-hex-converter
http://www.binaryhexconverter.com/binary-to-hex-converter
http://www.binaryhexconverter.com/decimal-to-binary-converter
http://www.binaryhexconverter.com/decimal-to-binary-converter
http://www.binaryhexconverter.com/decimal-to-binary-converter

Use Memory Register or A Register bit
0 Use A Register
1 Use Memory

ALU Instruction

000 No operation (Does Nothing)

001 Add D+A (or D+M if the M/A bit is set)
010 Subtract D-A (or D-M if the M/A bit is set)
011 A AND D (or D AND M if the M/A bit is set)
100 A OR D (or D OR M if the M/A bit is set)
101 Pass through Register D

110 Pass through Register A

Destination

000 No operation (does nothing)

001 A Register

010 ROM Address (points to location in ROM memory)
011 D Register

100 Memory (memory location in RAM)

101 RAM Address (points to location in RAM Memory)

110 Jump Address Register (sends to register which contains
the jump address that will be used in a subsequent
operation)

111 Output Register (the register for output where we can

send the output of a computation to examine)

Jump Instruction

000 no jump

001 Jump less than 0
010 Jump greater than 0
011 Jump equal to zero
100 Unconditional Jump

Notice that a value is REQUIRED in the C Instruction for each of
these different sections. If we do not want to enable any of one of
these different sections functionality, we can simply specify the
bits “000” which in each case is a “No Operation” instruction.

It might be easier to understand if we worked through an example.
Imagine that we have a value in the D register and we have loaded

~ 133 ~

a value in the A register. Imagine that we wanted to add the
contents of the A register to the contents of the D register and we
wanted to send the results of this operation back to the D register.
How would we specify this instruction?

First, we know that the first bit will always be a “1” because it is a
C instruction. Second we know that we want to use the A register
as opposed to a value in the Memory register for the computation,
so the “Memory Register or A Register” bit would need to be set to
0. ”

Next, we get to the ALU instruction. We know that we want to
execute an ADD operation between the A Register and the D
Register so looking at the codes for the ALU instruction we see
that the ADD instruction is specified by the bits “001.”

For the next set of bits, destination, we know that we want to send
the results to the D register so we look at the table and discover
that the bits for the D Register destination are “011”.

Finally, we get to the Jump Instruction. For this operation, we do
NOT want to execute a jump so we want to specify a “No
Operation.” Looking at the list of jump instructions, we see that
the bits “000” will disable any jump operation.

Putting the entire instruction together looks like this:

C MorD ALU Inst. Destination Jump Instruction Unused
1 0 001 011 000 00000

The resulting instruction would then be:
1000101100000000

Of course, in order to load this instruction into the computer

systems ROM component, we need to convert it into hexadecimal
format. The resulting instruction in hex is 8B00, which can be

~ 134 ~

entered into the ROM module of our computer system circuit and
executed.

We have now seen how to put together machine instructions in
binary and convert them into hexadecimal format that can be
loaded into the ROM component within a Logisim circuit.

A group of such instructions put together form a program. During
the next chapter, we will learn how we can represent these
Machine instructions using symbols to make programming easier
and how these symbols can be converted directly into the machine
code that we can load into the computer circuit using a special
program called an assembler. For now, however, we need to
explore different types of functionality in the computer to solve
common programming problems. In particular, we will look at
how we can load data, store values in memory, implement loops,
and make decisions using conditional logic, and do all of these
things with the simple machine instructions that our computer
system can process.

Programming the Computer System

Now that we have learned how to define machine instructions for
the UoPeople computer system, we can begin to develop programs
for our computer. To understand how to develop programs for the
computer, we need to have a working knowledge of how the
computer operates.

The diagram in Figure 7.3, details the operation of the UoPeople
computer system in a block diagram featuring the registers,
memory, and the ALU of the computer, connected with grey paths
that represent the data busses.

~ 135 ~

lump

ouTPuT
Address

Addrets
Program

ikimter RAM A Register D Register

ALU |

ROM

Figure 7.88 UoPeople Computer Data Flow

In the diagram, we can visualize the computer as a loop through
which data flows. Data flows into the ALU from the D Register
and either the A Register or the Memory register and flows out of
the ALU back to the various destinations.

We can see why the ALU is the focal point, as everything flows
through it. The ROM supplies instructions, the D Register and
either A Register or Memory register supplies data and the ALU
sends its results back out to the rest of the computer system via the
bus.

This diagram helps us to realize that ALU has three different kinds
of functions that it performs. First, the ALU computes data. The
ALU in our computer system can compute add, subtract, AND,
and OR of two binary numbers.

Second, the ALU moves data within the system. One of the
characteristics of the von Neumann architecture is the fact that the
bus and movement of data and instructions is central to the design.
The innovation of von Neumann was the use of memory for both
instructions and data. In order to implement this innovation, von
Neumann required a great deal of flexibility to move data and
instructions between memory, registers, and the ALU. You will

~ 136 ~

find as you become more proficient at programming with machine
and assembly language, that a large percentage of what you, do as
the programmer, do is specify the movement of data in the form of
addresses, data values, and instructions between memory, registers,
and the ALU.

Finally, the ALU controls operations of the computer system.
Although the control system is principally responsible for control,
the ability to move an address directly into ROM provides direct
control from the ALU over the execution of programs within the
computer system.

It is important to understand these three functions of the ALU
because all of the instructions that you will implement within your
programs will be used to implement one of these three tasks. You
will find that the ability of the ALU to move data within the
system is the task that will demand most of the ALU’s time and
will be the focus of most of your programming efforts.

Consider the following examples. Assume that within your
program you want to store a value in memory. To accomplish this
you would first need to load the address in memory where the
value needs to be stored and MOVE it through the ALU and to the
RAM address register. Second, you would need to load the value
to be stored and then move this value through the ALU to
Memory. Since we previously stored the RAM address register,
the value will be stored into that location in memory.

Consider another example. Assume that we want to add together
two numbers, which were both stored in memory. How would we
accomplish this? Again, we would need to load the address in
memory of the first number into the A Register and then move this
address to the RAM address register. Next, we would move the
contents of that memory location to the D Register. We move this
to the D register for two reasons. First, the D Register is the
register that is always used in ALU operations. Second, we need

~ 137 ~

to store the value somewhere temporarily while we do the
processing to get the second value. To get the second value we
would simply repeat the process by loading into the A Register the
address in RAM of the second number. This address is moved to
the RAM address register. Finally, we would execute an
instruction to add the contents of the Memory register, which of
course is pointing to the second number to the D Register, which is
still storing the first number. The result of this computation would
then need to be moved to either a register or other memory
location.

