Desarrollo en WebGL

Eduardo Antufia Diez!, Aitor Diaz Solaresz, Daniel Gonzalez Losada3.

E.P.I. Gijén, Universidad de Oviedo

1 U0160788 @uniovi.es
200165918 @uniovi.es
3 U0165455@uniovi.es

Resumen. En el siguiente documento se buscard realizar un mini tutorial tra-
tando de iniciar y familiarizar a los lectores sobre la programacién en WebGL,
partiendo desde la configuracién de los navegadores para poder emplear esta
tecnologia, mostrando las nociones bdsicas para poder programar ejemplos
simples, asi como visualizar ejemplos mds complejos en donde mostrar todo el
pontencial.

1 Introduccion

WebGL es una especificacion estdndar que estd siendo desarrollada actualmente para
desplegar graficos en 3D en navegadores web. El1 WebGL permite activar graficos en
3D acelerados por hardware en paginas web, sin la necesidad de plug-ins en cualquier
plataforma que soporte OpenGL 2.0 u OpenGL ES 2.0. Técnicamente es un enlace
(binding) para javascript para usar la implementacién nativa de OpenGL ES 2.0, que
serd incorporada en los navegadores. WebGL es manejado por el consorcio de tecno-
logia Khronos Group sin fines de lucro.

WebGL crecié desde los experimentos del canvas 3D comenzados por Mozilla.
Mozilla primero demostré un prototipo de Canvas 3D en 2006. A finales de 2007,
tanto Mozilla como Opera habian hecho sus propias implementaciones separadas. A
principio de 2009 Mozilla y Khronos comenzaron el WebGL Working Group (Grupo
de Trabajo del WebGL).

El Grupo de Trabajo del WebGL incluye Apple, Google, Mozilla, y Opera, y
WebGL ya estd presente en los builds nocturnos de Mozilla Firefox 3.7, Mozilla Fen-
nec 1.0, WebKit, y Google Chrome 4 developer previews.

Algunas bibliotecas en desarrollo que se estan incorporando WebGL incluyen el
C3DL y el WebGLU.

Utiliza el elemento canvas del HTML 5.



2 Configurar navegadores

Como punto de partida trataremos de conseguir un navegador que soporte WebGL. La
mayoria de las versiones de desarrollo de los principales navegadores lo hace, s6lo
tendremos que conseguir la versién adecuada y realizar unas pequefias configuracio-
nes. Veremos las soluciones a adoptar en los principales sistemas operativos.

2.1 Windows

Si tenemos una tarjeta grafica con GPU ATI o Nvidia, no deberia haber problema.
Podremos emplear Firefox o Chrome. En caso de tener problemas, tendremos que usar
Firefox con software de renderizacidn, es decir, los graficos 3D serdn ejecutados en el
procesador normal, no en la tarjeta grafica.

Para el caso de chipset grafico Intel, presente en muchos ordenadores portitiles,
sus controladores no suelen ser compatibles con OpenGL, por tanto tampoco lo serdn
con WebGL ya que funciona a través de WebGL (en el futuro esto serd distinto).
Podriamos probar las instrucciones para Firefox o Chrome, pero no es probable que
funcione; usaremos Firefox con software de renderizacion.

Firefox
La version de desarrollo se denomina Minifield. Para conseguirla y poder emplear
WebGL seguiremos los siguientes pasos:
Descargaremos la version adecuada a nuestra maquina.
Cerramos Firefox previamente, y una vez instalado Minifield, iremos a la pagina:
about:config
Nos ayudamos del filtro de bisqueda, en donde introducimos "WebGL"
Localizamos webgl.enabled_for_all_sites y 1o ponemos a true

Firefox con software de renderizacién
Si nuestro hardware no es compatible con OpenGL 2.0, la tinica manera de hacer
funcionar WebGL serd la utilizacion de la biblioteca Mesa. Lo que hace principalmen-
te es emular una tarjeta grafica, por lo que serd un poco lento, pero al menos podre-
mos usar WebGL. Se integra con Minifield. Los pasos a seguir son los siguientes:
Descargaremos la version adecuada de Minifield para nuestra maquina.
Lo instalaremos, cerrando previamente Firefox.
Descargaremos la biblioteca Mesa. Lo descomprimimos y habrd un archivo Ila-
mado OSMESA32.DLL que guardaremos en algin lugar de nuestra maquina.
Iniciamos Minifield y vamos a la pagina: about:config, nos ayudamos del filtro de
busqueda e introducimos "WebGL"
Localizamos webgl.enabled_for_all_sites y 1o ponemos a true
Localizamos webgl.osmesalib e introducimos la ruta donde se encuentra
OSMESA32.DLL, por ejemplo le daremos el valor: C:\Mesa\osmesa32.d1l
Localizamos webgl.software_rendering y lo ponemos a true.



Chrome
La version de desarrollo se denomina Chromium. Para conseguirla y poder emplear
WebGL seguiremos los siguientes pasos:
Descargaremos de la pagina de integracién continua chrome-win32.zip
Descomprimimos, no es necesaria su instalacién, simplemente ejecutamos el ar-
chivo chrome.exe.

2.2 Macintosh

Si trabajamos con Snow Leopard (OS X 10.6) no deberfamos tener problemas.
Usaremos una versién de desarrollo alternativa de Safari. Si por contra la versién que
manejamos es OS X 10.5, no podremos emplear dicha versién de desarrollo, debere-
mos usar Firefox o Chrome (las cuales a su vez también podrfamos usar con OS X
10.6).

