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Capitulo 1

Conjuntos, relaciones de equivalencia y aplicaciones

Contenidos de este capitulo

(1. Conjuntos|

2. Operaciones con conjuntos|
[3. Relaciones de equivalencial
[4. Aplicaciones entre conjuntos|

© 0 Ot ot

1. Conjuntos

La idea de conjunto es una de las mas significativas en Matematicas. La mayor parte de los
conceptos matematicos estan construidos a partir de conjuntos. (Existe una aproximacion funcional
basada en el A-calculo y la Légica Combinatoria, que hoy en dia han tenido una papel fundamental
en la programacién funcional.)

Podriamos decir que un conjunto es simplemente una coleccion de objetos a los que llamaremos
elementos del conjunto. Esta definicion nos bastara para los contenidos de este curso, pero desde
el punto de vista matematico es imprecisa y da lugar rapidamente a paradojas. Desde comienzos
del siglo XX esta definicién dejé de utilizarse por los problemas que acarrea. Por desgracia, dar
una definicién precisa esta bastante lejos de los objetivos de este guion.

= Cuando x sea un elemento de un conjunto A, escribiremos x € A, que se lee “x pertenece
aA”.

= Diremos que un conjunto A es subconjunto del conjunto B, y lo denotaremos por A C B,
si todo elemento de A pertenece a B.

= Un conjunto A es igual que otro conjunto B si tienen los mismos elementos, a saber, si
A C By B C A. Cuando esto ocurre, escribiremos A = B.

» Admitiremos la existencia de un conjunto sin elementos, al que denotemos por () y llama-
remos conjunto vacio.

2. Operaciones con conjuntos

Sean A y B conjuntos.

1) La interseccién de A y B es el conjunto formado por los elementos comunes de A y de B, y lo
denotamos asi
A NB ={x tales que x € A y x € B}.

2) La unién de A y B es el conjunto formado al tomar todos los elementos de A y los de B.
A UB = {x tales que x € A o x € B}.

3) La diferencia de A y B es el conjunto que tiene por elementos los elementos de A que no estan
en B.
A\ B ={x € A tales que x € B}
(siempre que tachemos un simbolo, estamos indicando que no se cumple la condicién sin tachar;
asi x ¢ B significa que x no pertenece a B, A # B significa que A es distinto de B, etcétera).
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2. OPERACIONES CON CONJUNTOS 6

4) P(A) ={X tales que X C A} es el conjunto de partes de A o conjunto potencia de A.
5) El producto cartesiano de A y B es el conjunto de parejas cuya primera componente esta en A
y la sengunda en B. Esto se escribe de la siguiente forma.

A x B ={(a,b) talesque a € A y b € B}.

Al conjunto A x Y. XA lo denotaremos por A™, para n un entero positivo.
El cardinal de un conjunto es el nimero de elementos que contiene. Usaremos §A para denotar
el cardinal del conjunto A.

= 1P(A) =207,
= (A x B) = A - {B.

maxima 1: Los conjuntos en maxima se pueden definir usando llaves o bien la funcién set.
(%i1) {a,a,b,c};
(%o01) {a,b,c}

Definamos un par de conjuntos y veamos cémo se pueden hacer las operaciones hasta ahora
descritas con ellos.

(hi2) A:{1,2,3,4};

(%02) 1,2,3,4)
(%13) B:set(3,4,5);

( %03) {3,4,5}
(%14) elementp(5,A);

(%o04) false
(%15) elementp(1,A);

(%o05) true
(%i6) is (A=B);

(%06) false
(5i7) is (A=A);

(%o7) true
(%4i8) setequalp(A,B);

(%08) false
(%19) subsetp(A,B);

(%09) false
(%110) subsetp(A,union(A,B));

(%010) true
(%111) intersection(A,B);

(%o11) {3,4}

(%112) union(A,B);
(%o012) {1,2,3,4,5}
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(%113) setdifference(A,B);

(%013) {1,2}
(%i14) powerset(B);
(%o014) {{,{34{3,4}%{3,4,5},{3,5}, {4}, {4,5},{5}}

Nétese que el conjunto vacio se denota por {}.
(%115) is(cardinality(powerset(A))=2"(cardinality(A)));

(%o15) true
(%4i16) cartesian_product(A,B);
( %016) {[1)3], [1)4]) [1>5]) [2) 3], [2,4], [2,5]) [3, 3]) [3)4]) [3)5]) [4)3]) [434]) [4)5]}

Podemos ademas elegir los elementos de A que son impares.
(%117) subset(A,oddp);
(%017) {1,3}

O bien las sumas de los pares del producto cartesiano con A y B.

(%118) makeset(atb, [a,b], cartesian_product(A,B));
(%018) {4,5,6,7,8,9}

maxima 2: Pongamos un ejemplo de una funcién cuyos argumentos sean conjuntos. Podemos
definir la diferencia simétrica de dos conjuntos A y B como (A\ B)U (B\ A).

(%i1) A:{1,2,3,4};

(%Ol) {1)2)3)4}
(%1i2) B:set(3,4,5);
(%02) {3,4,5}

(%13) dif_sim(X,Y) :=union(setdifference(X,Y),setdifference(Y,X))$
Para definir funciones usamos := en vez de : . El “$” al final de una linea inhibe la salida.
(%i4) dif_sim(A,B);

(%004) {1,2,5}

maxima 3: Podemos definir conjuntos utilizando listas y viceversa, lo cual hace que podamos usar
las funciones especificas para listas en conjuntos. Ademas se pueden definir subconjuntos utilizando
funciones booleanas, tal y como vemos a continuacion.

(%1i1) 1l:makelist(i,i,1,100)$ A:setify(1)$
Crea un conjunto con los los enteros del uno al cien.
(%13) B:subset(A,primep);

(%03)  {2,3,5,7,11,13,17,19, 23,29, 31,37,41,43,47,53,59,61,67,71,73,79, 83, 89, 97}

Escojo aquellos que son primos.
(%i4) C:subset(B,lambda([x],is(x>80)));
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(%o04) (83,89,97}

De entre ellos me quedo con los mayores de 80, que equivale a hacer lo siguiente (ahorrdndome la
definicién de £, usando para ello lambda, que define de forma anénima una funcion).

(%i5) £(x):=is(x>80)$

(%16) D:subset(B,f);

(%06) (83, 89,97}

3. Relaciones de equivalencia

Sea A un conjunto. Una relacién binaria en A es un subconjunto R de A x A. Cuando (x,y) € R
escribimos x Ry y decimos que x estd relacionado (mediante R) con y.

Una relacién binaria R sobre un conjunto A es una relacién de equivalencia si verifica las
siguientes propiedades.
1) Para todo a € A, a R a (R es reflexiva).
2) Dados a,b € A, si a Rb, entonces b R a (R es simétrica).
3) Para cualesquiera a,b,c € A, si a Rby b R c, entonces a R ¢ (R es transitiva).

Si R es una relacién de equivalencia sobre un conjunto A, y a es un elemento de A, entonces
la clase de a es el conjunto de todos los elementos de A que estan relacionados con a,

a] ={x € A tales que x R a}.

Se define el conjunto cociente de A por R como el conjunto de todas las clases de equivalencia de
elementos de A, y se denota por A/R. Asi

% = {[a] tales que a € A}.

Ejercicio 1: En el conjunto Z ={0,1,—1,2,—2, ...} de los nimeros enteros, definimos la siguiente
relacion de equivalencia.

x Ry si x —y es multiplo de 5.
a) Demuestra que R es una relaciéon de equivalencia.
b) Calcula [2
c¢) Describe el conjunto coc1ente 2
d) ;Qué cardinal tiene Z o7

Ejercicio 2: En el conjunto P ({1, 2, 3}), definimos la siguiente relacién binaria.
A ~ B si #A = #B.

) Demuestra que ~ es una relacién de equivalencia.

) Calcula [{1,2}].

) Describe el conjunto cociente

) {Cuantos elementos tiene dicho conjunto cociente?

a
b
c 7>({1lz,3}) .
d

Dado un conjunto X, una particién de X es una familia de subconjuntos de X, {Ai}ic1 (=
{A; tales que 1 € 1}), de forma que
1) A; # 0 para todo i € 1,
2) A;NA; =0 para cualesquiera i,j € I con 1 # j,
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3) X =Uic; At (Ia unién de todos los elementos de la familia {A;}icr).

= Se puede comprobar facilmente que el hecho de ser R una relacion de equivalencia sobre A
hace que A/R sea una particién de A.

maxima 4: Veamos como se pueden calcular las clases de equivalencia del conjunto A ={1,...,10}
sobre la relaciéon de equivalencia x R y si x —y es un multiplo de 3.
Primero definimos el conjunto {1,...,10}. Para ello hacemos una lista con los elementos del

uno al diez, y luego la convertimos en conjunto.

(%i1) 1l:makelist(i,i,1,10);

(%o1) 1,2,3,4,5,6,7,8,9,10]
(%hi2) s:setify(1l);

(%02) {1,2,3,4,5,6,7,8,9,10}
(%13) equiv_classes(s,lambda([x,y],is(remainder(x-y,3)=0)));

(%03) {1,4,7,10},{2,5,8},13,6,9}}

También podriamos haber definido R, y luego calculado A/R.
(%14) R(x,y):=is(remainder(x-y,3)=0);

(%o04) R (x,y) := is (remainder (x —y,3) =0)

(%15) equiv_classes(A,R);

(%05) {1,4,7,10},{2,5,8},1{3, 6, 9}}

Se ve que es una particién de A, pues todos sus elementos son no vacios, disjuntos dos a dos,
y la unién de ellos da A.

4. Aplicaciones entre conjuntos

Sean A y B dos conjuntos. Una aplicacion f de A en B, que denotaremos como f: A — B, es
una correspondencia que a cada elemento de A le asocia un tnico elemento de B (de nuevo esta
definicién es algo imprecisa, pero suficiente para nuestro curso). Si a € A, al elemento que le asocia
f en B lo denotamos por f(a), y se llama la imagen de a por f. Los conjuntos A y B son el dominio
y codominio de f, respectivamente. Llamaremos conjunto imagen de f a

Im(f) ={f(a) tales que a € A}.

Ejercicio 3: Sea Q el conjunto de los ntimeros racionales y R el de los reales. ; Tiene sentido decir
que f: Q - R,x — % es una aplicacion?

Si f: A — B es una aplicaciéon, diremos que f es

1) inyectiva si f(a) = f(a’) para a,a’ € A, implica a = a’;
2) sobreyectiva si Im(f) = B (para todo b € B, existe a € A tal que f(a) =b);
3) biyectiva si es inyectiva y sobreyectiva.
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Ejercicio 4: Demuestra que la aplicacién f : Q — R definida por f(x) = %(ZX—F 1) es inyectiva pero

no sobreyectiva.

Sean f: A — By g: B — C dos aplicaciones. La aplicacién composicién de f y g (también
conocida como f compuesta con g) es la aplicacién gof : A — C, definida como (gof)(a) = g(f(a)).
Para calcular la imagen de un elemento por la composicién primero aplicamos f y luego g.

Ejercicio 5: Sean f:Z = Z,x = x*, y g: Z — Q,y — 3(y+1). Calcula g o f.

» La composicién de aplicaciones es asociativa (fo(goh) = (fog)oh) pero no es conmutativa
(f o g no tiene por qué ser igual a g o f).

maxima 5: Veamos como las funciones cuadrado y sumar uno no conmutan al componerlas.
(%i1) £(x):=x"2% g(x):=x+1$
(%hi2) £(g(1)); g(f(1));

(%02) 4

(%03) 2

(%i4) f(g(x))=g(f(x));

(%o04) (x+1)P=x*+1
(%i5) expand (%) ;

( %05) X4+ 2x+1=x>+1

Sea A un conjunto. La aplicacién identidad en A es la aplicacion 14 : A — A definida como
1a(a) = a para todo a € A.
Dada una aplicacién f : A — B, decimos que es
1) invertible por la izquierda si existe g : B — A tal que gof = 1,;
2) invertible por la derecha si existe g : B — A de forma que fo g = Tg;
3) invertible si es invertible a izquierda y a derecha.

= Una aplicacion es invertible por la izquierda si y sélo si es inyectiva.
= Una aplicacién es invertible por la derecha si y sélo si es sobreyectiva.
= Por tanto, una aplicacion es invertible si y solo si es biyectiva.

Ejercicio 6: Sea N el conjunto de enteros no negativos. Demuestra que la aplicacion f : N — N,
definida por f(x) = x? es invertible por la izquierda, pero no por la derecha.

Una aplicacién biyectiva f tiene una tinica inversa que lo es por la derecha y por la izquierda.
Dicha aplicacién diremos que es la inversa de f y lo denotaremos por .

Ejercicio 7: Demuestra que la aplicacion f: Q — Q, f(x) = %(ZX + 1) es biyectiva. Calcula f~'.
maxima 6: Veamos que la inversa de la funcién f(x) = x+1 (suponemos que el dominio y codominio
son los nimeros enteros) es g(x) =x —1.

(%hi1) f(x):=x+1$ g(x):=x-1$

(513) f(g(x)); glf(x));



(%03)
(%o04)

4. APLICACIONES ENTRE CONJUNTOS
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Capitulo 2

Técnicas de Conteo

Contenidos de este capitulo

[I. Meétodos elementales de conted| 12
: o bi - ] 16
3. Permutaciones] 19

1. Meétodos elementales de conteo

Principio de la suma. Sean A; y A; dos conjuntos disjuntos (es decir, AjNA; = (). Entonces
AT U AL = [Aq] + 1Az
El principio puede extenderse a tres o mas conjuntos.

» Si Ay, Ay, -+, Ay son conjuntos disjuntos dos a dos (es decir, A; N A; = ) para 1 # j)
entonces

ATUALU - UAL = [A] 4+ [Af + -+ + A4
El principio de la suma podria enunciarse también como sigue:

= S una primera tarea se puede realizar de ny formas, y una sequnda tarea se puede realizar
de ny formas, y las dos tareas son incompatibles, entonces hay ny + Ny formas de realizar
una de las dos tareas.

Este principio de la suma es muy restrictivo, pues requiere que los conjuntos sean disjuntos,
o que las tareas sean incompatibles. Sin embargo, en general, la situacion es que los conjuntos no
sean disjuntos. En este caso se tiene:

Principio de inclusién-exclusion para dos conjuntos. Sean A; y A, dos conjuntos. En-
tonces |A] U A2| == |A]| + |A2| - |A] N A2|

La idea de este resultado esta clara. Si queremos contar los elementos que estan en A; U Aj,
contamos por una parte los que estan en A; y por otra parte los que estan en A;, lo que nos da
|A1] + |Az]. Sin embargo, los que se encuentran en A; N A, los hemos contado dos veces, luego
hemos de restar |[A; N A;| a la suma anterior.

maxima 7: Vamos a determinar, cuantos nimeros entre 1 y 100 son, bien divisibles por 2, bien
divisibles por 3.

Sean A; y A; los numeros que son multiplos de 2 y 3 respectivamente. A; tiene cincuenta
elementos (desde 2 - 1 hasta 2 - 50), mientras que Aj tiene 33 (desde 3 - 1 hasta 3 - 33). Por otra
parte, A; N A, son los miltiplos de 6, luego tiene 16 elementos (desde 6 - 1 hasta 6-16). Por tanto

AT UA = A+ 1Al — AT NA) =50+33—16 =67

(%i1) a:setify(makelist(i,i,1,100))$

12
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(%i2) al:subset(a,lambda([x],is(mod(x,2)=0)));
(%02) {2,4,6,8,10,12,14,16,18, 20, 22,24, 26, 28, 30, 32, 34, 36, 38,40,42,44, 46,48, 50,
52,54, 56,58, 60, 62, 64,66,68,70,72,74,76,78, 80, 82, 84, 86, 88, 90,92, 94, 96,98, 100}

(%13) a2:subset(a,lambda([x],is(mod(x,3)=0)));
(%03) {3,6,9,12,15,18,21,24,27, 30,33, 36,39,42,45,48,51,54,57, 60, 63, 66, 69,
72,75,78,81,84,87,90, 93, 96, 99}

(%i4) 1is(length(union(al,a2))=length(al)+length(a2)-length(intersection(al,a2)));
(%04) true

Principio de inclusidon-exclusion. Sean Ay, A;,--- , A, conjuntos. Entonces:
n
ATUALU---UALl =Y A= Y A NALl+-- 4+ (=DF > Ay NN A+
i=1 1<i1<iz<n 1<y < <ig<n

+H(=1" AT N A N - N AL

maxima 8: Vamos a ver cuantos nimeros entre 1y 111 son compuestos (lo que nos dard inmedia-
tamente cudntos nimeros primos hay menores que 111).
Dado que v/ 111 < 11, se tiene que si un nimero menor o igual que 111 es compuesto, tiene un

divisor primo menor que 11. Por tanto, serda multiplo de 2, multiplo de 3, multiplo de 5 o multiplo
de 7.

(%i1) a:setify(makelist(i,i,1,111))$
(%12) Al:subset(a,lambda([x],is(mod(x,2)=0)))$ al:length(Al);

(%03) 55

(%14) A2:subset(a,lambda([x],is(mod(x,3)=0)))$ a2:length(A2);
(%o05) 37

(%16)  A3:subset(a,lambda([x],is(mod(x,5)=0)))$ a3:length(A3);
(%o7) 22

(%18)  A4:subset(a,lambda([x],is(mod(x,7)=0)))$ ad:length(A4);
(%09) 15

(%110) al2:length(subset(a,lambda([x],is(mod(x,2%3)=0))));
(%010) 18

(%111) al3:length(subset(a,lambda([x],is(mod(x,2%x5)=0))));
(%011) 11

Ahora vamos con las intersecciones dos a dos. Al cardinal de A; N A; lo llamamos ay.

(%112) ald:length(subset(a,lambda([x],is(mod(x,2x7)=0))));
(%012) 7

(%113) a23:length(subset(a,lambda([x],is(mod(x,3%5)=0))));
(%013) 7

(%i14) a24:length(subset(a,lambda([x],is(mod(x,3*7)=0))));
(%o014) 5
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(%i15) a34:length(subset(a,lambda([x],is(mod(x,7%5)=0))));
(%o015) 3

Luego calculamos los cardinales de las intersecciones de tres en tres.

(%116) al23:length(subset(a,lambda([x],is(mod(x,2*3%x5)=0))));

(%o016) 3
(%i17) al24:length(subset(a,lambda([x],is(mod(x,2*3*7)=0))));
(%ol7) 2
(%118) al34:length(subset(a,lambda([x],is(mod(x,2*5x7)=0))));
(%018) 1
(%119) a234:length(subset(a,lambda([x],is(mod(x,3*7*5)=0))));
(%019) 1

Y por tltimo la interseccién de todos.

(%120) al234:length(subset(a,lambda([x],is(mod(x,2*3*5%x7)=0))));
(%020) 0

(%i21) is(length(union(A1,A2,A3,A4))=
al+a2+a3+ad-al2-al3-ald4-a23-a24-a34+al123+al24+a134+a234-a1234 );
(%021) true
Es decir, entre 1 y 111 hay 81 ntimeros compuestos, de donde deducimos que hay 29 niimeros
primos (el 1 no es ni primo ni compuesto).

(%122) length(subset(a,primep));
(%022) 29

Principio del producto. Sean A, A, dos conjuntos. Entonces, |A; x Aj| = |A4] - |A,].

Este principio puede generalizarse a tres o mas conjuntos, teniéndose en dicho caso:

AT X Ag X - X Al = |Aq] - [Ag] -+ [Ag]
El principio del producto podria enunciarse también como sigue:

» Si una tarea podemos diwvidirla en dos (o mds) tareas consecutivas, de forma que hay my
formas de realizar la primera tarea, y n, formas de realizar la sequnda tarea, entonces hay
nin, formas de completar la tarea.

Ejercicio 8: En el sistema de matriculacion vigente cada matricula se compone de cuatro digitos y
tres consonantes en C = {B, C,D,F, G,H, ], K,L, M, N, P, Q,R, S, T V; W, X, Y, Z}. Calcula el niimero
de posibles matriculas.

Ejercicio 9: Calcula cuantos niimeros de 6 cifras, escritos en binario, contienen la secuencia 00
(pista: usa el principio de inclusién-exclusion, teniendo en cuanta que los nimero que se piden
pueden tener una de las formas siguientes, 100___, 1.00__, 1_00_, 1___00).
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Numero de aplicaciones entre dos conjuntos. Sean A y B dos conjuntos finitos. Entonces
el nimero de aplicaciones de A en B es |B|A.

Notacién: En ocasiones se representa al conjunto de aplicaciones de A en B como B*, es decir:

B ={f: A — B; f es aplicacién}
Con esta notacién se tiene que ’BA| = [B|A.
Niumero de aplicaciones inyectivas. Sea A un conjunto con m elementos y B un conjunto
con N elementos. El nimero de aplicaciones inyectivas de A en Besn(n—1)--- (n—m+1).

Variaciones.

1. Se llaman wvariaciones con repeticion de n elementos, tomados de m en m a cada una de
las posibles elecciones de m elementos, dentro de un conjunto de n elementos, pudiéndose
tomar elementos repetidos. Dos posibles elecciones se diferencian, bien en la naturaleza de
los elementos elegidos, bien en el orden en que se han elegido.

2. Se llaman wvariaciones sin repeticion de n elementos, tomados de m en m a cada una de
las posibles elecciones de m elementos, dentro de un conjunto de n elementos, no pudiendo
aparecer un elemento mas de una vez. Dos posibles elecciones se diferencian, bien en la
naturaleza de los elementos elegidos, bien en el orden en que se han elegido.

El ntimero de variaciones con repeticién de n elementos, tomados de m en m es igual a n™.
El ntimero de variaciones sin repeticién de n elementos, tomados de men mesn(n—1)---(n—
!

(n—m)!"

maxima 9: Para hacer una quiniela, debemos elegir una lista de 14 elementos entre los elementos
de un conjunto con 3 (1, X, 2). Son por tanto, variaciones con repeticién de 3 elementos tomados
de 14 en 14. El niimero total de posibles apuestas es

(%i1) 3712;
(%o01) 531441

maxima 10: En una carrera participan 35 personas. El ganador recibe una medalla de oro, el
segundo clasificado una medalla de plata y el tercer clasificado una medalla de bronce.
El nimero de formas diferentes en que se pueden repartir las medallas corresponde al niimero
de variaciones sin repeticion de 35 elementos, tomados de 3 en 3. Por tanto es 35-34 - 33 = 39270.
Para usar las funciones de combinatoria tenemos que cargar el paquete functs.

(%i2) load(functs)$
(%13) permutation(35,3);
(%o03) 39270

El principio del palomar. Si queremos repartir n objetos en m cajas, y n > m entonces al
menos una caja ha de contener 2 o méas objetos.

Noétese que repartir objetos en cajas es equivalente a definir una aplicacién del conjunto de
objetos en el conjunto de las cajas (la imagen de un elemento nos dice en que caja se coloca). Decir
que una caja tiene dos o mas objetos se traduce en que la aplicacién no es inyectiva (pues esos dos
elementos tendrian la misma imagen). El principio del palomar se enunciaria entonces:
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= Sim > m no existen aplicaciones inyectivas de un conjunto de cardinal n en un conjunto
de cardinal m.

Si tenemos un grupo de 500 personas (bastaria con tener 367) debe haber dos que celebren el
cumpleanos el mismo dia (siempre y cuando todas celebren su cumpleanos).

En este caso las cajas serian cada uno de los dias del ano, mientras que los objetos a repartir
son las personas.

Ejercicio 10: Demuestra que dado un conjunto formado por n niimeros enteros, {X1, X2, , Xn},
podemos encontrar un subconjunto suyo cuya suma sea multiplo de n (pista: considera los enteros
Yi=x1+ - +xi, 1 €{1,...,n} y toma sus restos de dividir por n).

Principio del palomar generalizado. Si queremos repartir n objetos en m cajas, al menos
una caja ha de contener al menos n/m elementos.
Obviamente, si n/m no es entero, se toma el nimero entero inmediatamente superior.

2. Combinaciones

En secciones anteriores estudiamos como, de un conjunto de n elementos podiamos extraer m,
de forma que el orden en que se extraian los elementos fuera significativo. En esta trataremos de
encontrar como extraer m elementos de un conjunto que tiene n, pero ahora no importa el orden
en que se elijan, sino inicamente la naturaleza de estos elementos.

En términos de conjuntos, nos preguntamos cuantos subconjuntos de cardinal m tiene un
conjunto con n elementos. Vamos a denotar por (:1) a tal cantidad.

Es facil ver que (8) = 1, pues cada conjunto de cardinal n tiene un unico subconjunto con
0 elementos, a saber, el conjunto vacio. De la misma forma se tiene que (2) = 1 (pues el tnico
subconjunto de cardinal n de un conjunto de n elementos es el propio conjunto).

También es facil ver que (:1) = (nfm) pues cada subconjunto de m elementos determina de
forma tnica un subconjunto de m — m elementos (concretamente, el de los elementos que no
pertenecen a él) y viceversa.

Por tltimo, una tercera propiedad referente a estos niimeros nos dice que (n;]) = (m:) + (:1)

Numero de combinaciones. Sean m,n € N con m < n. Entonces

ny n!
<m) - ml(n—m)!

maxima 11: El nimero de subconjuntos con 2 elementos del conjunto {a, b, c, d, e} es

(%11) binomial(5,2);
(%o01) 10

(%i2) subset(powerset({a,b,c,d,e}),lambda([x],is(length(x)=2)));
(%02) a,b,a,c,a,d,a,e,b,c,b,d,b,e,c,d,c,ed,e

(%i3)  length(%);
(%03) 10

Ejercicio 11: Demuestra que el nimero de cadenas de n bits que contienen exactamente m unos
(y por tanto n —m ceros) es (1).
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Sabemos que si X es un conjunto con n elementos, entonces X tiene 2" subconjuntos (las
algebras de Boole B™ y P(X) son isomorfas). Deducimos entonces que, para cualquier n € N se

verifica que
=3 () =)+ (1) = ()

maxima 12: Supongamos que un departamento esta formado por 7 mujeres y 9 hombres, y se quiere

formar una comision con cinco miembros, de forma que haya al menos un hombre y una mujer en

la comision. Determinemos cudntas posibles comisiones pueden formarse con esas condiciones.
Para esto, vemos en primer lugar que pueden formarse

(%11) binomial(16,5);
(%o0l1) 4368

posibles comisiones con 5 miembros.
De ellas,

(%i2) binomial(9,5);
(%02) 126

no contienen ninguna mujer (estan formadas inicamente por hombres), mientras que

(%13)  binomial(7,5);

(%03) 21

no contienen ningin hombre. Por tanto, como el nimero que buscamos es el complentario de
aqullas que no tienen ni hombres ni mujeres, y estos conjuntos son disjuntos, el niimero posible de

comisiones es 4368 — (126 + 21) = 4221.

Teorema del Binomio. Sea A un anillo conmutativo, y a,b € A. Entonces, para cualquier
n € N se verifica que:

n __ - n n—-k __ n n n n— n n
(a+b) _kZ_O(k>akb k—<0)a +(1)a 1b+~~~+(n>b

maxima 13: El coeficiente de a’b? en (a 4+ b)™ es (;) = 35.

(%11) expand((a+b)~7);
(%01) b +7ab®+21a?b>+35a°b*+35a*b>+21a°b? +7a’b+d’

Usando el teorema del binomio se tiene que:

(5)+(3)+er () =0 =2

algo que ya habiamos obtenido anteriormente.

Hasta ahora hemos estudiado, como de un conjunto de n elementos podemos elegir m, sin que
influya el orden en que se pueden elegir los elementos, y sin que puedan repetirse los elementos. Es lo
que se llama combinaciones (sin repeticion) de n elementos tomados de m en m. Nos planteamos
a continuacién el caso en el que los elementos puedan repetirse. Por ejemplo, tenemos en una
caja bolas rojas, negras y blancas, y extraemos 4 bolas. ;Cudntas extracciones distintas podemos
realizar?
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Se trata, de un conjunto de tres elementos ({R,N,B}) elegir cuatro, pudiéndose repetir los
elementos, y sin que influya el orden en que los elegimos. Da igual la extraccion RNBN que
RNNB. Lo tnico que importa es que se han elegido una bola roja, dos bolas negras y una blanca.