What is important to see in this example is that we had one
instruction to add two numbers, but five instructions to load and
move values to the proper registers so that we could actually
perform the required computation.

The key to machine and assembly language programming that
should be clear from these examples is our ability to plan out all of
the steps necessary to load and move values to get them positioned
in the ALU for the desired computation.

von Neumann’s Accumulator

We have mentioned a couple of times the importance of the D
Register in our computer system. The D Register is essentially the
primary register for the ALU. When we are using the add
operation within the ALU, we are adding something to the D
Register. When we are subtracting, we are subtracting something
from the D Register. To explain the importance of the D Register
we need to go back to the diagram of the von Neumann
architecture that we first saw at the beginning of Chapter 5.

~ 138 ~

Memory

i Arithmetic

[« Logic
Control)
Unit L, Unit

| Accumulator

| Input | | Output

Figure 7.89 von Neumann Architecture

The diagram (figure 7.4) details the key components of the von
Neumann architecture. We have addressed most of these
components in detail. In chapter three, we learned about the
design of the ALU. In chapter four, we studied memory and
registers. In chapter five, we learned about the bus and the control
unit and in chapter six, we learned how Input and Output devices
are mapped as memory addresses. We have also learned how to
use registers to get data into and out of the ALU. What we have
not covered is the white box in Figure 7.4 called the accumulator.

The von Neumann architecture was designed around a register
called the accumulator. The basic idea of the accumulator was that
it was the register against which all ALU operations are performed.
In our ALU design the D Register is in fact the accumulator and
compute operations are performed against the accumulator. We
add a number to the accumulator, we subtract a number from the
accumulator, we AND or we OR a number to the accumulator. In
every case, the operation is conducted against the accumulator.

By the way, hopefully you have recognized this, but when we see
the input box in the von Nuemann architecture diagram it refers to
the register that is used to operate AGAINST the accumulator.
Consider the fact that we can either use the A Register or the
Memory register. Further, we have already stated that all input and

~ 139 ~

output devices in the computer system are in fact treated as
memory devices as they are all mapped into the memory
addressing scheme. This insight should help us to understand all
forms of input and output that occur within the computer system.

Loading Data and Storing Values in Memory

We have already discussed the fact that in order to load new data
into the computer system, we need to use the A instruction which
will load the specified value into the A register. However, in
order to make use of that value, we will need to do something with
1t.

We could execute an ALU instruction against the value in the A
register, but suppose that all we wanted to do was to load a value
into memory.

The solution to this problem would be to use an A instruction to
load the value into the A register and then use a pass through
instruction with a specified destination to move the value to one of
the destination registers.

Loading data consists of two instructions. The first instruction is
used to load the data into the A register and the second instruction
is a C instruction which is used to move the value to the
appropriate destination register. Assuming that we needed to store
the value 21 into memory location 10, we would need to load 10
using an A instruction, move the value to the Memory address
register, Load 21 into the A register and then move the value 21 to
the memory destination. All of this will take four machine
instructions as follows:

0000010100000000 : CNST #10
1011010100000000 : MOVA RAM
0000101010000000 : CNST #21
1011010000000000 : MOVA MEM

~ 140 ~

You might notice in this list of instructions both the machine
language instructions are on the left, and something unfamiliar is
on the right. On the right in this listing is the assembly language
equivalent of the machine instructions. It should be clear that
writing and reading the version on the right is easier. We can
almost figure out what it means because it appears similar to
English. For example, CNST is an abbreviation of the word
constant and this specifies the instruction to load a value into the A
register. CNST #10 generates an A instruction containing the
value decimal 10.

The next instruction, MOV A RAM, also seems to make sense if
we read this as MOVe register A to the RAM memory address. It
should be apparent that using assembly language is much easier
than writing machine instructions. With assembly language, we
write our machine instructions using simple mnemonic symbols for
machine instructions and then use a program called an assembler to
translate these symbols into their machine instruction equivalents.
We will learn more about assembly language later in this chapter
and all of Chapter 8 is dedicated to assembly language.

Implementing Conditional Logic

Conditional statements in higher level programming languages
include statements such as the “if-then-else” statement, the
“switch-case” statement and of course the conditional statements
that are parts of loops. Examples include while, do-while, and the
test in the form statement.

If we carefully consider what these statements are doing, we
realize that they are essentially conditional branches that will
branch to different blocks of code based upon an evaluation of the
expression that is a part of the statement.

~ 141 ~

We should take a moment to consider two terms here, branch and
code block. A branch is an instruction that transfers control to
another place within the program code.

In the past, we had a language called BASIC, and one of the
statements in BASIC was GOTO. These days GOTO is
considered a very bad statement because it promoted the
development of messy code that was difficult to understand,
follow, and maintain. However, we are going to refer to it because
it helps us make sense of how we need to implement branches
using machine instructions. Consider the following short program
written in the BASIC language.

10 PRINT "MODFUNC"

20 INPUT A

30 INPUT B

40 IF A<=B THEN GOTO 70
50 A=A-B

60 GOTO 40

70 PRINT A

80 END

One of the first things you might notice, is the use of line numbers.
Each program statement exists on a line number. The program is
executed by moving from one line number to the next.

This processing sequence can be altered with statements such as
the IF statement that we see in line 40. The IF statement executes
a branch, which in this case is implemented with the GOTO
statement. The IF statement indicates that if the value in variable
A s less than or equal to the value in the variable B, then branch or
transfer control to line 70 in the program. If it makes itlt may be
easier to understand, thinking of this as “going to” line 70.

The way that we implement a branch using machine instructions is
very similar to this. All that we need to do is to load the line
number that we need to GOTO into the A register, move this value
to the jump address register and then execute a jump.

~ 142 ~

Incidentally, at line 60 in the BASIC program we see another goto
statement. This one goes to line 40 where we test if A is still less
than or equal to B. What is interesting is that we are seeing here an
implementation of a while statement. Again, this simple BASIC
program gives us insight into how we need to implement common
programming problems with our machine instructions.

We now understand how to implement a branch, but how do we
evaluate a conditional expression? The answer is simple. If we
think about the expression if A<=B, we realize that what we are
looking at is an inequality. We can solve this inequality using a
bit of math by subtracting one term from the other and then
examining the result.

For example, let us assume that B has a value of 5 and A has a
value of 4.

If we subtract 4 from 5, we get 5-4 = 1. The result is a positive
number.

