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Caṕıtulo 5. Grupo simétrico 48
1. Grupos 48
2. Subgrupos 49
3. El grupo simétrico 50
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Caṕıtulo 1

Conjuntos, relaciones de equivalencia y aplicaciones

Contenidos de este caṕıtulo

1. Conjuntos 5
2. Operaciones con conjuntos 5
3. Relaciones de equivalencia 8
4. Aplicaciones entre conjuntos 9

1. Conjuntos

La idea de conjunto es una de las más significativas en Matemáticas. La mayor parte de los
conceptos matemáticos están construidos a partir de conjuntos. (Existe una aproximación funcional
basada en el λ-cálculo y la Lógica Combinatoria, que hoy en d́ıa han tenido una papel fundamental
en la programación funcional.)

Podŕıamos decir que un conjunto es simplemente una colección de objetos a los que llamaremos
elementos del conjunto. Esta definición nos bastará para los contenidos de este curso, pero desde
el punto de vista matemático es imprecisa y da lugar rápidamente a paradojas. Desde comienzos
del siglo XX esta definición dejó de utilizarse por los problemas que acarrea. Por desgracia, dar
una definición precisa está bastante lejos de los objetivos de este guión.

Cuando x sea un elemento de un conjunto A, escribiremos x ∈ A, que se lee “x pertenece
a A”.
Diremos que un conjunto A es subconjunto del conjunto B, y lo denotaremos por A ⊆ B,
si todo elemento de A pertenece a B.
Un conjunto A es igual que otro conjunto B si tienen los mismos elementos, a saber, si
A ⊆ B y B ⊆ A. Cuando esto ocurre, escribiremos A = B.
Admitiremos la existencia de un conjunto sin elementos, al que denotemos por ∅ y llama-
remos conjunto vaćıo.

2. Operaciones con conjuntos

Sean A y B conjuntos.

1) La intersección de A y B es el conjunto formado por los elementos comunes de A y de B, y lo
denotamos aśı

A ∩ B = {x tales que x ∈ A y x ∈ B}.
2) La unión de A y B es el conjunto formado al tomar todos los elementos de A y los de B.

A ∪ B = {x tales que x ∈ A o x ∈ B}.
3) La diferencia de A y B es el conjunto que tiene por elementos los elementos de A que no están

en B.
A \ B = {x ∈ A tales que x 6∈ B}

(siempre que tachemos un śımbolo, estamos indicando que no se cumple la condición sin tachar;
aśı x 6∈ B significa que x no pertenece a B, A 6= B significa que A es distinto de B, etcétera).
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4) P(A) = {X tales que X ⊆ A} es el conjunto de partes de A o conjunto potencia de A.
5) El producto cartesiano de A y B es el conjunto de parejas cuya primera componente está en A

y la sengunda en B. Esto se escribe de la siguiente forma.

A× B = {(a, b) tales que a ∈ A y b ∈ B}.

Al conjunto A× n· · · ×A lo denotaremos por An, para n un entero positivo.
El cardinal de un conjunto es el número de elementos que contiene. Usaremos ]A para denotar

el cardinal del conjunto A.

]P(A) = 2]A.
](A× B) = ]A · ]B.

maxima 1: Los conjuntos en maxima se pueden definir usando llaves o bien la función set.

(%i1) {a,a,b,c};

(%o1) {a, b, c}

Definamos un par de conjuntos y veamos cómo se pueden hacer las operaciones hasta ahora
descritas con ellos.

(%i2) A:{1,2,3,4};

(%o2) {1, 2, 3, 4}

(%i3) B:set(3,4,5);

(%o3) {3, 4, 5}

(%i4) elementp(5,A);

(%o4) false

(%i5) elementp(1,A);

(%o5) true

(%i6) is (A=B);

(%o6) false

(%i7) is (A=A);

(%o7) true

(%i8) setequalp(A,B);

(%o8) false

(%i9) subsetp(A,B);

(%o9) false

(%i10) subsetp(A,union(A,B));

(%o10) true

(%i11) intersection(A,B);

(%o11) {3, 4}

(%i12) union(A,B);

(%o12) {1, 2, 3, 4, 5}
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(%i13) setdifference(A,B);

(%o13) {1, 2}

(%i14) powerset(B);

(%o14) {{}, {3}, {3, 4}, {3, 4, 5}, {3, 5}, {4}, {4, 5}, {5}}

Nótese que el conjunto vaćıo se denota por {}.

(%i15) is(cardinality(powerset(A))=2^(cardinality(A)));

(%o15) true

(%i16) cartesian_product(A,B);

(%o16) {[1, 3], [1, 4], [1, 5], [2, 3], [2, 4], [2, 5], [3, 3], [3, 4], [3, 5], [4, 3], [4, 4], [4, 5]}

Podemos además elegir los elementos de A que son impares.

(%i17) subset(A,oddp);

(%o17) {1, 3}

O bien las sumas de los pares del producto cartesiano con A y B.

(%i18) makeset(a+b, [a,b], cartesian_product(A,B));

(%o18) {4, 5, 6, 7, 8, 9}

maxima 2: Pongamos un ejemplo de una función cuyos argumentos sean conjuntos. Podemos
definir la diferencia simétrica de dos conjuntos A y B como (A \ B) ∪ (B \A).

(%i1) A:{1,2,3,4};

(%o1) {1, 2, 3, 4}

(%i2) B:set(3,4,5);

(%o2) {3, 4, 5}

(%i3) dif_sim(X,Y):=union(setdifference(X,Y),setdifference(Y,X))$

Para definir funciones usamos := en vez de : . El “$” al final de una ĺınea inhibe la salida.

(%i4) dif_sim(A,B);

(%o4) {1, 2, 5}

maxima 3: Podemos definir conjuntos utilizando listas y viceversa, lo cual hace que podamos usar
las funciones espećıficas para listas en conjuntos. Además se pueden definir subconjuntos utilizando
funciones booleanas, tal y como vemos a continuación.

(%i1) l:makelist(i,i,1,100)$ A:setify(l)$

Crea un conjunto con los los enteros del uno al cien.

(%i3) B:subset(A,primep);

(%o3) {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}

Escojo aquellos que son primos.

(%i4) C:subset(B,lambda([x],is(x>80)));
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(%o4) {83, 89, 97}

De entre ellos me quedo con los mayores de 80, que equivale a hacer lo siguiente (ahorrándome la
definición de f, usando para ello lambda, que define de forma anónima una función).

(%i5) f(x):=is(x>80)$

(%i6) D:subset(B,f);

(%o6) {83, 89, 97}

3. Relaciones de equivalencia

Sea A un conjunto. Una relación binaria en A es un subconjunto R de A×A. Cuando (x, y) ∈ R
escribimos x R y y decimos que x está relacionado (mediante R) con y.

Una relación binaria R sobre un conjunto A es una relación de equivalencia si verifica las
siguientes propiedades.

1) Para todo a ∈ A, a R a (R es reflexiva).
2) Dados a, b ∈ A, si a R b, entonces b R a (R es simétrica).
3) Para cualesquiera a, b, c ∈ A, si a R b y b R c, entonces a R c (R es transitiva).

Si R es una relación de equivalencia sobre un conjunto A, y a es un elemento de A, entonces
la clase de a es el conjunto de todos los elementos de A que están relacionados con a,

[a] = {x ∈ A tales que x R a}.

Se define el conjunto cociente de A por R como el conjunto de todas las clases de equivalencia de
elementos de A, y se denota por A/R. Aśı

A

R
= {[a] tales que a ∈ A}.

Ejercicio 1: En el conjunto Z = {0, 1,−1, 2,−2, . . .} de los números enteros, definimos la siguiente
relación de equivalencia.

x R y si x− y es múltiplo de 5.

a) Demuestra que R es una relación de equivalencia.
b) Calcula [2].
c) Describe el conjunto cociente Z

R
.

d) ¿Qué cardinal tiene Z
R
?

Ejercicio 2: En el conjunto P({1, 2, 3}), definimos la siguiente relación binaria.

A ∼ B si #A = #B.

a) Demuestra que ∼ es una relación de equivalencia.
b) Calcula [{1, 2}].

c) Describe el conjunto cociente P({1,2,3})
∼

.
d) ¿Cuántos elementos tiene dicho conjunto cociente?

Dado un conjunto X, una partición de X es una familia de subconjuntos de X, {Ai}i∈I (=
{Ai tales que i ∈ I}), de forma que

1) Ai 6= ∅ para todo i ∈ I,
2) Ai ∩Aj = ∅ para cualesquiera i, j ∈ I con i 6= j,
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3) X =
⋃
i∈IAi (la unión de todos los elementos de la familia {Ai}i∈I).

Se puede comprobar fácilmente que el hecho de ser R una relación de equivalencia sobre A
hace que A/R sea una partición de A.

maxima 4: Veamos cómo se pueden calcular las clases de equivalencia del conjunto A = {1, . . . , 10}
sobre la relación de equivalencia x R y si x− y es un múltiplo de 3.

Primero definimos el conjunto {1, . . . , 10}. Para ello hacemos una lista con los elementos del
uno al diez, y luego la convertimos en conjunto.

(%i1) l:makelist(i,i,1,10);

(%o1) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

(%i2) s:setify(l);

(%o2) {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

(%i3) equiv_classes(s,lambda([x,y],is(remainder(x-y,3)=0)));

(%o3) {{1, 4, 7, 10}, {2, 5, 8}, {3, 6, 9}}

También podŕıamos haber definido R, y luego calculado A/R.

(%i4) R(x,y):=is(remainder(x-y,3)=0);

(%o4) R (x, y) := is (remainder (x− y, 3) = 0)

(%i5) equiv_classes(A,R);

(%o5) {{1, 4, 7, 10}, {2, 5, 8}, {3, 6, 9}}

Se ve que es una partición de A, pues todos sus elementos son no vaćıos, disjuntos dos a dos,
y la unión de ellos da A.

4. Aplicaciones entre conjuntos

Sean A y B dos conjuntos. Una aplicación f de A en B, que denotaremos como f : A → B, es
una correspondencia que a cada elemento de A le asocia un único elemento de B (de nuevo esta
definición es algo imprecisa, pero suficiente para nuestro curso). Si a ∈ A, al elemento que le asocia
f en B lo denotamos por f(a), y se llama la imagen de a por f. Los conjuntos A y B son el dominio
y codominio de f, respectivamente. Llamaremos conjunto imagen de f a

Im(f) = {f(a) tales que a ∈ A}.

Ejercicio 3: Sea Q el conjunto de los números racionales y R el de los reales. ¿Tiene sentido decir
que f : Q→ R, x 7→ x+1

x−1
es una aplicación?

Si f : A→ B es una aplicación, diremos que f es

1) inyectiva si f(a) = f(a ′) para a, a ′ ∈ A, implica a = a ′;
2) sobreyectiva si Im(f) = B (para todo b ∈ B, existe a ∈ A tal que f(a) = b);
3) biyectiva si es inyectiva y sobreyectiva.
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Ejercicio 4: Demuestra que la aplicación f : Q→ R definida por f(x) = 1
2
(2x+1) es inyectiva pero

no sobreyectiva.

Sean f : A → B y g : B → C dos aplicaciones. La aplicación composición de f y g (también
conocida como f compuesta con g) es la aplicación g◦f : A→ C, definida como (g◦f)(a) = g(f(a)).
Para calcular la imagen de un elemento por la composición primero aplicamos f y luego g.

Ejercicio 5: Sean f : Z→ Z, x 7→ x2, y g : Z→ Q, y 7→ 1
2
(y+ 1). Calcula g ◦ f.

La composición de aplicaciones es asociativa (f◦(g◦h) = (f◦g)◦h) pero no es conmutativa
(f ◦ g no tiene por qué ser igual a g ◦ f).

maxima 5: Veamos como las funciones cuadrado y sumar uno no conmutan al componerlas.

(%i1) f(x):=x^2$ g(x):=x+1$

(%i2) f(g(1)); g(f(1));

(%o2) 4

(%o3) 2

(%i4) f(g(x))=g(f(x));

(%o4) (x+ 1)2 = x2 + 1

(%i5) expand(%);

(%o5) x2 + 2 x+ 1 = x2 + 1

Sea A un conjunto. La aplicación identidad en A es la aplicación 1A : A → A definida como
1A(a) = a para todo a ∈ A.

Dada una aplicación f : A→ B, decimos que es

1) invertible por la izquierda si existe g : B→ A tal que g ◦ f = 1A;
2) invertible por la derecha si existe g : B→ A de forma que f ◦ g = 1B;
3) invertible si es invertible a izquierda y a derecha.

Una aplicación es invertible por la izquierda si y sólo si es inyectiva.
Una aplicación es invertible por la derecha si y sólo si es sobreyectiva.
Por tanto, una aplicación es invertible si y sólo si es biyectiva.

Ejercicio 6: Sea N el conjunto de enteros no negativos. Demuestra que la aplicación f : N → N,
definida por f(x) = x2 es invertible por la izquierda, pero no por la derecha.

Una aplicación biyectiva f tiene una única inversa que lo es por la derecha y por la izquierda.
Dicha aplicación diremos que es la inversa de f y lo denotaremos por f−1.

Ejercicio 7: Demuestra que la aplicación f : Q→ Q, f(x) = 1
3
(2x+ 1) es biyectiva. Calcula f−1.

maxima 6: Veamos que la inversa de la función f(x) = x+1 (suponemos que el dominio y codominio
son los números enteros) es g(x) = x− 1.

(%i1) f(x):=x+1$ g(x):=x-1$

(%i3) f(g(x)); g(f(x));
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(%o3) x

(%o4) x



Caṕıtulo 2

Técnicas de Conteo

Contenidos de este caṕıtulo

1. Métodos elementales de conteo 12
2. Combinaciones 16
3. Permutaciones 19

1. Métodos elementales de conteo

Principio de la suma. Sean A1 y A2 dos conjuntos disjuntos (es decir, A1∩A2 = ∅). Entonces
|A1 ∪A2| = |A1|+ |A2|.

El principio puede extenderse a tres o más conjuntos.

Si A1, A2, · · · , An son conjuntos disjuntos dos a dos (es decir, Ai ∩ Aj = ∅ para i 6= j)
entonces

|A1 ∪A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|

El principio de la suma podŕıa enunciarse también como sigue:

Si una primera tarea se puede realizar de n1 formas, y una segunda tarea se puede realizar
de n2 formas, y las dos tareas son incompatibles, entonces hay n1 + n2 formas de realizar
una de las dos tareas.

Este principio de la suma es muy restrictivo, pues requiere que los conjuntos sean disjuntos,
o que las tareas sean incompatibles. Sin embargo, en general, la situación es que los conjuntos no
sean disjuntos. En este caso se tiene:

Principio de inclusión-exclusión para dos conjuntos. Sean A1 y A2 dos conjuntos. En-
tonces |A1 ∪A2| = |A1|+ |A2|− |A1 ∩A2|.

La idea de este resultado está clara. Si queremos contar los elementos que están en A1 ∪ A2,
contamos por una parte los que están en A1 y por otra parte los que están en A2, lo que nos da
|A1| + |A2|. Sin embargo, los que se encuentran en A1 ∩ A2 los hemos contado dos veces, luego
hemos de restar |A1 ∩A2| a la suma anterior.

maxima 7: Vamos a determinar, cuantos números entre 1 y 100 son, bien divisibles por 2, bien
divisibles por 3.

Sean A1 y A2 los números que son múltiplos de 2 y 3 respectivamente. A1 tiene cincuenta
elementos (desde 2 · 1 hasta 2 · 50), mientras que A3 tiene 33 (desde 3 · 1 hasta 3 · 33). Por otra
parte, A1 ∩A2 son los múltiplos de 6, luego tiene 16 elementos (desde 6 · 1 hasta 6 · 16). Por tanto

|A1 ∪A2| = |A1|+ |A2|− |A1 ∩A2| = 50+ 33− 16 = 67

(%i1) a:setify(makelist(i,i,1,100))$

12
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(%i2) a1:subset(a,lambda([x],is(mod(x,2)=0)));

(%o2) {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50,
52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100}

(%i3) a2:subset(a,lambda([x],is(mod(x,3)=0)));

(%o3) {3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69,
72, 75, 78, 81, 84, 87, 90, 93, 96, 99}

(%i4) is(length(union(a1,a2))=length(a1)+length(a2)-length(intersection(a1,a2)));

(%o4) true

Principio de inclusión-exclusión. Sean A1, A2, · · · , An conjuntos. Entonces:

|A1 ∪A2 ∪ · · · ∪An| =
n∑
i=1

|Ai|−
∑

1≤i1<i2≤n
|Ai1 ∩Ai2 |+ · · ·+ (−1)k+1

∑
1≤i1<···<ik≤n

|Ai1 ∩ · · · ∩Aik |+ · · ·

+(−1)n+1|A1 ∩A2 ∩ · · · ∩An|

maxima 8: Vamos a ver cuantos números entre 1 y 111 son compuestos (lo que nos dará inmedia-
tamente cuántos números primos hay menores que 111).

Dado que
√
111 < 11, se tiene que si un número menor o igual que 111 es compuesto, tiene un

divisor primo menor que 11. Por tanto, será múltiplo de 2, múltiplo de 3, múltiplo de 5 o múltiplo
de 7.

(%i1) a:setify(makelist(i,i,1,111))$

(%i2) A1:subset(a,lambda([x],is(mod(x,2)=0)))$ a1:length(A1);

(%o3) 55

(%i4) A2:subset(a,lambda([x],is(mod(x,3)=0)))$ a2:length(A2);

(%o5) 37

(%i6) A3:subset(a,lambda([x],is(mod(x,5)=0)))$ a3:length(A3);

(%o7) 22

(%i8) A4:subset(a,lambda([x],is(mod(x,7)=0)))$ a4:length(A4);

(%o9) 15

(%i10) a12:length(subset(a,lambda([x],is(mod(x,2*3)=0))));

(%o10) 18

(%i11) a13:length(subset(a,lambda([x],is(mod(x,2*5)=0))));

(%o11) 11
Ahora vamos con las intersecciones dos a dos. Al cardinal de Ai ∩Aj lo llamamos aij.

(%i12) a14:length(subset(a,lambda([x],is(mod(x,2*7)=0))));

(%o12) 7

(%i13) a23:length(subset(a,lambda([x],is(mod(x,3*5)=0))));

(%o13) 7

(%i14) a24:length(subset(a,lambda([x],is(mod(x,3*7)=0))));

(%o14) 5
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(%i15) a34:length(subset(a,lambda([x],is(mod(x,7*5)=0))));

(%o15) 3
Luego calculamos los cardinales de las intersecciones de tres en tres.

(%i16) a123:length(subset(a,lambda([x],is(mod(x,2*3*5)=0))));

(%o16) 3

(%i17) a124:length(subset(a,lambda([x],is(mod(x,2*3*7)=0))));

(%o17) 2

(%i18) a134:length(subset(a,lambda([x],is(mod(x,2*5*7)=0))));

(%o18) 1

(%i19) a234:length(subset(a,lambda([x],is(mod(x,3*7*5)=0))));

(%o19) 1
Y por último la intersección de todos.

(%i20) a1234:length(subset(a,lambda([x],is(mod(x,2*3*5*7)=0))));

(%o20) 0

(%i21) is(length(union(A1,A2,A3,A4))=

a1+a2+a3+a4-a12-a13-a14-a23-a24-a34+a123+a124+a134+a234-a1234 );

(%o21) true
Es decir, entre 1 y 111 hay 81 números compuestos, de donde deducimos que hay 29 números

primos (el 1 no es ni primo ni compuesto).

(%i22) length(subset(a,primep));

(%o22) 29

Principio del producto. Sean A1, A2 dos conjuntos. Entonces, |A1 ×A2| = |A1| · |A2|.

Este principio puede generalizarse a tres o más conjuntos, teniéndose en dicho caso:

|A1 ×A2 × · · · ×Am| = |A1| · |A2| · · · |Am|
El principio del producto podŕıa enunciarse también como sigue:

Si una tarea podemos dividirla en dos (o más) tareas consecutivas, de forma que hay n1
formas de realizar la primera tarea, y n2 formas de realizar la segunda tarea, entonces hay
n1n2 formas de completar la tarea.

Ejercicio 8: En el sistema de matriculación vigente cada matŕıcula se compone de cuatro d́ıgitos y
tres consonantes en C = {B,C,D, F,G,H, J, K, L,M,N, P,Q, R, S, T, V,W,X, Y, Z}. Calcula el número
de posibles matriculas.

Ejercicio 9: Calcula cuantos números de 6 cifras, escritos en binario, contienen la secuencia 00
(pista: usa el principio de inclusión-exclusión, teniendo en cuanta que los número que se piden
pueden tener una de las formas siguientes, 100 , 1 00 , 1 00 , 1 00).
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Número de aplicaciones entre dos conjuntos. Sean A y B dos conjuntos finitos. Entonces
el número de aplicaciones de A en B es |B||A|.

Notación: En ocasiones se representa al conjunto de aplicaciones de A en B como BA, es decir:

BA = {f : A→ B; f es aplicación}

Con esta notación se tiene que
∣∣BA∣∣ = |B||A|.

Número de aplicaciones inyectivas. Sea A un conjunto con m elementos y B un conjunto
con n elementos. El número de aplicaciones inyectivas de A en B es n(n− 1) · · · (n−m+ 1).

Variaciones.

1. Se llaman variaciones con repetición de n elementos, tomados de m en m a cada una de
las posibles elecciones de m elementos, dentro de un conjunto de n elementos, pudiéndose
tomar elementos repetidos. Dos posibles elecciones se diferencian, bien en la naturaleza de
los elementos elegidos, bien en el orden en que se han elegido.

2. Se llaman variaciones sin repetición de n elementos, tomados de m en m a cada una de
las posibles elecciones de m elementos, dentro de un conjunto de n elementos, no pudiendo
aparecer un elemento más de una vez. Dos posibles elecciones se diferencian, bien en la
naturaleza de los elementos elegidos, bien en el orden en que se han elegido.

El número de variaciones con repetición de n elementos, tomados de m en m es igual a nm.
El número de variaciones sin repetición de n elementos, tomados de m en m es n(n− 1) · · · (n−
m+ 1) = n!

(n−m)!
.

maxima 9: Para hacer una quiniela, debemos elegir una lista de 14 elementos entre los elementos
de un conjunto con 3 (1, X, 2). Son por tanto, variaciones con repetición de 3 elementos tomados
de 14 en 14. El número total de posibles apuestas es

(%i1) 3^12;

(%o1) 531441

maxima 10: En una carrera participan 35 personas. El ganador recibe una medalla de oro, el
segundo clasificado una medalla de plata y el tercer clasificado una medalla de bronce.

El número de formas diferentes en que se pueden repartir las medallas corresponde al número
de variaciones sin repetición de 35 elementos, tomados de 3 en 3. Por tanto es 35 · 34 · 33 = 39270.

Para usar las funciones de combinatoria tenemos que cargar el paquete functs.

(%i2) load(functs)$

(%i3) permutation(35,3);

(%o3) 39270

El principio del palomar. Si queremos repartir n objetos en m cajas, y n > m entonces al
menos una caja ha de contener 2 o más objetos.

Nótese que repartir objetos en cajas es equivalente a definir una aplicación del conjunto de
objetos en el conjunto de las cajas (la imagen de un elemento nos dice en que caja se coloca). Decir
que una caja tiene dos o más objetos se traduce en que la aplicación no es inyectiva (pues esos dos
elementos tendŕıan la misma imagen). El principio del palomar se enunciaŕıa entonces:
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Si n > m no existen aplicaciones inyectivas de un conjunto de cardinal n en un conjunto
de cardinal m.

Si tenemos un grupo de 500 personas (bastaŕıa con tener 367) debe haber dos que celebren el
cumpleaños el mismo d́ıa (siempre y cuando todas celebren su cumpleaños).

En este caso las cajas seŕıan cada uno de los d́ıas del año, mientras que los objetos a repartir
son las personas.

Ejercicio 10: Demuestra que dado un conjunto formado por n números enteros, {x1, x2, · · · , xn},
podemos encontrar un subconjunto suyo cuya suma sea múltiplo de n (pista: considera los enteros
yi = x1 + · · ·+ xi, i ∈ {1, . . . , n} y toma sus restos de dividir por n).

Principio del palomar generalizado. Si queremos repartir n objetos en m cajas, al menos
una caja ha de contener al menos n/m elementos.

Obviamente, si n/m no es entero, se toma el número entero inmediatamente superior.

2. Combinaciones

En secciones anteriores estudiamos como, de un conjunto de n elementos pod́ıamos extraer m,
de forma que el orden en que se extráıan los elementos fuera significativo. En esta trataremos de
encontrar como extraer m elementos de un conjunto que tiene n, pero ahora no importa el orden
en que se elijan, sino únicamente la naturaleza de estos elementos.

En términos de conjuntos, nos preguntamos cuántos subconjuntos de cardinal m tiene un
conjunto con n elementos. Vamos a denotar por

(
n
m

)
a tal cantidad.

Es fácil ver que
(
n
0

)
= 1, pues cada conjunto de cardinal n tiene un único subconjunto con

0 elementos, a saber, el conjunto vaćıo. De la misma forma se tiene que
(
n
n

)
= 1 (pues el único

subconjunto de cardinal n de un conjunto de n elementos es el propio conjunto).
También es fácil ver que

(
n
m

)
=
(

n
n−m

)
pues cada subconjunto de m elementos determina de

forma única un subconjunto de n − m elementos (concretamente, el de los elementos que no
pertenecen a él) y viceversa.

Por último, una tercera propiedad referente a estos números nos dice que
(
n+1
m

)
=
(
n
m−1

)
+
(
n
m

)
.

Número de combinaciones. Sean m,n ∈ N con m ≤ n. Entonces(
n

m

)
=

n!

m!(n−m)!

maxima 11: El número de subconjuntos con 2 elementos del conjunto {a, b, c, d, e} es

(%i1) binomial(5,2);

(%o1) 10

(%i2) subset(powerset({a,b,c,d,e}),lambda([x],is(length(x)=2)));

(%o2) a, b, a, c, a, d, a, e, b, c, b, d, b, e, c, d, c, e, d, e

(%i3) length(%);

(%o3) 10

Ejercicio 11: Demuestra que el número de cadenas de n bits que contienen exactamente m unos
(y por tanto n−m ceros) es

(
n
m

)
.
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Sabemos que si X es un conjunto con n elementos, entonces X tiene 2n subconjuntos (las
álgebras de Boole Bn y P(X) son isomorfas). Deducimos entonces que, para cualquier n ∈ N se
verifica que

2n =

n∑
k=0

(
n

k

)
=

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)

maxima 12: Supongamos que un departamento está formado por 7mujeres y 9 hombres, y se quiere
formar una comisión con cinco miembros, de forma que haya al menos un hombre y una mujer en
la comisión. Determinemos cuántas posibles comisiones pueden formarse con esas condiciones.

Para esto, vemos en primer lugar que pueden formarse

(%i1) binomial(16,5);

(%o1) 4368
posibles comisiones con 5 miembros.
De ellas,

(%i2) binomial(9,5);

(%o2) 126
no contienen ninguna mujer (están formadas únicamente por hombres), mientras que

(%i3) binomial(7,5);

(%o3) 21
no contienen ningún hombre. Por tanto, como el número que buscamos es el complentario de
aqullas que no tienen ni hombres ni mujeres, y estos conjuntos son disjuntos, el número posible de
comisiones es 4368− (126+ 21) = 4221.

Teorema del Binomio. Sea A un anillo conmutativo, y a, b ∈ A. Entonces, para cualquier
n ∈ N se verifica que:

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k =

(
n

0

)
an +

(
n

1

)
an−1b+ · · ·+

(
n

n

)
bn

maxima 13: El coeficiente de a7b3 en (a+ b)10 es
(
7
3

)
= 35.

(%i1) expand((a+b)^7);

(%o1) b7 + 7 ab6 + 21 a2 b5 + 35 a3 b4 + 35 a4 b3 + 21 a5 b2 + 7 a6 b+ a7

Usando el teorema del binomio se tiene que:(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

n

)
= (1+ 1)n = 2n

algo que ya hab́ıamos obtenido anteriormente.

Hasta ahora hemos estudiado, como de un conjunto de n elementos podemos elegir m, sin que
influya el orden en que se pueden elegir los elementos, y sin que puedan repetirse los elementos. Es lo
que se llama combinaciones (sin repetición) de n elementos tomados de m en m. Nos planteamos
a continuación el caso en el que los elementos puedan repetirse. Por ejemplo, tenemos en una
caja bolas rojas, negras y blancas, y extraemos 4 bolas. ¿Cuántas extracciones distintas podemos
realizar?
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Se trata, de un conjunto de tres elementos ({R,N,B}) elegir cuatro, pudiéndose repetir los
elementos, y sin que influya el orden en que los elegimos. Da igual la extracción RNBN que
RNNB. Lo único que importa es que se han elegido una bola roja, dos bolas negras y una blanca.

En este caso, las posibles extracciones son (suponemos que tenemos al menos cuatro bolas de
cada color):

RRRR RRRN RRRB RRNN RRNB RRBB RNNN RNNB

RNBB RBBB NNNN NNNB NNBB NBBB BBBB

es decir, un total de 15.
Para encontrar una forma de generalizar esto, vamos a escribir las quince posibles extracciones

como sigue:

RRRRxx RRRxNx RRRxxB RRxNNx RRxNxB RRxxBB RxNNNx RxNNxB

RxNxBB RxxBBB xNNNNx xNNNxB xNNxBB xNxBBB xxBBBB

y vemos que cada extracción está determinada por la posición que ocupan las dos x en la cadena
El número de posiciones que quedan a la izquierda de las dos equis nos indican la cantidad

de bolas rojas; el número de posiciones que quedan entre las dos equis nos indican el número de
bolas negras mientras que el número de posiciones a la derecha de las dos equis nos indican la
cantidad de bolas blancas. Aśı, colocando las equis en las posiciones 2 y 4 nos queda x x , lo que
nos da una bola roja, una bola negra y dos bolas blancas.