En este caso, las posibles extracciones son (suponemos que tenemos al menos cuatro bolas de
cada color):

RRRR RRRN RRRB RRNN RRNB RRBB RNNN RNNB
RNBB RBBB NNNN NNNB NNBB NBBB BBBB

es decir, un total de 15.
Para encontrar una forma de generalizar esto, vamos a escribir las quince posibles extracciones
como sigue:

RRRRxx RRRxNx RRRxxB RRxNNx RRxNxB RRxxBB RxNNNx RxNNxB
RxNxBB RxxBBB xNNNNx xNNNxB xNNxBB xNxBBB xxBBBB

y vemos que cada extraccion estd determinada por la posicion que ocupan las dos x en la cadena
,,,,,, El niimero de posiciones que quedan a la izquierda de las dos equis nos indican la cantidad
de bolas rojas; el nimero de posiciones que quedan entre las dos equis nos indican el nimero de
bolas negras mientras que el nimero de posiciones a la derecha de las dos equis nos indican la
cantidad de bolas blancas. Asi, colocando las equis en las posiciones 2 y 4 nos queda _x_x__, lo que
nos da una bola roja, una bola negra y dos bolas blancas.

Puesto que entre las seis posiciones podemos colocar las dos equis de (g) = 15 formas diferentes
obtenemos que se pueden hacer un total de 15 extracciones diferentes.

Situémonos en el caso general. Supongamos que tenemos un conjunto con n elementos, que
podrian ser bolas de n colores diferentes, y extraemos m elementos (se supone que de cada color
hay al menos m bolas). Esto es lo que se llama combinaciones con repeticion de n elementos
tomados de m en m. Para determinar cuantas combinaciones con repeticion hay, identificamos
cada combinacién con la eleccion de la posicién de m — 1 equis de un total de n +m — 1 posibles

posiciones. El nimero de combinaciones con repeticion de n elementos, tomados de m en m resulta

ser entonces (") = ("),

maxima 14: Vamos a determinar cuantas soluciones naturales tiene la ecuacion x+y+z+t = 13.
Para resolverlo, planteamos el problema de otra forma. Supongamos que tenemos cuatro tipos
de bolas (rojas, negras, blancas y azules), y extraemos trece bolas. Cada extraccién la podemos
identificar con una solucion de la ecuaciéon anterior, donde x es el nimero de bolas rojas, y es el
numero de bolas negras, z es el numero de bolas blancas y t es el niumero de bolas azules.

El niimero de posibles extracciones es el nimero de combinaciones con repeticion de 4 elementos
tomados de 13 en 13. Su valor es

(%i1) binomial(16,3);
(%o0l) 560

Supongamos ahora que queremos resolver la misma ecuacién, pero queremos que las variables
tomen valores mayores o iguales que 1. En ese caso, llamamos X' =x—1,y =y—1,2Z/ =z—1,
t' =t —1, con lo que la ecuacién se transforma en x' +y' + 2/ +t' = 9, y estdn permitidas todas
las soluciones naturales. El nimero de soluciones es

(%13) binomial (9+4-1,4-1);
(%03) 220
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Por tanto, de las 560 soluciones de la ecuacion x +y +z 4+t = 13 hay 476 (560 — 84) en las
que alguna de las variables toma el valor cero.

Ejercicio 12:  Supongamos que tenemos 15 caramelos (iguales) y los queremos repartir entre 5
ninos. ;De cudntas formas podemos hacerlo?

Ejercicio 13: Consideremos las variables x, y y z. Un monomio en esas tres variables es una
expresién de la forma x%y°z%, con a, b, ¢ ntimeros naturales. El grado del monomio x%y®z® es
a+ b + c. Calcula cudntos monomios hay de grado 10 en las variables x, y y z.

3. Permutaciones

En esta seccion estudiaremos las formas diferentes de ordenar los elementos de un conjunto.
Dado un conjunto X con n elementos, una permutacion en X es una ordenacién de los elementos
de X. Otra forma de definir una permutacion en X es como una aplicacién biyectiva X — X.

maxima 15: Por ejemplo, si X = {1, 2, 3}, hay seis permutaciones en X que se corresponden con las
seis formas de ordenar los elementos de X.

(%11) permutations([1,2,3]);
(%ol1) [1,2,3],11,3,2],(2,1,3],12,3,1],(3,1,2], [3,2,1]

En general, si X es un conjunto con n elementos, el niimero de permutaciones en X es igual al
nimero de aplicaciones inyectivas X — X, pues toda aplicacion inyectiva X — X es biyectiva. Este
numero fue calculado en la seccién dedicada a las variaciones, y sabemos que vale n-(n—1)---2-1 =
nl.

Algo mas complicado es ordenar los elementos de un conjunto cuando alguno de sus elementos
aparece repetido.

maxima 16: Por ejemplo, nos preguntamos de cudntas formas podemos ordenar las letras de la
palabra cara.

(%11) permutations([c,a,r,al);
(%ol1) {la,a,c,7],[a,a,rcl,la,c,a,rlla,c,T1,alla,racllarc,al,
lc,a,a,r],[c,a,r1,al,lc,T aallra,aqclra,c,allrc,a,al}

(%i2)  length(%);
(%02) 12

Para llegar a este resultado, supongamos que distinguimos las dos aes que aparecen en la
palabra, escribiendo una de ellas en negrita, y realizamos las 24 ordenaciones posibles.

(%13) permutations([c,al,r,a2]);
(%o03) A{lal,a2,c,7],[al,a2,r,cl,lal,c,a2,r], [al,c,1,a2],[al,r,a2,c], [al,T,c,a2],[a2,al,c,T],
[a2,al,r,c], [a2,c,al,r],[a2,c,T,al], [a2,r,al,c],[a2,T,c,all,[c,al, a2, ], [c,al,r, a2],
lc,a2,al,r], [c,a2,r,all,[c,T,al,a2], [c,1,a2,all,[r,al,a2,c], [r,al, c,al],[r,a2,al,c],
[r,a2,c,all, [r,c,al,a2],[r,c,a2,all}

Vemos que cada 2 ordenaciones de las letras de cara da lugar a la misma ordenacion de las
letras de cara (la que resulta de intercambiar “a” con “a”). Por tanto, las letras de cara se pueden
ordenar de % = 12 formas distintas.

Otra forma de razonar este resultado es como sigue:
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Para ordenar las letras de cara, situamos en primer lugar las dos “aes”. Esto podemos hacerlo
4 . .
de (2) formas diferentes. Una vez situadas las dos “aes”, colocamos la “c”, para la que tenemos

[}

dos posibilidades. Por tanto, hay (‘2‘) -2 =12 formas diferentes de colocarla. La posicién de la “r

[P

queda determinada por la de la “c” y las “aes”.

Ejercicio 14: Estudia de cuantas formas podemos ordenar las letras de la palabra “rara”.

Proposicién. Supongamos que tenemos una lista de n objetos, de r tipos diferentes. Del tipo
1 hay un total de n; objetos, todos ellos indistinguibles. Del tipo 2 hay n, objetos, y asi hasta el
tipo 1, del que hay m, objetos. Entonces el nimero total de ordenaciones de estos objetos es

n!
niiny!---n,!

Este problema es equivalente al de repartir objetos distinguibles en cajas distinguibles. Supon-
gamos que tenemos N objetos, y queremos repartirlos en r cajas, de forma que en la primera caja
haya mn; objetos, en la segunda carta haya n, objetos, y asi, hasta la r-ésima caja, en la que debe
haber n, objetos.

Los n; objetos que van a la primera caja se pueden elegir de (TI‘T) formas. Nos quedan entonces

n — ny objetos, y de estos elegimos N, para la segunda caja, lo cual podemos hacerlo de (ng‘)
formas. Repitiendo el razonamiento, y usando el principio del producto llegamos a que las formas

distintas en que podemos repartir los objetos en las cajas es

ny\/m-—n n—mj;—---—MnNy_j n!
ng n, n, nny!---n,!

Se deja como ejercicio encontrar una biyeccién entre las distintas ordenaciones de n objetos
donde T tipos de objetos, y del tipo k-ésimo hay my objetos, y las distribuciones de n objetos
distinguibles en r cajas distinguibles, de forma que en la caja k-ésima haya ny-objetos.

Coeficiente multinomial. Sean € N, y n;,ny,--- ,n, € Ntalesquen;+n,+---+n, =n.

Se define el coeficiente multinomial (m nZ“__ nr) como

n n!
nn - N, niny!---n,!

En el caso r = 2 se tiene que ( " ) = (”) = (”) En este caso se denominan coeficientes
. . ny nz nq ny
binomiales.

maxima 17: Tenemos cuatro jugadores, y repartimos cinco cartas a cada uno de una baraja de 40
cartas. Vamos a calcular de cuantas formas distintas se pueden repartir. Para esto, consideramos
las cartas como las bolas, a las que hay que distribuir en 5 cajas: 4 por cada uno de los jugadores,
y una quinta por las 20 cartas que quedan sin repartir.

Se trata entonces de distribuir 40 objetos distinguibles en cinco cajas también distinguibles, de
forma que en las cuatro primeras haya 5 objetos y en la ultima haya 20. El nimero de formas de
hacerlo es

(%i1)  40!/(5!x51x51%51%201) ;
(%o01) 1617318175088527591680

(%12) multinomial (40, [5,5,5,20]);
(%02) 1617318175088527591680
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Teorema Multinomial. Sea A un anillo conmutativo, y xj,%2,---X; € A. Entonces, para
cada n € N se verifica que:

n
i +x2+- %)= z XpIg X
nn - M,

ny+ny+-+ny=n

maxima 18: El nimero 3 se puede expresar de (3;371) = 10 formas diferentes como suma de

3 ntmeros naturales. Estas corresponden con los exponentes de las variables en el desarrollo de
(x+y+2z)°.

(%11)  expand((x+y+z)~3);
(%01) Z24+3yz2+3x22+3y’z+6xyz+3x*z+y° +3xy> +3x%y+x°

El teorema multinomial tiene también una demostracion combinatoria.

(xi+x2+-+x)"=x1+x2++Fx) (X1 +x2+ - Fx ) (X F X2+ X)

c1 C2 Cn

Cada término de (x;+x24- - -+x,)™ se obtiene multiplicando un sumando de ¢y, con un sumando
de ¢, y asi hasta c,. El coeficiente de x]"'x32 -+ - X' en (X1 + X2 + - - - + x;)™ se obtendréd contando
cuantos términos (obtenidos como acabamos de decir) hay en los que ha elegido n; veces el sumando
X1, Ny veces el sumando x; y asi sucesivamente.

En definitiva, lo que hay que hacer es ver de cuantas maneras diferentes se pueden distribuir
los “objetos” ¢y,ca,- -+ ,Cn en T cajas distinguibles (x7,%2,- -+ ,X;); ¥ esto sabemos que se puede

hacer de (n] nzn... N ) formas diferentes.
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1. Principio de induccién y recurrencia

1.1. Principio de induccién. Si A es un subconjunto de N tal que:
0cA
Sin € A entoncesn+1¢€A

Entonces A = N.

Este principio es la base de muchas demostraciones en las que intervienen los niimeros naturales.
Veamos un ejemplo.

maxima 19: Vamos a demostrar que para todo n € N se verifica que

204204 2=

Para esto, consideramos el conjunto A cuyos elementos son los nimeros naturales para los que
se verifica la propiedad anterior, es decir,

A=neN:2°+...42"=2""_1}

Claramente se tiene que 0 € A, pues 20 =291 — 1.

Supongamos ahora que n € A, y veamos que N+ 1 € A, es decir, supongamos que 2° + 2! +
coo 420 =21 — 1 y comprobemos que 2° + 2 ... 4 2™ 4 20T = 242

20+21+.“+2n+2n+1:(20+21+'H+2n)+2n+1:2n+1_]+2n+1:2_2n+1_]:2n+2_1

Por el principio de induccién se tiene que A = N es decir, la propiedad es cierta para todo
neN.

(%i1) simpsum:false;

(%ol) false

(%1i2) sum(2°1i,i,0,n);

(%02) i 2t
i=0

22
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(%i3) simpsum:true;
(%03) true

(%i4) sum(2°1i,i,0,n);
(%o04) 2™ —1

Una demostracion basada en el principio de induccion es lo que se conoce como una demostra-
cion por induccion.

Si queremos demostrar por induccién que P(n) es cierto para todo n € N (donde P(n) es una
propiedad que hace referencia a n), hemos de realizar dos pasos:

- Paso 1: Demostramos que P(0) es cierto.
- Paso 2: Demostramos que si P(n) es cierto, entonces también es cierto P(n+1).

La suposicién de que P(n) es cierto es lo que se conoce como hipdtesis de induccion.
Si quisiéramos demostrar que P(n) es cierto para todo n > k, el primer paso debera ser
demostrar que P(k) es cierto, mientras que el segundo no variaria.

maxima 20: Demuestra que para todo n > 1 se verifica que
nmn+1
Hacemos esto por induccion:
= Paso 1: Para n =1 el resultado es trivialmente cierto.

= Paso 2: La hipétesis de induccién es que 1+2+---+n = w A partir de ella hemos
deprobarque1+2+---+n+(n+1):m”zﬂ
(1+2+---+n)+n+1=@+n+1zn(n;”Jrz(n;])=(n+1)2(n+2)
(%15) sum(i,i,1,n);
(%05) “22”

El principio de induccion nos dice que si A es un subconjunto de N que satisface las dos
siguientes propiedades:
n 0€A
sneA=n+1lecA
Entonces A = N. Este axioma puede leerse de la forma siguiente:
Si A es un subconjunto de N que es distinto de N, entonces, 0 0 € A, o existe n € N
talquene Ayn+1¢A.
Esta formulacién del principio de induccién (equivalente a la vista anteriormente) nos permite
demostrar una propiedad importante de los niimeros naturales.

Principio de buena ordenacion. Sea A un subconjunto de N distinto del conjunto vacio.

Entonces A tiene minimo.
Se dice que m es el minimo de A si m € Ay m < n para todon € A.

Hasta ahora hemos usado el principio de induccion para demostrar propiedades referentes a los
numeros naturales. Veamos ahora como definir funciones con dominio en N.
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Sucesiones. Sea X un conjunto. Una sucesion en X es una aplicacion x : N — X.
Si x : N — X es una sucesién, denotaremos normalmente al elemento x(n) como x,.

A la hora de definir una sucesién en X, podemos optar, bien por definir explicitamente el
valor de x, para todo n € N, o bien, definir el valor de xq, y a partir de x,, definir lo que vale
Xn+1- El principio de inducciéon nos asegura que de esta forma se define una funcion x : N — X
(aunque formalizar esto es bastante engorroso, la idea consiste en considerar A el subconjunto de
los ntimeros naturales n para los que x,, esta definido. Claramente, 0 € A y si n € A entonces
n+1¢€A, luego A =N).

Esta forma de definir sucesiones se llama recursiva, pues para obtener el valor de x,, necesitamos
el valor de x,_1, que a su vez necesita el valor de x,,_;, y asi, hasta xy. Es decir, la sucesién recurre
a la propia sucesion para obtener un valor determinado.

maxima 21: Dado a € R*, definimos la sucesion x,, como sigue:
| X’O e 1
B Xntl = A Xn

Es facil comprobar que x, = a™.

(%1i1) load(solve_rec)$

(%12) solve_rec(x[nl=x[n-1]*a,x[n],x[0]=1);
(%02) x, =a"

maxima 22: Definimos la sucesién x,, = 2" —1. En este caso hemos dado explicitamente x,, para
cada n € N.
Definimos ahora y,, como sigue:

Yo =1
Yn+1 = Yn + ZnJr]
Que ha sido definida de forma recursiva.
Ya hemos visto anteriormente que x,, =y, para todo n € N.

(%13) solve_rec(y[nl=y[n-1]+2"n,y[n],y[0]=1);
(%03) yn=2""—1

maxima 23: La sucesién x, =1+ 2+ ---+ n puede ser definida recursivamente como:
x1 =1 Xnil =Xn+ 1+ 1

También se podria comenzar con xg = 0.

. 1
Ya hemos visto que X, = %

(%i4) solve_rec(x[n]=x[n-1]+n,x[n],x[0]=0);

(%od) xn = %*”

Podemos definir n! de forma recursiva:

1.0l =1
2. M+ =Mn+1)-n!
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Ejercicio 15: Sea m € N. Definimos la sucesion:
X():O Xntl = Xp + M.

Demuestra que x, = m - n (hagase; asi vemos cémo definir el producto de niimeros naturales
a partir de la suma).

maxima 24: Consideremos ahora la sucesion dada por
fo=1 fi=1 fo="Ffu1+fu2
Es facil calcular los primeros términos de esta sucesion:
fob=14+1=2f3=14+2=3;,f,=243=5;f5=3+5=38
y asi sucesivamente. Parece claro que esta bien definido el valor de f,, para cualquier n € N. Sin
embargo, esta definicién no se ajusta al método de recurrencia dado anteriormente (pues en este
caso, para calcular un término es necesario recurrir a los dos términos anteriores, mientras que en el

método dado anteriormente, tinicamente necesitamos conocer el término anterior). Para subsanar
este problema, veamos un nuevo principio de induccion.

(%15) solve_rec(f[nl=f[n-1]1+f[n-2],f[n],f[0]=0,f[1]=1);
(Va+1)" (Va-1) (="

5) fp=
( %05) N N

Segundo principio de induccion. Sea A un subconjunto de N. Supongamos que se verifica:
1. 0 € A.
2. Para cualquier n, {0,1--- n—1}CA=neA
Entonces A = N.

Formalmente, la primera condicién no es necesaria, pues para n = 0 la segunda condicién
afirma ) C A = 0 € A, y puesto que la primera parte es siempre cierta () C A), la condicién 2
implica que 0 € A. Sin embargo, en la practica suele ser necesario comprobar que 0 € A.

Notemos también que si la condicion 1 se cambia por una de la forma 0,1,...,k € A, la tesis
del teorema sigue siendo cierta.

Este segundo principio puede usarse, tanto para definir sucesiones como para probar propieda-
des de los ntimeros naturales.

maxima 25: Sea X, la sucesion definida mediante

n
Xo =1 Xngl = E Xk
k=0

Calculemos una férmula general para x,,. Para esto, hallemos los primeros términos:

Xx=Ixi=x=Ixx=x+x=1+41=2,x%3=14+14+2;x4=14+14+2+4=28;
xs5=1+1+2+448=16.

Parece ser que x,, responde a la expresion

] si n=0
EY g on> 1

Comprobémosla por induccién, utilizando el segundo principio

= Paso 1: El resultado es cierto paran=0yn=1.
= Paso 2: La hip6tesis de induccién es x,, = 2™
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A partir de esto tenemos que X, 1 = 1+T14+24+- - 4+2" " = T+ (1424 - 4201 = 1421 =21,
como queriamos.

En esta demostracién se ha sustituido (1 +2+---+2""") por 2" — 1, algo que ya hemos visto
con anterioridad.

Podemos comprobar que realizar esta demostracion usando el primer principio de induccién no
es posible. Nuestra hipétesis de induccién seria que x, = 2", v a partir de ella, tendriamos que
demostrar que x,, 7 = 2"™. Sin embargo, lo inico que podemos hacer es

Xnp1 =Xo X1 F X1 X =Xo F Xy A F Xy 27

y puesto que nuestra hipotesis no nos dice nada del valor de x,_1, Xn_2, etc., no podemos concluir
que Xppq = 2™
Si intentamos hacer esto con maxima directamente, nos encontramos con un problema.

(%i1) load(solve_rec)$
(%1i2) solve_rec(x[n]=sum(x[i],i,0,n-1),x[n],x[0]=1);
apply: found u evaluates to 1 where a function was expected.
#0: lambda([u],[-u[1],u[2]]) (u=1)(solve_rec.mac line 510)
#1: get_exps(expr=-"sum(x[i],i,0,n-1),var=n)
#2: solve_rec_lin_cc(coeffs=[1],ihom=-"sum(x[i],i,0,n-1), %f=x, %n=n,cond=[x[0] = 1])(solve_rec.mac
line 391) — an error. To debug this try: debugmode(true);
Sin embargo, podemos usar que Xni1 — Xn = Xn.

(%13) solve_rec(x[n+1]-x[nl=x[n],x[n],x[1]1=1);
(%03) xp =2

2. Los numeros enteros

Dado un entero z, —z es su opuesto, y denotamos por |z| = max{z, —z} al valor absoluto de z.

Propiedades de la suma. La suma de enteros es

= asociativa,

tiene elemento neutro (el cero sumado a cualquier elemento da de nuevo ese elemento),
todo elemento tiene inverso (si sumamos un entero con su opuesto obtenemos el cero),
conmutativa,

cancelativa (a +b = a + c implica b = c; esto es consecuencia inmediata de la existencia
de elemento inverso).

El conjunto de los niimeros enteros con la suma es por tanto un grupo abeliano.

Propiedades del producto. El producto de niimeros enteros es

= conmmutativo,

= asociativo,

= tiene elemento neutro (el uno),

= es cancelativo para elementos no nulos,

= distributivo (a(b + ¢) = ab + ac, que nos permite ademés sacar factor comun).

Asfi el conjunto de los nimeros enteros es un anillo conmutativo.
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Propiedad de la divisién. Dados a,b € Z, con b # 0, existen ¢, € Z tnicos de forma que
a=qb+ry0<r<lbl

A g y r los llamaremos cociente y resto de dividir a entre b, y los denotaremos por a div b y
a méd b, respectivamente.

Dados a y b enteros, decimos que a divide a b, o que b es un multiplo de a, si existe ¢ € Z tal
que b = ac. Usaremos a | b para denotar que a divide a b.

Ejercicio 16: Sean a,b,c € Z. Demuestra que si ¢ | a y ¢ | b, entonces para todo x,y € Z,
c|xa+yb.

Seap € Z\{—1,1} (—1 y 1 son los unicos enteros que tiene inverso para el producto). Decimos
que p es irreducible si los tnicos enteros que dividen a p son 1, —1, p y —p. El entero p es primo
si siempre que plab, para a y b enteros, se tiene que pla o pl|b.

= Un entero es primo si y solo si es irreducible.

Decimos que dos enteros son primos relativos si los tinicos enteros que dividen a ambos son 1

y —1. (Nétese que 1y —1 dividen a cualquier niimero entero.)

Teorema de Bézout. Sean a,b € Z. Entonces a y b son primos relativos si y sélo si existen
u,v € Z tales que au+ bv = 1.

Teorema fundamental de la aritmética. Todo nimero entero mayor que uno se puede
expresar de forma tnica (salvo reordenaciones) como producto de nimeros primos positivos.

Ejercicio 17: Calcula todos los divisores enteros positivos de 120.

Sean a,b € Z, con a # 0 o b # 0. Un entero d es un maximo comun divisor de a y b si

1) dlayd]|b,
2) sic|layc|b, con c un entero, entonces c | d.

Analogamente, un entero m es un minimo comun multiplo de a y b si
1) almyb|m,
2)sialcyb]c, conc un entero, entonces m| c.

De forma similar se puede definir el maximo comun divisor y el minimo comin multiplo de un
conjunto de enteros {a, ..., a,} con N un entero positivo.

= Sid esun maximo comun divisor de a y b, también lo es —d, y éstos son los tinicos maximos
divisores comunes de a y b. Lo mismo ocurre con el minimo comun multiplo. Esto se debe
a que si a | b, entonces —a | b. Cuando escribamos ged{a, b} nos referiremos al maximo
comun divisor positivo de a y b. Para el minimo comin miltiplo utilizaremos lem(a, b).

» Sean a = up;' - p¥ryb= vp?‘ -o-pPr con u,v € {1,—1}, p1,...,p; primos distintos y
Ky .ney Oy B1y.-., Br enteros no negativos (algunos pueden ser cero, pues los primos que
aparecen en a no tienen por qué aparecer en b). Entonces

min{o,B1} min{or,Br
ged{a, b} = p™ B cp? {ecr B

ax{o »B]} . méX{(Xr,ﬁr}

lem{a, b} = p;’ ph

» gcd{a, bllem{a, b} = |ab|.
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Algoritmo de Euclides.
Entrada: a, b enteros positivos.
Salida: gcd{a, b}.
((10, (11) = (aab)-
Mientras a; # 0
(ao, a1) == (a1, ap méd ay).
Devuelve ay.

Ejercicio 18: Calcula el méximo comun divisor de 237 y 99.

maxima 26: Veamos algunos ejemplos de calculo con maxima.

(%i1) primep(38129);

28

(%o01) false

(%12) next_prime(38129);

(%02) 38149

(%13) prev_prime(38129);

( %03) 38119

(%i4) factor(38129);

(%04) 7 13 419

(%i5) T*13%419;

( %o05) 38129

(%16) gcd(15,18);

(%o06) 3

(%i7) quotient(101,34);

(%o7) 2

(%18) remainder(101,34);

(%08) 33

(%19) 2%34+33;

(%09) 101
Hay que tener cuidado con estas funciones, pues el resto no se define como nosotros lo hemos

hecho.

(%110) quotient(-150,17) ;remainder(-150,17);

(%010) _8

(%011) —14

Si queremos un resto y cociente acordes a nuestra definicion de division podemos hacer lo

siguiente.
(%112) cociente(a,b):=(a—mod(a,b))/b;
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a—mod (a,b)

(%012) cociente (a,b) := 5
(%113) cociente(-150,17) ;mod(-150,17);

(%013) -9

(%014) 3

(%115) is(-8%17+-14=-9%17+3) ;
(%o015) true

3. Ecuaciones diofanticas lineales

Una ecuacién diofantica lineal es una expresion de la forma ayx; + -+ + anx, = b, con
aiy...,0an,b € Z. Una solucién a dicha ecuacién es una n-upla (cq,...,cq) de elementos ente-
ros de forma que a;cy + -+ + ancn, = b.

Teorema de Bézout generalizado. Sea {a;,...,a,} un conjunto de enteros, y d su méximo
comun divisor. Entonces existen uy,...,u, € Z tales que ajuy +--- 4+ ayu,, = d.
Asi la ecuacién diofantica ayxq + - - -+ anx, = b tiene solucion si y sélo si d | b. Las soluciones
de aix; + -+ + a,x, = b son las mismas que las de las ecuacién %M +oo Xy = %.
Para n = 2, tenemos ecuaciones en dos variables. Usamos las incégnitas x e y por comodidad.
Si Xg, Yo es una solucién particular de ax+by = ¢, con ged{a, b} = 1, entonces todas las soluciones
de esa ecuacién son de la forma
X = Xo + bk,
{y = Yo — ak,
con k € Z.

Algoritmo extendido de Euclides.
Entrada: a, b enteros positivos.
Salida: s, t,d € Z tales que d = ged{a, b} y as + bt = d.
(ag,ar) = (a,b).
(SO) S]) = (1>O)
(to, t1) == (0, 1).
Mientras a; # 0
q:=ap div a;.
(aoy ar) := (ar, ap — arq).
(s0ys1) = (s1,80 — s19).
(toy t1) == (1, to — t1q).
d:=aqap, s:=sp, t:=1,.
Devuelve s, t, d.

maxima 27: Resolvamos la ecuacion 40x + 15y = 30. Usando gcdex obtenemos lo siguiente.
(%i1) gcdex(40,15);
(%o01) [—1,3,5]

Lo que significa que 40 x (—1) + 15 x 3 = 5. Como 5 divide a 30, la ecuacién tiene solucion.
Multiplicamos por 6 (6 x 5 = 30) y obtenemos lo siguiente.
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(%i2) %x6;
(%o02) [—6,18,30]
Que equivale a multiplicar la igualdad 40 x (—1) + 15 x 3 = 5 por 6. Por tanto, una solucién de
nuestra ecuacion 30 x (—6) + 15 x 18 = 30.
Noétese que la ecuacién 40x + 15y = 30 es equivalente a 8x + 3y = 6 (hemos dividido por el

méximo comun divisor de 40 y 15). Si x¢,Yo es una solucién de dicha ecuacién, x = xo + 3k e
Yy = Yo — 8k es una solucién de 8x + 3y = 6 para todo k € Z.