If B has a value of 5, and A has a value of 5, then subtracting 5-5 =
0. The result is zero.

Finally if B has a value of 5 and A has a value of 6, then
subtracting 5-6 = -1. The result is a negative number.

You may see now where we are going with this. To evaluate a
conditional expression using machine instructions, we need to
evaluate it using a mathematical operation. In the preceding
example the expression A<=B would be true UNLESS the
negative flag from the ALU were to be set to a logical 1. As such,
all that we need to do to evaluate the expression and execute the
appropriate branch, is to subtract one operand from the other, set
the jump address, and then execute a jump if the result of the
subtract operation has a value less than 0.

~ 143 ~

The following code would implement this branch:
1000000000000000 : NOP

0000010100000000 : CNST #10 ; Setthe jumpaddresstoline 10 inthe code
1011011000000000 : MOVA AR ; move register A to Jump address register
0000001010000000 : CNST #5 ; Load 5to A register

1011001100000000 : MOVA D ; Move A register to D register
0000001100000000 : CNST #6 ; Load value 6 to A register
1001001100100000 : SUBA DT ; Subtract A from D, jump if result is less than 0
0000011010000000 : CNST #13 ; Otherwise set the jump addresstoline 13 in the code
1011011000000000 : MOVA JAR ; Move jump address to jump address register
1000000010000000 : IMP ; execute jump

0001000010000000 : CNST #33 ; Load value 33 to A register
1011011100000000 : MOVA OUTP ; Move A register to output register
1000000010000000 : IMP ; execute jumpto line 13

0000011010000000 : CNST #13 ; Lload value 13to A

1011011000000000 : MOVA JAR ; move A register to jump address register
0011000110000000 : CNST #99 ; load value 99 to A register
1011011100000000 : MOVA OUTP ; Move A register to output register
1000000010000000 : IMP ; execute jumpto 13

In this program, we are evaluating if 6 < 5. If not, it branches to
line 10 in the program. Otherwise, it branches to line 13. Notice
that we are simply outputting the value 33 to the output register if
we branch to line 10 and we are outputting the value of 99 to the
output register if we branch to line 13. This is just a useful way in
our computer system to determine that our “if”” expression worked
correctly.

You could take each of these binary machine instructions, convert
them into their hexadecimal form, place them all in a text file, and
then load and execute this program using the computer circuit that
is defined in Figure 6.1.

Loops with For and While Characteristics

A loop, if you think about it, has three parts. The first part is a
conditional expression that tests whether to terminate looping. The
second is a branching mechanism that is executed when the end of
the loop is reached it returns to the beginning of the loop to
execute it again. Finally, a code block forms the basis of the loop
as well as the instructions that are executed within it.

~ 144 ~

Consider this simple example in pseudo code:

i=0

while (i <= 5) {
i++
printi

}

This simple loop initializes a counter variable, enters the loop, tests
whether the value of the variable is less than 5, then executes the
code block. In this case, the code block increments the counter
variable and prints the value of the variable to output.

Each of these instructions can be implemented using our machine
instructions. We have already learned how to execute a branch and
we have learned to evaluate an expression. The only thing that we
need to add is the ability to increment a value by adding one to it.
The following code shows an implementation of the loop using our
machine instructions.

1000000000000000 : NOP
0000001100000000 : CNST #b
1011010100000000 : MOVA RAM
0000000000000000 : CNST #0
1011001100000000 : MOVA D
1010110000000000 : MOVD MEM
1111011100000000 : MOVM OUTP
0000101010000000 : CNST :LOOP2
1011011000000000 : MOVA JAR
0000001100000000 : CNST #6
1011010100000000 : MOVA RAM
0000000010000000 : CNST #1
1011001100000000 : MOVA D
1100110000000000 : ADDM MEM
0000001010000000 : CNST #5
1011001100000000 : MOVA D
1101000001100000 : SUBM JEQU
1111011100000000 : MOVM OUTP
0000001110000000 : CNST :LOOP1
1011011000000000 : MOVA JAR
1000000010000000 : IMP
0000101010000000 : CNST :LOOP2
1011011000000000 : MOVA JAR
1000000010000000 : IMP

~ 145 ~

The following instructions in this example are implementing the
increment of a variable value.

CNST #6
MOVA RAM
CNST #1
MOVA D
ADDM MEM

Simplifying the Process with Assembly Language

Although we have reserved Chapter 8 to dig deeper into the
concepts of Assembler language, it makes sense to provide an
initial introduction to assembly language programming at this
point, as well as to the assembler language that we have defined
for our computer system.

An assembler is a program designed to translate symbols
representing machine language instructions into the machine
instruction format, and output them in the appropriate format to
execute on a computer system.

In our case, the assembly language symbols are converted first into
their binary equivalents and then into the hexadecimal format that
is required for input into the ROM component within our Logisim
circuit.

You can access the assembler program for the University of the
People architecture directly at the following URL and, of course,
the assembler program is available from within the Moodle course
page for those of you who are registered for the course.
http://uopeopleweb.com/js/uopeopleassembler.html

With any language, we need to know the syntax and grammar of
that language. For our assembler language, the syntax or structure
of statements follows the design of our machine instruction where

~ 146 ~

http://uopeopleweb.com/js/uopeopleassembler.html
http://uopeopleweb.com/js/uopeopleassembler.html

we will have tokens to represent ALU instructions, destinations,
and jump instructions.

An example of a statement that has all three of these elements
would be:
ADDA MEM JEQU

In this statement, we are instructing the computer to take the value
in the A register, add the value to the value in D register (hence
add a) and send the results of the computation to RAM memory. If
the result of the computation is equal to zero, then execute a jump
to the location that has already been loaded into the jump address
register.

It is important to understand that ALL operations that involve two
operands will feature an operation between Register D and either
the Memory Register or the A Register. In this case, we see that
the instruction ADDA has an A on the end of the ADD instruction,
which means that the instruction will add the value in Register A to
value in Register D. If the instruction were to be slightly altered
to ADDM it would mean that the value at the location currently
loaded into the Memory register would be added to the value in
Register D.

The following is the full list of Assembly language instructions
supported by the assembler, which the assembler can compile into
machine instructions.

