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Preface

This book has been developed as a companion text to the 
University of the People course CS1104 Computer Systems.  The 
University of the People is an accredited online university that 
offers programs in business administration and computer science. 
The university is unique in that it has no tuition, is tuition free, 
non-profit, and serves students from around the world. 

The computer systems course takes the student on a fascinating 
journey that begins by learning the properties of conductors and 
semiconductors, through an understanding of how these properties 
are used to create transistors as switches.  It continues with the 
concepts of logic gates, which are assembled into circuits, and 
eventually ends with the student developing their own computer 
system and writing assembly language programs for the computer 
system they design. 

The text is in a tutorial format and is intended to be used in 
conjunction with a course text.  The course text is available from 
the author’s web site at:

Computer Organization and Design Fundamentals, David L. 
Tarnoff, Copyright (C) 2005-2007.  All Rights Reserved.  Text 
used with permission of author.  Available from 
http://faculty.etsu.edu/tarnoff/138292/

Equally important is the use of the Logisim simulation tool. 
Logisim is an educational tool for designing and simulating digital 
logic circuits. With its simple toolbar interface and simulation of 
circuits as you build them, it is simple enough to facilitate learning 
the most basic concepts related to logic circuits. With the capacity 
to build larger circuits from smaller sub circuits, and to draw 
bundles of wires with a single mouse drag, Logisim is used to 
design and simulate entire CPUs for educational purposes. 
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Logisim can be downloaded from 
http://ozark.hendrix.edu/~burch/logisim/download.html

Audience

This text has been primarily written as a companion text for 
students in the University of the People’s CS1104 Computer 
Systems course.   This course is offered in both an open format and 
as a credit earning course that is a part of the universities computer 
science curriculum.  The open format of the course is offered to 
anyone as a MOOC (massively online open course).  Anyone can 
register to be a student of the open course.   There is no fee for 
participating in the course in keeping with the mission of the 
University, which is to provide high quality tuition-free education. 
Students interested in the open version of the course should contact 
the University of the People administrative staff through the 
website uopeople.edu.   

The course does have some recommended pre-requisites, however. 
The successful student will be one who is prepared for 
undergraduate study by having strong communication skills in 
English, and math preparedness comparable to a high school 
graduate who has completed algebra.  A further prerequisite would 
be either the completion of an introductory course in programming 
using a high-level imperative programming language such as C++, 
Python, Java, JavaScript, or the equivalent.  The ability to evaluate 
a computing problem, break it down into computable steps, and 
select the appropriate statements to solve the problem using the 
syntax of the programming language is the skill-set that is 
required. 

Although the text has been written primarily for students of the 
University of the People, any student with the necessary 
prerequisite knowledge and skills can take advantage of this text. 
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Approach and Organization

This book has been developed as a companion text to the 
Computer Systems course offered by the University of the People. 
The course follows a 9-week term that includes 8 weeks of 
instruction and a final week for the comprehensive Final Exam. 
Each of the eight chapters of the book corresponds to each of the 
eight instructional weeks during the course term.  

Chapter 1: Introduces transistors and the circuits that form logic 
gates.  This chapter also introduces basic concepts of digital 
signals.

Chapter 2: Introduces number systems including binary, decimal, 
and hexadecimal.  The concepts of data encoding are discussed 
along with binary addition and subtraction using two’s 
complement.  Finally, Boolean algebra is presented.

Chapter 3: Introduces combinational logic and covers half and full 
adder circuits, decoder, multiplexor, and de-multiplexor circuits 
and finally puts these circuits together as a simple ALU 
(Arithmetic Logic Unit).

Chapter 4: In chapter 4, we explore sequential logic, introduce the 
idea of feedback to maintain state within a logic circuit and then 
examine important sequential logic circuits including the D-Latch, 
memory register, binary counter, and the divide by two circuit. 

Chapters 5 and 6:  In chapters 5 and 6, we take the concepts and 
circuits that we have learned about, built, and put them together to 
form a functioning computer system implementing the von 
Neumann  architecture.

Chapters 7 and 8:  In chapters 7 and 8, we look at how the 
collection of circuits that form the computer can be programmed to 
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perform specific computational tasks.  In chapter 7, we learn the 
relationship between machine instructions and the control unit and 
ALU within our computer system.  We learn to create programs 
from machine instructions and we are introduced to assembly 
language.  In chapter 8, we explore assembly language for our 
computer system, we learn about the assembler, and the difference 
between one and two pass assemblers. 

Chapter Exercises

Throughout the text there are exercises defined as learning tools to 
build upon the knowledge gained from the chapter.  These 
assignments are designed to promote experiential learning and 
directly relate to the CS1104 Computer Systems course content. 
The assignments are assigned within the course and solutions are 
provided as part of the course content.  

Because the assignments and their associated solutions are a part of 
the University of the People course, the solutions to the 
assignments are not provided within the text, nor will they be 
provided outside of the online course room.

The course is offered as an Open Course in addition to being 
offered as part of the computer science curriculum, which means 
that anyone is welcome to enroll in the course.  Interested parties 
should visit the University of the People web page 
www.uopeople.edu for more details. 
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Logic circuits and Digital Signals

We begin this chapter by learning about chemistry.  If you ever 
wondered why you needed to take that high school chemistry 
course, perhaps it was for this class. Following is a refresher on the 
atomic structure.  

Chemistry?

Within the atom are protons (positive charge) and neutrons (no 
charge), which make up the nucleus of the atom, and electrons 

(negative charge) that orbit the nucleus.  The electrons reside in 
consecutive orbits that move outward from the nucleus. 

 
Figure 1.1 Copper Atom

The outermost of these orbits of electrons is called the valance 
shell and it is this shell that we are interested in.  We know that 
metals such as copper are good conductors of electricity.  A 
conductor is a material through which electricity can flow.  In 
contrast, some materials are not conductors but insulators that 
restrict the flow of electricity.  Ceramic materials are good 
examples of materials that are insulators that restrict the flow of 
electricity.

In copper (Figure 1.1), we notice that the  shell has an unequal 
number of electrons.   This imbalance of electrons means that 
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copper can easily gain and lose electrons.  When a copper atom 
forms a bond with another copper atom, they tend to share the 
electrons in their valance shells.  The bond that is formed between 
atoms of copper is called metallic bonding and results in 
conduction electrons, which means that these shared electrons 
move freely between the atoms.  Metallic bonds occur in metals 
that are conductors of electricity.  The sharing and movement of 
electrons between the atoms is what we observe as electricity. 

Copper is a conductor, but silicon is not.  This should not be a 
surprise as the principle component in glass is silica (silicon 
dioxide) and we know that glass is an excellent insulator.  Silicon 
(Figure 1.2) has balanced electrons in its  shell.

 
Figure 1.2 Silicon Atom

This means that Silicon does not share electrons easily between 
atoms in the way that copper does, and Silicon does not facilitate 
the flow of electricity.  

In computer circuits, we need to be able to control of the flow of 
electricity; we need to be able to turn it on and off at will.  This is 
where the idea of a semi-conductor comes in.  Silicon is NOT a 
conductor, but we can alter silicon to make it conduct electricity 
under the right conditions.  
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We do this by doping the silicon.  Silicon as an element forms a 
crystalline structure.  This means that it has strong bonds and the 
atoms align in a rigid pattern.  This atomic structure gives silicon 
its shiny metallic appearance.  In doping, we introduce elements 
other than silicon into the crystalline structure. 

Figure 1.3 P-Type and N-Type Silicon

As we can see in Figure 1.3, doped silicon has an impurity (atoms 
other than silicon) in it and these non-silicon atoms give silicon the 
ability to become a conductor under the correct circumstances.  

There are two kinds of doped silicon called p-type and n-type.  P-
type silicon is doped with substances that can readily gain 
electrons (boron, gallium, aluminum) while N-type silicon is doped 
with substances that can readily lose electrons (arsenic, 
phosphorus, antimony).  

Figure 1.4 NPN and PNP Transistors

By making a sandwich of p-type and n-type silicon a device is 
created that can control the flow of electricity through the device. 
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We essentially create the ability to switch ON or OFF the flow of 
electricity through the silicon.   These sandwiches of p and n type 
silicon are called transistors and they form the foundation of all 
computer circuits.  

Figure 1.5 Transistor Electrical Properties

There are two types of transistors.  Each type receives its name 
based upon the layers of silicon used to construct them.  A 
transistor that has p-type silicon between two layers of n-type 
silicon is called a NPN transistor.  A transistor that has n-type 
silicon between two layers of p-type silicon is called a PNP 
transistor.  

Because the properties of p-type and n-type silicon differ in terms 
of their ability to easily gain or lose electrons, the transistors that 
are created using these layers require different polarities in the 
circuits designed to use these transistors.  In figure 1.5, we see that 
the current to the base of a PNP transistor is negative while the 
current to the base of a NPN transistor is positive.  This 
requirement for a positive base current is the reason that most logic 
gates employ NPN transistors.  It will become clear why this is, as 
we begin to examine the logic circuits created using these 
transistors.

If we look at the diagram in figure 1.5 of both the NPN and PNP 

transistors, we see that current cannot flow through the transistor 
because the “meat of the sandwich” type of silicon in the middle 
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restricts the flow of electricity, because it has different properties 
than the outer layers.  The transistor functions as a switch when a 
current is applied to this middle layer.  This middle layer in the 
transistor is called the base and is represented in electronic 

schematics as a vertical bar and often abbreviated “b” as we can 
see in the Figure 1.4.  When the appropriate current flows to the 
base, current (electricity) is allowed to flow through, thus turning 
on the switch.    When the current to the base is turned off, the 
transistor switches off. 

Transistor Operation Illustrated

The following diagrams provide a visual illustration of the 
functioning of a transistor.  The first circuit (Figure 1.6) has a 
battery connected to the base of the transistor turning it on.  We 
can see that the transistor is turned on, because we see the current 
flowing through it on the voltmeter, which indicates 5 volts.  The 
second circuit (Figure 1.7) has had the battery removed from the 
base circuit turning the transistor off, as we see in the voltmeter, 
which registers 0 volts.

Figure 1.6 Transistor Circuit Turned On
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Figure 1.7 Transistor Circuit Turned Off

From Transistors to Gates

The transistor we now realize acts as a switch capable of turning 
current on and off in a circuit, but how does this relate to computer 

systems?  To answer this question, we need to look at how 
transistors are used to form logic gates.  While considering each of 
the following examples, remember, 1) that the bar is the base and, 
2) when a current is applied to the base, that current flows from the 
collector (the line that goes into the base) through the emitter (the 
arrow that is leaving the bar). 

This transistor structure is illustrated in Figure 1.4.  In order for the 
transistor to be turned “on,” a positive voltage must be applied to 
the base as seen in the examples illustrated in Figure 1.6 and 
Figure 1.7.  When the positive end of the battery was connected to 
the base of the transistor, the circuit was turned on.  When the 
battery was removed, the circuit was turned off.    

You can think of this battery or positive voltage as a logical 1, and 
the lack of voltage (0 voltage when the battery is removed) as 
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logical 0.  The inputs in each of the examples represent the signal 
inputs into the gate and the output represents the signal output.   

Later we will see that each of these gate circuits has a symbol to 
represent it and these symbols have inputs and outputs, which 
relate to the inputs in our circuits (the base of each transistor is an 
input) and the output is how we determine whether voltage is 
flowing through the circuit.  The first gate that we will look at is 
the AND gate.

The AND Gate Circuit

The following diagram (Figure 1.8) illustrates the circuit for the 
AND gate.  We can see that in order for current to flow through the 
circuit, both transistors must be turned on by applying a voltage 

(logical 1) to each transistor’s base.  The output is tested after the 
second transistor.   

Output is the presence of an electrical current or lack of an 
electrical current present at the “output” point.  Imagine that you 
had a circuit tester.  If the gate was turned “on,” then we would be 
able to measure a voltage at the point of output as illustrated in 
Figure 1.8. 
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Figure 1.8 AND Gate Turned On

Notice that in this circuit we have applied a 5 volt current to the 
base of each transistor (the symbol with the + and – signs on it 
represents a source of electricity (direct current to be precise such 
as the current provided by a battery).  We are using the voltmeter 
to measure the current and we can see that we have +5 volts at the 
output.  The circuit is turned on because we have attached the 
battery to the bases of both transistors.  If the battery were not 
attached to either or to neither of the transistor bases, the circuit 
would be “off” and the voltmeter would register 0 volts. 

In this next example circuit, no current is being applied to the base, 
because the batteries that are not connected to the bases of the 
transistors and the circuit is now turned off, because the voltage at 
the point of output reads 0 volts.

~ 22 ~



Figure 1.9 AND Gate Turned Off

The AND gate is normally “off,” meaning that the output has a 0 
voltage UNLESS both of the transistors are turned on by applying a 
logical 1 to the base of each transistor.

Figure 1.10 Transistor AND Gate

The NAND Gate Circuit

The NAND gate looks almost exactly like the AND gate with the 
exception that in the NAND gate the output is measured before the 
transistors.   What this does is make the NAND gate have an 
output of logical 1 UNLESS both of the transistors are turned on. 
In this case, the voltmeter applied to the output would show +5 
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volts unless both transistors had a voltage applied to them in which 
case the output would show 0 volts. 

The NAND gate takes on what is called computational  
completeness.  This means that ANY Boolean function can be 
modeled using exclusively NAND gates.   If you had a large 
enough pile of NAND gates, you could build a computer system 
from them. 

Figure 1.11 Transistor NAND Gate

The OR Gate Circuit

In the OR gate circuit we see that the gate can have a logical output 
of 1 if either of the transistors are turned on or if both transistors 
are turned on.  If neither transistor base has a voltage applied, then 
the circuit will be “off” (logical 0).
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Figure 1.12 Transistor OR Gate

The NOR Gate Circuit

The NOR gate circuit is again the opposite or the negation of the 
OR gate, because it has a logical output of 1; unless, either or both 
of the transistors are turned on by applying a logical 1 to the base 
of either or both transistors.  In this case, the gate will have an 
output of logical 0. 

Figure 1.13 Transistor NOR Gate

The NOT Gate (Inverter) Circuit

The NOT gate is sometimes called an inverter because the output 
is simply the opposite value as the input. 
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Figure 1.14 Transistor NOT Gate (Inverter)

Each of these gate circuits has a behavior with respect to its inputs 

and outputs.  A voltage applied to the base of the transistor will 
turn on the transistor.  This positive voltage is represented as a 
logical 1.  

The lack of a positive voltage is represented as a logical 0. 
Throughout the rest of this material, it is not important that we 
keep track of the transistors in logic gates, because we can simply 
use the symbols that have been created for each gate.  However, it 
is important that we realize the relationship between transistors and 
the logic gates that are made out of the transistors.  It is important 
to realize that it is these transistor circuits that make the logic 
gates, behave the way they do. 

Moving forward, instead of looking at the transistors in the logic 
gate circuits to determine when the gate will be turned on or off, 
we can simply look at a truth table.  The truth table is simply a 
table that shows what the outputs will be for any given 
combination of inputs using logical values 0 or 1.  

This shorthand method of determining the behavior of a gate 
becomes increasingly important as we begin to combine gates 
together with other gates to make more complex circuits. 
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Figure 1.15 shows the truth tables and symbols for all of the gates 
that we have just learned about (along with a few additional gates). 
Notice that the A and B inputs are simply the inputs to the 
transistors and the truth table shows us what the output behavior of 
each gate will be as the transistors are turned on, and off. 

Each of the symbols is meant to represent the circuit.  The logic 
symbol is shorthand for drawing logic circuits without the need to 
draw all of the components such as the batteries, transistors, 
ground, or resistors.  All of these components are assumed present 
and correctly wired within the logic symbol.

Figure 1.15 Logic Gates and Truth Tables

Digital Signals

In this chapter, we also introduce the concept of digital signals. 
The concepts of digital signals and logic gates are closely 
associated.    
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We have already discussed the fact that transistors operate as 
“switches” in logic gate circuits.  When a current is applied to the 
base circuit of the transistor, the transistor is turned on.  When the 
current is taken away from the base circuit of the transistor, the 
transistor is turned off.  

This process of turning a circuit on or off forms a pattern referred 
to as a digital signal.  Each transition from logic 0 (off) to logic 1 
(on) or from logic 1 to logic 0 is called a cycle.  

Figure 1.16 Digital Signal Cycle

In the clock circuit that will be discussed in more detail in chapter 
four, the cycle pattern of moving from logic 0 to logic 1 is 
consistent.  Each cycle is referred to as a hertz (often abbreviated 
as Hz).  The frequency of a signal is the measurement of hertz or 
the number of hertz that occur in a time interval, which is usually 1 
second.  

A signal with a speed of 1 kilohertz (KHz) refers to 1,000 cycles 
occurring in 1 second.  A computer with a signal speed of 1 GHz 
means that 1,000,000,000 cycles occur in 1 second.  

The cycles in the clock are consistent, because these cycles are 
controlled by the vibrations of a quartz crystal.  The crystal only 
vibrates at a specific frequency.  These regular cycles or “pulses” 
that result from the crystal’s vibrations are referred to as periodic 
pulses because they occur at regular and precise intervals.  
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Figure 1.17 Quartz Clock Crystal

We know that logic gates can turn on or turn off, based upon the 
signal values to the inputs.  The computer system relies on the 
ability of logic gates to output high or low logic values as signals. 
A low value (0 voltage) represents a logic 0 and a high value 
(positive voltage) represents a logic 1.  These high values and low 
values are how we carry information in the computer system’s 
circuits.  These pulses are NOT regular, because the state (high or 
low) carries information in binary bits as shown in the following 
diagram (Figure 1.18).  

Figure 1.18 Non Periodic Pulses

These irregular signals are called non-periodic pulses.  Both 
periodic and non-periodic pulses are essential in a computer 
system.   The periodic pulses are tied to the clock and they provide 
the regular cadence of signal pulses that are used to control the 
execution of instructions on the computer.  The non-periodic 
pulses carry the information that the computer system will process.

Chapter 1 Exercise 1
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Using the following two timing diagrams, construct both the truth 
table AND a circuit composed ONLY of the primary logic gates 

(AND, OR, NAND, NOR, XOR, NOT, etc.) to implement each of 
these timing diagrams.  To aid in your interpreting of the diagrams, 
please note that in Timing Diagram 1, the initial values for A, B, 
and C are 0, 0, and 1 where A and B are inputs and C represents 
the output.  In Timing Diagram 2, the initial values for A, B, and C 
are 0, 0, and 0 where A and B are inputs and C represents the 
output.

Figure 1.19 Timing Diagram 1

Figure 1.20 Timing Diagram 2

Chapter 1 Exercise 2

For the second exercise, download and install the Logisim 
software.   Execute Logisim to ensure that it is working properly. 
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If you have issues getting the software installed or working 
correctly, please refer to the instructions and the help files located 
on the Logisim website. 