(%i3) gcdex(8,3);

(%03) [—1,3,1]
(%id) %*6;
(%04) [—6, 18, 6]
Asfi todas las soluciones de 40x + 15y = 30 son
{x = —6+ 3k,
y =18 — 8k.

maxima 28: Resolvamos ahora la ecuacion 121x — 77y = 88.

(%i1)  ged(121,-77);

(%01) 11
Al dividir por 11, la ecuacién queda reducida a 11x — 7y = 8.

(%12) 1l:gcdex(11,-7);

( %02) (2,3,1]
(%13)  8x1;
(%03) (16,24, 8]

Por lo que tenemos que una solucién particular es xo = 16 e yo = 24. Siendo ademas todas las
soluciones de la forma x = xy — 7k, y =yo — 11k con k un entero cualquiera.

4. Ecuaciones en congruencias de grado uno

Sean a,b, m € Z. Escribimos a = b (mdd m), que se lee “a es congruente con b médulo m”,
para indicar que m | a — b.

Una ecuacién en congruencias de grado uno (o lineal) es una expresién de la forma ax = b
(m6d m). Una solucién para dicha ecuacion es un entero ¢ de forma que ac = b (mdéd m). Notese
que las soluciones de ax = b (md6d m) son las posibles x de la ecuacion diofantica ax + my = b.

» La ecuacion ax = b (mdéd m) tiene solucién si y sélo si ged{a, m} | b.
Si d = ged{a, m} y d | b, entonces las ecuaciones ax = b (méd m) y §x = g (méd )
tienen las mismas soluciones.
Si ged{a,m} =1, y x¢ es una solucién de ax = b (mdéd m), entonces el conjunto de todas
las soluciones de la ecuacion es {xo + km tales que k € Z}.
La ecuacién ax + ¢ = b (mdd m) tiene las mismas soluciones que la ecuacién ax =b — ¢
(méd m).
La ecuacién ax = b (mdéd m) tiene las mismas soluciones que la ecuacién (a méd m)x =
(b méd m) (méd m).
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» Siau+mv=1, conu,vE Z, entonces bu es una solucién de ax =b (mdéd m).

maxima 29: Veamos si tiene solucion la ecuacion 54x = 6 (mdd 34), y en caso de tener, vamos a
describir su conjunto de soluciones.

(%11) remainder(54,34);
(%o1) 20

Al ser 54 méd 34 igual a 20, la ecuacién anterior es equivalente a 20x = 6 (méd 34).
(%i2) ged(20,34) ;

(%02) 2

Como 2|6, la ecuacion tiene solucion, y es equivalente a 10x = 3 (mdd 17). Usando gcdex
obtenemos los coeficientes de Bézout para 10 y 17.

(%12) gcdex(10,17);
(%02) [—5,3,1]

Lo que viene a decir que (—5) x 10 +3 x 17 = 1. Asi una solucién de 10x = 3 (méd 17) es

(—5)3, que vale —15. Asi todas las soluciones de nuestra ecuacién son de la forma —15 + 17k con
k € Z.

Ejercicio 19: Encuentra todas las soluciones enteras de

121x =2 (méd 196).

maxima 30: Vamos a resolver el sistema

x = 5495 (mdd 7643)
x = 7569 (mdd 8765)

Por la primera ecuacién, sabemos que x es de la forma x = 5495 4 7643k con k un entero
cualquiera. Substituimos en la segunda y k se convierte en la nueva incégnita: 549547643k = 7569
(méd 8765). Como

(%i1) 7569-5495;

(%o01) 2074

tenemos que resolver 7643k = 2074 (mdéd 8765). El inverso de 7643 médulo 8765 lo calculamos
(de existir) con el algoritmo extendido de Euclides.

(%i2)  gcdex(7643,8765);
(%02) [2617,—2282,1]

Despejamos

(%13)  mod(2617%2074,8765) ;
(%03) 2123

y obtenemos que k = 2123 + 8765t para cualquier entero t. Substituyendo k en la expresion de x,
llegamos a x = 5495 + 7643(2123 + 8765t).

(%14)  expand(5495+7643*(2123+8765%*t)) ;
( %04) 66990895t + 16231584
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Por lo que x = 66990895t + 16231584 para todo t € Z es una solucién del sistema de congruen-
cias. Lo podemos comprobar como sigue.

(%i6) mod (16231584, [7643,8765]) ;
( %06) (5495, 7569]

Ejercicio 20: Resuelve los siguientes sistemas de congruencias.

2x =2 (mdd 4)

2x=3 (méd 5)} 6x=3 (méd 9)
3x=1 (méd 4) 2x=3 (méd 5)
) =1 5d 2
2x =2 (méd 4) } 3); =2 ((Iiloéd 6))
3x=6 (mdd 12) 5x=1 (méd 7)

5. El anillo de los enteros médulo un entero positivo

Dado un entero positivo m, denotamos por Z,, ={0,1,...,m—1} (que es el conjunto de restos

posibles de la divisién por m), y por eso este conjunto se conoce a veces como el conjunto de los
enteros modulo m.

En 7Z,, definimos una suma y un producto de la siguiente forma. Dados a,b € Z,,,
» a®b=(a+b)mbéd m,
» a®b = (ab) méd m.

Propiedades de la suma. Conmutativa, asociativa, elemento neutro y elemento inverso.

Propiedades del producto. Conmutativa, asociativa, elemento neutro y distributiva.

» Un elemento a € Z,, tiene inverso para el producto si y sélo si gecd{a, m} = 1. Si au+mv =
1, entonces u mdéd m es el inverso de a en Z,,.

Ejercicio 21: Calcula el inverso para el producto de 121 en Zq.
Ejercicio 22: Calcula el resto de dividir 4225 entre 7.

Ejercicio 23: Prueba que dado un ntimero entero m o bien se verifica que m? = 0 (méd 8), o
m?=1 (méd 8), o m? =4 (mdd 8).

maxima 31: KEscribamos una funcién para calcular Z,,, para m un entero positivo.
(%11) Z(m) :=setify(makelist(i,i,0,m-1));

(%o01) Z (m) := setify (makelist (i,1,0,m — 1))
(%12) z(10);
( %02) {O? 1?2’ 3?4’ 5) 6) 7) 8) 9}

(%13) tieneinverso(x,m):=is(gcd(x,m)=1);
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(%03) tieneinverso (x,m) :=1is(ged (x,m) = 1)

El inverso lo podemos calcular con la funcién inv_mod.
(%14) inv.mod(3,10);

(%o04) 7
(%i5) inv.mod(2,10);
(%o05) false

Veamos los elementos que tienen inverso en Zi;.
(%16) subset(Z(12),lambda([x],tieneinverso(x,12)));

(%06) 1,5,7,11

Como 11 es primo, todo elemento no nulo de Z;; tiene inverso:
(%i7) every(lambda([x],tieneinverso(x,11)),disjoin(0,Z(11)));

( %0T7) true

33

Por 1ltimo, resolvamos la ecuacién 137x = 26 (mdd 155), que es equivalente a resolver la

ecuacion 137x = 26 en Zss.

(%1i9) inv_mod(137,155);
( %09) 43

(%i10) mod(43%26,155);
( %010) 33
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1. Conjuntos ordenados.

Relacién de orden. Sea X un conjunto, y < una relaciéon binaria en X. Se dice que < es una
relacién de orden si se verifican las siguientes propiedades.

s Reflexiva: x < x para todo x € X.
= Antisimétrica: Si x <y ey < x entonces x = y.
» Transitiva: Si x <y ey < z entonces x < z.

Si X es un conjunto en el que tenemos definida una relacién de orden <, se dice que (X, <)
es un conjunto ordenado (o, si estd claro cual es la relaciéon < se dice simplemente que X es un
conjunto ordenado).

Si < es una relacion de orden en X que satisface la propiedad adicional de que dados x,y € X
entonces x <y 6y < x, se dice entonces que < es una relacién de orden total, y que (X, <) (o
X) es un conjunto totalmente ordenado (en ocasiones, para destacar que (X, <) es una relacién
de orden, pero que no es total se dice que < es una relaciéon de orden parcial y que (X, <) es un
conjunto parcialmente ordenado).

Ejercicio 24:

1. El conjunto de los nimeros naturales, con el orden natural (m < m si existe k € N tal
que 1 = m + k) es un conjunto totalmente ordenado. De la misma forma, también lo son
(Z,<), (@,<) y (R, <).

2. Dado un conjunto X, entonces P(X), con el orden dado por la inclusién es un conjunto
ordenado. Prueba que si X tiene mas de un elemento, este orden no es total.

3. En el conjunto de los nimeros naturales, la relaciéon de divisibilidad es una relacién de
orden que no es total. Prueba que, sin embargo, en el conjunto de los ntimeros enteros esta
relaciéon no es de orden.

4. Para cualquier nimero natural n consideramos el conjunto

Dn)={m e N:m|n}

Entonces (D(n),|) es un conjunto (parcialmente) ordenado.

Sea (X, <) es un conjunto ordenado, e Y un subconjunto de X. Definimos en Y el orden x <y
si x <y (vistos como elementos de X). Entonces, (Y, =) es un conjunto ordenado. De ahora en
adelante, el orden en Y lo denotaremos igual que en X.

34
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Si (X,<) es un conjunto totalmente ordenado, entonces, para cualquier Y C X se tiene que
(Y, <) es un conjunto totalmente ordenado.

La definiciéon de conjunto ordenado puede hacerse también a partir de la nociéon de orden
estricto.

Orden estricto. Sea X un conjunto, y < una relaciéon binaria en X. Se dice que < es un orden
estricto si se verifican las siguientes propiedades:

: Antirreflexiva Para cualquier x € X se tiene que x < x.
: Transitiva Si x <y e y < z entonces x < z.

Es facil comprobar que si < es una relacién de orden en un conjunto X, entonces si definimos

x<ysix<yyx#vy

se tiene que < es una relacion de orden estricto en X.
De la misma forma, si < es una relaciéon de orden estricto en X entonces la relacién siguiente:

x<ysix<yox=y

es una relaciéon de orden en X.

Vemos entonces que los conceptos de relacion de orden y relacion de orden estricto son equi-
valentes, pues dada una relaciéon de orden tenemos determinada una relacion de orden estricto y
viceversa. Ademads, los caminos para pasar de orden a orden estricto, y de orden estricto a orden,
son uno el inverso del otro.

A continuacién vamos a construir un grafo (dirigido) asociado a una relacién de orden. Aun
cuando los grafos seran estudiados con posterioridad, la representacién de una relacién de orden
mediante este grafo ayuda a visualizar mejor el orden dado.

Diagrama de Hasse. El diagrama de Hasse de un conjunto ordenado (X, <) es un grafo
dirigido cuyos vértices son los elementos de X, y existe un lado de x a y si x <y y no existe z tal
que x < z < Y.

El diagrama de Hasse de un conjunto ordenado esta definido para cualquier conjunto ordenado.
Sin embargo, en general dicho diagrama no permite recuperar el orden. Por ejemplo, en el caso del
conjunto (R, <), dado cualquier x € R no existe ningin y € R que esté conectado a x por algiin
lado.

Sin embargo, si el conjunto X es finito, entonces dados x,y € X se tiene que x < ysix =y o
existe algin camino que parta de x y termine en y.

Una forma habitual de representar el diagrama de Hasse es dibujar los lados como lineas
ascendentes, lo que implica colocar los vértices de forma apropiada.

Vamos a representar los diagramas de Hasse de los conjuntos ordenados P({1,2,3}) y D(30).

{1,2,3} 30
/N A RN
{2y {1,3} {2,3} 6 10 15
X X XX
ay {2} {3} 2 3 5

N/ N/
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Observa como la estructura de conjunto ordenado es igual en ambos casos.

Maximales, minimales, maximo y minimo. Sea (X, <) un conjunto ordenado.

1. Un elemento x € X se dice que es maximal, si no existe y € X tal que x <y y x #y.
2. Un elemento x € X se dice que es maximo, si para todo y € X se verifica que y < x.

De la misma forma se puede definir lo que es un elemento minimal y lo que es un minimo.

Noétese, que si un conjunto tiene maximo, entonces este es unico. Ademas, en el caso de que
tenga maximo, entonces tiene s6lo un elemento maximal, que coincide con el maximo.

Idéntica observacion vale para minimo y elemento minimal.

Denotaremos por max(X) al maximo del conjunto X, en el caso de que exista, y por min(X) al
minimo.

Cotas superiores, inferiores, supremo e infimo. Sea (X, <) un conjunto ordenado, e Y

un subconjunto de X. Consideramos en Y el orden inducido de X.

1. Un elemento x € X se dice que es cota superior de Y si x >y para todoy € Y.
2. Un elemento x € X se dice que es supremo de Y si es el minimo del conjunto de las cotas
superiores de Y.

De la misma forma se define lo que es una cota inferior y un infimo.

Ejercicio 25: Sea X ={a,b,c,d,e,f, g, h,1i,j} con el orden dado por el diagrama de Hasse

e Y ={c,d,f,g,h}. Calcula

1. el conjunto de las cotas superiores de Y,
el supremo de Y en caso de existir,
los elementos maximales de Y,
el conjunto de las cotas inferiores de Y,
su infimo (en caso de existir),
maximo y minimo, si es que existen.

O Ot W

Cuando un conjunto tiene supremo éste es inico. Podemos entonces hablar de el supremo de
Y, y lo representaremos mediante sup(Y).

De la misma forma, denotaremos por inf(Y) al infimo del conjunto Y cuando exista.

Cuando un conjunto tiene méximo, entonces también tiene supremo, y coincide con él. En el
ultimo ejemplo vemos como el reciproco no es cierto, pues Y tiene supremo pero no tiene maximo.

Cuando el supremo de un conjunto pertenezca al conjunto, entonces serd también el maximo.

maxima 32:
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(%11) menores(x,rel,conj):=subset(conj,lambda([y],rel(y,x) ))$
(%12) mayores(x,rel,conj):=subset(conj,lambda([y],rel(x,y) ))$
(%i3) D:setdifference(divisors(30),{1,2,30});

(%o03) {3,5,6,10,15}

(%14) menores(15,lambda([x,y],is(mod(y,x)=0)), {1,2,3,4,5,6,7});
(%o4) {1,3,5}

(%15) minimal(x,rel,con):=is(menores(x,rel,con)={x}) and elementp(x,con)$
(%16) maximal (x,rel,con):=is(mayores(x,rel,con)={x}) and elementp(x,con)$
(%17) minimal (3,lambda([x,y],is(mod(y,x)=0)), D);

(%07) true

(%18) minimales(rel,con) :=subset(con,lambda([x],minimal(x,rel,con)))$
(%19) maximales(rel,con) :=subset(con,lambda([x] ,maximal(x,rel,con)))$
(%110) div(x,y):=is(mod(y,x)=0)$

(%111) minimales(div,D);

(%ol11) {3,5}

(%112) maximales(div,D);
(%o012) {6,10,15}

(%113) minimo(rel,con):=block(local(m),
m:listify(minimales(rel,con)),
if (is(length(m)=1)) then m[1] else
error ("Error no hay minimo"))$
(%114) maximo(rel,con):=block(local(m),
m:1listify(maximales(rel,con)),
if (is(length(m)=1)) then m[1] else
error ("Error no hay maximo"))$
(%115) maximo(div,D);
Error no hay maximo
#0: maximo(rel=div,con=3,5,6,10,15) — an error. To debug this try: debugmode(true);

(%116) minimo(div,D);
Error no hay minimo
#0: minimo(rel=div,con=3,5,6,10,15) — an error. To debug this try: debugmode(true);

(%117) cotasuperior(x,rel,con):=is(con=menores(x,rel,con))$
(%118) cotainferior(x,rel,con):=is(con=mayores(x,rel,con))$
(%119) cotainferior(1,div,D);

(%019) true

(%120) cotassuperiores(rel,con,amb) :=subset(amb,lambda([x],cotasuperior(x,rel,con)))$
(%121) cotasinferiores(rel,con,amb) :=subset(amb,lambda([x],cotainferior(x,rel,con)))$
(%122) cotasinferiores(div,D,divisors(30));

(%022) {1}

(%123) cotasinferiores(div,D,D);

(%023) {}
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(%124) supremo(rel,con,amb) :=minimo(rel,cotassuperiores(rel,con,amb))$

(%125) infimo(rel,con,amb) :=maximo(rel,cotasinferiores(rel,con,amb))$

(%i26) supremo(div,D,D);

Error no hay minimo

#0: maximo(rel=div,con=)

#1: supremo(rel=div,con=3,5,6,10,15,amb=3,5,6,10,15) — an error. To debug this try: debugmo-
de(true);

(%127) infimo(div,D,divisors(30));

(%027) 1
(%128) supremo(div,D,divisors(30));
(%028) 30

Buen orden. Sea (X, <) un conjunto ordenado. Se dice que < es un buen orden si todo
subconjunto no vacio de X tiene minimo. En tal caso, se dice que (X, <) (o X) es un conjunto bien
ordenado.

Observacion: Todo conjunto bien ordenado es un conjunto totalmente ordenado, pues dados
dos elementos x,y € X el subconjunto {x,y} tiene minimo. Si min({x,y}) = x entonces x < vy,
mientras que si min({x,y}) =y entonces y < x.

El reciproco no es cierto. Busca un ejemplo.

Ejercicio 26: El conjunto de los nimeros naturales, con el orden usual, es un conjunto bien
ordenado.

Orden producto. Sean (X;,<;) y (X3, <;) dos conjuntos ordenados.
= Se define el orden producto en X; x X; como sigue:

(x1,%2) =2 (yn,y2) sixs <1y yx2 <2 Yo
= Se define el orden lexicogrdfico en X; x X; como sigue:

def [ x1 <1y d
<
(XHXZ) >lex (yhyl) A { X1 =Y ¥YX2 < Ys.

Claramente, si (x1,%x2) = (y1,Yz2) entonces (x1,%x2) <iex (Y1,Y2).

Propiedades del orden producto. Si (X;,<;) y (X3,<;) son dos conjuntos ordenados,
entonces (X7 X Xz, <)y (X7 X X3z, <tex) son conjuntos ordenados.

Ademas, si <7 y <; son 6rdenes totales (resp. buenos érdenes) entonces <, es un orden total
(resp. buen orden).

Observacion: Si tenemos n conjuntos ordenados Xj, Xz,...,X,, podemos definir recursiva-
mente el orden producto y el orden lexicografico en X; x X5 x - -+ x X,,.

Supuesto definido el orden producto < en X; x --- x X,,_1 se define en X; x - -+ x X;;:

(Xh---xn—hxn) j (yh---)yn—hyn) 81 (X],...,Xn_]) j (yh-'-)yn—l) Y Xn S Yny

es decir, definimos el orden producto en (Xj X -+ x Xp_1) X Xi.
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Supuesto definido el orden lexicografico <ie, en X; x --- x X;,_1 se define en X; x -+ x Xy;:

def (X],...,an) <lex (yh...,yn,]) o}
ooe An— n) Ztex ceeyYn— n
X1y« X1y Xn) <tex (Yty--+yYn-1,Y )(:){ Koo X 1) = (U1 o) % < U

Sea el conjunto
‘A :{ ) a’b) C) d’ e’f, g)h)i)j)l)l,m)n’ﬁ) O)‘p’ q)T’ S)t)u)v)w)x)y)z})

es decir, las 27 letras del alfabeto junto con el espacio en blanco.

Claramente, A tiene un orden total de todos conocido.

Supongamos que n es el nimero de letras de la palabra mas larga de la lengua espanola.
Entonces, cada palabra puede representarse como un elemento de A™ (poniendo tantos espacios al
final como sea necesario).

Cuando ordenamos las palabras, tal y como vienen en un diccionario, nos fijamos en la primera
letra, y es la que nos da el orden. Cuando ésta coincide, pasamos a la segunda, y es ésta entonces
la que nos da el orden. De coincidir también, nos fijamos en la tercera, y asi sucesivamente. Es
decir, las palabras de la lengua estdn ordenadas siguiendo el orden lexicografico.

Ejercicio 27: Consideramos en N x N los érdenes producto (<) y lexicografico <i deducidos a
partir del orden usual en N. Sea X ={(0,n), (I,n—1),...,(n—1,1),(n,0)}.

1. Calcula el conjunto de cotas inferiores de X en N x N respecto del orden lexicografico y con
respecto al orden producto.

2. Calcula infimo y minimo (caso de existir) de X C N x N, respecto del orden lexicogréfico y
del orden producto cartesiano.

3. Calcula los elementos maximales y minimales de X respecto a esos dos érdenes.

2. Reticulos

Definiciéon 1. Un reticulo es un conjunto ordenado, (L, <) en el que cualquier conjunto finito
tiene supremo e infimo.

Si (L, <) es un reticulo y x,y € L, denotaremos por x V' y al supremo del conjunto {x,y} y por
x /Ay al infimo del conjunto {x,y}.
Nétese que x V' y estd definido por la propiedad:

x<xVy y<xVy (x<zey<z)—=xVy<z
La primera parte dice que x\Vy es una cota superior del conjunto {x, y}, mientras que la segunda

dice que es la menor de las cotas superiores.

2.1. Propiedades de reticulos. Si (L, <) es un reticulo, las operaciones V' y /\ satisfacen
las siguienes propiedades:
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Conmutativa z Xg i g >/\ z
o xV(yV xVy) v
Asociativa Ey Z% Ex A\ 3% A z
Absorcion z >/\ & O g;
Idempotencia iXilz

Ejercicio 28:

1. Prueba que si X es un conjunto totalmente ordenado, entonces para cada x,y € X, xVy =
max({x,y}) mientras que x /Ay = min({x,y}). Demuestra que X es un reticulo.

2. El conjunto ordenado (N,|) es un reticulo. Prueba que en este caso se tiene que x Vy =
mcm(x,y) mientras que x /Ay = mcD(x,y). De la misma forma, si n € N entonces D(n),
con el orden dado por la divisibilidad es un reticulo.

3. Para X es un conjunto, demuestra P(X) es un reticulo. Prueba primero que AVB = AUB
y A/AB = AN B, para cualesquiera A y B subconjuntos de X.

4. Prueba que el conjunto ordenado cuyo diagrama de Hasse es

f/]\g
NN
NSNS

N

es un reticulo.
5. Demuestra que conjunto ordenado cuyo diagrama de Hasse es

no es un reticulo.
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Nétese que si (L, <) es un reticulo, entonces dados x,y € L se verifica que x <y si, y sélo si,
xVy =y, o si queremos, x < Yy si, y solo si, x Ay = x. Es decir, podemos recuperar el orden
dentro del reticulo a partir del conocimiento de las operaciones supremo o infimo.

La siguiente proposicién nos da condiciones suficientes para que dos operaciones definidas en
un conjunto puedan ser el supremo y el infimo de alguna relaciéon de orden en ese conjunto.

Proposicion. Sea L un conjunto en el que tenemos definidas dos operaciones V y /\ que
satisfacen las propiedades conmutativa, asociativa, idempotencia y de absorcion. Supongamos que
en L definimos la relacién

x<y sixVy=y

Entonces, (L, <) es un reticulo donde las operaciones supremo e infimo vienen dadas por V y A
respectivamente.

Nétese que se tiene que x Vy =y si, y soélo si, x Ay = x, luego podria haberse hecho la
demostracion definiendo la relacion

x<y sixAy=x

Notese también que la propiedad de idempotencia se puede deducir a partir de la de absorcién,
pues

xVx=xVxAKXVx)]=x

luego podemos demostrar la proposicion anterior partiendo de que las operaciones V y /\ satisfacen
las propiedades asociativa, conmutativa y de absorcién.

Esta proposicién permite definir un reticulo, bien dando la relacion de orden, bien dando las
operaciones V' y /\.

Si (L, <) es un reticulo y L tiene méaximo, denotaremos a éste por 1, mientras que si tiene
minimo lo denotaremos por 0. Se tiene entonces, x V1 =1 xA1=x,xV0=xyx/A0=0.

Un reticulo finito siempre tiene maximo y minimo. Si el reticulo es infinito, puede tenerlo o no.
Asi, por ejemplo, (N, <) tiene minimo pero no tiene maximo; (Z, <) no tiene ni minimo ni méaximo.
El reticulo (N,|) es infinito y tiene maximo y minimo. En este caso, el maximo es 0 mientras que
el minimo es 1.

Subreticulo. Sea (L, <) un reticulo, y I’ C L un subconjunto de L. Entonces L’ es un su-
brreticulo si para cualesquiera x,y € L’ se verifica que x Vy e L'y x Ay e L.

maxima 33: Consideramos el reticulo D(30).
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Sean Ly = {3,6,15,30}, L, = {1,2,3,5,15}, L; = {1,6,10,30} v Ly = {1,2,3,6,30}. Sus diagra-

mas de Hasse son:

15
30 / 30 30

N N4 S S
NS | I\
N

Entonces Ly y L4 son subreticulos de D(30), mientras que L, y L3 no lo son.

(%129) condsubreticulosup(rel,con,amb) :=subset(cartesian_product(con,con),
lambda([x] ,not (elementp (supremo(rel,{x[1],x[2]},amb),con))))$

(%130) condsubreticuloinf(rel,con,amb) :=subset(cartesian_product(con,con),
lambda([x] ,not(elementp(infimo(rel,{x[1],x[2]},amb),con))))$

(%131) subreticulop(rel,con,amb) :=emptyp(condsubreticulosup(rel,con,amb)) and
emptyp (condsubreticuloinf (rel,con,amb))$

(%132) subreticulop(div,{3,6,15,30},divisors(30));

(%032) true

(%133) condsubreticulo(div,{1,2,3,5,15},divisors(30));
(%033) condsubreticulo (div, 1,2,3,5,15,1,2,3,5,6,10, 15, 30)

(%134) supremo(div,{2,3},divisors(30));
(%034) 6

(%135) subreticulop(div,{1,6,10,30},divisors(30));
(%035) false

(%136) condsubreticuloinf(div,{1,6,10,30},divisors(30));
(%036) {[6,10],[10, 6]}

(%137) subreticulop(div,{1,2,3,6,30},divisors(30));
(%037) true

Reticulo distributivo. Sea L un reticulo. Se dice que L es distributivo si para cualesquiera
X,Y,z € L se verifica que

xV(yAz)=xVy)AN(xVz) y xAyVz)=xAy V(xAz)

Basta con que se de una de las dos posibles propiedades distributivas para que se de la otra.

Ejercicio 29:
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1. Prueba que si L es un conjunto totalmente ordenado, entonces L es un reticulo distributivo.
2. Demuestra que el reticulo (N, |) es un reticulo distributivo.

De igual forma, para cada ntimero natural n € N, el reticulo D(n) es distributivo.
3. Prueba que si X es un conjunto, entonces (P(X), C) es un reticulo distributivo.

Consideramos los siguientes reticulos:
1

a b c

1

z Y
X /
0 0
denominados respectivamente diamante y pentigono. En el ejemplo anterior hemos visto que el
diamante no es distributivo. En cuanto al pentagono, se tiene que

xV(yAz)=xV0=x xVyANxVz)=1Az=z
luego tampoco es distributivo.
En general, se tiene que un reticulo es distributivo si no contiene como subreticulos ni al

pentagono ni al diamante. En el apartado anterior hemos visto como el reticulo de subespacios
vectoriales de un espacio vectorial tiene al diamante como subreticulo.

2.2. Propiedad cancelativa. Sea L un reticulo distributivo, y sen x,y,z € L tales que
xVy=xVzyxAy=x/\z Entoncesy = z.

En el diamante se tiene que aVb=aVc=1,ya/Ab=a/Ac=0,y sin embargo, b # c.
En el pentagono, yVx=yVz=1Tey Ax=y/Az=0,y sin embargo, x # z.

Reticulo complementado. Sea L un reticulo que tiene méximo y minimo (a los que denota-
remos por 1y 0 respectivamente), y x € L. Se dice que y € L es un complemento de x si xVy =1
yx Ay =0.

Un reticulo en el que todo elemento tiene complemento se dice complementado.

Obviamente, si y es un complemento de x entonces x es un complemento de y.

Por otra parte, si L es un reticulo distributivo y x un elemento de L que tiene complemento,
entonces el complemento es tnico (ver propiedad .