Assembler Description

Anything in the assembler that begins with a ; is a
comment and should be ignored

:label Anything beginning with a : is a label for a location
that will be evaluated and stored in the symbol table
during the first pass of the compiler. The actual
address in ROM will be replaced with the symbol
during second pass processing. NOTE that ‘label’
should be replaced with a label of your choosing

JXXXX

~ 147 ~

such as loopl, start, end or anything that makes
sense in your program.
LOADA Move data from A to current location in memory
LOADD Move data from D to current location in memory
) Lookup the label in the symbol table and replace the
CNST :label label with the actual address.
CNST #num Load the number following the # into the A register
ADDM Add contents of D register to Memory
ADDA Add contents of D register to contents of A register
SUBM Subtract contents of Memory from D register
SUBA Subtract contents of A register from D register
ANDM Bitwise AND D register with contents of Memory
ANDA Bitwise AND D register with contents of A register
ORM Bitwise OR D register with contents of Memory
ORA Bitwise OR D register with contents of A register
MOVD Move contents of D register to destination
MOVA Move contents of A register to destination
Move contents of the location in Memory (that is
MOVM currently being pointed to by the memory address
register) to destination
A Destination Register A
D Destination Register D
ROM Destination ROM Address register
Destination RAM Address register (sets the location
RAM . s
pointed to within memory)
MEM Destination MEM (updates the location pointed to
by the RAM Address register)
JAR Destination Jump Address register
Destination Output register ... convenient way to
OuTP output a number so that you can see the result of a
computation
JGT Jump if output of operation is greater than 0
JLT Jump if output of operation is less than 0
JEQU Jump if output of operation is equal to 0
JIMP Jump unconditionally

As you begin to write your own assembler programs for the

UoPeople computer system, you should keep the following rules in

mind. First, it is not required to have a jump instruction. The
jump instruction can always be left off the command if it is not
desired. In addition, jump instructions are ONLY processed when

~ 148 ~

the ALU operation is either an ADD or a Subtract (ADDM,
ADDA, SUBM, SUBA). After all, the jump functionality is based
upon the output of the N,P,Z flags which are set based upon the
output of an add or subtract operation.

Another point to keep in mind is that the addition of two positive
binary numbers will never be negative. As such the JLT jump
instruction will only be effective when used with a subtract
operation.

The Assembler is not very smart and has limited (or no) error-
checking features, so it will attempt to assemble what you give it.
If your code is not correct, it simply will not execute the way that
you might expect.

The JMP instruction may be executed on its own, because it does
not rely upon the results of an ALU computation to determine
when to execute the jump. The JMP instruction is called an
unconditional jump because it will ALWAYS attempt to jump when
executed.

Finally, although valid, an instruction that does not contain a
destination will execute, but the results of the computation will not
go anywhere. You can use this to execute jumps particularly if
you do not want to store the results of the calculation used to
initiate the jump.

Chapter 7 Exercise

For the Chapter 7 exercise, you will be provided with a series (four
pseudo-code segments that represent typical code and data
structures that one might implement with a language such as Java
or Python.

For your assignment, devise a strategy to implement these code
and data structures using only the machine language for the

~ 149 ~

computer system that we have created. You will be able to use the
following machine language instructions to complete this
assignment.

Use Memory Register or A Register bit
0 Use A Register
1 Use Memory

ALU Instruction

000 No operation (Does Nothing)

001 Add D+A (or D+M if the M/A bit is set)
010 Subtract D-A (or D-M if the M/A bit is set)
011 A AND D (or D AND M if the M/A bit is set)
100 A ORD (or D OR M if the M/A bit is set)
101 Pass through Register D

110 Pass through Register A

In addition, you can take advantage of the jump and destination
functionality that is represented in the following two tables:

Destination

000 No operation (does nothing)

001 A Register

010 ROM Address (points to location in ROM memory)

011 D Register

100 Memory (memory location in RAM)

101 RAM Address (points to location in RAM Memory)

110 Jump Address Register (sends to register which contains
the jump address that will be used in a subsequent
operation)

111 Output Register (the register for output where we can
send the output of a computation to examine)

Jump Instruction

000 no jump

001 Jump less than 0
010 Jump greater than 0
011 Jump equal to zero
100 Unconditional Jump

A couple of tips that might be useful as you develop your program:

Comparisons: Your program will need to compare two numbers to
determine if one is larger than the other is. In our computer
system, we do not have an if expression that allows us to test the
equality or inequality of two variables. This capability can be

~ 150 ~

implemented by subtracting the second number from the first
number and then executing a jump based upon the result. For
example, if A and B are our two numbers, then the rules for A-B
are as follows:

If A-B =0, then A =B.
If A-B> 0, then A > B.
If A-B <0, then A <B.

If the result of the operation is 0, then we can execute the 011
“jump equal to zero” instruction which means jump if the output of
the operation is equal to zero (see jump instruction table above).

In the algorithm, we need to be able to test if a variable is less than,
greater than, or equal to either another variable or a constant value.
Each of these tests can be accomplished by subtracting the two
numbers and then using the appropriate jump instructions such as:

001 —jump less than 0
0 1 0 —jump greater than 0
011—jump equalto0

The following four problems are the pseudo-code routines that you
must implement using the University of the People computer
system.

// Problem 1

// for loop

I=5

for(i=1; i<5; i++) {
o

}

~ 151 ~

// Problem 2
// if - then - else
i=4
if (i <5) then
j=3
else
i=2

// Problem 3
//while loop
i=0
while(i==0) {
J++
if j =5 then
i=j

// Problem 4

// load and traverse an array
A[0] =5

Al1]=4

A[2]=3

Al3]=2

Al4]=1

A[5]=0

for (i=0; i<=5; i++) {
if Ali] == 0 then
Alil =5;

~ 152 ~

(This page intentionally left blank)

~ 153 ~

Assembly Language

In Chapter 7, we had a short introduction to assembly language
programming. Assembly language can be a difficult subject to
grasp initially, so it makes sense that we introduce this same
content again.

An assembler is essentially a program designed to translate
symbols that represent machine language instructions into the
machine instruction format and output them in the appropriate
format to execute on a computer system.

In our case, the assembly language symbols are converted first into
their binary equivalents and then into the hexadecimal format that
is required for input into the ROM component within our Logisim
circuit.

You can access the assembler program directly at the following
URL and it is available from within the Moodle course page.
http://uopeopleweb.com/js/uopeopleassembler.html

With any language, we need to know the syntax and grammar of
that language. For our assembler language, the syntax or structure
of statements follows the design of our machine instruction where
we will have tokens to represent ALU instructions, destinations,
and jump instructions.