Puesto que entre las seis posiciones podemos colocar las dos equis de
(
6
2

)
= 15 formas diferentes

obtenemos que se pueden hacer un total de 15 extracciones diferentes.

Situémonos en el caso general. Supongamos que tenemos un conjunto con n elementos, que
podŕıan ser bolas de n colores diferentes, y extraemos m elementos (se supone que de cada color
hay al menos m bolas). Esto es lo que se llama combinaciones con repetición de n elementos
tomados de m en m. Para determinar cuantas combinaciones con repetición hay, identificamos
cada combinación con la elección de la posición de m− 1 equis de un total de n+m− 1 posibles
posiciones. El número de combinaciones con repetición de n elementos, tomados de m en m resulta
ser entonces

(
n+m−1
m

)
=
(
n+m−1
n−1

)
.

maxima 14: Vamos a determinar cuantas soluciones naturales tiene la ecuación x+y+ z+ t = 13.
Para resolverlo, planteamos el problema de otra forma. Supongamos que tenemos cuatro tipos
de bolas (rojas, negras, blancas y azules), y extraemos trece bolas. Cada extracción la podemos
identificar con una solución de la ecuación anterior, donde x es el número de bolas rojas, y es el
número de bolas negras, z es el número de bolas blancas y t es el número de bolas azules.

El número de posibles extracciones es el número de combinaciones con repetición de 4 elementos
tomados de 13 en 13. Su valor es

(%i1) binomial(16,3);

(%o1) 560
Supongamos ahora que queremos resolver la misma ecuación, pero queremos que las variables

tomen valores mayores o iguales que 1. En ese caso, llamamos x′ = x − 1, y′ = y − 1, z′ = z − 1,
t′ = t − 1, con lo que la ecuación se transforma en x′ + y′ + z′ + t′ = 9, y están permitidas todas
las soluciones naturales. El número de soluciones es

(%i3) binomial(9+4-1,4-1);

(%o3) 220
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Por tanto, de las 560 soluciones de la ecuación x + y + z + t = 13 hay 476 (560 − 84) en las
que alguna de las variables toma el valor cero.

Ejercicio 12: Supongamos que tenemos 15 caramelos (iguales) y los queremos repartir entre 5
niños. ¿De cuántas formas podemos hacerlo?

Ejercicio 13: Consideremos las variables x, y y z. Un monomio en esas tres variables es una
expresión de la forma xaybzc, con a, b, c números naturales. El grado del monomio xaybzc es
a+ b+ c. Calcula cuántos monomios hay de grado 10 en las variables x, y y z.

3. Permutaciones

En esta sección estudiaremos las formas diferentes de ordenar los elementos de un conjunto.
Dado un conjunto X con n elementos, una permutación en X es una ordenación de los elementos
de X. Otra forma de definir una permutación en X es como una aplicación biyectiva X→ X.

maxima 15: Por ejemplo, si X = {1, 2, 3}, hay seis permutaciones en X que se corresponden con las
seis formas de ordenar los elementos de X.

(%i1) permutations([1,2,3]);

(%o1) [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]

En general, si X es un conjunto con n elementos, el número de permutaciones en X es igual al
número de aplicaciones inyectivas X→ X, pues toda aplicación inyectiva X→ X es biyectiva. Este
número fue calculado en la sección dedicada a las variaciones, y sabemos que vale n·(n−1) · · · 2·1 =
n!.

Algo más complicado es ordenar los elementos de un conjunto cuando alguno de sus elementos
aparece repetido.

maxima 16: Por ejemplo, nos preguntamos de cuántas formas podemos ordenar las letras de la
palabra cara.

(%i1) permutations([c,a,r,a]);

(%o1) {[a, a, c, r], [a, a, r, c], [a, c, a, r], [a, c, r, a], [a, r, a, c], [a, r, c, a],
[c, a, a, r], [c, a, r, a], [c, r, a, a], [r, a, a, c], [r, a, c, a], [r, c, a, a]}

(%i2) length(%);

(%o2) 12
Para llegar a este resultado, supongamos que distinguimos las dos aes que aparecen en la

palabra, escribiendo una de ellas en negrita, y realizamos las 24 ordenaciones posibles.

(%i3) permutations([c,a1,r,a2]);

(%o3) {[a1, a2, c, r], [a1, a2, r, c], [a1, c, a2, r], [a1, c, r, a2], [a1, r, a2, c], [a1, r, c, a2], [a2, a1, c, r],
[a2, a1, r, c], [a2, c, a1, r], [a2, c, r, a1], [a2, r, a1, c], [a2, r, c, a1], [c, a1, a2, r], [c, a1, r, a2],
[c, a2, a1, r], [c, a2, r, a1], [c, r, a1, a2], [c, r, a2, a1], [r, a1, a2, c], [r, a1, c, a2], [r, a2, a1, c],
[r, a2, c, a1], [r, c, a1, a2], [r, c, a2, a1]}

Vemos que cada 2 ordenaciones de las letras de cara da lugar a la misma ordenación de las
letras de cara (la que resulta de intercambiar “a” con “a”). Por tanto, las letras de cara se pueden
ordenar de 24

2
= 12 formas distintas.

Otra forma de razonar este resultado es como sigue:
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Para ordenar las letras de cara, situamos en primer lugar las dos “aes”. Esto podemos hacerlo
de
(
4
2

)
formas diferentes. Una vez situadas las dos “aes”, colocamos la “c”, para la que tenemos

dos posibilidades. Por tanto, hay
(
4
2

)
· 2 = 12 formas diferentes de colocarla. La posición de la “r”

queda determinada por la de la “c” y las “aes”.

Ejercicio 14: Estudia de cuántas formas podemos ordenar las letras de la palabra “rara”.

Proposición. Supongamos que tenemos una lista de n objetos, de r tipos diferentes. Del tipo
1 hay un total de n1 objetos, todos ellos indistinguibles. Del tipo 2 hay n2 objetos, y aśı hasta el
tipo r, del que hay nr objetos. Entonces el número total de ordenaciones de estos objetos es

n!

n1!n2! · · ·nr!
Este problema es equivalente al de repartir objetos distinguibles en cajas distinguibles. Supon-

gamos que tenemos n objetos, y queremos repartirlos en r cajas, de forma que en la primera caja
haya n1 objetos, en la segunda carta haya n2 objetos, y aśı, hasta la r-ésima caja, en la que debe
haber nr objetos.

Los n1 objetos que van a la primera caja se pueden elegir de
(
n
n1

)
formas. Nos quedan entonces

n − n1 objetos, y de estos elegimos n2 para la segunda caja, lo cual podemos hacerlo de
(
n−n1

n2

)
formas. Repitiendo el razonamiento, y usando el principio del producto llegamos a que las formas
distintas en que podemos repartir los objetos en las cajas es(

n

n1

)(
n− n1
n2

)
· · ·
(
n− n1 − · · ·− nr−1

nr

)
=

n!

n1!n2! · · ·nr!
Se deja como ejercicio encontrar una biyección entre las distintas ordenaciones de n objetos

donde r tipos de objetos, y del tipo k-ésimo hay nk objetos, y las distribuciones de n objetos
distinguibles en r cajas distinguibles, de forma que en la caja k-ésima haya nk-objetos.

Coeficiente multinomial. Sea n ∈ N, y n1, n2, · · · , nr ∈ N tales que n1+n2+ · · ·+nr = n.
Se define el coeficiente multinomial

(
n

n1 n2 ··· nr

)
como(

n

n1 n2 · · · nr

)
=

n!

n1!n2! · · ·nr!

En el caso r = 2 se tiene que
(

n
n1 n2

)
=
(
n
n1

)
=
(
n
n2

)
. En este caso se denominan coeficientes

binomiales.

maxima 17: Tenemos cuatro jugadores, y repartimos cinco cartas a cada uno de una baraja de 40
cartas. Vamos a calcular de cuantas formas distintas se pueden repartir. Para esto, consideramos
las cartas como las bolas, a las que hay que distribuir en 5 cajas: 4 por cada uno de los jugadores,
y una quinta por las 20 cartas que quedan sin repartir.

Se trata entonces de distribuir 40 objetos distinguibles en cinco cajas también distinguibles, de
forma que en las cuatro primeras haya 5 objetos y en la última haya 20. El número de formas de
hacerlo es

(%i1) 40!/(5!*5!*5!*5!*20!);

(%o1) 1617318175088527591680

(%i2) multinomial(40,[5,5,5,20]);

(%o2) 1617318175088527591680
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Teorema Multinomial. Sea A un anillo conmutativo, y x1, x2, · · · xr ∈ A. Entonces, para
cada n ∈ N se verifica que:

(x1 + x2 + · · ·+ xr)n =
∑

n1+n2+···+nr=n

(
n

n1 n2 · · · nr

)
xn1

1 x
n2

2 · · · x
nr
r .

maxima 18: El número 3 se puede expresar de
(
3+3−1
3−1

)
= 10 formas diferentes como suma de

3 números naturales. Éstas corresponden con los exponentes de las variables en el desarrollo de
(x+ y+ z)3.

(%i1) expand((x+y+z)^3);

(%o1) z3 + 3 y z2 + 3 x z2 + 3 y2 z+ 6 xy z+ 3 x2 z+ y3 + 3 xy2 + 3 x2 y+ x3

El teorema multinomial tiene también una demostración combinatoria.

(x1 + x2 + · · ·+ xr)n = (x1 + x2 + · · ·+ xr)︸ ︷︷ ︸
c1

(x1 + x2 + · · ·+ xr)︸ ︷︷ ︸
c2

· · · (x1 + x2 + · · ·+ xr)︸ ︷︷ ︸
cn

Cada término de (x1+x2+· · ·+xr)n se obtiene multiplicando un sumando de c1, con un sumando
de c2 y aśı hasta cn. El coeficiente de xn1

1 x
n2

2 · · · xnr
r en (x1 + x2 + · · ·+ xr)n se obtendrá contando

cuantos términos (obtenidos como acabamos de decir) hay en los que ha elegido n1 veces el sumando
x1, n2 veces el sumando x2 y aśı sucesivamente.

En definitiva, lo que hay que hacer es ver de cuantas maneras diferentes se pueden distribuir
los “objetos” c1, c2, · · · , cn en r cajas distinguibles (x1, x2, · · · , xr); y esto sabemos que se puede
hacer de

(
n

n1 n2 ··· nr

)
formas diferentes.
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1. Principio de inducción y recurrencia

1.1. Principio de inducción. Si A es un subconjunto de N tal que:
0 ∈ A
Si n ∈ A entonces n+ 1 ∈ A

Entonces A = N.

Este principio es la base de muchas demostraciones en las que intervienen los números naturales.
Veamos un ejemplo.

maxima 19: Vamos a demostrar que para todo n ∈ N se verifica que

20 + 21 + · · ·+ 2n = 2n+1 − 1

Para esto, consideramos el conjunto A cuyos elementos son los números naturales para los que
se verifica la propiedad anterior, es decir,

A = {n ∈ N : 20 + · · ·+ 2n = 2n+1 − 1}

Claramente se tiene que 0 ∈ A, pues 20 = 20+1 − 1.
Supongamos ahora que n ∈ A, y veamos que n + 1 ∈ A, es decir, supongamos que 20 + 21 +

· · ·+ 2n = 2n+1 − 1 y comprobemos que 20 + 21 + · · ·+ 2n + 2n+1 = 2n+2 − 1.

20 + 21 + · · ·+ 2n + 2n+1 = (20 + 21 + · · ·+ 2n) + 2n+1 = 2n+1 − 1+ 2n+1 = 2 · 2n+1 − 1 = 2n+2 − 1

Por el principio de inducción se tiene que A = N, es decir, la propiedad es cierta para todo
n ∈ N.

(%i1) simpsum:false;

( %o1) false

(%i2) sum(2^i,i,0,n);

( %o2)
n∑
i=0

2i

22
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(%i3) simpsum:true;

( %o3) true

(%i4) sum(2^i,i,0,n);

( %o4) 2n+1 − 1

Una demostración basada en el principio de inducción es lo que se conoce como una demostra-
ción por inducción.

Si queremos demostrar por inducción que P(n) es cierto para todo n ∈ N (donde P(n) es una
propiedad que hace referencia a n), hemos de realizar dos pasos:

- Paso 1: Demostramos que P(0) es cierto.
- Paso 2: Demostramos que si P(n) es cierto, entonces también es cierto P(n+1).

La suposición de que P(n) es cierto es lo que se conoce como hipótesis de inducción.
Si quisiéramos demostrar que P(n) es cierto para todo n ≥ k, el primer paso deberá ser

demostrar que P(k) es cierto, mientras que el segundo no variaŕıa.

maxima 20: Demuestra que para todo n ≥ 1 se verifica que

1+ 2+ · · ·+ n =
n(n+ 1)

2

Hacemos esto por inducción:

Paso 1: Para n = 1 el resultado es trivialmente cierto.
Paso 2: La hipótesis de inducción es que 1 + 2 + · · · + n = n(n+1)

2
. A partir de ella hemos

de probar que 1+ 2+ · · ·+ n+ (n+ 1) = (n+1)(n+2)
2

(1+ 2+ · · ·+ n) + n+ 1 =
n(n+ 1)

2
+ n+ 1 =

n(n+ 1)

2
+
2(n+ 1)

2
=

(n+ 1)(n+ 2)

2

(%i5) sum(i,i,1,n);

( %o5)
n2 + n

2

El principio de inducción nos dice que si A es un subconjunto de N que satisface las dos
siguientes propiedades:

0 ∈ A
n ∈ A =⇒ n+ 1 ∈ A

Entonces A = N. Este axioma puede leerse de la forma siguiente:

Si A es un subconjunto de N que es distinto de N, entonces, o 0 6∈ A, o existe n ∈ N
tal que n ∈ A y n+ 1 6∈ A.

Esta formulación del principio de inducción (equivalente a la vista anteriormente) nos permite
demostrar una propiedad importante de los números naturales.

Principio de buena ordenación. Sea A un subconjunto de N distinto del conjunto vaćıo.
Entonces A tiene mı́nimo.

Se dice que m es el mı́nimo de A si m ∈ A y m ≤ n para todo n ∈ A.

Hasta ahora hemos usado el principio de inducción para demostrar propiedades referentes a los
números naturales. Veamos ahora como definir funciones con dominio en N.
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Sucesiones. Sea X un conjunto. Una sucesión en X es una aplicación x : N→ X.
Si x : N→ X es una sucesión, denotaremos normalmente al elemento x(n) como xn.

A la hora de definir una sucesión en X, podemos optar, bien por definir expĺıcitamente el
valor de xn para todo n ∈ N, o bien, definir el valor de x0, y a partir de xn definir lo que vale
xn+1. El principio de inducción nos asegura que de esta forma se define una función x : N → X
(aunque formalizar esto es bastante engorroso, la idea consiste en considerar A el subconjunto de
los números naturales n para los que xn está definido. Claramente, 0 ∈ A y si n ∈ A entonces
n+ 1 ∈ A, luego A = N).

Esta forma de definir sucesiones se llama recursiva, pues para obtener el valor de xn necesitamos
el valor de xn−1, que a su vez necesita el valor de xn−2, y aśı, hasta x0. Es decir, la sucesión recurre
a la propia sucesión para obtener un valor determinado.

maxima 21: Dado a ∈ R∗, definimos la sucesión xn como sigue:

x0 = 1
xn+1 = a · xn

Es fácil comprobar que xn = an.

(%i1) load(solve_rec)$

(%i2) solve_rec(x[n]=x[n-1]*a,x[n],x[0]=1);

( %o2) xn = an

maxima 22: Definimos la sucesión xn = 2n+1− 1. En este caso hemos dado expĺıcitamente xn para
cada n ∈ N.

Definimos ahora yn como sigue:

y0 = 1
yn+1 = yn + 2

n+1

Que ha sido definida de forma recursiva.
Ya hemos visto anteriormente que xn = yn para todo n ∈ N.

(%i3) solve_rec(y[n]=y[n-1]+2^n,y[n],y[0]=1);

( %o3) yn = 2n+1 − 1

maxima 23: La sucesión xn = 1+ 2+ · · ·+ n puede ser definida recursivamente como:

x1 = 1 xn+1 = xn + n+ 1

También se podŕıa comenzar con x0 = 0.

Ya hemos visto que xn = n(n+1)
2

.

(%i4) solve_rec(x[n]=x[n-1]+n,x[n],x[0]=0);

( %o4) xn =
n (n+ 1)

2

Podemos definir n! de forma recursiva:

1. 0! = 1
2. (n+ 1)! = (n+ 1) · n!
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Ejercicio 15: Sea m ∈ N. Definimos la sucesión:

x0 = 0 xn+1 = xn +m.

Demuestra que xn = m · n (hágase; aśı vemos cómo definir el producto de números naturales
a partir de la suma).

maxima 24: Consideremos ahora la sucesión dada por

f0 = 1 f1 = 1 fn = fn−1 + fn−2

Es fácil calcular los primeros términos de esta sucesión:
f2 = 1+ 1 = 2; f3 = 1+ 2 = 3; f4 = 2+ 3 = 5; f5 = 3+ 5 = 8

y aśı sucesivamente. Parece claro que está bien definido el valor de fn para cualquier n ∈ N. Sin
embargo, esta definición no se ajusta al método de recurrencia dado anteriormente (pues en este
caso, para calcular un término es necesario recurrir a los dos términos anteriores, mientras que en el
método dado anteriormente, únicamente necesitamos conocer el término anterior). Para subsanar
este problema, veamos un nuevo principio de inducción.

(%i5) solve_rec(f[n]=f[n-1]+f[n-2],f[n],f[0]=0,f[1]=1);

( %o5) fn =

(√
5+ 1

)n
√
5 2n

−

(√
5− 1

)n
(−1)n

√
5 2n

Segundo principio de inducción. Sea A un subconjunto de N. Supongamos que se verifica:

1. 0 ∈ A.
2. Para cualquier n, {0, 1 · · ·n− 1} ⊆ A =⇒ n ∈ A

Entonces A = N.

Formalmente, la primera condición no es necesaria, pues para n = 0 la segunda condición
afirma ∅ ⊆ A =⇒ 0 ∈ A, y puesto que la primera parte es siempre cierta (∅ ⊆ A), la condición 2
implica que 0 ∈ A. Sin embargo, en la práctica suele ser necesario comprobar que 0 ∈ A.

Notemos también que si la condición 1 se cambia por una de la forma 0, 1, . . . , k ∈ A, la tesis
del teorema sigue siendo cierta.

Este segundo principio puede usarse, tanto para definir sucesiones como para probar propieda-
des de los números naturales.

maxima 25: Sea xn la sucesión definida mediante

x0 = 1 xn+1 =

n∑
k=0

xk

Calculemos una fórmula general para xn. Para esto, hallemos los primeros términos:
x0 = 1; x1 = x0 = 1; x2 = x0 + x1 = 1 + 1 = 2; x3 = 1 + 1 + 2; x4 = 1 + 1 + 2 + 4 = 8;

x5 = 1+ 1+ 2+ 4+ 8 = 16.
Parece ser que xn responde a la expresión

xn =

{
1 si n = 0
2n−1 si n ≥ 1

Comprobémosla por inducción, utilizando el segundo principio

Paso 1: El resultado es cierto para n = 0 y n = 1.
Paso 2: La hipótesis de inducción es xn = 2n−1
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A partir de esto tenemos que xn+1 = 1+1+2+· · ·+2n−1 = 1+(1+2+· · ·+2n−1) = 1+2n−1 = 2n,
como queŕıamos.

En esta demostración se ha sustituido (1+ 2+ · · ·+ 2n−1) por 2n − 1, algo que ya hemos visto
con anterioridad.

Podemos comprobar que realizar esta demostración usando el primer principio de inducción no
es posible. Nuestra hipótesis de inducción seŕıa que xn = 2n−1, y a partir de ella, tendŕıamos que
demostrar que xn+1 = 2

n. Sin embargo, lo único que podemos hacer es

xn+1 = x0 + x1 + · · ·+ xn−1 + xn = x0 + x1 + · · ·+ xn−1 + 2n−1

y puesto que nuestra hipótesis no nos dice nada del valor de xn−1, xn−2, etc., no podemos concluir
que xn+1 = 2

n.
Si intentamos hacer esto con maxima directamente, nos encontramos con un problema.

(%i1) load(solve_rec)$

(%i2) solve_rec(x[n]=sum(x[i],i,0,n-1),x[n],x[0]=1);
apply: found u evaluates to 1 where a function was expected.
#0: lambda([u],[-u[1],u[2]])(u=1)(solve rec.mac line 510)
#1: get exps(expr=-’sum(x[i],i,0,n-1),var=n)
#2: solve rec lin cc(coeffs=[1],ihom=-’sum(x[i],i,0,n-1), %f=x, %n=n,cond=[x[0] = 1])(solve rec.mac
line 391) – an error. To debug this try: debugmode(true);

Sin embargo, podemos usar que xn+1 − xn = xn.

(%i3) solve_rec(x[n+1]-x[n]=x[n],x[n],x[1]=1);

( %o3) xn = 2n−1

2. Los números enteros

Dado un entero z, −z es su opuesto, y denotamos por |z| = máx{z,−z} al valor absoluto de z.

Propiedades de la suma. La suma de enteros es

asociativa,
tiene elemento neutro (el cero sumado a cualquier elemento da de nuevo ese elemento),
todo elemento tiene inverso (si sumamos un entero con su opuesto obtenemos el cero),
conmutativa,
cancelativa (a + b = a + c implica b = c; esto es consecuencia inmediata de la existencia
de elemento inverso).

El conjunto de los números enteros con la suma es por tanto un grupo abeliano.

Propiedades del producto. El producto de números enteros es

conmmutativo,
asociativo,
tiene elemento neutro (el uno),
es cancelativo para elementos no nulos,
distributivo (a(b+ c) = ab+ ac, que nos permite además sacar factor común).

Aśı el conjunto de los números enteros es un anillo conmutativo.
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Propiedad de la división. Dados a, b ∈ Z, con b 6= 0, existen q, r ∈ Z únicos de forma que
a = qb+ r y 0 ≤ r < |b|.

A q y r los llamaremos cociente y resto de dividir a entre b, y los denotaremos por a div b y
a mód b, respectivamente.

Dados a y b enteros, decimos que a divide a b, o que b es un múltiplo de a, si existe c ∈ Z tal
que b = ac. Usaremos a | b para denotar que a divide a b.

Ejercicio 16: Sean a, b, c ∈ Z. Demuestra que si c | a y c | b, entonces para todo x, y ∈ Z,
c | xa+ yb.

Sea p ∈ Z \ {−1, 1} (−1 y 1 son los únicos enteros que tiene inverso para el producto). Decimos
que p es irreducible si los únicos enteros que dividen a p son 1, −1, p y −p. El entero p es primo
si siempre que p|ab, para a y b enteros, se tiene que p|a o p|b.

Un entero es primo si y sólo si es irreducible.

Decimos que dos enteros son primos relativos si los únicos enteros que dividen a ambos son 1
y −1. (Nótese que 1 y −1 dividen a cualquier número entero.)

Teorema de Bézout. Sean a, b ∈ Z. Entonces a y b son primos relativos si y sólo si existen
u, v ∈ Z tales que au+ bv = 1.

Teorema fundamental de la aritmética. Todo número entero mayor que uno se puede
expresar de forma única (salvo reordenaciones) como producto de números primos positivos.

Ejercicio 17: Calcula todos los divisores enteros positivos de 120.

Sean a, b ∈ Z, con a 6= 0 o b 6= 0. Un entero d es un máximo común divisor de a y b si

1) d | a y d | b,
2) si c | a y c | b, con c un entero, entonces c | d.

Análogamente, un entero m es un mı́nimo común múltiplo de a y b si

1) a | m y b | m,
2) si a | c y b | c, con c un entero, entonces m | c.

De forma similar se puede definir el máximo común divisor y el mı́nimo común múltiplo de un
conjunto de enteros {a1, . . . , an} con n un entero positivo.

Si d es un máximo común divisor de a y b, también lo es −d, y éstos son los únicos máximos
divisores comunes de a y b. Lo mismo ocurre con el mı́nimo común múltiplo. Esto se debe
a que si a | b, entonces −a | b. Cuando escribamos gcd{a, b} nos referiremos al máximo
común divisor positivo de a y b. Para el mı́nimo común múltiplo utilizaremos lcm(a, b).

Sean a = upα1

1 · · ·pαr
r y b = vpβ1

1 · · ·pβr
r , con u, v ∈ {1,−1}, p1, . . . , pr primos distintos y

α1, . . . , αr, β1, . . . , βr enteros no negativos (algunos pueden ser cero, pues los primos que
aparecen en a no tienen por qué aparecer en b). Entonces

gcd{a, b} = p
mı́n{α1,β1}

1 · · ·pmı́n{αr,βr}
r ,

lcm{a, b} = p
máx{α1,β1}

1 · · ·pmáx{αr,βr}
r .

gcd{a, b}lcm{a, b} = |ab|.
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Algoritmo de Euclides.
Entrada: a, b enteros positivos.
Salida: gcd{a, b}.

(a0, a1) := (a, b).
Mientras a1 6= 0

(a0, a1) := (a1, a0 mód a1).
Devuelve a0.

Ejercicio 18: Calcula el máximo común divisor de 237 y 99.

maxima 26: Veamos algunos ejemplos de cálculo con maxima.

(%i1) primep(38129);

(%o1) false

(%i2) next_prime(38129);

(%o2) 38149

(%i3) prev_prime(38129);

(%o3) 38119

(%i4) factor(38129);

(%o4) 7 13 419

(%i5) 7*13*419;

(%o5) 38129

(%i6) gcd(15,18);

(%o6) 3

(%i7) quotient(101,34);

(%o7) 2

(%i8) remainder(101,34);

(%o8) 33

(%i9) 2*34+33;

(%o9) 101

Hay que tener cuidado con estas funciones, pues el resto no se define como nosotros lo hemos
hecho.

(%i10) quotient(-150,17);remainder(-150,17);

(%o10) −8

(%o11) −14

Si queremos un resto y cociente acordes a nuestra definición de división podemos hacer lo
siguiente.

(%i12) cociente(a,b):=(a-mod(a,b))/b;
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(%o12) cociente (a, b) :=
a−mod (a, b)

b

(%i13) cociente(-150,17);mod(-150,17);

(%o13) −9

(%o14) 3

(%i15) is(-8*17+-14=-9*17+3);

(%o15) true

3. Ecuaciones diofánticas lineales

Una ecuación diofántica lineal es una expresión de la forma a1x1 + · · · + anxn = b, con
a1, . . . , an, b ∈ Z. Una solución a dicha ecuación es una n-upla (c1, . . . , cn) de elementos ente-
ros de forma que a1c1 + · · ·+ ancn = b.

Teorema de Bézout generalizado. Sea {a1, . . . , an} un conjunto de enteros, y d su máximo
común divisor. Entonces existen u1, . . . , un ∈ Z tales que a1u1 + · · ·+ anun = d.

Aśı la ecuación diofántica a1x1+ · · ·+anxn = b tiene solución si y sólo si d | b. Las soluciones
de a1x1 + · · ·+ anxn = b son las mismas que las de las ecuación a1

d
x1 + · · ·+ an

d
xn = b

d
.

Para n = 2, tenemos ecuaciones en dos variables. Usamos las incógnitas x e y por comodidad.
Si x0, y0 es una solución particular de ax+by = c, con gcd{a, b} = 1, entonces todas las soluciones
de esa ecuación son de la forma {

x = x0 + bk,
y = y0 − ak,

con k ∈ Z.

Algoritmo extendido de Euclides.
Entrada: a, b enteros positivos.
Salida: s, t, d ∈ Z tales que d = gcd{a, b} y as+ bt = d.

(a0, a1) := (a, b).
(s0, s1) := (1, 0).
(t0, t1) := (0, 1).
Mientras a1 6= 0

q := a0 div a1.
(a0, a1) := (a1, a0 − a1q).
(s0, s1) := (s1, s0 − s1q).
(t0, t1) := (t1, t0 − t1q).

d := a0, s := s0, t := t0.
Devuelve s, t, d.

maxima 27: Resolvamos la ecuación 40x+ 15y = 30. Usando gcdex obtenemos lo siguiente.

(%i1) gcdex(40,15);

(%o1) [−1, 3, 5]

Lo que significa que 40 × (−1) + 15 × 3 = 5. Como 5 divide a 30, la ecuación tiene solución.
Multiplicamos por 6 (6× 5 = 30) y obtenemos lo siguiente.
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(%i2) %*6;

(%o2) [−6, 18, 30]

Que equivale a multiplicar la igualdad 40 × (−1) + 15 × 3 = 5 por 6. Por tanto, una solución de
nuestra ecuación 30× (−6) + 15× 18 = 30.

Nótese que la ecuación 40x + 15y = 30 es equivalente a 8x + 3y = 6 (hemos dividido por el
máximo común divisor de 40 y 15). Si x0, y0 es una solución de dicha ecuación, x = x0 + 3k e
y = y0 − 8k es una solución de 8x+ 3y = 6 para todo k ∈ Z.

(%i3) gcdex(8,3);

(%o3) [−1, 3, 1]

(%i4) %*6;

(%o4) [−6, 18, 6]

Aśı todas las soluciones de 40x+ 15y = 30 son{
x = −6+ 3k,
y = 18− 8k.

maxima 28: Resolvamos ahora la ecuación 121x− 77y = 88.

(%i1) gcd(121,-77);

(%o1) 11
Al dividir por 11, la ecuación queda reducida a 11x− 7y = 8.

(%i2) l:gcdex(11,-7);

(%o2) [2, 3, 1]

(%i3) 8*l;

(%o3) [16, 24, 8]
Por lo que tenemos que una solución particular es x0 = 16 e y0 = 24. Siendo además todas las

soluciones de la forma x = x0 − 7k, y = y0 − 11k con k un entero cualquiera.

4. Ecuaciones en congruencias de grado uno

Sean a, b,m ∈ Z. Escribimos a ≡ b (mód m), que se lee “a es congruente con b módulo m”,
para indicar que m | a− b.