The Logisim site provides both a tutorial explaining the use of 
Logisim, as well as a reference that provides details for each of the 
gates and other components within Logisim that you can use to 
build your circuits.  The reference is available at the following 
URL: 

http://ozark.hendrix.edu/~burch/  Logisim  /docs/2.3.0/libs/index.html  

When you have successfully installed and executed Logisim, or 
accessed Logisim from the virtual computing lab, use Logisim to 
simulate the following transistor circuits and each of the following 
gates.  This means that you should create the gate within Logisim, 
assign both input, and output pins to it, and then experiment with 
the circuits to understand their properties. 
 

Figure 1.21: Transistor Circuits for AND and OR Gates

The following picture (Figure 1.22) illustrates the simulation of the 
NAND gate:
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Figure 1.22 NAND Gate Simulation

In this example, we see the behavior of the NAND gate, which has 
an output of 1 until both of the inputs are 1, when the output 
becomes 0.  As part of this exercise, simulate each of the gates in 
the following diagram and validate their truth tables using the 
Logisim simulation.   

Please note that by clicking on the input pins you can change their 
value from 0 to 1 or back to 0 when in simulation mode.  Logisim 
is in simulation mode when the Red Hand (see upper left part of 
the screen in the figure above) has been selected.  In order to build 
the circuit, the arrow (to the right of the red hand) must be 
selected.   In order wire the logic gate into a circuit, you can select 
input pins and place them on the screen.  You can place the gates 
in the same manner by selecting a gate from the menu and clicking 
on the white portion of the screen to place it there.  By clicking on 
a component (input pin, gate, or other component) and dragging, a 
wire will be created connecting the components together.  
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Figure 1.23 Logic Gates and Truth Tables

The preceding diagram details most of the common logic gates 

along with their functional definitions and their respective truth 
tables.   Using Logisim, simulate each of these gates (in addition to 
creating and simulating the transistor circuits for the AND and OR 
gates) and verify that their operation matches the truth tables in the 
graphic.  
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Binary Arithmetic and Boolean algebra

In the previous chapter, we discussed the transistor as a switch and 
the fact that we can construct gates from transistors and these gates 
have specific output behaviors based upon the inputs to the gate. 
We also learned about the idea of a digital signal, which is a signal 
that moves from a logical 0 to a logical 1 and back again.  The 
ability to associate a signal voltage with a value of 0 or 1 is the 
method that enables computation in a computer system.   

We saw in chapter one that we have the ability to create electrical 
circuits that represent numbers.  Unfortunately, the only numbers 
we can use are 0 and 1.  

Number Systems

We all learned about numbers in school. We learned to count and 
we learned that when counting we had a certain quantity of 
numerals that we could use to count with.  Our counting began 
with the numeral 0 and continued with 1, 2, 3, 4, 5, 6, 7, 8, and 9. 
When reaching 9 we discovered that we only had ten numerals, so 
when we wanted to count to a number greater than 9, we had to 
combine some of the numerals.  The next number beyond 9 
combined the numerals 1 and 0.  Essentially, we moved a 1 into 
the next digit space and began counting with our numerals again.  

This system of counting and numbers is called the decimal system 
because ten symbols or numerals represent numbers.  Referring to 
the ten symbols used for counting, the root of the word, “decimal” 
is from the Latin, “decem,” meaning “ten.”  The decimal system is 
the most widely employed system for representing numbers and 
numeric values, but it is not the only system. 
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Consider “octal” derived from the Latin, “octo,” eight, or 
hexadecimal where “hexa” is derived from the Greek, sixteen. 
Another way of expressing these different number systems is by 
describing the number of symbols that are used in the counting 
system.  Decimal has 10 symbols so we describe it as base 10, 
Hexadecimal has 16 symbols so we describe it as base 16, and 
finally there is base 2, which we commonly describe as the binary 
number system.  

The prefix “bi,” derived from the Latin, refers to two. Thus, the 
binary or base 2 number system only 2 symbols to represent a 
value.  

The hexadecimal system has 16 symbols that are typically defined 
to be: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, A, B, C, D, E, and F.

In decimal, there are 10 symbols defined as 0, 1, 2, 3, 4, 5, 6, 7, 8, 
and 9.

In octal, there are eight symbols defined as 0, 1, 2, 3, 4, 5, 6, and 7.

Do you see a pattern here? 

In binary, there are 2 symbols defined as 0, 1. 

Because the binary system only requires only 2 symbols (0 and 1) 
and because we defined the input and output of circuits using the 
values of 0 and 1, it should become clear that we can use logic 
circuits to represent information using binary numbers. 
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Figure 2.24 Decimal, Hexadecimal, and Binary Numbers

As you can see from Figure 2.1, we can convert from hexadecimal 
to decimal and binary.

ASCII and Unicode Encoding

It should be clear that we can use binary to represent numerical 
values and that we can convert something that we know and 
understand such as the number 13 into its equivalent in binary, 
which is 1101.  How do we represent other information? Numbers 
are important, but we might also want to represent letters or words. 

The answer to this is found in what we call ASCII and Unicode 
coding.  The ASCII (American Standard Code for Information 
Interchange) code was based originally on the English language.  It 
essentially took both numbers and characters commonly used in 
the English language and assigned an 8-bit number to each.  For 
example, the name, “Dan,” is comprised of the uppercase letter 
"D,” which in ASCII is represented by the decimal number 65. 
The lower case “a” is represented by the decimal number 97 and 
the lower case “n” is represented by the decimal number 110. 
Each of these can be converted to a binary equivalent as well.  The 
decimal number 65 in binary is 01000001.  The decimal number 97 
becomes 01100001 in binary, and finally, the decimal number 110 
becomes 01101110.  
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Therefore, the binary equivalent of Dan is 01000001 01100001 
01101110.   However, that would not look right on a business card! 
Figure 2.2 shows all of the symbols and their representative 
numeric values for the ASCII code. 
 

Figure 2.25 ASCII Encoding

ASCII was a useful code but had a problem.  The problem was that 
ASCII was designed around English.  It had no ability to 
accommodate other languages or the accent characters that exist in 
many languages that are based upon the Latin character set.   The 
biggest challenge that ASCII faced was its size.  ASCII is based 
upon 8-bits (that means 8 binary digits) and could only 
accommodate 255 different numbers and of course 255 
corresponding characters.  Languages such as Chinese have 
thousands of characters, so an 8-bit (also known as a byte) based 
coding scheme would not work.  
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The solution was Unicode.  Unicode utilizes up to 4 bytes to 
represent each character, which means that Unicode has the 
potential to support millions of different characters.

Although the subject of coding systems is an important topic in 
Computer Science, it could fill many books.  The key to 
understand is that all forms of information can be reduced to a 
numeric format and those numbers can all be represented in any 
number system including binary with its 2 numerals of 0 and 1.  

Binary Addition

The binary (base 2) number system like the decimal system can be 
used for mathematics.  The rules and procedures of addition, 
subtraction, multiplication, and division in binary are much the 
same as the rules that we know in the decimal system.  

In binary addition like in the decimal system, we can add two 
numbers together.  

Figure 2.26 Binary Addition with Carry

In decimal addition, when we add two digits that exceed 9, we 
need to carry a portion of the result to the next place.  This same 
rule is true when adding in binary.  For example, if we were to add 
1+1, the result would be 2.  However, we do not have a 2 numeral 
in binary, so we need to carry to the next place.  In binary, the 
result of 1+1 is 10.  The most fundamental computation that a 
computer can do is ADD two binary numbers together, and this 
one small ability results in the complex computer systems that we 
have today.  
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If you are viewing this book with a handheld eBook reader, a or 
tablet, or using a smartphone or computer, it may seem absurd to 
consider deriving these capabilities from the addition of two 
numbers in binary.  However, by the time that you get to the end of 
this book (and the end of CS1104 Computer Systems if you are 
using this text as part of the class), it will seem sensible to you. 
However, before getting into proving this statement, we need to 
learn a bit more about the mathematics (addition) that can be 
performed within the computer.  Covering the concept of binary 
addition has been relatively simple, because it is essentially, what 
most of us have learned about addition of decimal numbers. 

Addition is the most important thing that the computer does.  One 
of the reasons that this statement can be made is because addition 
is integral to other mathematical operations.  For example, in 
subtracting one number from another, you are really adding a 
negative number. 

5-6 = 5 + (-6)

To multiply two numbers we simply add numbers together, the 
same number of times as the multiplier.

5 × 6 = 5+5+5+5+5+5

To divide using binary, we use a technique of shift and subtract in 
which the divisor is repeatedly aligned with the dividend and 
subtracted.  Of course this technique uses subtraction which is 
based upon addition. 

Subtraction Using Two’s Complement

It has been established that addition and subtraction are needed to 
perform all mathematical operations and it has been demonstrated 
that subtraction is the addition of a negative number, but how does 
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that work in binary?  We subtract two binary numbers by adding 
them together.  The trick is that one of the numbers must be 
converted into two’s complement format first.  Two’s complement 
transforms it into a negative number.

To convert a binary number into two’s complement; we must first 
convert it into one’s complement.  One’s complement is simply 
taking every bit and inverting it.  For every 0, you turn it into a 1 
and for every 1 you turn it into a 0.  

The NOT gate (which is also called the inverter) inverts a bit.  We 
already know how to convert a binary number into one’s 
complement with a circuit: simply invert each bit with the NOT 
gate!

The second step in the process is nearly as easy: adding binary one 
to the one’s complement number results in two’s complement—
simple!

Two’s complement numbers have a unique feature.  If the addition 
of a binary number with a two’s complement number causes the 
last bit in the calculation to carry, then the resulting number is 
positive; otherwise it is negative.  

If the resulting number is negative, then we need to put the number 
through the same two’s complement conversion process again to 
get a binary number for which we can determine the value.  

Following are a couple of examples of two’s complement used to 
subtract binary numbers.
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Now, subtract 7 from 8 by adding the two’s complement of 7 to 8. 
This is the same as (-7) + 8.

Notice that we have a carry bit of 1 (the digit to the far left).  When 
we have a carry bit of 1, it means that the resulting number is 
positive.  If the carry bit were 0 (no carry bit), then the resulting 
number would be negative.

In this case the number that we are left with is 0 0 0 1, which of 
course is binary for 1, the expected result of 8-7. 

Now, try another example.  In this case, subtract 7 from 5 in 
binary, which should result in a value of negative 2. 

Notice in this case that there is a carry bit of 0, which means that 
the result of the operation is a negative number.  The problem is 
that the resulting number is still in two’s complement, so it needs 
to be converted to determine what the value is.  Execute the same 
procedure to convert from two’s complement.  Convert into one’s 
complement and then add 1 to the result.

It seems to work like magic.  You can use any combination of 
numbers to add and subtract in binary.  Try it.  It always works!
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Binary Multiplication

Binary multiplication is nearly as easy as binary addition.  In order 
multiply two numbers in binary, we need to know just a couple of 
rules.  Although we will get into Boolean Algebra in more detail a 
bit later in this chapter, we need to remember that multiplication of 
two bits is essentially the same as an AND operation.  We know 
that if we multiply 1*0 the output is 0 and if we multiply 1*1 the 
output is 1.   In binary, the multiplication of two bits can be 
accomplish with the AND gate.  Try it!  The output of 0 AND 1 is 
0 and the output of 1 AND 1 is 1 the same as in multiplication. 
We can use this fact to develop a circuit to multiply two numbers 
together. 

We also need to know how to shift a bit.  When we shift a bit to the 
left, it simply means that we move all the bits one position to the 
left as in the following example:

Left shifting 00000001 by 1 bit would result in 00000010

We can also shift bits to the right as in the following example:

Right shifting 10000000 by 1 bit would result in 01000000

Now that we know the rules and the process of bit shifting, we can 
look at how to multiply two numbers in binary.  Assume that we 
wanted to multiply binary 1010 (10 in decimal) by 0010 (2 in 
decimal) of course we know that the result of this operation should 
be decimal 20.  

In our example, the multiplicand (the number on the top) will be 
multiplied by the multiplier (the number on the bottom).

~ 43 ~



Typically, to multiply two numbers we would multiply the top 
number by the first digit in the bottom number.  In this case, we 
would multiply 01010 by 0.  The result of this we would shift one 
bit to the left.  Next, we multiply by the second big in the bottom 
number, in this case 1 and of course shift again to the left.  This 
process is completed until all of the bits in the multiplier have 

Of course, our result is 0010100 binary, which is 20 in decimal. 
When implementing binary multiplication remember that after 
multiplying each bit, the resulting product is shifted 1 bit to the left 
and this number is then used as the multiplicand in the next 
iteration.   Also keep in mind that the multiplication of two bits is 
nothing more than an AND operation.  

 Binary Division

We have already suggested that dividing numbers in binary will 
require two operations, shift and subtract.  In division, the number 
to be divided is called the dividend, the number that you will 
divide into the dividend and the result of the division operation is 
called the quotient.  

The division process is relatively simple.  The divisor is compared 
with the first digit of the dividend and if it is larger then add a 0 to 
the quotient and then shift to the right until the dividend is larger 
than the dividend.   Subtract the divisor from the dividend, add a 1 
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to the quotient and process all over again as illustrated in the 
following.  

This process is repeated until there are no more digits in the 
dividend to be divided.  Any amount remaining from the last 
subtraction is the remainder and the accumulated quotient bits is 
the quotient of division.  

Encoding Floating Point Numbers

Representing both characters and integer numbers in binary has 
been rather straight forward.  However, we cannot rely upon the 
fact that we can always use an integer when representing numeric 
data.   We often will need to represent numeric values that are 
fractions and expressed using a decimal point.  

Consider the following number:

100.25

This number might represent a price in US dollars where the 
portion to the left of the decimal point represents the total number 
of whole dollars the portion to the right of the decimal point 
representing the factional amount of a dollar.   In US currency, this 
portion to the right of the decimal point is called cents and each 
cent is 1/100 of a dollar. 

The problem with such decimal numbers is the fact that need at 
least two pieces of information to convey the amount.  First, we 
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need the value that is to the left of the decimal point.  Then we 
need the portion that is to the right of the decimal point and of 
course, if the value represents a negative amount then we also will 
need to have some way to keep track of the sign so that we know if 
the value is positive or negative.  

Of course, we could simply keep three binary numbers one for the 
portion to the left of the decimal point, one for the portion to the 
right of the decimal point and one for the sign of the number.  The 
problem with this approach is that sometime we need to account 
for very large or very small numbers.   

In mathematics, we typically represent such numbers with an 
exponent.   For example if we had a very large number such as 
3,600,000,000,000 we could use a shorthand known as scientific 
notation where we keep just the relevant portion of the number 
which is 3.6 and then define how many 0’s follow it with an 

exponent such as .  This means that there are 12 digits 

that really appear to the right of the decimal point.   Very small 
numbers can also be represented in the same way except that the 
exponent is a negative number, which means that you move the 
decimal point to the left instead of the right.  

When encoding fraction numbers, which we often refer to as 
floating point number because of the fact that the decimal point 
can move (or float) to the left, or the right based upon the exponent 
value we need to keep three pieces of information.  

First, we need to keep the sign.  Since the sign of a number can 
only be positive or negative we can represent this with a single bit. 
If the value of the sign bit is 1, then the number of positive.  If the 
value of the sign bit is 0, then the number is negative.  Ok that was 
pretty easy. 
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Next, we need to keep the value of the exponent.  In our example 

of 3.6 trillion, which we represented as , the value of the 

exponent was 12.  The size of the exponent varies based upon the 
data type that is being used.  When we are using a data size that is 
32 bits (4 bytes) then the exponent portion will often occupy 8 bits. 
This means that we can represent a very large number with an 
exponent up to 255.  Think about a number with 1 followed by 255 
zeros … that is a very large number indeed!

The final piece of information that we need is called the mantissa. 
The mantissa simply contains the relevant portion of the number to 
which we will add zeros to either the left or the right with the 
exponent.   In our case of 3.6 Trillion, the mantissa would be 36 
(with a corresponding exponent of 11 and a sign bit of 1).  

All of these pieces of information are put together by convention 
so that the information can be accurately extracted.  The way the 
pieces are typically put together is as follows.  The example show 
us the structure for a 32 bit number but this could change when we 
are using 8, 16, or 64 bit numbers.

Boolean algebra

Boolean algebra provides us with mathematical shorthand to 
represent the functions of logic gates and circuits.  Consider the 
following:
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Figure 2.27 Logic Circuit and Truth Table

This is a simple circuit and yet it becomes quite complex to 
represent this circuit using either a diagram of logic gates or the 
truth table of its behavior.  Boolean algebra provides us with a way 
to represent our logic circuits mathematically,  using the symbols 

of Boolean algebra.  The first symbol (Figure 2.5) is a way to 
represent AND.  The logic gate representation of AND is on the 
left and the Boolean algebra expression on the right.  Obviously, 
the expression on the right is much easier to write.

Figure 2.28 Boolean algebra AND
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The AND gate is represented in Boolean algebra as the 
multiplication of A and B.  The following are the Boolean algebra 
expressions equivalent to all of the logic gates that we have learned 
about.

In application, we can combine these expressions to represent any 
logic circuit.  For example, consider the following circuit. 

Figure 2.29 Logic Circuit

Evaluating this we have oo + �� � � � � � � � � � � � �  and the output of this AND with 

A resulting in A ⋅ oo + �� � � � � � � � � � � � � .  We also have oo + �� � � � � � � � � � � � � AND with NOT 

D which is oo + �� � � � � � � � � � � � �  ⋅ oo .  Both of these terms are then added (OR) 

to get our result   A ⋅ oo + �� � � � � � � � � � � � � + oo + �� � � � � � � � � � � � �  ⋅ oo .  Using the 
Distributive law of Boolean algebra, we can simply the expression 
as (A+oo) ⋅ oo + �� � � � � � � � � � � � � . 

Boolean algebra has many of the same laws as we have learned 
about in algebra including:

Commutative Law: Which can be described as either 
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Associative Law: Which can be described as either 

Distributive Law: Which can be described as 

DeMorgan’s Theorem

DeMorgan’s theorem recognizes the relationship that exists 
between the truth tables of the NAND and NOR gates.   Essentially 
DeMorgan’s theorem recognizes the fact that if you invert the 
output of the NAND gate it is a NOR gate and if you invert the 
output of the NOR gate it is the equivalent of a NAND gate. 

Figure 2.30 DeMorgan's Theorem

What DeMorgan’s theorem represents is the distribution an 
inverter in the output of an NAND or NOR gate back to its inputs.  

Figure 2.31 DeMorgan's Theorem for NAND and NOR
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DeMorgan’s theorem is an important and valuable tool because it 
allows us to simplify our logic circuits.  The ability to convert a 
NAND into a NOR (and vice versa) can often be used to simplify 
circuits making them faster and requiring fewer components. 

Chapter 2 Exercise

For the Chapter 2 exercise, you must complete all three of the 
following assignments:

First assignment: Develop a circuit using combinational logic 
(putting together two or more logic gates) for an alarm system. 
The following truth table describes the operation of the logic 
circuit.   

If the alarm is Armed (value of 1) and any of the following occurs: 
the door opens, the glass is broken, or motion is detected (all 
indicated by a value of 1 when any of these items are true), THEN 
the value of Alarm is 1, meaning that the alarm will be sounded.    