An example of a statement that has all three of these elements
would be:
ADDA MEM JEQU

In this statement, we are instructing the computer to take the value
in register D, add that value to the value in register A and send the
results of the computation to RAM memory. If the result of the

~ 154 ~

http://uopeopleweb.com/js/uopeopleassembler.html
http://uopeopleweb.com/js/uopeopleassembler.html

computation is equal to zero then execute a jump to the location
that is currently in the jump register.

It is important to understand that ALL operations that involve two
operands will feature an operation between Register D and either
the Memory Register or Register A. In this case, we see that the
instruction ADDA has an A on the end of the ADD instruction,
which means that the instruction will add the value in Register D
with the value in Register A. If the instruction were to be slightly
altered to ADDM it would mean that the value in Register D would
be added to the value at the location currently pointed to by the
Memory address register and loaded into the Memory register.

The following is the full list of assembly language instructions
supported by the assembler, which the assembler can compile into
machine instructions.

Assembler Description

) Anything in the assembler that begins with a ; is a

XXX comment and should be ignored
Anything beginning with a : is a label for a location
that will be evaluated and stored in the symbol table
during the first pass of the compiler. The actual

Jabel add‘ress in ROM will be replaced with the symbol

' during second pass processing. NOTE that ‘label’
should be replaced with a label of your choosing such
as loopl, start, end or anything that makes sense in
your program.

LOADA Move data from A to current location in memory

LOADD Move data from D to current location in memory

. Lookup the label in the symbol table and replace the

CNST :label label with the actual address.

CNST #num Load the number following the # into the A register

ADDM Add contents of D register to Memory

ADDA Add contents of D register to contents of A register

SUBM Subtract contents of Memory from D register

SUBA Subtract contents of A register from D register

ANDM Bitwise AND D register with contents of Memory

ANDA Bitwise AND D register with contents of A register

~ 155 ~

ORM Bitwise OR D register with contents of Memory

ORA Bitwise OR D register with contents of A register
MOVD Move contents of D register to destination
MOVA Move contents of A register to destination
Move contents of the location in Memory (that is
MOVM currently being pointed to by the memory address
register) to destination
A Destination Register A
D Destination Register D
ROM Destination ROM Address register
RAM Destination RAM Address register (sets the location

pointed to within memory)

Destination MEM (updates the location pointed to by

MEM the RAM Address register)

JAR Destination Jump Address register
Destination Output register ... convenient way to

OouTP output a number so that you can see the result of a
computation

JGT Jump if output of operation is greater than 0

JLT Jump if output of operation is less than 0

JEQU Jump if output of operation is equal to 0

JMP Jump unconditionally

As you continue to write your own assembler programs for the
UoPeople computer system, you should keep the following rules in
mind. First, it is not required to have a jump instruction. The
jump instruction can always be left off the command if it is not
required. Further jump instructions are ONLY processed when the
ALU operation is either an ADD or a Subtract. After all, the jump
functionality is based upon the output of the N,P,Z flags which are
set based upon the output of an add or subtract operation.

Another point to keep in mind is that the addition of two positive
binary numbers will never be negative. As such the JLT jump
instruction will only be effective when used with a subtract
operation.

The Assembler is not very smart and has limited (or no) error-
checking features, so it will attempt to assemble what you give it.

~ 156 ~

If your code is not correct, it simply will not execute the way that
you might expect.

The JMP instruction may be executed on its own, because it does
not rely upon the results of an ALU computation to determine
when to execute the jump. The JMP instruction is called an
unconditional jump because it will ALWAYS attempt to jump when
executed.

Finally, although valid, an instruction that does not contain a
destination will execute, but the results of the computation will not
go anywhere. You can use this to execute jumps particularly if
you do not want to store the results of the calculation that is used to
initiate the jump.

Operating and Understanding the Assembler

The assembler is a JavaScript program that has been designed to
evaluate the assembly language code for our UoPeople computer
system and generate output in the form of the hexadecimal codes
that are required as input into the ROM memory module that we
use in Logisim to store the programs that our computer system will
execute.

~ 157 ~

The following figure (Figure 8.2) is an example of the top portion
of the assembler page:

University of the Peop: = %
uopeopleweb.com/fs

UNIVERSITY
OF THE PEOPLE

Tuition y

UoPeople Architecture Computer Assembler

Aszenble Code

Figure 8.90 Assembler Screen Part 1

In this diagram, we see that the assembler has three text panes.
Each has specific information. The first pane, which has the title
“Source Code,” is where you enter your assembler source code.
You can either type your assembly language instructions directly
into this textbox, or you can write your assembler code with your
favorite editor and then cut and paste it into the source-code text-
box.

~ 158 ~

The second pane that we see is labeled “Listing.” The listing pane
is populated when you have entered all of your source code and
then clicked on the “Assemble code” button.

What we see in the listing textbox are the assembly language
instructions on the right hand side and the binary machine
language equivalent of the instruction on the left hand side. You
will probably notice that the listing does not exactly match what
you entered into the source code text box. The reason for this is
that during processing, the assembler will strip out all of the
comments and will process all of the labels. When you put a label
into your code, such as the :loopl and :loop2 as in this example,
the assembler will replace these labels with the actual location in
the program that the label refers to.

We can tell which labels were processed and where the labels
actually appear in the machine language program by looking at the
third pane, which is called “Symbol table.”

You will notice that the symbols’ that we defined, which in this
case are the labels that we can use to determine position in the
source code, are listed in the symbol table, and to the left there is a
location with a number. The number indicates the line in the
machine language code where the label appeared.

These labels make it easier to program because we can simply
refer to the label when writing our assembler language program
instead of trying to determine at what line number of the code the
label appears. Many assemblers also feature the ability to define
and use variables in the assembler code. This feature is not
currently supported in the UoPeople assembler.

Three panes of information are populated by the assembler when
the “Assemble Code” button is clicked. We have discussed the
listing pane and the symbol table. The third pane that is populated
is the “Hexadecimal object code” pane.

~ 159 ~

An example of this pane is captured in Figure 8.3. We see in
Figure 8.3 that the Hexadecimal object code pane contains the
object code that is required for the UoPeople computer system.

The ROM component within the Logisim tool is designed to load a
program that is in this hexadecimal format. The ROM memory
contains 16-bit instructions. Our computer system uses 8-bit
addressing meaning that the number that we use to point to a
location in either ROM memory or RAM memory is specified by
an 8-bit number, which means that we can have a maximum of 255
locations in memory. Therefore, we could have a program with a
maximum of 255 instructions. Each of these instructions is
represented by a four-digit hexadecimal number.