Una ecuación en congruencias de grado uno (o lineal) es una expresión de la forma ax ≡ b
(mód m). Una solución para dicha ecuación es un entero c de forma que ac ≡ b (mód m). Nótese
que las soluciones de ax ≡ b (mód m) son las posibles x de la ecuación diofántica ax+my = b.

La ecuación ax ≡ b (mód m) tiene solución si y sólo si gcd{a,m} | b.
Si d = gcd{a,m} y d | b, entonces las ecuaciones ax ≡ b (mód m) y a

d
x ≡ b

d
(mód m

d
)

tienen las mismas soluciones.
Si gcd{a,m} = 1, y x0 es una solución de ax ≡ b (mód m), entonces el conjunto de todas
las soluciones de la ecuación es {x0 + km tales que k ∈ Z}.
La ecuación ax + c ≡ b (mód m) tiene las mismas soluciones que la ecuación ax ≡ b − c
(mód m).
La ecuación ax ≡ b (mód m) tiene las mismas soluciones que la ecuación (a mód m)x ≡
(b mód m) (mód m).
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Si au+mv = 1, con u, v ∈ Z, entonces bu es una solución de ax ≡ b (mód m).

maxima 29: Veamos si tiene solución la ecuación 54x ≡ 6 (mód 34), y en caso de tener, vamos a
describir su conjunto de soluciones.

(%i1) remainder(54,34);

(%o1) 20

Al ser 54 mód 34 igual a 20, la ecuación anterior es equivalente a 20x ≡ 6 (mód 34).

(%i2) gcd(20,34);

(%o2) 2

Como 2|6, la ecuación tiene solución, y es equivalente a 10x ≡ 3 (mód 17). Usando gcdex

obtenemos los coeficientes de Bézout para 10 y 17.

(%i2) gcdex(10,17);

(%o2) [−5, 3, 1]

Lo que viene a decir que (−5) × 10 + 3 × 17 = 1. Aśı una solución de 10x ≡ 3 (mód 17) es
(−5)3, que vale −15. Aśı todas las soluciones de nuestra ecuación son de la forma −15+ 17k con
k ∈ Z.

Ejercicio 19: Encuentra todas las soluciones enteras de

121x ≡ 2 (mód 196).

maxima 30: Vamos a resolver el sistema{
x ≡ 5495 (mód 7643)
x ≡ 7569 (mód 8765)

Por la primera ecuación, sabemos que x es de la forma x = 5495 + 7643k con k un entero
cualquiera. Substituimos en la segunda y k se convierte en la nueva incógnita: 5495+7643k ≡ 7569
(mód 8765). Como

(%i1) 7569-5495;

(%o1) 2074
tenemos que resolver 7643k ≡ 2074 (mód 8765). El inverso de 7643 módulo 8765 lo calculamos
(de existir) con el algoritmo extendido de Euclides.

(%i2) gcdex(7643,8765);

(%o2) [2617,−2282, 1]
Despejamos

(%i3) mod(2617*2074,8765);

(%o3) 2123
y obtenemos que k = 2123+ 8765t para cualquier entero t. Substituyendo k en la expresión de x,
llegamos a x = 5495+ 7643(2123+ 8765t).

(%i4) expand(5495+7643*(2123+8765*t));

(%o4) 66990895 t+ 16231584
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Por lo que x = 66990895t+16231584 para todo t ∈ Z es una solución del sistema de congruen-
cias. Lo podemos comprobar como sigue.

(%i6) mod(16231584,[7643,8765]);

(%o6) [5495, 7569]

Ejercicio 20: Resuelve los siguientes sistemas de congruencias.

2x ≡ 3 (mód 5)
3x ≡ 1 (mód 4)

} 2x ≡ 2 (mód 4)
6x ≡ 3 (mód 9)
2x ≡ 3 (mód 5)


2x ≡ 2 (mód 4)
3x ≡ 6 (mód 12)

} x ≡ 1 (mód 2)
3x ≡ 2 (mód 6)
5x ≡ 1 (mód 7)


5. El anillo de los enteros módulo un entero positivo

Dado un entero positivo m, denotamos por Zm = {0, 1, . . . ,m−1} (que es el conjunto de restos
posibles de la división por m), y por eso este conjunto se conoce a veces como el conjunto de los
enteros módulo m.

En Zm definimos una suma y un producto de la siguiente forma. Dados a, b ∈ Zm,

a⊕ b = (a+ b) mód m,
a⊗ b = (ab) mód m.

Propiedades de la suma. Conmutativa, asociativa, elemento neutro y elemento inverso.

Propiedades del producto. Conmutativa, asociativa, elemento neutro y distributiva.

Un elemento a ∈ Zm tiene inverso para el producto si y sólo si gcd{a,m} = 1. Si au+mv =
1, entonces u mód m es el inverso de a en Zm.

Ejercicio 21: Calcula el inverso para el producto de 121 en Z196.

Ejercicio 22: Calcula el resto de dividir 42251000 entre 7.

Ejercicio 23: Prueba que dado un número entero m o bien se verifica que m2 ≡ 0 (mód 8), o
m2 ≡ 1 (mód 8), o m2 ≡ 4 (mód 8).

maxima 31: Escribamos una función para calcular Zm, para m un entero positivo.

(%i1) Z(m):=setify(makelist(i,i,0,m-1));

(%o1) Z (m) := setify (makelist (i, i, 0,m− 1))

(%i2) Z(10);

(%o2) {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

(%i3) tieneinverso(x,m):=is(gcd(x,m)=1);
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(%o3) tieneinverso (x,m) := is (gcd (x,m) = 1)

El inverso lo podemos calcular con la función inv mod.

(%i4) inv mod(3,10);

(%o4) 7

(%i5) inv mod(2,10);

(%o5) false

Veamos los elementos que tienen inverso en Z12.
(%i6) subset(Z(12),lambda([x],tieneinverso(x,12)));

(%o6) 1, 5, 7, 11

Como 11 es primo, todo elemento no nulo de Z11 tiene inverso:

(%i7) every(lambda([x],tieneinverso(x,11)),disjoin(0,Z(11)));

(%o7) true

Por último, resolvamos la ecuación 137x ≡ 26 (mód 155), que es equivalente a resolver la
ecuación 137x = 26 en Z155.

(%i9) inv_mod(137,155);

(%o9) 43

(%i10) mod(43*26,155);

(%o10) 33
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1. Conjuntos ordenados.

Relación de orden. Sea X un conjunto, y ≤ una relación binaria en X. Se dice que ≤ es una
relación de orden si se verifican las siguientes propiedades.

Reflexiva: x ≤ x para todo x ∈ X.
Antisimétrica: Si x ≤ y e y ≤ x entonces x = y.
Transitiva: Si x ≤ y e y ≤ z entonces x ≤ z.

Si X es un conjunto en el que tenemos definida una relación de orden ≤, se dice que (X,≤)
es un conjunto ordenado (o, si está claro cual es la relación ≤ se dice simplemente que X es un
conjunto ordenado).

Si ≤ es una relación de orden en X que satisface la propiedad adicional de que dados x, y ∈ X
entonces x ≤ y ó y ≤ x, se dice entonces que ≤ es una relación de orden total, y que (X,≤) (o
X) es un conjunto totalmente ordenado (en ocasiones, para destacar que (X,≤) es una relación
de orden, pero que no es total se dice que ≤ es una relación de orden parcial y que (X,≤) es un
conjunto parcialmente ordenado).

Ejercicio 24:

1. El conjunto de los números naturales, con el orden natural (m ≤ n si existe k ∈ N tal
que n = m + k) es un conjunto totalmente ordenado. De la misma forma, también lo son
(Z,≤), (Q,≤) y (R,≤).

2. Dado un conjunto X, entonces P(X), con el orden dado por la inclusión es un conjunto
ordenado. Prueba que si X tiene más de un elemento, este orden no es total.

3. En el conjunto de los números naturales, la relación de divisibilidad es una relación de
orden que no es total. Prueba que, sin embargo, en el conjunto de los números enteros esta
relación no es de orden.

4. Para cualquier número natural n consideramos el conjunto

D(n) = {m ∈ N : m|n}

Entonces (D(n), |) es un conjunto (parcialmente) ordenado.

Sea (X,≤) es un conjunto ordenado, e Y un subconjunto de X. Definimos en Y el orden x � y
si x ≤ y (vistos como elementos de X). Entonces, (Y,�) es un conjunto ordenado. De ahora en
adelante, el orden en Y lo denotaremos igual que en X.

34
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Si (X,≤) es un conjunto totalmente ordenado, entonces, para cualquier Y ⊆ X se tiene que
(Y,≤) es un conjunto totalmente ordenado.

La definición de conjunto ordenado puede hacerse también a partir de la noción de orden
estricto.

Orden estricto. Sea X un conjunto, y < una relación binaria en X. Se dice que < es un orden
estricto si se verifican las siguientes propiedades:

: Antirreflexiva Para cualquier x ∈ X se tiene que x 6< x.
: Transitiva Si x < y e y < z entonces x < z.

Es fácil comprobar que si ≤ es una relación de orden en un conjunto X, entonces si definimos

x < y si x ≤ y y x 6= y
se tiene que < es una relación de orden estricto en X.

De la misma forma, si < es una relación de orden estricto en X entonces la relación siguiente:

x ≤ y si x < y o x = y

es una relación de orden en X.
Vemos entonces que los conceptos de relación de orden y relación de orden estricto son equi-

valentes, pues dada una relación de orden tenemos determinada una relación de orden estricto y
viceversa. Además, los caminos para pasar de orden a orden estricto, y de orden estricto a orden,
son uno el inverso del otro.

A continuación vamos a construir un grafo (dirigido) asociado a una relación de orden. Aún
cuando los grafos serán estudiados con posterioridad, la representación de una relación de orden
mediante este grafo ayuda a visualizar mejor el orden dado.

Diagrama de Hasse. El diagrama de Hasse de un conjunto ordenado (X,≤) es un grafo
dirigido cuyos vértices son los elementos de X, y existe un lado de x a y si x < y y no existe z tal
que x < z < y.

El diagrama de Hasse de un conjunto ordenado está definido para cualquier conjunto ordenado.
Sin embargo, en general dicho diagrama no permite recuperar el orden. Por ejemplo, en el caso del
conjunto (R,≤), dado cualquier x ∈ R no existe ningún y ∈ R que esté conectado a x por algún
lado.

Sin embargo, si el conjunto X es finito, entonces dados x, y ∈ X se tiene que x ≤ y si x = y o
existe algún camino que parta de x y termine en y.

Una forma habitual de representar el diagrama de Hasse es dibujar los lados como ĺıneas
ascendentes, lo que implica colocar los vértices de forma apropiada.

Vamos a representar los diagramas de Hasse de los conjuntos ordenados P({1, 2, 3}) y D(30).

{1, 2, 3}

{1, 2}
�����

{1}

∅
??????

{2, 3}

?????

{3}

������

{1, 3}

�����

{2}

?????

?????

�����

30

6
�������

2

1
???????

15

??????

5

�������

10

�������

3
???????

???????

�������
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Observa como la estructura de conjunto ordenado es igual en ambos casos.

Maximales, minimales, máximo y mı́nimo. Sea (X,≤) un conjunto ordenado.

1. Un elemento x ∈ X se dice que es maximal, si no existe y ∈ X tal que x ≤ y y x 6= y.
2. Un elemento x ∈ X se dice que es máximo, si para todo y ∈ X se verifica que y ≤ x.

De la misma forma se puede definir lo que es un elemento minimal y lo que es un mı́nimo.
Nótese, que si un conjunto tiene máximo, entonces este es único. Además, en el caso de que

tenga máximo, entonces tiene sólo un elemento maximal, que coincide con el máximo.
Idéntica observación vale para mı́nimo y elemento minimal.
Denotaremos por máx(X) al máximo del conjunto X, en el caso de que exista, y por mı́n(X) al

mı́nimo.

Cotas superiores, inferiores, supremo e ı́nfimo. Sea (X,≤) un conjunto ordenado, e Y
un subconjunto de X. Consideramos en Y el orden inducido de X.

1. Un elemento x ∈ X se dice que es cota superior de Y si x ≥ y para todo y ∈ Y.
2. Un elemento x ∈ X se dice que es supremo de Y si es el mı́nimo del conjunto de las cotas

superiores de Y.

De la misma forma se define lo que es una cota inferior y un ı́nfimo.

Ejercicio 25: Sea X = {a, b, c, d, e, f, g, h, i, j} con el orden dado por el diagrama de Hasse

a

c
�������

f
???????

h

j

e
�������

b

d

g
???????

i

��������

�������

e Y = {c, d, f, g, h}. Calcula

1. el conjunto de las cotas superiores de Y,
2. el supremo de Y en caso de existir,
3. los elementos maximales de Y,
4. el conjunto de las cotas inferiores de Y,
5. su ı́nfimo (en caso de existir),
6. máximo y mı́nimo, si es que existen.

Cuando un conjunto tiene supremo éste es único. Podemos entonces hablar de el supremo de
Y, y lo representaremos mediante sup(Y).

De la misma forma, denotaremos por ı́nf(Y) al ı́nfimo del conjunto Y cuando exista.
Cuando un conjunto tiene máximo, entonces también tiene supremo, y coincide con él. En el

último ejemplo vemos como el rećıproco no es cierto, pues Y tiene supremo pero no tiene máximo.
Cuando el supremo de un conjunto pertenezca al conjunto, entonces será también el máximo.

maxima 32:
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(%i1) menores(x,rel,conj):=subset(conj,lambda([y],rel(y,x) ))$

(%i2) mayores(x,rel,conj):=subset(conj,lambda([y],rel(x,y) ))$

(%i3) D:setdifference(divisors(30),{1,2,30});

(%o3) {3, 5, 6, 10, 15}

(%i4) menores(15,lambda([x,y],is(mod(y,x)=0)), {1,2,3,4,5,6,7});

(%o4) {1, 3, 5}

(%i5) minimal(x,rel,con):=is(menores(x,rel,con)={x}) and elementp(x,con)$

(%i6) maximal(x,rel,con):=is(mayores(x,rel,con)={x}) and elementp(x,con)$

(%i7) minimal(3,lambda([x,y],is(mod(y,x)=0)), D);

(%o7) true

(%i8) minimales(rel,con):=subset(con,lambda([x],minimal(x,rel,con)))$

(%i9) maximales(rel,con):=subset(con,lambda([x],maximal(x,rel,con)))$

(%i10) div(x,y):=is(mod(y,x)=0)$

(%i11) minimales(div,D);

(%o11) {3, 5}

(%i12) maximales(div,D);

(%o12) {6, 10, 15}

(%i13) minimo(rel,con):=block(local(m),

m:listify(minimales(rel,con)),

if (is(length(m)=1)) then m[1] else

error ("Error no hay minimo"))$

(%i14) maximo(rel,con):=block(local(m),

m:listify(maximales(rel,con)),

if (is(length(m)=1)) then m[1] else

error("Error no hay maximo"))$

(%i15) maximo(div,D);
Error no hay maximo
#0: maximo(rel=div,con=3,5,6,10,15) – an error. To debug this try: debugmode(true);

(%i16) minimo(div,D);
Error no hay minimo
#0: minimo(rel=div,con=3,5,6,10,15) – an error. To debug this try: debugmode(true);

(%i17) cotasuperior(x,rel,con):=is(con=menores(x,rel,con))$

(%i18) cotainferior(x,rel,con):=is(con=mayores(x,rel,con))$

(%i19) cotainferior(1,div,D);

(%o19) true

(%i20) cotassuperiores(rel,con,amb):=subset(amb,lambda([x],cotasuperior(x,rel,con)))$

(%i21) cotasinferiores(rel,con,amb):=subset(amb,lambda([x],cotainferior(x,rel,con)))$

(%i22) cotasinferiores(div,D,divisors(30));

(%o22) {1}

(%i23) cotasinferiores(div,D,D);

(%o23) {}
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(%i24) supremo(rel,con,amb):=minimo(rel,cotassuperiores(rel,con,amb))$

(%i25) infimo(rel,con,amb):=maximo(rel,cotasinferiores(rel,con,amb))$

(%i26) supremo(div,D,D);

Error no hay minimo
#0: maximo(rel=div,con=)
#1: supremo(rel=div,con=3,5,6,10,15,amb=3,5,6,10,15) – an error. To debug this try: debugmo-
de(true);

(%i27) infimo(div,D,divisors(30));

(%o27) 1

(%i28) supremo(div,D,divisors(30));

(%o28) 30

Buen orden. Sea (X,≤) un conjunto ordenado. Se dice que ≤ es un buen orden si todo
subconjunto no vaćıo de X tiene mı́nimo. En tal caso, se dice que (X,≤) (o X) es un conjunto bien
ordenado.

Observación: Todo conjunto bien ordenado es un conjunto totalmente ordenado, pues dados
dos elementos x, y ∈ X el subconjunto {x, y} tiene mı́nimo. Si mı́n({x, y}) = x entonces x ≤ y,
mientras que si mı́n({x, y}) = y entonces y ≤ x.

El rećıproco no es cierto. Busca un ejemplo.

Ejercicio 26: El conjunto de los números naturales, con el orden usual, es un conjunto bien
ordenado.

Orden producto. Sean (X1,≤1) y (X2,≤2) dos conjuntos ordenados.

Se define el orden producto en X1 × X2 como sigue:

(x1, x2) � (y1, y2) si x1 ≤1 y1 y x2 ≤2 y2.
Se define el orden lexicográfico en X1 × X2 como sigue:

(x1, x2) ≤lex (y1, y2)
def⇐⇒ { x1 <1 y1 ó

x1 = y1 y x2 ≤2 y2.
Claramente, si (x1, x2) � (y1, y2) entonces (x1, x2) ≤lex (y1, y2).

Propiedades del orden producto. Si (X1,≤1) y (X2,≤2) son dos conjuntos ordenados,
entonces (X1 × X2,�) y (X1 × X2,≤lex) son conjuntos ordenados.

Además, si ≤1 y ≤2 son órdenes totales (resp. buenos órdenes) entonces ≤lex es un orden total
(resp. buen orden).

Observación: Si tenemos n conjuntos ordenados X1, X2, . . . , Xn, podemos definir recursiva-
mente el orden producto y el orden lexicográfico en X1 × X2 × · · · × Xn.

Supuesto definido el orden producto � en X1 × · · · × Xn−1 se define en X1 × · · · × Xn:

(x1, . . . xn−1, xn) � (y1, . . . , yn−1, yn) si (x1, . . . , xn−1) � (y1, . . . , yn−1) y xn ≤ yn,
es decir, definimos el orden producto en (X1 × · · · × Xn−1)× Xn.
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Supuesto definido el orden lexicográfico ≤lex en X1 × · · · × Xn−1 se define en X1 × · · · × Xn:

(x1, . . . xn−1, xn) ≤lex (y1, . . . , yn−1, yn)
def⇐⇒ { (x1, . . . , xn−1) <lex (y1, . . . , yn−1) ó

(x1, . . . , xn−1) = (y1, . . . , yn−1) y xn ≤ yn.

Sea el conjunto

A = { , a, b, c, d, e, f, g, h, i, j, l, l,m, n, ñ, o, p, q, r, s, t, u, v,w, x, y, z},

es decir, las 27 letras del alfabeto junto con el espacio en blanco.
Claramente, A tiene un orden total de todos conocido.
Supongamos que n es el número de letras de la palabra más larga de la lengua española.

Entonces, cada palabra puede representarse como un elemento de An (poniendo tantos espacios al
final como sea necesario).

Cuando ordenamos las palabras, tal y como vienen en un diccionario, nos fijamos en la primera
letra, y es la que nos da el orden. Cuando ésta coincide, pasamos a la segunda, y es ésta entonces
la que nos da el orden. De coincidir también, nos fijamos en la tercera, y aśı sucesivamente. Es
decir, las palabras de la lengua están ordenadas siguiendo el orden lexicográfico.

Ejercicio 27: Consideramos en N × N los órdenes producto (≤) y lexicográfico ≤lex deducidos a
partir del orden usual en N. Sea X = {(0, n), (1, n− 1), . . . , (n− 1, 1), (n, 0)}.

1. Calcula el conjunto de cotas inferiores de X en N×N respecto del orden lexicográfico y con
respecto al orden producto.

2. Calcula ı́nfimo y mı́nimo (caso de existir) de X ⊆ N×N, respecto del orden lexicográfico y
del orden producto cartesiano.

3. Calcula los elementos maximales y minimales de X respecto a esos dos órdenes.

2. Ret́ıculos

Definición 1. Un ret́ıculo es un conjunto ordenado, (L,≤) en el que cualquier conjunto finito
tiene supremo e ı́nfimo.

Si (L,≤) es un ret́ıculo y x, y ∈ L, denotaremos por x∨ y al supremo del conjunto {x, y} y por
x∧ y al ı́nfimo del conjunto {x, y}.

Nótese que x∨ y está definido por la propiedad:

x ≤ x∨ y; y ≤ x∨ y (x ≤ z e y ≤ z) =⇒ x∨ y ≤ z

La primera parte dice que x∨y es una cota superior del conjunto {x, y}, mientras que la segunda
dice que es la menor de las cotas superiores.

2.1. Propiedades de ret́ıculos. Si (L,≤) es un ret́ıculo, las operaciones ∨ y ∧ satisfacen
las siguienes propiedades:
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Conmutativa

{
x∨ y = y∨ x
x∧ y = y∧ x

Asociativa

{
x∨ (y∨ z) = (x∨ y)∨ z
x∧ (y∧ z) = (x∧ y)∧ z

Absorción

{
x∨ (x∧ y) = x
x∧ (x∨ y) = x

Idempotencia

{
x∨ x = x
x∧ x = x

Ejercicio 28:

1. Prueba que si X es un conjunto totalmente ordenado, entonces para cada x, y ∈ X, x∨y =
máx({x, y}) mientras que x∧ y = mı́n({x, y}). Demuestra que X es un ret́ıculo.

2. El conjunto ordenado (N, |) es un ret́ıculo. Prueba que en este caso se tiene que x ∨ y =
mcm(x, y) mientras que x∧ y = mcD(x, y). De la misma forma, si n ∈ N entonces D(n),
con el orden dado por la divisibilidad es un ret́ıculo.

3. Para X es un conjunto, demuestra P(X) es un ret́ıculo. Prueba primero que A∨B = A∪B
y A∧ B = A ∩ B, para cualesquiera A y B subconjuntos de X.

4. Prueba que el conjunto ordenado cuyo diagrama de Hasse es

1
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es un ret́ıculo.
5. Demuestra que conjunto ordenado cuyo diagrama de Hasse es

a
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no es un ret́ıculo.
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Nótese que si (L,≤) es un ret́ıculo, entonces dados x, y ∈ L se verifica que x ≤ y si, y sólo si,
x ∨ y = y, o si queremos, x ≤ y si, y sólo si, x ∧ y = x. Es decir, podemos recuperar el orden
dentro del ret́ıculo a partir del conocimiento de las operaciones supremo o ı́nfimo.

La siguiente proposición nos da condiciones suficientes para que dos operaciones definidas en
un conjunto puedan ser el supremo y el ı́nfimo de alguna relación de orden en ese conjunto.

Proposicion. Sea L un conjunto en el que tenemos definidas dos operaciones ∨ y ∧ que
satisfacen las propiedades conmutativa, asociativa, idempotencia y de absorción. Supongamos que
en L definimos la relación

x ≤ y si x∨ y = y

Entonces, (L,≤) es un ret́ıculo donde las operaciones supremo e ı́nfimo vienen dadas por ∨ y ∧

respectivamente.

Nótese que se tiene que x ∨ y = y si, y sólo si, x ∧ y = x, luego podŕıa haberse hecho la
demostración definiendo la relación

x ≤ y si x∧ y = x

Nótese también que la propiedad de idempotencia se puede deducir a partir de la de absorción,
pues

x∨ x = x∨ [x∧ (x∨ x)] = x

luego podemos demostrar la proposición anterior partiendo de que las operaciones ∨ y ∧ satisfacen
las propiedades asociativa, conmutativa y de absorción.

Esta proposición permite definir un ret́ıculo, bien dando la relación de orden, bien dando las
operaciones ∨ y ∧.

Si (L,≤) es un ret́ıculo y L tiene máximo, denotaremos a éste por 1, mientras que si tiene
mı́nimo lo denotaremos por 0. Se tiene entonces, x∨ 1 = 1, x∧ 1 = x, x∨ 0 = x y x∧ 0 = 0.

Un ret́ıculo finito siempre tiene máximo y mı́nimo. Si el ret́ıculo es infinito, puede tenerlo o no.
Aśı, por ejemplo, (N,≤) tiene mı́nimo pero no tiene máximo; (Z,≤) no tiene ni mı́nimo ni máximo.
El ret́ıculo (N, |) es infinito y tiene máximo y mı́nimo. En este caso, el máximo es 0 mientras que
el mı́nimo es 1.

Subret́ıculo. Sea (L,≤) un ret́ıculo, y L′ ⊆ L un subconjunto de L. Entonces L′ es un su-
brret́ıculo si para cualesquiera x, y ∈ L′ se verifica que x∨ y ∈ L′ y x∧ y ∈ L′.

maxima 33: Consideramos el ret́ıculo D(30).
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Sean L1 = {3, 6, 15, 30}, L2 = {1, 2, 3, 5, 15}, L3 = {1, 6, 10, 30} y L4 = {1, 2, 3, 6, 30}. Sus diagra-
mas de Hasse son:
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L1 L2 L3 L4

Entonces L1 y L4 son subret́ıculos de D(30), mientras que L2 y L3 no lo son.

(%i29) condsubreticulosup(rel,con,amb):=subset(cartesian_product(con,con),

lambda([x],not(elementp(supremo(rel,{x[1],x[2]},amb),con))))$

(%i30) condsubreticuloinf(rel,con,amb):=subset(cartesian_product(con,con),

lambda([x],not(elementp(infimo(rel,{x[1],x[2]},amb),con))))$

(%i31) subreticulop(rel,con,amb):=emptyp(condsubreticulosup(rel,con,amb)) and

emptyp(condsubreticuloinf(rel,con,amb))$

(%i32) subreticulop(div,{3,6,15,30},divisors(30));

(%o32) true

(%i33) condsubreticulo(div,{1,2,3,5,15},divisors(30));

(%o33) condsubreticulo (div, 1, 2, 3, 5, 15, 1, 2, 3, 5, 6, 10, 15, 30)

(%i34) supremo(div,{2,3},divisors(30));

(%o34) 6

(%i35) subreticulop(div,{1,6,10,30},divisors(30));

(%o35) false

(%i36) condsubreticuloinf(div,{1,6,10,30},divisors(30));

(%o36) {[6, 10], [10, 6]}

(%i37) subreticulop(div,{1,2,3,6,30},divisors(30));

(%o37) true

Ret́ıculo distributivo. Sea L un ret́ıculo. Se dice que L es distributivo si para cualesquiera
x, y, z ∈ L se verifica que

x∨ (y∧ z) = (x∨ y)∧ (x∨ z) y x∧ (y∨ z) = (x∧ y)∨ (x∧ z)

Basta con que se de una de las dos posibles propiedades distributivas para que se de la otra.

Ejercicio 29:
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1. Prueba que si L es un conjunto totalmente ordenado, entonces L es un ret́ıculo distributivo.
2. Demuestra que el ret́ıculo (N, |) es un ret́ıculo distributivo.

De igual forma, para cada número natural n ∈ N, el ret́ıculo D(n) es distributivo.
3. Prueba que si X es un conjunto, entonces (P(X),⊆) es un ret́ıculo distributivo.

Consideramos los siguientes ret́ıculos:

1

a
�������

0

///////////// b c
???????

�������������

1

z
�������

x

0
???????

y
???????

�������������

denominados respectivamente diamante y pentágono. En el ejemplo anterior hemos visto que el
diamante no es distributivo. En cuanto al pentágono, se tiene que

x∨ (y∧ z) = x∨ 0 = x (x∨ y)∧ (x∨ z) = 1∧ z = z

luego tampoco es distributivo.
En general, se tiene que un ret́ıculo es distributivo si no contiene como subret́ıculos ni al

pentágono ni al diamante. En el apartado anterior hemos visto como el ret́ıculo de subespacios
vectoriales de un espacio vectorial tiene al diamante como subret́ıculo.

2.2. Propiedad cancelativa. Sea L un ret́ıculo distributivo, y sen x, y, z ∈ L tales que
x∨ y = x∨ z y x∧ y = x∧ z. Entonces y = z.

En el diamante se tiene que a∨ b = a∨ c = 1, y a∧ b = a∧ c = 0, y sin embargo, b 6= c.
En el pentágono, y∨ x = y∨ z = 1 e y∧ x = y∧ z = 0, y sin embargo, x 6= z.

Ret́ıculo complementado. Sea L un ret́ıculo que tiene máximo y mı́nimo (a los que denota-
remos por 1 y 0 respectivamente), y x ∈ L. Se dice que y ∈ L es un complemento de x si x∨y = 1
y x∧ y = 0.

Un reticulo en el que todo elemento tiene complemento se dice complementado.
Obviamente, si y es un complemento de x entonces x es un complemento de y.
Por otra parte, si L es un ret́ıculo distributivo y x un elemento de L que tiene complemento,

entonces el complemento es único (ver propiedad 2.2).
Si L es un ret́ıculo distributivo, y x es un elemento que tiene complemento, denotaremos por

x′ o x al único complemento de x.

Ejercicio 30:

1. Si L tiene máximo (1) y mı́nimo (0), entonces 0 es un complemento de 1.
2. El ret́ıculo (P(X),⊆) es un ret́ıculo complementado. Dado A ∈ P(X) se verifica que A ∪

(X \A) = X y A ∩ (X \A) = ∅. Por ser un ret́ıculo distributivo, el commplemento de cada
elemento es único.

3. El pentágono y el diamente son ret́ıculos complementados. Vemos sin embargo, que los
complementos de algunos elementos no son únicos.