Si L es un reticulo distributivo, y x es un elemento que tiene complemento, denotaremos por
x' 0 X al Uinico complemento de x.

Ejercicio 30:

1. Si L tiene méximo (1) y minimo (0), entonces O es un complemento de 1.

2. El reticulo (P(X),C) es un reticulo complementado. Dado A € P(X) se verifica que A U
(X\A) =Xy AN (X\A)=0. Por ser un reticulo distributivo, el commplemento de cada
elemento es tnico.

3. El pentdgono y el diamente son reticulos complementados. Vemos sin embargo, que los
complementos de algunos elementos no son tinicos.

Asi, en el diamante, tanto b como ¢ son complementos de a; tanto a como ¢ son
complementos de b y tanto a como b son complementos de c.



2. RETICULOS 44

En el pentagono, tanto x como z son complementos de y. Sin embargo, x y z tienen un
Unico complemento, que es y.
4. Si L es un conjunto totalmente ordenado con més de dos elementos, entonces es un reticulo
distributivo, pero no es complementado.

maxima 34:

Dado un nimero natural D(n), el reticulo D(n) no tiene por qué ser un reticulo complementado.
Por ejemplo, D(4) no es complementado (es un conjunto totalmente ordenado con 3 elementos),
mientras que D(6) si lo es.

(%138) complementos(x,rel,con):=block(local(max,min),
max:maximo(rel,con),
min:minimo(rel,con),
subset (con,lambda([y],is(supremo(rel,{x,y},con)=max)
and is(infimo(rel,{x,y},con)=min))))$

(%139) complementos(2,div,divisors(6));

(%039) {3}

(%140) complementos(2,div,divisors(4));
(%040)  {}

(%141) complementadop(rel,con) :=emptyp(subset(con,lambda([x],
emptyp (complementos(x,rel,con)))))$

(%142) complementadop(div,divisors(6));

(%042) true

(%143) complementadop(div,divisors(4));
(%043) false

En D(12) tienen complemento 1,3,4,12 mientras que no tienen 2,6. En D(30) todos los ele-
mentos tienen complemento.

Vi SN
/] XX
a N

D(12) D(30)

(%144) complementadop(div,divisors(12));
(%044) false

(%145) notienencomplemento(rel,con):=subset(con,lambda([x],
emptyp (complementos(x,rel,con))))$
(%146) notienencomplemento(div,divisors(12));

(%046) {2,6}
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(%147) complementadop(div,divisors(30));
(%o047) true

Ejercicio 31: Se pide, determinar qué elementos de D(n) tienen complemento, y a partir de ahi,
determinar para qué valores de n es D(n) un reticulo complementado.

2.3. Producto de conjuntos ordenados. Sea (L;,<) y (L,, <) dos conjuntos ordenados.
Consideramos en L x L, el orden producto. Entonces:
= Si [ y L, son reticulos, también lo es Ly x L,. Las operaciones supremo e infimo en L; x L,
vienen dadas por

(x1,%2) V (Y1, y2) = (1 Vyr, x2 Vy2) (x1,%2) A\ (Y1, b2) = (x1 Ay, x2 AY2)

= Si [; y L, son reticulos distributivos, también lo es Ly x L,.
= Si [y y L, son reticulos complementados, también lo es Ly x L.

3. Algebras de Boole

Definicién de algebra de Boole. Un dlgebra de Boole es un reticulo distributivo y comple-
nentado.

Ejercicio 32:
1. Dado un conjunto X, el conjunto P(X), con el orden dado por la inclusién es un dlgebra de

Boole.
2. D(6), o D(30) son algebras de Boole. No es dlgebra de Boole D(4) o D(12).

Al igual que los reticulos se pueden definir sin mencionar el orden, sino tinicamente las ope-
raciones supremo e infimo, con las respectivas propiedades, un algebra de Boole puede definirse
también a partir de las operaciones V' y /\.

Segunda definicion de algebra de Boole. Sea B un conjunto. Supongamos que en B tene-
mos definidas dos operaciones, V' y /\ tales que:

I.xV(yVz)=xVy)Vz xA\(yANz)=(xAy) Az

2.xVy=yVx xA\Ny=y/Az

3.xV(yANz)=xVy AKxVz) xAN(yVz)=xAy)V(xAz).

4. xV (xA\y) =x x A\ (xVy)=x

5. Existen 0,1 € B tales quexVO=x xA0=0 xVI=1 xA1=x

6. Para cada x € B existe X’ € B tal que x Vx' =1y xAx' =0.

Es facil comprobar que las dos definiciones son equivalentes.

Leyes de De Morgan. Sea B un algebra de Boole, y x,y € B. Entonces:
(xVy) =xAy (xAy) =x"Vy

Ejercicio 33: Consideremos el conjunto Z,. En él, consideramos las operaciones
x Ay =xy xVy=x+y+xy

Entonces Z,, con estas operaciones es un algebra de Boole. De hecho, es el dlgebra de Boole mas
simple (a excepcién de un algebra de Boole con un elemento). Representaremos a este algebra de
Boole como B.

Notese que este algebra de Boole se corresponde con el orden 0 < 1.
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Puesto que el producto de algebras de Boole es un algebra de Boole, tenemos, para cada nimero
natural n el algebra de Boole B™ que tiene 2™ elementos. En este caso, las operaciones del algebra
de Boole vienen dadas por:

(X1yX2y « - oy Xn) V (U1, Y2y o+ oy Yn) = (X1 VY1, X2 V Y2y e ooy X0 V Yn)
(XHXZ)'--)Xn) /\(yhyla---»yn) = (X1 /\yhxl/\yb"-)xn/\yn)
(X1y X2y« + e Xn) = (X}, Xhy o v oy X1

Veamos los diagramas de Hasse de B? y B3.

(1,1
RN /

1
|
(1,0 (0,1) (1,1,0)1,0, 110,

1 1,1)
NS X X
(0,0) (1,0,0)0,1,0)0,0,1)
NS
(0,0,0)

Podemos comparar las estructuras de algebra de Boole de B? y B® con las de P({a,b}) y

P{a,b,c}).

Consideramos las dlgebras de Boole siguientes:

A/AB\B
N

que como podemos ver tienen una estructura semejante a B’ y B respectivamente. Su producto,
tendra entonces la misma estructura que B3. El diagrama de Hasse de dicho algebra seria

AB+

7N

AB—

\>< X\
\\/

y vemos que los elementos que la forman son los ocho grupos sanguineos. En este caso, ser menor
o0 igual significa puede donar. Asi, el grupo O— es el donante universal, mientras que el grupo AB+
es el receptor universal.
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Atomos. Sea B un algebra de Boole, y x € B. Se dice que x es un atomo si x es un elemento

minimal de B\ {0}.

Ejercicio 34: Si X es un conjunto, los atomos del algebra de Boole P(X) son los subconjuntos
unitarios.

Los atomos del algebra de Boole B™ son aquellos que tienen todas las coordenadas nulas salvo
una.

maxima 35: En el dlgebra de Boole D(30) los dtomos son los divisores primos de 30.

(%i48) minimales(div,setdifference(divisors(30),{1}));
(%o048) {2,3,5}

3.1. Todo elemento es supremo de dtomos. Sea B un dalgebra de Boole finita, y x €
B \ {0}. Entonces, x se expresa de forma tinica como supremo de atomos.

Dado cualquier elemento x € B\ {0}, denotaremos por A, al conjunto de todos los dtomos de
B que son menores o iguales que x.

Este teorema nos dice que si B es un algebra de Boole finita, y X ={ay,..., a,} son sus a&tomos
(es decir, X = A;) entonces los elementos de B son:

B:{\/x: AEP(X)}

XEA
donde se ha empleado la notacién 0 = \/ x.

x€D
Vemos entonces que B tiene tantos elementos como P(X).

Por tanto, el nimero de elementos de B es 2™, donde n es el nimero de atomos.
Es maés, tenemos que las algebras de Boole B, B™ y P(X) con X ={1,2,...,n} son isomorfas.

maxima 36:

(%150) menores(15,div,setdifference(divisors(30),{1}));
(%050) {3,5,15}

(%151) supremo(div,{3,5},divisors(30));
(%o051) 15



Capitulo 5

Grupo simétrico

Contenidos de este capitulo
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[3.  El grupo simétrico| 50
1. Grupos

Un grupo es un conjunto no vacio G junto con una operacién binaria interna
x*:Gx G =G, (g1,92) = g1 * 9y,

verificando las siguientes propiedades

1. la operacion * es asociativa (o equivalentemente, (G, *) es in semigrupo), a saber, ax(bxc) =
(a % b) * ¢, para cualesquiera a, b, c € G; esto nos permite transformar * en una operacién
n-aria, pues para calcular a; * - - - * a,, no tenemos que preocuparnos por poner paréntesis,

2. existe un elemento llamado elemento neutro o identidad, e, verificando que exg = g+xe =g
paratodo g € G ((G, *) es un monoide; se puede demostrar que si existe un elemento neutro,
sélo existe uno),

3. para todo elemento g € G, existe g7 € Gtalque gx g~ =e =g~
que este elemento es inico).

! % g (se puede probar

A veces nos referiremos a G como (G, %) para indicar con qué operacién estamos considerando
que es un grupo.

Normalmente a la operacién * la denotaremos simplemente por yuxtaposicion, y a veces escri-
biremos 1 para denotar al elemento neutro.

Ejercicio 35: Dados g1, g2 € G, demuestra que (g1g2)~' = g5 'g7"

Si ademads * es conmutativa, o sea, gj * g» = g2 * g7 para cualesquiera g;,g, € G, entonces
decimos que G es un grupo abeliano o conmutativo. En este caso usaremos 0 para denotar la
identidad, y + en lugar de x.

Ejemplos de grupos abelianos son (Z,+), (Q \ {0}, ), (Z.,+) para todo n € N. No son grupos
ni (N, +) ni (Z,-) (;por qué?).

Al producto cartesiano de dos grupos se le puede dotar de estructura de grupo.

Ejercicio 36: Si (Gy,%1) vy (Gy,*2) son grupos, demuestra que (G; X G, %), con * definida como
(a,b) * (¢, d) = (a*; b,c %, d), es también un grupo.

48
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2. Subgrupos

Un subconjunto H de un grupo G es un subgrupo si para cualesquiera hy, h; € H, h; h? e H.
Esto equivale a decir que 1 € H, H es cerrado para la operacién que hace de G un grupo, y también
es cerrado para cédlculo de inversos. De esta forma H es un grupo con la misma operacion de G.

Ejercicio 37: El conjunto de los niimeros enteros es un subgrupo de Q con la suma. Sin embargo,
7, no es un subgrupo de QQ con el producto.

Teorema de Lagrange. Si H es un subgrupo de G, entonces #H divide a #G.

Dado un subconjunto X de un grupo G, se define el subgrupo generado por X, que denotamos
por (X), al menor subgrupo de G que contiene a X. Como la interseccién de subgrupos vuelve a
ser un subgrupo, se tiene que (X) es la interseccién de todos los subgrupos de G que contienen a
X.

Ejercicio 38: Demuestra que (X) = {x7" -+ x* [ n € Nyx1,...,xn € X, €1,...,€n € {1,—1}} (para
n =0, el producto de n elemento se entiende como 1).

Si H es un subgrupo de G y X C G es tal que H = (X), entonces decimos que X es un sistema
de generadores de H. Si X = {x1,...,xn} para algun entero n positivo, entonces escribiremos
(X1y...yXn) en vez de (X). Ademds, decimos que H es ciclico si admite un sistema de generadores
de la forma X = {x}.

Ejercicio 39: Demuestra que (Z,+) es un grupo ciclico, y que todo subgrupo suyo es ciclico (pista:
usa la identidad de Bézout para probar que estd generado por el maximo comun divisor de sus
elementos).

Ejercicio 40: Demuestra que (Z; X Z;,+) (suma componente a componente) no es un grupo ciclico,
mientras que (Z; X Zsz,+) si que lo es.

Orden de un elemento. Dado un grupo G y un elemento g € G, se define el orden de g en
G como el menor entero positivo n tal que g™ =1 (g" es el producto de g consigo mismo n veces).
En caso de que no exista ese entero positivo, decimos que g tiene orden infinito.

Ejercicio 41: Demuestra que el orden de g en G coincide con #(g).

maxima 37: Calculemos el orden de todos los elementos de Zjo. Sabemos por el Teorema de
Lagrange, y por el ejercicio anterior, que el orden de esos elementos divide a 10, el cardinal de Zo.
Luego como mucho vale 10.

Empecemos por ejemplo con el 2.

(%i1) setify(makelist(mod(2%i,10),i,0,9));
(%o01) 0,2,4,6,8

(%i2) length(%);
(%02) 5

Que tiene orden 5. Podemos automatizar el proceso y escribir una lista con cada elemento y su
orden.
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(%13) makelist([j,length(setify(makelist(mod(j*i,10),1,0,9)))]1,j,0,9);
(%o03) 100,11, (1,101, [2,5], [3,10], [4,5], [5, 2], [6, 5], [7, 10], [8, 5], [, 10]]
Asi que los posibles érdenes son 1, 2, 5 y 10 (todos los posibles divisores de 10).

Ejercicio 42: ;Cudl es en general el orden de m en Z,?

3. El grupo simétrico

Sea X un conjunto no vacio. Definimos Sx como el conjunto de todas las aplicaciones biyectivas
de X en X. Este conjunto, junto con la operaciéon composicién de aplicaciones, es un grupo.

A los elementos de Sx se les conoce como permutaciones del conjunto X. El conjunto Sx es el
grupo simétrico o de permutaciones en X.

En el caso en que X ={1,...,n}, escribimos S,, en vez de Sx, y lo llamaremos grupo simétrico
de orden n.

A las permutaciones o € S, las vamos representar de una forma especial como una matriz con
dos filas en la que en la primera fila aparecen los enteros del 1 al n, y en la segunda fila, en la

columna i-ésima el elemento o(1).
o 1 2 ...n
~\o(1) o2) ... n/J°

Para calcular el inverso de o representado de esta forma, simplemente tenemos que intercambiar
la primera con la segunda fila, y después reordenar las columnas de forma que en la primera fila
aparezcan ordenadamente los enteros del 1 al n.

Para multiplicar dos permutaciones se sigue el orden de derecha a izquierda que van tomando
las imdgenes de cada uno de los elementos del conjunto X (ojo que en algunos libros es al revés,
gappor ejemplo usa el orden inverso al que usamos nosotros).

1.2 3\ (1 2 3\ (1 23
213)\321) \312)

ya que el 1 va al 3 por la primera (empezando por la derecha) y la segunda deja el 3 invariante, el
2 se queda invariante por la primera, y la segunda lo envia al 1, y por tultimo el 3 va al 1 por la
primera, mientras que la segunda lo manda al 2.

El soporte de una permutaciéon es el conjunto de los x € X tales que o(x) # x. Dos permuta-
ciones se dicen disjuntas, si sus soportes lo son.

Ciclos. Un ciclo es una permutacién o € S, de forma que existe Y = {i;,..., 1} con #Y =k
(no se repiten elementos en esa lista) tal que o(i;) = i3y para todo j € {1,...,k — 1}, o(ix) =11,
y o(x) = x para todo x € X\ Y. Esto es, 0 mueve ciclicamente los elementos de Y y deja

inalterado el resto de elementos de X. Diremos que o es un ciclo de longitud k, y lo denotaremos
por 0 = (i1,...,1k).

El inverso del ciclo (i1,1,... 1) es (i, ik_1y...,11). Ademds, ™ =1 (la identidad).

Nétese ademds que (1,12, ..., 1) = (12y 13y ..oy iy 1) = - - -

Ejercicio 43: Si tenemos dos ciclos disjuntos o y 8, entonces, 0d = d0.
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Producto de ciclos disjuntos. Toda permutacién se puede expresar de forma tnica (salvo
el orden de los factores) como producto de ciclos disjuntos.

Ejercicio 44: Si o se pone como producto de o7,..., 0, ciclos disjuntos, con o; de longitud 1;,
entonces el orden de o es el minimo comun miiltiplo de {l;,..., l.}.

Una transposicién es un es un ciclo de longitud 2. Nétese que si T = (a, b) es una transposicion,
entonces 7' =7 = (a,b).
Todo ciclo (iy,12,...,1k) se puede expresar como producto de transposiciones, por ejemplo,

(i, 2y .oy b)) = (b, W) (i ) - - - (1, 13) (A, 12).

Asi toda permutacion es producto de transposiciones. Si bien el niimero de éstas puede variar,
por ser por ejemplo, 1 = (1,2)(1,2), la paridad del nimero de éstas es invariante. Definimos
asf la signatura de una permutacién o como (—1)% con t el nimero de transposiciones en un
descomposicién de o como producto de transposiciones.

gap 1: En gap, las permutaciones se pueden escribir de muchas formas. O bien como producto de
ciclos disjuntos, o usando funciones especificas para crear permutaciones.
gap> MappingPermListList([1,2,3,4],[2,3,1,4]);

(1,2,3)

gap> PermList([2,3,1,4]);

(1,2,3)

gap> (1,2,3)(4,6);

(1,2,3)(4,6)

gap> ListPerm((1,2,3)(4,6));

[2, 3,1, 6,5, 4]

gap> PermList(last);

(1,2,3)(4,6)

El operador se usa para la composicién (hay que tener cuidado en el orden en que se

: : 12 3\ /1 23 123
compone). En el ejemplo anterior, > 13032 7)=(373)

gap> PermList([3,2,1])*PermList([2,1,3]);
(1,3,2)
gap> ListPerm(last);
[ 3,1, 2]
El operador ‘*7 se puede usar para calcular la imagen de un elemento por una permutacion.
gap> p:=(1,2,3)*(3,4);
(1,2,4,3)
gap> 37p;
1

ko

El orden de una permutacién (orden como elemento dentro de S;,) y su signatura se pueden
calcular de la siguiente forma.
gap> SignPerm((1,2,3)(4,6));
-1
gap> Order((1,2,3)(4,6));
6
gap> G:=SymmetricGroup(4);
Sym( [ 1 ..41)
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gap> Elements(G);

[ O, 3,4, (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3),
(1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2), (1,3,4,2), (1,3), (1,3,4),
(1,3 (2,4, (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), (1,4), (1,4,2,3),
(1,4)(2,3) ]

gap> Filtered(G,x->0rder(x)=4);

[ (1,2,3,4), (1,2,4,3), (1,3,4,2), (1,3,2,4), (1,4,3,2), (1,4,2,3) ]
Podemos definir un grupo generado por varias permutaciones, calcular su orden, o comprobar

si es abeliano (y muchas otras propiedades).

gap> g:=Group((1,2,3),(4,5));

Group([ (1,2,3), (4,5) 1)

gap> Order(g);

6

gap> Elements(g);

[ O, 4,8, (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5) ]

gap> IsAbelian(g);

true
Con la orden IsCyclic podemos saber si un grupo es ciclico.

gap> g:=Group((1,2,3),(4,5));;

gap> IsCyclic(g);

true

gap> DirectProduct(CyclicGroup(2),CyclicGroup(2));

<pc group of size 4 with 2 generators>

gap> IsCyclic(last);

false
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El inicio de la Teoria de Grafos tuvo lugar en 1736, en un articulo de Leonhard Euler. El trabajo
surgio de un problema conocido como el problema de los puentes de Kdonigsberg.

Durante el Siglo XVIII, la ciudad de Konigsberg, en Prusia Oriental estaba dividida
en cuatro zonas por el rio Pregel. Habia siete puentes que comunicaban estas regio-
nes, tal y como se muestra en el dibujo. Los habitantes de la ciudad hacian paseos
dominicales tratando de encontrar una forma de caminar por la ciudad, cruzando
cada puente una sola vez, y regresando al lugar de partida.

7

Para resolver este problema, Euler represento las cuatro zonas como cuatro puntos, y los puentes
como aristas que unen los puntos, tal y como se muestra en la figura.

Mas adelante veremos cémo resolver el problema.

1. Generalidades sobre grafos

Volvamos a la representaciéon que hizo Euler. En ella intervienen cuatro puntos (a los que
denominaremos vértices), a saber, a,b,c,d y siete aristas o lados que conectan algunos de los
vértices. Esto da pie a la siguiente definicién de grafo.

53
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1.1. Definicién de grafo. Un grafo G es un par (V,E), donde V y E son conjuntos, junto
con una aplicacién

Ye: E = {{u,v}:u,ve V)

Al conjunto V se le llama conjunto de vértices; al conjunto E conjunto de lados o aristas, y a
la aplicacién yg (o simplemente y) aplicacién de incidencia.

En el caso de los puentes de Konigsberg, el grafo correspondiente tiene como conjunto de vértices
al conjunto V = {a, b, ¢, d}, como conjunto de lados el conjunto E = {ey, ez, e3, e4, €5, €6, €7} v la
aplicacion de incidencia es la dada por:

Yel(er) =vele) ={a,b} vcles) =vcles) ={b,c} vcles) ={a,d} ~vcles) ={b,d} vcles) ={c,d}.

Si e; y e; son dos lados tales que yg(er) = vg(ez), se dice que son lados paralelos.

Un lado tal que yg(e) ={v} se dice un lazo.

Algunos autores, al definir un grafo, no incluyen la posibilidad de que tenga lados paralelos ni
lazos. En tal caso, lo que aqui hemos definido como un grafo lo denominan como multigrafo.

maxima 38: Vamos a pintar un grafo que tenga por vértices los elementos de P ({1, 2,3}, y un lado
conecta Ay Bsi A C B (o B C A, al no ser un grafo dirigido).
Para definir un grafo necesitamos dos listas, una con los vértices y otra con los lados.

(%i1) v:powerset({1,2,3});
(%ol) {{h {14 {1,24{1,2,3}{1,3}{2}{2,3},{3}}

(%i2) vl:listify(v)$
(%13) s8:setify(makelist(i,i,1,8))$
(%i4) vertices:makelist([i,v1[i]],i,1,8);
(7%04) [00,{}, 12,{1}}, 3,{1,2}},14,{1,2,3}],5,{1, 3}, [6,{2}}, [7, {2, 3}1, [8, {3}]]

Ya tenemos los vértices del 1 al 8 etiquetados con cada uno de los elementos de P({1,2,3}).
Ahora vamos a construir los lados. Para ello extraemos del producto cartesiano de P({1,2,3})
aquellos que son lados de nuestro grafo.

(%15) 1l:subset(cartesian_product(s8,s8),
lambda([x],subsetp(vl[x[1]],v1[x[2]]) and not(is(vl[x[1]]=v1[x[2]]1))));

(%o0b) {[1,2],11,3],01,4],[1,5],[1,6],[1,7],11, 8], 12, 3], [2,4], [2, 5],

(3,41, 5,41, [6, 3], [6,4], 6,71, [7,4], [8,4], [8, 5], [8, 7]}

(%16) lados:listify(1)$

(%17) load(graphs)$

(%18) g:create_graph(vertices,lados);
(%08) GRAPH(8 vertices, 19 edges)

Por ultimo pintamos el grafo.
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(%19) draw_graph(g,show_labels=true);

Grafo dirigido. Un grafo dirigido u orientado es un par (V,E), donde V y E son conjuntos,
junto con dos aplicaciones s,t: E — V.

Al conjunto V se le llama conjunto de vértices, al conjunto E conjunto de lados, y a las aplica-
ciones s y t aplicaciones dominio y codominio (“source” y “target”).

Subgrafo. Sea G = (V,E) un grafo con aplicacién de incidencia yg. Un subgrafo de G es un
nuevo grafo G’ = (V/,E’') donde V' C V, E/ C E y se verifica que yg(e) = yg(e) para cualquier
ecE.

Si G' = (V| E') es un subgrafo de un grafo G = (V, E), se dice que es un subgrafo completo si
dado e € E tal que yg(e) C V’, se verifica que e € E’. Dicho de otra forma, si tiene todos los lados
que tenia G y que unen vértices de V'.

Observacién: Un subgrafo completo esta completamente determinado por el conjunto de
vértices. Asi, para determinar un subgrafo de un grafo G en ocasiones explicitaremos tinicamente
el conjunto de vértices de dicho subgrafo, sobreentendiendo que se trata del subgrafo completo con
dicho conjunto de vértices.

maxima 39:

(%120) h:induced_subgraph([1,2,3,5],g);
(%020) GRAPH(4 vertices, 5 edges)

(%122) draw_graph(h,show_label=true);
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(%022) done

Caminos. Sea G un grafo. Un camino de longitud n es una sucesién de lados eje; - - - €, junto
con una sucesion de vértices viv; - - - v, tales que yg(ey) = {vi, vig1}
En tal caso se dice que el camino eje; - - - e, es un camino del vértice v; al vértice vy 1.

Se considera un camino de longitud cero de v a v a aquel cuya sucesion de vértices es v y cuya
sucesion de lados es vacia.

Para dar un camino en un grafo, en ocasiones daremos unicamente la sucesién de vértices, y
en ocasiones daremos unicamente la sucesion de lados.

Notese que si eje; - - - e, es un camino de W a v, entonces e e,_1 - - - €;e7 es un camino de v a u.

Un camino en el que no aparecen lados repetidos se llama recorrido.

Un recorrido en el que no hay vértices repetidos (salvo eventualmente el primero y el tltimo)
se llama camino simple.

Un camino en el que coinciden el primer y el ultimo vértice se llama camino cerrado.

Un recorrido que es a la vez camino cerrado se llama circuito.

Un circuito que a su vez es camino simple es un ciclo.

La siguiente tabla puede ayudar a aclarar estas definiciones.

Vertl'ces Arls'tas Abierto | Nombre
repetidos | repetidas
Camino
No Camino cerrado
No Recorrido
No No Circuito
No No Camino simple
No No No Ciclo

Por tanto, en un circuito puede haber o puede no haber vértices repetidos. Sin embargo, no
puede haber aristas repetidas. Se tiene entonces, por ejemplo, que todo ciclo es un circuito, es un
camino cerrado y es un camino.

Consideramos el siguiente grafo:
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Vi
V2 V3
V/V, VG\ V7
|
Vg——V V1o

La sucesion v7v3vevsvsvgvevs es un camino de longitud 7 que une v; con vg. No es recorrido,
pues el lado que une v3 con vo aparece dos veces en el camino.
a sucesion vy 4 es un camino de longitu ue une v con v7. Es un recorrido, pues
L V1V3VoVgV4V3V7 del tud 6 Y v;. E do,
ningtn lado se repite. Sin embargo, el camino pasa dos veces por el vértice v3. No es por tanto un
camino simple.
V3V4VgVe es un camino simple de longitud 3.
La sucesion viv3v;vev3vavsvovy es un camino cerrado de longitud 8. Es ademas un circuito, pues
)
ningin lado se encuentra repetido. No es un ciclo, ya que el vértice v; se repite.
Un ejemplo de ciclo podria ser vivyvsveov,v3vy.

Ejercicio 45: Sea G un grafo. Supongamos que existe un camino de u a v. Entonces existe un
camino simple de u a v.

Ejercicio 46: Sea G un grafo, y sean uw y v dos vértices distintos. Supongamos que tenemos dos
caminos simples distintos de 1 a v. Entonces existe un ciclo en G.

En el ejemplo anterior tenfamos un camino de longitud 6 que une v; con vy (Viv3vevgvavsvy).
Este camino no es simple, pues el vértice v3 esta repetido. Eliminamos los vértices que se encuentran
entre las dos apariciones de v3 y obtenemos el camino viv3v;, que es un camino simple que une v,
con vsy.

Por otra parte, tenemos dos caminos simples que unen v3 con vg, COmo son vzv4Vg y V3Vevg. A
partir de estos dos caminos podemos obtener el ciclo v3v4vgvevs, recorriendo en primer lugar uno
de los caminos que une v; con vg, y recorriendo a continuacion el otro en sentido contrario.

Notese que si partimos de los caminos simple v3v4vg v V3Vivavsvsvg v repetimos lo hecho en el
parrafo precedente obtenemos el camino cerrado v3v4vgv4vsvoviv3 que no es un ciclo, pues el vértice
vy estd repetido (o el lado v4vg). Sin embargo, la existencia de los dos caminos simples si nos da la
existencia de un ciclo, a saber, v3v,vsvo,vivs.

Grafos conexos. Sea G un grafo. Se dice que G es conexo, si dados u y v dos vértices de G
existe al menos un camino de u a v.

