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Prefacio

Fortran es, desde sus inicios, el lenguaje de programacién ampliamente escogido en el dmbito de la
computacion cientifica. El primer compilador Fortran data de 1957. Pero al igual que los lenguajes humanos,
con el paso del tiempo un lenguaje de programacion evoluciona, adaptandose a las necesidades (y filosofia)
de la programacién de la época. En el caso de Fortran, cada cierto periodo de tiempo un comité internacional
fija la sintaxis y gramética del lenguaje originando un estdndar. Con un estandar del lenguaje a seguir, todos
los usuarios nos podemos asegurar que los programas funcionardn en cualquier computadora que tenga un
compilador Fortran que lo implemente. Tradicionalmente, los estdndares de Fortran se denominan con la fecha
de su constitucién. El primer estdndar fue Fortran 66, al cual le sigui6 el Fortran 77, el cual introdujo mejoras
significativas al lenguaje (y ain hoy continda siendo utilizado en la comunidad cientifica). Una mayor revision
del lenguaje fue el Fortran 90. El Fortran 90 contiene como caso particular al Fortran 77 pero va mds alla
incorporando muchas nuevas caracteristicas. Una revisién menor del Fortran 90 condujo al estandar Fortran 95.
Los estandares mds recientes, Fortran 2003 y 2008, introducen alin mds nuevas caracteristicas en el lenguaje.
En esta guia trabajaremos con el estandar Fortran 95 y algunas extensiones del Fortran 2003 implementadas
en el compilador gfortran, el compilador Fortran de la suite de compiladores GCC. Mds atin asumiremos
que el usuario accederd al mismo en una computadora personal ejecutando el sistema operativo y utilidades de
usuario GNU/Linux. Puesto que el objetivo de esta guia es proporcionar una rapida introduccion al lenguaje
haciendo énfasis en la escritura de c6digo bien estructurado y modular, muchas caracteristicas obsoletas o no
recomendadas proveniente de estdndares previos no son siquiera nombradas. Asi mismo, el caricter introductorio
de la guia, no nos permite tampoco extendernos a conceptos y caracteristicas mas avanzadas introducidas en los
ultimos estdndares. Sin embargo, espero que esta guia, con los conceptos presentados y sus ejercicios, sea de
utilidad a aquellos que comienzan implementar algoritmos en Fortran.

Pablo J. Santamaria.
Marzo 2012.



http://www.nag.co.uk/sc22wg5/
http://gcc.gnu.org/
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Primeros pasos

Hay dos formas de escribir programas sin errores.
Solo la tercera funciona.

1.1. Primeros pasos en programacion.

La resolucién de un problema cientifico con una computadora, tarde o temprano, conduce a la escritura de un
programa que implemente la solucién del problema. Un programa es un conjunto de instrucciones, ejecutables
sobre una computadora, que permite cumplir una funcién especifica. Ahora bien, jla creacién del programa no
comienza directamente en la computadora! El proceso comienza en papel disefiando un algoritmo para resolver
el problema. Un algoritmo es un conjunto de pasos (o instrucciones) precisos, definidos y finitos que a partir de
ciertos datos conducen al resultado del problema.

&> Caracteristicas de un algoritmo.

= preciso: el orden de realizacién de cada paso esta especificado,

= definido: cada paso esta especificado sin ambigiiedad,

= finito: el resultado se obtiene en un nimero finito de pasos.

= entrada/salida: dispone de cero o mas datos de entrada y devuelve uno o mas resultados.
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C Inicio )

Y

/ Leer radio /

m = 3.141593

area = m radio?

\ 4

/Imprimir area/

Figura 1.1. Diagrama de flujo para el algoritmo que calcula el drea de un circulo.

Para describir un algoritmo utilizaremos un pseudocodigo. Un pseudocédigo es un lenguaje de especificacion
de algoritmos donde las instrucciones a seguir se especifican de forma similar a como las describirfamos con
nuestras palabras.

Consideremos, como ejemplo, el disefio de un algoritmo para calcular el drea de un circulo. Nuestro primer
intento, bruto pero honesto, es:

Calcular el &rea de un circulo.

Sin embargo, este procedimiento no es un algoritmo, por cuanto no se especifica, como dato de entrada, cual es
el circulo a considerar ni tampoco cual es el resultado. Un mejor procedimiento serfa:

Leer el radio del circulo.
Calcular el &rea del circulo de radio dado.
Imprimir el area.

Sin embargo, éste procedimiento atin no es un algoritmo por cuanto la segunda instruccién no especifica cémo
se calcula el area de un circulo de radio dado. Explicitando la férmula matematica tenemos finalmente un
algoritmo apropiado:

Leer el radio del circulo.
Tomar w = 3.141593.
Calcular &rea = m X radio?.
Imprimir el &area.

Una manera complementaria de describir un algoritmo es realizar una representacién grafica del mismo
conocida como diagrama de flujo. El correspondiente diagrama de flujo para el algoritmo anterior se ilustra en
la figura 1.1.