Aśı, en el diamante, tanto b como c son complementos de a; tanto a como c son
complementos de b y tanto a como b son complementos de c.
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En el pentágono, tanto x como z son complementos de y. Sin embargo, x y z tienen un
único complemento, que es y.

4. Si L es un conjunto totalmente ordenado con más de dos elementos, entonces es un ret́ıculo
distributivo, pero no es complementado.

maxima 34:
Dado un número natural D(n), el ret́ıculo D(n) no tiene por qué ser un ret́ıculo complementado.

Por ejemplo, D(4) no es complementado (es un conjunto totalmente ordenado con 3 elementos),
mientras que D(6) śı lo es.

(%i38) complementos(x,rel,con):=block(local(max,min),

max:maximo(rel,con),

min:minimo(rel,con),

subset(con,lambda([y],is(supremo(rel,{x,y},con)=max)

and is(infimo(rel,{x,y},con)=min))))$

(%i39) complementos(2,div,divisors(6));

(%o39) {3}

(%i40) complementos(2,div,divisors(4));

(%o40) {}

(%i41) complementadop(rel,con):=emptyp(subset(con,lambda([x],

emptyp(complementos(x,rel,con)))))$

(%i42) complementadop(div,divisors(6));

(%o42) true

(%i43) complementadop(div,divisors(4));

(%o43) false
En D(12) tienen complemento 1, 3, 4, 12 mientras que no tienen 2, 6. En D(30) todos los ele-

mentos tienen complemento.

12

4
�������

2

1

6

3

�������

�������

30

6
�������

2

1
???????

15

??????

5

�������

10

�������

3
???????

???????

�������

D(12) D(30)

(%i44) complementadop(div,divisors(12));

(%o44) false

(%i45) notienencomplemento(rel,con):=subset(con,lambda([x],

emptyp(complementos(x,rel,con))))$

(%i46) notienencomplemento(div,divisors(12));

(%o46) {2, 6}
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(%i47) complementadop(div,divisors(30));

(%o47) true

Ejercicio 31: Se pide, determinar qué elementos de D(n) tienen complemento, y a partir de ah́ı,
determinar para qué valores de n es D(n) un ret́ıculo complementado.

2.3. Producto de conjuntos ordenados. Sea (L1,≤) y (L2,≤) dos conjuntos ordenados.
Consideramos en L1 × L2 el orden producto. Entonces:

Si L1 y L2 son ret́ıculos, también lo es L1×L2. Las operaciones supremo e ı́nfimo en L1×L2
vienen dadas por

(x1, x2)∨ (y1, y2) = (x1 ∨ y1, x2 ∨ y2) (x1, x2)∧ (y1, y2) = (x1 ∧ y1, x2 ∧ y2)

Si L1 y L2 son ret́ıculos distributivos, también lo es L1 × L2.
Si L1 y L2 son ret́ıculos complementados, también lo es L1 × L2.

3. Álgebras de Boole

Definición de álgebra de Boole. Un álgebra de Boole es un ret́ıculo distributivo y comple-
nentado.

Ejercicio 32:

1. Dado un conjunto X, el conjunto P(X), con el orden dado por la inclusión es un álgebra de
Boole.

2. D(6), o D(30) son álgebras de Boole. No es álgebra de Boole D(4) o D(12).

Al igual que los ret́ıculos se pueden definir sin mencionar el orden, sino únicamente las ope-
raciones supremo e ı́nfimo, con las respectivas propiedades, un álgebra de Boole puede definirse
también a partir de las operaciones ∨ y ∧.

Segunda definición de álgebra de Boole. Sea B un conjunto. Supongamos que en B tene-
mos definidas dos operaciones, ∨ y ∧ tales que:

1. x∨ (y∨ z) = (x∨ y)∨ z x∧ (y∧ z) = (x∧ y)∧ z
2. x∨ y = y∨ x x∧ y = y∧ z
3. x∨ (y∧ z) = (x∨ y)∧ (x∨ z) x∧ (y∨ z) = (x∧ y)∨ (x∧ z).
4. x∨ (x∧ y) = x x∧ (x∨ y) = x
5. Existen 0, 1 ∈ B tales que x∨ 0 = x x∧ 0 = 0 x∨ 1 = 1 x∧ 1 = x
6. Para cada x ∈ B existe x′ ∈ B tal que x∨ x′ = 1 y x∧ x′ = 0.

Es fácil comprobar que las dos definiciones son equivalentes.

Leyes de De Morgan. Sea B un álgebra de Boole, y x, y ∈ B. Entonces:

(x∨ y)′ = x′ ∧ y′ (x∧ y)′ = x′ ∨ y′

Ejercicio 33: Consideremos el conjunto Z2. En él, consideramos las operaciones

x∧ y = xy x∨ y = x+ y+ xy

Entonces Z2, con estas operaciones es un álgebra de Boole. De hecho, es el álgebra de Boole más
simple (a excepción de un álgebra de Boole con un elemento). Representaremos a este álgebra de
Boole como B.

Nótese que este álgebra de Boole se corresponde con el orden 0 ≤ 1.
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Puesto que el producto de álgebras de Boole es un álgebra de Boole, tenemos, para cada número
natural n el álgebra de Boole Bn que tiene 2n elementos. En este caso, las operaciones del álgebra
de Boole vienen dadas por:

(x1, x2, . . . , xn)∨ (y1, y2, . . . , yn) = (x1 ∨ y1, x2 ∨ y2, . . . , xn ∨ yn)

(x1, x2, . . . , xn)∧ (y1, y2, . . . , yn) = (x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn)

(x1, x2, . . . xn)
′ = (x′1, x

′
2, . . . , x

′
n)

Veamos los diagramas de Hasse de B2 y B3.

(1, 1)

(1, 0)
�����

(0, 0)

?????
(0, 1)

?????

�����

(1, 1, 1)

(1, 1, 0)
�����

(1, 0, 0)

(0, 0, 0)

?????

(0, 1, 1)

?????

(0, 0, 1)

�����

(1, 0, 1)

�����

(0, 1, 0)

?????

?????

�����

Podemos comparar las estructuras de álgebra de Boole de B2 y B3 con las de P({a, b}) y
P({a, b, c}).

Consideramos las álgebras de Boole siguientes:

AB

A
������

0
??????? B

??????

�������

+

−

que como podemos ver tienen una estructura semejante a B2 y B respectivamente. Su producto,
tendrá entonces la misma estructura que B3. El diagrama de Hasse de dicho álgebra seŕıa

AB+

AB−
������

A−

0−

??????

B+

??????

0+

������

A+

������

B−

??????

??????

������

y vemos que los elementos que la forman son los ocho grupos sangúıneos. En este caso, ser menor
o igual significa puede donar. Aśı, el grupo 0− es el donante universal, mientras que el grupo AB+
es el receptor universal.
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Átomos. Sea B un álgebra de Boole, y x ∈ B. Se dice que x es un átomo si x es un elemento
minimal de B \ {0}.

Ejercicio 34: Si X es un conjunto, los átomos del álgebra de Boole P(X) son los subconjuntos
unitarios.

Los átomos del álgebra de Boole Bn son aquellos que tienen todas las coordenadas nulas salvo
una.

maxima 35: En el álgebra de Boole D(30) los átomos son los divisores primos de 30.

(%i48) minimales(div,setdifference(divisors(30),{1}));

(%o48) {2, 3, 5}

3.1. Todo elemento es supremo de átomos. Sea B un álgebra de Boole finita, y x ∈
B \ {0}. Entonces, x se expresa de forma única como supremo de átomos.

Dado cualquier elemento x ∈ B \ {0}, denotaremos por Ax al conjunto de todos los átomos de
B que son menores o iguales que x.

Este teorema nos dice que si B es un álgebra de Boole finita, y X = {a1, . . . , an} son sus átomos
(es decir, X = A1) entonces los elementos de B son:

B =

{∨
x∈A

x : A ∈ P(X)

}
donde se ha empleado la notación 0 =

∨
x∈∅
x.

Vemos entonces que B tiene tantos elementos como P(X).
Por tanto, el número de elementos de B es 2n, donde n es el número de átomos.
Es más, tenemos que las álgebras de Boole B, Bn y P(X) con X = {1, 2, . . . , n} son isomorfas.

maxima 36:

(%i50) menores(15,div,setdifference(divisors(30),{1}));

(%o50) {3, 5, 15}

(%i51) supremo(div,{3,5},divisors(30));

(%o51) 15
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1. Grupos

Un grupo es un conjunto no vaćıo G junto con una operación binaria interna

∗ : G×G→ G, (g1, g2) 7→ g1 ∗ g2,

verificando las siguientes propiedades

1. la operación ∗ es asociativa (o equivalentemente, (G, ∗) es in semigrupo), a saber, a∗(b∗c) =
(a ∗ b) ∗ c, para cualesquiera a, b, c ∈ G; esto nos permite transformar ∗ en una operación
n-aria, pues para calcular a1 ∗ · · · ∗an no tenemos que preocuparnos por poner paréntesis,

2. existe un elemento llamado elemento neutro o identidad, e, verificando que e∗g = g∗e = g
para todo g ∈ G ((G, ∗) es un monoide; se puede demostrar que si existe un elemento neutro,
sólo existe uno),

3. para todo elemento g ∈ G, existe g−1 ∈ G tal que g ∗ g−1 = e = g−1 ∗ g (se puede probar
que este elemento es único).

A veces nos referiremos a G como (G, ∗) para indicar con qué operación estamos considerando
que es un grupo.

Normalmente a la operación ∗ la denotaremos simplemente por yuxtaposición, y a veces escri-
biremos 1 para denotar al elemento neutro.

Ejercicio 35: Dados g1, g2 ∈ G, demuestra que (g1g2)
−1 = g−12 g

−1
1 .

Si además ∗ es conmutativa, o sea, g1 ∗ g2 = g2 ∗ g1 para cualesquiera g1, g2 ∈ G, entonces
decimos que G es un grupo abeliano o conmutativo. En este caso usaremos 0 para denotar la
identidad, y + en lugar de ∗.

Ejemplos de grupos abelianos son (Z,+), (Q \ {0}, ·), (Zn,+) para todo n ∈ N. No son grupos
ni (N,+) ni (Z, ·) (¿por qué?).

Al producto cartesiano de dos grupos se le puede dotar de estructura de grupo.

Ejercicio 36: Si (G1, ∗1) y (G2, ∗2) son grupos, demuestra que (G1 × G2, ∗), con ∗ definida como
(a, b) ∗ (c, d) = (a ∗1 b, c ∗2 d), es también un grupo.

48
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2. Subgrupos

Un subconjunto H de un grupo G es un subgrupo si para cualesquiera h1, h2 ∈ H, h1h
−1
2 ∈ H.

Esto equivale a decir que 1 ∈ H, H es cerrado para la operación que hace de G un grupo, y también
es cerrado para cálculo de inversos. De esta forma H es un grupo con la misma operación de G.

Ejercicio 37: El conjunto de los números enteros es un subgrupo de Q con la suma. Sin embargo,
Z no es un subgrupo de Q con el producto.

Teorema de Lagrange. Si H es un subgrupo de G, entonces #H divide a #G.

Dado un subconjunto X de un grupo G, se define el subgrupo generado por X, que denotamos
por 〈X〉, al menor subgrupo de G que contiene a X. Como la intersección de subgrupos vuelve a
ser un subgrupo, se tiene que 〈X〉 es la intersección de todos los subgrupos de G que contienen a
X.

Ejercicio 38: Demuestra que 〈X〉 = {xε11 · · · xεnn | n ∈ N, x1, . . . , xn ∈ X, ε1, . . . , εn ∈ {1,−1}} (para
n = 0, el producto de n elemento se entiende como 1).

Si H es un subgrupo de G y X ⊆ G es tal que H = 〈X〉, entonces decimos que X es un sistema
de generadores de H. Si X = {x1, . . . , xn} para algún entero n positivo, entonces escribiremos
〈x1, . . . , xn〉 en vez de 〈X〉. Además, decimos que H es ćıclico si admite un sistema de generadores
de la forma X = {x}.

Ejercicio 39: Demuestra que (Z,+) es un grupo ćıclico, y que todo subgrupo suyo es ćıclico (pista:
usa la identidad de Bézout para probar que está generado por el máximo común divisor de sus
elementos).

Ejercicio 40: Demuestra que (Z2×Z2,+) (suma componente a componente) no es un grupo ćıclico,
mientras que (Z2 × Z3,+) śı que lo es.

Orden de un elemento. Dado un grupo G y un elemento g ∈ G, se define el orden de g en
G como el menor entero positivo n tal que gn = 1 (gn es el producto de g consigo mismo n veces).
En caso de que no exista ese entero positivo, decimos que g tiene orden infinito.

Ejercicio 41: Demuestra que el orden de g en G coincide con #〈g〉.

maxima 37: Calculemos el orden de todos los elementos de Z10. Sabemos por el Teorema de
Lagrange, y por el ejercicio anterior, que el orden de esos elementos divide a 10, el cardinal de Z10.
Luego como mucho vale 10.

Empecemos por ejemplo con el 2.

(%i1) setify(makelist(mod(2*i,10),i,0,9));

( %o1) 0, 2, 4, 6, 8

(%i2) length(%);

( %o2) 5
Que tiene orden 5. Podemos automatizar el proceso y escribir una lista con cada elemento y su

orden.
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(%i3) makelist([j,length(setify(makelist(mod(j*i,10),i,0,9)))],j,0,9);

( %o3) [[0, 1], [1, 10], [2, 5], [3, 10], [4, 5], [5, 2], [6, 5], [7, 10], [8, 5], [9, 10]]
Aśı que los posibles órdenes son 1, 2, 5 y 10 (todos los posibles divisores de 10).

Ejercicio 42: ¿Cuál es en general el orden de m en Zn?

3. El grupo simétrico

Sea X un conjunto no vaćıo. Definimos SX como el conjunto de todas las aplicaciones biyectivas
de X en X. Este conjunto, junto con la operación composición de aplicaciones, es un grupo.

A los elementos de SX se les conoce como permutaciones del conjunto X. El conjunto SX es el
grupo simétrico o de permutaciones en X.

En el caso en que X = {1, . . . , n}, escribimos Sn en vez de SX, y lo llamaremos grupo simétrico
de orden n.

A las permutaciones σ ∈ Sn las vamos representar de una forma especial como una matriz con
dos filas en la que en la primera fila aparecen los enteros del 1 al n, y en la segunda fila, en la
columna i-ésima el elemento σ(i).

σ =

(
1 2 . . . n
σ(1) σ(2) . . . n

)
.

Para calcular el inverso de σ representado de esta forma, simplemente tenemos que intercambiar
la primera con la segunda fila, y después reordenar las columnas de forma que en la primera fila
aparezcan ordenadamente los enteros del 1 al n.

Para multiplicar dos permutaciones se sigue el orden de derecha a izquierda que van tomando
las imágenes de cada uno de los elementos del conjunto X (ojo que en algunos libros es al revés,
gappor ejemplo usa el orden inverso al que usamos nosotros).(

1 2 3
2 1 3

)(
1 2 3
3 2 1

)
=

(
1 2 3
3 1 2

)
,

ya que el 1 va al 3 por la primera (empezando por la derecha) y la segunda deja el 3 invariante, el
2 se queda invariante por la primera, y la segunda lo env́ıa al 1, y por último el 3 va al 1 por la
primera, mientras que la segunda lo manda al 2.

El soporte de una permutación es el conjunto de los x ∈ X tales que σ(x) 6= x. Dos permuta-
ciones se dicen disjuntas, si sus soportes lo son.

Ciclos. Un ciclo es una permutación σ ∈ Sn de forma que existe Y = {i1, . . . , ik} con #Y = k
(no se repiten elementos en esa lista) tal que σ(ij) = ij+1 para todo j ∈ {1, . . . , k − 1}, σ(ik) = i1,
y σ(x) = x para todo x ∈ X \ Y. Esto es, σ mueve ćıclicamente los elementos de Y y deja
inalterado el resto de elementos de X. Diremos que σ es un ciclo de longitud k, y lo denotaremos
por σ = (i1, . . . , ik).

El inverso del ciclo (i1, i2, . . . , ik) es (ik, ik−1, . . . , i1). Además, τk = 1 (la identidad).
Nótese además que (ii, i2, . . . , ik) = (i2, i3, . . . , ik, i1) = · · · .

Ejercicio 43: Si tenemos dos ciclos disjuntos σ y δ, entonces, σδ = δσ.
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Producto de ciclos disjuntos. Toda permutación se puede expresar de forma única (salvo
el orden de los factores) como producto de ciclos disjuntos.

Ejercicio 44: Si σ se pone como producto de σ1, . . . , σc ciclos disjuntos, con σi de longitud li,
entonces el orden de σ es el mı́nimo común múltiplo de {l1, . . . , lc}.

Una transposición es un es un ciclo de longitud 2. Nótese que si τ = (a, b) es una transposición,
entonces τ−1 = τ = (a, b).

Todo ciclo (i1, i2, . . . , ik) se puede expresar como producto de transposiciones, por ejemplo,

(i1, i2, . . . , ik) = (i1, ik)(i1, ik−1) · · · (i1, i3)(i1, i2).
Aśı toda permutación es producto de transposiciones. Si bien el número de éstas puede variar,

por ser por ejemplo, 1 = (1, 2)(1, 2), la paridad del número de éstas es invariante. Definimos
aśı la signatura de una permutación σ como (−1)t, con t el número de transposiciones en un
descomposición de σ como producto de transposiciones.

gap 1: En gap, las permutaciones se pueden escribir de muchas formas. O bien como producto de
ciclos disjuntos, o usando funciones espećıficas para crear permutaciones.

gap> MappingPermListList([1,2,3,4],[2,3,1,4]);

(1,2,3)

gap> PermList([2,3,1,4]);

(1,2,3)

gap> (1,2,3)(4,6);

(1,2,3)(4,6)

gap> ListPerm((1,2,3)(4,6));

[ 2, 3, 1, 6, 5, 4 ]

gap> PermList(last);

(1,2,3)(4,6)

El operador ‘*’ se usa para la composición (hay que tener cuidado en el orden en que se

compone). En el ejemplo anterior,

(
1 2 3
2 1 3

)(
1 2 3
3 2 1

)
=

(
1 2 3
3 1 2

)
,

gap> PermList([3,2,1])*PermList([2,1,3]);

(1,3,2)

gap> ListPerm(last);

[ 3, 1, 2 ]

El operador ‘ˆ’ se puede usar para calcular la imagen de un elemento por una permutación.

gap> p:=(1,2,3)*(3,4);

(1,2,4,3)

gap> 3^p;

1

El orden de una permutación (orden como elemento dentro de Sn) y su signatura se pueden
calcular de la siguiente forma.

gap> SignPerm((1,2,3)(4,6));

-1

gap> Order((1,2,3)(4,6));

6

gap> G:=SymmetricGroup(4);

Sym( [ 1 .. 4 ] )
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gap> Elements(G);

[ (), (3,4), (2,3), (2,3,4), (2,4,3), (2,4), (1,2), (1,2)(3,4), (1,2,3),

(1,2,3,4), (1,2,4,3), (1,2,4), (1,3,2), (1,3,4,2), (1,3), (1,3,4),

(1,3)(2,4), (1,3,2,4), (1,4,3,2), (1,4,2), (1,4,3), (1,4), (1,4,2,3),

(1,4)(2,3) ]

gap> Filtered(G,x->Order(x)=4);

[ (1,2,3,4), (1,2,4,3), (1,3,4,2), (1,3,2,4), (1,4,3,2), (1,4,2,3) ]

Podemos definir un grupo generado por varias permutaciones, calcular su orden, o comprobar
si es abeliano (y muchas otras propiedades).

gap> g:=Group((1,2,3),(4,5));

Group([ (1,2,3), (4,5) ])

gap> Order(g);

6

gap> Elements(g);

[ (), (4,5), (1,2,3), (1,2,3)(4,5), (1,3,2), (1,3,2)(4,5) ]

gap> IsAbelian(g);

true

Con la orden IsCyclic podemos saber si un grupo es ćıclico.

gap> g:=Group((1,2,3),(4,5));;

gap> IsCyclic(g);

true

gap> DirectProduct(CyclicGroup(2),CyclicGroup(2));

<pc group of size 4 with 2 generators>

gap> IsCyclic(last);

false
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El inicio de la Teoŕıa de Grafos tuvo lugar en 1736, en un art́ıculo de Leonhard Euler. El trabajo
surgió de un problema conocido como el problema de los puentes de Königsberg.

Durante el Siglo XVIII, la ciudad de Königsberg, en Prusia Oriental estaba dividida
en cuatro zonas por el ŕıo Pregel. Hab́ıa siete puentes que comunicaban estas regio-
nes, tal y como se muestra en el dibujo. Los habitantes de la ciudad haćıan paseos
dominicales tratando de encontrar una forma de caminar por la ciudad, cruzando
cada puente una sola vez, y regresando al lugar de partida.
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Para resolver este problema, Euler representó las cuatro zonas como cuatro puntos, y los puentes
como aristas que unen los puntos, tal y como se muestra en la figura.r
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Más adelante veremos cómo resolver el problema.

1. Generalidades sobre grafos

Volvamos a la representación que hizo Euler. En ella intervienen cuatro puntos (a los que
denominaremos vértices), a saber, a, b, c, d y siete aristas o lados que conectan algunos de los
vértices. Esto da pie a la siguiente definición de grafo.

53
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1.1. Definición de grafo. Un grafo G es un par (V, E), donde V y E son conjuntos, junto
con una aplicación

γG : E→ {{u, v} : u, v ∈ V}.

Al conjunto V se le llama conjunto de vértices; al conjunto E conjunto de lados o aristas, y a
la aplicación γG (o simplemente γ) aplicación de incidencia.

En el caso de los puentes de Königsberg, el grafo correspondiente tiene como conjunto de vértices
al conjunto V = {a, b, c, d}, como conjunto de lados el conjunto E = {e1, e2, e3, e4, e5, e6, e7} y la
aplicación de incidencia es la dada por:

γG(e1) = γG(e2) = {a, b} γG(e3) = γG(e4) = {b, c} γG(e5) = {a, d} γG(e6) = {b, d} γG(e7) = {c, d}.

Si e1 y e2 son dos lados tales que γG(e1) = γG(e2), se dice que son lados paralelos.
Un lado tal que γG(e) = {v} se dice un lazo.
Algunos autores, al definir un grafo, no incluyen la posibilidad de que tenga lados paralelos ni

lazos. En tal caso, lo que aqúı hemos definido como un grafo lo denominan como multigrafo.

maxima 38: Vamos a pintar un grafo que tenga por vértices los elementos de P({1, 2, 3}, y un lado
conecta A y B si A ⊆ B (o B ⊆ A, al no ser un grafo dirigido).

Para definir un grafo necesitamos dos listas, una con los vértices y otra con los lados.

(%i1) v:powerset({1,2,3});

( %o1) {{}, {1}, {1, 2}, {1, 2, 3}, {1, 3}, {2}, {2, 3}, {3}}

(%i2) vl:listify(v)$

(%i3) s8:setify(makelist(i,i,1,8))$

(%i4) vertices:makelist([i,vl[i]],i,1,8);

( %o4) [[1, {}], [2, {1}], [3, {1, 2}], [4, {1, 2, 3}], [5, {1, 3}], [6, {2}], [7, {2, 3}], [8, {3}]]
Ya tenemos los vértices del 1 al 8 etiquetados con cada uno de los elementos de P({1, 2, 3}).

Ahora vamos a construir los lados. Para ello extraemos del producto cartesiano de P({1, 2, 3})
aquellos que son lados de nuestro grafo.

(%i5) l:subset(cartesian_product(s8,s8),

lambda([x],subsetp(vl[x[1]],vl[x[2]]) and not(is(vl[x[1]]=vl[x[2]]))));

( %o5) {[1, 2], [1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [2, 3], [2, 4], [2, 5],
[3, 4], [5, 4], [6, 3], [6, 4], [6, 7], [7, 4], [8, 4], [8, 5], [8, 7]}

(%i6) lados:listify(l)$

(%i7) load(graphs)$

(%i8) g:create_graph(vertices,lados);

( %o8) GRAPH(8 vertices, 19 edges)
Por último pintamos el grafo.
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(%i9) draw_graph(g,show_labels=true);

Grafo dirigido. Un grafo dirigido u orientado es un par (V, E), donde V y E son conjuntos,
junto con dos aplicaciones s, t : E→ V .

Al conjunto V se le llama conjunto de vértices, al conjunto E conjunto de lados, y a las aplica-
ciones s y t aplicaciones dominio y codominio (“source” y “target”).

Subgrafo. Sea G = (V, E) un grafo con aplicación de incidencia γG. Un subgrafo de G es un
nuevo grafo G′ = (V ′, E′) donde V ′ ⊆ V , E′ ⊆ E y se verifica que γG′(e) = γG(e) para cualquier
e ∈ E′.

Si G′ = (V ′, E′) es un subgrafo de un grafo G = (V, E), se dice que es un subgrafo completo si
dado e ∈ E tal que γG(e) ⊆ V ′, se verifica que e ∈ E′. Dicho de otra forma, si tiene todos los lados
que teńıa G y que unen vértices de V ′.

Observación: Un subgrafo completo está completamente determinado por el conjunto de
vértices. Aśı, para determinar un subgrafo de un grafo G en ocasiones explicitaremos únicamente
el conjunto de vértices de dicho subgrafo, sobreentendiendo que se trata del subgrafo completo con
dicho conjunto de vértices.

maxima 39:

(%i20) h:induced_subgraph([1,2,3,5],g);

( %o20) GRAPH(4 vertices, 5 edges)

(%i22) draw_graph(h,show_label=true);
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( %o22) done

Caminos. Sea G un grafo. Un camino de longitud n es una sucesión de lados e1e2 · · · en, junto
con una sucesión de vértices v1v2 · · · vn+1 tales que γG(ei) = {vi, vi+1}.

En tal caso se dice que el camino e1e2 · · · en es un camino del vértice v1 al vértice vn+1.

Se considera un camino de longitud cero de v a v a aquel cuya sucesión de vértices es v y cuya
sucesión de lados es vaćıa.

Para dar un camino en un grafo, en ocasiones daremos únicamente la sucesión de vértices, y
en ocasiones daremos únicamente la sucesión de lados.

Nótese que si e1e2 · · · en es un camino de u a v, entonces enen−1 · · · e2e1 es un camino de v a u.
Un camino en el que no aparecen lados repetidos se llama recorrido.
Un recorrido en el que no hay vértices repetidos (salvo eventualmente el primero y el último)

se llama camino simple.
Un camino en el que coinciden el primer y el último vértice se llama camino cerrado.
Un recorrido que es a la vez camino cerrado se llama circuito.
Un circuito que a su vez es camino simple es un ciclo.
La siguiente tabla puede ayudar a aclarar estas definiciones.

Vértices
repetidos

Aristas
repetidas

Abierto Nombre

Camino
No Camino cerrado

No Recorrido
No No Circuito

No No Camino simple
No No No Ciclo

Por tanto, en un circuito puede haber o puede no haber vértices repetidos. Sin embargo, no
puede haber aristas repetidas. Se tiene entonces, por ejemplo, que todo ciclo es un circuito, es un
camino cerrado y es un camino.

Consideramos el siguiente grafo:
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v1

v2 v3

v4 v5 v6 v7

v8 v9 v10
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La sucesión v7v3v9v5v4v8v9v3 es un camino de longitud 7 que une v7 con v6. No es recorrido,
pues el lado que une v3 con v9 aparece dos veces en el camino.

La sucesión v1v3v9v8v4v3v7 es un camino de longitud 6 que une v1 con v7. Es un recorrido, pues
ningún lado se repite. Sin embargo, el camino pasa dos veces por el vértice v3. No es por tanto un
camino simple.
v3v4v8v9 es un camino simple de longitud 3.
La sucesión v1v3v7v9v3v4v5v2v1 es un camino cerrado de longitud 8. Es además un circuito, pues

ningún lado se encuentra repetido. No es un ciclo, ya que el vértice v3 se repite.
Un ejemplo de ciclo podŕıa ser v1v2v5v9v7v3v1.

Ejercicio 45: Sea G un grafo. Supongamos que existe un camino de u a v. Entonces existe un
camino simple de u a v.

Ejercicio 46: Sea G un grafo, y sean u y v dos vértices distintos. Supongamos que tenemos dos
caminos simples distintos de u a v. Entonces existe un ciclo en G.

En el ejemplo anterior teńıamos un camino de longitud 6 que une v1 con v7 (v1v3v9v8v4v3v7).
Este camino no es simple, pues el vértice v3 está repetido. Eliminamos los vértices que se encuentran
entre las dos apariciones de v3 y obtenemos el camino v1v3v7, que es un camino simple que une v1
con v7.

Por otra parte, tenemos dos caminos simples que unen v3 con v8, como son v3v4v8 y v3v9v8. A
partir de estos dos caminos podemos obtener el ciclo v3v4v8v9v3, recorriendo en primer lugar uno
de los caminos que une v3 con v8, y recorriendo a continuación el otro en sentido contrario.

Nótese que si partimos de los caminos simple v3v4v8 y v3v1v2v5v4v8 y repetimos lo hecho en el
párrafo precedente obtenemos el camino cerrado v3v4v8v4v5v2v1v3 que no es un ciclo, pues el vértice
v4 está repetido (o el lado v4v8). Sin embargo, la existencia de los dos caminos simples śı nos da la
existencia de un ciclo, a saber, v3v4v5v2v1v3.

Grafos conexos. Sea G un grafo. Se dice que G es conexo, si dados u y v dos vértices de G
existe al menos un camino de u a v.

En general, si G es un grafo, podemos definir en el conjunto de vértices la relación:

uRv si existe un camino de u a v.

Ejercicio 47: Prueba que esta relación es de equivalencia.

Se tiene entonces que un grafo es conexo si el conjunto cociente por la relación que acabamos
de definir tiene un solo elemento.