En general, si G es un grafo, podemos definir en el conjunto de vértices la relacién:
URvV si existe un camino de u a v.

Ejercicio 47: Prueba que esta relacion es de equivalencia.

Se tiene entonces que un grafo es conexo si el conjunto cociente por la relacion que acabamos
de definir tiene un solo elemento.

A partir de esta relacién, podemos considerar, para cada clase de equivalencia, el subgrafo
(completo) determinado por los vértices de dicha clase de equivalencia. Cada uno de estos grafos
es lo que se denomina una componente conexa de G.
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vV3
A% Vg

V7

Por ejemplo, el grafo

tiene tres componentes conexas. Estas son

ANAVAE

Vs—— Vg

maxima 40:

(%11) load(graphs)$

(%i2) g:graph_union(complete_graph(4),cycle_graph(4),path_graph(3));

%02) GRAPH(11 vertices, 12 edges
( g
(Ya veremos més adelante la definicién de grafo completo.)

(%i3) print_graph(g);
Graph on 11 vertices with 12 edges.
Adjacencies:
7:46
6:75
5:64
4:75
10:9
1108
09
0123
023
:013
012
(%03) domne

W — O o O

(%14) 1is_connected(g);
(%o04) false

(%15) connected_components(g) ;

(%o05) 101,2,3,01,(8,9,101, 4,5,6,7]]

(%16) is_connected(induced_subgraph([8,9,10],g));
(%06) true

(%i7) is_connected(induced_subgraph([8,9,10,4],g));
(%07) false

58
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2. Matrices asociadas a grafos

En esta seccién vamos a ver cémo podemos representar los grafos finitos mediante matrices. A
partir de estas matrices podremos obtener propiedades sobre los grafos.

Matriz de adyacencia. Sea G un grafo cuyo conjunto de vértices es V. = {vi,v2,- - , v }.
Se define su matriz de adyacencia como la matriz A € M, (N) cuyo coeficiente (i,j) es igual al
nimero de lados e que unen v; con vj (es decir, que verifican que f(e) = {vi, v;}).

Observaciones:

1.

La matriz de adyacencia de un grafo es una matriz simétrica, pues cada lado que une v;
con vj une también v; con vj.

2. Si toméaramos otra ordenaciéon de los vértices, la matriz de adyacencia es diferente. Por
tanto, un grafo puede tener varias matrices de adyacencia. En general, si A y C son dos
matrices de adyacencia de un mismo grafo, entonces existe una matriz de permutaciéon P
tal que P'CP = A (una matriz de permutacién es una matriz que tiene en cada fila y
en cada columna un coeficiente que vale “uno” y el resto toman el valor “cero”. Es una
matriz que se obtiene a partir de la matriz identidad realizando intercambio de filas y/o
columnas).

3. La existencia de lados paralelos se traduce en la matriz de adyacencia en la existencia de
coeficientes mayores que 1. De la misma forma, la existencia de lazos se traduce en que
algin elemento de la diagonal principal de la matriz de adyacencia es distinto de cero.

4. Si tenemos un grafo dirigido, también podemos definir su matriz de adyacencia. En este
caso, el coeficiente a;; es el nimero de lados que verifican que s(e) = v; y t(e) = v;. En
este caso, la matriz no tiene porqué ser simétrica.

5. La matriz de adyacencia de un grafo determina a éste. Ademas, toda matriz cuadrada con
coeficientes en N es la matriz de adyacencia de un grafo (dirigido o no) finito. Podrfamos
entonces tomar como definicién de grafo la de una matriz cuadrada con coeficientes en N.

maxima 41:
(%i1) load(graphs)$
(%12) g:cycle_graph(4)$
(%13) adjacency_matrix(g);
01 01
o Lo o
1010
(%14) h:from_adjacency_matrix(matrix([0,1,1],[1,0,1],[1,1,0]1));
(%o04) GRAPH(3 vertices, 3 edges)
(%1i5) print_graph(h);
Graph on 3 vertices with 3 edges.
Adjacencies:
2:10
1:20
0:21
(%05) done

El siguiente resultado nos muestra la importancia de las matrices de adyacencia.
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Numero de caminos entre dos vértices. Sea G un grafo cuyo conjunto de vértices es
{vi,v2, -+ ,va} v sea A su matriz de adyacencia. Entonces el coeficiente (i,j) de la matriz A™ es
igual al nimero de caminos de longitud n que unen v; con vj.

maxima 42: Veamos como ejemplo los caminos en la rueda.

(%11) load(graphs)$
(%12) g:wheel_graph(3);
(%02) GRAPH(4vertices, 6edges)

(%i3) a:radjacency_matrix(g);

01 11

101 1
(%03) |17 0 1

1110
(%id) a~"4;

21 20 20 20

20 21 20 20
(%od) 159 20 21 20

20 20 20 21

Luego hay 20 caminos de longitud 4 para ir desde un vértice a otro distinto.
Podemos escribir una funcién que automatice esto.

(%15) caminos(grafo,longitud,i, j):=block(local(a),
(a~"longitud) [i] [j1)$

(%16) caminos(g,4,1,2);

(%06) 20

2.1. Matriz de incidencia. Sea G un grafo cuyo conjunto de vértices es V = {vy,vp,- -+ , v}
y cuyo conjunto de lados es E ={ej, ez, -+ , en}. Se define la matriz de incidencia del grafo G como
una matriz n X m que tiene en la posicién (i,j) un 1 si v; € f(e;) y 0 en otro caso.

Observacién:

1. Si tomamos otra ordenacién de los vértices y/o lados, la matriz de incidencia puede ser
diferente. En este caso, dos matrices de incidencia corresponden al mismo grafo si se pue-
de pasar de una a otra mediante operaciones elementales por filas y/o columnas Tipo I
(intercambio de filas y/o columnas).

2. El que un grafo tenga lados paralelos se traduce en que tenga dos columnas iguales en la
matriz de incidencia, mientras que los lazos se traducen en filas con un tnico coeficiente
“uno”.

3. Si el grafo es dirigido, se puede definir también la matriz de incidencia. En este caso, el
coeficiente (i,j) puede también tomar el valor —1 (si el lado e;j parte del vértice v;). En tal
caso, el grafo no podria tener lazos.

3. Isomorfismo de grafos

Consideremos los siguientes grafos
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VI———V) w w
VAN
Vq/————V5—V3 W5———Wy

En una primera observacién apreciamos dos grafos diferentes. Sin embargo, si profundizamos
algo més encontramos muchas semejanzas entre ellos. Por ejemplo, ambos tienen igual nimero de
vértices e igual nimero de lados. Existe un vértice en cada uno de ellos (vs en el primero y w; en
el segundo) que estd unidos al resto de vértices.

Siguiendo en esta linea, vemos que podemos renombrar los vértices del segundo grafo wy — Vi,
W) = V5, W3 =V, Wy = V3 y W5 — V), v tenemos que por cada lado que une dos vértices v; y vj
en el primer grafo tenemos un lado que une los vértices v y v)f en el segundo.

Vemos entonces que ambos grafos podemos considerarlos iguales. Lo tinico que los diferencia es
el nombre que le hemos dado a los vértices (y a los lados) y la forma en que los hemos representado.
Pero todo lo que digamos sobre un grafo es vélido para el otro.

Para precisar un poco méas lo que hemos hecho, vamos a ponerle nombre a los lados:

v €1 f]

VW w f6

e%e\é\e/ex fy fs £ o W3
es e3 f3

Vy——V5——>—V3 Ws5—>— Wy
Entonces, lo que tenemos son dos biyecciones hy : Vg — Vg v he : Eg — Eg/, que en este caso
serfan:

hy he

VI = Wy e — 1y
V) — Wy € — f3
V3 — Wy €3 — f;
V4 — W3 €4 — f6
V5 — W) es — f7

eg — T

e; — fs

verificando que si yg(e) = {u, v} entonces yg (he(e)) = {hv(u), hy(v)}.
Notese que en este caso, la aplicacién hy determina totalmente a la aplicacion hg.

Isomorfismo de grafos. Sean G = (V,E) y G’ = (V| E') dos grafos con aplicaciones de
incidencia yg y yg. Se dice que G y G’ son isomorfos si existen dos biyecciones hy : V — V' y
he : E — E’ tales que para cada lado e € E se verifica que yg/(hg(e)) = {hv(u), hy(v)} donde
{u,v} = YG(e)'

En tal caso, diremos que las aplicaciones hy y hg forman un isomorfismo de G a G'.

Observacion:

1. Si los grafos no tienen lados paralelos, entonces la aplicacion hy determina de forma tnica
a la aplicacién hg. De ahi, que normalmente, para dar un isomorfismo de grafos se de
Unicamente como actia sobre los vértices.

2. Si h = (hy, hg) es un isomorfismo de G a G’ entonces ((hy)™', (hg)™') es un isomorfismo
de G’ a G.

En general, no es facil determinar cuando dos grafos son isomorfos o no lo son. Claramente,
si dos grafos son isomorfos deben tener igual nimero de vértices e igual nimero de lados. Sin
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embargo, esto no es suficiente, como pone de manifiesto el siguiente ejemplo.

/

pues ambos tiene cuatro vértices y cuatro lados, y sin embargo no son isomorfos (;por qué?).
Vemos que tenemos dos nimeros asociados a cada grafo (nimero de vértices y nimero de lados)

que deben coincidir para que los grafos sean isomorfos. Es lo que se llama invariante por isomor-

fismo. Obviamente, la coincidencia de estos niimeros no implica que los grafos sean isomorfos.

Una propiedad se dice invariante por isomorfismo si dados dos grafos isomorfos G y G’, uno
satisface la propiedad si, y sélo si, la satisface el otro.

Grado de un vértice. Sea G un grafo y v un vértice de G. Se define el grado de v, y lo
denotaremos como gr(v), como el nimero de lados (no lazos) de G que son incidentes en v més 2
veces el numero de lazos incidentes en v.

Denotaremos por Dy (G) como el nimero de vértices de V que tienen grado igual a k. A partir
de esto, podemos construir la sucesion

Do(G), D1(G), D2(G), ..., Dy(G),...
que llamaremos sucesion de grados.
maxima 43: Veamos cémo son los grados de una rueda con cuatro radios.

(%11) load(graphs)$
(%12) g:wheel_graph(4);
(%02) GRAPH(5 vertices, 8 edges)

(%18) adjacency_matrix(g);

01111
1010 1
(%03) [1 101 0
10101
110710

(%14) makelist(vertex_degree(i,g),1,0,4);
(%o04) 13,3,3,3,4]

El vértice del centro tiene grado cuatro, mientras que los que estan en la llanta tienen grado
tres.

Noétese que si G es un grafo con n vértices vi, vz, ...,v, v | lados entonces
gr(vi) +gr(va) +--- + grlvn) = 21,

pues al contar todos los lados que inciden en todos los vértices (el miembro de la izquierda) estamos
contando cada lado 2 veces (por cada uno de los vértices en los que incide)

Ejercicio 48: Calcula las sucesiones de grados para los siguientes grafos.

~A

Vq————V5—V3 W5———Wy
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/

Es facil comprobar que si (hy,hg) : G — G’ es un isomorfismo de grafos y v € V entonces
gr(v) = gr(hy(v)), de donde deducimos que las sucesiones de grados de dos grafos isomorfos son
iguales. El reciproco no es cierto, como podemos ver en el siguente ejemplo.

Consideramos los siguientes grafos:

N ol A A
W/vs VK W/wg,— w6 / \Xs\ 5/

Vg X7— X8

En los cuatro grafos la sucesion de grados es la misma, pues todos los vértices tienen grado
3 (es decir, la sucesion de grados es en los cuatro casos 0,0,0,8,0,...). Sin embargo, el primero,
tercero y cuarto son isomorfos y los isomorfismos vienen dados por

Vi = X5 — Yz
V2 = X7 — Yz
V3 = X6 — Y3
V4 = X3 — s
Vs = X3 — Ys
Vg = X4 = Yg
V7 = X1 = Y
Vg = X2 = Y4

mientras que el segundo no es isomorfo a ninguno de los otros tres, ya que en este segundo no hay
ciclos de longitud 3, mientras que en los otros si los hay (v,vsv; por ejemplo).

Los cuatro grafos que intervienen en este ejemplo tienen una peculiaridad, y es que todos los
vértices tienen el mismo grado.

Grafos regulares. Un grafo es regular de grado m si todos sus vértices tienen grado igual a
n.

Grafos completos. Se llama grafo completo de n vértices al grafo (con n vértices) que no
tiene lazos ni lados paralelos, y dados dos vértices hay un lado que los une. Dicho de otra forma, su
matriz de adyacencia toma el valor “cero” en todos los elementos de la diagonal y el valor “uno”
en el resto.

Dicho grafo se suele denotar como K,,.

maxima 44: Los cinco primeros grafos completos son
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K] Kz K3 K4 KS

(%11) load(graphs)$
(%12) makelist(adjacency_matrix(complete_graph(i)),i,1,5);

01111

o 1\ (011 ?é}} 101 11
(%@)[(0),(10),101,110],11011]
110\ 17, (P11 o

11110

(%13) random_regular_graph(5,3);
(%03) GRAPH(6vertices, 9edges)

(%14) adjacency_matrix(%);

010011
101100
010011
(%od) fo 17001 1
101100
101100

4. Grafos de Euler

Caminos y circuitos de Euler. Sea G un grafo conexo. Un camino de Euler es un recorrido
en el que aparecen todos los lados.

Un circuito de Euler es un camino de Euler que es cerrado.

Un grafo con un circuito de Euler es un grafo de Euler.

Para los grafos

€4, es5
€3
(2

€s
€2 (7

€1 e

la sucesién e;esesegereseseg es un camino de Euler en el primer grafo, mientras que f1f,f3f4f5fsfgf10f7 o
es un circuito de Euler en el segundo.

Caracterizacion de los grafos de Euler. Sea G un grafo conexo. Entonces

= G es un grafo de Euler si, y solo si, el grado de cada vértice es par.
= G tiene un camino de Euler, si y sélo si G tiene exactamente dos vértices de grado impar
(exactamente los vértices donde empieza y termina el camino).
La demostracion se basa en este hecho:

= Sea G un grafo en el que cada vértice tiene grado mayor que 1. Entonces G contiene un
circuito (y por tanto un ciclo).
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Ejercicio 49: Demuestra que en el grafo que representaba el problema de los puentes de Kénigsberg

no existe ningun circuito de Euler. Por tanto, el problema de los puentes de Konigsberg no tiene
solucion.

Consideramos el siguiente grafo

V1 %) V3 V4
V5 Ve V7 Vs
Vo Vio Vi1 V12

en el que vemos que los vértices vy, v2, V4 ¥ Vo tienen grado 2; los vértices vz, vs, Vg, Vg, Vi1 vV V12
tienen grado 4, mientras que los vértices v; y vio tienen grado 6. Como todos los vértices tienen
grado par, sabemos que existe un circuito de Euler. Vamos a encontrarlo.

Para esto, buscamos un circuito cualquiera, por ejemplo, V,;VgVs5v19V11V12VgV7V2, ¥ eliminamos
los lados que intervienen en este circuito. Nos queda entonces el grafo

Vi A% V3 V4
v\v%v%vs
Vo V1o 1 V12

que tiene (aparte del vértice v,) dos componentes conexas que son las siguientes:

V1 V3 V4
V\VG/ V\ )
Vo V1o V12 1

de los cuales hemos de encontrar un circuito de Euler. En el segundo grafo, este circuito seria
V4VgV11V4.

Vamos a encontrarlo en el primero. Para ello, hacemos como hicimos al principio.

Buscamos un circuito en dicho grafo, que podria ser v3v;vigvs; eliminamos los lados que inter-
vienen, y nos queda entonces el grafo

V1 V3
V\V6 V\
Vo V1o V12
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que tiene dos componentes conexas. Para cada una de ellas es facil encontrar un circuito de Euler.
El circuito de la primera componente es vivsvovioVvy, mientras que el de la segunda es v3vgv;vi,vs.
Un vértice comun entre los circuitos v3v7vioVs v V1VsVeVioVy es Vig, mientras que un vértice
comun entre los circuitos v3v;vigvs y V3VeV7viov3 podria ser vi (o vy).
Recorremos entonces el circuito v3v;viovs, y al llegar a los vértices que hemos elegido insertamos
los circuitos de cada una de las componentes conexas.

V3 VgV7V12V3 V7V10 V1V5V9V10 V3
— —

Volvemos ya al grafo de partida. En él elegimos un circuito (v,vgvsvioviivizvsvzva), que al
eliminarlo dividia al grafo en dos componentes conexas. De cada una de éstas tomamos ahora un
vértice comun con el circuito. Sean éstos vg y vq7. Recorremos el circuito elegido, y al llegar a estos
vértices insertamos los circuitos de Euler para cada una de las componentes. Tenemos entonces:

V2Ve V7V12V3V7V10V1V5V9V10V3Ve V5V10V11 V4VV11 V12VeV7V2
N——

~~

que es un circuito de Euler para el grafo del que partiamos.

A continuacién veremos un algoritmo que calcula, dado un grafo del que sabemos que tiene un
camino o circuito de Euler, un tal camino.

Algoritmo de Fleury. Como entrada, tenemos un grafo G. Como salida, dos sucesiones Sy
v Sg, que son las sucesiones de vértices y lados del camino buscado.

1. Si todos los vértices son de grado par, elegimos un vértice cualquiera v. Si G tiene dos
vértices de grado impar elegimos uno de estos vértices.

. Hacemos Sy =vy S¢ = [l

. Si G tiene sélo a v, devuelve Sy y Sg, y termina.

4. Si hay un unico lado e que incida en v, llamamos w al otro vértice donde incida el lado e;

quitamos de G el vértice v y el lado e y vamos al paso 6.

5. Si hay mas de un lado e que incida en v, elegimos uno de estos de forma que al quitarlo el

grafo G siga siendo conexo. Llamamos e a dicho lado y w al otro vértice en el que incide e.

Anadimos w al final de Sy y e al final de Sg.

7. Cambiamos v por w y volvemos al paso 3.

W N

&

5. Grafos de Hamilton

En la seccién anterior estudiamos cudando en un grafo podiamos encontrar un camino que
recorriera todos los lados una sola vez. En esta, pretendemos estudiar como recorrer todos los
vértices una sola vez.

Camino y circuito de Hamilton. Sea G un grafo. Un camino de Hamilton es un camino
que recorre todos los vértices una sola vez.

Un circuito de Hamilton es un camino cerrado que recorre todos los vértices una sola vez (salvo
los extremos).

Un grafo con un circuito de Hamilton se denomina grafo de Hamilton o grafo hamiltoniano.

maxima 45: Consideramos los siguientes grafos:
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) ) WV%
V1 4 Wi Wy
Entonces, el primer grafo es un grafo de Hamilton. Un circuito de Hamilton es vivovzvavy.

Obviamente, al tener un circuito de Hamilton, podemos encontrar también un camino de Hamilton
(Vivavavy).

(%il) gl:cycle_graph(4)$
(%i2) hamilton_cycle(gl);
(%02) 13,0,1,2,3]

En el segundo grafo tenemos un camino de Hamilton (wywsw,wy). Podemos ver como no
existe ningun circuito de Hamilton, pues deberia tener al menos dos lados incidentes en wy (el lado
entrante y el lado saliente).

(%13) g2:from_adjacency_matrix(matrix(
[o,1,1,01,(t,0,1,1],[1,1,0,0],[0,1,0,01))8%

(%14) Thamilton_cycle(g2);

(%o4) 1

(%i5) hamilton_path(g2);
(%05) 13,1,0,2]

Ejercicio 50: Determina si los siguientes grafos tienen caminos o circuitos de Hamilton.

Y3

X2 X4 y 4

X1 X5 Y1 5

Observaciones:

Puesto que a la hora de buscar un camino o circuito de Hamilton no podemos pasar dos veces
por un mismo vértice, no es posible que el camino contenga dos lados paralelos, ni que contenga
lazos. Supondremos por tanto en esta seccién que todos los grafos que intervienen no tienen ni
lazos ni lados paralelos.

Hemos visto en el ejemplo anterior, que si hay un vértice de grado 1, entonces el grafo no es
de Hamilton.

Por otra parte, si un grafo con n vértices es de Hamilton, en el circuito de Hamilton intervienen
n lados. Por tanto, un grafo de Hamilton con n vértices tiene al menos n lados.

Intuitivamente, cuantos més lados tenga un grafo con un nimero de vértices fijado, mas facil
serd poder encontrar un circuito de Hamilton.

6. Grafos bipartidos

Grafo bipartido. Sea G = (V, E) un grafo. Se dice que G es bipartido si podemos descomponer
V en dos subconjuntos disjuntos V7 y V; de forma que todo lado incide en un vértice de V; y en
un vértice de V.

Un grafo G = (V, E) se dice bipartido completo si es bipartido, y para cada vi € Vi y v, € V,
existe un unico lado e € E tal que yg(e) = {vy,v2}.
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Un grafo bipartido completo estd completamente determinado por el cardinal de V; y V,.
Si G es un grafo bipartido completo en el que V; tiene cardinal m y V; tiene cardinal n, entonces
denotaremos a G como Ky, ;.

maxima 46: Consideramos los siguientes grafos

X6 X7

) V3 w W3 \ /
Xsg—X1—X2

Vi 4 Wy Wy / \

X4 X3

Entonces el primer y el tercer grafos son bipartidos.

En el primero, se tiene que Vi = {v1,v3} v Vo = {vz,v4}. Ademds, podemos ver que cualquier
para cualquier pareja formada por un vértice de Vi y un vértice de V, hay un lado y sélo uno que
los une. Por tanto, es un grafo bipartido completo. Dado que V; y V; tienen dos elementos, dicho
grafo es K ;.

(%i1) load(graphs)$
(%12) gl:cycle_graph(4)$
(%i3) is_bipartite(gl);
(%03) true

El segundo grafo no es bipartido. Para comprobarlo, supongamos que tenemos una division del
conjunto de vértices de la forma {wy, wy, w3, ws} = Vi U V,. Entonces w; pertenecerd a uno de
los dos conjuntos. Supongamos que a V;. En tal caso, se tiene que w; € V, (pues wy y w; estén
unidos por un lado) y ws € V; (por el mismo motivo). Tenemos entonces dos vértices en el mismo
subconjunto de la particion, y unidos por un lado.

(%i4) g2:from_adjacency_matrix(matrix(
(0,1,1,0],[1,0,1,11,[1,1,0,0],[0,1,0,01))%
(%i5) is_bipartite(g2);
(%05) false
En el tercero tenemos Vi = {x1} v Vo2 = {x2, X3, X4, X5, X6, X7}. Vemos también que este es un
grafo bipartido completo, es decir, este grafo es K.

(%16) adjacency_matrix(complete_bipartite_graph(1,6));
000 0 1

( %06)

—_ O O O OO
—_ O O O OO
—_ OO O oo
—_ O O O O OO
—_ O O OC OO
—_ O O O O OO
O — - o o

El siguiente resultado nos da una caracterizacion de los grafos bipartidos.

Caraterizacién de grafos bipartidos. Sea G = (V, E) un grafo. Entonces G es bipartido si,
y sélo si, G no contiene ciclos de longitud impar.

Ejercicio 51: Sea G un grafo bipartido con particién V; y V5. Supongamos que [Vi| =ny [V,] = m.

= Si G tiene un camino de Hamilton, entonces m — m| < 1.
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= Si G es un grafo de Hamilton, entonces n = m.

= Si G es completo y [n—m| < 1, entonces G tiene un camino de Hamilton.
= Si G es completo y n = m, entonces G es un grafo de Hamilton.

7. Grafos planos
En esta seccién vamos a estudiar los grafos que pueden ser representados en el plano.

Representacién plana. Sea G un grafo. Una representacién de G se dice plana si los vértices

y los lados se encuentran todos en un plano, y las lineas que representan dos lados distintos no se
cortan.

Grafos planos. Un grafo se dice plano si admite una representacion plana.

maxima 47:

(%i1) load(graphs)$
(%i2) 1is_planar(complete_graph(4));
(%02) true

(%13) draw_graph(complete_graph(4) ,redraw=true,program=planar_embedding) ;

(%03) done

Cualquier poliedro tiene asociado un grafo. Los vértices son los vértices del poliedro, y los lados
sus aristas. Este grafo es siempre plano.

Por ejemplo, el grafo correspondiente al tetraedro es K4. El grafo correspondiente al cubo es

(%14) is_planar(cube_graph(3));
(%o4) true

(%15) draw_graph(cube_graph(3) ,program=planar_embedding) ;

(%05) done
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7.1. Caras. Una representacién plana de un grafo divide al plano en que se encuentra en
varias regiones, que denominaremos caras.

7.2. Caracteristica de Euler. Sea G un grafo plano y conexo. Llamemos v al ntimero
de vértices, 1 al nimero de lados y ¢ al nimero de caras de una representacion plana. Entonces
v—l+c=2

En general, si G es un grafo plano, y x es el nimero de componentes conexas entonces v—14-c¢ =
1+x.

En la representacién plana que hicimos de K, se tienen un total de 4 caras. Como en Ky se
verifica quev=4y l=6entoncesv—1l+c=4—6+4=2.

El cubo tiene 8 vértices, 12 aristas y 6 caras. Obviamente se ve que v —1+ ¢ = 2.

Vamos a demostrar aqui que sélo existen 5 sélidos regulares. Es decir, poliedros en donde todas
las caras son poligonos regulares iguales.

Supongamos que tenemos un poliedro regular, y sea G el grafo asociado a dicho poliedro.
Sabemos que se verifica que

v—l+c=2

Sabemos ademds que este grafo es regular de grado r (1 es el nimero de aristas que inciden en

cada vértice) y que r > 3. Por tanto, se verifica que

v = 2L
Por otra parte, todas las caras son poligonos regulares de n lados. Si contamos el nimero de

caras, y lo multiplicamos por n estamos contando el nimero de aristas dos veces, pues cada arista
es arista comun de dos caras. Por tanto, se tiene también que

nc = 2L.
Sustituyendo en la expresion v — 1+ ¢ = 2 obtenemos que
21 21 1T 1 1 1
——l+—=—=2= -+—=5+-
T n r n 2 1

Sabemos que T > 3 y n > 3 (pues el poligono regular més simple es el tridngulo). Si tanto n

como 1 fueran simultdaneamente mayores que 3, es decir, n > 4 y r > 4 tendriamos que % < JT y

% < %, luego
LRI SR I I R N
2 1 r n—4 4 2 1=
lo cual es imposible.
Por tanto, tenemos dos posibilidades:
= n = 3. Las caras del s6lido son tridngulos.
En este caso tenemos
T 1 1 1 T 1 1 - or
R R R A

Por tanto, v < 6, lo que nos da sélo tres posibilidades para 7.
1. r = 3. Entonces | = % = 6. Puesto que nc = 21 deducimos que ¢ = 4, y dado que
v = 21 también tenemos que v = 4. El sélido regular resulta ser el tetraedro.
2.r=4. Aqui l = % = 12, y de aqui deducimos que ¢ = 8 y v = 6. El sélido regular es
el octaedro.
3. v =>5. Ahora, 1l = 30, y por tanto ¢ = 20 y v = 12. El sélido es el icosaedro.
= 7 = 3. Razonando igual que antes, pero intercambiando el papel de r y n tenemos tres
posibilidades para n.

1. n = 3. Este caso ya lo hemos analizado. Es el tetraedro.
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2. n =4. Ahora las caras son cuadrados. Ahora 1 = 12, lo que implica que c =6y v = 8.
Estamos hablando del cubo.

3. n = 5. Las caras son pentdgonos. Aqui 1 = 30, de donde ¢ = 12 y v = 20. El sélido es
en este caso el dodecaedro.

maxima 48:

(%11) load(graphs)$

(%16) is_planar(complete_graph(5));
(%06) false

(%17) is_planar(complete_bipartite_graph(3,3));
(%07) false

7.3. Contracciéon. Sea G un grafo. Una contraccion simple de G es el resultado de indenti-
ficar en G dos vértices adyacentes.

Una contraccion de G es una cadena de contracciones simples.