Challenge Question:  If you want to try something a bit more 
challenging to test yourself, try to make the circuit enable the 
alarm ONLY if two or more of the following events occur (door 
opens, glass breaks, and motion is detected).  
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Second Assignment: Given the following circuit, determine what 
the truth table is and document it in truth table format.   Your truth 
table must be formatted in the same way that the truth table above 
is formatted. 

Third Assignment: Construct the truth table and Logisim circuit 
for a three input Exclusive NOR gate.

Do not use either the XNOR or the XOR gates for this assignment; 
you must build the functionality using other gates. For this 
assignment, complete both the truth table and the circuit.
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 Combinational Logic and the ALU 

In chapter three, we will be learning about combinational logic 
circuits.  Combinational logic circuits are essentially circuits that 
we build by combining logic gates together.  Combinational logic 
circuits have inputs and outputs, the same as logic gates do.  In 
chapter one, we looked at the truth table for individual logic gates. 
Chapter 2 introduced Boolean algebra as a way of evaluating more 
complex logic expressions.  In this chapter, we develop 
combinational logic circuits where we leverage what we have 
learned about logic gates with our ability to evaluate the Boolean 
logic of circuits developed using multiple gates.

Combinational logic circuits are simply circuits built from logic 
gates that are designed to evaluate a Boolean algebra expression. 

In the chapter 2 development project, we had an assignment to 
develop a circuit using logic gates to evaluate the truth table for an 
alarm system.  The alarm system had a series of rules that dictated 
under what conditions the alarm would be triggered.  

One of those conditions was that the alarm system had to be 
enabled.  A second condition was that any two of the triggers 
(door, glass, motion) had to be triggered.  The alarm would be 
triggered only when both of these conditions were met.  

We can see how this problem can be reduced into a Boolean logic 
expression.  We know that the alarm must be armed AND two of 
the triggers had to be triggered.  If we consider the problem of 
determining when two of the triggers have been triggered we 
realize that we will need to use a combination of both AND and 
OR expressions.  For example, we could state the following 
Boolean expression to capture this condition.
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((door OR glass) AND motion) OR ((door OR motion) AND glass)

Combinational logic circuits are used to evaluate these kinds of 
Boolean expressions.  One of the characteristics of a combinational 
logic circuit is that it does not hold any form of state.  What this 
means is that when we apply inputs to the circuit it will produce 
some output.  When we take away the input, the outputs are also 
removed.  This might seem absurd, but as we will learn in the next 
chapter, there are also sequential logic circuits where an input will 
create an output and the value of the output is preserved, even 
when the input values are removed.  

Throughout this chapter, we will look at three key topics.  The first 
is combinational logic circuits that are used for control.   These 
include decoders, multiplexors, and de-multiplexors.  Second we 
will look at the half and full adder circuits.  Finally, we will look at 
the structure of the ALU (Arithmetic Logic Unit) which will utilize 
both the adder circuits and the control circuits. 

Adder Circuits: Half Adder, Full Adder

If someone told you that the primary thing that your computer does 
is add, you might have a hard time believing them, however as we 
explore the design of computer systems further you will come to 
realize that this is true.  Consider that the basic operation of all 
mathematics is to add.  To subtract we merely add a negative 
number.  To multiply we add the number of times the value of the 
multiplier.  The key operation in each case is, “add.”  

More than anything else, what makes the computer possible is the 
ease of adding binary numbers using logic circuits.  Consider the 
following circuit (Figure 3.1). 
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Figure 3.32 Half Adder Circuit

The truth table for the circuit is as follows (Figure 3.2).   In the 
truth table we see that when input A=0 and B=0, then the output is 
0.  Think of this as adding input A and B.  When either A=1 or 
B=1, then the output is 1.  Finally, if A=1 and B=1 we would 
assume that since we are adding binary numbers and since we only 
have 2 numerals, 0 and 1, adding 1+1 would equal 2.  However, 
since we do not have the 2 numeral we will need to carry it to the 
next digit, which is what occurs.

Figure 3.33 Half Adder Truth Table

The circuit in Figure 3.6 is an adder because what it does is add 
two binary numbers each 1 digit in length.  This is excellent!   We 
can build a circuit using transistors to form logic gates and this 
circuit can add two single digit binary numbers.  

This example shows that we can add numbers in binary with just a 
few simple gates.  Of course, we need to be able to add more than 
1 binary digit.  In order to do this, we need to be able to carry the 
value from one digit to the next.  To accomplish this we extend the 
half-adder to make it a full-adder.

Before we get into looking at the full-adder circuit however, we 
need to review the truth table for the exclusive OR logic gate. 
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Recall that the characteristics of the OR gate were such that if 
either or both of the inputs had a value of logic 1 then the output 
was logic 1.   There is a modification to the behavior of the OR 
gate that is defined as the Exclusive OR gate.   In the exclusive OR 
gate, the output will be a logical 1 if one or the other input is 
logical one, BUT NOT BOTH.   In Figure 3.3 we see both the 
symbol for the exclusive OR gate on the left and the exclusive OR 
circuit built with AND, OR, and NOT gates.  

Figure 3.34 Exclusive OR Circuit

The following table illustrates the truth table of the exclusive OR 
gate (XOR).   

Figure 3.35 Exclusive OR (XOR) Truth Table

The reason that we covered the operation of the XOR gate is 
because the XOR gate simplifies the circuit of the full adder.  

The full adder circuit is shown in the next diagram (Figure 3.5). 
The full adder has the additional feature over the half adder that the 
carry from operation can be brought into the next digit, and 
multiple full adder circuits can be constructed in series to 
accommodate a number for any quantity of bits required. 
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Figure 3.36 Full Adder Circuit

Binary Subtractor Circuit

Now that we know how to add binary numbers using logic circuits, 
what about subtract? The answer is relatively simple.  Remember 
our discussion of one’s and two’s complement?  To subtract two 
numbers we only need to convert the subtrahend into two’s 
complement form and then add the two operands together.  

Getting a number into two’s complement we know is easy, as we 
simply need to invert the bits and then add 1 to the resulting one’s 
complement number.  

Figure 3.37 Subtractor Circuit
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This can be accomplished several ways, but the circuit illustrated 
in figure 3.6 is a simple but elegant way to implement subtraction 
in binary.  

In figure 3.6, we see four full adder circuits in series.  The full 
adder is represented by the box with the + sign on it.  We know 
that the full adder circuit has three inputs and two outputs all of 
which are represented in the full adder component.  The full adder 
has an A and B input representing the two bits that will be added 
together.  It also has a carry in input.  There are two outputs, the 
sum bit, and the carry out.   In the full adder component, the two 
inputs on the left of the box represent inputs A and B.  The input 
coming into the top of the box is the carry in flag and the line 
coming out of the bottom of the box is the carry out flag.  Finally, 
the line coming out the right side of the box is the sum bit. 

Figure 3.38 Full Adder Component

We know that to subtract two numbers we need to convert one of 
them into two’s complement which involves inverting the bits and 
then adding 1 to the result.  

As we examine the circuit in Figure 3.6, the first thing we notice is 
the subtract / add input near the top of the circuit.   When this value 
is 1, which means that the circuit should subtract, a value of logic 1 
is sent to the input of EACH of the XOR gates on the B inputs. 
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This exclusive OR has the effect of inverting all of the bits in the B 
input, which of course will convert the B input into one’s 
complement.  To finish the process we simply need to add one to 
the result.  We accomplish this elegantly by taking the same 
subtract input and sending it into the carry in on the first full adder 
circuit.  Essentially this adds binary 1 to the number.  

Intuitively, it may not seem correct, because we are adding the 1 as 
we add the two numbers together.  However,  recall the associative 
law which states that A+(B+C) = (A+B)+C, and realize that we 
can complete each of these operations (invert bits, add 1, add 
operands) in any order.

Control Circuits:  Decoder, Multiplexor, and De-
Multiplexor

Control circuits are important logic circuits in that they allow us to 
control where and when we send digital signals.   We have been 
learning about logic circuits and we know that these circuits are 
constructed from logic gates and we know that these logic gates 
are constructed from transistors.  Although we may represent 
digital circuits using logic gates, the reality is that they are simply 
electrical circuits and as such, this imposes certain limitations in 
their design.  

One limitation is that we can never have two (2) inputs into the 
same gate input that are active at the same time.    The following 
diagram, Figure 3.8 should make it clear why this cannot be 
allowed.  Assume that input A was to have a value of 1.  How are 
we to evaluate the resulting logical expression?  
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Figure 3.39 Two Inputs to NOT gate

Assume that input A were to have a value of 1, how are we to 
evaluate the resulting logical expression?  

The problem that we have is that the expression is no longer valid. 
A Boolean expression cannot be evaluated if the inputs are 
inconsistent.  If input A is 1 and input B is 0, then what really is 
the input?   Again, this discontinuity is invalid and cannot be 
implemented in logic circuits.  Within Logisim, this circuit would 
be flagged with an error. 

Another limitation is that we must make sure that if we open a 
circuit it does not create a loop where the output of a circuit 
becomes its input as well (Figure 3.9).  This problem is actually 
related to the first one in that it creates a situation where there are 
two potential inputs into the same logic component.

Figure 3.40 Loop Circuit

Later in this chapter, we will look at the structure of the Arithmetic 
Logic Unit (ALU) and one of the things that we will see is that the 
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design of the ALU is based upon the potential ability to route the 
output of the ALU back to its inputs.  As we will see, we need 
some careful planning to prevent this from violating the two input 
rule and the way that we will be able to prevent having this issue is 
by carefully controlling what signals are allowed to impact which 
circuits and when.  Important groups of circuits that can help us to 
accomplish this are the Decoders, Multiplexors, and De-
Multiplexors.

Multiplexor

The multiplexor is a simple concept.   It has multiple inputs and 
one output. The basic idea is that you use a multiplexor whenever 
you need to make a choice between different inputs.  The way that 
the multiplexor works is that it has two types of inputs. The first is 
a data input.  In the diagram below, we can see eight different lines 
coming into the multiplexor.  Each of these lines represents an 
input signal.  

Figure 3.41 Multiplexor

One point that we should emphasize at this stage in the book is the 
fact that we can assume that we have 1 or more bits as an input. 
We have dwelt with logic gates that have had a single input (or 
single bit).  Imagine that we have 8, 16, or 32 of the same gate in 
series, one for each bit of information that we need to carry.   It 
would get very cumbersome to draw a circuit diagram with each of 
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these gates on it, so the Logisim tool provides us with a shortcut 
because we can specify the number of bits for the input of any 
gate.   This will be very important as we construct an ALU circuit 
for an 8-bit computer system that uses a 16-bit instruction.  

In the multiplexor circuit, each of the eight inputs can carry a 
signal value but we want to select just one of the inputs.  This is 
where the second type of input comes in.  The second input is 
represented in the diagram above (Figure 3.10) as the line 
extending down from the multiplexor gate.  These are called the 
select bits.   The select bits will allow us to specify which input to 
select for output.   In this multiplexor, we have three select bits, 
which means that the multiplexor can support up to eight inputs. 
The select bits control a series of gates that either enable or disable 
a particular input.  The following diagram (Figure 3.11) details a 
multiplexor circuit built using AND and OR gates.  This example 
shows a multiplexor with two select bits, which means it can 
support up to four inputs.  

Figure 3.42 Inside the multiplexor

Notice that when both of the select bits are 0, the inverters on the 
first AND gate will both have a value of 1, which sends a signal to 
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the controlled buffer turning on input one and sending it to the 
output.   The controlled buffer is not a gate that we have used yet, 
but its operation is simple.  

When a logical 1 signal is applied to the control bit then the buffer 
will pass the input signal to the output. 

The symbol for the controlled buffer is shown in the following 
diagram (Figure 3.12) and the transistor circuit that implements it 
is shown in Figure 3.13.  You have probably noticed that the 
circuit looks a lot like the circuit for the inverter, which it does, 
with the exception that the use of the inputs and outputs is 
different.

Figure 3.43 Controlled Buffer

The buffer has an input and an output.  The gate will not pass the 
signal unless the control bit (represented by select) has a logical 
value of 1.  

Figure 3.44 Controlled Buffer Circuit
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Control buffers like other gates can have multiple bit inputs.  This 
way we can use the buffer as a way of turning on and turning off a 
particular signal path.  When used within a multiplexor or de-
multiplexor and when used in conjunction with them, the goal of 
controlling when (and where) a signal is allowed to pass from or 
to, can be realized.  

De-Multiplexor

The de-multiplexor is much like the multiplexor with the exception 
that instead of selecting one of many inputs to pass to the output, 
the de-multiplexor is used to select one of many outputs to send a 
single input signal through.  

Figure 3.45 De-multiplexor

The de-multiplexor has select bits just as the multiplexor does and 
they work in exactly the same way.  Both the multiplexor and de-
multiplexor are capable of supporting signals that contain more 
than one bit.  As such, these gates are often used as part of the 
computer bus to send data bits represented as signals, across many 
wires from one location in the computer system to another.  

The ability to carry more than 1 bit of information is one of the 
things that differentiates the multiplexor (and de-multiplexor) from 
the decoder. 

~ 64 ~



 

Decoder

The decoder circuit is a bit different from the multiplexor and de-
multiplexor circuits.  The objective of the decoder is to use some 
input value to generate or decode one or more outputs.

Decoders are often described using terms such as 1-to-2 decoder or 
2-of-4 decoder.  These terms describe how the decoder maps input 
values into a set of signals as output.  When we say that the 
decoder maps an input value into a set of signals as output, it 
means that the output of the decoder is typically a single bit signal 
that has a 1-True or 0-False value.  

Figure 3.46 Decoder

For example, the input signal might be the number 2 in binary (X3 
in Figure 3.13 is the input bits) so the function of the decoder 
would be to enable the signal on output number 2 of the decoder.

Other decoders may have more sophisticated logic.  For example 
you could use a decoder to convert a binary number into the LED’s 
that must be lighted on a seven segment display, to represent a 
decimal or hexadecimal number that is the equivalent of the binary 
input.  
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Figure 3.47 Decoding the 7 Segment Display

The ALU – Arithmetic Logic Unit

Throughout this chapter, we have learned about some important 
combinational logic circuits including multiplexors, de-
multiplexors, decoders, and of course adders.   We will now look 
at one way to put these circuits together to create the heart of a 
computer system, the ALU.  

The ALU or Arithmetic Logic Unit is the portion of the computer 
system that actually performs computations.   Many ALU’s can 
have relatively sophisticated sets of instructions, but we are going 
to keep it simple and explore the design of a very simple ALU 
circuit that performs addition, subtraction, bitwise AND, and 
bitwise OR operations for two binary numbers.   

Although we do not have a standard gate that we can use for an 
ALU, a symbol is often used to represent the ALU.  The symbol is 
shown in the diagram (Figure 3.17) below.  
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Figure 3.48 ALU (Arithmetic Logic Unit)

By looking at this diagram, we can see the common inputs and 
outputs of the ALU.  First, the ALU has two data inputs that are 
labeled A and B.  These two inputs are multi-bit inputs that contain 
binary numbers.  The ALU will perform its functions against these 
two operands.   If the ALU is performing an ADD operation, it will 
add the value of B to the value of A.  If a Subtract operation is 
called for, then the value of B will be subtracted from A.

The ALU operation either is the input to a multiplexor or de-
multiplexor.  These select bits are used to select which operation is 
to be performed.  If our ALU can perform ADD, Subtract, AND, 
or OR operations, then these bits will be used to select which ONE 
operation will be executed. 

There are four outputs identified.  The first is the result, which is a 
multi-bit binary number, and this output contains the result of the 
ALU operation.  Some of the other outputs are called flags, which 
provide us with information about the operation performed by the 
ALU.  For example, if you recall our discussion on the use of 
two’s complement to add two binary numbers together, you will 
recall that we needed to be able to check the value of the carry bit 
to determine if the resulting number was positive or negative.  The 
carry out flag is essentially this carry bit.  
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Another flag is the zero flag, which determines if the output of the 
ALU operation is zero.  Finally, we see an overflow flag.  This can 
be useful in addition operations to determine if an operation was 
requested that resulted in a number that was too large to represent 
in the number of bits available and resulted in an overflow.  

These flags will become important to understand in chapter 5, 
when we look at how to implement N, P, and Z functionality. 
N,P,Z refers to flags that our computer system will need to support. 
This abbreviation stands for Negative, Positive and Zero.  When 
the ALU computes a mathematical operation (add or subtract) we 
will determine if the result of that operation was a negative 
number, positive number, or zero, and set the appropriate 
Negative, Positive, or Zero flags.  These flags are simply signals 

that contain either a logical 0 or logical 1.  If the result is positive, 
then the positive flag will have a logical 1, if the result is negative, 
then the negative flag will have a logical 1, and if the result of the 
operation is 0, then the zero flag will have a value of logical 1.

We can create a simple ALU circuit using Logisim that matches 
the functionality that we have just discussed. The circuit will look 
very much like the following.

Figure 3.49 ALU Circuit with Outputs
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In this circuit (a 4-bit ALU) we have an adder circuit, subtract 
circuit, an AND circuit, and an OR circuit.   We see the source of 
the flags, such as the overflow flag and the carry out flag.  

The Add component and the subtract component are represented as 
square boxes with the + sign for Add and the – sign for subtract. 
As you design your ALU circuit in the chapter exercise, you 
should use these components. 

We also see an implementation of the zero flag.  In this example, 
we took the output (result) of the ALU, then inverted the bits and 
ANDed it.  If all of the bits are 0, then the zero flag will be 1.   

Notice that we have two inputs, operand A and operand B.  These 
inputs go to every operation, but we use a multiplexor to send the 
result of ONLY the operation that has been selected.  The particular 
operation is selected using the select bits for the multiplexor.  In 
this example, bits 00 select ADD, bits 01 select subtract, bits 10 
select bitwise AND, and bits 11 select bitwise OR. 

A bitwise AND is simply where every bit of operand A and every 
bit of operand B are used as inputs to an AND gate.  Essentially 
the output of each bit is the output of the AND operation on each 
pair of bits (one from A and one from B).  A bitwise OR is the 
same thing except that each pair of bits are used as inputs to an OR 
gate.  

Assuming two 8-bit binary numbers, the bitwise AND would work 
like the following example:

01011001   AND
11110111
01010001

Assuming two 8-bit binary numbers, the bitwise OR would work 
like the following example:
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01011001   OR
11110111
11111111

In subsequent chapters, we will learn to use this simple ALU, and 
add additional functionality to it, such as the ability to pass the 
value of the A operand to the result or, to pass the value of the B 
operand to the result and integrate this ALU functionality with 
control functionality to create a complete computer system.  

What is relevant is that an ALU circuit as simple as this one is 
capable of supporting just about any type of computation, as we 
will learn in subsequent chapters of this course. 

Chapter 3 Exercise 1

For the first part of the Chapter 3 exercise, create a circuit using 
Logisim that implements a Full Adder circuit capable of adding 2 – 
4-bit binary numbers and subtracting 2 – 4-bit binary numbers.  