Safari
Recordar que WebGL sélo es compatible con Safari en la versiéon de Snow Leo-
pard OS X 10.6. Para poner en marcha WebGL en esta versién empleando Safari,
realizaremos los siguientes pasos:
Asegurarse que al menos tenemos la version 4 de Safari
Descargar la versién de desarrollo del enlace
Abriremos un terminal donde ejecutamos: defaults write com.apple.Safari Web-
KitWebGLEnabled -bool YES
Ejecutamos la aplicacion de desarrollo recién instalada

Firefox
Se realiza del mismo modo que en Windows, con la salvedad que debemos descar-
gar la versidn oportuna para este sistema operativo.

Chrome
Vuelve a ser similar a Windows, el proceso a seguir es:
Descargaremos de la pagina de integracién continua chrome-mac.zip
Descomprimimos. Abrimos una terminal, e iremos a la ruta donde lo hemos des-
comprimido
Nos aseguramos de no tener abierto el Chrome
Ejecutaremos el siguiente comando una vez estemos en esa ruta:
/Chromium.app/Contents/MacOS/Chromium

2.3 Linux

Si tenemos una tarjeta grafica con GPU ATI o Nvidia, no deberfa haber problema.
Podremos emplear Firefox o Chrome. En caso de tener problemas, tendremos que usar
Firefox con software de renderizacién, es decir, los graficos 3D serdn ejecutados en el
procesador normal, no en la tarjeta grafica.



Para el caso de chipset grafico Intel, presente en muchos ordenadores portétiles,
sus controladores no suelen ser compatibles con OpenGL, por tanto tampoco lo serdn
con WebGL ya que funciona a través de WebGL (en el futuro esto serd distinto).
Podriamos probar las instrucciones para Firefox o Chrome, pero no es probable que
funcione; usaremos Firefox con software de renderizacion.

Firefox
Se realiza como en Windows, tener en cuenta que hay que bajar la versién oportuna
para el sistema operativo.

Firefox con software de renderizacion

Los pasos a seguir son los siguientes:

Descargaremos la version adecuada de Minifield para nuestra mdquina en el si-
guiente enlace.

Lo instalaremos, cerrando previamente Firefox.

Emplearemos el gestor de paquetes para obtener Mesa, asegurdndonos de que ha
sido instalado y estd actualizado a la dltima version.

Iniciamos Minifield y vamos a la pagina: about:config, nos ayudamos del filtro de
biisqueda e introducimos "WebGL"

Localizamos webgl.enabled_for_all_sites y 1o ponemos a true

Localizamos webgl.software_rendering y lo ponemos a true

Localizamos webgl.osmesalib e introducimos la ubicacién de la biblioteca com-
partida OSMesa, que suele ser algo como: /usr/lib/libOSMesa.so

Chrome
Para conseguirla y poder emplear WebGL seguiremos los siguientes pasos:
Descargaremos de la pagina de integracidn continua chrome-linux.zip para la ver-
sién 32 bits o 64 bits, segin cual emplemos.
Descomprimimos. Abrimos una ventana del terminal y vamos al directorio donde
se ha descomprimido.
Nos aseguramos de no tener abierto el Chrome.
Ejecutaremos el siguiente comando una vez estemos en esa ruta: ./chromium

3. Primer Programa

En primer lugar vamos a ver como incrustar nuestro cédigo de webGL en cualquier
pagina html.

Para incrustar el cédigo html debemos:

Definir en la etiqueta <body> la funcién encargada gestionar el interface grafico.

Definir un canvas, asignarle una etiqueta(para luego referenciarlo) y su tamafio.

Cargar los scripts externos que vayamos a necesitar (en este caso los propios de la
API webGL y otro necesario para trabajar con matrices).

Una vez definidos estos aspectos ya podemos comenzar a programar nuestro propio
script en webGL.



Al iniciar nuestra pagina debemos sefialar que funcién hemos de cargar a la vez que
el cédigo, para nuestro caso serd webGLStart().

En dicha funcién vemos como en primer lugar se ha de inicializar el canvas, lla-
mando a la funcién initGL() donde, entre otras cosas, se comprueba que el navegador
soporta webGL;

A continuacidn se inicializan los Shaders, asi como los buffers. Nos vamos a cen-
trar un poco en esta dltima funcidn, puesto que es donde se definen los objetos que
posteriormente se van a mostrar.

Ahora veremos los pasos a seguir para definir los buffers que permiten dibujar un
objeto en la escena:

Crear un buffer para el objeto

Asignar el buffer actual con el que acabamos de crear

Definir los vértices del objeto

Cargar los datos en el buffer

Definir como se han introducido los datos en el buffer

Podemos modificar los vértices para obtener la figura que queramos, siempre y
cuando tengamos cuidado de especificar correctamente como le estamos pasando esos
vértices.

Para nuestro ejemplo vamos a definir un trapecio y un tridngulo, pero podemos
cambiar los vértices para obtener otros objetos si lo deseamos.

Una vez inicializados los bufferes tenemos que pasar a inicializar la escena con las
funciones que podemos encontrar en webGLStart, para finalmente hacer una llamada
a setInterval, donde se especifica que se ha de redibujar la escena cada 15 ms y cual es
la funcién que contiene la escena, drawScene.

En esta udltima funcién en primer lugar debemos definir una vista y limpiarla, (cada
vez que dibujamos en la pantalla hemos de asegurarnos que esta limpia).

A continuacién definimos una perspectiva, esto es importante puesto que al definir-
la conseguimos que segtin la posicion del objetos en el espacio estos se verdn de dis-
tintos tamafios, si no hiciésemos esto independientemente de la coordenada z que
pongamos el objeto se veria igual. Ademds de definir un ratio (ancho entre alto) espe-
cificamos los puntos en los cuales los objetos son visibles.