To use the code generated in the “Hexadecimal object code” pane,
you should select the contents of the pane, copy this content, and
then paste it into a text file using your favorite text editor. For
Windows users, Notepad would be a good choice. You should not
use a word processing program such as Microsoft Word as these
programs will typically add additional formatting information into
the file. You should ensure that when you save your hexadecimal
codes that you save it as an unformatted text file.

~ 160 ~

The following is an example of the bottom portion of the
assembler page:

University of the Pecp x
C #H

Instructions

Figure 8.91 Assembler Screen Part 2
Assembly language mnemonics

According to Wikipedia (n.d.), a mnemonic is a learning device
that helps with information retention, tending to be simple symbols
that help us to remember things that are more complex.

Mnemonics aim to translate information into a form that the human brain
can retain better than its original form. Even the process of merely
learning this conversion might already aid in the transfer of information to

~ 161 ~

long-term memory. Commonly encountered mnemonics are often used for
lists and in auditory form, such as short poems, acronyms, or memorable
phrases, but mnemonics can also be used for other types of information
and in visual or kinesthetic forms. Their use is based on the observation
that the human mind more easily remembers spatial, personal, surprising,
physical, sexual, humorous, or otherwise 'relatable’ [sic] information,
rather than more abstract or impersonal forms of information (Wikipedia,
n.d.).

The machine instructions comprised of 1 and 0 certainly qualify as
an impersonal form of information. The objective of assembly
language is to define simple memorable symbols to represent the
more complex sequences of 1’s and 0’s that make up machine
language.

When we look at the assembly language statements for the
UoPeople computer system we can get an idea of what operation
the computer will perform when the statement is executed.

For example:

ADDM

This instruction adds the current value in the Memory register to
the contents of the D Register. The ADD gives us the clue that it
will perform and ADD operation and the M tells us that it will use
the Memory register to add to the D register.

MOVD
This instruction tells us that we will be moving something from the
D register to whatever destination we specify.

MEM

This instruction is obviously defining a destination to send the
results of a computation to. In this case the destination will be
memory.

~ 162 ~

JGT

This instruction specifies a jump condition. It instructs the system
to jump IF the operation that it is associated with resulted in a
computation whose output was GREATER THAN zero.

JAR
This instruction specifies the Jump Address Register as a
destination.

JMP
This instruction instructs the system to execute a jump.

As a programmer sitting down to write an assembler program, you
have a good chance that you will be able to remember many of
these instructions. It is also a good bet that you would not be able
to remember the complex 16-bit binary number that these
instructions represent.

The simplification makes programming much easier, faster, and
less prone to errors. It is relatively easy to scan the assembler code
and look for errors or to be able to determine the functionality of
the assembler program. The same could not be said of the machine
instructions, which are much more difficult to understand or
debug.

One Pass and Two Pass Assemblers

The assembler that we are using in this chapter’s assignments to
assemble or compile our Assembly Language programs into the
machine instructions that we can run on our computer system is a
simple JavaScript program. This program reads the source code,
interprets the assembly language instructions, and converts them
into machine instructions.

~ 163 ~

Our assembler is very simple. It does not do a lot of error
checking and it does not incorporate any functionality to deal with
variables. It does however, provide some simple two pass
functionality.

A one-pass assembler or compiler will read source code and
convert the instructions that it identifies into the object code that
can be executed by the computer system. For example, when the
assembler program encounters the following command:

ADDA D JLT
It converts this into the machine instruction:
1000101100100000

We can refer this as the second pass in a two-pass assembler
process. The first pass is designed to identify and replace all
symbols.

In our assembly language, we can specify a label that indicates a
position in the code that we want to jump to in the case of a loop or
a branch. Instead of having to figure out what line number in the
machine code to jump to for a branch or loop, we leave this up to
the assembler to determine, which it does by the location of the
label.

As the assembler reads the code in the first pass, it identifies any of
these labels, determines the line number in the code where they
appear and puts this information into what we call a symbol table.
During the second pass, when we find one of these labels in a
command, the label is replaced with the correct line number.

In our assembler, we are using this very simple approach to
managing symbols to keep track of labels within the code.

~ 164 ~

However, in most modern assemblers we can do the same thing for
variables.

As we write our assembler programs, we need to keep track of
where we store values in memory. From the perspective of the
machine language, there is only an address in memory, and the
address is simply an offset from the beginning of memory.

Most modern two pass assemblers will allow us to define a
variable in our assembler programs using a name, a symbol of
some form that represents a memory location. As the assembler
goes through the first pass it will identify all of those symbols and
assign a memory location for them.

This is the same concept that we use to keep track of locations
within the code (the location in the code is just an address or offset
into ROM memory). In addition to replacing the symbol (or in
this case, the variable name) with a memory location, the
assembler in many cases will generate the code necessary to access
a particular variable.

Consider the case where we want to store a number in memory and
as part of the process, we want to retrieve the number from
memory, increment the number by adding one to it, and then store
it back into memory.

We know that retrieving a value from memory can have several
steps. For example we would need to define a constant and load it
into the A register that specifies the address of the item in memory.

We would then need to move the value from the A register to the
memory address register. Finally, we could retrieve the value from
memory.

What the assembler will often do in two pass assemblers is provide
us with 1 simple assembler instruction which is then converted into

~ 165 ~

each of these steps. So perhaps we would have an assembler
instruction such as:

GETA @varl

This one instruction would then be converted into a set of machine
instructions such as:

0111111010000000 : CNST #253
1011010100000000 : MOVA RAM
1111001100000000 : MOVM D

In this example, we see that the assembler had identified a free
memory location at location 253 in memory and replaced our
variable name with this location. Keep in mind that every time we
use the symbol @varl this set of instructions will be added into
our machine language program.

We also see that the assembler has done some of the work for us
because it has automatically generated the machine instruction to
load the memory address register, retrieve the value from memory,
and store it in the D register to be used.

The use of two pass assemblers further simplify assembly language
programming making it easier for the programmer and reducing
the errors that might occur when attempting to manually keep track
of specific memory addresses.

Chapter 8 Exercise

For the final exercise, you are provided with the code for an

insertion sort algorithm written in pseudo-code (see code below).

~ 166 ~

Your task is to implement this insertion sort using the assembly
language of our UoPeople computer system.