The circuit must use a multiplexor that will select between the add 
and subtract operations.  
The subtract circuit will convert the second of your two input 
numbers into 2’s complement format and then add the resulting 
binary number to the first number as this will effectively subtract 
the second binary number from the first binary number. 

Your circuit should look similar to the following diagram with the 
two binary numbers to be added on the left, a bit selector that will 
select the operation to be performed.  When it is 0, the adder 
circuit should be selected and when 1, the subtraction circuit 
should be selected.  The output of the computation should be on 
the right.   
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Your circuit should follow this basic format, but you must design 
all of the actual circuits to perform addition and subtraction.  You 
must design the actual connections between components. The 
representation below is an idea of where the inputs, outputs belong, 
and the processing that occurs between them.  You can only basic 
logic gates including AND, OR, NAND, NOR, NOT, XOR, and 
XNOR, and the multiplexor, de-multiplexor, or decoder 
components within Logisim to construct your circuits. 

Figure 3.50 ALU Circuit

Chapter 3 Exercise 2

In the second part of the Chapter 3 exercise, you will construct an 
ALU (Arithmetic Logic Unit) circuit.  At a minimum, your ALU 
must support the following functions.  You are welcome to add 
additional functionality; however, this may require additional work 
in future assignments or you may need to modify your ALU circuit 
to be consistent with the remainder of the course assignments.

Required ALU Functionality
• ADD 
• Subtract
• Bitwise AND
• Bitwise OR

~ 71 ~



• Pass through Register A
• Pass through Register D

Your ALU must support two operands.  For this assignment, you 
should use the input pin tool within Logisim. The input pin tool 
will look like the following.

Your ALU must support operating on 8-bit numbers.  This means 
that you will need to select the bits on the gates and components 
that you use within Logisim.   The following is an example of 
selecting 8-bits on the Adder gate, input pin, and the AND gate.

Selecting 8-bits for the input pin component. 

Selecting 8-bits for the Adder component
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Selecting 8-bits for the ADD gate

As part of your ALU circuit, you must use at least one of the 
following components: decoder, multiplexor, or de-multiplexor to 
control which operation (Add, Subtract, AND, OR, pass through A 
input, pass through B input) is executed.

With the exception of the two pass-through operations (a pass-
through simply passes the input value to the output without doing 
anything to it), the rest of the operations must all be applied to two 
operands.  Assume that these two inputs will be identified as input 
(operand) A and input (operand) B. 
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Sequential Logic: Registers, Memory, Counters 

In the previous chapter, we learned about the ALU and its ability 
to perform simple computations such as ADD, subtract, bitwise 
AND, and bitwise OR.  The ALU is part of what is called the 
execute cycle.  In a computer system, there are many stages of 
execution.  Modern CPU’s have relatively complicated cycles and 
instructions can often span multiple cycles.   

For the purposes of what we will learn in this class however, we 
will only consider a computer system that has a single cycle 
design, which means that an instruction can be completed within a 
single cycle.  

Processing Execution Stages

Within that cycle, at least the following four stages must be 
completed.  The first stage is fetch. 

Figure 4.51 Fetch-Decode-Execute-Store Stages

The basic idea of the fetch cycle is that an instruction is retrieved 
from ROM memory.  We know that in most modern architectures, 
there is no actual ROM memory.  Rather the program instructions 
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are stored in an area of RAM that is mapped as the ROM memory 
space.  

However, for the purposes of this class we will assume there is a 
separate ROM memory where the program instructions are stored. 
These instructions are just binary numbers where each bit or group 
of bits has a specific meaning.   

In the previous chapter, we learned how we could select the 
particular operation to be performed in the ALU with the select 
bits.   Well, these select bits actually come from the instruction that 
is located in ROM memory! 

The fetch cycle essentially loads an address into the ROM address 

register and positions to read a value at that address from ROM 
memory.  

Following the fetch stage, we need to decode the instruction that 
we just fetched from memory.  This is called the decode stage.   In 
the decode stage, we must extract the groups of bits that make up a 
machine language instruction, and use those bits to control which 
signals are active, and in so doing, we can control what function in 
the ALU will be executed, where the results of the computation 
will be sent, and whether to execute a jump instruction.   

Although some of these terms may not make sense right now, rest 
assured that as we proceed through the book, they will make 
perfect sense. 

The decode stage allows the instruction fetched from ROM to set 
the correct selection bits to control the execution of the ALU.  The 
execution of a particular function within the ALU is known as the 
execution stage.  
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Finally, when the ALU has computed a result from the instruction 
we need to know where to send the results of the computation. 
This is known as the store stage.  

A computer’s design must take advantage of both the clock signal 
and the design of the logic circuits to control each of these stages. 
Some stages such as the fetch, decode and execution stages are 
typically done first, so one way to manage the timing is to ensure 
that they are executed on the rising edge of the clock signal.  The 
store phase can only be completed after the ALU has computed the 
instruction, so the store phase have to rely upon the falling edge of 
the cycle to ensure that each stage is completed in the proper order. 

Remember that the rising edge of the cycle is when the clock 
cycles from logical 0 to logical 1 and the falling edge of the cycle 
is when the clock moves from logical 1 back to logical 0.

Preserving State

The problem that we will quickly encounter is the challenge of 
ensuring that we have the right set of signals in the right place at 
the right time.   We need to ensure that we can maintain state, or 
maintain a set of signals until we can process them.  Further, we 
need to have some way to implement structures such as ROM 

(read only memory) and RAM (random access memory) which 
must maintain a set of signals, indefinitely.
 
The purpose of sequential logic circuits is to maintain such state. 
We have learned that combinational logic circuits can take inputs 

and produce outputs based upon the design of the logic within the 
circuit, but we also know that the outputs persist only as long as 
the inputs are present.  So how do we maintain state?  In this 
context, state refers to the ability to maintain a set of signals 
indefinitely, even after the inputs that generated the signals are no 
longer present.  
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We can see how this might be useful.  Imagine that we have an 
instruction that we fetch, decode, and send to the ALU to be 
computed.  The resulting value will be lost the moment that the 
inputs change, perhaps when we move to execute the next 
instruction.  

Therefore, we need to maintain the state of the signals.  The secret 
to doing this is called feedback.  Imagine creating a circuit that 
when a value is applied, this value is immediately fed back as an 
input into the gate, thus sustaining the state of the value.  That is 
exactly what we do with the D-Latch, which we see in the 
following diagram. 

Figure 4.52 D-Latch

In this D-Latch circuit (figure 4.2), we see that we can apply a 
signal to S (store) and when toggling the R (reset), the value is 
maintained.  In the D-Latch, we refer to the S input as the data 
input and the R input as Clock.   The behavior is that the signal on 
the Data when the clock is toggled from 0 to 1 is stored in the 
latch.   The Q value will contain the data from the D input and Q 
will contain the complement (inverse) of the data. 

Throughout the remainder of this book, we will be using the 
memory gate in Logisim to represent a single bit D-Latch.  The 
inputs and outputs of this gate are detailed in the following 
diagram.  
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Figure 4.53 D-Latch 1 Bit Memory Cell Implemented in Logisim

The clock signal provides timing for the memory circuit. 
Essentially the value in the memory gate or cell can ONLY be 
updated when the clock signal has a value of logical 1.  This signal 
can be used to control when the value in the memory cell can be 
updated.

The data input is the value to be stored in the memory cell.   Of 
course, the only time that this value will be stored is when the 
clock signal is high or has a value of 1.

The output is the value that is stored in the memory cell and the 
complement is the complement of what is stored in the cell.  For 
example, if the memory cell were to store the value of 1, then the 
complement would be 0; and if the cell stored 0, then the 
complement would be 1. 

This memory D-latch circuit relies on feedback to maintain the 
state, or in other words, to store a value.  We may need at times to 
interrupt this feedback circuit, which will cause the memory cell to 
be reset.  This is what occurs when a value of logical 1 is applied 
to the reset input. The feedback circuit is interrupted and the 
memory cell is reset. 
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Although important, a memory cell that stores one bit is limited in 
its use.  We need to be able to store numbers larger than a single 
bit in order to build effective computer systems.  The solution to 
this problem is to put several of these 1-bit memory cells (D-
Latches) together.   One example of putting a series of D-Latches 
together is the register.  In the register, there is one D-Latch for 
each bit required.   Consider an example like the one below where 
we have 8-bits of information.  The register would be built by 
putting eight D-latches together in series. 

Figure 4.54 Memory Register

The register gate in Logisim looks like the device in the above 
diagram (Figure 4.4).  It has three inputs and one output.  

The data input is a binary number that has 1 or more bits.  In the 
above example, we see a device that has eight input bits 
(represented by the x8).  The signals on these eight bits will be 
stored in the register only when the value of the clock signal is 
logical 1.

The clock signal input is a single bit signal that toggles between 0 
and 1.  When the value rises to logic 1, the data input is stored in 
the register.

The reset signal that provides the interruption in the feedback 
circuit is required to reset the D-Latch.  When this input has a 
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value of logic 1, the circuit is interrupted and the register is reset. 
This sets the value in the register bits to all zeros. 

Finally, we have one output which is the data output.  This group 
of signals contains the value stored in the memory register. 

There is an important concept that we need to understand when 
looking at the register circuit.  We see that both the input and the 
output is a group of bits.  In the case of the example that we see 
above, there are 8-bits in the input and 8-bits in the output.  You 
have to realize that the one input or output line actually represents 
eight different wires to carry the eight different 1-bit signals.  

This idea of having a bundle of wires that can be used to carry 
multiple bits of information simultaneously into or out of a gate or 
circuit, is called a BUS.  As we continue to design our computer 

system throughout this course, we will be using many such busses. 
We will need a bus to carry signals from memory to the ALU and 
to carry the result of the ALU to memory, to the ALU registers (A 
Register or D Register), or the address registers.  

We have explored a single bit of memory and the register that has 
several bits of memory in series.  We should also recognize larger 
memory structures such as ROM (Read Only Memory) and RAM 

(Random Access Memory).  We can think of ROM and RAM as 
being similar to the register in that we have a group of memory 
cells that are in series.  However, unlike the register, RAM and 
ROM have a second dimension typically, which is like having an 
entire array of registers.   

D-RAM Memory

RAM Memory, and in particular the D-RAM that is used in most 
modern computers, does not rely upon the D-Latch circuit to store 

a bit of memory.  The D-Latch requires at least 9 transistors to 
store a single bit of memory.  This number of transistors can add 
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up quickly.  Imagine a computer with 1 gigabyte of memory.  A 
gigabyte is 1 billion (1,000,000,000) bytes, each byte has 8-bits, 
and using D-Latch circuits, each of those 8-bits has at least nine 
transistors, which totals 77,309,411,328 transistors.  Additional 
transistors would be required for decoding and addressing, but we 
will not consider this now.   

The alternative to the D-Latch circuit is an innovative approach 
that couples a transistor with a capacitor.   A capacitor is an 
electronic component that can store an electrical charge between 
two conductor plates.   In circuit diagrams with a capacitor, two 
parallel lines represent the two conductor plates separated by an 
insulator.  The capacitor acts as a battery, storing an electrical 
charge.  When reading the memory, this stored electrical charge 
provides the signal current. Writing into the memory is storing the 
electrical charge.  The circuit for the D-Ram bit of memory is 
shown in Figure 4.5

You might notice in Figure 4.5 that the transistor looks different 
from the ones previously studied.  This transistor is different; it 
does not have the arrow representing the emitter or the line 
representing the collector.  

This is because D-Ram cells use a special kind of transistor called 
a Field Effect Transistor,  which is often abbreviated FET.
   

Figure 4.55 D-RAM Memory Cell
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Although we will not cover it here, you might want to do some 
further research on the internet to understand the properties of field 
effect transistors.

The benefit of the D-Ram cell is clearly the reduction in the 
number of transistors.  The D-Latch required at least nine and the 
D-Ram circuit requires only one.  

Figure 4.56 D-RAM Memory Structure

Figure 4.6) provides an illustration of the structure of random 
access memory.  We see that the memory cells are arranged in a 
matrix.  The dimension across is the number of bits of data.  The 
dimension down represents locations in memory. Each row of 
memory cells make up a memory location.  We access memory by 
accessing a specific row.  This row in memory is the memory 
address.   Each row represents 8-bits, or one byte of memory.   

Historically, in order to save larger data structures in memory, the 
data would need to be separated into bytes.  For example, a number 
that required 32-bits would have to be broken up into 4 bytes.   In 
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older computer system architectures, the order of these bytes in 
memory was very important.  

Big and little endian

Once upon a time in the land of Endian there were two races of 
people.  One was the Big endians and the other was the Little 
endians.

Figure 4.57 Big and little Endian

Actually, big-endian and little-endian are terms used to describe 
the order in memory by which values are stored.  If all values that 
we stored in memory were only one byte, 8-bits in size, then there 
would not be a problem, however, that is not the case.  

Traditionally, computer architectures have adopted an approach 
which breaks down any data item to be stored that is LARGER than 
one byte, into byte-sized pieces.  In the little endian approach, the 
less significant byte appears first in memory and the most 
significant byte appears last.

For example, assume that we need to store in memory, a very large 
number, such as 69,349,146.   This large number requires 32-bits 
to store, because the binary equivalent is 
00000100001000100010111100011010.   How would we store this 
number?   

We need to take the number and break it down into bytes.   The 
byte at the far left is called the high order or most significant byte. 
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The byte at the far right is called the low order or least significant 
byte.

In little endian, the byte 00011010 is the least significant byte, so it 
will appear in memory first.   When we say it “appears in memory 
first,” we mean that it is stored at the lowest address.   The address 
is the row in the D-RAM array where the byte will be stored. 

Figure 4.58 Little endian format

Big endian is the opposite.  In big endian, the most significant byte 
appears first and the least significant byte appears last. 

Figure 4.59 Big endian format

This concept of endian-ness was a big issue when different formats 
of files or programs supported only one type of endian-ness.  Most 
modern computer architectures no longer struggle with this issue 
and many can support memory stored in either direction. 

If you were wondering where the term "endian" came from, it was 
from the author, Jonathan Swift.  Jonathan Swift was a satirist (he 
poked fun at society through his writings). His most famous book 
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is Gulliver’s Travels, a story about a mythical land where certain 
people prefer to eat their hard-boiled eggs from the little end first 
(little endian), while others prefer to eat from the big end (big 
endian) and how this led to wars between these people.  For years, 
the computer industry warred over big-endian and little-endian 
much like the characters in Jonathan Swift’s novel.

ROM Memory = Program Memory

The idea of memory addressing is now simple to understand, as the 
memory address is simply the row of memory that we either must 
update or from which we retrieve a value.   Typically, the address 
or row in memory is selected by using a decoder circuit.  The 
decoder enables a particular row within the memory array from 
which only the values from the selected row of memory cells are 
sent to the output. This is another great example of the use of the 
decoder circuit or the controlled buffer to enable or disable a 
particular group of signal wires.

In the Logisim tool, we have been provided with two additional 
components that we will use.  The first is the ROM component, 
which represents read-only memory and the second is the RAM 

component, which represents random-access memory.  

In the projects specified within this text, we will use ROM as the 
memory where we place the instructions to be executed (the 
program).  In many computer systems, an area of RAM is actually 
mapped to be ROM, or more accurately, is the place where our 
program instructions are stored.   As we progress through the text, 
we will develop an understanding of how the program counter is 
used to point to the next instruction that the computer must 
process.   In our simple computer system where we have all of our 
instructions in a ROM memory model, this is quite simple to 
implement.  However, in the typical computer system with an 
operating system and multiple programs, this becomes more 
complex.  
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One of the roles of the operating system is to help coordinate the 
flow of instructions to be processed.  When memory is mapped to 
be ROM, or the location of program instructions, an offset is 
applied to all of the instructions that utilize addresses.  Instead of 
going to line 5 in memory and executing the instruction, since the 
program may start at position 22000 in memory, the instructions 
and addresses will be remapped to start at 22000.  The instruction 
to go to line 5 would become an instruction to go to line 22005. 

Figure 4.60 Read Only Memory

The Logisim component for ROM memory is rather simple as we 
can see in the above diagram.  It supports one input and one 
output.  The input is an address (A on the component) which 
simply points to the row of memory bits that should be enabled to 
send output.  The address is nothing more than a simple offset. 
The first row has an address of 0, the second row an address of 1 
and so on.   

The output (D on the component) is the bus that contains the value 
in ROM memory that is pointed to by the address.  We will learn 
in subsequent chapters that this ROM address is typically tied to a 
structure called the program counter and the combination of the 
program counter pointing to the ROM address is the mechanism 
used to fetch the next instruction from ROM memory to execute. 
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RAM Memory = Data Memory

The RAM memory component is a bit more complicated in that 
not only do we need to be able to address and read the RAM 
memory much like we have seen with the ROM memory, but we 
also need the ability to load values into memory and store them.  

The RAM memory is where we store data values.   The following 
diagram details all of the inputs and outputs of the RAM memory 
component that is available in Logisim. 

Figure 4.61 Random Access Memory

For inputs, we have a memory address, input data, data load, clock 
input, reset, and load to output, which operate as follows.

The memory address for RAM works the same way as the address 
did for ROM.  This is simply a bus that contains a binary number. 
A decoder in the RAM component will select one of the rows in 
the array of memory cells to activate, based upon this address.  In 
the ROM component however, we could only read the memory 
that was in the component, while in RAM, we can either read the 
value already in memory or change the value. 

The input data is a bus that contains a binary number to be stored 
into memory.  The value will be stored into the memory location 
pointed to by the memory address.  Data is stored into RAM only 

~ 88 ~



when the Data Load input has a value of logical 1 and when the 
clock input is cycled (moves from logical 0 to logical 1).

The clock input is typically tied to the system clock.  Memory 

values can only be retrieved (loaded to output) or updated during a 
clock cycle change.  

The reset input performs the same function for RAM as it did for 
memory bit cells and registers when it has a value of logical 1, the 
contents of memory are cleared. 

The load to output enabled controls WHEN a value in memory can 
be made visible as output data.  This can be an important 
functionality in terms of controlling when data signals are moved 
within a computer system.  We will find that this is important as 
we begin building our own control system. 

Binary Counter Circuit

We briefly mentioned how we use the output of the program 
counter as the address to ROM memory to control the execution of 
instructions in a computer system.   If we think of ROM memory 
as an array where each row in the array is an instruction to be 
executed, then executing a program is as simple as sequentially 
pointing to each row, fetching the instruction from ROM memory 
and executing it via the ALU. 

However to do this, we need an important circuit, which is the 
program counter.  The program counter does not use the adder 
circuit.  This might be a bit surprising, but there is actually a more 
efficient way to count in our computer system.

The binary counter uses the principal that each D-Latch circuit 
stores both a number and its complement.  If we take the 
complement from a memory bit and feed it back into the data input 
of the memory bit AND use this same signal to toggle the input on 
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the next memory bit in sequence, it has the effect of counting in 
binary.  