Una vez definida la perspectiva hemos de crear una matriz identidad, lo cual hace-
mos con loadlIdentity(). Esto es una caracteristica mas propia de OpenGL, todos los
movimientos en el espacio, tanto desplazamientos como rotaciones, se pueden repre-
sentar a través de una matriz de 4x4.

No nos vamos a parar a explicar como funciona OpenGL, simplemente mencionar
que mediante operaciones sobre la matriz identidad podemos obtener todo tipo de
desplazamientos y rotaciones, y en base a este principio opera OpenGL para
la representacién de objetos en el espacio. Como webGL no implementa las funciones
necesarias para llevar esto a cabo hemos de crearlas nosotros, por eso necesitamos
utilizar un script para trabajar con matrices, y ademds podemos ver como hay varias
funciones que se encargan de "traducir" nuestros movimientos a valores en la matriz
identidad.

Basdndonos en esto podemos realizar movimientos en nuestra escena mediante
mvTranslate, donde se llevaran a cabo las operaciones necesarias para dar a webGL
una matriz que pueda entender y asi poder realizar el movimiento deseado.



Para poder dibujar objetos en la escena hemos de seguir los siguientes pasos:

Ponernos en el punto del espacio en el que queramos dibujar

Asociarnos al buffer del objeto que deseamos dibujar

Definir que vamos a especificar con ese buffer

Mandar dibujar el array que contiene al objeto

Una vez visto estos pasos ya tenemos los conocimientos bdsicos para dibujar una
escena, en posteriores lecciones veremos como ir afiadiendo funcionalidades a nuestra

€scena.

4. Color

|_| H
Buffers
J

Uniform variables

Attributes

Varyini variables

Primitive assembly/
rasterization

Modified varying variables

Per-fragment stuff

Frame buffer

Antes de comenzar a analizar los cambios necesarios para
afiadir color a las figuras representadas en la leccién anterior
necesitamos tener un minimo conocimiento de cémo WebGL
es capaz de representar imdgenes 3D a partir de los datos que
obtiene del cddigo HTML del navegador, para ello vamos a
ayudarnos del diagrama de la parte inferior. El diagrama busca
darnos una idea de cémo los datos de las funciones JavaScript
se convierten en pixeles mostrados en el canvas de WebGL.

El proceso seguido es el siguiente: cada vez que llamamos a
funciones del tipo drawArrays, WebGL procesa los datos que
le pasamos como atributos a esa funcién, ademds de las varia-
bles uniformes que son utilizadas por las matrices model-view
y de perspectiva con las que trabaja OpenGL, y todo ello se
pasa a través del vertex shader. Esta accidn se realiza para cada
vértice con sus atributos correspondientes en ese instante.

El vertex shader trabaja con estos datos para disefiar el estado
de la escena, y almacena los resultados en unas variables espe-
ciales denominadas varying variables. El vertex shader puede
generar distinto niimero de varying variables, pero una en es-
pecial es obligatoria, gl_Position, la cual contiene las coorde-
nadas de los vértices una vez que el shader las ha procesado.
Una vez generadas estas varying variables, WebGL trabaja con
ellas para convertirlas en una imagen 2D y después llama al
fragment shader para cada pixel de la imagen. Debemos notar
que no todos los pixeles tienen un vértice asociado, pero
WebGL realiza un proceso de interpolacién lineal entre pixeles

que permite delimitar correctamente las formas que se quieren representar. El propdsi-
to del fragmnet shader no es otro que retornar el color para cada uno de los puntos
resultantes de este proceso de interpolacion, y lo almacena en una varying variable
denominada gl _FragColor.

Una vez realizado el fragment shader WebGL pasa los resultados al Frame buffer el
cual los hace llegar a la tarjeta grafica del equipo y son representados en la pantalla.



Esta pequefia explicacién sobre el flujo de los datos desde la funcién JavaScript hasta
que los resultados son mostrados en la pantalla nos sirve para hacernos una idea de
cémo WebGL accede al color de los vértices, el cual estéd en la funcién JavaScript. La
idea que debemos sacar de todo esto es que no se tiene un acceso directo desde JavaS-
cript hasta el fragment shader, pero si que podemos pasarle un nimero de variables
con la informacién de los vértices, no s6lo su posicion, sino también su color. Una vez
que tenemos una ligera idea de como WebGL trabaja con el color vamos a echar un
vistazo al cédigo de esta leccién, comenzamos por los cambios en el vertex shader.
Vemos como ademds del atributo que hace referencia a la posicion, aparece uno nue-
vo para trabajar con el color aVertexColor.

varying vec4 vColor;

void main(void) {
gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
vColor = aVertexColor;

/

A parte del cdlculo de la posicion de la misma manera que se explicé en la leccién
anterior, el main del vertex shader no hace mds que pasar el atributo de color a una
varying variable de salida.

gl_FragColor = vColor;

Una vez realizado este proceso para cada vértice, WebGL hace la interpolacién pa-
ra generar los fragmentos los cuales son pasados al fragment shader.

Vemos como se toma el valor de la variable vColor que contiene el color generado
en el proceso de interpolacidn, y lo retorna como el color de cada fragmento, es decir,
el color de cada pixel.

Vamos a fijarnos ahora en una pequefia variacién introducida en la funcién initS-
haders, en las lineas siguientes se puede ver que aparece un nuevo atributo que hace
referencia al color.

shaderProgram.vertexColorAttribute=
gl.getAttribLocation(shaderProgram, "aVertexColor");
gl.enableVertexAttribArray(shaderProgram.vertexColorAttribute);

En la primera leccién se explicé cdmo esta funcién inicializaba los shaders con la
informacion indicada por el vertex shader para cada vértice, en esta nueva leccion
necesitamos inicializar otro nuevo pardmetro obviamente, el color.