{ This procedure sorts in ascending order. }
begin
fori:=1tolength[A]-1 do
begin
value := Ali];
i=i-1;
done := false;
repeat
{ To sort in descending order simply reverse
the operatori.e. A[j] < value }
if A[j] > value then

begin
Afj + 1] = A[jl;
ji=j-1
if j <0 then
done := true;
end
else
done := true;
until done;
Alj + 1] := value;
end;

The insertion sort defines and uses a number of variables
including:

1 — a counter variable for the for loop

value — a temporary variable used to hold a value to compare
A - an array which holds the values to be sorted

j - an index variable calculated from i

done - a status variable indicating when the sort is complete

Use the following table of values to populate your array A. With
assembler, this can be accomplished through the use of the CNST
statement to load the value into register A and then the value can

be moved into a location in memory.

~ 167 ~

12,3,52,7,1,9, 16, 11, 5, 2

The array will have 10 elements meaning that you will need to load
each value into a consecutive location in RAM memory.

The remaining variables can each be a single location in memory
of your choosing.

The insertion sort algorithm features two loops. In the outer loop
we see an example of a for loop as the loop counts from one to the
length of the array. The inner loop is more like a while loop that
will continue until the condition of the while loop is met. In this
case, the condition is the done flag. When done has a value of 1,
then exit the while loop. You can identify the while loop in the
pseudo-code because it uses the keyword “repeat” to begin the
loop and “until done” to end the loop.

You should be able to reuse much of the code that you developed
during the Chapter 7 assignment because we implemented array
traversal, the for loop, the while loop, and conditional expression
(if-then-else).

~ 168 ~

Bibliography

Wikipedia. (n.d.). Retrieved September 5, 2013, from http://en.wikipedia.org
/wiki/Mnemonic

~ 169 ~

http://en.wikipedia.org/

Index

A Register........ 122, 128, 131, 134
accumulator.....oeevvinnneennnnnn 139

ALU. .53, 54, 62, 66, 67, 68, 69, 70,
71,72, 73, 75, 76, 77, 78, 81,
89, 93, 95, 96, 97, 98, 103, 104,
105, 107, 108, 110, 113, 115,
116, 117, 118, 119, 120, 122,
124, 128, 130, 131, 134, 140,
147, 149, 154, 156, 157

aluminum.....ooovvviiiiiiiiiiinnnn, 17
AND gate21, 23, 50, 62, 69, 72, 106
ANDA.... ..o 148, 155
ANDM. ..o 148, 155
antimony.....ccoevveeeeiieiiiinnnnnnns 17
ArSENIC. . ueeeiieeiiiiineeeeeeneaananns 17

assembler. 135, 141, 143, 146, 147,
150, 154, 155, 157, 158, 159,
161, 163, 164, 165, 166

assembly language...141, 146, 154,
157, 162, 163, 164, 166, 167

=110 1 1 VAR 15, 16
base....... 19, 20, 21, 22, 23, 26, 28
base circuit.......ccevvvvnnnnnn. 19, 28

binary....29, 39, 41, 42, 54, 55, 57,
65, 66, 67, 70, 76 80, 88, 89,
90, 92, 97, 102, 105, 114, 128,
131, 132, 135, 146, 149, 154,
156, 159, 163

Bitwise AND...69, 71, 75, 116, 118,

148, 155
[o70] o] 1A 17
cache....ccoovviviiinnninnnn.. 115, 118

circuit. . .19, 21, 22, 24, 25, 28, 30,
32, 41, 48, 49, 51, 52, 54, 60,
61, 62, 63, 65, 66, 68, 69, 70,
71,73, 77, 78, 79, 80, 81, 89,
90, 91, 92, 93, 97, 98, 99, 100,
101, 103, 104, 105, 106, 107,

108, 111, 112, 113, 115, 118,
121, 130, 132, 135, 146, 154
circuits. .16, 18, 21, 26, 28, 29, 31,
47, 48, 51, 53, 54, 56, 57, 59,

65, 66, 71, 77, 91, 98, 102, 107,
108, 110, 111, 112, 116, 118,
119, 126

clock signal..... 77, 79, 80, 100, 113

CNST........ 140, 141, 148, 155, 166

computer16, 18, 20, 28, 29, 35, 39,
40, 54, 62, 64, 66, 68, 70, 75,
77, 80, 81, 86, 89, 90, 91, 95,
96, 97, 98, 99, 100, 102, 103,
104, 110, 111, 112, 113, 114,
115, 116, 117, 118, 119, 120,
121, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 134,
135, 140, 144, 146, 147, 150,
154, 157, 160, 162, 163, 164,
167

CPU....75, 110, 112, 115, 117, 118
120 122, 124, 125

current. 18, 19, 20, 21, 22, 28, 115,
125, 128, 148, 155, 162

D-latch...ccovvvvvveiinnnnnnnn.n, 79, 80

92

data. 61, 64, 67, 79, 80, 81, 88, 89,
92, 93, 95, 96, 97, 98, 101, 108,
113, 114, 115, 116, 118, 119,
121, 122, 123, 124, 126, 129,
130, 131, 132, 135, 140, 148,

149, 155
Decode......ccvvvvvvnnnnn 75, 112, 119
doped silicon.........cceeveneeenn... 17
electricity.............. 15, 16, 17, 22
electroniC...oovviiiiiiiiiiiiiennnnnn. 19
electrons....cevvvviiiiieiieiiaannnn. 15

~ 170 ~

Execute.............. 30, 75, 112, 119

execution....29, 75, 76, 77, 89, 95,
96, 100, 119

fetch..... 75, 76, 77, 78, 91, 95, 97,

118, 119
Fetch....cocvvennnn... 75, 97, 112, 119
Field Effective Transistor.......... 82
gallium......oooeiiiiiiiiiiiiiiiin, 17

inputs....21, 26, 27, 29, 30, 32, 35,
50, 53, 54, 59, 61, 62, 63, 64,
67, 69, 71, 73, 77, 78, 80, 88,
92, 93, 96, 128

inverter.....25, 41, 50, 63, 101, 118

JAR ..o 148, 156, 163
JavaScript..oeeeeeiiiiiieennnns 157
JEQU....cvvveenenn 147, 148, 154, 156
NI C) OO 148, 151, 156, 163
JLT.......... 148, 149, 151, 156, 164

JMP....145, 148, 149, 156, 157, 163

Jump. 104, 106, 110, 123, 131, 134,
147, 148, 154, 156, 163

jump address....106, 107, 142, 143

LOADA.....cccviiiiiieann, 148, 155

logic gates...20, 27, 29, 30, 33 47,
48, 49, 51, 53, 59, 61, 71, 102
machine instruction. 116, 124, 129,
131, 141, 146, 154, 164, 166
MEM...140, 147, 148, 154, 156, 162
Memory. .75, 79, 80, 81, 82, 83, 86,
87, 88, 89, 92, 111, 113, 116,
117, 118, 120, 121, 122, 124,
126, 128, 131, 134, 140, 147,