The circuit for such a binary counter is shown in the following 
diagram (Figure 4.12).  

Figure 4.62 Binary Counter Circuit

Notice in the circuit that the system clock is used as an input to the 
binary counter.  This means that every time the clock executes a 
cycle (moves from logical 0 to logical 1); the counter will be 
incremented by one.  

The output of this counter (current counter value) is sent via a bus 
to the address register for the ROM memory creating a simple 
control system to execute instructions on our computer.   You 
might be asking the question “what happens if I need to loop or 
branch?”  

That is a good question, and it has a relatively simple answer.  If 
the counter simply points to an instruction in ROM memory (one 
of the rows) and if we could put a new value in the counter, then it 
would point to a new address, allowing us to jump to any location 
we within our program.  One thing we could do with this is 
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implement a loop or a branching circuit.  In figure 4.12, we see 
how the ability to load a new value into the counter is 
implemented.  The new value is set from the load counter value. 
This value would typically come from the jump address register. 
These signals are directed to the data input on the D-Latch. You 
will notice that we use a couple of AND gates and NOT gates 
which essentially disable the clock while the new value is being 
loaded and enable the signal on the D-Latch to load a new value. 

Divide by Two Circuit

We have discussed circuits that all operate within a single clock 
cycle.  We will be building and discussing a computer system that 
is designed to be able to complete the fetch-decode-execute-store 

stages within a single cycle of the clock. 

Most modern computers, however, are not designed to have such a 
simple single cycle design.  In many cases, there are operations 
that may span two, four, or more cycles.  

We need to be able to control and manage the timing of these types 
of computer systems and one technique that we can employ is the 
use of divide-by-two circuits.  

The divide-by-two circuit is designed to cut the clock frequency in 
half.  By cutting the frequency in half, it takes twice as long to 
complete one cycle. Consider the following circuit example:

Figure 4.63 Divide by Two Circuit
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Notice how we are using a D-Latch and we are feeding the 
complement value (complement of the value stored in the memory 
cell) back to the data input value.   If you run this circuit using 
Logisim, what you will see is that this feedback loop will only 
allow the output value x1 to be logical 1 every second clock cycle. 
You should recognize that this circuit operates on the same 
principle as the counter circuit.  

We call this a divide-by-two circuit because it reduces the 
frequency of the clock signal by ½.  We can create other clock 
cycle frequencies by feeding the output of the circuit into another 
divide-by-two circuit to divide-by-four; adding another circuit will 
divide by eight, and so on.   

By using the divide-by-two circuit, we can create a timing signal 
that will generate a logical 1 as output, every 2, 4, or more clock 
cycles. 

Chapter 4 Exercise 

For the Chapter 4 exercise, you must create a circuit using Logisim 
that implements a memory register capable of storing a 4-bit binary 

number.   Your register circuit must be able to support the inputs 

detailed in the following diagram: 

Figure 4.64 D-Latch Memory Cell
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Each bit of the register circuit must support a data in, a data out, 
and a control.  The control functions such that the data value will 
only be changed when the control bit is toggled on. 

The value in the register must be persistent and can only be 
changed when the control input has been toggled (cycled from 
logic 0 to logic 1).  

You should develop and test the 4-bit register using Logisim. 
YOU CAN ONLY USE THE BASIC GATES including AND, OR, 
NAND, NOR, NOT, Exclusive OR, and Exclusive NOR when 
building your circuit.

When you have successfully developed a functioning 4-bit register, 
you should duplicate the circuit and add it to the two inputs of the 
ALU circuit that you developed as part of the assignment from the 
previous chapter.
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 Control System: Clock, Counter, and NPZ 

In this chapter, we will begin to put together the components of a 
computer architecture.  We will look specifically at elements of the 
control unit such as data and signal busses, the system clock, 
program counter and the N,P,Z functionality, but before we can get 
into those topics we need to develop an understanding of what a 
computer architecture is and in particular the von Neumann 
architecture. 

Introduction to the von Neumann architecture

John von Neumann and the computer architecture that bears his 
name incorporate the basic idea of a flexible general purpose 
computing device (computer) where both instructions and the data 

they operate upon are stored in memory.  This is called a stored-
program computer.  The basic von Neumann computer had 
memory, an ALU (arithmetic logic unit), and a control unit, to 
control the execution of a program loaded into memory.  It is the 
responsibility of the control unit to fetch instructions from memory 
and load them into the ALU for processing. 
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Figure 5.65 von Neumann Architecture

The arrows in von Neumann’s architecture refer to the data and 
signal busses that the control unit uses to control the execution of 
the computer.  

The von Neumann architecture was a revolutionary idea because it 
made possible modern general purpose computing.  Prior to the 
development of the von Neumann architecture, all computing 
devices had to be hard wired to perform a specific task.  The 
innovation of von Neumann was the use of memory and a control 
system so that both instructions and data could be stored and 
retrieved from memory and sent to the appropriate place for 
processing along a data bus.   The idea that the program or the set 
of computations that the computer performed were simply 
instructions that were loaded into memory and could be retrieved 
automatically using signal and data busses, transformed the 
computer from a specific purpose device capable of a single 
computational task into general purpose computing devices that 
could be programmed to complete any computing task.

Data and Signal Busses

One of the key innovations introduced by von Neumann was the 
data and signal busses to move data and instructions around the 
computer architecture.  The basic difference between a data bus 
and a signal bus is in how they are used.  A data bus is a group of 1 
or more signal wires used to carry the data of the computer system 
between memory, registers, the ALU, and input/output devices. 
Data busses typically have the same number of bits (wires to carry 
a signal value) as the inputs to the ALU, registers, and word size in 
memory.   A computer system that has an ALU designed to 
process 32-bit words will need to have a 32-bit data bus.    

Perhaps at this point it might make sense to define a word as it 
relates to computer architecture.  A word is the largest unit within 
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a computer system comprised of bits. It is the number of bits used 
in a particular operation and transferred using a bus.  For example 
if the ALU of a computer system operated using a 32 bit operand, 
then the word size of the system would be 32 bits. 

Consider the following diagram.  In this diagram, we see a simple 
example of ROM memory, and Instruction decoding.  Not only can 
we learn how to fetch an instruction from ROM and decode it from 
this circuit, but we also see examples of both Data and Signal 
busses. 

Figure 5.66 Instruction Fetch and Decoding

We see in this circuit, that the data bus carries a value in binary. 
The size of the bus (number of bits) is typically defined by the 
architecture of the ALU.  In this case, the size of the ROM is 16-
bits wide.  Each row in the ROM memory contains a 16-bit 
number that we can fetch.  We also can see that this binary number 
must be decoded in order for us to use it.  Decoding simply means 
that we need to extract the information in the binary word to set the 
correct signals to process the instruction.  

In this example, which is the architecture to which we will be 
building our computer systems, each location in ROM can be 
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either a data value or an instruction.  We can see that each is 
processed differently.   Data values are extracted and sent to the A 
register (we will see how to integrate registers into this shortly), 
while instructions are decoded and used to control the computer’s 
processing.  

The term decode is used because most computer systems use 
decoder circuits to extract the information from an instruction for 
processing.  To simplify the circuit in the above example, we are 
using a fan-out.   The fan-out takes the bus, which appears as a 
single line, then splits out each bit (wire) that is in the bus. 

Figure 5.67 Bus Illustrated as Single Wire

We see from the circuit that when we have split out the relevant 
bits, we use those bits as control signals (signal bus).  Examples in 
this circuit of signal busses include the bits that are selected out to 
specify the jump instruction, destination, or the ALU instruction. 

If you recall in the previous chapter where we used a de-
multiplexor to select which operation (Add, Subtract, AND, OR) 
the ALU would perform, we now see where those select bits to 
choose the operation come from.   In this case, we extract the bits 
from an instruction fetched from ROM and extract and decode the 
correct bits of data to create a signal bus. 

The System Clock and Program Counter
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The system clock coupled with the program counter, form the 
heartbeat of the computer system, which brings it to life.   As we 
have already learned, the system clock is not a clock in the sense of 
a device that keeps track of and communicates time in terms of 
hours, minutes, and seconds, but rather is a device that generates a 
digital signal cycle that occur during regular periodic intervals.   

We use this signal for a number of purposes within the computer 

system, the most important of which, is the program counter.  In 
the following diagram (figure 5.4), we see a simple circuit that 
combines a system clock with a counter.   Each cycle of the clock 
sends a signal to the counter, which causes the counter to 
increment by one.  

Figure 5.68 System Clock and Program Counter

The counter, which in this case we are calling the program counter, 
sends the output value of the counter to the ROM memory as its 
address.   
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Figure 5.69 Short Program in the C language

This address in ROM points to each instruction that the computer 
must execute in sequence.   Imagine the following short program 
(Figure 5.5).

It is easy to imagine the program counter beginning at 0, receiving 
the clock signal and incrementing to 1.   The program counter now 
points to the first instruction in ROM, which is then executed.   As 
the counter increments to 2, 3, 4, 5, and so on, each line of code is 
executed.   

Of course, our computer system will be executing machine 
language instructions and NOT the C code that we see in this 
example, but it does help us to understand how the program 
counter works to facilitate the execution of a program.

Looking at the code in the preceding figure (Figure 5.5), we see 
that there is a loop in lines 9 through 12 of the code.   You might 
be wondering how our simple program counter circuit can 
accommodate a loop or conditional logic, such as an if-then 
statement.  

The answer is rather simple.  A loop is nothing more than causing 
the program counter to be set back to some value.   If our program 
reached the end of the loop in line 12 and needed to go back to line 
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9 and execute the loop again, all that we would need to do is load 9 
into the program counter. 

We see how this can be accomplished in the circuit (Figure 5.4) by 
simply sending a value to the counter circuit, in this case the ROM 

address or the line in ROM memory to which we need to move. 
In order to load a value into the counter we need to send a signal to 
load and not increment, which is what the load address signal does. 
We see that if the load address signal is logic 0 (meaning that we 
do not want to load an address now), we are sending a value of 
logic 1 using an inverter to the signal that enables the counter to 
increment.  Otherwise, if the load address signal has a value of 
logic 1, then the load signal on the counter circuit is enabled, and 
the increment is disabled allowing a new value to be loaded into 
the counter.

Using De-Multiplexors, Multiplexors, and Decoders for 
Control

One of the important innovations introduced by von Neumann was 
the use of data and signal busses to control the flow of data and 
signals. Of course these busses are subject to the issues that we 
discussed in chapter three where we cannot have two inputs active 
to any input of a gate and that we also must avoid the situation 
where a loop is formed where the output of one gate can also 
become the input to the same gate
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Figure 5.70 Control Circuits using De-multiplexor and Decoder

Implementing N,P,Z functionality

If you are wondering what N,P,Z functionality is, let’s begin by 
defining N,P,Z as Negative, Positive, and Zero.   We have been 
studying the various circuits and components that together make 
up a computer system.   We have discovered that it is relatively 
easy to add numbers together in binary using logic gates, and we 
have discovered that since addition is the basis of other 
mathematical operations such as Subtraction, Multiplication, and 
Division that our ability to do addition provides us with the ability 
to compute almost anything.   

What we have NOT seen so far is how we can accommodate the 
idea of conditional logic or expressions within the design of our 
computer system.  

We all know from our experience with programming languages 
that we need to be able to evaluate conditional expressions.  For 
example, most programming languages will have an if statement 
that looks something like the following:
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This is a classic example of a conditional expression.  If the value 
contained in variable a is less than 5, we want to compute one 
thing, and if the value is equal to 5 or greater than 5, we want to 
compute something else.  

The question is, how do we create a circuit that can help us to 
evaluate this expression?   

The answer is that we cannot.  No circuit can evaluate this kind of 
conditional expression.  What we need to do is change this 
problem into something that we can do well with our computer 
system—Math.  

Let us assume for a moment that the value contained in the 
variable a was 4.   One way that we could determine if 4 was less 
than 5 would be to subtract 4 from 5 and if the resulting value was 
a positive number, then 4 would be smaller than 5.  If the result of 
subtracting the value of a from 5 was 0, then we would know that 
the value in a would have to be EQUAL to 5, and likewise, if we 
subtracted the value of a from 5 and the result was negative, then 
we would know that the value of a was larger than 5. 

We have just discussed three cases where we evaluated 
expressions and based upon whether the result was Negative, 
Positive or Zero we could take the appropriate action.  This is the 
purpose of the N, P, Z flags.  

Considering our if-then-else statement, the way to implement it 
using our ALU and control unit design, is by taking the expression 
to be evaluated, turning it into a mathematical operation and, based 
upon the N,P,Z of the result of this operation, we would jump to 
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the appropriate place in the code to continue executing the 
program.   

In our program, the “then” portion of the code would be at one 
memory location and the “else” part of the code would be at 
another, and we would simply use our ability to load the 
appropriate location into the program counter to “jump” to that 
location, thereby implementing a conditional expression. 

Now that we understand WHY we need to have N,P,Z flags and 
how we can use them, we now need to learn how to create these 
flags. 

Consider the following circuit diagram (figure 5.7).  In this circuit, 
we have included the ALU and the gates that we are using in our 
example, UoPeople computer system to implement the N,P,Z 
functionality.   You will notice that the entire N,P,Z system is used 
only to determine when to execute a jump.   A jump is nothing 
more than sending a new address to the program counter to move 
to a new position (row) in ROM memory and using this as the next 
instruction to execute. 
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Figure 5.71 N,P,Z, and the ALU

You will notice that there are two distinct types of N,P,Z 
functionality.  On one hand, we have the functionality to determine 
if the result of a computation in the ALU is Negative, Positive or 
Zero.   Notice that we use a decoder circuit to enable checking for 
Negative or Positive results only when the operation of the ALU is 
either ADD or SUBTRACT.  

You will see that we take the carry bit signal from the Subtract 
gate to check if the result is negative.   Remember from chapter 2, 
that we discovered that when subtracting two binary numbers 
using 2’s complement that the value of the carry bit tells us if the 
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result is either negative (Logic 0) or Positive (Logic 1).  This carry 
bit is used in the subtract gate to generate the signal value that is 
the negative flag.  If the result is not negative then an inverter 
creates the positive flag.  

For the zero flag, we take the output of the ALU into an OR gate 
and invert the output of this gate.  If any bit into the OR gate is 
logic 1 then the zero flag is NOT set. 

The second type of N,P,Z functionality is represented by the 
decoder and the AND gates in the upper left hand portion of the 
circuit.  What this portion of the circuit is doing is implementing a 
jump based upon the N,P,Z flags.  

The decoder in this circuit is decoding the jump instruction bits, 
which are as follows:

When you examine the circuit you will notice that the 0 output on 
the decoder is not used, which means that if 000 is specified, no 
jump will occur. 

The next three outputs from the decoder are interesting.  The first 
output (select bits 0 0 1) or position 1 on the decoder, becomes the 
input to an AND gate and a second input into the gate comes from 
the Negative flag.  

This operates as follows.  When the select bits for the decoder are 
0 0 1, which we can see is defined as jump less than 0, then output 
1 on the decoder will have a value of logical 1.  If the Negative 
flag is also set (has a value of logical 1) then the bus that takes the 
value in the jump address register is enabled and the address is sent 
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to the program counter effectively causing it to point to a new 
location in ROM memory, in other words, executing a jump.  The 
AND gate evaluates the condition that both the jump less than 0 
signal has a logical 1 and the Negative flag has a logical 1. 

We see a similar design for select bits 0 1 0, or position 2 on the 
decoder, which are ANDed with the Positive flag implementing the 
“jump greater than 0” instruction. 

We also see that when the select bits are 0 1 1, (position 3 on the 
decoder) the decoder output is ANDed with the Zero flag 
implementing the “jump equal to zero” instruction. 

The final output from the decoder has no conditions.  If the select 
bits are 1 0 0 (position 4 on the decoder) for Unconditional jump, 
then the address in the jump address register is sent to the program 
counter.  This final jump instruction is called an unconditional 
jump because it will always jump, as it has no conditions on it.  

Chapter 5 Exercise 

For the Chapter 5 exercise, you will begin by downloading the 
provided circuits (if you are enrolled in the CS1104 course) or 
constructing them by referring to the figure in which they appear:

• the Logisim ALU (Arithmetic Logic Unit) circuit file (Figure 
5.7)

• System Clock and Program Counter Circuit File (Figure 5.4)
• Instruction Decoder Circuit File (Figure 5.2)

As part of this assignment, first determine how to integrate the 
functionality of the Instruction decoder circuit with the ALU 

circuit and System Clock and Program Counter circuit.  

Next, develop a circuit that implements the N,P,Z functionality.  
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Implement both a ROM memory and a RAM memory 

Finally, ensure that all of these circuits are integrated together and 
controlled through both data busses and signal busses.  

Your system should be able to implement the following machine 
instructions, which means that your decoder circuit must be able to 
leverage the following signals extracted from a 16 bit word (from 
the ROM memory component) and used to implement destination 
functionality, jump functionality, and the ALU instructions.

Keep in mind that the first bit of each instruction will specify if the 
instruction is an A instruction meaning that it simply loads a value 
into the A register or a C instruction which specifies a computation 
to be performed.   You can look ahead to the next chapter if you 
want more details. 
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 Computer Architecture 

We all know some of the common computer architectures.  Most 
of us recognize names such as Intel, Advanced Micro Devices 
(AMD), ARM, SPARC, Integrity, Motorola, or Power.   Each of 
these CPU architectures defines the architecture of a computer 
system.   In this course, we have been working towards building 
the University of the People (UoPeople) architecture, which is a 
simplified CPU architecture that supports a simple machine 
language.

At this point, we have either studied or created the circuits using 
Logisim that implement core functionality including:

• the ALU (Arithmetic Logic Unit)
• the N, P, Z flag system and the circuits to implement jump 

capabilities
• the system clock and program counter, the ROM memory system 

and an instruction decoder
• the multiplexors, de-multiplexors, and decoders necessary to 

direct the results of the ALU to a destination such as memory, 
RAM address, ROM address, registers, or the jump address 
register

All of these assignments and learning exercises have been building 
to the point where we put these elements together into a complete 
computer architecture, which of course we have called the 
University of the People architecture (After all we would not want 
Intel, HP, and ARM to have ALL the fun). 
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Figure 6.72 Complete Circuit for UoPeople Computer System

In the preceding diagram (Figure 6.1), we see a completed circuit 
that takes these elements and puts them together into a complete 
computer architecture.  The basic idea behind this architecture is 
that it fills in the details to show how we get from Adder Circuits, 
Memory Circuits, and Registers.  It also helps in understanding 
multiplexors, de-multiplexors, and decoders, by putting these 
elements together with the clock and program counter circuits, the 
N, P, Z functionality, and the rest of the essential control circuitry 
to create a functioning computer.  

Some of these circuits should be familiar, as we have reviewed 
them in previous chapters.   Others might be new.  Together they 
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form a functioning computer system that can be used to develop 
and execute programs. 

In this chapter, we will be learning a couple of important concepts. 
First, we will learn to distinguish which circuits are typically 
included within the CPU (Central Processing Unit) and which are a 
part of the remaining chip set of the computer architecture.  