Por tltimo vamos a ver el principal cambio que debemos introducir para trabajar
con color en la funcién initBuffers, la cual recordamos que era la encargada de cargar
la informacién de las figuras que queremos dibujar en la escena. Aparecerdn ahora dos
nuevos buffers encargados cada uno de ellos de almacenar el color de las dos figuras a
representar.

var triangleVertexColorBuffer,
var squareVertexColorBuffer;



Tras crear los buffers de color e instar al correspondiente bind al igual que habia-
mos hecho con los buffers de posicion, debemos cargar los datos en ellos.

triangleVertexColorBuffer = gl.createBuffer();
gl.bindBuffer(gl.,ARRAY BUFFER, triangleVertexColorBuffer);
var colors = [

0.0, 0.0, 1.0, 1.0,

0.0, 1.0, 0.0, 1.0,

1.0, 0.0, 0.0, 1.0,
]’.
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colors),

gl.STATIC_DRAW);

triangleVertexColorBuffer.itemSize = 4;
triangleVertexColorBuffer.numltems = 3;

Para esto utilizamos una nueva matriz de colores, la cual almacenara en cada 'fila'
la informacion del color de un vértice. Esta informacién consta de 4 datos:
Primera columna - Cantidad de color rojo.
Segunda columna = Cantidad de color verde.
Tercera columna - Cantidad de color azul.
Cuarta columna = Pardmetro Alpha, que indica la opacidad.

Notar que esta matriz ha de definirse, al igual que se hacia con las de posicién, con
la ayuda de las variables itemSize y numlItems del buffer.

Como hemos explicado en la introduccién de esta leccién, WebGL realiza una in-
terpolacion lineal entre vértices para poder dibujar la figura, esta interpolacién tam-
bién afecta al color. Asi podemos verlo en el resultado de nuestra leccidn, a la figura
triangular se le definen colores diferentes para cada vértice, de ahi que el color vaya
cambiando progresivamente de uno a otro. En cambio el cuadriltero tiene sus vértices
del mismo color, por lo que la figura entera presenta ese color.

colors =[]
Sfor (vari=0; i < 4; i++) {
colors = colors.concat([0.0, 1.0, 0.5, 1.0]);}

Una vez tenemos los cuatro buffers cargados con la informacién de nuestras dos fi-
guras, vemos como la funcién drawScene toma esta informacidn para representar la
escena.

gl.bindBuffer(gl.,ARRAY BUFFER, triangleVertexColorBuffer);
gl.vertexAttribPointer(shaderProgram.vertexColorAttribute,
triangleVertexColorBuffer.itemSize, gl. FLOAT, false, 0, 0);
gl.bindBuffer(gl.,ARRAY_BUFFER, squareVertexColorBuffer);
gl.vertexAttribPointer(shaderProgram.vertexColorAttribute,
squareVertexColorBuffer.itemSize, gl. FLOAT, false, 0, 0);



Con estos pequenos cambios introducidos en el cédigo ya podemos trabajar con el
color de nuestras figuras como nos plazca. Para modificar el color simplemente debe-
mos cargar los valores adecuados en el buffer de color para cada vértice como hemos
explicado.

5. Primeros movimientos

La forma de animar una escena 3D en WebGL consiste en ir dibujando repetidamente
un dibujo distinto cada vez. No consiste en decir estamos en el punto X, lleva la ima-
gen al punto Y, hay que hacer toda la animacién intermedia.

Hasta ahora empledbamos la funcién drawScene para dibujar todo, del modo:

setInterval(drawScene, 15);

Lo que necesitamos hacer es cambiar el cddigo para que cada vez que llamemos a
dicha funcién cada 15 mseg de una sensacién de movimiento a nuestras figuras. Por
tanto la mayor parte de los cambios con respecto a la leccion anterior, se encontrardn
en la funcién drawScene.

Justo antes de la declaracién de la funcién definiremos dos variables globales:

var rTri = 0;
var rSquare = 0;

Que usaremos para seguir la rotacién de las figuras, comienzan en cero grados y
luego irdn aumentando a medida que se hagan girar. Mds adelante veremos una forma
mds elegante de de estructurar estas variables globales.

El siguiente cambio en drawScene se hace en el punto donde dibujamos las figuras,
tendremos que afiadir estas lineas en el sitio oportuno:

mvPushMatrix();
mvRotate(rTri,[0,1,0]);
mvPopMatrix();

mvRotate(rTri, [0, 1, 0]). Esta funcién se codifica en JavaScript. Parte del
estado actual de la figura almacenado en la matriz model-view e indica que ro-
tarfamos rTri grados sobre la vertical ([0,1,0]).

Como no siempre querremos movernos a partir del estado inicial, podriamos que-
rer partir de un estado anterior almacenado, usaremos las funciones mvPushMatrix() y
mvPopMatrix().

mvPushMatrix() pone la matriz de estado actual en una pila.
mvPopMatrix() se deshace de la matriz actual, toma uno de la parte superior de
la pila, y lo restaura.

Tener los dibujos anidados almacenados en una pila significa que podremos recu-
perarlos en cualquier momento. De este modo, al acabar de rotar el tridngulo podre-
mos restablecer la matriz model-view. De igual forma, podremos hacer girar el cua-
drado sobre su eje horizontal:

mvPushMatrix();
mvRotate(rSquare, [1,0,0]);



mvPopMatrix();
Estos son los cambios que realizaremos dentro de la funcién drawScene.
Pero obviamente para animar la escena debemos cambiar los valores rTri y rSquare
a lo largo el tiempo, de esta forma cada vez que se dibuja la escena es ligeramente
diferente. Esto lo realizamos llamando a la funcién animate de forma regular:

var lastTime=0;
function animate()
{
var timeNow=new Date() getTime();
if (lastTime !=0){
var elapsed = timeNow - lastTime;
rtri += (360*elapsed)/1000.0;
rSquare += (75*elapsed)/1000.0;
/
lastTime = timeNow;
/

Esto es la forma mds adecuada de animar, en concreto el tridngulo gira a 360° por
minuto y el cuadrado a 75° por minuto. Haciéndolo asi todos ven el mismo tipo de
movimiento independientemente de la potencia de la mdquina con que se trabaje. La
animacién serd mds continua cuanta mayor potencia desarrolle.