A partir de esta relación, podemos considerar, para cada clase de equivalencia, el subgrafo
(completo) determinado por los vértices de dicha clase de equivalencia. Cada uno de estos grafos
es lo que se denomina una componente conexa de G.
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Por ejemplo, el grafo
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tiene tres componentes conexas. Éstas son

v5 v6
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�

v4

maxima 40:

(%i1) load(graphs)$

(%i2) g:graph_union(complete_graph(4),cycle_graph(4),path_graph(3));

( %o2) GRAPH(11 vertices, 12 edges)
(Ya veremos más adelante la definición de grafo completo.)

(%i3) print_graph(g);

Graph on 11 vertices with 12 edges.
Adjacencies:
7 : 4 6
6 : 7 5
5 : 6 4
4 : 7 5
10 : 9
9 : 10 8
8 : 9
0 : 1 2 3
1 : 0 2 3
2 : 0 1 3
3 : 0 1 2
( %o3) done

(%i4) is_connected(g);

( %o4) false

(%i5) connected_components(g);

( %o5) [[1, 2, 3, 0], [8, 9, 10], [4, 5, 6, 7]]

(%i6) is_connected(induced_subgraph([8,9,10],g));

( %o6) true

(%i7) is_connected(induced_subgraph([8,9,10,4],g));

( %o7) false
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2. Matrices asociadas a grafos

En esta sección vamos a ver cómo podemos representar los grafos finitos mediante matrices. A
partir de estas matrices podremos obtener propiedades sobre los grafos.

Matriz de adyacencia. Sea G un grafo cuyo conjunto de vértices es V = {v1, v2, · · · , vn}.
Se define su matriz de adyacencia como la matriz A ∈ Mn(N) cuyo coeficiente (i, j) es igual al
número de lados e que unen vi con vj (es decir, que verifican que f(e) = {vi, vj}).

Observaciones:

1. La matriz de adyacencia de un grafo es una matriz simétrica, pues cada lado que une vi
con vj une también vj con vi.

2. Si tomáramos otra ordenación de los vértices, la matriz de adyacencia es diferente. Por
tanto, un grafo puede tener varias matrices de adyacencia. En general, si A y C son dos
matrices de adyacencia de un mismo grafo, entonces existe una matriz de permutación P
tal que P−1CP = A (una matriz de permutación es una matriz que tiene en cada fila y
en cada columna un coeficiente que vale “uno” y el resto toman el valor “cero”. Es una
matriz que se obtiene a partir de la matriz identidad realizando intercambio de filas y/o
columnas).

3. La existencia de lados paralelos se traduce en la matriz de adyacencia en la existencia de
coeficientes mayores que 1. De la misma forma, la existencia de lazos se traduce en que
algún elemento de la diagonal principal de la matriz de adyacencia es distinto de cero.

4. Si tenemos un grafo dirigido, también podemos definir su matriz de adyacencia. En este
caso, el coeficiente aij es el número de lados que verifican que s(e) = vi y t(e) = vj. En
este caso, la matriz no tiene porqué ser simétrica.

5. La matriz de adyacencia de un grafo determina a éste. Además, toda matriz cuadrada con
coeficientes en N es la matriz de adyacencia de un grafo (dirigido o no) finito. Podŕıamos
entonces tomar como definición de grafo la de una matriz cuadrada con coeficientes en N.

maxima 41:

(%i1) load(graphs)$

(%i2) g:cycle_graph(4)$

(%i3) adjacency_matrix(g);

( %o3)


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


(%i4) h:from_adjacency_matrix(matrix([0,1,1],[1,0,1],[1,1,0]));

( %o4) GRAPH(3 vertices, 3 edges)

(%i5) print_graph(h);

Graph on 3 vertices with 3 edges.
Adjacencies:
2 : 1 0
1 : 2 0
0 : 2 1
( %o5) done

El siguiente resultado nos muestra la importancia de las matrices de adyacencia.
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Número de caminos entre dos vértices. Sea G un grafo cuyo conjunto de vértices es
{v1, v2, · · · , vn} y sea A su matriz de adyacencia. Entonces el coeficiente (i, j) de la matriz An es
igual al número de caminos de longitud n que unen vi con vj.

maxima 42: Veamos como ejemplo los caminos en la rueda.

(%i1) load(graphs)$

(%i2) g:wheel_graph(3);

( %o2) GRAPH(4vertices, 6edges)

(%i3) a:adjacency_matrix(g);

( %o3)


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


(%i4) a^^4;

( %o4)


21 20 20 20
20 21 20 20
20 20 21 20
20 20 20 21


Luego hay 20 caminos de longitud 4 para ir desde un vértice a otro distinto.
Podemos escribir una función que automatice esto.

(%i5) caminos(grafo,longitud,i,j):=block(local(a),

(a^^longitud)[i][j])$

(%i6) caminos(g,4,1,2);

( %o6) 20

2.1. Matriz de incidencia. Sea G un grafo cuyo conjunto de vértices es V = {v1, v2, · · · , vn}
y cuyo conjunto de lados es E = {e1, e2, · · · , em}. Se define la matriz de incidencia del grafo G como
una matriz n×m que tiene en la posición (i, j) un 1 si vi ∈ f(ej) y 0 en otro caso.

Observación:

1. Si tomamos otra ordenación de los vértices y/o lados, la matriz de incidencia puede ser
diferente. En este caso, dos matrices de incidencia corresponden al mismo grafo si se pue-
de pasar de una a otra mediante operaciones elementales por filas y/o columnas Tipo I
(intercambio de filas y/o columnas).

2. El que un grafo tenga lados paralelos se traduce en que tenga dos columnas iguales en la
matriz de incidencia, mientras que los lazos se traducen en filas con un único coeficiente
“uno”.

3. Si el grafo es dirigido, se puede definir también la matriz de incidencia. En este caso, el
coeficiente (i, j) puede también tomar el valor −1 (si el lado ej parte del vértice vi). En tal
caso, el grafo no podŕıa tener lazos.

3. Isomorfismo de grafos

Consideremos los siguientes grafos
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v1 v2

v3v4 v5
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XXXXXXX
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En una primera observación apreciamos dos grafos diferentes. Sin embargo, si profundizamos
algo más encontramos muchas semejanzas entre ellos. Por ejemplo, ambos tienen igual número de
vértices e igual número de lados. Existe un vértice en cada uno de ellos (v5 en el primero y w2 en
el segundo) que está unidos al resto de vértices.

Siguiendo en esta ĺınea, vemos que podemos renombrar los vértices del segundo grafo w1 7→ v′1,
w2 7→ v′5, w3 7→ v′4, w4 7→ v′3 y w5 7→ v′2, y tenemos que por cada lado que une dos vértices vi y vj
en el primer grafo tenemos un lado que une los vértices v′i y v′j en el segundo.

Vemos entonces que ambos grafos podemos considerarlos iguales. Lo único que los diferencia es
el nombre que le hemos dado a los vértices (y a los lados) y la forma en que los hemos representado.
Pero todo lo que digamos sobre un grafo es válido para el otro.

Para precisar un poco más lo que hemos hecho, vamos a ponerle nombre a los lados:

v1 v2

v3v4 v5
�
�
� A
A
A �
�
� A
A
A

e1

e2

e3e4

e5 e6 e7

w1 w2

w3

w4w5

XXXXXXX

HH
H

�
�
�

f1

f2
f3

f4 f5

f6

f7

Entonces, lo que tenemos son dos biyecciones hV : VG → VG′ y hE : EG → EG′ , que en este caso
seŕıan:

hV hE
v1 7→ w1 e1 7→ f4
v2 7→ w5 e2 7→ f3
v3 7→ w4 e3 7→ f2
v4 7→ w3 e4 7→ f6
v5 7→ w2 e5 7→ f7

e6 7→ f1
e7 7→ f5

verificando que si γG(e) = {u, v} entonces γG′(hE(e)) = {hV(u), hV(v)}.
Nótese que en este caso, la aplicación hV determina totalmente a la aplicación hE.

Isomorfismo de grafos. Sean G = (V, E) y G′ = (V ′, E′) dos grafos con aplicaciones de
incidencia γG y γG′ . Se dice que G y G′ son isomorfos si existen dos biyecciones hV : V → V ′ y
hE : E → E′ tales que para cada lado e ∈ E se verifica que γG′(hE(e)) = {hV(u), hV(v)} donde
{u, v} = γG(e).

En tal caso, diremos que las aplicaciones hV y hE forman un isomorfismo de G a G′.

Observación:

1. Si los grafos no tienen lados paralelos, entonces la aplicación hV determina de forma única
a la aplicación hE. De ah́ı, que normalmente, para dar un isomorfismo de grafos se de
únicamente como actúa sobre los vértices.

2. Si h = (hV , hE) es un isomorfismo de G a G′ entonces ((hV)
−1, (hE)

−1) es un isomorfismo
de G′ a G.

En general, no es fácil determinar cuando dos grafos son isomorfos o no lo son. Claramente,
si dos grafos son isomorfos deben tener igual número de vértices e igual número de lados. Sin
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embargo, esto no es suficiente, como pone de manifiesto el siguiente ejemplo.

• •

••

• •

•
�������

•

pues ambos tiene cuatro vértices y cuatro lados, y sin embargo no son isomorfos (¿por qué?).
Vemos que tenemos dos números asociados a cada grafo (número de vértices y número de lados)

que deben coincidir para que los grafos sean isomorfos. Es lo que se llama invariante por isomor-
fismo. Obviamente, la coincidencia de estos números no implica que los grafos sean isomorfos.

Una propiedad se dice invariante por isomorfismo si dados dos grafos isomorfos G y G′, uno
satisface la propiedad si, y sólo si, la satisface el otro.

Grado de un vértice. Sea G un grafo y v un vértice de G. Se define el grado de v, y lo
denotaremos como gr(v), como el número de lados (no lazos) de G que son incidentes en v más 2
veces el número de lazos incidentes en v.

Denotaremos por Dk(G) como el número de vértices de V que tienen grado igual a k. A partir
de esto, podemos construir la sucesión

D0(G), D1(G), D2(G), . . . , Dk(G), . . .

que llamaremos sucesión de grados.

maxima 43: Veamos cómo son los grados de una rueda con cuatro radios.

(%i1) load(graphs)$

(%i2) g:wheel_graph(4);

( %o2) GRAPH(5 vertices, 8 edges)

(%i3) adjacency_matrix(g);

( %o3)


0 1 1 1 1
1 0 1 0 1
1 1 0 1 0
1 0 1 0 1
1 1 0 1 0


(%i4) makelist(vertex_degree(i,g),i,0,4);

( %o4) [3, 3, 3, 3, 4]
El vértice del centro tiene grado cuatro, mientras que los que están en la llanta tienen grado

tres.

Nótese que si G es un grafo con n vértices v1, v2, . . . , vn y l lados entonces

gr(v1) + gr(v2) + · · ·+ gr(vn) = 2l,

pues al contar todos los lados que inciden en todos los vértices (el miembro de la izquierda) estamos
contando cada lado 2 veces (por cada uno de los vértices en los que incide)

Ejercicio 48: Calcula las sucesiones de grados para los siguientes grafos.
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v3v4 v5
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Es fácil comprobar que si (hV , hE) : G → G′ es un isomorfismo de grafos y v ∈ V entonces
gr(v) = gr(hV(v)), de donde deducimos que las sucesiones de grados de dos grafos isomorfos son
iguales. El rećıproco no es cierto, como podemos ver en el siguente ejemplo.

Consideramos los siguientes grafos:
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En los cuatro grafos la sucesión de grados es la misma, pues todos los vértices tienen grado
3 (es decir, la sucesión de grados es en los cuatro casos 0, 0, 0, 8, 0, . . .). Sin embargo, el primero,
tercero y cuarto son isomorfos y los isomorfismos vienen dados por

v1 7→ x5 7→ y2
v2 7→ x7 7→ y7
v3 7→ x6 7→ y3
v4 7→ x3 7→ y5
v5 7→ x8 7→ y8
v6 7→ x4 7→ y6
v7 7→ x1 7→ y1
v8 7→ x2 7→ y4

mientras que el segundo no es isomorfo a ninguno de los otros tres, ya que en este segundo no hay
ciclos de longitud 3, mientras que en los otros śı los hay (v2v5v7 por ejemplo).

Los cuatro grafos que intervienen en este ejemplo tienen una peculiaridad, y es que todos los
vértices tienen el mismo grado.

Grafos regulares. Un grafo es regular de grado n si todos sus vértices tienen grado igual a
n.

Grafos completos. Se llama grafo completo de n vértices al grafo (con n vértices) que no
tiene lazos ni lados paralelos, y dados dos vértices hay un lado que los une. Dicho de otra forma, su
matriz de adyacencia toma el valor “cero” en todos los elementos de la diagonal y el valor “uno”
en el resto.

Dicho grafo se suele denotar como Kn.

maxima 44: Los cinco primeros grafos completos son
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(%i1) load(graphs)$

(%i2) makelist(adjacency_matrix(complete_graph(i)),i,1,5);

( %o2) [
(
0
)
,

(
0 1
1 0

)
,

0 1 1
1 0 1
1 1 0

 ,

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 ,

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

]

(%i3) random_regular_graph(5,3);

( %o3) GRAPH(6vertices, 9edges)

(%i4) adjacency_matrix(%);

( %o4)


0 1 0 0 1 1
1 0 1 1 0 0
0 1 0 0 1 1
0 1 0 0 1 1
1 0 1 1 0 0
1 0 1 1 0 0


4. Grafos de Euler

Caminos y circuitos de Euler. Sea G un grafo conexo. Un camino de Euler es un recorrido
en el que aparecen todos los lados.

Un circuito de Euler es un camino de Euler que es cerrado.
Un grafo con un circuito de Euler es un grafo de Euler.

Para los grafos
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la sucesión e2e4e5e8e1e7e3e6 es un camino de Euler en el primer grafo, mientras que f1f2f3f4f5f6f8f10f7f9
es un circuito de Euler en el segundo.

Caracterización de los grafos de Euler. Sea G un grafo conexo. Entonces

G es un grafo de Euler si, y sólo si, el grado de cada vértice es par.
G tiene un camino de Euler, si y sólo si G tiene exactamente dos vértices de grado impar
(exactamente los vértices donde empieza y termina el camino).

La demostración se basa en este hecho:

Sea G un grafo en el que cada vértice tiene grado mayor que 1. Entonces G contiene un
circuito (y por tanto un ciclo).
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Ejercicio 49: Demuestra que en el grafo que representaba el problema de los puentes de Königsbergr
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no existe ningún circuito de Euler. Por tanto, el problema de los puentes de Königsberg no tiene
solución.

Consideramos el siguiente grafo
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en el que vemos que los vértices v1, v2, v4 y v9 tienen grado 2; los vértices v3, v5, v6, v8, v11 y v12
tienen grado 4, mientras que los vértices v7 y v10 tienen grado 6. Como todos los vértices tienen
grado par, sabemos que existe un circuito de Euler. Vamos a encontrarlo.

Para esto, buscamos un circuito cualquiera, por ejemplo, v2v6v5v10v11v12v8v7v2, y eliminamos
los lados que intervienen en este circuito. Nos queda entonces el grafo
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que tiene (aparte del vértice v2) dos componentes conexas que son las siguientes:
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de los cuales hemos de encontrar un circuito de Euler. En el segundo grafo, este circuito seŕıa
v4v8v11v4.

Vamos a encontrarlo en el primero. Para ello, hacemos como hicimos al principio.
Buscamos un circuito en dicho grafo, que podŕıa ser v3v7v10v3; eliminamos los lados que inter-

vienen, y nos queda entonces el grafo
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que tiene dos componentes conexas. Para cada una de ellas es fácil encontrar un circuito de Euler.
El circuito de la primera componente es v1v5v9v10v1, mientras que el de la segunda es v3v6v7v12v3.

Un vértice común entre los circuitos v3v7v10v3 y v1v5v9v10v1 es v10, mientras que un vértice
común entre los circuitos v3v7v10v3 y v3v6v7v12v3 podŕıa ser v3 (o v7).

Recorremos entonces el circuito v3v7v10v3, y al llegar a los vértices que hemos elegido insertamos
los circuitos de cada una de las componentes conexas.

v3 v6v7v12v3︸ ︷︷ ︸ v7v10 v1v5v9v10︸ ︷︷ ︸ v3
Volvemos ya al grafo de partida. En él elegimos un circuito (v2v6v5v10v11v12v8v7v2), que al

eliminarlo divid́ıa al grafo en dos componentes conexas. De cada una de éstas tomamos ahora un
vértice común con el circuito. Sean éstos v6 y v11. Recorremos el circuito elegido, y al llegar a estos
vértices insertamos los circuitos de Euler para cada una de las componentes. Tenemos entonces:

v2v6 v7v12v3v7v10v1v5v9v10v3v6︸ ︷︷ ︸ v5v10v11 v4v8v11︸ ︷︷ ︸ v12v8v7v2
que es un circuito de Euler para el grafo del que part́ıamos.

A continuación veremos un algoritmo que calcula, dado un grafo del que sabemos que tiene un
camino o circuito de Euler, un tal camino.

Algoritmo de Fleury. Como entrada, tenemos un grafo G. Como salida, dos sucesiones SV
y SE, que son las sucesiones de vértices y lados del camino buscado.

1. Si todos los vértices son de grado par, elegimos un vértice cualquiera v. Si G tiene dos
vértices de grado impar elegimos uno de estos vértices.

2. Hacemos SV = v y SE = [].
3. Si G tiene sólo a v, devuelve SV y SE, y termina.
4. Si hay un único lado e que incida en v, llamamos w al otro vértice donde incida el lado e;

quitamos de G el vértice v y el lado e y vamos al paso 6.
5. Si hay más de un lado e que incida en v, elegimos uno de estos de forma que al quitarlo el

grafo G siga siendo conexo. Llamamos e a dicho lado y w al otro vértice en el que incide e.
6. Añadimos w al final de SV y e al final de SE.
7. Cambiamos v por w y volvemos al paso 3.

5. Grafos de Hamilton

En la sección anterior estudiamos cuándo en un grafo pod́ıamos encontrar un camino que
recorriera todos los lados una sola vez. En esta, pretendemos estudiar como recorrer todos los
vértices una sola vez.

Camino y circuito de Hamilton. Sea G un grafo. Un camino de Hamilton es un camino
que recorre todos los vértices una sola vez.

Un circuito de Hamilton es un camino cerrado que recorre todos los vértices una sola vez (salvo
los extremos).

Un grafo con un circuito de Hamilton se denomina grafo de Hamilton o grafo hamiltoniano.

maxima 45: Consideramos los siguientes grafos:
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Entonces, el primer grafo es un grafo de Hamilton. Un circuito de Hamilton es v1v2v3v4v1.
Obviamente, al tener un circuito de Hamilton, podemos encontrar también un camino de Hamilton
(v1v2v3v4).

(%i1) g1:cycle_graph(4)$

(%i2) hamilton_cycle(g1);

( %o2) [3, 0, 1, 2, 3]
En el segundo grafo tenemos un camino de Hamilton (w1w3w2w4). Podemos ver como no

existe ningún circuito de Hamilton, pues debeŕıa tener al menos dos lados incidentes en w4 (el lado
entrante y el lado saliente).

(%i3) g2:from_adjacency_matrix(matrix(

[0,1,1,0],[1,0,1,1],[1,1,0,0],[0,1,0,0]))$
(%i4) hamilton_cycle(g2);

( %o4) []

(%i5) hamilton_path(g2);

( %o5) [3, 1, 0, 2]

Ejercicio 50: Determina si los siguientes grafos tienen caminos o circuitos de Hamilton.
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Observaciones:
Puesto que a la hora de buscar un camino o circuito de Hamilton no podemos pasar dos veces

por un mismo vértice, no es posible que el camino contenga dos lados paralelos, ni que contenga
lazos. Supondremos por tanto en esta sección que todos los grafos que intervienen no tienen ni
lazos ni lados paralelos.

Hemos visto en el ejemplo anterior, que si hay un vértice de grado 1, entonces el grafo no es
de Hamilton.

Por otra parte, si un grafo con n vértices es de Hamilton, en el circuito de Hamilton intervienen
n lados. Por tanto, un grafo de Hamilton con n vértices tiene al menos n lados.

Intuitivamente, cuantos más lados tenga un grafo con un número de vértices fijado, más fácil
será poder encontrar un circuito de Hamilton.

6. Grafos bipartidos

Grafo bipartido. Sea G = (V, E) un grafo. Se dice que G es bipartido si podemos descomponer
V en dos subconjuntos disjuntos V1 y V2 de forma que todo lado incide en un vértice de V1 y en
un vértice de V2.

Un grafo G = (V, E) se dice bipartido completo si es bipartido, y para cada v1 ∈ V1 y v2 ∈ V2
existe un único lado e ∈ E tal que γG(e) = {v1, v2}.
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Un grafo bipartido completo está completamente determinado por el cardinal de V1 y V2.
Si G es un grafo bipartido completo en el que V1 tiene cardinalm y V2 tiene cardinal n, entonces

denotaremos a G como Km,n.

maxima 46: Consideramos los siguientes grafos
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Entonces el primer y el tercer grafos son bipartidos.
En el primero, se tiene que V1 = {v1, v3} y V2 = {v2, v4}. Además, podemos ver que cualquier

para cualquier pareja formada por un vértice de V1 y un vértice de V2 hay un lado y sólo uno que
los une. Por tanto, es un grafo bipartido completo. Dado que V1 y V2 tienen dos elementos, dicho
grafo es K2,2.

(%i1) load(graphs)$

(%i2) g1:cycle_graph(4)$

(%i3) is_bipartite(g1);

( %o3) true
El segundo grafo no es bipartido. Para comprobarlo, supongamos que tenemos una división del

conjunto de vértices de la forma {w1, w2, w3, w4} = V1 ∪ V2. Entonces w1 pertenecerá a uno de
los dos conjuntos. Supongamos que a V1. En tal caso, se tiene que w2 ∈ V2 (pues w1 y w2 están
unidos por un lado) y w3 ∈ V2 (por el mismo motivo). Tenemos entonces dos vértices en el mismo
subconjunto de la partición, y unidos por un lado.

(%i4) g2:from_adjacency_matrix(matrix(

[0,1,1,0],[1,0,1,1],[1,1,0,0],[0,1,0,0]))$
(%i5) is_bipartite(g2);

( %o5) false
En el tercero tenemos V1 = {x1} y V2 = {x2, x3, x4, x5, x6, x7}. Vemos también que este es un

grafo bipartido completo, es decir, este grafo es K1,6.

(%i6) adjacency_matrix(complete_bipartite_graph(1,6));

( %o6)



0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
1 1 1 1 1 1 0


El siguiente resultado nos da una caracterización de los grafos bipartidos.

Caraterización de grafos bipartidos. Sea G = (V, E) un grafo. Entonces G es bipartido si,
y sólo si, G no contiene ciclos de longitud impar.

Ejercicio 51: Sea G un grafo bipartido con partición V1 y V2. Supongamos que |V1| = n y |V2| = m.

Si G tiene un camino de Hamilton, entonces |n−m| ≤ 1.
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Si G es un grafo de Hamilton, entonces n = m.
Si G es completo y |n−m| ≤ 1, entonces G tiene un camino de Hamilton.
Si G es completo y n = m, entonces G es un grafo de Hamilton.

7. Grafos planos

En esta sección vamos a estudiar los grafos que pueden ser representados en el plano.

Representación plana. Sea G un grafo. Una representación de G se dice plana si los vértices
y los lados se encuentran todos en un plano, y las ĺıneas que representan dos lados distintos no se
cortan.

Grafos planos. Un grafo se dice plano si admite una representación plana.

maxima 47:

(%i1) load(graphs)$

(%i2) is_planar(complete_graph(4));

( %o2) true

(%i3) draw_graph(complete_graph(4),redraw=true,program=planar_embedding);

( %o3) done
Cualquier poliedro tiene asociado un grafo. Los vértices son los vértices del poliedro, y los lados

sus aristas. Este grafo es siempre plano.
Por ejemplo, el grafo correspondiente al tetraedro es K4. El grafo correspondiente al cubo es

(%i4) is_planar(cube_graph(3));

( %o4) true

(%i5) draw_graph(cube_graph(3),program=planar_embedding);

( %o5) done
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7.1. Caras. Una representación plana de un grafo divide al plano en que se encuentra en
varias regiones, que denominaremos caras.

7.2. Caracteŕıstica de Euler. Sea G un grafo plano y conexo. Llamemos v al número
de vértices, l al número de lados y c al número de caras de una representación plana. Entonces
v− l+ c = 2.

En general, si G es un grafo plano, y χ es el número de componentes conexas entonces v−l+c =
1+ χ.

En la representación plana que hicimos de K4 se tienen un total de 4 caras. Como en K4 se
verifica que v = 4 y l = 6 entonces v− l+ c = 4− 6+ 4 = 2.

El cubo tiene 8 vértices, 12 aristas y 6 caras. Obviamente se ve que v− l+ c = 2.
Vamos a demostrar aqúı que sólo existen 5 sólidos regulares. Es decir, poliedros en donde todas

las caras son poĺıgonos regulares iguales.
Supongamos que tenemos un poliedro regular, y sea G el grafo asociado a dicho poliedro.

Sabemos que se verifica que
v− l+ c = 2

Sabemos además que este grafo es regular de grado r (r es el número de aristas que inciden en
cada vértice) y que r ≥ 3. Por tanto, se verifica que

rv = 2l.

Por otra parte, todas las caras son poĺıgonos regulares de n lados. Si contamos el número de
caras, y lo multiplicamos por n estamos contando el número de aristas dos veces, pues cada arista
es arista común de dos caras. Por tanto, se tiene también que

nc = 2l.

Sustituyendo en la expresión v− l+ c = 2 obtenemos que

2l

r
− l+

2l

n
= 2 =⇒ 1

r
+
1

n
=
1

2
+
1

l

Sabemos que r ≥ 3 y n ≥ 3 (pues el poĺıgono regular más simple es el triángulo). Si tanto n
como r fueran simultáneamente mayores que 3, es decir, n ≥ 4 y r ≥ 4 tendŕıamos que 1

n
≤ 1

4
y

1
r
≤ 1

4
, luego

1

2
+
1

l
=
1

r
+
1

n
≤ 1
4
+
1

4
=
1

2
=⇒ 1

l
≤ 0,

lo cual es imposible.
Por tanto, tenemos dos posibilidades:

n = 3. Las caras del sólido son triángulos.
En este caso tenemos

1

3
+
1

r
=
1

2
+
1

l
=⇒ 1

l
=
1

r
−
1

6
=⇒ l =

6r

6− r
.

Por tanto, r < 6, lo que nos da sólo tres posibilidades para r.
1. r = 3. Entonces l = 6·3

6−3
= 6. Puesto que nc = 2l deducimos que c = 4, y dado que

rv = 2l también tenemos que v = 4. El sólido regular resulta ser el tetraedro.
2. r = 4. Aqúı l = 24

2
= 12, y de aqúı deducimos que c = 8 y v = 6. El sólido regular es

el octaedro.
3. r = 5. Ahora, l = 30, y por tanto c = 20 y v = 12. El sólido es el icosaedro.
r = 3. Razonando igual que antes, pero intercambiando el papel de r y n tenemos tres
posibilidades para n.
1. n = 3. Este caso ya lo hemos analizado. Es el tetraedro.
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2. n = 4. Ahora las caras son cuadrados. Ahora l = 12, lo que implica que c = 6 y v = 8.
Estamos hablando del cubo.

3. n = 5. Las caras son pentágonos. Aqúı l = 30, de donde c = 12 y v = 20. El sólido es
en este caso el dodecaedro.

maxima 48:

(%i1) load(graphs)$

(%i6) is_planar(complete_graph(5));

( %o6) false

(%i7) is_planar(complete_bipartite_graph(3,3));

( %o7) false

7.3. Contracción. Sea G un grafo. Una contracción simple de G es el resultado de indenti-
ficar en G dos vértices adyacentes.

Una contracción de G es una cadena de contracciones simples.

Consideramos los grafos
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Si en el primer grafo identificamos los vértices v1 y v2 obtenemos el grafo
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luego dicho grafo es una contracción del “cuadrado”.
En el segundo grafo vamos a realizar una contracción simple identificando los vértices w1 y w2,

y otra identificando w2 y w4. Los grafos que obtenemos son
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w2 = w4 w3

Es muy intuitivo ver que cualquier contracción de un grafo plano sigue siendo un grafo plano.

Teorema de Kuratowski. Sea G un grafo. Entonces G es plano si, y sólo si, ningún subgrafo
suyo puede contraerse a K5 ni a K3,3.

Consideramos el siguiente grafo G:
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•
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•
•

•
•

•

•
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L
L
L
L
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v′1

v′2

v′3

v′4v′5

v1

v2

v3

v4v5
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Entonces, si identificamos cada vértice vi con v′i (es decir, realizamos cinco contracciones)
obtenemos el grafo K5, que sabemos que no es plano. Deducimos por tanto que este grafo no es
plano.

También podemos ver que este grafo no es plano como sigue:
Tomamos el subgrafo de G con los mismos vértices, y del que se eliminan los lados que unen

v3 con v5, y v4 con v′4. El grafo que obtenemos es

•
•

•
•

•
•

•
•

•

•
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#
#
#
#

E
E
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c
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Q
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Q
QQ�

�
�
�
��L
L
L
L
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v′1

v′2

v′3

v′4v′5

v1

v2

v3

v4v5

Identificamos los vértices v2 con v4, v3 con v′3 y v5 con v′5, y a continuación v′4 con v3 = v
′
3. El

grafo resultante es:
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v′2

v′3 = v3

v′4v′5 = v5

v1

v2 = v4

•
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#
##

v′1

v′2

v′3 = v3 = v
′
4

v′5 = v5

v1

v2 = v4

que podemos representar como

• • •

• • •
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�
�
�
�
�J

J
J
J
J
JJ

J
J
J
J
J
JJ

Z
Z
Z
Z
Z
Z
Z
Z

v1 v′2 v5 = v
′
5

v′1 v2 = v4 v3 = v
′
3 = v

′
4

Es decir, hemos encontrado un subgrafo de G que puede contraerse hasta K3,3.
La representación que hemos obtenido de K3,3 (no esta última) puede servirnos para comprobar

que si en K3,3 se suprime algún lado, el grafo resultante es plano (basta suprimir el lado v2v5 o el
lado v1v3).