Further, we will begin to understand how this circuit functions to 
execute general-purpose programs by exploring how each element 
of the Fetch-Decode-Execute-Store cycle is implemented within 
the circuit.

Finally, we will establish the foundation that will enable you to 
build YOUR OWN computer system circuit.  Although it would be 
possible to recreate the circuit that appears above, it is 
recommended that you attempt to wire up your own computer 
system using the circuits provided and the knowledge that you 
have gained so far.  Doing this will enhance your understanding of 
exactly how this computer system functions as well as how every 
von Neumann based computer architecture functions. 

The University of the People Architecture

To get us acquainted with the various components of a computer 

architecture, we will examine a few elements of the UoPeople 

architecture using color codes.  For those who are reading this text 
on a device that only supports greyscale, each color has been 
labeled so that you can identify the sections.  

In the diagram below (Figure 6.2), we see a section colored in light 
grey.   This section contains two things, the system clock, and the 
program counter.  We have already discussed the role of the 
system clock and we know that it produces a digital signal cycle on 
a regular periodic basis.  During each cycle, the clock will change 
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state from 0 to 1 and then from 1 to 0.  You will see that there is a 
need for such timing.  

Some of the registers that are being used need to know when to 
update the value in the register, and the clock signal (when the 
value goes from 0 to 1) is used to signal the register to load a new 
value.   The RAM component, the ALU output register, and the 
ROM address register in particular, rely upon the rising and falling 
signals of the clock

You might also notice that there is an output register in this grey 
shaded area.  Essentially this register demonstrates the integration 
of input and output into a computer system.  In this case, we can 
send a value that has been computed to the output register where it 
will be displayed until it has been changed by moving another 
value into the register.  This output device is useful when we want 
to compute some value and then see what the result of the 
computation is, to ensure that the computation was performed 
successfully. 

You will notice that this output register along with the A, D, and, 
Memory registers are not controlled by the clock as we want to 
make sure that values are loaded into the registers to be consistent 
with the processing of instructions.  These registers are triggered 
when the clock input on the register (the small triangle on the 
bottom of the component) is toggled from Logic 0 to Logic 1.  By 
controlling the clock update on the register, we can control when to 
load a new value.  

If you study the circuit carefully, you will notice that we are using 
signals from the decoded instruction and in particular the 
destination bits of the instruction.  When a particular register or 
memory is the destination for the output from the ALU, we send 
the data via a data bus to the input of the register and a signal from 
the decoder to the clock input on the register component to update 
simultaneously, the value in the register.  This offers a great 
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example of the use of both data and signal busses in our computer 
architecture. 

The RAM and ROM memory components  are located in the green 
shaded area.  You will notice that we are using a register to hold 
the address of each type of memory so that it is consistent between 
clock cycles.  Essentially this register ensures that the address for 
the memory component will not change until a new address has 
been set.  

You will see that the address to the ROM memory is actually just 
the output from the program counter.  The ROM is the memory 
that contains our program instructions.  

Figure 6.73 Color Coded Circuit

The program is created by taking the machine instructions that the 
computer understands (in binary) converting these binary 
instructions to a hexadecimal format and putting them in a file that 
can be loaded into the ROM memory.
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Speaking of machine instructions, the section in blue is the 
functionality that we have in the computer to determine if the 
current instruction fetched from ROM is an A instruction or C 
instruction and what to do with it.   In the case of the A instruction, 
we can see that we strip off the 8-bits of data following the first bit 
and send it to the A register.   We use the fan out in Logisim to do 
this, which allows us to break out the bits and decide what to do 
with each bit or group of bits.   In the case of the C instruction, we 
can see how we split out the bits for each component of the 
instruction (M/A, instruction, destination, jump) and use these 
groups of bits as the signal busses to control the ALU instruction, 
destination decoder, and jump functionality.

It is interesting to note that if you look at a magnified view of a 
modern CPU (Figure 6.3) you can begin to see the similarity with 
our color-coded circuit in Figure 6.2 above.  We can distinguish 
the CPUs, which contain the ALU, registers, and control unit, we 
can also see cache memory, and other I/O devices.  We can also 
see the wires connecting the different components together and 
these wires form the basis of both data and signal busses within the 
CPU.  These busses are extended out of the CPU in the computer 
system and implemented using the rest of the chip set, however, 
this view does help us to understand that what we see in the Figure 
6.23 circuit is implemented in an actual modern CPU. 

Figure 6.74 Photo of CPU Showing Circuits
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The destination bits from the blue section are split out and sent up 
to the section in yellow where we have a de-multiplexor and a 
decoder.  These two components work together and what they do is 
take the data coming from the output of the ALU and direct it to 
the proper destination.  The de-multiplexor simply directs the data 
down different paths while the decoder provides us with an ability 
to turn circuits on or off to receive the data.  An example of this is 
that the decoder might send a value of 1 to the clock input on the D 
register because this tells the register to update the value.  The de-
multiplexor sends the value and the decoder sends the signal that 
enables the value to be updated. 

The key registers in the computer system,, which include the A 
register, D register, and the Memory register are in the purple 
section.  A register for memory is not necessary, but it makes the 
operation easier to understand by staying consistent with the A and 
D registers.  All operations performed by the ALU will operate on 
the D register AND either the A register or the Memory Register. 
The second bit in the machine instruction determines if the A 
register or Memory Register will be used.  

The section in red should be familiar because it is the ALU and it 
should look like the ALU that you designed as part of the 
assignment in chapter three.  You will see that our ALU has four 
functions including ADD, SUBTRACT, bitwise AND, and bitwise 
OR.  The ALU also supports two pass through operations that will 
allow the contents of the D register to pass through the ALU or 
that will allow either the Memory Register or the A Register to 
pass through the ALU and to the destination specified by the 
destination select bits.

Finally, the section in orange implements the N, P, Z functionality 
for our system.   The way that we can implement conditional logic 
within our computer system is with N,P,Z.  These stand for 
negative, positive, and zero.   Assume that we want to compare 
two numbers.  The first number is larger than the second is and we 
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want to branch to a location in our program.  We implement this is 
by subtracting the first number from the second.  Consider the 
following example.  To test if 5 is greater than 4, subtract 4 from 5 
and if the output of this operation is positive, then the expression is 
true; if the output is 0 or negative, then the expression is false.   

Using this process of arithmetic with two numbers and with the 
knowledge of whether the output is Positive, Negative, or Zero, we 
can take action.   This action is implemented with the jump 
functionality.   What happens is that we load an address into the 
jump address register, test our number, and based upon the 
positive, negative,  ,or zero outcome of that operation, we can 
implement a jump.  

Implementing the Computer Architecture

A complete computer system is built from the CPU, Memory, and 
the supporting components that make up the chip set of the 
computer system.  Many of the components that we have been 
designing reside directly within the CPU.   Other components, such 
as RAM Memory, ROM 
Memory, input and output devices, and elements of the bus exist 
outside of the CPU.  In the following section, we will identify 
those components that are typically found WITHIN the CPU.

The CPU or Central Processing Unit is the heart of any computer 

system.  The CPU typically has the ALU or Arithmetic Logic Unit, 
Control Unit, Instruction Decoder, and Registers.  Many modern 
CPU’s also include components that we have not explored such as 
Cache Memory, the Stack and a variety of registers that we have 
not implemented within our computer system. 

The stack is a useful structure and one that we will explore in a bit 
more detail in this chapter.  To summarize the stack, it is RAM 

memory dedicated within the CPU and its purpose is to provide a 
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place to temporarily store some work while the processor 
completes some other work.  

The Cache Memory has become a common element of all modern 
CPU’s.  We have previously discussed the fact that in many 
modern computer systems, some operations may require more than 
one clock cycle to complete.  For example, it can often take more 
than one clock cycle to fetch data from memory.  The cache is a 
very fast form of RAM memory that is located right on the CPU 
chip. Access to the cache memory tends to be much faster than 
access to the main memory of the computer. The way that the 
cache memory is used is that the cache might be loaded up with the 
instructions that need to be executed or the data that is required in 
an operation.  Once the instructions are loaded to the cache, the 
CPU can access them much faster (often within a single cycle) and 
this improves the overall performance of the CPU and the 
computer system. 

ALU Arithmetic Logic Unit 

We have already described the ALU as the heart of the computer 
system.  Much like the heart is the pump that gives us life by 
pumping blood through it and throughout the body.  The ALU is 
the heart of the computer system because all data flows through it 
and to the rest of the computer system.   Some of the data flowing 
through the ALU is subjected to computation and we have 
implemented an ALU circuit that is capable of computing Add, 
Subtract, Bitwise AND, and Bitwise OR operations.  

Modern ALU designs will incorporate additional, but similar 
functions. For example, the ALU could implement an inverter, 
which inverts all of the bits of an input number. Perhaps one could 
add a circuit that increments or decrements an input value by 1. 
Others may implement various comparative circuits.   While all of 
these features are possible, the core capability of the ALU is the 
Add operation. 
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In the project from chapter three, we implemented a relatively 
simple ALU design in which we use signal bits to enable a single 
operation against one or both input operands.  An alternative to this 
simple approach that many ALU designs employ is to use 
consecutive operations.  For example, the ALU might add the two 
input operands and then have the ability to invert the result or 
perhaps decrement the result or perform any of a number of 
operations upon the results of the basic operation.  In these cases, 
the ALU design can be thought of as a processing pipeline where a 
number of computations are applied within the ALU, and not the 
single operation that we have modeled in our ALU design.

Control Unit

As you may have realized at this point, the control unit is not a 
specific component within the computer architecture but rather the 
collection of busses and circuits that control the operation and 
execution of the computer system.  

The control unit is what coordinates the Fetch-Decode-Execute-
Store cycle within the computer system.  The control unit 
coordinates the fetch of an instruction, and decoding of the 
instruction, which is simply the process of setting the appropriate 
control signals to facilitate the execution of the instruction. 
Included in the execution of the instruction is the need to activate 
the appropriate function within the ALU, send the control signals 
and data to load registers, direct the output of the ALU 
computation, and enable the execution of a jump operation when 
required. 

Instruction Decoder

Instruction decoding is a complicated sounding term, but in 
practice, it is quite simple.  Our computer system instruction 
decoding is accomplished by splitting out the various control bits 
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or groups of control bits that select the function within the ALU, 
determining the use of the Memory register or the A Register, 
directing the result of the ALU computation to a destination 
register, and enabling jump capabilities.  

Figure 6.75 Decoded Instruction

In modern computer architectures, there are a variety of different 
instruction decoding techniques used including the use of 
Microcode and other techniques developed to make CPU’s more 
efficient and improve performance.  For our purposes, however, 
we will consider decoding as the process of retrieving an 
instruction from ROM and using this instruction to activate the 
control signals that facilitate the operation of the computer. 

Memory Registers

Registers are memory devices designed to buffer the end of a bus. 
We know that data and control signals exist only as long as the 
signal is being sent.  They are not persistent.  Registers are 
essentially memory devices that can maintain the state of a bus 
until a new state is provided. 
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Figure 6.76 Memory Register

It is sometimes helpful to think of a register as a box at the end of a 
pipe.  The data flows down the pipe and into the box where it says 
until it is emptied out. 

Although the number, size, and use of registers varies from one 
computer architecture to the next, some registers are present in all 
computer systems, including the one that we created.  These 
include:

The Program counter (PC) – The program counter is an 
incrementing counter that keeps track of the memory address of the 
instruction that is to be executed.  The program counter is 
essentially a memory circuit very similar to other registers with the 
exception that it can increment its value with each cycle of the 
clock.

Figure 6.77 Program Counter

Memory address register (MAR) – The MAR holds the address of 
a memory block to be read from or written to.  The MAR in our 
computer system is identified as the register that is located just to 
the left of the RAM component as we can see in Figure 6.7.
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Figure 6.78 Memory Address Register

Memory data register (MDR) - register that holds data fetched 
from memory (and ready for the CPU to process). We see this 
register in Figure 6.8.  The M/A bit in the instruction determines 
whether to use this register or the A Register in ALU 
computations.

Figure 6.79 Memory Data Register

Instruction register (IR) - a temporary holding ground for the 
instruction that has just been fetched from memory.  Our computer 
system design has not implemented the IR.  An IR would be 
required in a design that requires more than 1 cycle to complete the 
processing of an instruction.

The D register - The D register stores the value that is used as one 
of the two operands that are used as input to the ALU.  The D 
register is the stationary register as it is always one of the operands 
to the ALU while the other one can be either the Memory register 
or the A Register.  Although we will not cover this in detail until 
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chapter seven, be aware that the D register is also called the 
accumulator in the von Neumann architecture.

Figure 6.80 D-Register

The Jump address register is used to hold an address that is used in 
conjunction with the jump functionality.  When one of the jump 
instructions are executed, they essentially activate the signals that 
send the value from the jump address register to the program 
counter resetting the position in ROM memory which controls 
which instruction is fetched to executed.

Figure 6.81 Jump Address Register

The A register is the register that can be used to load data into the 
computer system.   The A instruction in our computer system loads 
a value into the A register.  The A register can be used as an 
operand with the D Register as input into the ALU.

Figure 6.82 A-Register
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The memory register is the register that can be used to load data 

values from RAM memory as an operand that can be used with the 
D Register. Essentially the Memory or A-Register bit in the 
machine instruction controls whether the A-Register or the 
Memory register is used in ALU operations.

Figure 6.83 Memory Register

The Stack

The stack is an advanced concept that we have not implemented in 
our computer system, however it is important that we understand 
how the stack functions and is used because most modern CPU 

architectures do employ a stack.  

The stack is a memory structure that is used to store information 
temporarily.  A stack is a data structure that operates as last in, first 
out (LIFO).  

Figure 6.84 Stack Operation

Think of a stack of plates.  You can place a plate on the stack and 
then take it back off.  In the case of the stack within the CPU, the 
stack is used to push memory items on the stack and then pop them 
back off as required. 
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The way that the stack is used varies, but one use of the stack is in 
maintaining state.  There are many conditions where some 
processing on the CPU needs to be suspended while other things 
are processed.   

One example might be subroutines.  Imagine you are running a 
program and in the program, you call a subroutine.  Executing the 
subroutine suspends the current process.  While the code in the 
subroutine is occupying the CPU, we need to have a way to keep 
track of what the program was doing, where it left off, to save the 
values in the registers and perhaps the position of the program 
counter.  The stack provides an excellent solution to address this 
problem.  As processes interrupt the CPU, current work is pushed 
on the stack while the CPU addresses the more pressing 
processing. When the subroutine or other urgent processing is 
completed, the state is popped off the stack, restoring the point 
where processing left off and processing continues where it left 
off.

The use of the stack is one of the features that makes modern 
computer systems capable of running multi-user, multi-tasking 
operating systems that are capable of servicing many programs and 
users.

Input and Output  

The final topic that we will address in this chapter is the subject of 
I/O (input and output).   Most of us are familiar with a typical 
computing model which has input and output devices such as 
secondary storage (disk drives, USB drives), output devices such 
as graphical displays, input devices such as the keyboard, mouse, 
camera, and devices that facilitate network connectivity such as 
LAN interfaces, Bluetooth devices, wireless interfaces, and serial 
based devices (USB).  
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It might come as a surprise, but to the computer system, all of 
these devices are memory.  So far, we have implemented both 
ROM memory and RAM memory devices in our circuits.  We have 
discussed the fact that in most general-purpose computer systems, 
ROM memory or the memory that we use to store program 
instructions is simply a region of memory that has been reserved 
for program code. 

Figure 6.85 Memory Addressing Structure

What we quickly discover is that all memory in a computer system 
tends to be addressed using a common addressing scheme 
(memory starts at zero and extends to the limit of memory).  Some 
of these addresses do not contain RAM memory but rather are 
addresses that provide an interface to the various I/O devices.  The 
diagram above (Figure 6.14) provides an example of how different 
I/O devices are mapped into the memory addressing scheme. 

In figure 6.14, when memory location 0320 (hexadecimal) is 
accessed we are accessing the hard disk.  When we put data into 
location 0378, it is being sent to the printer.

The graphics system of your personal computer, phone, or tablet is 
another example, as all of the data is mapped as memory addresses 
in this system.  Each pixel of the graphics display has both color 
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and intensity information that is stored in memory) is mapped as 
memory addresses in the computer..

In our computer system circuit from Figure 6.1, we only have a 
single register that we use to display output.  However, in most 
modern computer systems all of the I/O devices are mapped as 
memory addresses in the memory address scheme.
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 Machine Language, Instruction Decoding, and 
Execution

Our computer system, like any computer system, has a set of 
instructions that it can execute. We now know that these 
instructions are actually a set of bits in a binary word that are used 
to send control signals to the ALU to select the different 
computations that the ALU can perform to control the destination 
of the result of the ALU computation or to implement jump 
functionality.   A particular instruction in our computer system, is 
made up of a number of elements including specifying whether to 
use the Memory Register or the A register in an operation, and the 
ALU computation to perform.  We also specify the destination (A 
Register, D Register, ROM Address, RAM Address, and Memory 
at the current RAM address)  to send the results of the operation, 
and the conditions under which a jump should be executed.

We will be using the ROM component within Logisim as the 
location to store our program instructions.  Logisim requires that 
the contents of both the RAM and ROM components be loaded 
using Hexadecimal codes.  In our design, we are using a 16-bit 
binary number to specify an instruction, and 16-bits in binary 
require four digits in hexadecimal.  The inputs and outputs of these 
devices are in binary, but Logisim uses hexadecimal because it can 
represent each location with fewer digits as we can see in the 
following diagram (figure 7.1), which shows us the ROM module.
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Figure 7.86 Logisim ROM Component

Machine Instruction Types

Each of the 4-digit hexadecimal numbers in our ROM component 
is either an A instruction, which is a number to be loaded into the 
A register or a C instruction, which is a machine instruction that 
the system can execute.  You will notice that each instruction is 
16-bits in length, but we are not using all of the bits.  The A 
instruction for example, uses the first bit to indicate that it is an A 
instruction (has value of 0), the next 8-bits hold the value to be 
loaded into the A register and the rest of the bits are ignored and 
not used.  

We should realize by now that this means that our computer 

system has an 8-bit data architecture, so all of our data busses 
should have 8-bits in them.  The A instruction is very important 
because it is the primary means to get data into the computer 
system.  The only way that we can introduce a data value is by 
loading it using the A instruction, which will load the data value 
into the A register.  We can then move this data value to wherever 
it is required.  

The data value could be a number that is being used in a 
computation or it could be an address to either RAM or ROM that 
will allow us to reference a particular location in memory to either 
retrieve (in the case of RAM or ROM) or to update (in the case of 
RAM). 

The C instruction, on the other hand, is a computation instruction.
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The C instruction uses the first bit to indicate that it is a C 
instruction (has value of 1).  The next bit indicates whether the 
computation should use the memory register or the A register. 
The next 3-bits define which instruction the ALU should perform.  