El siguiente cambio consiste en llamar a animate y drawScene de forma regular.
Sustituimos la llamada que hacfamos a drawScene por una nueva funcién llamada tick
que llamaré a ambas cada 15 milisegundos:

Sfunction tick(){
drawScene();
animate();
/
Tras ello en la funcidn webGLStart(), cambiamos setInterval(drawScene, 15); por:
setInterval(tick, 15);

Estos son los cambios afiadidos para lograr la animacién. Veremos ahora el c6digo
de apoyo que hemos tenido que afadir, definimos una pila para almacenar las matri-
ces, asi como las operaciones Push y Pop de forma adecuada:

var mvMatrixStack = [];

function mvPushMatrix (m) { ... }

function mvPopMatrix (m) { ... }

Creamos también la funcion mvRotate:

function mvRotate (ang, v){
var arad = ang*Math.PI / 180.0;
var m = Matrix.Rotation (arad, $V([ v[0], v[1], v[2] ])).ensure4x4(),
multMatrix (m);

/

Es bastante simple, el trabajo de crear una matriz para representar la rotacién corre
a cargo de la libreria Sylvester.



6. Figuras 3D

Para el dibujo de una escena en 3D en primer lugar vamos a cambiar el nombre de
los objetos de la escena, con el fin de no confundirlos con los anteriores en 2D. Para
nuestro ejemplo vamos a dibujar una pirdmide y un cubo, por lo que ahora llamaremos
a las variables:

rPyramid += (360 * elapsed) / 1000.0;
rCube += (75 * elapsed) / 1000.0;

A continuacién tenemos que modificar las variables definidas antes de drawScene,
y posteriormente dentro de esta funcién, donde se realizan los movimientos.

var rPyramid = 0;
var rCube = 0;

mvRotate(rPyramid, [0, 1, 0]);
mvRotate(rCube [1, 1, 0]);

Luego hemos de cambiar las variables referentes a los buffers para hacerlas coinci-
dir con la nomenclatura seguida.

gl.bindBuffer(gl. ARRAY_BUFFER, pyramidVertexPositionBuffer);
gl.vertexAttribPointer(shaderProgram.vertexPositionAttribute,
pyramidVertexPositionBuffer.itemSize, gl. FLOAT, false, 0, 0);
gl.bindBuffer(gl.ARRAY_BUFFER, pyramidVertexColorBuffer);
gl.vertexAttribPointer(shaderProgram.vertexColorAttribute,
pyramidVertexColorBuffer.itemSize, gl. FLOAT, false, 0, 0);
setMatrixUniforms();
gl.drawArrays(gl. TRIANGLES, 0, pyramidVertexPositionBuffer.numltems);
gl.bindBuffer(gl.ARRAY_BUFFER, cubeVertexPositionBuffer);
gl.vertexAttribPointer(shaderProgram.vertexPositionAttribute,
cubeVertexPositionBuffer.itemSize, gl. FLOAT, false, 0, 0);
gl.bindBuffer(gl.ARRAY_BUFFER, cubeVertexColorBuffer);
gl.vertexAttribPointer(shaderProgram.vertexColorAttribute,
cubeVertexColorBuffer.itemSize, gl. FLOAT, false, 0, 0);

Por otro lado, el mayor cambio que debemos hacer es la adicciéon de nuevos vérti-
ces para conseguir las figuras deseadas. Antes de ponerse a definir los vértices del
cubo, vamos a evaluar como podemos definirlo.

1. En primer lugar podriamos definir el cubo, como una tira de tridngulos (carac-
teristica de OpenGL). Esto parece relativamente sencillo, siempre y cuando tinicamen-
te queramos un color para todo el cubo. Partimos de los vértices anteriores, y con dos
puntos mds tendremos otra cara, y asi sucesivamente hasta tener por completo el cubo.
Este es un método bastante efectivo y cémodo, pero como habiamos mencionado
presenta la problematica de ser unicamente valido cuando el cubo solo tiene un color.



2. El segundo método mads 16gico seria el de dibujar 6 caras independientes, de tal
forma que cada una tenga un color, y evidentemente juntas formen un cuadrado. Este,
a priori, es un buen método, pero realmente presenta un problema, tenemos que hacer
muchas llamadas para dibujar los objetos. Para nuestros ejemplos, como son sencillos
no seria un problema muy serio, pero si que nos podemos encontrar con dificultades
en codigos mds complejos, por lo que veremos a continuacién la forma 6ptima de
realizar dibujos en 3 dimensiones.

3. La opcidn final pasa por dibujar un cubo mediante 6 cuadrados, y cada uno de
estos cuadrados estar compuesto por dos tridngulos. Esto en principio puede parecer
mds complejo que el caso anterior, pero como vamos a comprobar si definimos bien
los vértices esto se puede hacer de una forma mas sencilla, porque podemos compartir
vértices entre tridngulos, mandarlos en un bloque, y asi que se podrd dibujar de una
pasada. Es parecido a definir tiras de tridngulos, pero en este caso aunque compartan
vértices, estos son independientes, por lo que se podran definir colores distintos para
cada cara.