Por último, para acabar esta sección introducimos el concepto de grafo dual.

Grafo dual. Sea G un grafo plano. Supongamos que tenemos una representación plana con
caras c1, c2, . . . , cr. Definimos el grafo dual para la representación dada como el grafo cuyo conjunto
de vértices es igual al conjunto de caras (o tiene un vértice v′i para cada cara ci), y cuyo conjunto
de lados coincide (o es biyectivo) con el conjunto de lados de G. En el grafo dual, un lado une dos
vértices si en la representación plana de G dicho lado es frontera común de las dos caras.

Cuando hablamos de dual de un grafo, hacemos referencia a su representación plana. Esto es
aśı porque el dual de un grafo depende de la representación plana que tomemos, como podemos
ver en el siguiente ejemplo.
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Vamos a considerar dos representaciones planas de un mismo grafo, y vamos a hallar el dual
para cada una de las representaciones. El grafo tiene 5 vértices (v1, v2, v3, v4 y v5) y 5 lados, de los
que damos los dos vértices que unen (v1v2, v1v3, v1v4, v2v3 y v2v5). Dos representaciones planas
del mismo grafo podŕıan ser:

•

•

• ••

�
��

�
��

HH
HHH

H









v1

v3

v2
v5v4

•

•

• •

•�
��

�
��

HH
HHH

H

v1

v3

v2
v5

v4

Calculamos el dual de cada una de las dos representaciones. Vemos que en ambos casos tenemos
dos caras, lo que da lugar a 2 vértices en el grafo dual. Los grafos duales son entonces:

• •���� ����.
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que podemos ver que no son isomorfos. Mientras el primer grafo tiene dos vértices de grado 5, el
segundo tiene un vértice de grado 7 y uno de grado 3.

Del segundo grafo que hemos obtenido, podemos hacer varias representaciones planas. Por
ejemplo,
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y cada una de ellas tiene un dual diferente. En estos casos seŕıan:
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v1 v4
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que no son isomorfos entre śı, ni isomorfos al grafo original (basta estudiar en cada caso la sucesión
de grados).

Si quisiéramos obtener el grafo inicial, debeŕıamos tomar otra representación, aquella en la que
uno de los lazos estaŕıa “dentro” de la región c2.

8. Coloración de grafos

8.1. Coloración. Sea G = (V, E) un grafo. Una coloración G es una aplicación f : V → C,
donde C es un conjunto, de tal forma que para cualquier e ∈ E, si γG(e) = {v,w} con v 6= w
entonces f(u) 6= f(v).

Cuando el conjunto C sea un conjunto de colores, la aplicación f lo que hace es asignar un color
a cada vértice de G, de forma que dos vértices adyacentes no tienen el mismo color.

Número cromático. Se llama número cromático de G, y lo representaremos como χ(G) al
cardinal del menor conjunto C para el que existe una coloración de G.
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maxima 49: El grafo • • necesita al menos dos colores para colorearlo, ya que los dos vértices
no pueden ser coloreados con el mismo color al ser adyacentes. Su número cromático es por tanto
2.

(%i1) load(graphs)$

(%i2) chromatic_number(path_graph(2));

( %o2) 2
En general, el número cromático del grafo Kn es n, pues todos los vértices deben tener colores

distintos, ya que dos vértices cualesquiera son adyacentes.

(%i3) makelist(chromatic_number(complete_graph(i)),i,1,15);

( %o3) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Si un grafo es plano, su número cromático es menor o igual que 4. Éste es un problema que
se planteó por primera vez a mitad del siglo XIX, cuando se intentaba colorear los condados de
un mapa de Inglaterra de forma que dos condados con frontera común tuvieran distinto color. El
problema estuvo abierto durante más de un siglo, hasta que en 1976, Appel y Haken probaron el
resultado basándose en un complicado análisis computacional.

El rećıproco de este resultado no es cierto. K3,3 tiene número cromático igual a 2, y sin embargo
no es plano.

Ejercicio 52: Si G1 es un subgrafo de G2, entonces χ(G1) ≤ χ(G2).

Ejercicio 53: Demuestra que un grafo conexo es bipartido si y sólo si su número cromático vale 2.

En general, determinar el número cromático de un grafo es complicado. Para ello, vamos a
valernos del polinomio cromático.

Polinomio cromático. Sea G un grafo y x ∈ N. Vamos a denotar por p(G, x) al número de
coloraciones distintas, con x colores, que tiene el grafo G.

Observaciones

1. Si G es un grafo que tiene al menos un lado (que no es lazo) entonces p(G, 1) = 0.
2. Si queremos colorear el grafo K2 y disponemos de x colores, entonces para uno de los vértices

podemos elegir cualquiera de los x colores, mientras que para el otro podemos elegir entre
los x− 1 restantes. El principio del producto nos dice entonces que p(K2, x) = x(x− 1).

3. En general, se tiene que p(Kn, x) = x(x−1) · · · (x−n+1). De aqúı se deduce que si m ≤ n,
p(Kn,m) = 0, mientras que p(Kn, n) = n!. Por tanto, el número cromatico de Kn es n.

4. SiG es un grafo cuyas componentes conexas sonG1, G2, . . . , Gm entonces p(G, x) = p(G1, x)·
p(G2, x) · · ·p(Gm, x).

Por tanto, nos limitaremos a estudiar las coloraciones de los grafos conexos.
5. Si G es un grafo con n vértices, que es un camino simple, entonces p(G, x) = x(x− 1)n−1.

Es decir, G = (V, E) donde V = {v1, v2, . . . , vn} y E = {e1, e2, . . . , en−1} y γG(ei) =
{vi, vi+1}.

En este caso, para elegir una coloración de G con x colores, podemos elegir el que
queramos para v1, y para el resto de los vértices tenemos x−1 posibilidades (todas menos la
que hayamos elegido para vi−1). El principio del producto nos dice que p(G, x) = x(x−1)n−1.
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Antes de ver como calcular el polinomio cromático de un grafo, realizamos la siguiente cons-
trucción.

Dado un grafo G, tomamos un lado e (que no sea un lazo) que una los vértices u y v. Entonces
el grafo Ge es el grafo con los mismos vértices que G, pero al que se le ha quitado el lado e, y el
grafo G′e es el grafo que resulta de identificar en Ge los vértices u y v.

Herramienta. Sea G un grafo, y u y v dos vértices adyacentes. Sea e el lado que los une.
Entonces p(Ge, x) = p(G, x) + p(G

′
e, x).

Esta expresión podemos verla como

p(G, x) = p(Ge, x) − p(G
′
e, x),

lo cual nos permite reducir el cálculo del polinomio cromático de un grafo al cálculo de polinomios
cromáticos más pequeños (con menos lados o con menos vértices). De esta forma, podemos reducirlo
siempre al cálculo de polinomios cromáticos de grafos completos o de grafos que son caminos
simples. Veamos algún ejemplo.

maxima 50: Para simplificar la notación, vamos a representar el polinomio cromático de un grafo
encerrando el grafo entre corchetes.

1. Vamos a calcular el polinomio cromático de un ciclo de longitud 4.

• •
• •
e =

• •
• •

−
•
•

•
�
�
HH = x(x− 1)3 − x(x− 1)(x− 2)

= x(x− 1)[x2 − 2x+ 1− x+ 2]

= x(x− 1)(x2 − 3x+ 3).

(%i1) load(graphs)$

(%i2) chromatic_polynomial(cycle_graph(4),x);

( %o2) (x− 1)3 x− (x− 2) (x− 1) x

(%i3) factor(%);

( %o3) (x− 1) x
(
x2 − 3 x+ 3

)
2. Vamos a calcular otro polinomio cromático.
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=
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· • − 2 ·

• •
• •
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@

= x(x− 1)(x− 2)(x− 3) · x − 2 · x(x− 1)(x− 2)(x− 3)
= x(x− 1)(x− 2)2(x− 3).

(%i4) g:complete_graph(4)$

(%i5) add_vertex(4,g);

( %o5) 4

(%i6) add_edges([[2,4],[3,4]],g);

( %o6) done

(%i7) chromatic_polynomial(g,x);

( %o7) − x4 + 3 x3 − 2 x2 − (x− 3) (x− 2) (x− 1) x + (x− 2) (x− 1) x + (x− 1)4 x −

2 (x− 1)3 x+ (x− 1)2 x
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(%i8) factor(%);

( %o8) (x− 3) (x− 2)2 (x− 1) x

9. Árboles

Comenzamos en esta sección el estudio de un tipo especial de grafos, los llamados árboles.
Éstos fueron estudiados por vez primera por Kirchhoff, en 1847, en su trabajo de redes eléctricas.
Sin embargo, estas estructuras son hoy d́ıa muy importantes en el estudio de las estructuras de
datos, las ordenaciones, etc.

Árboles, bosques y árboles generadores. Un árbol es un grafo conexo que no tiene ciclos.
Un grafo que no tenga ciclos se denomina bosque.
Dado un grafo conexo, un subgrafo suyo se dice árbol generador si tiene todos los vértices y es

un árbol.

Nótese que un árbol no puede tener lazos ni lados paralelos.

Ejercicio 54: Sea G un grafo conexo que contiene un ciclo. Demuestra que si quitamos uno de
los lados del ciclo el grafo sigue siendo conexo. Prueba, usando este hecho, que todo grafo conexo
tiene un árbol generador

Ejercicio 55: Demuestra que todo árbol es un grafo plano.

Caracterizaciones de árboles. Sea G un grafo con n vértices, sin lados paralelos ni lazos.
Entonces son equivalentes:

1. G es un árbol.
2. Dos vértices cualesquiera están unidos por un único camino simple.
3. G es conexo, pero si le quitamos un lado deja de serlo.
4. G no tiene ciclos, pero si le añadimos un lado tendrá algún ciclo.
5. G tiene n− 1 lados.

Es decir, los árboles son los menores grafos conexos, o los mayores grafos sin ciclos.
Nótese también que para las caracterizaciones segunda, tercera y cuarta no es necesario suponer

que el grafo no tiene lazos ni lados paralelos, pues de ellas se deduce.

maxima 51:

(%i1) load(graphs)$

(%i2) g:complete_graph(5)$

(%i3) a:minimum_spanning_tree(g)$

(%i5) draw_graph(g,show_edges=edges(a));
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Caṕıtulo 7
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1. Matrices

Sean I = {1, 2, . . . ,m} y J = {1, 2, . . . , n}. Una matriz de orden m × n sobre un cuerpo K es
una aplicación

A : I× J→ K, (i, j) 7→ aij.

Normalmente a la matriz A la representaremos de la siguiente forma

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 ,
y a veces simplemente escribiremos A = (aij), si queda claro dónde vaŕıan i y j. Diremos que A es
una matriz con m filas y n columnas.

Denotaremos por Mm×n(K) al conjunto de las matrices de orden m× n sobre K.

Mm×n(K) con la suma coordenada a coordenada tiene estructura de grupo abeliano, esto
es, la suma es asociativa, tiene elemento neutro, toda matriz tiene inversa y es conmutativa.

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

+


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn

 =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 . . . amn + bmn

 .

Ejercicio 56: Calcula suma de

(
1 2 3
3 4 2

)
y

(
2 3 3
3 0 2

)
en M2×3(Z5).

Sea A = (aij) ∈ Mm×n(K) y B = (bjk) ∈ Mn×p(K). Entonces podemos definir el producto de
A y B como AB = C = (cik) ∈Mm×p(K) con

cik = ai1b1k + ai2b2k + · · ·+ ainbnk.

Ejercicio 57: Sean A =

(
1 2 3
3 4 2

)
∈M2×3 y B =

1 2 1 2
2 0 1 0
3 1 0 1

 ∈M3×4. Calcula AB.

78
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Una matriz de orden n× n diremos que es una matriz cuadrada de orden n.

(Mn×n(K),+, ·) es un anillo.

Ejercicio 58: Sean A =

(
1 2
3 4

)
and B =

(
1 2
2 0

)
. Comprueba que AB 6= BA.

2. Determinantes

Dada A = (aij) ∈Mn×n(K), definimos |A|, el determinante de A, recursivamente de la siguiente
forma.

1) Para n = 1, |(a11)| = a11 (el determinante de una matriz de orden 1×1 es su único coeficiente).
2) Supuesto que sabemos calcular el determinante de matrices de orden n−1, dado i ∈ {1, . . . , n},

|A| = ai1αi1 + . . .+ ainαin,

donde αij = (−1)i+j|Aij| se conoce como el adjunto de la entrada aij, con Aij ∈M(n−1)×(n−1)(K)
la matriz que se obtiene al eliminar la fila i-ésima y la columna j-ésima de A. Esta fórmula
se conoce como Desarrollo de Laplace por la fila i del determinante de A, y el resultado no
depende de i. Es más, también se puede desarrollar por cualquier columna. Dado j el Desarrollo
de Laplace por la columna j es

|A| = a1jα1j + . . .+ anjαnj.

Se puede comprobar fácilmente que∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21.∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11a22a33 + a12a23a31 + a21a32a13 − a13a22a31 − a23a32a11 − a12a21a33.

Ejercicio 59: Calcula el determinante de

1 2 3
3 2 1
2 2 2

 ∈M3×3(Z7).

Ejercicio 60: Calcula el determinante de
1 2 3 1
2 0 1 1
3 1 0 1
2 0 1 3

 ∈M4×4(Z5).

Si A = (aij) ∈Mm×n(K), la matriz traspuesta de A es

At =


a11 a21 . . . an1
a12 a22 . . . an2
...

...
. . .

...
a1m a2m . . . anm

 ∈Mn×m(K),

esto es, la matriz que se obtiene a partir de A intercambiando filas por columnas.
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Propiedades de los determinantes. Sea A ∈Mn×n(K).

1) |A| = |At|.
2) Si se intercambian dos filas (o dos columnas) de A se obtiene una nueva matriz cuyo determi-

nante es −|A|.
3) Si multiplicamos todos los elementos de una fila (o de una columna) de A por α ∈ K, obtenemos

una matriz con determinante α|A|.
4) Si a una fila de A le sumamos otra fila de A multiplicada por un elemento de K, entonces la

nueva matriz tiene el mismo determinante que A (lo mismo ocurre si hacemos esta operación
con columnas).

5) Si B ∈Mn×n(K), entonces |AB| = |A||B|.

Ejercicio 61: Calcula el determinante de la matriz
2 3 4 0
3 1 2 2
4 3 3 1
2 3 3 2

 ∈M4×4(Z5).

El elemento neutro del producto enMn×n(K) es la matriz identidad, que es la matriz que tiene
todas sus entradas cero salvo en la diagonal que tiene unos (cero es el elemento neutro de K para
la suma, y uno el neutro para el producto). A dicha matriz la denotamos por In, o simplemente I
cuando n queda claro en el contexto.

Una matriz A ∈ Mn×n(K) es regular si tiene inversa para el producto, esto es, si existe B tal
que AB = BA = In. En dicho caso, a la matriz B se le denota por A−1.

La matriz adjunta de A es la matriz formada por los adjuntos de las entradas de A, a saber,

A =


α11 α12 . . . α1n
α21 α22 . . . α2n

...
...

. . .
...

α1 am2 . . . αnn

 .
Teorema. Sea A ∈Mn×n(K). Entonces A es regular si y sólo si |A| 6= 0. En ese caso

A−1 = |A|−1A
t
.

Ejercicio 62: Calcula la inversa de 2 1 2
1 0 1
1 2 2

 ∈M3×3(Z3).

maxima 52: Vamos a ilustrar algunos ejemplos de operaciones con matrices en maxima.

(%i1) A:matrix([x,y],[z,t]);

(%o1)

(
x y
z t

)
(%i2) B:matrix([a,b],[c,d]);
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(%o2)

(
a b
c d

)
Hay que tener cuidado con la operación de producto, pues en maxima dicha operación se hace

como en con la suma, entrada a entrada. Para efectuar el producto usamos el punto.

(%i3) A.B;

(%o3)

(
c y+ ax dy+ bx
a z+ c t b z+ d t

)
(%i4) A*B;

(%o4)

(
ax by
c z d t

)
Lo mismo ocurre con la exponenciación.

(%i5) A^2;

(%o5)

(
x2 y2

z2 t2

)
(%i6) A^^2;

(%o6)

(
y z+ x2 xy+ t y
x z+ t z y z+ t2

)
(%i7) determinant(A);

(%o7) t x− y z

(%i8) determinant(A.B)=determinant(A)*determinant(B);

(%o8) (c y+ ax) (b z+ d t) − (dy+ bx) (a z+ c t) = (ad− b c) (t x− y z)

(%i9) expand(%);

(%o9) −ady z+ b cy z+ ad t x− b c t x = −ady z+ b cy z+ ad t x− b c t x

(%i10) is(%);

(%o10) true

(%i11) A^^-1;

(%o11)

(
− t
y z−t x

y
y z−t x

z
y z−t x

− x
y z−t x

)
(%i12) C:matrix([1,2,3],[4,5,6],[7,8,9]);

(%o12)

1 2 3
4 5 6
7 8 9


(%i13) determinant(C);

(%o13) 0



4. FORMA NORMAL REDUCIDA POR FILAS (O COLUMNAS) DE UNA MATRIZ 82

3. Operaciones elementales y determinantes

Intercambio de filas: al intercambiar dos filas, el determinante cambia de signo.
Sumarle a una fila un múltiplo de otra: el determinante en este caso permanece inalterado.
Multiplicar un fila por un elemento λ no nulo: el determinante se multiplica por λ.

maxima 53: Para calcular determinantes a veces es más eficiente usar las operaciones que hemos
visto anteriormente. Aśı efectuando operaciones elementales por filas o columnas (intercambio
o suma por un factor de otra) podemos llegar a una matriz triangular superior, esto es, una
matriz cuyas entradas por debajo de la diagonal son todas cero. A este proceso se le conoce como
eliminación de Gauss-Jordan.

(%i14) triangularize(C);

(%o14)

1 2 3
0 −3 −6
0 0 0


El determinante de una matriz de esta forma es trivial, pues sólo se multiplican los valores de la
diagonal.

maxima 54: Trabajemos ahora módulo 5.

(%i1) modulus:5$

(%i2) G:matrix([7,20],[16,47])$

(%i3) H:rat(G);

(%o3)/R/

(
2 0
1 2

)
(%i4) determinant(H);

(%o4)/R/ −1

(%i5) I:invert(H);

(%o5)/R/

(
−2 0
1 −2

)
(%i6) H.I;

(%o6)/R/

(
1 0
0 1

)

4. Forma normal reducida por filas (o columnas) de una matriz

Sea A =

a11 . . . a1n
...

. . .
...

am1 . . . amn

 ∈Mm×n(K). El pivote de la fila i-ésima de A, si ésta tiene alguna

entrada distinta de cero, es la primera entrada no nula de dicha fila, a saber, es aij 6= 0 con j
mı́nimo verificando esa condición. Decimos que A está en forma normal reducida por filas (de
forma análoga se define la forma normal por columanas) si

Todas las filas nulas están debajo de las filas que tienen alguna entrada distinta de cero.
Si aij es el pivote de la fila i-ésima, entonces aij = 1 y todas las demás entradas de su
columna son cero.
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Siempre que aij sea el pivote de la fila i-ésima y akl es el pivote de la fila k-ésima, si i < k,
entonces j < l.

Estas matrices tienen una forma escalonada, de forma que debajo de los escalones todas las
entradas son cero, y encima del peldaño, que tiene que valer uno, también.

Dada una matriz A, siempre podemos calcular una forma normal reducida por filas (o por
columnas) haciendo uso de las operaciones elementales que hemos visto anteriormente.

La forma normal reducida asociada a A es única, ya sea haciendo operaciones elementales por
filas o por columnas.

maxima 55: Con el comando echelon podemos calcular una forma reducida escalonada, pero no
es exactamente la forma reducida por filas de la matriz dada, ya que no se exige que encima del
pivote hayan ceros.

(%i1) A:matrix([1,2,3,4],[5,6,7,8],[9,10,11,12])$

(%i2) echelon(A);

( %o2)

1 2 3 4
0 1 2 3
0 0 0 0


El comando triangularize da una forma reducida escalonada en la que los pivotes no tienen

por qué ser uno.

(%i3) triangularize(A);

( %o3)

1 2 3 4
0 −4 −8 −12
0 0 0 0


Si quisiésemos calcular una transformación por columnas, basta que le apliquemos uno de estos

comandos a la matriz traspuesta de la original, trasponiendo luego el resultado final.

(%i4) transpose(A);

( %o4)


1 5 9
2 6 10
3 7 11
4 8 12


(%i5) triangularize(%);

( %o5)


1 5 9
0 −4 −8
0 0 0
0 0 0


(%i6) transpose(%);

( %o6)

1 0 0 0
5 −4 0 0
9 −8 0 0



maxima 56: Podemos usar la forma normal reducida para calcular inversas.

(%i1) A:matrix([1,-1,1],[2,0,1],[0,3,-2])$
A esta matriz le añadimos la matriz identidad a la izquierda, donde gardaremos las operaciones

elementales que se realizan con el comando echelon.



5. RANGO DE UNA MATRIZ 84

(%i2) M:echelon(addcol(A,ident(3)));

(%o2)

1 0 1
2

0 1
2

0

0 1 − 2
3

0 0 1
3

0 0 1 −6 3 −2


Las operaciones elementales las guardamos en una matriz que llamamos P.

(%i3) P:submatrix(M,1,2,3);

(%o3)

 0 1
2

0

0 0 1
3

−6 3 −2


Como vemos, al multiplicar P por A, el resultado es una forma escalonada.

(%i4) T:P.A;

(%o4)

1 0 1
2

0 1 − 2
3

0 0 1


Como hemos comentado antes, el comando echelon no hace ceros los elementos que están

encima de los peldaños. Para conseguirlo, trasponemos la matriz, y repetimos el proceso.

(%i5) N:addcol(transpose(T),ident(3));

(%o5)

1 0 0 1 0 0
0 1 0 0 1 0
1
2

− 2
3
1 0 0 1


(%i6) echelon(N);

(%o6)

1 0 0 1 0 0
0 1 0 0 1 0

0 0 1 − 1
2

2
3
1


(%i7) Q:submatrix(%,1,2,3);

(%o7)

 1 0 0
0 1 0

− 1
2

2
3
1


Ahora en P tenemos las operaciones necesarias para conseguir a partir de A una matriz trian-

gular superior (eliminación de Gauss), y en Qt las operaciones que eliminan los valores no nulos
encima de los pivotes (eliminación Gauss-Jordan).

(%i8) paso:transpose(Q).P;

(%o8)

 3 −1 1
−4 2 −1
−6 3 −2


(%i9) paso.A;

(%o9)

1 0 0
0 1 0
0 0 1


Por lo que la matriz paso es una inversa de A.

5. Rango de una matriz

Sea A ∈Mm×n(K). El rango de la matriz A es el número de filas no nulas de su forma normal
reducida por filas. De forma análoga se define el rango por columnas de A.
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Ejercicio 63: Calcula el rango por filas y por columnas de la matriz

(
1 1 2
2 3 1

)
∈M2×3(Z5).

Teorema. El rango por filas de A coincide con el rango por columnas de A.
A dicha cantidad la llamaremos simplemente rango de A y la denotaremos por rango(A).

Teorema (rango y determinantes). El rango de una matriz es el máximo de los órdenes
de sus submatrices cuadradas regulares.

Ejercicio 64: Calcula el rango de la matriz1 2 1 0
2 1 3 1
4 5 5 1

 ∈M3×4(R).

maxima 57: El rango de una matriz también se puede calcular contando las filas no nulas de su
forma triangular reducida asociada.

(%i1) A:matrix([0,1,2,3],[4,5,6,7],[8,9,10,11]);

(%o1)

0 1 2 3
4 5 6 7
8 9 10 11


(%i2) rank(A);

(%o2) 2

(%i3) echelon(A);

(%o3)

1 5
4

3
2

7
4

0 1 2 3
0 0 0 0


(%i4) triangularize(A);

(%o4)

4 5 6 7
0 4 8 12
0 0 0 0


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6. Resolución de sistemas de ecuaciones lineales

Un sistema de ecuaciones lineales con n incógnitas sobre un cuerpo K es una expresión de la
forma

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm

 .
Los elementos aij ∈ K son los coeficientes del sistema, los bi ∈ K son los términos independientes, y
las xi son las incógnitas. Una solución es una n-upla (s1, . . . , sn) ∈ Kn tal que x1 = s1, . . . , xn = sn
verifica las igualdades del sistema.

Las m igualdades del sistema anterior se pueden expresar como una única igualdad entre
matrices, a11 . . . a1n

...
. . .

...
am1 . . . amn

x1...
xn

 =

b1...
bm

 ,
a la que llamaremos expresión matricial del sistema. A dichas matrices se les llama matriz de
coeficientes, matriz incógnita, y matriz de términos independientes.

La matriz ampliada del sistema esa11 . . . a1n b1
...

. . .
...

am1 . . . amn bm

 .
Normalmente denotaremos a esta matriz por (A|B).

Si un sistema tiene solución diremos que es compatible, y en caso contrario incompatible. Si
tiene una única solución, es un sistema compatible determinado, y si tiene más de una solución
decimos que es un sistema compatible indeterminado.

Dos sistemas de ecuaciones lineales sobre un cuerpo y con igual número de incógnitas son
equivalentes si tienen las mismas soluciones.

Proposición (operaciones elementales).

1) Si intercambiamos de posición dos ecuaciones de un sistema, obtenemos un sistema equivalente.
2) Si multiplicamos una ecuación por un escalar no nulo, obtenemos un sistema equivalente.
3) Si a una ecuación le sumamos otra multiplicada por un escalar, también obtenemos un sistema

equivalente al original.

Ejercicio 65: Resuelve el siguiente sistema de ecuaciones con coeficientes en Z5.

x1 + x2 + x3 + x4 = 1
2x1 + 3x2 + x3 + x4 = 2
4x1 + 3x2 + x3 + 2x4 = 0
x1 + x2 + 2x3 + 3x4 = 2

 .

Teorema de Rouché-Frobenius. Sea AX = B la expresión matricial de un sistema de
ecuaciones lineales con n incógnitas.

1) El sistema es compatible si y sólo si rango(A) = rango(A|B).
2) El sistema es compatible determinado si y sólo si rango(A) = rango(A|B) = n.



6. RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 87

maxima 58: Vamos a estudiar el siguiente sistema de ecuaciones con coeficientes en Z5.

x+ y+ z = 3
3x+ y+ 2z = 1
x+ 4y = 0

 .
(%i1) modulus:5$

(%i2) B:matrix([1,1,1],[3,1,2],[1,4,0])$

(%i3) rank(B);

(%o3) 2

(%i4) C:addcol(B,[3,1,0])$

(%i5) rank(C);

(%o5) 2
El sistema es compatible determinado.

maxima 59: Estudiemos ahora el siguiente sistema con coeficientes en Z7 en función del parametro
a.

x+ y+ z = a
2x+ ay+ z = 1
3x+ 3y+ az = 2

 .
(%i1) modulus:7$

(%i2) D:matrix([1,1,1],[2,a,1],[3,3,a])$

(%i3) determinant(D);

(%o3) a2 − 5 a+ 6

(%i4) factor(a^2-5*a+6);

(%o4) (a− 3) (a− 2)
Aśı, si a 6∈ {2, 3}, la matriz de coeficientes tiene rango máximo y el sistema es compatible

determinado.
Estudiemos por separado los casos a = 2 y a = 3.

(%i5) E:subst(2,a,D);

(%o5)

1 1 1
2 2 1
3 3 2


(%i6) rank(E);

(%o6) 2

(%i7) F:addcol(E,[2,1,2])$

(%i8) rank(F);

(%o8) 3
Luego para a = 2, el sistema es incompatible.

(%i9) G:subst(3,a,D)$

(%i11) rank(G);

(%o11) 2

(%i12) H:addcol(G,[3,1,2])$

(%i13) rank(H);

(%o13) 2
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Para a = 3 obtenemos un sistema compatible indeterminado.

Ejercicio 66: Estudia el siguiente sistema de ecuaciones con coeficientes en Z5.

2x+ 4y+ 4z = 1
3x+ y+ 2z = 2
4y+ z = 3

 .

Ejercicio 67: Estudia los siguientes sistemas con coeficientes en R en función de los parámetros a
y b.

1)

ax+ y+ z = 1
x+ y+ z = 2

}
,

2)

ax+ y+ z = 1
x+ y+ z = b
ax+ by+ z = 1

 ,
3)

ax+ y+ z = 1
x− y+ z = 1

}
,

4)

ax+ y+ z = 1
x+ 2y+ az = 2

}
.

maxima 60: El comando linsolve en máxima puede ser utilizado para resolver sistemas lineales
de ecuaciones.

(%i1) linsolve([2*x+y+z=2,x-y-2*2=0],[x,y,z]);

(%o1) [x = −
%r1− 6

3
, y = −

%r1+ 6

3
, z = %r1]

Como vemos, las soluciones dependen de un parámetro, que aqúı se denomina %r1. El rango
de la matriz de coeficientes es 2 como vemos a continuación, y es el máximo posible (sólo hay dos
filas), por lo que coincide con el de la matriz ampliada. El sistema es compatible indeterminado.

(%i2) rank(matrix([2,1,1],[1,-1,-2]));

(%o2) 2
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Fórmula de Cramer. Un sistema es de Cramer si su matriz de coeficientes es cuadrada y
regular. Si AX = B es la expresión matricial de un sistema de Cramer, entonces el sistema es
compatible determinado y su única solución es

|A|−1(|M1|, . . . , |Mn|),

donde Mi es la matriz que se obtiene a partir de A cambiando la columna i-ésima por B.