Following this, we have three bits to specify the destination to 
which the output of the ALU computation should be sent.  Finally, 
we have 3-bits to define the conditions under which a jump is to be 
executed.  The remaining 5-bits in the instruction are ignored and 
not used. 

Instruction Decoding

Our computer system has two types of instructions: the A 
instruction and the C instruction.  The A instruction is used to load 
data into the A register.  The C instruction is used to specify the 
computations that our computer system will execute.  In the 
example computer system that we reviewed in Chapter 6 (Figure 
6.1), we can easily see that we have these two types of instructions 
when we examine the instruction decoding section of the circuit.  

In the expanded view of this section of the computer system circuit 
(Figure 7.2), we clearly see the instruction carried on a data bus 
that is output from the ROM memory component (the data output 
is represented by D on the ROM component).

We then see a Logisim fan out component used to extract the first 
bit in the instruction and this bit is used as the select bit on a De-
Multiplexor.  What this bit is doing is selecting between the left 
hand portion of the circuit which decodes the A instruction and the 
right hand portion of the circuit that decodes the C instruction.   
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Figure 7.87 ROM and Instruction Decoding

In this example, our decoder is relatively simple.  We are using the 
fan out to select the groups of bits that we need either populate a 
data bus, which is the case in the A instruction, or to populate the 
various signal busses for the ALU instruction, Destination, Jump 

Instruction or the bit, which selects to use either the Memory 

register or the A register. 

Constructing a Machine Instruction

We now turn our attention to how a machine instruction is actually 
constructed.  We know that we have a variety of bits in an 
instruction that control different functions within our computer 

system.  The process of creating a machine instruction is simply 
one of determining which functionality we want to execute for a 
particular instruction and then constructing a 16-bit binary word 
that contains the required bits.  

For the A instruction this is relatively easy.  The first bit will 
always be a “0.”  Next, we add the value we want to load to the A 
Register as an 8-bit binary word.  Finally, we simply add the rest 
of the digits as zeros.  As an example, assume we want to load the 
value of decimal 9 to the A register.  What would the A instruction 
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look like?   First, we need to convert decimal 9 into its binary 
equivalent.  

You should be able to do this conversion manually, however, there 
is also a simple online converter that you could use that is available 
at http://www.binaryhexconverter.com/decimal-to-binary  -  
converter

The binary equivalent of decimal 9, is 1001.  We need an 8-bit 
binary number for our data so we would need to add some zeros to 
the beginning of this, which would result in the binary number, 
00001001.  Now we can construct the instruction as follows

The resulting instruction would then be: 
0000010010000000

Of course, in order to load this instruction into the computer 

system’s ROM component, we need to convert it into hexadecimal 
format.  You should be able to do this conversion manually as 
well, however, there is a simple online converter that you could 
use available at http://www.binaryhexconverter.com/binary  -to-  
hex-converter

The resulting instruction in hex is 0480, which could be entered 
into the ROM module of our computer system circuit and 
executed. 

The A instruction is rather easy, so we will now tackle something a 
bit more difficult, the C instruction.

For the C instruction, the first bit will always be a “1.”  To this, we 
will add a number of different signal bits.   The options include:
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Notice that a value is REQUIRED in the C Instruction for each of 
these different sections.  If we do not want to enable any of one of 
these different sections functionality, we can simply specify the 
bits “000” which in each case is a “No Operation” instruction.  

It might be easier to understand if we worked through an example. 
Imagine that we have a value in the D register and we have loaded 
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a value in the A register.  Imagine that we wanted to add the 
contents of the A register to the contents of the D register and we 
wanted to send the results of this operation back to the D register. 
How would we specify this instruction?  

First, we know that the first bit will always be a “1” because it is a 
C instruction.  Second we know that we want to use the A register 
as opposed to a value in the Memory register for the computation, 
so the “Memory Register or A Register” bit would need to be set to 
“0.”

Next, we get to the ALU instruction.  We know that we want to 
execute an ADD operation between the A Register and the D 
Register so looking at the codes for the ALU instruction we see 
that the ADD instruction is specified by the bits “001.”

For the next set of bits, destination, we know that we want to send 
the results to the D register so we look at the table and discover 
that the bits for the D Register destination are “011”. 

Finally, we get to the Jump Instruction. For this operation, we do 
NOT want to execute a jump so we want to specify a “No 
Operation.”   Looking at the list of jump instructions, we see that 
the bits “000” will disable any jump operation.  

Putting the entire instruction together looks like this: 

The resulting instruction would then be: 
1000101100000000

Of course, in order to load this instruction into the computer 

systems ROM component, we need to convert it into hexadecimal 
format.  The resulting instruction in hex is 8B00, which can be 
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entered into the ROM module of our computer system circuit and 
executed.

We have now seen how to put together machine instructions in 
binary and convert them into hexadecimal format that can be 
loaded into the ROM component within a Logisim circuit.  

A group of such instructions put together form a program.  During 
the next chapter, we will learn how we can represent these 
Machine instructions using symbols to make programming easier 
and how these symbols can be converted directly into the machine 
code that we can load into the computer circuit using a special 
program called an assembler.  For now, however, we need to 
explore different types of functionality in the computer to solve 
common programming problems.  In particular, we will look at 
how we can load data, store values in memory, implement loops, 
and make decisions using conditional logic, and do all of these 
things with the simple machine instructions that our computer 

system can process.

Programming the Computer System

Now that we have learned how to define machine instructions for 
the UoPeople computer system, we can begin to develop programs 
for our computer.   To understand how to develop programs for the 
computer, we need to have a working knowledge of how the 
computer operates.

The diagram in Figure 7.3, details the operation of the UoPeople 
computer system in a block diagram featuring the registers, 
memory, and the ALU of the computer, connected with grey paths 
that represent the data busses.
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Figure 7.88 UoPeople Computer Data Flow

In the diagram, we can visualize the computer as a loop through 
which data flows.  Data flows into the ALU from the D Register 
and either the A Register or the Memory register and flows out of 
the ALU back to the various destinations.  

We can see why the ALU is the focal point, as everything flows 
through it.  The ROM supplies instructions, the D Register and 
either A Register or Memory register supplies data and the ALU 
sends its results back out to the rest of the computer system via the 
bus.

This diagram helps us to realize that ALU has three different kinds 
of functions that it performs.  First, the ALU computes data.  The 
ALU in our computer system can compute add, subtract, AND, 
and OR of two binary numbers.  

Second, the ALU moves data within the system.  One of the 
characteristics of the von Neumann architecture is the fact that the 
bus and movement of data and instructions is central to the design. 
The innovation of von Neumann was the use of memory for both 
instructions and data. In order to implement this innovation, von 
Neumann required a great deal of flexibility to move data and 
instructions between memory, registers, and the ALU.  You will 
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find as you become more proficient at programming with machine 
and assembly language, that a large percentage of what you, do as 
the programmer, do is specify the movement of data in the form of 
addresses, data values, and instructions between memory, registers, 
and the ALU.

Finally, the ALU controls operations of the computer system. 
Although the control system is principally responsible for control, 
the ability to move an address directly into ROM provides direct 
control from the ALU over the execution of programs within the 
computer system. 

It is important to understand these three functions of the ALU 
because all of the instructions that you will implement within your 
programs will be used to implement one of these three tasks.  You 
will find that the ability of the ALU to move data within the 
system is the task that will demand most of the ALU’s time and 
will be the focus of most of your programming efforts. 

Consider the following examples.  Assume that within your 
program you want to store a value in memory.  To accomplish this 
you would first need to load the address in memory where the 
value needs to be stored and MOVE it through the ALU and to the 
RAM address register.   Second, you would need to load the value 
to be stored and then move this value through the ALU to 
Memory.  Since we previously stored the RAM address register, 
the value will be stored into that location in memory.   

Consider another example.  Assume that we want to add together 
two numbers, which were both stored in memory.  How would we 
accomplish this?  Again, we would need to load the address in 
memory of the first number into the A Register and then move this 
address to the RAM address register.  Next, we would move the 
contents of that memory location to the D Register.   We move this 
to the D register for two reasons.  First, the D Register is the 
register that is always used in ALU operations.  Second, we need 
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to store the value somewhere temporarily while we do the 
processing to get the second value.  To get the second value we 
would simply repeat the process by loading into the A Register the 
address in RAM of the second number.  This address is moved to 
the RAM address register.  Finally, we would execute an 
instruction to add the contents of the Memory register, which of 
course is pointing to the second number to the D Register, which is 
still storing the first number.  The result of this computation would 
then need to be moved to either a register or other memory 
location.  

What is important to see in this example is that we had one 
instruction to add two numbers, but five instructions to load and 
move values to the proper registers so that we could actually 
perform the required computation.  

The key to machine and assembly language programming that 
should be clear from these examples is our ability to plan out all of 
the steps necessary to load and move values to get them positioned 
in the ALU for the desired computation. 

von Neumann’s Accumulator

We have mentioned a couple of times the importance of the D 
Register in our computer system.  The D Register is essentially the 
primary register for the ALU.   When we are using the add 
operation within the ALU, we are adding something to the D 
Register.  When we are subtracting, we are subtracting something 
from the D Register.   To explain the importance of the D Register 
we need to go back to the diagram of the von Neumann 
architecture that we first saw at the beginning of Chapter 5. 
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Figure 7.89 von Neumann Architecture

The diagram (figure 7.4) details the key components of the von 
Neumann architecture.   We have addressed most of these 
components in detail.  In chapter three, we learned about the 
design of the ALU.  In chapter four, we studied memory and 
registers.  In chapter five, we learned about the bus and the control 
unit and in chapter six, we learned how Input and Output devices 
are mapped as memory addresses.  We have also learned how to 
use registers to get data into and out of the ALU.  What we have 
not covered is the white box in Figure 7.4 called the accumulator.  

The von Neumann architecture was designed around a register 
called the accumulator.  The basic idea of the accumulator was that 
it was the register against which all ALU operations are performed. 
In our ALU design the D Register is in fact the accumulator and 
compute operations are performed against the accumulator.   We 
add a number to the accumulator, we subtract a number  from the 
accumulator, we AND or we OR a number to the accumulator.  In 
every case, the operation is conducted against the accumulator. 

By the way, hopefully you have recognized this, but when we see 
the input box in the von Nuemann architecture diagram it refers to 
the register that is used to operate AGAINST the accumulator. 
Consider the fact that we can either use the A Register or the 
Memory register.  Further, we have already stated that all input and 
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output devices in the computer system are in fact treated as 
memory devices as they are all mapped into the memory 
addressing scheme.  This insight should help us to understand all 
forms of input and output that occur within the computer system.

Loading Data and Storing Values in Memory

We have already discussed the fact that in order to load new data 

into the computer system, we need to use the A instruction which 
will load the specified value into the A register.   However, in 
order to make use of that value, we will need to do something with 
it.   

We could execute an ALU instruction against the value in the A 
register, but suppose that all we wanted to do was to load a value 
into memory.   

The solution to this problem would be to use an A instruction to 
load the value into the A register and then use a pass through 
instruction with a specified destination to move the value to one of 
the destination registers.   

Loading data consists of two instructions.  The first instruction is 
used to load the data into the A register and the second instruction 
is a C instruction which is used to move the value to the 
appropriate destination register.  Assuming that we needed to store 

the value 21 into memory location 10, we would need to load 10 
using an A instruction, move the value to the Memory address 
register, Load 21 into the A register and then move the value 21 to 
the memory destination.  All of this will take four machine 
instructions as follows:

0000010100000000 : CNST #10
1011010100000000 : MOVA RAM
0000101010000000 : CNST #21
1011010000000000 : MOVA MEM
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You might notice in this list of instructions both the machine 
language instructions are on the left, and something unfamiliar is 
on the right.  On the right in this listing is the assembly language 

equivalent of the machine instructions.  It should be clear that 
writing and reading the version on the right is easier.  We can 
almost figure out what it means because it appears similar to 
English.  For example, CNST is an abbreviation of the word 
constant and this specifies the instruction to load a value into the A 
register.   CNST #10 generates an A instruction containing the 
value decimal 10.

The next instruction, MOVA RAM, also seems to make sense if 
we read this as MOVe register A to the RAM memory address.  It 
should be apparent that using assembly language is much easier 
than writing machine instructions.  With assembly language, we 
write our machine instructions using simple mnemonic symbols for 
machine instructions and then use a program called an assembler to 
translate these symbols into their machine instruction equivalents. 
We will learn more about assembly language later in this chapter 
and all of Chapter 8 is dedicated to assembly language.

Implementing Conditional Logic

Conditional statements in higher level programming languages 
include statements such as the “if-then-else” statement, the 
“switch-case” statement and of course the conditional statements 
that are parts of loops.  Examples include while, do-while, and the 
test in the form statement.  

If we carefully consider what these statements are doing, we 
realize that they are essentially conditional branches that will 
branch to different blocks of code based upon an evaluation of the 
expression that is a part of the statement.  
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We should take a moment to consider two terms here, branch and 
code block.   A branch is an instruction that transfers control to 
another place within the program code.  

In the past, we had a language called BASIC, and one of the 
statements in BASIC was GOTO.  These days GOTO is 
considered a very bad statement because it promoted the 
development of messy code that was difficult to understand, 
follow, and maintain.  However, we are going to refer to it because 
it helps us make sense of how we need to implement branches 
using machine instructions. Consider the following short program 
written in the BASIC language.

10 PRINT "MODFUNC"
20 INPUT A
30 INPUT B
40 IF A<=B THEN GOTO 70
50 A=A-B
60 GOTO 40
70 PRINT A
80 END

One of the first things you might notice, is the use of line numbers. 
Each program statement exists on a line number.  The program is 
executed by moving from one line number to the next.  

This processing sequence can be altered with statements such as 
the IF statement that we see in line 40.  The IF statement executes 
a branch, which in this case is implemented with the GOTO 
statement.  The IF statement indicates that if the value in variable 
A is less than or equal to the value in the variable B, then branch or 
transfer control to line 70 in the program.  If it makes itIt may be 
easier to understand, thinking of this as “going to” line 70.

The way that we implement a branch using machine instructions is 
very similar to this.  All that we need to do is to load the line 
number that we need to GOTO into the A register, move this value 
to the jump address register and then execute a jump. 
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Incidentally, at line 60 in the BASIC program we see another goto 
statement.  This one goes to line 40 where we test if A is still less 
than or equal to B.  What is interesting is that we are seeing here an 
implementation of a while statement.  Again, this simple BASIC 
program gives us insight into how we need to implement common 
programming problems with our machine instructions. 

We now understand how to implement a branch, but how do we 
evaluate a conditional expression?  The answer is simple.  If we 
think about the expression if A<=B, we realize that what we are 
looking at is an inequality.   We can solve this inequality using a 
bit of math by subtracting one term from the other and then 
examining the result. 

For example, let us assume that B has a value of 5 and A has a 
value of 4.  

If we subtract 4 from 5, we get 5-4 = 1.   The result is a positive 
number.

If B has a value of 5, and A has a value of 5, then subtracting 5-5 = 
0.  The result is zero.

Finally if B has a value of 5 and A has a value of 6, then 
subtracting 5-6 = -1.   The result is a negative number.  

You may see now where we are going with this.  To evaluate a 
conditional expression using machine instructions, we need to 
evaluate it using a mathematical operation.  In the preceding 
example the expression A<=B would be true UNLESS the 
negative flag from the ALU were to be set to a logical 1.  As such, 
all that we need to do to evaluate the expression and execute the 
appropriate branch,  is to subtract one operand from the other, set 
the jump address, and then execute a jump if the result of the 
subtract operation has a value less than 0.  
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The following code would implement this branch:

In this program, we are evaluating if 6 < 5.  If not, it branches to 
line 10 in the program.  Otherwise, it branches to line 13.  Notice 
that we are simply outputting the value 33 to the output register if 
we branch to line 10 and we are outputting the value of 99 to the 
output register if we branch to line 13.  This is just a useful way in 
our computer system to determine that our “if” expression worked 
correctly.   

You could take each of these binary machine instructions, convert 
them into their hexadecimal form, place them all in a text file, and 
then load and execute this program using the computer circuit that 
is defined in Figure 6.1.

Loops with For and While Characteristics

A loop, if you think about it, has three parts.  The first part is a 
conditional expression that tests whether to terminate looping.  The 
second is a branching mechanism that is executed when the end of 
the loop is reached it returns to the beginning of the loop to 
execute it again. Finally, a code block forms the basis of the loop 
as well as the instructions that are executed within it.
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Consider this simple example in pseudo code:

This simple loop initializes a counter variable, enters the loop, tests 
whether the value of the variable is less than 5, then executes the 
code block.  In this case, the code block increments the counter 
variable and prints the value of the variable to output.  

Each of these instructions can be implemented using our machine 
instructions.  We have already learned how to execute a branch and 
we have learned to evaluate an expression.  The only thing that we 
need to add is the ability to increment a value by adding one to it. 
The following code shows an implementation of the loop using our 
machine instructions.  
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The following instructions in this example are implementing the 
increment of a variable value.

CNST    #6
MOVA  RAM
CNST    #1
MOVA  D
ADDM  MEM

Simplifying the Process with Assembly Language

Although we have reserved Chapter 8 to dig deeper into the 
concepts of Assembler language, it makes sense to provide an 
initial introduction to assembly language programming at this 
point, as well as to the assembler language that we have defined 
for our computer system. 

An assembler is a program designed to translate symbols 

representing machine language instructions into the machine 
instruction format, and output them in the appropriate format to 
execute on a computer system.  

In our case, the assembly language symbols are converted first into 
their binary equivalents and then into the hexadecimal format that 
is required for input into the ROM component within our Logisim 
circuit. 

You can access the assembler   program   for the University of the 
People architecture directly at the following URL and, of course, 
the assembler program is available from within the Moodle course 
page for those of you who are registered for the course. 
http://uopeopleweb.com/js/uopeopleassembler.html

With any language, we need to know the syntax and grammar of 
that language.  For our assembler language, the syntax or structure 
of statements follows the design of our machine instruction where 
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we will have tokens to represent ALU instructions, destinations, 
and jump instructions. 

An example of a statement that has all three of these elements 
would be:
ADDA MEM JEQU

In this statement, we are instructing the computer to take the value 
in the A register, add the value to the value in D register (hence 
add a) and send the results of the computation to RAM memory. If 
the result of the computation is equal to zero, then execute a jump 
to the location that has already been loaded into the jump address 
register.

It is important to understand that ALL operations that involve two 
operands will feature an operation between Register D and either 
the Memory Register or the A Register.   In this case, we see that 
the instruction ADDA has an A on the end of the ADD instruction, 
which means that the instruction will add the value in Register A to 
value in Register D.   If the instruction were to be slightly altered 
to ADDM it would mean that the value at the location currently 
loaded into the Memory register would be added to the value in 
Register D.

The following is the full list of Assembly language instructions 
supported by the assembler, which the assembler can compile into 
machine instructions. 