) | WKWS
V1 4 Wi 4

Si en el primer grafo identificamos los vértices v y v, obtenemos el grafo

3
Vi =V
4

luego dicho grafo es una contracciéon del “cuadrado”.

En el segundo grafo vamos a realizar una contraccion simple identificando los vértices wy y wy,
y otra identificando w, y wy. Los grafos que obtenemos son

3 Wy =W 3
W1 =W
4 w

Es muy intuitivo ver que cualquier contraccion de un grafo plano sigue siendo un grafo plano.

Consideramos los grafos

Teorema de Kuratowski. Sea G un grafo. Entonces G es plano si, y sélo si, ningtin subgrafo
suyo puede contraerse a Ks ni a Ks 3.

Consideramos el siguiente grafo G:
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Entonces, si identificamos cada vértice v; con v; (es decir, realizamos cinco contracciones)
obtenemos el grafo Ks, que sabemos que no es plano. Deducimos por tanto que este grafo no es
plano.

También podemos ver que este grafo no es plano como sigue:

Tomamos el subgrafo de G con los mismos vértices, y del que se eliminan los lados que unen
V3 con Vs, v v4 con V. El grafo que obtenemos es

Identificamos los vértices v, con vy, v3 con Vi v vs con vi, y a continuacién v, con vz = vj. El
grafo resultante es:

[
Vg = Vy Vv

o~

que podemos representar COmo
V1 3% V5 = Vg

Vi V2 =V V3=V, =V,
Es decir, hemos encontrado un subgrafo de G que puede contraerse hasta Kj 3.
La representacién que hemos obtenido de K33 (no esta tltima) puede servirnos para comprobar
que si en K33 se suprime algin lado, el grafo resultante es plano (basta suprimir el lado v,vs o el
lado V]Vg).

Por 1ultimo, para acabar esta seccion introducimos el concepto de grafo dual.

Grafo dual. Sea G un grafo plano. Supongamos que tenemos una representacién plana con
caras Ci, C2, . - ., Cr. Definimos el grafo dual para la representacién dada como el grafo cuyo conjunto
de vértices es igual al conjunto de caras (o tiene un vértice v para cada cara c¢;), y cuyo conjunto
de lados coincide (o es biyectivo) con el conjunto de lados de G. En el grafo dual, un lado une dos
vértices si en la representacion plana de G dicho lado es frontera comun de las dos caras.

Cuando hablamos de dual de un grafo, hacemos referencia a su representacion plana. Esto es
asi porque el dual de un grafo depende de la representacién plana que tomemos, como podemos
ver en el siguiente ejemplo.
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Vamos a considerar dos representaciones planas de un mismo grafo, y vamos a hallar el dual
para cada una de las representaciones. El grafo tiene 5 vértices (vq,v2,v3,v4 ¥y v5) ¥ 5 lados, de los
que damos los dos vértices que unen (v1v2, Viv3, ViV, Vovs v vavs). Dos representaciones planas
del mismo grafo podrian ser:

V3 V3
3Y v
%) 3 %) >
Wi Vi 4

Calculamos el dual de cada una de las dos representaciones. Vemos que en ambos casos tenemos
dos caras, lo que da lugar a 2 vértices en el grafo dual. Los grafos duales son entonces:

=0  (O—

que podemos ver que no son isomorfos. Mientras el primer grafo tiene dos vértices de grado 5, el
segundo tiene un vértice de grado 7 y uno de grado 3.
Del segundo grafo que hemos obtenido, podemos hacer varias representaciones planas. Por

ejemplo,
C1 C1
A @
C4

y cada una de ellas tiene un dual diferente. En estos casos serian:

[ [

que no son isomorfos entre si, ni isomorfos al grafo original (basta estudiar en cada caso la sucesién
de grados).

Si quisiéramos obtener el grafo inicial, deberfamos tomar otra representacion, aquella en la que
uno de los lazos estaria “dentro” de la region c,.

8. Coloracién de grafos

8.1. Coloracién. Sea G = (V,E) un grafo. Una coloracién G es una aplicacién f: V — C,
donde C es un conjunto, de tal forma que para cualquier e € E, si yg(e) = {v,w} con v # w
entonces f(u) # f(v).

Cuando el conjunto C sea un conjunto de colores, la aplicacién f lo que hace es asignar un color
a cada vértice de G, de forma que dos vértices adyacentes no tienen el mismo color.

Niumero croméatico. Se llama nimero cromético de G, y lo representaremos como x(G) al
cardinal del menor conjunto C para el que existe una coloracién de G.
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maxima 49: El grafo e—e mnecesita al menos dos colores para colorearlo, ya que los dos vértices
no pueden ser coloreados con el mismo color al ser adyacentes. Su niimero cromaético es por tanto

2.

(%i1) load(graphs)$
(%12) chromatic_number (path_graph(2));
(%02) 2
En general, el nimero cromatico del grafo K;, es n, pues todos los vértices deben tener colores
distintos, ya que dos vértices cualesquiera son adyacentes.

(%13) makelist(chromatic_number (complete_graph(i)),i,1,15);
(%o03) 11,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

Si un grafo es plano, su nimero cromético es menor o igual que 4. Este es un problema que
se planted por primera vez a mitad del siglo XIX, cuando se intentaba colorear los condados de
un mapa de Inglaterra de forma que dos condados con frontera comin tuvieran distinto color. El
problema estuvo abierto durante méas de un siglo, hasta que en 1976, Appel y Haken probaron el
resultado basandose en un complicado analisis computacional.

El reciproco de este resultado no es cierto. K33 tiene niimero cromatico igual a 2, y sin embargo
no es plano.

Ejercicio 52: Si G; es un subgrafo de G, entonces X(G1) < x(G,).

Ejercicio 53: Demuestra que un grafo conexo es bipartido si y sélo si su niimero cromético vale 2.

En general, determinar el nimero croméatico de un grafo es complicado. Para ello, vamos a
valernos del polinomio cromatico.

Polinomio cromatico. Sea G un grafo y x € N. Vamos a denotar por p(G,x) al nimero de
coloraciones distintas, con x colores, que tiene el grafo G.

Observaciones

1. Si G es un grafo que tiene al menos un lado (que no es lazo) entonces p(G,1) = 0.

2. Si queremos colorear el grafo K, y disponemos de x colores, entonces para uno de los vértices
podemos elegir cualquiera de los x colores, mientras que para el otro podemos elegir entre
los x — 1 restantes. El principio del producto nos dice entonces que p(Kz,x) = x(x —1).

3. En general, se tiene que p(Ky,x) = x(x—1)--- (x—n+1). De aqui se deduce que si m < n,
p(Ky, m) = 0, mientras que p(K,,, 1) = n!. Por tanto, el nimero cromatico de K, es n.

4. Si G es un grafo cuyas componentes conexas son Gy, Gy, ..., Gy, entonces p(G, x) = p(Gy, x)-
p(GZ)X) o p(Gm)X)-

Por tanto, nos limitaremos a estudiar las coloraciones de los grafos conexos.
5. Si G es un grafo con n vértices, que es un camino simple, entonces p(G,x) = x(x — 1)™ 1.
Es decir, G = (V,E) donde V = {vi,va,...,vn} v E = {ej,e2,...,en1} v vgle)) =
{viy vis}
En este caso, para elegir una coloracion de G con x colores, podemos elegir el que
queramos para vy, y para el resto de los vértices tenemos x— 1 posibilidades (todas menos la
que hayamos elegido para v;_;). El principio del producto nos dice que p(G,x) = x(x—1)""".
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Antes de ver como calcular el polinomio cromaético de un grafo, realizamos la siguiente cons-
truccién.

Dado un grafo G, tomamos un lado e (que no sea un lazo) que una los vértices u y v. Entonces
el grafo G, es el grafo con los mismos vértices que G, pero al que se le ha quitado el lado e, y el
grafo G es el grafo que resulta de identificar en G, los vértices u y v.

Herramienta. Sea G un grafo, y u y v dos vértices adyacentes. Sea e el lado que los une.
Entonces p(Ge,x) = p(G,x) + p(GL, x).

Esta expresién podemos verla como

P(G,X) = p(Ge)X) _p(G;)X)>

lo cual nos permite reducir el célculo del polinomio cromatico de un grafo al calculo de polinomios
cromaticos mas pequenos (con menos lados o con menos vértices). De esta forma, podemos reducirlo
siempre al calculo de polinomios cromaticos de grafos completos o de grafos que son caminos
simples. Veamos algun ejemplo.

maxima 50: Para simplificar la notacion, vamos a representar el polinomio cromético de un grafo
encerrando el grafo entre corchetes.

1. Vamos a calcular el polinomio cromético de un ciclo de longitud 4.

[ ej {j —[M = x(x— 1) —x(x—1)(x—2)

= x(x—1)x*?—=2x+1—x+2]
= x(x —1)(x? = 3x + 3).

(%i1) load(graphs)$
(%i2) chromatic_polynomial (cycle_graph(4),x);

(%02) (x—1Px—(x—2) (x—1) x

(%13) factor(%);
(%03) (x—1)x (x*—3x+3)
2. Vamos a calcular otro polinomio cromatico.

3 B B0 4 B -0

(%i4) g:complete_graph(4)$
(%15) add_vertex(4,g);
(%05) 4

(%16) add_edges([[2,4],[3,4]1],8);
(%o06) done

(%i7) chromatic_polynomial(g,x);
(%07) —x*+3x* —2x —(x—=3) (x—=2) (x =) x+ (x—2) (x —=1) x + (x—1)"x —
2(x—=1Px+ (x—=1)x
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(%18) factor(%);
(%08) (x—3) (x—2)* (x—1) x

9. Arboles

Comenzamos en esta seccién el estudio de un tipo especial de grafos, los llamados arboles.
Estos fueron estudiados por vez primera por Kirchhoff, en 1847, en su trabajo de redes eléctricas.
Sin embargo, estas estructuras son hoy dia muy importantes en el estudio de las estructuras de
datos, las ordenaciones, etc.

Arboles, bosques y arboles generadores. Un drbol es un grafo conexo que no tiene ciclos.

Un grafo que no tenga ciclos se denomina bosque.

Dado un grafo conexo, un subgrafo suyo se dice drbol generador si tiene todos los vértices y es
un arbol.

Notese que un arbol no puede tener lazos ni lados paralelos.

Ejercicio 54: Sea G un grafo conexo que contiene un ciclo. Demuestra que si quitamos uno de
los lados del ciclo el grafo sigue siendo conexo. Prueba, usando este hecho, que todo grafo conexo
tiene un arbol generador

Ejercicio 55: Demuestra que todo arbol es un grafo plano.

Caracterizaciones de arboles. Sea G un grafo con n vértices, sin lados paralelos ni lazos.
Entonces son equivalentes:

1. G es un arbol.

2. Dos vértices cualesquiera estan unidos por un unico camino simple.
3. G es conexo, pero si le quitamos un lado deja de serlo.

4. G no tiene ciclos, pero si le anadimos un lado tendra algun ciclo.

5. G tiene n — 1 lados.

Es decir, los arboles son los menores grafos conexos, o los mayores grafos sin ciclos.
Nétese también que para las caracterizaciones segunda, tercera y cuarta no es necesario suponer
que el grafo no tiene lazos ni lados paralelos, pues de ellas se deduce.

maxima 51:

(%11) load(graphs)$

(%i2) g:complete_graph(5)$

(%13) a:minimum_spanning_tree(g)$

(%i5) draw_graph(g,show_edges=edges(a));
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Capitulo 7

Matrices con coeficientes en un cuerpo. Sistemas de ecuaciones lineales
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5. Rango de una matriz 84
5 Resolucion de si ] . Tineal 36
1. Matrices
Sean I = {1,2,...,m} y ] ={1,2,...,n}. Una matriz de orden m x n sobre un cuerpo K es

una aplicacién
A:Ix] =K (i,j) — ay.
Normalmente a la matriz A la representaremos de la siguiente forma

ar app ... Qp

az ax Qon
A= . ,

Amn1 Gm2 ... Qmn

y a veces simplemente escribiremos A = (ay;), si queda claro dénde varfan iy j. Diremos que A es
una matriz con m filas y n columnas.

Denotaremos por M. (K) al conjunto de las matrices de orden m x n sobre K.

s M«n(K) con la suma coordenada a coordenada tiene estructura de grupo abeliano, esto
es, la suma es asociativa, tiene elemento neutro, toda matriz tiene inversa y es conmutativa.

anl ap ... Qun by by ... bin ap + by apz+by ... amn+bin
a1 ap ... Qm N by by ... by, az; + by a»p+by ... amu+by
am1 AGm2 ... Qmn bmi bm2 ... bmn Am1 +bm1 a2 +bma ... Amn+bmn

. 1 2 3 2 33
Ejercicio 56: Calcula suma de <3 4 2) y (3 0 2) en Mjy3(Zs).

Sea A = (ay) € Mmxn(K) ¥y B = (bjr) € Myxp(K). Entonces podemos definir el producto de
Ay B como AB = C = (cix) € Muxp(K) con

Cik = Qi1byx + apby + - - - + Ainbnk.

12 3 121 2
Ejercicio 57: Sean A = EMuys3yB=[2 0 1 0] € Mj3yy. Calcula AB.
342 3101

78
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Una matriz de orden n x n diremos que es una matriz cuadrada de orden n.
s (Mpxn(K),+,+) es un anillo.

Ejercicio 58: Sean A = (; i) and B = (; é) Comprueba que AB # BA.

2. Determinantes
Dada A = (ay) € Muxn(K), definimos |A], el determinante de A, recursivamente de la siguiente
forma.
1) Paran =1, |(ay)| = an (el determinante de una matriz de orden 1 x 1 es su tinico coeficiente).
2) Supuesto que sabemos calcular el determinante de matrices de orden n—1, dado i € {1,...,n},
Al = apour + ...+ Qin&in,

donde o; = (—1)"|A;] se conoce como el adjunto de la entrada ayj, con Ay € Mn_1)xm-_1)(K)
la matriz que se obtiene al eliminar la fila i-ésima y la columna j-ésima de A. Esta férmula
se conoce como Desarrollo de Laplace por la fila 1 del determinante de A, y el resultado no
depende de i. Es mas, también se puede desarrollar por cualquier columna. Dado j el Desarrollo
de Laplace por la columna j es

|A| = A15%5 + ...+ Anj Knj.

Se puede comprobar facilmente que

= a2 = andz; —andax.
az an
app a2 a3

= (dy1 G Qap3| = a11022033 + @12023037 + Q21032013 — Q130220371 — A230A32077 — A12021033.
asy asz ass

12 3
Ejercicio 59: Calcula el determinante de [ 3 2 1| € M3.3(%Z7).
222
Ejercicio 60: Calcula el determinante de
12 31
2011
31 0 1 € M4><4(Z5)'
2 013

Si A = (ay) € Mmxn(K), la matriz traspuesta de A es

ap  an ani
a2 a» an2
t
At = _ € Muum(K),
AQim Am ... Aum

esto es, la matriz que se obtiene a partir de A intercambiando filas por columnas.
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Propiedades de los determinantes. Sea A € M, .(K).

1) A =AY

2) Si se intercambian dos filas (o dos columnas) de A se obtiene una nueva matriz cuyo determi-
nante es —|Al.

3) Si multiplicamos todos los elementos de una fila (o de una columna) de A por « € K, obtenemos
una matriz con determinante o|A|.

4) Si a una fila de A le sumamos otra fila de A multiplicada por un elemento de K, entonces la
nueva matriz tiene el mismo determinante que A (lo mismo ocurre si hacemos esta operacién
con columnas).

5) Si B € M, «n(K), entonces |AB| = |A]|B].

Ejercicio 61: Calcula el determinante de la matriz

2 340
312 2
4 3 3 1 S M4><4(Z5)'
2 3 3 2

El elemento neutro del producto en M, «(K) es la matriz identidad, que es la matriz que tiene
todas sus entradas cero salvo en la diagonal que tiene unos (cero es el elemento neutro de K para
la suma, y uno el neutro para el producto). A dicha matriz la denotamos por I,;, o simplemente I
cuando n queda claro en el contexto.

Una matriz A € M, «n(K) es regular si tiene inversa para el producto, esto es, si existe B tal
que AB = BA = I,,. En dicho caso, a la matriz B se le denota por A~

La matriz adjunta de A es la matriz formada por los adjuntos de las entradas de A, a saber,

X1 X2 ... Kn
i X1 &2 ... O
A= :

X1 AQm2 ... Xpn

Teorema. Sea A € M, ,(K). Entonces A es regular si y sélo si |A| # 0. En ese caso

AT = |ATA
Ejercicio 62: Calcula la inversa de
21 2
1 0 1 S ngg(Zg).
12 2

maxima 52: Vamos a ilustrar algunos ejemplos de operaciones con matrices en maxima.
(%i1) A:matrix([x,yl,[z,t]);

(%hot) (:Y)
(%i2) B:matrix([a,b], [c,d]);
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a b
(%02) (c d)

Hay que tener cuidado con la operacion de producto, pues en maxima dicha operacion se hace
como en con la suma, entrada a entrada. Para efectuar el producto usamos el punto.

(%13) A.B;

cy+ax dy+bx
(%003) (az+ct bz—l—dt)

(hi4) AxB;

ax by
(%o04) (cz dt)

Lo mismo ocurre con la exponenciacion.

(%15) A"2;

2 y?
(%05) (=%
(%i6) A~"2;

yz+x? xy-+ty

(%008) (xz+tz yz-l—tz)

(%i7) determinant(A);

(%07) tx—yz

(%18) determinant (A.B)=determinant (A)*determinant(B);

(%08) (cy+ax) (bz+dt)—(dy+bx) (az+ct)=(ad—Dbc) (tx—yz)
(%i9) expand (%) ;

(%09) —adyz+bcyz+adtx—bectx=—adyz+bcyz+adtx—bctx
(%110) is(h);

(%010) true
(%i11) A~"-1;
ot y
orn (o)
yz—tx _yzftx

(%i12) C:matrix([1,2,3],[4,5,6],[7,8,9]);

oo U1 N
O O W

1
(%012) 4
7

(%i13) determinant(C);

(%013) 0
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3. Operaciones elementales y determinantes

= Intercambio de filas: al intercambiar dos filas, el determinante cambia de signo.
= Sumarle a una fila un multiplo de otra: el determinante en este caso permanece inalterado.
= Multiplicar un fila por un elemento A no nulo: el determinante se multiplica por A.

maxima 53: Para calcular determinantes a veces es mas eficiente usar las operaciones que hemos
visto anteriormente. Asi efectuando operaciones elementales por filas o columnas (intercambio
o suma por un factor de otra) podemos llegar a una matriz triangular superior, esto es, una
matriz cuyas entradas por debajo de la diagonal son todas cero. A este proceso se le conoce como
eliminacion de Gauss-Jordan.

(%114) triangularize(C);

1 2 3
(%o014) 0 -3 —6
00 0

El determinante de una matriz de esta forma es trivial, pues sélo se multiplican los valores de la
diagonal.

maxima 54: Trabajemos ahora moédulo 5.

(%i1) modulus:5$
(%12) G:matrix([7,20],[16,47]1)$
(%1i3) H:rat(G);

(%03)/R/ (f g)

(%i4) determinant (H);

(%o04)/R/ —1

(%i5) I:invert(H);

(%05)/R/ (—2 0)
1 -2

(%i6) H.I;

(%06)/R/ (1 O)
0 1

4. Forma normal reducida por filas (o columnas) de una matriz

apnp ... Qp

Sea A = oo, € Mu«n(K). El pivote de la fila i-ésima de A, si ésta tiene alguna
AQmt1 ... Qmn

entrada distinta de cero, es la primera entrada no nula de dicha fila, a saber, es ay # 0 con j

minimo verificando esa condicién. Decimos que A estd en forma normal reducida por filas (de
forma andloga se define la forma normal por columanas) si

= Todas las filas nulas estan debajo de las filas que tienen alguna entrada distinta de cero.
= Si ay es el pivote de la fila i-ésima, entonces a;; = 1 y todas las demds entradas de su
columna son cero.



4. FORMA NORMAL REDUCIDA POR FILAS (O COLUMNAS) DE UNA MATRIZ 83

= Siempre que ay; sea el pivote de la fila i-ésima y ayy es el pivote de la fila k-ésima, si 1 <k,
entonces j < L.

Estas matrices tienen una forma escalonada, de forma que debajo de los escalones todas las
entradas son cero, y encima del peldano, que tiene que valer uno, también.

Dada una matriz A, siempre podemos calcular una forma normal reducida por filas (o por
columnas) haciendo uso de las operaciones elementales que hemos visto anteriormente.

La forma normal reducida asociada a A es Unica, ya sea haciendo operaciones elementales por
filas o por columnas.

maxima 55: Con el comando echelon podemos calcular una forma reducida escalonada, pero no
es exactamente la forma reducida por filas de la matriz dada, ya que no se exige que encima del
pivote hayan ceros.

(%i1) A:matrix([1,2,3,4],[5,6,7,8],[9,10,11,12])$
(%i2) echelon(A);
12 3 4
(%02) [0 1 2 3
0 00O
El comando triangularize da una forma reducida escalonada en la que los pivotes no tienen
por qué ser uno.

(%13) triangularize(A);

1 2 3 4
(%03) [0 —4 —8 —12
00 0 0

Si quisiésemos calcular una transformacién por columnas, basta que le apliquemos uno de estos
comandos a la matriz traspuesta de la original, trasponiendo luego el resultado final.

(%14) transpose(A);

15 9
2 6 10
3 7 11
4 8 12
(%15) triangularize(%);

1 5 9

0 —4 -8

0O 0 0

0O 0 0

(%i6) transpose(%);
1 0 00

(%06) (5 —4 0 O
2 -8 00

(%o04)

( %05)

maxima 56: Podemos usar la forma normal reducida para calcular inversas.

(%i1)  A:matrix([1,-1,1],[2,0,1],[0,3,-2])$
A esta matriz le anadimos la matriz identidad a la izquierda, donde gardaremos las operaciones
elementales que se realizan con el comando echelon.
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(%i2) M:echelon(addcol(A,ident(3)));
1o 4 0 1 o0
(%02) |01 =2 0 0 3
o0 1 -6 3 =2

Las operaciones elementales las guardamos en una matriz que llamamos P.

(%i3) P:submatrix(M,1,2,3);

0 % 0
(%03) 0 0 %
—6 3 -2
Como vemos, al multiplicar P por A, el resultado es una forma escalonada.
(%i4) T:P.A;
10 3
(%o04) 0 1 —%
0 0 1

Como hemos comentado antes, el comando echelon no hace ceros los elementos que estdn
encima de los peldanos. Para conseguirlo, trasponemos la matriz, y repetimos el proceso.

(%15) N:addcol(transpose(T),ident(3));
1 0 0100

( %05) O 1 0010
1 —21001

(%i6)  echelon(N);

100 1T 00
( %06) o1 0 0 10
0 0 1 —% % 1
(%17) Q:submatrix(%,1,2,3);
1 00

(%07) 0 10
1 2 1

3
Ahora en P tenemos las operaciones necesarias para conseguir a partir de A una matriz trian-

gular superior (eliminacién de Gauss), y en Q' las operaciones que eliminan los valores no nulos
encima de los pivotes (eliminacién Gauss-Jordan).

(%18) paso:transpose(Q).P;
3 =1 1
( %08) —4 2 -1

-6 3 -2
(%19) paso.A;

100
(%09) 010

0 01

Por lo que la matriz paso es una inversa de A.

5. Rango de una matriz

Sea A € Mpn(K). El rango de la matriz A es el nimero de filas no nulas de su forma normal
reducida por filas. De forma analoga se define el rango por columnas de A.
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Ejercicio 63: Calcula el rango por filas y por columnas de la matriz <; ; %) € Myy3(Zs).

Teorema. El rango por filas de A coincide con el rango por columnas de A.
A dicha cantidad la llamaremos simplemente rango de A y la denotaremos por rango(A).

Teorema (rango y determinantes). El rango de una matriz es el maximo de los 6rdenes
de sus submatrices cuadradas regulares.

Ejercicio 64: Calcula el rango de la matriz

S M3><4(R) .

—_— O

1 2 1
213
4 5 5

maxima 57: El rango de una matriz también se puede calcular contando las filas no nulas de su
forma triangular reducida asociada.

(%i1) A:matrix([0,1,2,3],[4,5,6,7]1,[8,9,10,11]);

01 2 3
(%01) 45 6 7
8§ 9 10 11
(%i2) rank(A);
(%02) 2
(%13) echelon(A);
1 2 3 7
4 2 1
(%o03) 01 2 3
0 00O
(%14) triangularize(A);
456 7
(%o04) 04 8 12
000 O
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6. Resolucion de sistemas de ecuaciones lineales

Un sistema de ecuaciones lineales con n incognitas sobre un cuerpo K es una expresion de la
forma
anx; + -+ amXxn = by

QX1 + -+ QunXn = bm
Los elementos ai; € K son los coeficientes del sistema, los b; € K son los términos independientes, y
las x; son las incégnitas. Una solucién es una n-upla (sq,...,s,) € K™ tal que X = $1,...,Xn = Sn
verifica las igualdades del sistema.
Las m igualdades del sistema anterior se pueden expresar como una tunica igualdad entre
matrices,
aynr ... Qn X1 b]

mj ... Omn Xn b

a la que llamaremos expresién matricial del sistema. A dichas matrices se les llama matriz de
coeficientes, matriz incégnita, y matriz de términos independientes.
La matriz ampliada del sistema es

apnr ... Qp b]

mj] ... Qmn bm

Normalmente denotaremos a esta matriz por (A|B).

Si un sistema tiene solucién diremos que es compatible, y en caso contrario incompatible. Si
tiene una unica solucion, es un sistema compatible determinado, y si tiene més de una solucién
decimos que es un sistema compatible indeterminado.

Dos sistemas de ecuaciones lineales sobre un cuerpo y con igual nimero de incégnitas son
equivalentes si tienen las mismas soluciones.

Proposicién (operaciones elementales).

1) Siintercambiamos de posicién dos ecuaciones de un sistema, obtenemos un sistema equivalente.

2) Si multiplicamos una ecuacién por un escalar no nulo, obtenemos un sistema equivalente.

3) Si a una ecuacién le sumamos otra multiplicada por un escalar, también obtenemos un sistema
equivalente al original.

Ejercicio 65: Resuelve el siguiente sistema de ecuaciones con coeficientes en Zs.

X1 +x2+x3+x%x5 =1
214+ 3%+ X3+ x4 =2
4X1 +3X2+X3+2X4:O
X1 +X2—|—2X3+3X4:2

Teorema de Rouché-Frobenius. Sea AX = B la expresién matricial de un sistema de
ecuaciones lineales con n incégnitas.
1) El sistema es compatible si y sélo si rango(A) = rango(A|B).
2) El sistema es compatible determinado si y sélo si rango(A) = rango(A|B) = n.
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maxima 58: Vamos a estudiar el siguiente sistema de ecuaciones con coeficientes en Zs.

x+y+z=3
Ix+y+2z=1
x+4y =0

(%i1) modulus:5$

(%i2) B:matrix([1,1,1],[3,1,21,[1,4,01)%

(%1i3) rank(B);

(%03) 2

(%i4) C:addcol(B,[3,1,01)$

(%i5) rank(C);

( %05) 2
El sistema es compatible determinado.

maxima 59: Estudiemos ahora el siguiente sistema con coeficientes en Z; en funcién del parametro
a.
X+ty+z=a

2x+ay+z=1

x+3y+az=2
(%11) modulus:7$
(%i2) D:matrix([1,1,1],[2,a,1],[3,3,a])$
(%i3) determinant(D);
(%03) a*—5a+6

(%i4) factor(a~2-5%a+6);
(%04) (a—3) (a—2)

Asi, si a € {2,3}, la matriz de coeficientes tiene rango méximo y el sistema es compatible
determinado.

Estudiemos por separado los casos a =2y a = 3.

(%15) E:subst(2,a,D);

( %05)

w N —
w N —
J—

(%i6) rank(E);
( %06)

(%i7) F:addcol(E,[2,1,2]1)$
(%i8) rank(F);
( %08) 3

Luego para a = 2, el sistema es incompatible.