Ejercicio 68: Prueba que el siguiente sistema de ecuaciones con coeficientes en R es un sistema de
Cramer, y encuentra sus soluciones usando la fórmula de Cramer.

x+ y+ z = 1
x− y+ z = 0
x+ y− z = 2

 .
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1. Espacios y subespacios

Sea K un cuerpo. Diremos que un conjunto V tiene estructura de espacio vectorial sobre K si

1) en V hay una operación + de forma que (V,+) es un grupo abeliano,
2) existe una aplicación K× V → V , (a,−→v ) 7→ a−→v verificando

i) a(−→u +−→v ) = a−→u + a−→v ,
ii) (a+ b)−→u = a−→u + b−→u ,

iii) a(b−→u ) = (ab)−→u ,
iv) 1−→u = −→u .

A los elementos de V los llamamos vectores y a los de K escalares. La aplicación descrita arriba
se conoce como producto por escalares.

Ejercicio 69: Probar que si K es un cuerpo, entonces para cualesquiera enteros positivos n y m,

a) Kn,
b) {a(x) ∈ K[x] tales que gr(a(x)) ≤ n},
c) Mm×n(K),

son espacios vectoriales sobre K.

Ejercicio 70: Encuentra un espacio vectorial de cardinal 81.

Propiedades que se deducen de la definición.

1) 0−→u =
−→
0 (el elemento neutro de + en V).

2) a
−→
0 =

−→
0 .

3) Si a−→u =
−→
0 , entonces a = 0 o −→u =

−→
0 .

4) −(a−→u ) = (−a)−→u = a(−−→u ).
5) a(−→u −−→v ) = a−→u − a−→v .
6) (a− b)−→u = a−→u − a−→u .
7) Si a−→u = a−→v y a 6= 0, entonces −→u = −→v .

90
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8) Si a−→u = b−→u y −→u 6= −→0 , entonces a = b.

En adelante V denotará un espacio vectorial sobre un cuerpo K.

Un subconjunto U de V es un subespacio vectorial de V si

1) U 6= ∅,
2) si −→u ,−→v ∈ U, entonces −→u −−→v ∈ U (U es un subgrupo de (V,+)),
3) si a ∈ K y −→u ∈ U, entonces a−→u ∈ U.

Las dos últimas propiedades se pueden substituir por

2’) si −→u ,−→v ∈ U y a, b ∈ K, entonces a−→u + b−→v ∈ U (U es cerrado para combinaciones lineales
de sus elementos).

Ejercicio 71: Demuestra que {(x, y, z) ∈ Q3 tales que x+ y+ z = 0} es un subespacio vectorial de
Q3.

Ejercicio 72: Encuentra todos los elementos de {(x, y) ∈ Z23 tales que x+ y = 0}.

Un subespacio vectorial de V es un espacio vectorial sobre K, con la misma suma y producto
por escalares.
La intersección de subespacios vectoriales de V es de nuevo un subespacio vectorial de V .

Sea S un subconjunto no vaćıo de V . El subespacio vectorial de V generado por S es la in-
tersección de todos los subespacios vectoriales de V que contienen a S. A dicho subespacio lo
denotaremos por 〈S〉.

Si S = {−→u 1, . . . ,
−→u n}, entonces

〈S〉 = {a1
−→u 1 + · · ·+ an−→u n tales que a1, . . . , an ∈ K}.

Ejercicio 73: Calcula todos los elementos del subespacio vectorial de Z33 generado por {(1, 2, 0), (0, 1, 2)}.

Sean U1, . . . , Un subespacios vectoriales de V . El subespacio vectorial suma de U1, . . . , Un es

U1 + . . .+Un = {−→u 1 + · · ·+−→u n tales que −→u 1 ∈ U1, . . . ,−→u n ∈ Un}.

U1 + · · ·+Un = 〈U1 ∪ · · · ∪Un〉.
Si U1 = 〈S1〉, . . . , Un = 〈Sn〉, entonces U1 + · · ·+Un = 〈S1 ∪ · · · ∪ Sn〉.

Sean U y W subespacios vectoriales de V . Decimos que V es suma directa de U y W, y lo
denotamos por V = U ⊕ W, si todo vector −→v ∈ V se puede expresar de forma única como
−→v = −→u + −→w , con −→u ∈ U and −→w ∈ W. En dicho caso, diremos que los subespacios vectoriales U
y W son complementarios.

V = U⊕W si, y sólo si, V = U+W y U ∩W = {
−→
0 }.
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Ejercicio 74: Sean U = {(x, y) ∈ R2 tales que x+ y = 0} y W = {(x, y) ∈ R2 tales que x− y = 0}.
Demuestra que R2 = U⊕W.

maxima 61: El conjunto Kn con K un cuerpo y n un entero positivo es un espacio vectorial. Para
el caso n = 3, el producto por escalares está definido aśı.

(%i1) a*[x,y,z];

(%o1) [ax, a y, a z]

Y la suma de vectores se hace componente a componente.

(%i2) [x_1,y_2,z_3]+[x_2,y_2,z_2];

(%o2) [x 2+ x 1, 2 y 2, z 3+ z 2]

Veamos que el conjunto de vectores de la forma (x, y, 0), con x, y ∈ K, es un subespacio de K3.

(%i3) a*[x_1,y_1,0]+b*[x_2,y_2,0];

(%o3) [bx 2+ ax 1, b y 2+ ay 1, 0]

Lo mismo ocurre con los de la forma (x, x, x).

(%i4) a*[x,x,x]+b*[x,x,x];

(%o4) [bx+ ax, b x+ ax, b x+ ax]

2. Bases

Un conjunto de vectores S ⊆ V es linealmente dependiente si existen n un entero positivo,

{−→v 1, . . . ,−→v n} ⊆ S y (a1, . . . , an) ∈ Kn \ {(0, . . . , 0)} tales que a1
−→v 1 + · · · + an−→v n =

−→
0 . En caso

contrario, decimos que S es un conjunto de vectores linealmente independientes.

Ejercicio 75: Demuestra que los vectores (1, 1, 0), (0, 1, 1), (1, 0, 1) ∈ R3 son linealmente indepen-
dientes.

S es un conjunto de vectores linealmente dependientes si y sólo si existe −→v ∈ S tal que
−→v ∈ 〈S \ {−→v }〉.
Si
−→
0 ∈ S, entonces S es un conjunto de vectores linealmente dependientes.

Si S es un conjunto de vectores linealmente dependientes, entonces para todo −→v ∈ V ,
S ∪ {−→v } también es un conjunto de vectores linealmente dependientes.
Si S, ]S ≥ 2, es un conjunto de vectores linealmente independientes, entonces para todo
v ∈ S S \ {−→v } también es un conjunto de vectores linealmente independientes.

maxima 62: Veamos si {(1, 2), (0, 1)} es un conjunto de vectores linealmente independientes en Q2.

(%i1) solve(x*[1,2]+y*[0,1],[x,y]);

(%o1) [[x = 0, y = 0]]

Ahora probamos con {(1, 2, 3), (2, 4, 6)} en Q3, y vemos que son dependientes.

(%i2) solve(x*[1,2,3]+y*[2,4,6],[x,y]);
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solve: dependent equations eliminated: (2 3)

(%o2) [[x = −2%r6, y = %r1]]

Una base de V es un subconjunto S de vectores linealmente independientes de V tal que V = 〈S〉.
Si B = {−→v 1, . . . ,−→v n} es una base de V , entonces para todo vector −→v ∈ V , existen
a1, . . . , an ∈ K únicos tales que −→v = a1

−→v 1 + · · ·+ an−→v n.

A la n-upla (a1, . . . , an) se le llama coordenadas del vector −→v respecto de la base B.

Ejercicio 76: Demuestra que B = {(1, 2), (1, 3)} es una base de Z25. Calcula las coordenadas del
vector (2, 4) respecto de dicha base.

Teorema de la base. Todo espacio vectorial distinto de {
−→
0 } tiene al menos una base. Además

todas sus bases tienen el mismo cardinal.
Al cardinal de una base de V lo denotamos por dim(V), y nos referiremos a él como la dimensión

de V .

Ejercicio 77: Prueba que dim(Kn) = n, dim(Mm×n(K)) = nm y dim({a(x) ∈ K[x] tales que gr(a(x)) ≤
n}) = n+ 1.

Teorema de ampliación a base. Si dim(V) = n y {−→v 1, . . . ,−→v m} es un conjunto de vectores
linealmente independientes de V , entonces m ≤ n. Además existen −→v m+1, . . . ,

−→v n ∈ V , de forma
que {−→v 1, . . . ,−→v m,−→v m+1, . . . ,

−→v n} es una base de V .

Ejercicio 78: Amplia {(1, 1, 1)} una base de R3.

Si dim(V) = n, entonces cualquier conjunto de vectores de V linealmente independientes
de cardinal n es una base de V .

Ejercicio 79: Prueba que {(1, 2, 1), (1, 1, 1), (1, 0, 0)} es una base de Z33.

Ejercicio 80: Calcula una base del subespacio vectorial de R3 generado por {(1, 2, 1), (2, 4, 2), (1, 3, 2), (2, 5, 3)}.

maxima 63: Calculemos una base del subespacio vectorialU de Q3 generado por {(1, 2, 3), (1, 1, 1), (3, 2, 1)}.

(%i1) C:matrix([1,2,3],[1,1,1],[3,2,1]);

(%o1)

1 2 3
1 1 1
3 2 1


Como las operaciones elementales por filas en la matriz C no alteran los sistemas de generadores,

(%i2) triangularize(C);
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(%o2)

1 2 3
0 −1 −2
0 0 0


nos dice que {(1, 2, 3), (0,−1,−2)} es una base de U.

maxima 64: Veamos que B = {(1, 1, 1), (1, 2, 1), (0, 0, 2)} es una base de Z35, calculemos las coorde-
nadas de (2, 3, 4) respecto de esa base.

(%i1) modulus:5$

(%i2) solve(x*[1,1,1]+y*[1,2,1]+z*[0,0,2],[x,y,z]);

( %o2) [[x = 0, y = 0, z = 0]]
Al ser tres generadores linealmente independientes en Z35, el conjunto dado es una base.

(%i3) solve(x*[1,1,1]+y*[1,2,1]+z*[0,0,2]-[2,3,4],[x,y,z]);

( %o3) [[x = 1, y = 1, z = 1]]

maxima 65: Sean U y W los subespacios vectoriales de Z35 generados por {(1, 1, 1), (1, 2, 1)} y
{(1, 2, 3), (0, 0, 2)}, respectivamente. ¿Es Z35 = U+W?

(%i1) modulus:5$

(%i2) D:matrix([1,1,1],[1,2,1],[1,2,3],[0,0,2]);

( %o2)


1 1 1
1 2 1
1 2 3
0 0 2


(%i3) triangularize(D);

( %o3)


1 1 1
0 1 0
0 0 2
0 0 0


Aśı, una base para U+W es {(1, 1, 1), (0, 1, 0), (0, 0, 2)}, por lo que U+W = Z35.

maxima 66: Sea U el subespacio vectorial de Q3 generado por {(1, 1, 1)(2, 1, 3), (4, 3, 5)}, calculemos
un complementario de U.

Primero buscamos una base para U, aplicando operaciones elementales al sistema de genera-
dores que nos dan.

(%i1) modulus:false$

(%i2) E:matrix([1,1,1],[2,1,3],[4,3,5])$

(%i3) triangularize(E);

( %o3)

1 1 1
0 −1 1
0 0 0


Ahora probamos a añadir un vector que sea independiente con los dos anteriores.

(%i4) F:matrix([1,1,1],[0,-1,1],[1,0,0])$
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(%i5) triangularize(F);

( %o6)

1 0 0
0 −1 1
0 0 −2


De esta forma la recta generada por (1, 0, 0) es un complemento de U en Q3.

maxima 67: Veamos ahora la dimensión del subespacio de Z47 generado por

{(2, 4, 3, 4), (4, 1, 6, 1), (3, 3, 3, 3), (5, 0, 6, 0)}.

(%i1) modulus:7$

(%i2) G:matrix([2,4,3,4],[4,1,6,1],[3,3,3,3],[5,0,6,0])$

(%i3) triangularize(G);

( %o3)


−2 0 −1 0
0 −2 −1 −2
0 0 0 0
0 0 0 0


Luego la dimensión es dos, al tener dos filas no nulas en su forma reducida.

3. Ecuaciones del cambio de base

Sean B = {−→v 1, . . . ,−→v n} y B ′ = {−→v ′1, . . . ,−→v ′n} dos bases de V . Sea −→x ∈ V . Entonces existen
x1, . . . , xn, x

′
1, . . . , x

′
n ∈ K tales que −→x = x1

−→v 1+ · · ·+ xn−→v n y −→x = x ′1
−→v ′1+ · · ·+ x ′n−→v ′n. Queremos

ver qué relación hay entre las coordenadas de −→x respecto de B y de B ′. Para ello utilizaremos las
coordenadas de los vectores de B respecto de B ′. Supongamos que

−→v 1 = a11−→v ′1 + · · ·+ a1n−→v ′n,
...

−→v n = an1
−→v ′1 + · · ·+ ann−→v ′n.

Entonces

−→x = x1
−→v 1 + · · ·+ xn−→v n = x1(a11

−→v ′1 + · · ·+ a1n−→v ′n) + · · ·+ xn(an1−→v ′1 + · · ·+ ann−→v ′n)
= (x1a11 + · · ·+ xnan1)−→v ′1 + · · ·+ (x1a1n + · · ·+ xnann)−→v ′n = x ′1

−→v ′1 + · · ·+ x ′n−→v ′n.
Por tanto

x ′1 = x1a11 + · · ·+ xnan1
...

x ′n = x1a1n + · · ·+ xnann

 ,
que se conocen como las ecuaciones de cambio de base de B a B ′. Éstas se pueden también expresar
en forma matricial

(x ′1 . . . x
′
n) = (x1 . . . xn)

a11 . . . a1n
...

. . .
...

an1 . . . ann

 .
A la matriz A =

a11 . . . a1n
...

. . .
...

an1 . . . ann

 se le llama matriz de cambio de base de B a B ′. Esta matriz es

siempre regular y su inversa, A−1 es justamente la matriz de cambio de base de B ′ a B.
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Ejercicio 81: Sean B = {(1, 1, 0), (1, 2, 1), (1, 1, 2)} y B ′ = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} dos bases de
Z35. Calcula las ecuaciones de cambio de base de B a B ′.

maxima 68: Supongamos que K es Z5 y V = Z25.
(%i1) modulus:5;

(%o1) 5

Elegimos dos bases, B = {−→v 1,−→v 2} y B ′ = {−→u 1,
−→u 2}.

(%i2) v1:[1,2];v2:[0,3];

(%o2) [1, 2]

(%o3) [0, 3]

(%i4) u1:[1,1];u2:[2,0];

(%o4) [1, 1]

(%o5) [2, 0]

Calculamos las coordenadas de −→u 1 y −→u 2 respecto de B.

(%i6) solve(a11*v1+a12*v2-u1,[a11,a12]);

(%o6) [[a11 = 1, a12 = −2]]

(%i7) solve(a21*v1+a22*v2-u2,[a21,a22]);

(%o7) [[a21 = 2, a22 = 2]]

Aśı la matriz de cambio de base de B ′ a B es la siguiente.

(%i8) A:matrix([1,-2],[2,2]);

(%o8)

(
1 −2
2 2

)
El vector −→u 1 +

−→u 2 tiene coordenadas (1, 1) en B ′. Veamos cuáles son sus coordenadas en B.

(%i9) [1,1].A;

(%o9)
(
3 0

)
Comprobamos el resultado.

(%i10) u1+u2=3*v1;

(%o10) [3, 1] = [3, 6]

(%i11) mod(%,5);

(%o11) [3, 1] = [3, 1]

La matriz de cambio de base de B a B ′ es la inversa de A.

(%i12) A^^(-1);
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(%o12)

(
2 2
−2 1

)

maxima 69: Dadas las bases de Q3, B = {(1, 2, 3), (0, 3, 1), (0, 0, 4)} y B ′ = {(1, 1, 1), (0, 2, 3), (0, 0, 7)},
veamos cuál es la matriz de cambio de base de B a B ′ y la de B ′ a B.

(%i1) modulus:false$

(%i2) solve(x*[1,1,1]+y*[0,2,3]+z*[0,0,7]-[1,2,3],[x,y,z]);

( %o2) [[x = 1, y = 1
2
, z = 1

14
]]

(%i3) solve(x*[1,1,1]+y*[0,2,3]+z*[0,0,7]-[0,3,1],[x,y,z]);

( %o3) [[x = 0, y = 3
2
, z = −1

2
]]

(%i4) solve(x*[1,1,1]+y*[0,2,3]+z*[0,0,7]-[0,0,4],[x,y,z]);

( %o4) [[x = 0, y = 0, z = 4
7
]]

(%i5) [x,y,z],%o2;

( %o5) [1, 1
2
, 1
14
]

(%i6) [x,y,z],%o3;

( %o6) [0, 3
2
,− 1

2
]

(%i7) [x,y,z],%o4;

( %o7) [0, 0, 4
7
]

La matriz de cambio de base de B a B ′ es

(%i8) H:matrix(%o5,%o6,%o7);

( %o8)

1 1
2

1
14

0 3
2

− 1
2

0 0 4
7


y la de B ′ a B es

(%i9) J:invert(%);

( %o9)

1 − 1
3

− 5
12

0 2
3

7
12

0 0 7
4


Si las coordenadas de un vector respecto de la base B son (1, 1, 1), sus coordenadas respecto

de B ′ son

(%i10) [1,1,1].H;

( %o10)
(
1 2 1

7

)
4. Ecuaciones paramétricas de un subespacio vectorial

Supongamos que dim(V) = n y que U es un subespacio vectorial de V de dimensión r. Sea
B = {−→v 1, . . . ,−→v n} una base de V , y BU = {−→u 1, . . . ,

−→u r} una base de U. Supongamos que
−→u 1 = a11

−→v 1 + · · ·+ a1n−→v n,
...

−→u r = ar1
−→v 1 + · · ·+ arn−→v n.
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Sea −→x = x1
−→v 1 + · · ·+ xn−→v n un vector de V . Veamos qué tienen que verificar las coordenadas

(x1, . . . , xn) para que −→x ∈ U.
El vector −→x ∈ U si y sólo si existen λ1, . . . , λr ∈ K tales que −→x = λ1

−→u 1 + · · · + λr−→u r, y esto
equivale a que

−→x = λ1(a11
−→v 1 + · · ·+ a1n−→v n) + · · ·+ λr(ar1−→v 1 + · · ·+ arn−→v n)

= (λ1a11 + · · ·+ λrar1)−→v 1 + · · ·+ (λ1a1n + · · ·+ λrarn)−→v n.
Como las coordenadas son únicas,

x1 = λ1a11 + · · ·+ λrar1
...

xn = λ1a1n + · · ·+ λrarn

 .
Estas ecuaciones son las ecuaciones paramétricas de U respecto de la base B.

Ejercicio 82: Dada la base B = {(1, 1, 0), (1, 0, 1), (0, 1, 1) de Q3, y U el subespacio vectorial de Q3

generado por {(1, 2, 1), (1, 3, 2), (2, 5, 3)}, calcula las ecuaciones paramétricas de U respecto de la
base B.

maxima 70: Sea U el subespacio de Z37 generado por {(2, 3, 4), (2, 4, 4), (4, 6, 1)}, calculamos a
continuación las ecuaciones paramétricas de U respecto de la base B = {(1, 2, 3), (0, 3, 4)(0, 0, 6)}.

Primero encontramos una base para U, y lo hacemos con el comando triangularize.

(%i1) modulus:7$

(%i2) K:matrix([2,3,4],[2,4,4],[4,6,1])$

(%i3) triangularize(K);

( %o3)

2 3 −3
0 2 0
0 0 0


Por tanto, U tiene como base {(2, 3,−3), (0, 2, 0)}. Encontremos pues las coordenadas de sus

elementos respecto de la base B.

(%i4) solve(x*[1,2,3]+y*[0,3,4]+z*[0,0,6]-[2,3,-3],[x,y,z]);

( %o4) [[x = 2, y = 2, z = 3]]

(%i5) solve(x*[1,2,3]+y*[0,3,4]+z*[0,0,6]-[0,2,0], [x,y,z]);

( %o5) [[x = 0, y = 3, z = −2]]
Aśı un elemento de coordenadas (x, y, z) respecto de la base B estará en U si y sólo si (x, y, z) =

λ(2, 2, 3) + µ(0, 3, 5) para algún λ, µ ∈ Z7. Las ecuaciones paramétricas son x = 2λ,
y = 2λ+ 3µ,
z = 3λ+ 5µ.
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5. Aplicaciones lineales

En lo que queda de caṕıtulo suponemos que V y V ′ son dos espacios vectoriales sobre el mismo
cuerpo K.

Una aplicación f : V → V ′ es lineal (o un homomorfismo) si

1) para todo −→u ,−→v ∈ V , f(−→u +−→v ) = f(−→u ) + f(−→v ),
2) para todo a ∈ K y −→v ∈ V , f(a−→v ) = af(−→v ).

f(
−→
0 ) =

−→
0 (el primer

−→
0 es de V y el segundo de V ′).

f(−−→v ) = −f(−→v ).
El núcleo de f, N(f) = {−→v ∈ V tales que f(−→v ) = −→0 }, es un subespacio vectorial de V .
La imagen de f, Im(f), es un subespacio vectorial de V ′.

Una aplicación lineal es un

1) monomorfismo si es inyectiva,
2) epimorfismo si es sobreyectiva,
3) isomorfismo si es biyectiva.

Si f es un isomorfismo, también lo es f−1.

f es un monomorfismo si y sólo si N(f) = {
−→
0 }.

Si V = 〈{−→v 1, . . . ,−→v n}〉, entonces Im(f) = 〈{f(−→v 1), . . . , f(−→v n)}〉.
Si f es un monomorfismo y {−→v 1, . . . ,−→v n} son linealmente independientes, entonces
{f(−→v 1), . . . , f(−→v n)} también son linealmente independientes.

Ejercicio 83: Demuestra que f : R3 → R2, f(x, y, z) = (x+y, x+z) es una aplicación lineal. Calcula
N(f) y Im(f). ¿Es f un isomorfismo?

Ejercicio 84: Sea f : Z27 → Z37, (x, y, z) 7→ (x, y, z + y). Calcula una base de Im(f). ¿Es f un
epimorfismo?

Teorema: Las aplicaciones lineales vienen determinadas por la imagen de una base.
Sea B = {−→v 1, . . . ,−→v n} una base de V , y {−→v ′1, . . . ,−→v ′n} ⊆ V ′. Entonces existe una única aplicación
lineal f : V → V ′ verificando que f(−→v 1) = −→v ′1, . . . , f(−→v n) = −→v ′n. Además, {−→v ′1, . . . ,−→v ′n} es una
base de V ′ si y sólo si f es un isomorfismo.

Los espacios vectoriales V y V ′ diremos que son isomorfos si existe un isomorfismo f : V → V ′.

V y V ′ son isomorfos si y sólo si dim(V) = dim(V ′).

Ejercicio 85: Sea U el subespacio vectorial de Z35 generado por {(1, 2, 3), (0, 1, 2), (1, 3, 0)}. Calcula
el cardinal de U.

maxima 71: Sea f : R3 → R4 definida por f(x, y, z) = (x+y, x+ z, 2x+y+ z, y− z). Para calcular
su núcleo usamos:

(%i1) solve([x+y=0,x+z=0,2*x+y+z=0,y-z=0],[x,y,z]);

solve : dependentequationseliminated : (34)
( %o1) [[x = −%r1, y = %r1, z = %r1]]
Aśı N(f) = {(−a, a, a) | a ∈ R}, que tiene como base a {(−1, 1, 1)}. Para calcular una base

de la imagen, sabiendo que {f(1, 0, 0), f(0, 1, 0), f(0, 0, 1) es un sistema de generadores, hacemos lo
siguiente.
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(%i2) f(x,y,z):=[x+y,x+z,2*x+y+z,y-z]$

(%i3) A:matrix(f(1,0,0),f(0,1,0),f(0,0,1))$

(%i4) triangularize(A);

( %o4)

1 1 2 0
0 −1 −1 1
0 0 0 0


Por tanto, una base de Im(f) es {(1, 1, 2, 0), (0,−1,−1, 1)}.

6. Ecuaciones de una aplicación lineal

Sea f : V → V ′ una aplicación lineal, y B = {−→v 1, . . . ,−→v n} y B ′ = {−→v ′1, . . . ,−→v ′m} bases de V y
V ′, respectivamente. Sean −→x = x1

−→v 1+ · · ·+xn−→v n y f(−→x ) = x ′1−→v ′1+ · · ·+x ′m−→v m ∈ V ′. Queremos
estudiar la relación que existe entre las coordenadas de −→x y f(−→x ).

Supongamos que

f(−→v 1) = a11−→v ′1 + · · ·+ a1m−→v ′m,
...

f(−→v n) = an1−→v ′1 + · · ·+ anm−→v ′m.
Entonces

f(−→x ) = f(x1−→v 1 + · · ·+ xn−→v n) = x1f(−→v 1) + · · ·+ xnf(−→v n)
= x1(a11

−→v ′1 + · · ·+ a1m−→v ′m) + · · ·+ xn(an1−→v ′1 + · · ·+ anm−→v ′m)
= (x1a11 + · · ·+ xnan1)−→v ′1 + · · ·+ (x1a1m + · · ·+ xnanm)−→v ′m.

Aśı
x ′1 = a11x1 + · · ·+ an1xn

...
x ′m = a1mx1 + · · ·+ anmxn


que se conocen como ecuaciones de la aplicación lineal respecto de las bases B y B ′.

Estas ecuaciones se pueden expresar de forma matricial como

(x ′1 . . . x
′
m) = (x1 . . . xn)

a11 . . . a1m
...

. . .
...

an1 . . . anm

 .
La matriz A =

a11 . . . a1m
...

. . .
...

an1 . . . anm

 es la matriz asociada a la aplicación lineal f respecto de las

bases B y B ′.

f es un isomorfismo si y sólo si A es regular.

Ejercicio 86: Sea f : Q2 → Q3, la aplicación lineal definida por f(x, y, z) = (x, x+y, x−y). Calcula
las ecuaciones de f respecto de las bases {(1, 1), (1, 2)} de Q2 y {(1, 1, 0), (1, 0, 1), (0, 1, 1)} de Q3.

Ejercicio 87: Sea f : Z27 → Z37 una aplicación lineal tal que f(1, 2) = (2, 3, 1) y f(2, 5) = (3, 4, 2).
Calcula la expresión general f(x, y).
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Ejercicio 88: Encuentra la matriz asociada a la base {(1, 0, 0), (0, 1, 0), (0, 0, 1)} de una aplicación
lineal f : R3 → R3 que verifica que (1, 0, 0) ∈ N(f) y Im(f) = 〈{(2, 3, 1), (3, 3, 2)}〉.

maxima 72: Calculemos la expresión matricial de la aplicacion lineal del ejemplo anterior respecto
de las bases B = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} y B ′ = {(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)}.
Podemos por ejemplo calcular las coordenadas de las imágenes por f de los elementos de B respecto
de B ′.

(%i1) f(x,y,z):=[x+y,x+z,2*x+y+z,y-z]$

(%i2) solve(x*[1,1,1,1]+y*[0,1,1,1]+z*[0,0,1,1]+t*[0,0,0,1]-

f(1,1,0),[x,y,z,t]);

( %o2) [[x = 2, y = −1, z = 2, t = −2]]

(%i3) solve(x*[1,1,1,1]+y*[0,1,1,1]+z*[0,0,1,1]+t*[0,0,0,1]-

f(1,0,1),[x,y,z,t]);

( %o3) [[x = 1, y = 1, z = 1, t = 3]]

(%i4) solve(x*[1,1,1,1]+y*[0,1,1,1]+z*[0,0,1,1]+t*[0,0,0,1]-

f(0,1,1),[x,y,z,t]);

( %o4) [[x = 1, y = 0, z = 1, t = −2]]

(%i5) C:matrix([2,-1,2,-2],[1,1,1,-4],[1,0,1,-2]);

( %o5)

2 −1 2 −2
1 1 1 −4
1 0 1 −2


Por tanto la expresión matricial es (x ′, y ′, z ′, t ′) = (x, y, z)C.

maxima 73: Tomamos una base B = {−→v 1,−→v 2,−→v 3} en Q3.

(%i1) v1:[1,2,1];v2:[1,1,0];v3:[0,0,3];

(%o1) [1, 2, 1]

(%o2) [1, 1, 0]

(%o3) [0, 0, 3]

Y las imágenes de esos vectores respecto de la base usual {(1, 0), (0, 1)} en Q2.

(%i4) fv1:[1,1];fv2:[2,1];fv3:[1,2];

(%o4) [1, 1]

(%o5) [2, 1]

(%o6) [1, 2]

La matriz de f asociada a dichas bases es:

(%i7) A:matrix(fv1,fv2,fv3);
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(%o7)

1 1
2 1
1 2


Si queremos calcular la imagen de un elemento con coordenadas (x, y, z) respecto de B, sólo

tenemos que multiplicar esas coordenadas por A.

(%i8) [x,y,z].A;

(%o8)
(
z+ 2 y+ x 2 z+ y+ x

)
Aśı f(x, y, z) = (x+ 2y+ z, x+ y+ 2z), donde (x, y, z) son coordenadas respecto de B.
Si lo que queremos es la expresión de f(x, y, z), con (x, y, z) coordenadas respecto de la base

usual {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, lo que hacemos es calcular primero el cambio de base de B a la
base usual, y luego lo multiplicamos por A, obteniendo aśı la expresión matricial respecto de las
bases usuales.

(%i9) B:matrix(v1,v2,v3);

(%o9)

1 2 1
1 1 0
0 0 3


(%i10) B^^-1;

(%o10)

−1 2 1
3

1 −1 − 1
3

0 0 1
3


(%i11) AA:%.A;

(%o11)

 10
3

5
3

− 4
3

− 2
3

1
3

2
3


Veamos que el resultado es el deseado (−→v i lo definimos en función de la base usual).