Como hemos visto, en esta tltima opcidn en la practica tendremos 4 vértices en el
buffer, pero con ellos podemos especificar 6, para definir dos tridngulos independien-
tes, esto lo conseguimos compartiendo vértices en la definicién de los tridngulos. Serd
algo como, "con los vértices 1,2 y 3 dibdjame un tridngulo, y luego con los vértices
1,2 y 4 dibdjame otro". Para conseguir esto haremos una llamada a element array
buffer y una nueva llamada a drawelements. Asi que haremos un bind al buffer de
elementos, para a continuacién dibujar dichos elementos.

gl.bindBuffer(gl. ELEMENT _ARRAY_BUFFER,cubeVertexIndexBuffer);
setMatrixUniforms();

gl.drawElements(gl. TRIANGLES, cubeVertexIndexBuffer.numltems,
gl.UNSIGNED_SHORT, 0);

Las nuevos buffers seran las siguientes: (hemos de crear uno para los indices de los
vértices del cubo):

var pyramidVertexPositionBuffer;
var pyramidVertexColorBuffer;
var cubeVertexPositionBuffer;
var cubeVertexColorBuffer;

var cubeVertexIndexBuffer;

A continuacion pasamos a definir los valores de los vertices de la piramide para
cada cara, teniendo en cuenta que hemos de cambiar el valor de numlItems:

pyramidVertexPositionBuffer = gl.createBuffer();

gl.bindBuffer(gl. ARRAY_BUFFER, pyramidVertexPositionBuffer);
var vertices = [

// Front face



0.0, 1.0, 0.0,

-1.0,-1.0, 1.0,

1.0, -1.0, 1.0,
// Right face

0.0, 1.0, 0.0,

1.0, -1.0, 1.0,

1.0, -1.0, -1.0,
// Back face

0.0, 1.0, 0.0,

1.0, -1.0, -1.0,

-1.0, -1.0, -1.0,
// Left face

0.0, 1.0, 0.0,

-1.0, -1.0, -1.0,

-1.0,-1.0, 1.0 |;

gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices),
gl.STATIC_DRAW); pyramidVertexPositionBuffer.itemSize = 3;
pyramidVertexPositionBuffer.numltems = 12;

De igual forma creamos el buffer con los vértices para el color:

pyramidVertexColorBuffer = gl.createBuffer();
gl.bindBuffer(gl. ARRAY BUFFER, pyramidVertexColorBuffer);
var colors = [
// Front face
1.0, 0.0, 0.0,
1.0,0.0, 1.0,
0.0, 1.0, 0.0,
0.0, 1.0, 1.0,
// Right face
1.0, 0.0, 0.0, 1.0,
0.0, 0.0, 1.0, 1.0,
0.0, 1.0, 0.0, 1.0,
// Back face
1.0, 0.0, 0.0, 1.0,
0.0, 1.0, 0.0, 1.0,
0.0, 0.0, 1.0, 1.0,
// Left face
1.0, 0.0, 0.0, 1.0,
0.0, 0.0, 1.0, 1.0,
0.0, 1.0, 0.0, 1.0 ];

gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colors),
gl.STATIC_DRAW); pyramidVertexColorBuffer.itemSize = 4;



pyramidVertexColorBuffer.numltems = 12;
Una vez terminado de definir la pirdmide pasamos a trabajar con el cubo:

cubeVertexPositionBuffer = gl.createBuffer();
gl.bindBuffer(gl. ARRAY_BUFFER, cubeVertexPositionBuffer);

vertices = [

// Front face

-1.0, -1.0, 1.0, 1.0,
-1.0, 1.0, 1.0, 1.0,
1.0, -1.0, 1.0, 1.0,
// Back face

-1.0, -1.0, -1.0,
-1.0, 1.0, -1.0,
1.0, 1.0, -1.0,

1.0, -1.0, -1.0,

// Top face

-1.0, 1.0, -1.0,
-1.0, 1.0, 1.0,
1.0, 1.0, 1.0,

1.0, 1.0, -1.0,

// Bottom face
-1.0, -1.0, -1.0,
1.0, -1.0, -1.0,
1.0, -1.0, 1.0,
-1.0, -1.0, 1.0,

// Right face

1.0, -1.0, -1.0,
1.0, 1.0, -1.0,

1.0, 1.0, 1.0,

1.0, -1.0, 1.0,

// Left face

-1.0, -1.0, -1.0,
-1.0, -1.0, 1.0,
-1.0, 1.0, 1.0,
-1.0, 1.0, -1.0, ];

gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices),
gl.STATIC_DRAW); cubeVertexPositionBuffer.itemSize = 3;

cubeVertexPositionBuffer.numltems = 24;
La definicién del buffer de color es algo mas complicada porque usamos un bucle

para crear la lista de vértices para el color, por lo que hemos de especificar cada color
cuatro veces para cada vértice.



cubeVertexColorBuffer = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER,
cubeVertexColorBuffer);

var colors = [

[1.0, 0.0, 0.0, 1.0], // Front face

[1.0, 1.0, 0.0, 1.0], // Back face

[0.0, 1.0, 0.0, 1.0], // Top face

[1.0, 0.5, 0.5, 1.0], // Bottom face

[1.0, 0.0, 1.0, 1.0], // Right face

[0.0, 0.0, 1.0, 1.0], // Left face ];

var unpackedColors = []
for (var i in colors) {
var color = colors[i];
for (var j=0; j < 4; j++) {
unpackedColors = unpackedColors.concat(color); } }

gl.bufferData(gl. ARRAY _BUFFER, new Float32Array(unpackedColors),
gl.STATIC_DRAW); cubeVertexColorBuffer.itemSize = 4;

cubeVertexColorBuffer.numltems = 24;
Por ultimo definimos el array de elementos que anteriormente mencionamos.