\)

(%19) G:subst(3,a,D)$
(%i11) rank(G);
(%ol1) 9

(%112) H:addcol(G,[3,1,21)%$
(%i13) rank(H);
(%013) 2
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Para a = 3 obtenemos un sistema compatible indeterminado.

Ejercicio 66: Estudia el siguiente sistema de ecuaciones con coeficientes en Zs.

2x+4y+4z =1
x+y+2z2=2
dy+z=3

Ejercicio 67: Estudia los siguientes sistemas con coeficientes en R en funcién de los parametros a
y b.

1)
ax+y+2—1
X+y+z=2
ax+y+z= }
ax+y+z=

1
xt+y+z=>
ax+by+z=1

1

X — y+z—1}

ax+y+z=1
x+2y+az=2

maxima 60: El comando linsolve en maxima puede ser utilizado para resolver sistemas lineales
de ecuaciones.

(%11) linsolve([2xx+y+z=2,x-y-2x2=0], [x,y,z]);
%r1 —6 %1+ 6

(%o01) [X:—T,y Z—T,ZZ Yor1]

Como vemos, las soluciones dependen de un parametro, que aqui se denomina %r1. El rango
de la matriz de coeficientes es 2 como vemos a continuacién, y es el maximo posible (sélo hay dos
filas), por lo que coincide con el de la matriz ampliada. El sistema es compatible indeterminado.

(%i2) rank(matrix([2,1,1],[1,-1,-21));

(%02) 2
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Férmula de Cramer. Un sistema es de Cramer si su matriz de coeficientes es cuadrada y
regular. Si AX = B es la expresiéon matricial de un sistema de Cramer, entonces el sistema es
compatible determinado y su unica solucién es

A (Ml -y M),

donde M; es la matriz que se obtiene a partir de A cambiando la columna i-ésima por B.

Ejercicio 68: Prueba que el siguiente sistema de ecuaciones con coeficientes en R es un sistema de
Cramer, y encuentra sus soluciones usando la férmula de Cramer.

x+y+z=1
x—y+z=0
XxX+y—z=2
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1. Espacios y subespacios

Sea K un cuerpo. Diremos que un conjunto V tiene estructura de espacio vectorial sobre K si

1) en V hay una operacién + de forma que (V,+) es un grupo abeliano,
2) existe una aplicacién K x V. — V| (a, 7) — a Vv verificando
1) a(W+V)=ad +aVv,

1) (a+ b)W =aW + b,

m) a(bw) = (ab)W,

) 10 = 0.

A los elementos de V los llamamos vectores y a los de K escalares. La aplicacién descrita arriba
se conoce como producto por escalares.

Ejercicio 69: Probar que si K es un cuerpo, entonces para cualesquiera enteros positivos n y m,
a) K",

b) {a(x) € K[x] tales que gr(a(x)) < n},

¢) Misxn(K),

son espacios vectoriales sobre K.

Ejercicio 70: Encuentra un espacio vectorial de cardinal 81.

Propiedades que se deducen de la definicion.

1) 0w = 0 (el elemento neutro de + en V).
- =

2) a0 = O._>

3)Siatw = 0, entonces a=00 U = 0

4) —(aW) = (—a)U = a(—1).

5) a(W—V)=au —aVv.

6) (a— )W =au —at.

7) SiaW =aV y a0, entonces W = V.

90
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_)
8) SiaW =bW y U # 0, entonces a = b.

En adelante V denotara un espacio vectorial sobre un cuerpo K.

Un subconjunto U de V es un subespacio vectorial de V si

1) U#0,
2) si W,V €U, entonces & — v € U (U es un subgrupo de (V;+)),
3)siaeKy U € U, entonces au € U.

Las dos ltimas propiedades se pueden substituir por

2)si W,V € Uy a,b € K, entonces a + bV € U (U es cerrado para combinaciones lineales
de sus elementos).

Ejercicio 71: Demuestra que {(x,y,z) € Q® tales que x +y + z = 0} es un subespacio vectorial de

Q.
Ejercicio 72: Encuentra todos los elementos de {(x,y) € Z3 tales que x +y = O}

= Un subespacio vectorial de V es un espacio vectorial sobre K, con la misma suma y producto
por escalares.
» La interseccion de subespacios vectoriales de V es de nuevo un subespacio vectorial de V.

Sea S un subconjunto no vacio de V. El subespacio vectorial de V generado por S es la in-
terseccién de todos los subespacios vectoriales de V que contienen a S. A dicho subespacio lo
denotaremos por (S).

= S5iS= {ﬂ)h ceny U}, entonces

(S) :{a1ﬂ’1 +---+anﬂ>n tales que aj,...,a, € K}

Ejercicio 73: Calcula todos los elementos del subespacio vectorial de Z3 generado por{(1,2,0), (0,1,2)}.

Sean Uy, ..., U, subespacios vectoriales de V. El subespacio vectorial suma de U;,..., U, es
u, +...+Un:{ﬁ1 -I—-“-I—ﬁTL tales que ﬂ>1 € U1,...,ﬂ>n e U,}

n U+ 4+ Uy = (WU U U).
w Sily =(S),...,U, =(S,), entonces Uy +---+ U, =(S;U---US,).

Sean U y W subespacios vectoriales de V. Decimos que V es suma directa de U y W, y lo
denotamos por V. = U & W, si todo vector VeV se puede expresar de forma tnica como
vV =1+ W, con U € Uand W € W. En dicho caso, diremos que los subespacios vectoriales U

y W son complementarios.
s V=UaWsi ysilosi V=U+WyUNW={0}.
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Ejercicio 74: Sean U = {(x,y) € R? tales que x +y = 0} y W = {(x,y) € R? tales que x —y = 0}.
Demuestra que R? =U @ W.

maxima 61: El conjunto K™ con K un cuerpo y n un entero positivo es un espacio vectorial. Para
el caso n = 3, el producto por escalares esta definido asi.

(%il) ax[x,y,z];
(%o01) lax,ay,az]
Y la suma de vectores se hace componente a componente.
(hi2) [x_1,y_2,z_3]+[x_2,y_2,z_2];
(%02) x2+x1,2y2,z3+2z2]
Veamos que el conjunto de vectores de la forma (x,y,0), con x,y € K, es un subespacio de K3.
(%13) ax[x_1,y_1,0]+bx[x_2,y_2,0];
(%03) [bx2+ax.1,by2+ay.1,0]
Lo mismo ocurre con los de la forma (x,x,x).

(hid) ax[x,x,x]+b*[x,x,x];

(%o04) [bx+ax,bx+ax,bx+ ax]

2. Bases

Un conjunto de vectores S C V es linealmente dependiente si existen n un enteg) positivo,
(Vi ..,V CSy(an...,an) € KP\{(0,...,0)} tales que a; Vi + -+ an vy = 0. En caso
contrario, decimos que S es un conjunto de vectores linealmente independientes.

Ejercicio 75: Demuestra que los vectores (1,1,0),(0,1,1),(1,0,1) € R3? son linealmente indepen-
dientes.

= S es un co Junto de vectores linealmente dependientes si y sélo si existe vV € S tal que
_)
v € (S\{V}).
Si 0 €S, entonces S es un conjunto de vectores linealmente dependientes.
Si S es un conjunto de vectores linealmente dependientes, entonces para todo Vo€ V,
S U{¥} también es un conjunto de vectores linealmente dependientes.
Si S, #S > 2, es un conjunto de vectores linealmente independientes, entonces para todo
veSS \{7} también es un conjunto de vectores linealmente independientes.

maxima 62: Veamos si{(1,2),(0,1)} es un conjunto de vectores linealmente independientes en Q?.
(%i1) solve(xx[1,2]+y*[0,1], [x,y]);

(%01) [x =0,y = 0]]

Ahora probamos con {(1,2,3),(2,4,6)} en Q°, y vemos que son dependientes.
(%hi2) solve(x*[1,2,3]+y*[2,4,6], [x,y]);
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solve: dependent equations eliminated: (2 3)

(%02) [x =—=2%r6,y = %rl]]

Una base de V es un subconjunto S de vectores linealmente independientes de V tal que V = (S).

= Si B = {71,...,7n} es una base de V, entonces para todo vector v e V, existen
aj,...,a, € K tnicos tales que V= a171 4+ anvn.
A la n-upla (ay,...,a,) se le llama coordenadas del vector v respecto de la base B.

Ejercicio 76: Demuestra que B = {(1,2),(1,3)} es una base de ZZ. Calcula las coordenadas del
vector (2,4) respecto de dicha base.

_)
Teorema de la base. Todo espacio vectorial distinto de { 0 } tiene al menos una base. Ademés
todas sus bases tienen el mismo cardinal.
Al cardinal de una base de V lo denotamos por dim(V), y nos referiremos a él como la dimensién

de V.

Ejercicio 77: Prueba que dim(K™) = n, dim(M,xn(K)) = nmy dim({a(x) € K[x] tales que gr(a(x)) <
n})=n+1.

. . — — .
Teorema de ampliaciéon a base. Si dim(V)=ny{Vvy,..., V.}esun cogunto de vectores

) . . , . —

linealmente independientes de V, entonces m < n. Ademaés existen V' 41,..., Vi, € V, de forma

que {71, ceny Vm, 7m+1, ceey Vn} es una base de V.

Ejercicio 78: Amplia {(1,1,1)} una base de R3.

» Si dim(V) = n, entonces cualquier conjunto de vectores de V linealmente independientes
de cardinal n es una base de V.

Ejercicio 79: Prueba que {(1,2,1),(1,1,1),(1,0,0)} es una base de Z3.

Ejercicio 80: Calcula una base del subespacio vectorial de R? generado por {(1,2,1), (2,4, 2), (1, 3,2), (2,5, 3)}.

maxima 63: Calculemos una base del subespacio vectorial U de Q® generado por {(1,2,3), (1,1,1),(3,2,1)}.
(%i1) C:matrix([1,2,3],[1,1,1],[3,2,11);

12 3
(%o01) 1T 11
3 21

Como las operaciones elementales por filas en la matriz C no alteran los sistemas de generadores,

(%12) triangularize(C);
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1 2 3
(%02) 0o -1 =2
O 0 0

nos dice que {(1,2,3),(0,—1,—2)} es una base de U.

maxima 64: Veamos que B ={(1,1,1),(1,2,1),(0,0,2)} es una base de Z2, calculemos las coorde-
nadas de (2,3,4) respecto de esa base.

(%i1) modulus:5$
(%i2) solve(x*[1,1,1]1+y*[1,2,1]+2%[0,0,2], [x,y,2]);
(%002) [x =0,y =0,z =0]]
Al ser tres generadores linealmente independientes en Z32, el conjunto dado es una base.

(%i3) solve(x*[1,1,1]+y*[1,2,1]+2*[0,0,2]-[2,3,4], [x,y,z]);
(%03) [x=1,y=1,z=1]]

maxima 65: Sean U y W los subespacios vectoriales de Z3 generados por {(1,1,1),(1,2,1)} y
{(1,2,3),(0,0,2)}, respectivamente. {Es Z = U + W?

(%i1) modulus:5$
(khi2) D:matrix([1,1,1],[1,2,1],[1,2,3],[0,0,2]);
1

(%02)

O — -
S NN =
N W — —

(%13) triangularize(D);

( %03)

o O o =
(3 SR eI

1
1
0
0
Asf, una base para U+ W es {(1,1,1),(0,1,0), (0,0,2)}, por lo que U+ W = Z3.

maxima 66: Sea U el subespacio vectorial de Q3 generado por {(1,1,1)(2, 1, 3), (4,3,5)}, calculemos
un complementario de U.

Primero buscamos una base para U, aplicando operaciones elementales al sistema de genera-
dores que nos dan.

(%i1) modulus:false$
(%i2) E:matrix([1,1,1],[2,1,3]1,[4,3,51)%
(%13) triangularize(E);

11 1
(%03) 0 —1 1
0 0 0

Ahora probamos a anadir un vector que sea independiente con los dos anteriores.

(%i4) F:matrix([1,1,1],[0,-1,1]1,[1,0,0]1)$
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(%15) triangularize(F);

1 0 0
( %06) 0o —1 1
0O 0 -2

De esta forma la recta generada por (1,0,0) es un complemento de U en Q?.

maxima 67: Veamos ahora la dimensién del subespacio de Z3 generado por
{(2) 4? 3? 4), (4) ] ) 6) ] )? (3) 3) 3? 3)? (5’ O’ 6) O)}‘

(%i1) modulus:7$
(%i2) G:matrix([2,4,3,4]1,[4,1,6,1],[3,3,3,3]1,[5,0,6,0]1)%
(%13) triangularize(G);

20 -1 0

0 -2 -1 —2
(%03) 0O 0 0 0

0 0 0 0

Luego la dimensién es dos, al tener dos filas no nulas en su forma reducida.

3. Ecuaciones del cambio de base

Sean B = {V1,..., Va}y B/ = {7]’, e 7{1} dos bases de V. Sea X € V. Entonces existen
X1y ooy Xny Xy ..oy X, € K tales que x :x1v1+---+xn7ny7:x{7]’—|—---—|—x{171’1. Queremos

ver qué relaciéon hay entre las coordenadas de x respecto de B y de B’. Para ello utilizaremos las
coordenadas de los vectores de B respecto de B’. Supongamos que

- — —
Vi=anvi+t--+QmVy,

— —
V.
Entonces
— — — — — — —
X =x1 Vit FxpyVa=xi(lanVi+-F+am vy +-+xu(auVi+--+amv,)
— — — —
=(x1an + -+ XpQu) Vi + o+ (XQim o X Q) VL =XV A XV
Por tanto

X] =X1Q17 + - 4 XnQny

[
Xn—xla1n+"'+xnann

que se conocen como las ecuaciones de cambio de base de B a B’. Estas se pueden también expresar
en forma matricial

apn ... Qun
(X7 %p) = (X100 %)
ant ... Qnpn
ay; ... Qin
A la matriz A = oo, se le llama matriz de cambio de base de B a B’. Esta matriz es
An1 ... Qpn

siempre regular y su inversa, A~' es justamente la matriz de cambio de base de B’ a B.
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Ejercicio 81: Sean B ={(1,1,0),(1,2,1),(1,1,2)} y B' ={(1,1,0), (1,0, 1), (0,1, 1)} dos bases de

Z3. Calcula las ecuaciones de cambio de base de B a B’.

maxima 68: Supongamos que K es Zs y V = Z2.
(%i1) modulus:5;
(%o1) 5

Elegimos dos bases, B = {¥, V,} y B = {1, UW,}.

(%i2) vi:[1,2];v2:[0,3];

(%02) [1,2]
(%03) [0, 3]
(%i4) ui:[1,1];u2:[2,0];

(%04) [1,1]
( %05) (2, 0]

Calculamos las coordenadas de U5 y u, respecto de B.
(%16) solve(allxvi+al2xv2-ul, [all,al12]);

( %o06) [all =1,a12 = -2]]
(%17) solve(a21x*vi1+a22xv2-u2, [a21,a22]);
(%o7) [[a21 = 2,a22 = 2]]

Asi la matriz de cambio de base de B’ a B es la siguiente.
(%18) A:matrix([1,-2],[2,2]);

(%08) G _22)

El vector ﬂ)1 + ﬁz tiene coordenadas (1,1) en B’. Veamos cudles son sus coordenadas en B.
(%19) [1,1].4;

(%09) (3 0)

Comprobamos el resultado.
(%i10) ul+u2=3%*vi;

(7%010) 3,11 = 3,6
(%111) mod(%,5);

(%011) 3,11 =103,1]

La matriz de cambio de base de B a B’ es la inversa de A.
(%hi12) A~"(-1);
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(%o012) (_22 %)

maxima 69: Dadas las bases de Q*, B ={(1,2,3),(0,3,1),(0,0,4)}y B’ ={(1,1,1),(0,2,3), (0,0,7)},

veamos cudl es la matriz de cambio de base de B a B’ y la de B” a B.

(%11) modulus:false$
(%i2) solve(x*[1,1,1]+y*[0,2,3]+z*[0,0,7]1-[1,2,3], [x,y,2]);

(%02) x=1y=32=%]
(%13) solve(xx[1,1,1]+y*[0,2,3]+zx[0,0,7]1-[0,3,1], [x,y,2]);
<%O3> [[ - 0)9 - %)Z - _%]]
(%hi4) solve(xx[1,1,1]1+y*[0,2,3]1+z*[0,0,7]1-[0,0,4], [x,y,z]);
(%04) [x =0,y =0,z =13]]
(%i5)  [x,y,z],%o02;

(%05) []»%)11_4]

(hi6)  [x,y,z],%03;

(%06) [0,3,—3]

(hi7)  [x,y,z],%04;

(%07) [O>O,i71]

La matriz de cambio de base de B a B’ es

(%18) H:matrix(%o5,%06,%07) ;

1 1 1
3 M
(%08) 0 5 —
00 ¢
y lade B’ a B es
(%19)  J:invert(%);
R
(7%09) 0 3 4
0 0 2

Si las coordenadas de un vector respecto de la base B son (1,1,1), sus coordenadas respecto
de B’ son

(%i10) [1,1,1].H;
(%010) (12

~N=
~—

4. Ecuaciones paramétricas de un subespacio vectorial

Supongamos que dim(V) = n y que U es un subespacio vectorial de V de dimensién r. Sea
B ={V1,..., V. unabase de V, y By ={U1,..., W,} una base de U. Supongamos que

— — —
Uy =anpvi+--+ amVa,

— — -
Uy =0aVi+ -+ Qm Vn.
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Sea X =x1 Vi 4+ + xnvn un vector de V. Veamos qué tienen que verificar las coordenadas
(X1y...,%n) para que x € U.

El vector X € U si y s6lo si existen Aq,..., A € K tales que X =AMNUi4-+ Arﬁ)r, y esto
equivale a que

X =MlanVi+-FamvV)+-+Alan V4 +am V)
= (}\1(111 + "'+}\ra‘r1)7}1 4+ (}\1a1n+"'+}\rarn)v)n

Como las coordenadas son tnicas,

X1 :}\1011 —|—"'+}\r(lﬂ

Xn:7\1a1n+"'+7\r(1m

Estas ecuaciones son las ecuaciones paramétricas de U respecto de la base B.

Ejercicio 82: Dada la base B ={(1,1,0), (1,0,1),(0,1,1) de @3, y U el subespacio vectorial de Q?
generado por {(1,2,1),(1,3,2),(2,5,3)}, calcula las ecuaciones paramétricas de U respecto de la
base B.

maxima 70: Sea U el subespacio de Z3 generado por {(2,3,4),(2,4,4),(4,6,1)}, calculamos a
continuacion las ecuaciones paramétricas de U respecto de la base B ={(1, 2, 3), (0, 3,4)(0,0,6)}.
Primero encontramos una base para U, y lo hacemos con el comando triangularize.

(%i1) modulus:7$
(%i2) K:matrix([2,3,4],[2,4,4]1,[4,6,11)$
(%13) triangularize(K);

(%03) (
0

Por tanto, U tiene como base {(2,3,—3), (0, 2,
elementos respecto de la base B.

O O N
SN W

O
0

—

}. Encontremos pues las coordenadas de sus

(%i4) solve(xx[1,2,3]+y*[0,3,4]+zx[0,0,6]-[2,3,-3], [x,y,z]);

<%O4> [x = 2»9 =2,z= 3]]
(%i5) solve(x*[1,2,3]+y*[0,3,4]+z*[0,0,6]-[0,2,0], [x,y,z]);
( %05) [x =0,y =3,z=-2]]

Asi un elemento de coordenadas (x, y, z) respecto de la base B estard en U siy sélo si (x,y,z) =
A(2,2,3) + 1(0,3,5) para algun A, i € Z;. Las ecuaciones paramétricas son

x = 2A,
Yy =2A + 3,
z=3\+5u.
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5. Aplicaciones lineales

En lo que queda de capitulo suponemos que V'y V' son dos espacios vectoriales sobre el mismo
cuerpo K.
Una aplicacion f: V — V' es lineal (o un homomorfismo) si
1) para todo W, VeV, f(u+7V)==f(u)+f(V),
2) para todo a € Ky V eV, f(aV) = af(V).
= = , —
» f(0)= 0 (el primer 0 es de V y el segundo de V).
= f(—V) = —f(V).
= El niicleo de f, N(f) ={V € V tales que f(V) = ?}, es un subespacio vectorial de V.
» La imagen de f, Im(f), es un subespacio vectorial de V’.

Una aplicacién lineal es un
1) monomorfismo si es inyectiva,
2) epimorfismo si es sobreyectiva,
3) isomorfismo si es biyectiva.
» Si f es un isomorfismo, también lo es .
= f es un monomorfismo si y sélo si N(f) = {?}.
s SiV=({V1,..., Vab), entonces Im(f) = {f(V1), ..., f(V)}.
» Si f es un monomorfismo y {v'y,..., V',,} son linealmente independientes, entonces
(f(V4 Yyeuny £(V )} también son linealmente independientes.

Ejercicio 83: Demuestra que f : R — R?, f(x,y,z) = (x+y,x+z) es una aplicacién lineal. Calcula
N(f) y Im(f). ;Es f un isomorfismo?

Ejercicio 84: Sea f : Z2 — Z3, (x,y,z) — (x,y,z +y). Calcula una base de Im(f). ;Es f un
epimorfismo?

Teorema: Las aplicaciones lineales vienen determinadas por la imagen de una base.
— — — — . s . . .z
Sea B ={V';,..., V\y} una base de V, y {V'{,..., V[ } C V', Entonces existe una tnica aplicacién
: . - — = — J— -
lineal f : V. — V' verificando que f(Vv';) = Vv'{,...,f(V,) = V. Ademas, {V'],..., V'/} es una
base de V' si y sélo si f es un isomorfismo.

Los espacios vectoriales V 'y V' diremos que son isomorfos si existe un isomorfismo f:V — V',
= V y V’ son isomorfos si y sélo si dim(V) = dim(V’).

Ejercicio 85: Sea U el subespacio vectorial de Z$ generado por {(1,2,3), (0,1,2), (1,3,0)}. Calcula
el cardinal de U.

maxima 71: Sea f:R?® — R?* definida por f(x,y,z) = (x +y,x+z,2x +y +2z,y —z). Para calcular
su ntcleo usamos:

(%11)  solve([x+y=0,x+z=0,2*x+y+z=0,y-2z=0], [x,y,z]);
solve : dependentequationseliminated : (34)

(%ol) [x = —%rl,y = %rl,z = %rl]]

Asi N(f) = {(—a,a,a) | a € R}, que tiene como base a {(—1,1,1)}. Para calcular una base
de la imagen, sabiendo que {f(1,0,0),f(0,1,0),f(0,0,1) es un sistema de generadores, hacemos lo
siguiente.
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(hi2)  f(x,y,z):=[x+y,x+z,2xx+y+z,y-z]$
(%13) A:matrix(£(1,0,0),f(0,1,0),f(0,0,1))%
(%14) triangularize(A);

1T 1 2 0
(%04) 0 -1 —1 1
00 0 0

Por tanto, una base de Im(f) es {(1,1,2,0), (0,—1,—1,1)}.

6. Ecuaciones de una aplicacion lineal

Sea f : V — V/ una aplicacién lineal, y B = {V'1,..., Vn} v B/ = {71’, .. .,7,’11} bases de V' y
V', respectivamente. Sean X = X1 V1 +---+Xn V'n y f(x) = x{v]’ +- - 4%, Vim € V. Queremos
estudiar la relacién que existe entre las coordenadas de x y f (?)

Supongamos que

— — —
f(v1)=anv1+---+a1mvm,

Entonces

f(X)=f(x1 V14 +x V) =F( V1) 4+ xnf( V)
V)4 xplam V4 A+ aum VL)
)V +

"+(X1a1m+"'+xnanm)

—
:x1(a11v1+-~+a1m
—
= (xjay + -+ XnQn V-

Asi
X{ =anXx; + -+ aQniXn

/
Xm = QimXg + -+ AnmXn

que se conocen como ecuaciones de la aplicacién lineal respecto de las bases B y B'.
Estas ecuaciones se pueden expresar de forma matricial como

apn ... Qm
(X1 X1/n) = (X1 Xn)
An1 «.. QAnm
apn ... Qm
La matriz A = oo, es la matriz asociada a la aplicacion lineal f respecto de las
Any «.. QAnm

bases B y B'.
= f es un isomorfismo si y solo si A es regular.

Ejercicio 86: Sea f : Q* — @3, la aplicacién lineal definida por f(x,y,z) = (x,x+y,x—y). Calcula
las ecuaciones de f respecto de las bases {(1,1),(1,2)} de Q% y {(1,1,0),(1,0,1),(0,1,1)} de Q3.

Ejercicio 87: Sea f : Z2 — Z3 una aplicacién lineal tal que f(1,2) = (2,3,1) y f(2,5) = (3,4,2).
Calcula la expresién general f(x,y).
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Ejercicio 88: Encuentra la matriz asociada a la base {(1,0,0), (0, 1,0), (0,

, 0,0,1)} de una aplicacion
lineal f: R? — R® que verifica que (1,0,0) € N(f) y Im(f) = ({(2,3,1), (3,3

1
y2)}).

maxima 72: Calculemos la expresion matricial de la aplicacion lineal del ejemplo anterior respecto
de las bases B = {(1,1,0),(1,0,1),(0,1,1)} y B ={(1,1,1,1),(0,1,1,1),(0,0,1,1),(0,0,0, 1)}
Podemos por ejemplo calcular las coordenadas de las imagenes por f de los elementos de B respecto

de B’.

(hi1)  f(x,y,z) :=[x+y,x+z,2%x+y+z,y-z]$

(%12) solve(x=x[1,1,1,1]+y*[0,1,1,1]+z*[0,0,1,1]+t*[0,0,0,1]-
£(1,1,0), [x,y,z,t]);

(%02) [x=2,y=—-1,z=2,t =-2]]

(%13) solve(xx[1,1,1,1]+y*[0,1,1,1]+2zx[0,0,1,1]+t*[0,0,0,1]-
£(1,0,1),[x,y,z,t]);
(%03) [x=1y=1,z=1,t=3]]

(%14) solve(xx[1,1,1,1]+y*[0,1,1,1]+2*[0,0,1,1]+t*[0,0,0,1]-
£(0,1,1),[x,y,2z,t]);

(%04) x=1y=0,z=1,t=-2]]
(%i5) C:matrix([2,-1,2,-2],[1,1,1,-4],[1,0,1,-2]);

2 -1 2 =2
(%05) 11 1 —4

1T 0 1 =2

Por tanto la expresién matricial es (x',y’,z’,t") = (x,y,z)C.

maxima 73: Tomamos una base B = {V, V3, V'3} en Q3.
(%i1) vi:[1,2,1]1;v2:[1,1,0];v3:[0,0,3];

(%o1) [1,2,1]
(%02) [1,1,0]
(%03) 0,0, 3]

Y las imégenes de esos vectores respecto de la base usual {(1,0), (0,1)} en Q?.
(%hid) fvi:[1,1];fv2:[2,1];fv3:[1,2];

(%o04) [1,1]
( %o05) 2,1]
(%o06) (1, 2]

La matriz de f asociada a dichas bases es:
(%i7) A:matrix(fvi,fv2,fv3);
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1 1
(%o7) 2 1
1 2

Si queremos calcular la imagen de un elemento con coordenadas (x,y,z) respecto de B, sélo
tenemos que multiplicar esas coordenadas por A.

(%18) [x,y,z].A;

(%o08) (z+2y+x 2z4+y+x)

Asi f(x,y,z) = (x + 2y + z,x +y + 2z), donde (x,y, z) son coordenadas respecto de B.

Si lo que queremos es la expresion de f(x,y,z), con (x,y,z) coordenadas respecto de la base
usual {(1,0,0),(0,1,0),(0,0,1)}, lo que hacemos es calcular primero el cambio de base de B a la
base usual, y luego lo multiplicamos por A, obteniendo asi la expresiéon matricial respecto de las
bases usuales.

(%19) B:matrix(vi,v2,v3);

1 21
(%09) 110
0 0 3
(%i10) B~~-1;
-1 2 3
(%010) T -1 =1
o 0 3
(%i11) AA:%.A;
05
3 3
%o11 -1 -2
(%o011) 5
3 3

Veamos que el resultado es el deseado (71 lo definimos en funcién de la base usual).
(%i12) v1.AA;v2.AA;v2.AA

(%012) (11
(%013) (2 1)
(%014) (1 2)

Por tanto las coordenadas de f(x,y, z) respecto de la base usual de Q?, con (x,y, z) coordenadas
en la base usual de Q3, la podemos calcular como sigue.