148, 155, 156, 162

MOVA........ 140, 141, 148, 156, 166
MOVWD.....cccevvnnnnnnnn. 148, 156, 162
MOVM....cccvvvvnnnnnnn. 148, 156, 166
[T Y o] 17
NAND gate.......cccvveeenn 23, 31, 32
NEULIONS...vvverrerieeinaeeennns 15
NOR gate.....ccovvvvvevvveannnnn 25, 52
NOT gate.....ccvvvveevvnnnnnnn 25, 41
NPN. e 17, 18
OR gate................. 24, 25, 50, 69
ORA. .o 148, 156
(014 o)1 £ SR 15
ORM. . iiiiiiiiiiiiiiieeees 148, 156
(0] U 1 I = 148, 156

output...21, 22, 23, 24, 25, 27, 29,
30, 31, 32, 35, 50, 54, 60, 61,
62, 63, 64, 65, 67, 68, 69, 70,
73, 79, 80, 81, 86, 87, 88, 89,
90, 92, 96, 99, 106, 107, 113,
114, 116, 117, 119, 125, 127,
130, 144, 145, 146, 148, 149,
151, 154, 156, 157, 163

outputs. .21, 26, 53, 54, 63, 64, 65,
67,71, 77, 78, 88, 106, 128

S0 o1 PN 17
periodic intervals................... 99
phosphorus.........coevvvviinee... 17
PNP. ..t 17, 18

program counter 86, 87, 89, 95, 99,
100, 104, 107, 110, 111, 112,
114, 121, 123, 125

programming....102, 135, 141, 146,
154, 163, 166

RAM. 76, 77, 81, 82, 83, 86, 88, 89,
108, 110, 114, 117, 118, 124,
126, 128, 129, 140, 141, 147,
148, 154, 156, 160, 166

RAM Address........... 128, 148, 156

registers....19, 81, 89, 96, 98, 110,
113, 115, 116, 117, 119, 121,
125, 140

reset signal........coeevveviiniannnn, 80

ROM. 75, 76, 77, 81, 86, 87, 88, 89,
90, 97, 98, 99, 101, 104, 107,
108, 110, 114, 115, 117, 120,
123, 126, 128, 129, 130, 132,
134, 135, 146, 147, 148, 154,
155, 156, 157, 160, 165

ROM address........ 76, 87, 101, 110

ROM memory75, 76, 86, 87, 88, 89,
90, 97, 99, 101, 104, 107, 108,
110, 114, 123, 126, 130, 157,
160, 165

signal21, 28, 29, 35, 61, 62, 63, 64,
65, 68, 77, 78, 79, 80, 89, 92,
95, 96, 98, 99, 101, 105, 108,
112, 113, 114, 115, 116, 119,
120, 131

signal bus.......cccoveevveennnn. 96, 98
Silicon..c.eviiiiiiiiiiiiiens 16, 17
single cycle design............. 75, 91

~ 171 ~

store 77, 78, 79, 80, 81, 82, 88, 91,
124, 126, 128, 135, 140, 149,
157, 165, 166

) ¥o] (T 75, 112, 119
SUBA...ccvviiiiiiiiiieennnn 148, 155
SUBM....ovvvieeiiiiiiiinnnnn 148, 155
Subtractor.....ccevvveiiiiiiiinnnnnns 57

symbols. . .21, 26, 27, 48, 135, 141,
146, 154, 159, 161, 162, 164,
165

system clock....89, 90, 95, 99, 110,
112

transistor18, 19, 20, 21, 22, 23, 24,
26, 28, 35, 63

transistors. . .18, 20, 21, 23, 24, 25,
26, 27, 28, 35, 59

truth table....26, 27, 30, 48, 51, 52

University of the People 2, 110, 112

UoPeople. .104, 110, 112, 159, 160,

162, 167
valanCe....ovvviiiiiiiiiiiiiiieennnnns 16
valenCe.....ovvvvvivvnniiiniannn, 15, 16

35

von Neumann. 12, 95, 96, 136, 138,
139

Zero....68, 102, 103, 105, 107, 117

~ 172 ~

	Preface
	Chemistry?
	Transistor Operation Illustrated
	From Transistors to Gates
	The AND Gate Circuit
	The NAND Gate Circuit
	The OR Gate Circuit
	The NOR Gate Circuit
	The NOT Gate (Inverter) Circuit
	Digital Signals
	Chapter 1 Exercise 1
	Chapter 1 Exercise 2
	Number Systems
	ASCII and Unicode Encoding
	Binary Addition
	Subtraction Using Two’s Complement
	Binary Multiplication
	 Binary Division
	Encoding Floating Point Numbers
	Boolean algebra
	DeMorgan’s Theorem
	Chapter 2 Exercise
	Adder Circuits: Half Adder, Full Adder
	Binary Subtractor Circuit
	Control Circuits: Decoder, Multiplexor, and De-Multiplexor
	Multiplexor
	De-Multiplexor
	Decoder
	The ALU – Arithmetic Logic Unit
	Chapter 3 Exercise 1
	Chapter 3 Exercise 2
	Processing Execution Stages
	Preserving State
	D-RAM Memory
	Big and little endian
	ROM Memory = Program Memory
	RAM Memory = Data Memory
	Binary Counter Circuit
	Divide by Two Circuit
	Chapter 4 Exercise
	Introduction to the von Neumann architecture
	Data and Signal Busses
	The System Clock and Program Counter
	Using De-Multiplexors, Multiplexors, and Decoders for Control
	Implementing N,P,Z functionality
	Chapter 5 Exercise
	The University of the People Architecture
	Implementing the Computer Architecture
	ALU Arithmetic Logic Unit
	Control Unit
	Instruction Decoder
	Memory Registers
	The Stack
	Input and Output
	Machine Instruction Types
	Instruction Decoding
	Constructing a Machine Instruction
	Programming the Computer System
	von Neumann’s Accumulator
	Loading Data and Storing Values in Memory
	Implementing Conditional Logic
	Loops with For and While Characteristics
	Simplifying the Process with Assembly Language
	Chapter 7 Exercise
	Operating and Understanding the Assembler
	Assembly language mnemonics
	One Pass and Two Pass Assemblers
	Chapter 8 Exercise
	Bibliography
	Index