cubeVertexIndexBuffer = gl.createBuffer();
gl.bindBuffer(gl. ELEMENT_ARRAY_BUFFER, cubeVertexIndexBuffer);

var cubeVertexIndices = [

012023, // Front face
4,5 6,4,6,7, // Back face
8,9 10,8, 10, 11, // Top face
12, 13, 14, 12, 14, 15, // Bottom face
16, 17, 18, 16, 18, 19, // Right face
20, 21, 22, 20, 22, 23 // Left face ]

gl.bufferData(gl. ELEMENT_ARRAY_BUFFER,
new Uintl6Array(cubeVertexIndices), gl. STATIC_DRAW);

cubeVertexIndexBuffer.itemSize = 1; cubeVertexIndexBuffer.numltems = 36;

Hay que recordar que cada numero de este buffer es un indice para la posicién del
vértice y de su color. Como podemos ver los dos primeros tridngulos que definimos
son adyacentes y ademads al ser del mismo color dan como lugar a un cuadrado, y al
igual para el resto de caras.



7. Texturas

En esta nueva leccién de nuestro tutorial vamos a ver cémo podemos hacer para
afiadir una textura a los objetos 3D que hemos ido creando, la textura la cargaremos
desde un archivo de imagen el cual instaremos desde nuestro programa. Para entender
cémo trabajan las texturas debemos recordar lo que explicdbamos en la leccién 3 a
cerca del color, en esta leccién habfamos visto como el color era especificado por el
fragment shader. En este caso lo que debemos hacer es cargar la imagen y envidrsela
al fragment shader, pero ademds debemos indicarle también algo de informacién
acerca de la misma para que pueda trabajar correctamente con ella.

Vamos a empezar a echarle un vistazo a nuestro cédigo para ir viendo las
modificaciones que vamos a ir afladiendo para cargar las texturas. Recordemos que la
funcién que inicializa la ejecucién de la pédgina JavaScript es wegGLStart, pues si
echamos un vistazo a esta funcién podemos ver como es ahi donde se carga la textura
mediante una nueva funcion.

initTexture();
Vamos a analizar esta nueva funcion:

var parafusaTexture;

function initTexture() {

parafusaTexture = gl.createTexture();
parafusaTexture.image = new Image();
parafusaTexture.image.onload = function() {
handleLoadedTexture(parafusaTexture);

/

parafusaTexture.image.src = "parafusa.gif’;

/

Vemos que estamos creando una variable global para manejar la textura, aun-
que obviamente en un ejemplo mas complejo no podriamos usar variables globales ya
que tendriamos muiltiples texturas, pero para nuestro ejemplo resulta mds intuitivo. Lo
primero que hacemos es crear una referencia a la textura mediante gl.CreateTexture()
y después creamos un objeto de imagen JavaScript para asociarlo a nuestra textura,
una vez mds nos estamos aprovechando de la capacidad de JavaScript para establecer
cualquier campo de los objetos ya que por defecto los objetos de textura no tienen un
campo imagen, pero si que podemos crearlo nosotros.

El paso siguiente serd obviamente serd cargarle al objeto de imagen la imagen
que contendrd, pero antes debemos llamar a una funcién de callback, la cual nos ase-
gurard que la imagen ha sido cargada completamente. Una vez que se ha establecido
correctamente indicamos el src de la imagen y listo.



Notar que la imagen se cargard de forma asincrona, es decir, el cddigo que indica
el src de la imagen retornard inmediatamente, pero dejard un hilo ejecutandose en
segundo plano que ird cargando la imagen del servidor. Una vez se ha cargado
completamente se insta a la funcién de callback y esta llama a handleLoadedTexture.
Vamos ahora a fijarnos en esta dltima funcién:

function handleLoadedTexture(texture){

gl.bindTexture(gl. TEXTURE_2D, texture);

gl.pixelStorei(gl. UNPACK_FLIP_Y_WEBGL, true);

gl.texImage2D(gl. TEXTURE_2D, 0, gl. RGBA, gl.RGBA,
gl.UNSIGNED_BYTEtexture.image);

gl.texParameteri(gl. TEXTURE_2D, gl TEXTURE_MAG_FILTER,
gl.NEAREST);

gl.texParameteri(gl. TEXTURE_2D, gl TEXTURE_MIN_FILTER,
gl.NEAREST);

gl.bindTexture(gl. TEXTURE_2D, null);

/

Lo primero que hacemos en esta funcién es decirle a WebGL cual es la textura
con la que estamos trabajando, para eso se llama a la funcién bindTexture, la cual
actda de manera similar a como lo hacfa el bind de los buffers en la primera leccién.
Tras esto esta funcién le indica a WebGL que todas las imagenes que tenemos carga-
das como texturas deben voltearse a posicion vertical para que se representen correc-
tamente sobre nuestro objeto.

El siguiente paso serd cargar la imagen que acabamos de obtener del servidor
al espacio de texturas de nuestra tarjeta grafica mediante la funcién textImage2D. Este
funcién recibe como pardmetros el tipo de imagen que estamos usando, el nivel de
detalle deseado, el formato que queremos que represente la tarjeta grafica, el tamafio
de cada canal RGB de la imagen y por ultimo la imagen a cargar. Veremos estos
pardmetros con mds detalle mas adelante.

Las siguientes dos lineas sirven para indicar los pardmetros de escalado para la
textura. La primera de ellas le indica a WebGL como debe escalar la imagen cuando
la textura en la escena es mayor que su tamafio original, la segunda hace lo mismo
pero en el caso que el escalado deba ser hacia una imagen menor. En este caso se usa
la aproximacién NEAREST, la cual no es presenta buena calidad pero si es mds rapi-
da en equipos de menores prestaciones. Por tltimo se inicializa curretTexture a null
para dejar la variable libre para futuras texturas.