(i17) [x,y,2] . AA;
(%017) (

_ 4y, 10x 2z _ 2y 5x
3+3 3 3+3)

win

maxima 74: Calculemos la expresién de una aplicacién lineal g : Z2 — Z2 tal que g(1,1,1) = (2,0),
g(1,2,1) = (1,1) y ¢(0,0,2) = (3,3).

(%i1) modulus:5$
(%i2) D:matrix([1,1,1],[1,2,1]1,[0,0,2]1)$
(%13) E:invert(D)$
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(%i4) F:rat(E);

2 -1 2
(%o04)/R/ ~1 1 0
0 0 -2

Tenemos asi las coordenadas de los vectores (1,0,0), (0,1,0) y (0,0,1) respecto de la base

{,1,1,0,2,1),(0,0,2)}.

(%i5) G:matrix([2,0],[1,1],[3,31)%
Y sus iméagenes por g se calculan multiplicando por G.

(%i6) H:F.G;

10
(%06)/R/ 1
1

Por tanto g(x,y,z) = (4x + 4y + 4z,y + 4z). Comprobemos si hemos hecho bien los célculos.

(5i7)  g(x,y,z) :=[4*xx+dxy+d*z y+4xz]$
(%1i8) rat(g(1,1,1));

(%08)/R/ 2,0]
(519) rat(g(1,2,1));

(%09)/R/ [1,1]
(%110) rat(g(0,0,2));

(%010)/R/ [—2,-2]

7. Espacio vectorial cociente

Sea U un subespacio vectorial de V. Definimos en V la siguiente relacién de equivalencia:
xR ? si X — ? € U. Denotamos por % al conjunto cociente %.
= El conjunto % es un espacio vectorial con las operaciones [X] + [?] =[x + ﬁ] y k[xX] =
[k?]. A dicho espacio vectorial se le conoce como espacio vectorial cociente de V sobre U.
= Si{Uy,..., W} esunabase de Uy la ampliamos a una base de V, {1, . .., Wiy Winsty -« -y Wnl,

entonces {[Wmi1l, ..., [Wnl} es una base de % Asi

. \% . .
dim (ﬁ) = dim(V) — dim(U).

Primer teorema de isomorfia. Sif:V — V'’ es una aplicacién lineal, entonces los espacios

vectoriales % e Im(f) son isomorfos (el isomorfismo viene dado por (V] f (v)).

s dim(V) = dim(N(f)) + dim(Im(f)).

Ejercicio 89: Sea f : R® — R? definida por f(x,y,z) = (2x +y,3x + z). Encuentra una base de
N(f).
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Segundo teorema de isomorfia. Si U; y U; son subespacios de V, entonces los espacios

: Uy U;+U, :
vectoriales Tam YV~ - son isomorfos.

s dim(U;) +dim(U,) = dim(U; + U,) + dim(U; N U,).

Ejercicio 90: Dados los subespacios vectoriales de Z2, U = ({(1,1,2),(1,2,3)}) y W = ({(1,0,0), (2,1,3)}),
calcula la dimensién de UNW.

Ejercicio 91: Sea U el subespacio vectorial de Q3 generado por {(1,2,1)}. Calcula un complemen-
tario de U.

maxima 75: Sea U el subespacio vectorial de Q* generado por {(1,1,1,1), (1,2, 3,4),(1,0,—1,—2)},
calculemos una base del espacio cociente Q*/U.

(%i1) A:matrix([1,1,1,1],[1,2,3,4],[1,0,-1,-2])%$
(%12) triangularize(A);

10 -1 -2
(%02) 02 —1 1
00 0 0

Una base de U es {(1,0,-1,-2),(0,2,4,6)}. Ahora la ampliamos a una base de Q*.

(%i3) B:matrix([1,0,-1,-21,[0,2,4,6],[0,0,1,01,[0,0,0,11)%
(%i4) determinant(B);
(%o4) 2

Una base del cociente es {[(0,0,1,0)],[(0,0,0, 1)]}.

maxima 76: Sea f:Q* — Q3 definida por

(hil) f(x,y,z,t) :=[xt+ty+z,x+z+t,y-t]$
Como

(%i2) triangularize(matrix(£f(1,0,0,0),f(0,1,0,0),£(0,0,1,0),£(0,0,0,1)));

11 0
0 —1 1
(%02) 0 0 0
0 0 0

deducimos que la imagen de f tiene dimension 2. Por el primer teorema de isomorfia, su ntcleo
deberia también tener dimensién dos. Comprobémoslo:

(%13) solve(f(x,y,z,t),[x,y,z,t]);

solve : dependentequationseliminated : (1)
(%03) [lx =—%r3— %12,y = %r2,z= %r3,t = %r2]]

maxima 77: Sean Uy W los subespacios de Z4 generados por {(1,0,1,0),(1,2,1,2),(1,5,1,5)} y
{(2,3,4,0),(1,5,2,0),(2,3,2,3)}, respectivamente. Veamos cudl es la dimensiéon de U NW.
Un sistema de generadores para U+W es {(1,0,1,0),(1,2,1,2),(1,5,1,5),(2,3,4,0),(1,5,2,0),(2,3,2,3)}.

(%i1) modulus:7$
Las dimensiones de U y W son dos, ya que
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(%12) triangularize(matrix([1,0,1,0],[1,2,1,2],[1,5,1,5]));

1010
(%02) 020 2
0000
y
(%13) triangularize(matrix([2,3,4,0],[1,5,2,0],[2,3,2,3]));
23 -3 0
( %03) 0O 0 3 -1
o0 0 0

Por tltimo,

(%14) triangularize(matrix([1,0,1,0],[1,2,1,2],[1,5,1,5],[2,3,4,0],[1,5,2,0],[2,3,2,3]));

101 0
020 2
00 2 -3

0;

(%e04) 000 0
000 0
000 0

Esto nos dice que la dimension de U+W es 3. Por el Segundo Teorema de Isomorfia, deducimos
que la dimension de U NW es 1.

8. Ecuaciones cartesianas o implicitas de un subespacio vectorial

Sea U un subespacio vectorial de V. Sea B = {7)1, ey V) una base de V, y By = {ﬂ)h ceey )
una base de U. Supongamos que
%
Up=anVvi+- -+ amVn,
— — -
U, =0aqVvVi+--+amnVn.

Sea X = x171 4+ -+ Xnvn un vector de V. Recordemos que el vector X € Usi y sélo si
existen Ay, ..., Ar € K tales que

X1 =ANan + -+ Aay

Xn:A-la-ln—}—..._i_}\Tarn

Luego X e Usi y sélo si el sistema con incognitas Aq, ... A,
ayn ... Qp )\1 X1
aiqq ... Qp A X
apn ... aq an ... a1 Xq
tiene solucién. Y sabemos que equivale a rango | @ . = rango :
A ... Qm A ... A Xp

Esto ocurre cuando unos cuantos determinantes valen cero, proporcionandonos asi una sistema de
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ecuaciones de la forma
b]]X] -+ .- +b1an =0

. )
me] +---+ bann =0
a las que llamaremos ecuaciones cartesianas de U respecto de la base B de V.

= Si k es el nimero de ecuaciones cartesianas independientes que describen a U, entonces
k + dim(U) = dim(V).

Ejercicio 92: Dada la base B = {(1,1,0),(1,0,1),(0,1,1)}, calcula las ecuaciones cartesianas
respecto de la base B del subespacio vectorial de R3 generado por {(1,2,1)}.

Ejercicio 93: Calcula las ecuaciones cartesianas del subespacio vectorial ({(1,2,3,1),(1,1,1,1),(3,5,7,3)}) C

Q.

Ejercicio 94: Consideremos los subespacios vectoriales de R*, E; = ({(1,1,1,1),(1,—=1,1,—=1)}) y
B, =({(1,2,0,2),(1,2,1,2),(3,1,3,1)}).

a) Calcula una base de By + E;.

b) Calcula las ecuaciones cartesianas de Eq + E;.

c) Calcula las ecuaciones cartesianas de E; N E;.

d) Calcula una base de E; N E,.

Ejercicio 95: Dada la aplicacién lineal f : Z2 — Z2 definida por f(x,y,z,t) = (x+y, x+z, 2x+y+z),
calcula una base para su ntcleo.

maxima 78: Calculemos las ecuaciones cartesianas de U = ({(1,1,2),(1,—1,0)}) € Q*. Sus ecua-
ciones paramétricas respecto de la base usual son

XxX= A+n
y= A—pu
z= 2A

La matriz ampliada de este sistema con incégnitas en los pardmetros A y 1 es
(%i1) A:matrix([1,1,x],[1,-1,y]1,[2,0,2]);

T 1 x
(%o1) T =1y
2 0 z

Como su rango debe ser dos, su determinante es cero.
(%12) determinant(A);

(%02) —2z+2y+2x

Asi la ecuacién cartesiana de U es x +y —z = 0.
Esta ecuacién también la podemos encontrar haciendo operaciones elementales por filas en A.
Primero extraemos la matriz de coeficientes. Para ello eliminamos la iltima columna de A.

(%13) C:submatrix(A,3);
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1 1
(%03) 1 -1
2 0

Para guardar traza de la operaciones elementales que hacemos en C para obtener su forma
triangular reducida, le anadimos al final la matriz identidad.

(%i4) M:addcol(C,ident(3));
1 1

1 0
(%04) 1 -1 0 0
2 0 0 01

0
1

Ahora triangularizamos y nos quedamos con las tltimas columnas, que forman una matriz
regular con las operaciones elementales para que C alcance su forma reducida for filas.

(%15) triangularize(M);

20 0 0 1
(%05) 0 -2 0 2 -1
00 -2 -2 2

(%i6) P:submatrix(%,1,2);

0 0 1
(%06) 0o 2 -1
-2 -2 2

Aplicamos estas operaciones por filas a la matriz inicial y obtenemos en las ultimas filas las ecua-
ciones (en esta caso sblo en la tltima, pues hay una).

(%17) P.A;

2 0 z
(%o7) 0o -2 2y—z
0 0 2z—-2y—2x

Si vemos U dentro de Z3, al ser (1,1,2) = (1,—1,0) = (1,1,0), tenemos que las ecuaciones
paramétricas ahora son

XxX= A
y= A
z= 0
Asi la matriz ampliada de este sistema es
1 x
T yl,
0 z

por lo que una de las ecuaciones, z = 0, ya la tenemos. Al ser la dimensién de U uno, necesitamos
. , : . . 1 x
una ecuacion mas, que viene de imponer que el determinante de 1y es cero (el rango de la

matriz ampliada es uno), obteniendo x —y = 0.

Podemos también utilizar operaciones elementales por filas para llegar a la mismas ecuaciones.
En este caso no vamos a utilizar triangularize, pues se ve claramente qué operaciéon tenemos
que hacer.

(%15) A:matrix([1,x],[1,y],[0,z]);
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1 x
(%o05) Ty
0 z
(%15) rowop(A,2,1,1);
1 X
(%o05) 0 y—x
0 z
Obtenemos también que las ecuaciones de U son
x+y=20
z=0 )

maxima 79:
Sea U el subespacio de R* generado por {(1,1,1,1),(1,2,3,1),(1,0,—1,1)}. Calculmemos sus
ecuaciones cartesianas respecto de la base B ={(1,1,1,1),(0,1,1,1),(0,0,1,1), (0,0,0,1)}.

(%1i1) modulus:false$
(%i2) A:matrix([1,1,1,1],[1,2,3,1]1,[1,0,-1,11)9%
(%13) triangularize(A);

10 —11
(%03) 02 4 0
00 0 0
{(1,0,-1,1),(0,2,4,0)} es una base de U. Calculamos ahora las coodenadas de estos vectores respecto

de la base B.
CAPIEE- (0i4)  solve(x*[1,1,1,11+y*[0,1,1,1]1+2%[0,0,1,1]

+t*[0,0,0,11-[1,0,-1,1], [x,y,z,t]);
(%004) [x=Ty=-1z=-1,t=2]]

(%15) solve(xx*[1,1,1,1]+y*[0,1,1,1]+2z*[0,0,1,1]
+t*[030,0,1]_[052’430:|, [X,Y’Z,t]);

( %05) [x =0,y =2,z=2,t=—4]]
(%16) JImatriX([l,‘i,‘l,QJ,[0,2,2,‘4],[X,Y,Z,t])§

1T -1 -1 2
( %06) 0o 2 2 -4

x y z t
Al exigir que la matriz J tenga rango 2 obtenemos que los siguientes determinantes deben de valer

cero.
(%17)  determinant (matrix([1,-1,-1],[0,2,2], [x,y,2z]));

(%o0T) 2z—2y
(%18) determinant (matrix([1,-1,2],[0,2,-4],[x,y,t]));
( %o08) 4y+2t
Las ecuaciones cartesianas de U respecto de B son
z—y=0
y+t=0 [

maxima 80:
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Sean U ={(x,y,z,t) € Z | x+y+z+t =0, x+2t =0}y W ={(x,y,z,t) € Z! | dy+4z+t =
0, x +4y = 0}. Calculemos una base de la interseccién.

(%i1) modulus:5$

(%i2) M:matrix([1,1,1,1],[1,0,0,2],[0,4,4,1],[1,4,0,0]1)$
(%13) nullspace(M);

-2
(%03) span :é

1

Una base es de la interseccién es {(3,3,3,1)}.

maxima 81:

Sea f: Q' — Q°, f(x,y,z,t) = (x +y,z+ t,x + y + z + t). Calculemos una base de N(f).
(%i1) modulus:falsed

(%i2) N:matrix([1,1,0,0],[0,0,1,1],[1,1,1,1])$
(%13) nullspace(N);

—1
(%03) span

1
0 )
0

Por tanto una base de N(f) es {(—1,1,0,0),(0,0,1,—1)}.
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Diagonalizacion de matrices. Forma normal de Jordan
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1. Matrices diagonalizables

Una matriz diagonal es una matriz cuadrada que tiene todas sus entradas nulas, salvo eventual-
mente las de la diagonal. Una matriz cuadrada A es diagonalizable si existen una matriz diagonal
D y una matriz regular P tales que A = PDP~'.

La diagonalizacion de matrices es til para el calculo de potencias grandes de una matriz, ya
que

A" = (PDP")"=PDP 'PDP ' 11l PDP' =PD'P .
En adelante, A representarda una matriz cuadrada de orden n x n sobre un cuerpo K.

Un elemento A € K es un valor propio de A si existe x € K™\ {(0,...,0)} tal que Ax = Ax. En
tal caso diremos que x es un vector propio asociado al valor propio A.

Teorema de caracterizaciéon de los valores propios. Un elemento A € K es un valor
propio de A siy sélo si |A —AlL,| =0.

Asfi los valores propios de A son las raices del polinomio |A — AlL,| € K[A], que se conoce como
polinomio caracteristico de A, y lo denotaremos por pa(A). Nétese que gr(pa(A) =n.

Ejercicio 96: Calcula el polinomio caracteristico y los valores propios de (; %) € My« 2(R).

Propiedades.

) Si A es una matriz triangular, entonces sus valores propios son los valores de la diagonal.
) Los valores propios de A y A" coinciden.

) |A] =0 siy solo si 0 es un valor propio de A.

) Si A es regular y A es un valor propio de A, entonces A~ lo es de A~".

= Si A es un valor propio de A, entonces
V(A) = {x € K" tales que (A — Al,)x = 0},

(en este caso 0 = (0,...,0) € K") es un subespacio vectorial de K™. Dicho subespacio lo
llamamos subespacio vectorial propio asociado al valor propio A.

L . . . . 1 2
Ejercicio 97:  Encuentra los subespacios propios asociados a los valores propios de (2 1) €

MZXZ(R)'
110
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Sean Aq, ..., A los valores propios de la matriz A. A la multiplicidad de la raiz A; de PA(A) la
llamaremos multiplicidad algebraica de A;, mientras que la dimensién de V(A;) es la multiplicidad
geométrica de A;.

Ejercicio 98: Calcula las multiplicidades algebraicas y geométricas de los valores propios de
1 2
(2 ]) c szz(R).

= La multiplicidad geométrica de un valor propio es menor o igual que su multiplicidad
algebraica.

Criterio de diagonalizaciéon. A es diagonalizable si, y sélo si, la suma de las multiplicidades
algebraicas de los valores propios de A es n y ademas para todo valor propio las multiplicidades
algebraica y geométrica coinciden.

= Toda matriz cuadrada y simétrica con coeficientes en R es diagonalizable.

2. Meétodo para diagonalizar una matriz

1) Calculamos pa(A), sus raices Ay, ..., A v sus multiplicidades algebraicas, my, ..., my.

2) Simy+---+m #n, A no es diagonalizable.

3) En caso contrario, para cada A;, calculamos el subespacio propio V(A;) y su dimensién. Si dicha
dimensién no coincide con my para algun i, entonces A no es diagonalizable.

4) Llegado este paso, la matriz A es diagonalizable y D es la matriz que tiene en la diagonal m,
entradas A;, m; entradas A, y asi hasta my entradas Ax. La matriz de paso P se construye
colocando en las primeras m; columnas una base de V(A1), a continuacién en las siguientes m,

columnas una base de V(A;), y asi hasta que colocamos en las ultimas my columnas una base
de V()\k)

Ejercicio 99: Diagonaliza la matriz (; %) € My,o(R).

Ejercicio 100: Diagonaliza la matriz

2 0 0
—-15 —4 3| e M3X3(R).
—35 —14 9

Ejercicio 101: Demuestra que (1

1 . . .
0 1) con coeficientes reales no es diagonalizable.

maxima 82: Sea
(%i1) A:matrix([-1,3,3],[0,2,0],[3,-3,-11);

-1 3 3
(%o1) o 2 0
3 -3 -1

El comando eigenvectors nos proporciona toda la informacién para saber si es diagonalizable.
(%12) eigenvectors(A);
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(%02) [l[—4,2], 00, 211, [[1, 0, 111, [T, 0, 11, [0, 1, —T1]]]

La salida nos dice que los valores propios son —4 y 2, con multiplicidades 1 y 2, respectivamente.
Ademés nos da bases para V(—4), {(1,0,—1)}y V(2),{(1,0, 1), (0, 1,—1)}. Como las multiplicidades
algebraicas y geométricas coinciden, y suman 3, A es diagonalizable.

La matriz de paso se calcula poniendo dichas bases una a continuacién de la otra en columnas.

(%i3) P:matrix([1,1,0],[0,0,1]1,[-1,1,-11);

1T 1 0
(%03) 0 0 1
-1 1 -1

Comprobamos que efectivamente estan bien hechos los calculos:
(%i4) P~~(-1) .A.P;

—4 0 0
(%04) 0 20
0 0 2

Podriamos también haber hecho los calculos paso a paso, calculando primero el polinomio
caracteristico de A.

(%15) charpoly(A,x);

(%o05) (—x—17 2% -9 (2—x)
Para ver los valores propios, lo factorizamos.

(%16) factor(%);

(%06) —(x—2) (x+4)

Y para calcular una base de por ejemplo V(2) utilizamos nullspace.
(%17) nullspace(A-2*xident(3));

-3 0
( %o0T) span | | =3 ], 3
0 -3

3. Forma normal de Jordan

maxima 83: Vamos a estudiar si la siguiente matriz es o no diagonalizable.

(%i1) A:matrix([3,1,1],[-1,5,11,[0,0,4]1);

3 11
(%ol) [—=1 5 1
0 0 4

Llamamos I a la identidad, que vamos a necesitar luego.

(%i2) TI:ident(3);
100
(%02) 010
0 01

El polinomio caracteristico de A es
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(%i3) factor(charpoly(A,x));
(%03) —(x—4)°
Por lo que sélo hay un valor propio, con multiplicidad algebraica 3.

(%i4) eigenvectors(A);
(%o04) (141, 311, [[[1,0,1],[0, T, —11]l]

Como vemos, solo hay dos vectores en el subespacio propio V(4), el nicleo de A — 41, por lo
que A no es diagonalizable. Sin embargo el niicleo de (A —41)? si que tiene dimensién tres.

(%15) nullspace((A-4*I)""2);

0 0 1
(%05) span | O, [1],]0
1 0 0

Tomemos uno de ellos que no esté en V(4). Al multiplicarlo por (A —4I) nos saldra un elemento
de V(4), que ademés es linealmente independiente con el elemento original.

(%i6) (A-4xI).[1,0,0];

—1
(%o06) | —1
0
(hi7)  (A-4xI) . %;
0
(%o7) [0
0

Tenemos asi dos elementos linealmente independientes de Q?, uno de ellos en V(4). Como quiera
que V(4) tiene dimensién dos, podemos atn elegir otro elemento de V(4) que sea linealmente
independiente con éste. Ponemos estos tres vectores en una matriz (que serd invertible al ser
linealmente independientes).

(%18) P:transpose(matrix([1,0,1],[-1,-1,0],[1,0,0]1))$
Y obtenemos que aunque A no sea diagonalizable, se acerca bastante a serlo.

(%i9) P~~(-1) .A.P;
4 0 0

(%09) [0 4 1
00 4

maxima 84: Consideremos ahora la matriz con coeficientes racionales

(%i1) A:matrix([4,2,0,0],[0,6,2,0],[1,-1,7,-1],[-1,1,-1,5]);

4 2 0 0
0 6 2 0
(%ol) [ ¢ 5 7
11 -1 5

(%1i2) I:ident(4)$
El polinomio caracteristico de A factoriza como

(%13) factor(charpoly(A,x));
(%03) (x—6)° (x—4)



3. FORMA NORMAL DE JORDAN 114

Por lo que tenemos dos valores propios: 4 y 6, de multiplicidades algebraicas 1 y 4, respectiva-
mente.

(%14) eigenvectors(A);
(Yo04) [ll6,41, (3,111, [[[1,1,0,01], [[1,0,0, 1
Esto nos dice que el nicleo de A — 61 tiene dimensién 1 (y estd generado por (1,1,0,0)) por lo
que nos hacen falta dos vectores mas para completar la multiplicidad algebraica. Para A — 41, la
dimensién de su nicleo es 1, que coincide con la multiplicidad algebraica de 4. Por ello ya tenemos
un candidato para la matriz de paso, el (1,0,0,1) (y otro sera (1,1,0,0) o un multiplo suyo).
Veamos qué ocurre con los niucleos de las potencias de A — 61.

(%15) nullspace((A-6%I)""2);

0 8

0

(%05) span gl ] _s
0 0

La dimensién de éste es dos, por lo que seguimos intentando con (A — 61)3.

(%16) nullspace((A-6%I)""3);

—4 0 0

4| [-4a] | o

(%06) span ol 12al>| 4
0 0 —4

Cuya dimension llena completamente la multiplicidad algebraica de 6. Escogemos un vector
que esté en el nicleo de (A — 61)% pero que no esté en el nicleo de (A — 61)?, y calculamos la
secuencia que resulta de ir multiplicando por A — 61 hasta que lleguemos a V(6).

(%i7)  (A-6%I).[0,0,1,-1];
0
2
2
0
(%18)  (A-6%I).%;
4
4
0
0
(%19)  (A-6%I).%;
0
0
0
0

Como hemos conseguido tres nuevos vectores linealmente independientes, y teniamos ya uno
de V(4), no tenemos que seguir buscando maés. Asi, escogiendo como matriz de paso:

( %07)

( %08)

( %09)

(%110) P:transpose(matrix([1,0,0,1],[4,4,0,0],[0,2,2,0],[0,0,1,-1]1))%
Obtenemos que A se puede expresar en la base cuyos elementos son las columnas de P de la
siguiente forma.
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(%i11) P~~(-1) .A.P;

(%o11)

S o\ —= O
o — O O

0
6
0
0

o o O H

Las matrices de los dos ltimos ejemplos no eran diagonalizables, sin embargo hemos encontrado
bases respecto de las cuales tienen en la diagonal sus valores propios (repetidos tantas veces como
sus respectivas multiplicidades algebraicas), y eventualmente tienen algin 1 encima de alguna
posicion en la diagonal. De hecho el nimero de unos viene a medir lo lejos que estan de ser
diagonalizables. Los dos ejemplos se han desarrollando siguiendo las siguientes ideas.

Subespacios propios generalizados. Sea A una matriz cuadrada de orden n con coeficientes
en C (asi nos aseguramos que el polinomio caracteristico descompone totalmente como producto
de polinomios de grado uno, y la suma de las multiplicidades algebraicas es precisamente n). Sea
A un valor propio de A. Consideremos los subespacios de C™. Definimos

Vi(A) = N((A —AId)Y),

el i-ésimo subespacio propio generalizado asociado a A.

Se tiene trivialmente que V(A) = V7(A) C V;(A) C - - -. Como todos esos conjuntos son subespa-
cios de C™, sabemos que esa cadena se volvera estacionaria, alcanzando el mayor subespacio posible,
en un numero finito de pasos. Es facil comprobar que si Vi(A) = Vi;1(A), entonces Vi(A) = Vj(A)
para todo entero j mayor o igual que i. Por tanto, nos aseguramos que el subespacio més grande
posible es V;,(A). Se tiene ademas que para un i como el anterior, entonces dim(V;(A)) (y por tanto
dim(V;,(A))) es precisamente la multiplicidad algebraica de A, y el subspacio Vi(A) es invariante
por A, a saber, para cualquier v € V;(A), Av vuelve a estar en V;(A).

De esta forma, si Aq, ..., A son los distintos valores propios de A con multiplicidades my, ..., my,
respectivamente (recordemos que my +- - -+m, = N en nuestro caso), si elegimos B; una base para
cada V,(A;), entonces la matriz A respecto de esa base tiene el siguiente aspecto

A
A

Ax

donde cada matriz A; es cuadrada de orden m;, y el resto de las entradas son todas 0. En el caso
en que A sea diagonalizable V(A;) = Vi (A;), y podemos conseguir que A; sea una matriz diagonal
cuyos valores de la diagonal son todos A;.

Orden de un elemento de un subespacio propio generalizado. Decimos que un vector v
de V,,(A), con A un valor propio de A, es de orden v siv € Vi (A)\ Vi_1(A) (a saber, (A—Ald)*v =0
v (A —AId)* v £ 0).

Bloque de Jordan. Sea v € Vi (A) \ Vi_1(A). Entonces los vectores
(1) Ve =wvi1 = (A—=Ald)v,...,vi = (A=A Ty
son linealmente independientes. Es mas, como

A\)k = Vx_1 +}\Vk,..., A\)i = Vi —|—7\Vi,..., A\)z =V —|—7\V2, AV] = 7\\)1,
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se tiene que el subespacio U generado por {vi,..., v} es invariante por A, y la expresion de la
aplicacion lineal asociada a A restringida a U respecto de la base {v1,..., v} es de la forma
A1l 0 -+ 0
o A 1
KA =1 o]
0 0o A 1
o 0 -~ 0 A

al que llamaremos bloque de Jordan de tamano k asociado a A.

Si para cada V,,(A;) buscamos un elemento de orden maximo y calculamos la secuencia asociada
a éste como en , obtendremos parte de una base de V,,(A). Si el nimero de elementos de la
secuencia no es igual a my, entonces buscamos de nuevo otro elemento de orden méximo que
no esté en el espacio generado por los que ya hemos calculado anteriormente y le calculamos su
secuencia asociada . Siguiendo este proceso acabaremos por llenar m; elementos en la base, y
tendremos asi que A; respecto de esa base estd formada por una matriz diagonal en bloques, y en
la diagonal apareceran bloques de Jordan de tamano las longitudes de las secuencias que hemos ido
considerando. Cuando juntemos todas las bases que hemos obtenido para cada V,(A;) llegaremos
a que la matriz A se puede expresar en esa base como una matriz en diagonal por bloques, y
esos bloques son bloques de Jordan asociados a los valores propios de A, y que tienen tamano
las longitudes de las secuencias utilizadas para construir las distintas bases de los subespacios
propios generalizados. La matriz resultante se conoce como forma de Jordan asociada a A y es
unica salvo reordenamiendo de los bloques.
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