(%i12) v1.AA;v2.AA;v2.AA

(%o12)
(
1 1

)
(%o13)

(
2 1

)
(%o14)

(
1 2

)
Por tanto las coordenadas de f(x, y, z) respecto de la base usual de Q2, con (x, y, z) coordenadas

en la base usual de Q3, la podemos calcular como sigue.

(%i17) [x,y,z].AA;

(%o17)
(
z
3
− 4 y

3
+ 10 x

3
2 z
3
− 2 y

3
+ 5 x

3

)
maxima 74: Calculemos la expresión de una aplicación lineal g : Z35 → Z25 tal que g(1, 1, 1) = (2, 0),
g(1, 2, 1) = (1, 1) y g(0, 0, 2) = (3, 3).

(%i1) modulus:5$

(%i2) D:matrix([1,1,1],[1,2,1],[0,0,2])$

(%i3) E:invert(D)$
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(%i4) F:rat(E);

( %o4)/R/

 2 −1 2
−1 1 0
0 0 −2


Tenemos aśı las coordenadas de los vectores (1, 0, 0), (0, 1, 0) y (0, 0, 1) respecto de la base

{(1, 1, 1), (1, 2, 1), (0, 0, 2)}.

(%i5) G:matrix([2,0],[1,1],[3,3])$
Y sus imágenes por g se calculan multiplicando por G.

(%i6) H:F.G;

( %o6)/R/

−1 0
−1 1
−1 −1


Por tanto g(x, y, z) = (4x+ 4y+ 4z, y+ 4z). Comprobemos si hemos hecho bien los cálculos.

(%i7) g(x,y,z):=[4*x+4*y+4*z,y+4*z]$

(%i8) rat(g(1,1,1));

( %o8)/R/ [2, 0]

(%i9) rat(g(1,2,1));

( %o9)/R/ [1, 1]

(%i10) rat(g(0,0,2));

( %o10)/R/ [−2,−2]

7. Espacio vectorial cociente

Sea U un subespacio vectorial de V . Definimos en V la siguiente relación de equivalencia:
−→x R −→y si −→x −−→y ∈ U. Denotamos por V

U
al conjunto cociente V

R
.

El conjunto V
U

es un espacio vectorial con las operaciones [−→x ] + [−→y ] = [−→x +−→y ] y k[−→x ] =
[k−→x ]. A dicho espacio vectorial se le conoce como espacio vectorial cociente de V sobre U.
Si {−→u 1, . . . ,

−→um} es una base deU y la ampliamos a una base de V , {−→u 1, . . . ,
−→um,

−→um+1, . . . ,
−→u n},

entonces {[−→um+1], . . . , [
−→u n]} es una base de V

U
. Aśı

dim

(
V

U

)
= dim(V) − dim(U).

Primer teorema de isomorf́ıa. Si f : V → V ′ es una aplicación lineal, entonces los espacios
vectoriales V

N(f)
e Im(f) son isomorfos (el isomorfismo viene dado por [−→v ] 7→ f(v)).

dim(V) = dim(N(f)) + dim(Im(f)).

Ejercicio 89: Sea f : R3 → R2 definida por f(x, y, z) = (2x + y, 3x + z). Encuentra una base de
N(f).
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Segundo teorema de isomorf́ıa. Si U1 y U2 son subespacios de V , entonces los espacios
vectoriales U2

U1∩U2
y U1+U2

U1
son isomorfos.

dim(U1) + dim(U2) = dim(U1 +U2) + dim(U1 ∩U2).

Ejercicio 90: Dados los subespacios vectoriales de Z35,U = 〈{(1, 1, 2), (1, 2, 3)}〉 yW = 〈{(1, 0, 0), (2, 1, 3)}〉,
calcula la dimensión de U ∩W.

Ejercicio 91: Sea U el subespacio vectorial de Q3 generado por {(1, 2, 1)}. Calcula un complemen-
tario de U.

maxima 75: Sea U el subespacio vectorial de Q4 generado por {(1, 1, 1, 1), (1, 2, 3, 4), (1, 0,−1,−2)},
calculemos una base del espacio cociente Q4/U.

(%i1) A:matrix([1,1,1,1],[1,2,3,4],[1,0,-1,-2])$

(%i2) triangularize(A);

( %o2)

1 0 −1 −2
0 2 −1 1
0 0 0 0


Una base de U es {(1,0,-1,-2),(0,2,4,6)}. Ahora la ampliamos a una base de Q4.

(%i3) B:matrix([1,0,-1,-2],[0,2,4,6],[0,0,1,0],[0,0,0,1])$

(%i4) determinant(B);

( %o4) 2
Una base del cociente es {[(0, 0, 1, 0)], [(0, 0, 0, 1)]}.

maxima 76: Sea f : Q4 → Q3 definida por

(%i1) f(x,y,z,t):=[x+y+z,x+z+t,y-t]$

Como

(%i2) triangularize(matrix(f(1,0,0,0),f(0,1,0,0),f(0,0,1,0),f(0,0,0,1)));

( %o2)


1 1 0
0 −1 1
0 0 0
0 0 0


deducimos que la imagen de f tiene dimensión 2. Por el primer teorema de isomorf́ıa, su núcleo
debeŕıa también tener dimensión dos. Comprobémoslo:

(%i3) solve(f(x,y,z,t),[x,y,z,t]);

solve : dependentequationseliminated : (1)
( %o3) [[x = −%r3− %r2, y = %r2, z = %r3, t = %r2]]

maxima 77: Sean U y W los subespacios de Z47 generados por {(1, 0, 1, 0), (1, 2, 1, 2), (1, 5, 1, 5)} y
{(2, 3, 4, 0), (1, 5, 2, 0), (2, 3, 2, 3)}, respectivamente. Veamos cuál es la dimensión de U ∩W.

Un sistema de generadores paraU+W es {(1, 0, 1, 0), (1, 2, 1, 2), (1, 5, 1, 5), (2, 3, 4, 0), (1, 5, 2, 0), (2, 3, 2, 3)}.

(%i1) modulus:7$
Las dimensiones de U y W son dos, ya que
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(%i2) triangularize(matrix([1,0,1,0],[1,2,1,2],[1,5,1,5]));

( %o2)

1 0 1 0
0 2 0 2
0 0 0 0


y

(%i3) triangularize(matrix([2,3,4,0],[1,5,2,0],[2,3,2,3]));

( %o3)

2 3 −3 0
0 0 3 −1
0 0 0 0


Por último,

(%i4) triangularize(matrix([1,0,1,0],[1,2,1,2],[1,5,1,5],[2,3,4,0],[1,5,2,0],[2,3,2,3]));

( %o4)


1 0 1 0
0 2 0 2
0 0 2 −3
0 0 0 0
0 0 0 0
0 0 0 0


Esto nos dice que la dimensión de U+W es 3. Por el Segundo Teorema de Isomorf́ıa, deducimos

que la dimensión de U ∩W es 1.

8. Ecuaciones cartesianas o impĺıcitas de un subespacio vectorial

Sea U un subespacio vectorial de V . Sea B = {−→v 1, . . . ,−→v n} una base de V , y BU = {−→u 1, . . . ,
−→u r}

una base de U. Supongamos que

−→u 1 = a11
−→v 1 + · · ·+ a1n−→v n,

...
−→u r = ar1

−→v 1 + · · ·+ arn−→v n.
Sea −→x = x1

−→v 1 + · · · + xn−→v n un vector de V . Recordemos que el vector −→x ∈ U si y sólo si
existen λ1, . . . , λr ∈ K tales que

x1 = λ1a11 + · · ·+ λrar1
...

xn = λ1a1n + · · ·+ λrarn

 .
Luego −→x ∈ U si y sólo si el sistema con incógnitas λ1, . . . λra11 . . . ar1

...
. . .

...
a1n . . . arn

λ1...
λr

 =

x1...
xn



tiene solución. Y sabemos que equivale a rango

a11 . . . ar1
...

. . .
...

a1n . . . arn

 = rango

a11 . . . ar1 x1
...

. . .
...

a1n . . . arn xn

.

Esto ocurre cuando unos cuantos determinantes valen cero, proporcionándonos aśı una sistema de
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ecuaciones de la forma
b11x1 + · · ·+ b1nxn = 0

...
bk1x1 + · · ·+ bknxn = 0

 ,
a las que llamaremos ecuaciones cartesianas de U respecto de la base B de V .

Si k es el número de ecuaciones cartesianas independientes que describen a U, entonces
k+ dim(U) = dim(V).

Ejercicio 92: Dada la base B = {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, calcula las ecuaciones cartesianas
respecto de la base B del subespacio vectorial de R3 generado por {(1, 2, 1)}.

Ejercicio 93: Calcula las ecuaciones cartesianas del subespacio vectorial 〈{(1, 2, 3, 1), (1, 1, 1, 1), (3, 5, 7, 3)}〉 ⊆
Q4.

Ejercicio 94: Consideremos los subespacios vectoriales de R4, E1 = 〈{(1, 1, 1, 1), (1,−1, 1,−1)}〉 y
E2 = 〈{(1, 2, 0, 2), (1, 2, 1, 2), (3, 1, 3, 1)}〉.
a) Calcula una base de E1 + E2.
b) Calcula las ecuaciones cartesianas de E1 + E2.
c) Calcula las ecuaciones cartesianas de E1 ∩ E2.
d) Calcula una base de E1 ∩ E2.

Ejercicio 95: Dada la aplicación lineal f : Z45 → Z35 definida por f(x, y, z, t) = (x+y, x+z, 2x+y+z),
calcula una base para su núcleo.

maxima 78: Calculemos las ecuaciones cartesianas de U = 〈{(1, 1, 2), (1,−1, 0)}〉 ⊆ Q3. Sus ecua-
ciones paramétricas respecto de la base usual son

x = λ+ µ
y = λ− µ
z = 2λ

 .
La matriz ampliada de este sistema con incógnitas en los parámetros λ y µ es

(%i1) A:matrix([1,1,x],[1,-1,y],[2,0,z]);

(%o1)

1 1 x
1 −1 y
2 0 z


Como su rango debe ser dos, su determinante es cero.

(%i2) determinant(A);

(%o2) −2 z+ 2 y+ 2 x

Aśı la ecuación cartesiana de U es x+ y− z = 0.
Esta ecuación también la podemos encontrar haciendo operaciones elementales por filas en A.

Primero extraemos la matriz de coeficientes. Para ello eliminamos la última columna de A.

(%i3) C:submatrix(A,3);
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(%o3)

1 1
1 −1
2 0


Para guardar traza de la operaciones elementales que hacemos en C para obtener su forma

triangular reducida, le añadimos al final la matriz identidad.

(%i4) M:addcol(C,ident(3));

(%o4)

1 1 1 0 0
1 −1 0 1 0
2 0 0 0 1


Ahora triangularizamos y nos quedamos con las últimas columnas, que forman una matriz

regular con las operaciones elementales para que C alcance su forma reducida for filas.

(%i5) triangularize(M);

(%o5)

2 0 0 0 1
0 −2 0 2 −1
0 0 −2 −2 2


(%i6) P:submatrix(%,1,2);

(%o6)

 0 0 1
0 2 −1
−2 −2 2


Aplicamos estas operaciones por filas a la matriz inicial y obtenemos en las últimas filas las ecua-
ciones (en esta caso sólo en la última, pues hay una).

(%i7) P.A;

(%o7)

2 0 z
0 −2 2 y− z
0 0 2 z− 2 y− 2 x


Si vemos U dentro de Z32, al ser (1, 1, 2) = (1,−1, 0) = (1, 1, 0), tenemos que las ecuaciones

paramétricas ahora son
x = λ
y = λ
z = 0

 .
Aśı la matriz ampliada de este sistema es 1 x

1 y
0 z

 ,
por lo que una de las ecuaciones, z = 0, ya la tenemos. Al ser la dimensión de U uno, necesitamos

una ecuación más, que viene de imponer que el determinante de

(
1 x
1 y

)
es cero (el rango de la

matriz ampliada es uno), obteniendo x− y = 0.
Podemos también utilizar operaciones elementales por filas para llegar a la mismas ecuaciones.

En este caso no vamos a utilizar triangularize, pues se ve claramente qué operación tenemos
que hacer.

(%i5) A:matrix([1,x],[1,y],[0,z]);
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(%o5)

1 x
1 y
0 z


(%i5) rowop(A,2,1,1);

(%o5)

1 x
0 y− x
0 z


Obtenemos también que las ecuaciones de U son

x+ y = 0
z = 0

}
.

maxima 79:
Sea U el subespacio de R4 generado por {(1, 1, 1, 1), (1, 2, 3, 1), (1, 0,−1, 1)}. Calculmemos sus

ecuaciones cartesianas respecto de la base B = {(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)}.

(%i1) modulus:false$

(%i2) A:matrix([1,1,1,1],[1,2,3,1],[1,0,-1,1])$

(%i3) triangularize(A);

(%o3)

1 0 −1 1
0 2 4 0
0 0 0 0


{(1,0,-1,1),(0,2,4,0)} es una base de U. Calculamos ahora las coodenadas de estos vectores respecto
de la base B.

(%i4) solve(x*[1,1,1,1]+y*[0,1,1,1]+z*[0,0,1,1]

+t*[0,0,0,1]-[1,0,-1,1], [x,y,z,t]);

(%o4) [[x = 1, y = −1, z = −1, t = 2]]

(%i5) solve(x*[1,1,1,1]+y*[0,1,1,1]+z*[0,0,1,1]

+t*[0,0,0,1]-[0,2,4,0], [x,y,z,t]);

(%o5) [[x = 0, y = 2, z = 2, t = −4]]

(%i6) J:matrix([1,-1,-1,2],[0,2,2,-4],[x,y,z,t]);

(%o6)

1 −1 −1 2
0 2 2 −4
x y z t


Al exigir que la matriz J tenga rango 2 obtenemos que los siguientes determinantes deben de valer
cero.

(%i7) determinant(matrix([1,-1,-1],[0,2,2],[x,y,z]));

(%o7) 2 z− 2 y

(%i8) determinant(matrix([1,-1,2],[0,2,-4],[x,y,t]));

(%o8) 4 y+ 2 t
Las ecuaciones cartesianas de U respecto de B son

z− y = 0
y+ t = 0

}
.

maxima 80:
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Sean U = {(x, y, z, t) ∈ Z45 | x+y+z+t = 0, x+2t = 0} y W = {(x, y, z, t) ∈ Z45 | 4y+4z+t =
0, x+ 4y = 0}. Calculemos una base de la intersección.

(%i1) modulus:5$

(%i2) M:matrix([1,1,1,1],[1,0,0,2],[0,4,4,1],[1,4,0,0])$

(%i3) nullspace(M);

(%o3) span



−2
−2
−2
1




Una base es de la intersección es {(3, 3, 3, 1)}.

maxima 81:
Sea f : Q4 → Q3, f(x, y, z, t) = (x+ y, z+ t, x+ y+ z+ t). Calculemos una base de N(f).

(%i1) modulus:false4

(%i2) N:matrix([1,1,0,0],[0,0,1,1],[1,1,1,1])$

(%i3) nullspace(N);

(%o3) span



−1
1
0
0

 ,

0
0
1
−1




Por tanto una base de N(f) es {(−1, 1, 0, 0), (0, 0, 1,−1)}.
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1. Matrices diagonalizables

Una matriz diagonal es una matriz cuadrada que tiene todas sus entradas nulas, salvo eventual-
mente las de la diagonal. Una matriz cuadrada A es diagonalizable si existen una matriz diagonal
D y una matriz regular P tales que A = PDP−1.

La diagonalización de matrices es útil para el cálculo de potencias grandes de una matriz, ya
que

Ar = (PDP−1)r = PDP−1PDP−1 r−1. . . PDP−1 = PDrP−1.

En adelante, A representará una matriz cuadrada de orden n× n sobre un cuerpo K.
Un elemento λ ∈ K es un valor propio de A si existe x ∈ Kn \ {(0, . . . , 0)} tal que Ax = λx. En

tal caso diremos que x es un vector propio asociado al valor propio λ.

Teorema de caracterización de los valores propios. Un elemento λ ∈ K es un valor
propio de A si y sólo si |A− λIn| = 0.

Aśı los valores propios de A son las ráıces del polinomio |A− λIn| ∈ K[λ], que se conoce como
polinomio caracteŕıstico de A, y lo denotaremos por pA(λ). Nótese que gr(pA(λ) = n.

Ejercicio 96: Calcula el polinomio caracteŕıstico y los valores propios de

(
1 2
2 1

)
∈M2×2(R).

Propiedades.

1) Si A es una matriz triangular, entonces sus valores propios son los valores de la diagonal.
2) Los valores propios de A y At coinciden.
3) |A| = 0 si y sólo si 0 es un valor propio de A.
4) Si A es regular y λ es un valor propio de A, entonces λ−1 lo es de A−1.

Si λ es un valor propio de A, entonces

V(λ) = {x ∈ Kn tales que (A− λIn)x = 0},

(en este caso 0 = (0, . . . , 0) ∈ Kn) es un subespacio vectorial de Kn. Dicho subespacio lo
llamamos subespacio vectorial propio asociado al valor propio λ.

Ejercicio 97: Encuentra los subespacios propios asociados a los valores propios de

(
1 2
2 1

)
∈

M2×2(R).
110
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Sean λ1, . . . , λk los valores propios de la matriz A. A la multiplicidad de la ráız λi de PA(λ) la
llamaremos multiplicidad algebraica de λi, mientras que la dimensión de V(λi) es la multiplicidad
geométrica de λi.

Ejercicio 98: Calcula las multiplicidades algebraicas y geométricas de los valores propios de(
1 2
2 1

)
∈M2×2(R).

La multiplicidad geométrica de un valor propio es menor o igual que su multiplicidad
algebraica.

Criterio de diagonalización. A es diagonalizable si, y sólo si, la suma de las multiplicidades
algebraicas de los valores propios de A es n y además para todo valor propio las multiplicidades
algebraica y geométrica coinciden.

Toda matriz cuadrada y simétrica con coeficientes en R es diagonalizable.

2. Método para diagonalizar una matriz

1) Calculamos pA(λ), sus ráıces λ1, . . . , λk y sus multiplicidades algebraicas, m1, . . . ,mk.
2) Si m1 + · · ·+mk 6= n, A no es diagonalizable.
3) En caso contrario, para cada λi, calculamos el subespacio propio V(λi) y su dimensión. Si dicha

dimensión no coincide con mi para algún i, entonces A no es diagonalizable.
4) Llegado este paso, la matriz A es diagonalizable y D es la matriz que tiene en la diagonal m1

entradas λ1, m2 entradas λ2, y aśı hasta mk entradas λk. La matriz de paso P se construye
colocando en las primeras m1 columnas una base de V(λ1), a continuación en las siguientes m2

columnas una base de V(λ2), y aśı hasta que colocamos en las últimas mk columnas una base
de V(λk).

Ejercicio 99: Diagonaliza la matriz

(
1 2
2 1

)
∈M2×2(R).

Ejercicio 100: Diagonaliza la matriz 2 0 0
−15 −4 3
−35 −14 9

 ∈M3×3(R).

Ejercicio 101: Demuestra que

(
1 1
0 1

)
con coeficientes reales no es diagonalizable.

maxima 82: Sea

(%i1) A:matrix([-1,3,3],[0,2,0],[3,-3,-1]);

(%o1)

−1 3 3
0 2 0
3 −3 −1


El comando eigenvectors nos proporciona toda la información para saber si es diagonalizable.

(%i2) eigenvectors(A);



3. FORMA NORMAL DE JORDAN 112

(%o2) [[[−4, 2], [1, 2]], [[[1, 0,−1]], [[1, 0, 1], [0, 1,−1]]]]

La salida nos dice que los valores propios son −4 y 2, con multiplicidades 1 y 2, respectivamente.
Además nos da bases para V(−4), {(1, 0,−1)} y V(2), {(1, 0, 1), (0, 1,−1)}. Como las multiplicidades
algebraicas y geométricas coinciden, y suman 3, A es diagonalizable.

La matriz de paso se calcula poniendo dichas bases una a continuación de la otra en columnas.

(%i3) P:matrix([1,1,0],[0,0,1],[-1,1,-1]);

(%o3)

 1 1 0
0 0 1
−1 1 −1


Comprobamos que efectivamente están bien hechos los cálculos:

(%i4) P^^(-1).A.P;

(%o4)

−4 0 0
0 2 0
0 0 2


Podŕıamos también haber hecho los cálculos paso a paso, calculando primero el polinomio

caracteŕıstico de A.

(%i5) charpoly(A,x);

(%o5) (−x− 1)2 (2− x) − 9 (2− x)

Para ver los valores propios, lo factorizamos.

(%i6) factor(%);

(%o6) −(x− 2)2 (x+ 4)

Y para calcular una base de por ejemplo V(2) utilizamos nullspace.

(%i7) nullspace(A-2*ident(3));

(%o7) span

−3
−3
0

 ,
 0
3
−3



3. Forma normal de Jordan

maxima 83: Vamos a estudiar si la siguiente matriz es o no diagonalizable.

(%i1) A:matrix([3,1,1],[-1,5,1],[0,0,4]);

( %o1)

 3 1 1
−1 5 1
0 0 4


Llamamos I a la identidad, que vamos a necesitar luego.

(%i2) I:ident(3);

( %o2)

1 0 0
0 1 0
0 0 1


El polinomio caracteŕıstico de A es



3. FORMA NORMAL DE JORDAN 113

(%i3) factor(charpoly(A,x));

( %o3) − (x− 4)3

Por lo que sólo hay un valor propio, con multiplicidad algebraica 3.

(%i4) eigenvectors(A);

( %o4) [[[4], [3]], [[[1, 0, 1], [0, 1,−1]]]]
Como vemos, sólo hay dos vectores en el subespacio propio V(4), el núcleo de A − 4I, por lo

que A no es diagonalizable. Sin embargo el núcleo de (A− 4I)2 śı que tiene dimensión tres.

(%i5) nullspace((A-4*I)^^2);

( %o5) span

00
1

 ,
01
0

 ,
10
0


Tomemos uno de ellos que no esté en V(4). Al multiplicarlo por (A−4I) nos saldrá un elemento

de V(4), que además es linealmente independiente con el elemento original.

(%i6) (A-4*I).[1,0,0];

( %o6)

−1
−1
0


(%i7) (A-4*I).%;

( %o7)

00
0


Tenemos aśı dos elementos linealmente independientes de Q3, uno de ellos en V(4). Como quiera

que V(4) tiene dimensión dos, podemos aún elegir otro elemento de V(4) que sea linealmente
independiente con éste. Ponemos estos tres vectores en una matriz (que será invertible al ser
linealmente independientes).

(%i8) P:transpose(matrix([1,0,1],[-1,-1,0],[1,0,0]))$

Y obtenemos que aunque A no sea diagonalizable, se acerca bastante a serlo.

(%i9) P^^(-1).A.P;

( %o9)

4 0 0
0 4 1
0 0 4


maxima 84: Consideremos ahora la matriz con coeficientes racionales

(%i1) A:matrix([4,2,0,0],[0,6,2,0],[1,-1,7,-1],[-1,1,-1,5]);

( %o1)


4 2 0 0
0 6 2 0
1 −1 7 −1
−1 1 −1 5


(%i2) I:ident(4)$

El polinomio caracteŕıstico de A factoriza como

(%i3) factor(charpoly(A,x));

( %o3) (x− 6)3 (x− 4)
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Por lo que tenemos dos valores propios: 4 y 6, de multiplicidades algebraicas 1 y 4, respectiva-
mente.

(%i4) eigenvectors(A);

( %o4) [[[6, 4], [3, 1]], [[[1, 1, 0, 0]], [[1, 0, 0, 1]]]]
Esto nos dice que el núcleo de A− 6I tiene dimensión 1 (y está generado por (1, 1, 0, 0)) por lo

que nos hacen falta dos vectores más para completar la multiplicidad algebraica. Para A − 4I, la
dimensión de su núcleo es 1, que coincide con la multiplicidad algebraica de 4. Por ello ya tenemos
un candidato para la matriz de paso, el (1, 0, 0, 1) (y otro será (1, 1, 0, 0) o un múltiplo suyo).

Veamos qué ocurre con los núcleos de las potencias de A− 6I.

(%i5) nullspace((A-6*I)^^2);

( %o5) span



0
8
8
0

 ,

8
0
−8
0




La dimensión de éste es dos, por lo que seguimos intentando con (A− 6I)3.

(%i6) nullspace((A-6*I)^^3);

( %o6) span



−4
−4
0
0

 ,

0
−4
−4
0

 ,

0
0
4
−4




Cuya dimensión llena completamente la multiplicidad algebraica de 6. Escogemos un vector
que esté en el núcleo de (A − 6I)3 pero que no esté en el núcleo de (A − 6I)2, y calculamos la
secuencia que resulta de ir multiplicando por A− 6I hasta que lleguemos a V(6).

(%i7) (A-6*I).[0,0,1,-1];

( %o7)


0
2
2
0


(%i8) (A-6*I).%;

( %o8)


4
4
0
0


(%i9) (A-6*I).%;

( %o9)


0
0
0
0


Como hemos conseguido tres nuevos vectores linealmente independientes, y teńıamos ya uno

de V(4), no tenemos que seguir buscando más. Aśı, escogiendo como matriz de paso:

(%i10) P:transpose(matrix([1,0,0,1],[4,4,0,0],[0,2,2,0],[0,0,1,-1]))$

Obtenemos que A se puede expresar en la base cuyos elementos son las columnas de P de la
siguiente forma.
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(%i11) P^^(-1).A.P;

( %o11)


4 0 0 0
0 6 1 0
0 0 6 1
0 0 0 6


Las matrices de los dos últimos ejemplos no eran diagonalizables, sin embargo hemos encontrado

bases respecto de las cuales tienen en la diagonal sus valores propios (repetidos tantas veces como
sus respectivas multiplicidades algebraicas), y eventualmente tienen algún 1 encima de alguna
posición en la diagonal. De hecho el número de unos viene a medir lo lejos que están de ser
diagonalizables. Los dos ejemplos se han desarrollando siguiendo las siguientes ideas.

Subespacios propios generalizados. Sea A una matriz cuadrada de orden n con coeficientes
en C (aśı nos aseguramos que el polinomio caracteŕıstico descompone totalmente como producto
de polinomios de grado uno, y la suma de las multiplicidades algebraicas es precisamente n). Sea
λ un valor propio de A. Consideremos los subespacios de Cn. Definimos

Vi(λ) = N((A− λId)i),

el i-ésimo subespacio propio generalizado asociado a λ.

Se tiene trivialmente que V(λ) = V1(λ) ⊆ V2(λ) ⊆ · · · . Como todos esos conjuntos son subespa-
cios de Cn, sabemos que esa cadena se volverá estacionaria, alcanzando el mayor subespacio posible,
en un número finito de pasos. Es fácil comprobar que si Vi(λ) = Vi+1(λ), entonces Vi(λ) = Vj(λ)
para todo entero j mayor o igual que i. Por tanto, nos aseguramos que el subespacio más grande
posible es Vn(λ). Se tiene además que para un i como el anterior, entonces dim(Vi(λ)) (y por tanto
dim(Vn(λ))) es precisamente la multiplicidad algebraica de λ, y el subspacio Vi(λ) es invariante
por A, a saber, para cualquier v ∈ Vi(λ), Av vuelve a estar en Vi(λ).

De esta forma, si λ1, . . . , λk son los distintos valores propios deA con multiplicidadesm1, . . . ,mk,
respectivamente (recordemos que m1+ · · ·+mk = n en nuestro caso), si elegimos Bi una base para
cada Vn(λi), entonces la matriz A respecto de esa base tiene el siguiente aspecto

A1
A2

. . .
Ak


donde cada matriz Ai es cuadrada de orden mi, y el resto de las entradas son todas 0. En el caso
en que A sea diagonalizable V(λi) = Vn(λi), y podemos conseguir que Ai sea una matriz diagonal
cuyos valores de la diagonal son todos λi.

Orden de un elemento de un subespacio propio generalizado. Decimos que un vector v
de Vn(λ), con λ un valor propio de A, es de orden v si v ∈ Vk(λ)\Vk−1(λ) (a saber, (A−λId)kv = 0
y (A− λId)k−1v 6= 0).

Bloque de Jordan. Sea v ∈ Vk(λ) \ Vk−1(λ). Entonces los vectores

(1) vk = v, vk−1 = (A− λId)v, . . . , v1 = (A− λ)k−1v

son linealmente independientes. Es más, como

Avk = vk−1 + λvk, . . . , Avi = vi−1 + λvi, . . . , Av2 = v1 + λv2, Av1 = λv1,
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se tiene que el subespacio U generado por {v1, . . . , vk} es invariante por A, y la expresión de la
aplicación lineal asociada a A restringida a U respecto de la base {v1, . . . , vk} es de la forma

Jk(λ) =


λ 1 0 · · · 0

0 λ 1
. . .

...
...

. . . . . . . . . 0
0 0 λ 1
0 0 · · · 0 λ

 ,
al que llamaremos bloque de Jordan de tamaño k asociado a λ.

Si para cada Vn(λi) buscamos un elemento de orden máximo y calculamos la secuencia asociada
a éste como en (1), obtendremos parte de una base de Vn(λ). Si el número de elementos de la
secuencia no es igual a mi, entonces buscamos de nuevo otro elemento de orden máximo que
no esté en el espacio generado por los que ya hemos calculado anteriormente y le calculamos su
secuencia asociada (1). Siguiendo este proceso acabaremos por llenar mi elementos en la base, y
tendremos aśı que Ai respecto de esa base está formada por una matriz diagonal en bloques, y en
la diagonal aparecerán bloques de Jordan de tamaño las longitudes de las secuencias que hemos ido
considerando. Cuando juntemos todas las bases que hemos obtenido para cada Vn(λi) llegaremos
a que la matriz A se puede expresar en esa base como una matriz en diagonal por bloques, y
esos bloques son bloques de Jordan asociados a los valores propios de A, y que tienen tamaño
las longitudes de las secuencias (1) utilizadas para construir las distintas bases de los subespacios
propios generalizados. La matriz resultante se conoce como forma de Jordan asociada a A y es
única salvo reordenamiendo de los bloques.
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