Hasta aqui hemos visto todo el c6digo necesario para cargar correctamente las
texturas que queremos utilizar, el siguiente paso serd mover estas texturas a los buffers
para representarlas en nuestra escena. Para ello vamos a analizar los cambios introdu-
cidos en intiBuffers. Para esta leccién vamos a quedarnos tinicamente con la figura del
cubo para poder ver las texturas mejor, notar que ya no necesitamos los buffers de
color que habiamos utilizado ya que ahora serdn reemplazados por un buffer de coor-
denadas de textura:

cubeVertexTextureCoordBuffer = gl.createBuffer();



gl.bindBuffer(gl. ARRAY_BUFFER, cubeVertexTextureCoordBuffer);
var textureCoords = [

// Para una cara

0.0, 0.0,

1.0, 0.0,

1.0, 1.0,

0.0, 1.0,

//lgual para las demds

]’.

Fijandonos en este nuevo buffer vemos que se definen dos atributos para cada
vértice. Lo que este par de valores indican es en qué coordenada cartesiana (X,y) de la
textura se sitda ese vértice. La coordenadas de la textura estdn normalizadas, por tanto
(0,0) serd la esquina de abajo a la izquierda y (1,1) la esquina de arriba a la derecha de
la imagen.

Vamos a ver ahora cémo se modifica drawScene observando los cambios que
realmente nos interesan para esta leccion, es decir, aquellos que hacen referencia a la
textura de la figura. En initBuffers habfamos inicializado adecuadamente las coorde-
nadas de textura por lo que ahora debemos realizar un bind hacia ellos con los atribu-

tos adecuados de manera que los shaders de la escena puedan utilizar correctamente
las texturas.

gl.bindBuffer(gl.,ARRAY_BUFFER, cubeVertexPositionBuffer);
gl.vertexAttribPointer(shaderProgram.vertexPositionAttribute,
cubeVertexPositionBuffer.itemSize, gl. FLOAT, false, 0, 0);

Con esto WebGL ya conoce qué bit de la textura se corresponde con cada
vértice, necesitamos ahora indicarla qu use la textura que hemos cargado al principio
del programa para luego proceder a dibujar el cubo:

gl.activeTexture(gl. TEXTUREO);

gl.bindTexture(gl. TEXTURE_2D, parafusaTexture);

gl.uniformli(shaderProgram.samplerUniform, 0);

gl.bindBuffer(gl. ELEMENT _ARRAY_BUFFER, cubeVertexIndexBuffer);

setMatrixUniforms();

gl.drawElements(gl. TRIANGLES, cubeVertexIndexBuffer.numltems,
gl.UNSIGNED_SHORT, 0);

Notar que WebGL puede manejar hasta 32 texturas en llamadas a funciones del
tipo gl.drawElements, y estas estan numeradas como TEXTUREOQ...TEXTURE31. En
este caso se le indica a la funcién que use la textura O que es la tnica con la que esta-
mos trabajando en esta ocasion. La funcion gl.uniformli le indica al shader que use
esta textura. Una vez se ha indicado la textura a utilizar ya no queda mds que proceder
a dibujar el cubo como se explicé en las lecciones anteriores.



Por dltimo los tnicos cambios que nos queda por comentar son aquellos que
hacen referencia a los shaders, comenzamos echindole un vistazo al vertex shader:

attribute vec2 aTextureCoord;

varying vec2 vIextureCoord;

void main(void) {

gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
vTextureCoord = aTextureCoord, }

Los cambios que observamos aqui son muy similares a los introducidos en la
segunda leccién cuando comenzamos a utilizar color. Todo lo que estamos haciendo
es aceptar las coordenadas de textura como un par de atributos por vértice y pasarlo
hacia el fragment shader como una varying variable.

Una vez se ha realizado este paso para cada vértice, WebGL trabajard para ca-
da fragmento (pixel) y realizard la interpolacion lineal entre vértices para representar
los puntos intermedios. Esta interpolacién también afectard a las coordenadas de tex-
tura con lo que cada fragmento intermedio tendrd sus coordenadas de textura apropia-
das.

Por dltimo, al igual que habiamos visto con el color vamos a fijarnos en frag-
ment shader:

#ifdef GL_ES

precision highp float;

#endif

varying vec2 vIextureCoord;

uniform sampler2D uSampler;

void main(void) {

gl_FragColor = texture2D(uSampler, vec2(vTextureCoord.s, vTexture-

Coord.t));}

Aqui se toman las coordenadas de textura interpoladas y se pasa a una variable
de tipo sampler, la cual es la manera en que OpenGL representa las texturas. En
drawScene se habia indicado qué textura debia utilizar el shader mediante la funcién
texture2D, por lo que lo tnico que hace el shader es usar esta funcién para obtener
cual es el color apropiado para la coordenada de textura asociada al pixel que se esté
representando. Llegados a este punto WebGL ya sabe el color que debe representar
para cada pixel por lo que lo tnico que queda es representarlo en la pantalla y podra
representar correctamente la textura.



8. Bibliografia

8.1 OpenGL

http://www.khronos.org/files/opengl4 1-quick-reference-card.pdf
http://worldspace.berlios.de/fasel/index.html
http://www.scribd.com/doc/31291543/OpenGL-Basico
http://sabia.tic.udc.es/gc/Tutorial%200penGL/tutorial/cap1.htm

8.2 WebGL

http://www.khronos.org/webgl/
http://khronos.org/webgl/wiki/Main_Page
http://playwebgl.com/demos/worlds-of-webgl/
http://www.inmensia.com/blog/20100619/webgl_cheat_sheet.html