Assembler Description

;xxxx
Anything in the assembler that begins with a ; is a 
comment and should be ignored

:label Anything beginning with a : is a label for a location 
that will be evaluated and stored in the symbol table 
during the first pass of the compiler.  The actual 
address in ROM will be replaced with the symbol 
during second pass processing.  NOTE that ‘label’ 
should be replaced with a label of your choosing 
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such as loop1, start, end or anything that makes 
sense in your program. 

LOADA  Move data from A to current location in memory
LOADD  Move data from D to current location in memory

CNST  :label
Lookup the label in the symbol table and replace the 
label with the actual address.

CNST  #num Load the number following the # into the A register
ADDM Add contents of D register to Memory
ADDA Add contents of D register to contents of A register
SUBM Subtract contents of Memory from D register
SUBA Subtract contents of A register from D register
ANDM Bitwise AND D register with contents of Memory 
ANDA Bitwise AND D register with contents of A register
ORM Bitwise OR D register with contents of Memory
ORA Bitwise OR D register with contents of A register
MOVD Move contents of D register to destination
MOVA Move contents of A register to destination

MOVM
Move contents of the location in Memory (that is 
currently being pointed to by the memory address 
register) to destination

A Destination Register A
D Destination Register D
ROM Destination ROM Address register

RAM
Destination RAM Address register (sets the location 
pointed to within memory)

MEM
Destination MEM (updates the location pointed to 
by the RAM Address register)

JAR Destination Jump Address register

OUTP
Destination Output register … convenient way to 
output a number so that you can see the result of a 
computation

JGT Jump if output of operation is greater than 0
JLT Jump if output of operation is less than 0
JEQU Jump if output of operation is equal to 0
JMP Jump unconditionally 

As you begin to write your own assembler programs for the 
UoPeople computer system, you should keep the following rules in 
mind.  First, it is not required to have a jump instruction.  The 
jump instruction can always be left off the command if it is not 
desired.  In addition, jump instructions are ONLY processed when 
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the ALU operation is either an ADD or a Subtract (ADDM, 
ADDA, SUBM, SUBA).  After all, the jump functionality is based 
upon the output of the N,P,Z flags which are set based upon the 
output of an add or subtract operation.  

Another point to keep in mind is that the addition of two positive 
binary numbers will never be negative.  As such the JLT jump 
instruction will only be effective when used with a subtract 
operation. 

The Assembler is not very smart and has limited (or no) error-
checking features, so it will attempt to assemble what you give it.  
If your code is not correct, it simply will not execute the way that  
you might expect. 

The JMP instruction may be executed on its own, because it does 
not rely upon the results of an ALU computation to determine 
when to execute the jump.  The JMP instruction is called an 
unconditional jump because it will ALWAYS attempt to jump when 
executed.

Finally, although valid, an instruction that does not contain a 
destination will execute, but the results of the computation will not 
go anywhere.  You can use this to execute jumps particularly if 
you do not want to store the results of the calculation used to 
initiate the jump. 

Chapter 7 Exercise

For the Chapter 7 exercise, you will be provided with a series (four 
pseudo-code segments that represent typical code and data 

structures that one might implement with a language such as Java 
or Python. 

For your assignment, devise a strategy to implement these code 
and data structures using only the machine language for the 
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computer system that we have created.  You will be able to use the 
following machine language instructions to complete this 
assignment.

In addition, you can take advantage of the jump and destination 
functionality that is represented in the following two tables:

A couple of tips that might be useful as you develop your program: 
Comparisons:  Your program will need to compare two numbers to 
determine if one is larger than the other is.  In our computer 
system, we do not have an if expression that allows us to test the 
equality or inequality of two variables.  This capability can be 
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implemented by subtracting the second number from the first 
number and then executing a jump based upon the result.  For 
example, if A and B are our two numbers, then the rules for A-B 
are as follows:

If A-B = 0, then A = B.
If A-B > 0, then A > B.
If A-B < 0, then A < B.

If the result of the operation is 0, then we can execute the 011 
“jump equal to zero” instruction which means jump if the output of 
the operation is equal to zero (see jump instruction table above). 

In the algorithm, we need to be able to test if a variable is less than, 
greater than, or equal to either another variable or a constant value. 
Each of these tests can be accomplished by subtracting the two 
numbers and then using the appropriate jump instructions such as:

0 0 1 – jump less than 0
0 1 0 – jump greater than 0
0 1 1 – jump equal to 0

The following four problems are the pseudo-code routines that you 
must implement using the University of the People computer 
system.  
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Assembly Language 

In Chapter 7, we had a short introduction to assembly language 
programming.  Assembly language can be a difficult subject to 
grasp initially, so it makes sense that we introduce this same 
content again. 
 
An assembler is essentially a program designed to translate 
symbols that represent machine language instructions into the 
machine instruction format and output them in the appropriate 
format to execute on a computer system.  

In our case, the assembly language symbols are converted first into 
their binary equivalents and then into the hexadecimal format that 
is required for input into the ROM component within our Logisim 
circuit. 

You can access the assembler   program   directly at the following 
URL and it is available from within the Moodle course page. 
http://uopeopleweb.com/js/uopeopleassembler.html

With any language, we need to know the syntax and grammar of 
that language.  For our assembler language, the syntax or structure 
of statements follows the design of our machine instruction where 
we will have tokens to represent ALU instructions, destinations, 
and jump instructions. 

An example of a statement that has all three of these elements 
would be:
ADDA MEM JEQU

In this statement, we are instructing the computer to take the value 
in register D, add that value to the value in register A and send the 
results of the computation to RAM memory. If the result of the 
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computation is equal to zero then execute a jump to the location 
that is currently in the jump register.

It is important to understand that ALL operations that involve two 
operands will feature an operation between Register D and either 
the Memory Register or Register A.   In this case, we see that the 
instruction ADDA has an A on the end of the ADD instruction, 
which means that the instruction will add the value in Register D 
with the value in Register A.   If the instruction were to be slightly 
altered to ADDM it would mean that the value in Register D would 
be added to the value at the location currently pointed to by the 
Memory address register and loaded into the Memory register.

The following is the full list of assembly language instructions 
supported by the assembler, which the assembler can compile into 
machine instructions. 

Assembler Description

;xxxx
Anything in the assembler that begins with a ; is a 
comment and should be ignored

:label

Anything beginning with a : is a label for a location 
that will be evaluated and stored in the symbol table 
during the first pass of the compiler.  The actual 
address in ROM will be replaced with the symbol 
during second pass processing.  NOTE that ‘label’ 
should be replaced with a label of your choosing such 
as loop1, start, end or anything that makes sense in 
your program. 

LOADA  Move data from A to current location in memory
LOADD  Move data from D to current location in memory

CNST  :label
Lookup the label in the symbol table and replace the 
label with the actual address.

CNST  #num Load the number following the # into the A register
ADDM Add contents of D register to Memory
ADDA Add contents of D register to contents of A register
SUBM Subtract contents of Memory from D register
SUBA Subtract contents of A register from D register
ANDM Bitwise AND D register with contents of Memory 
ANDA Bitwise AND D register with contents of A register
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ORM Bitwise OR D register with contents of Memory
ORA Bitwise OR D register with contents of A register
MOVD Move contents of D register to destination
MOVA Move contents of A register to destination

MOVM
Move contents of the location in Memory (that is 
currently being pointed to by the memory address 
register) to destination

A Destination Register A
D Destination Register D
ROM Destination ROM Address register

RAM
Destination RAM Address register (sets the location 
pointed to within memory)

MEM
Destination MEM (updates the location pointed to by 
the RAM Address register)

JAR Destination Jump Address register

OUTP
Destination Output register … convenient way to 
output a number so that you can see the result of a 
computation

JGT Jump if output of operation is greater than 0
JLT Jump if output of operation is less than 0
JEQU Jump if output of operation is equal to 0
JMP Jump unconditionally 

As you continue to write your own assembler programs for the 
UoPeople computer system, you should keep the following rules in 
mind.  First, it is not required to have a jump instruction.  The 
jump instruction can always be left off the command if it is not 
required.  Further jump instructions are ONLY processed when the 
ALU operation is either an ADD or a Subtract.  After all, the jump 
functionality is based upon the output of the N,P,Z flags which are 
set based upon the output of an add or subtract operation.  

Another point to keep in mind is that the addition of two positive 
binary numbers will never be negative.  As such the JLT jump 
instruction will only be effective when used with a subtract 
operation. 

The Assembler is not very smart and has limited (or no) error-
checking features, so it will attempt to assemble what you give it.  
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If your code is not correct, it simply will not execute the way that  
you might expect. 

The JMP instruction may be executed on its own, because it does 
not rely upon the results of an ALU computation to determine 
when to execute the jump.  The JMP instruction is called an 
unconditional jump because it will ALWAYS attempt to jump when 
executed.

Finally, although valid, an instruction that does not contain a 
destination will execute, but the results of the computation will not 
go anywhere.  You can use this to execute jumps particularly if 
you do not want to store the results of the calculation that is used to 
initiate the jump. 

Operating and Understanding the Assembler

The assembler is a JavaScript program that has been designed to 
evaluate the assembly language code for our UoPeople computer 
system and generate output in the form of the hexadecimal codes 
that are required as input into the ROM memory module that we 
use in Logisim to store the programs that our computer system will 
execute. 
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The following figure (Figure 8.2) is an example of the top portion 
of the assembler page: 

Figure 8.90 Assembler Screen Part 1

In this diagram, we see that the assembler has three text panes. 
Each has specific information.  The first pane, which has the title 
“Source Code,” is where you enter your assembler source code. 
You can either type your assembly language instructions directly 
into this textbox, or you can write your assembler code with your 
favorite editor and then cut and paste it into the source-code text-
box.  
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The second pane that we see is labeled “Listing.”  The listing pane 
is populated when you have entered all of your source code and 
then clicked on the “Assemble code” button.  

What we see in the listing textbox are the assembly language 
instructions on the right hand side and the binary machine 
language equivalent of the instruction on the left hand side.  You 
will probably notice that the listing does not exactly match what 
you entered into the source code text box.  The reason for this is 
that during processing, the assembler will strip out all of the 
comments and will process all of the labels.  When you put a label 
into your code, such as the :loop1 and :loop2 as in this example, 
the assembler will replace these labels with the actual location in 
the program that the label refers to.   

We can tell which labels were processed and where the labels 
actually appear in the machine language program by looking at the 
third pane, which is called “Symbol table.” 

You will notice that the symbols’ that we defined, which in this 
case are the labels that we can use to determine position in the 
source code, are listed in the symbol table, and to the left there is a 
location with a number.  The number indicates the line in the 
machine language code where the label appeared.  

These labels make it easier to program because we can simply 
refer to the label when writing our assembler language program 
instead of trying to determine at what line number of the code the 
label appears.  Many assemblers also feature the ability to define 
and use variables in the assembler code.  This feature is not 
currently supported in the UoPeople assembler.  

Three panes of information are populated by the assembler when 
the “Assemble Code” button is clicked.  We have discussed the 
listing pane and the symbol table.  The third pane that is populated 
is the “Hexadecimal object code” pane.  
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An example of this pane is captured in Figure 8.3.  We see in 
Figure 8.3 that the Hexadecimal object code pane contains the 
object code that is required for the UoPeople computer system.  

The ROM component within the Logisim tool is designed to load a 
program that is in this hexadecimal format.  The ROM memory 

contains 16-bit instructions.  Our computer system uses 8-bit 
addressing meaning that the number that we use to point to a 
location in either ROM memory or RAM memory is specified by 
an 8-bit number, which means that we can have a maximum of 255 
locations in memory.  Therefore, we could have a program with a 
maximum of 255 instructions.  Each of these instructions is 
represented by a four-digit hexadecimal number.  

To use the code generated in the “Hexadecimal object code” pane, 
you should select the contents of the pane, copy this content, and 
then paste it into a text file using your favorite text editor.  For
Windows users, Notepad would be a good choice.  You should not 
use a word processing program such as Microsoft Word as these 
programs will typically add additional formatting information into 
the file.  You should ensure that when you save your hexadecimal 
codes that you save it as an unformatted text file. 
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The following is an example of the bottom portion of the 
assembler page:

 
Figure 8.91 Assembler Screen Part 2

Assembly language mnemonics

According to Wikipedia (n.d.), a mnemonic is a learning device 
that helps with information retention, tending to be simple symbols 

that help us to remember things that are more complex. 

Mnemonics aim to translate information into a form that the human brain 
can retain better than its original form.  Even the process of merely  
learning this conversion might already aid in the transfer of information to 
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long-term memory. Commonly encountered mnemonics are often used for 
lists and in auditory form, such as short poems, acronyms, or memorable  
phrases, but mnemonics can also be used for other types of information 
and in visual or kinesthetic forms. Their use is based on the observation 
that the human mind more easily remembers spatial, personal, surprising, 
physical, sexual, humorous, or otherwise 'relatable' [sic] information, 
rather than more abstract or impersonal forms of information (Wikipedia,  
n.d.).

The machine instructions comprised of 1 and 0 certainly qualify as 
an impersonal form of information.  The objective of assembly 
language is to define simple memorable symbols to represent the 
more complex sequences of 1’s and 0’s that make up machine 
language.

When we look at the assembly language statements for the 
UoPeople computer system we can get an idea of what operation 
the computer will perform when the statement is executed.

For example:

ADDM
This instruction adds the current value in the Memory register to 
the contents of the D Register.  The ADD gives us the clue that it 
will perform and ADD operation and the M tells us that it will use 
the Memory register to add to the D register.

MOVD
This instruction tells us that we will be moving something from the 
D register to whatever destination we specify.

MEM
This instruction is obviously defining a destination to send the 
results of a computation to. In this case the destination will be 
memory.
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JGT
This instruction specifies a jump condition.  It instructs the system 
to jump IF the operation that it is associated with resulted in a 
computation whose output was GREATER THAN zero.

JAR
This instruction specifies the Jump Address Register as a 
destination.

JMP
This instruction instructs the system to execute a jump.

As a programmer sitting down to write an assembler program, you 
have a good chance that you will be able to remember many of 
these instructions.  It is also a good bet that you would not be able 
to remember the complex 16-bit binary number that these 
instructions represent.   

The simplification makes programming much easier, faster, and 
less prone to errors.  It is relatively easy to scan the assembler code 
and look for errors or to be able to determine the functionality of 
the assembler program.  The same could not be said of the machine 
instructions, which are much more difficult to understand or 
debug.

One Pass and Two Pass Assemblers

The assembler that we are using in this chapter’s assignments to 
assemble or compile our Assembly Language programs into the 
machine instructions that we can run on our computer system is a 
simple JavaScript program.  This program reads the source code, 
interprets the assembly language instructions, and converts them 
into machine instructions.  

~ 163 ~



Our assembler is very simple.  It does not do a lot of error 
checking and it does not incorporate any functionality to deal with 
variables.  It does however, provide some simple two pass 
functionality.  

A one-pass assembler or compiler will read source code and 
convert the instructions that it identifies into the object code that 
can be executed by the computer system.  For example, when the 
assembler program encounters the following command:

ADDA  D JLT

It converts this into the machine instruction:

1000101100100000 

We can refer this as the second pass in a two-pass assembler 
process.  The first pass is designed to identify and replace all 
symbols.  

In our assembly language, we can specify a label that indicates a 
position in the code that we want to jump to in the case of a loop or 
a branch.   Instead of having to figure out what line number in the 
machine code to jump to for a branch or loop, we leave this up to 
the assembler to determine, which it does by the location of the 
label.  

As the assembler reads the code in the first pass, it identifies any of 
these labels, determines the line number in the code where they 
appear and puts this information into what we call a symbol table. 
During the second pass, when we find one of these labels in a 
command, the label is replaced with the correct line number. 

In our assembler, we are using this very simple approach to 
managing symbols to keep track of labels within the code. 
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However, in most modern assemblers we can do the same thing for 
variables.  

As we write our assembler programs, we need to keep track of 
where we store values in memory.  From the perspective of the 
machine language, there is only an address in memory, and the 
address is simply an offset from the beginning of memory.   

Most modern two pass assemblers will allow us to define a 
variable in our assembler programs using a name, a symbol of 
some form that represents a memory location.  As the assembler 
goes through the first pass it will identify all of those symbols and 
assign a memory location for them.  

This is the same concept that we use to keep track of locations 
within the code (the location in the code is just an address or offset 
into ROM memory).   In addition to replacing the symbol (or in 
this case, the variable name) with a memory location, the 
assembler in many cases will generate the code necessary to access 
a particular variable.  

Consider the case where we want to store a number in memory and 
as part of the process, we want to retrieve the number from 
memory, increment the number by adding one to it, and then store 
it back into memory.  

We know that retrieving a value from memory can have several 
steps.  For example we would need to define a constant and load it 
into the A register that specifies the address of the item in memory.

We would then need to move the value from the A register to the 
memory address register.  Finally, we could retrieve the value from 
memory.  

What the assembler will often do in two pass assemblers is provide 
us with 1 simple assembler instruction which is then converted into 
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each of these steps.   So perhaps we would have an assembler 
instruction such as:

GETA  @var1

This one instruction would then be converted into a set of machine 
instructions such as:

0111111010000000 : CNST   #253
1011010100000000 : MOVA  RAM
1111001100000000 : MOVM  D

In this example, we see that the assembler had identified a free 
memory location at location 253 in memory and replaced our 
variable name with this location.   Keep in mind that every time we 
use the symbol @var1 this set of instructions will be added into 
our machine language program.

We also see that the assembler has done some of the work for us 
because it has automatically generated the machine instruction to 
load the memory address register, retrieve the value from memory, 
and store it in the D register to be used.

The use of two pass assemblers further simplify assembly language 

programming making it easier for the programmer and reducing 
the errors that might occur when attempting to manually keep track 
of specific memory addresses.

Chapter 8 Exercise

For the final exercise, you are provided with the code for an 
insertion sort algorithm written in pseudo-code (see code below). 
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Your task is to implement this insertion sort using the assembly 
language of our UoPeople computer system. 

The insertion sort defines and uses a number of variables 
including:

i – a counter variable for the for loop
value – a temporary variable used to hold a value to compare
A - an array which holds the values to be sorted
j - an index variable calculated from i
done - a status variable indicating when the sort is complete

Use the following table of values to populate your array A.  With 
assembler, this can be accomplished through the use of the CNST 
statement to load the value into register A and then the value can 
be moved into a location in memory.  
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12, 3, 52, 7, 1, 9, 16, 11, 5, 2

The array will have 10 elements meaning that you will need to load 
each value into a consecutive location in RAM memory.

The remaining variables can each be a single location in memory 
of your choosing.   

The insertion sort algorithm features two loops.  In the outer loop 
we see an example of a for loop as the loop counts from one to the 
length of the array.  The inner loop is more like a while loop that 
will continue until the condition of the while loop is met.   In this 
case, the condition is the done flag. When done has a value of 1, 
then exit the while loop.   You can identify the while loop in the 
pseudo-code because it uses the keyword “repeat” to begin the 
loop and “until done” to end the loop. 

You should be able to reuse much of the code that you developed 
during the Chapter 7 assignment because we implemented array 
traversal, the for loop, the while loop, and conditional expression 
(if-then-else).  
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