Una vez que disponemos del algoritmo apropiado, su implementacion en la computadora requiere de un
lenguaje de programacion. Un lenguaje de programacion es un lenguaje utilizado para escribir programas de
computadora. Como todo lenguaje, cada lenguaje de programacidn tiene una sintaxis y gramética particular
que debemos aprender para poder utilizarlo. Por otra parte, si bien existen muchos lenguajes de programacién
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para escoger, un lenguaje adecuado para problemas cientificos es el denominado lenguaje Fortran!. El proceso
de implementar un algoritmo en un lenguaje de programacién es llamado codificacion y su resultado cddigo o
programa fuente. Siguiendo con nuestro ejemplo, la codificacién del algoritmo en el lenguaje Fortran conduce
al siguiente programa:

Cédigo 1.1. Calculo del area de un circulo

PROGRAM calcular_area
! Cdlculo del area de un circulo de radio dado
! Declaracidén de variables

IMPLICIT NONE

REAL :: radio ! radio del circulo
REAL :: area ! drea del circulo
REAL, PARAMETER :: PI = 3.141593 ! numero pi

! Entrada de datos

WRITE (%, ) ’Ingrese radio del circulo’
READ (x, ) radio

! Calcular area

END PROGRAM calcular_area

Aln cuando no conozcamos todavia la sintaxis y gramdtica del Fortran, podemos reconocer en el cédigo
anterior ciertas caracteristicas basicas que se corresponden con el algoritmo original. En particular, notemos que
los nombres de las variables involucradas son similares a la nomenclatura utilizada en nuestro algoritmo, que
los datos de entrada y salida estan presentes (junto a un mecanismo para introducirlos y mostrarlos) y que el
célculo del area se expresa en una notacién similar (aunque no exactamente igual) a la notacién matematica
usual. Ademds hemos puesto una cantidad de comentarios que permiten comprender lo que el cédigo realiza.

& Un algoritmo es independiente del lenguaje de programacion.

Si bien estamos utilizando Fortran como lenguaje de programacién debemos enfatizar que un algoritmo
es independiente del lenguaje de programacién que se utiliza para su codificacién. De este modo un
mismo algoritmo puede ser implementado en diversos lenguajes.

Disponemos ya de un cédigo para nuestro problema. Ahora bien, ;cémo lo llevamos a la computadora para
obtener un programa que se pueda ejecutar? Este proceso involucra dos etapas: la edicion y la compilacion.
Comencemos, pues, con la edicién. Nuestro codigo fuente debe ser almacenado en un archivo de texto plano
en la computadora. Para ello debemos utilizar un editor de texto, el cual es un programa que permite ingresar
texto por el teclado para luego almacenarlo en un archivo. El archivo resultante se conoce como archivo fuente

IEl nombre es un acrénimo en inglés de formula translation.
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y para un cédigo escrito en Fortran puede tener el nombre que querramos pero debe terminar con la extension
. £90. Si bien en Linux existen varios editores de texto disponibles, nosotros utilizaremos el editor emacs. Asi
para ingresar el c6digo en un archivo que llamaremos area . £ 90 ingresamos en la linea de comandos de una
terminal:

$ emacs area.f90 &

El editor emacs es un editor de texto de propdsito general pero que adapta sus posibilidades al contenido del
archivo que queremos guardar. En particular permite que la programacién en Fortran resulte muy comoda al
resaltar con distintos colores las diversas instrucciones que posee el lenguaje y facilitar, ademads, la generacién
de cddigo sangrado apropiadamente para mayor legibilidad.

Nuestro programa fuente, almacenado ahora en el archivo fuente area. £90, no es todavia un programa
que la computadora pueda entender directamente. Esto se debe a que Fortran es uno mds de los denominados
lenguajes de alto nivel, los cuales estan disefiados para que los programadores (es decir, nosotros) puedan
escribir instrucciones con palabras similares a los lenguajes humanos (en general, como vemos en nuestro
c6digo, en idioma inglés)”. En contraste, una computadora no puede entender directamente tales lenguajes, pues
las computadoras solo entienden lenguajes de mdquina donde las instrucciones se expresan en términos de los
digitos binarios 0 y 1. De este modo, nuestro programa fuente, escrito en un lenguaje de alto nivel, debe ser
traducido a instrucciones de bajo nivel para que la computadora pueda ejecutarlo. Esto se realiza con ayuda de
un programa especial conocido como compilador. Asi pues, el compilador toma el c6digo fuente del programa y
origina un programa ejecutable que la computadora puede entender directamente. Este proceso es denominado
compilacion. En Linux el compilador de Fortran es llamado gfortran. Asi, para compilar el archivo fuente
area.f90 y generar un programa ejecutable, que llamaremos area, escribimos en la linea de comandos:

$ gfortran -Wall -o area area.f90

Deberia ser claro que la opcién —o permite dar el nombre para el programa ejecutable resultante de la

compilacién. Por otra parte la opcién -Wall le dice al compilador que nos advierta de posibles errores (no

fatales) durante el proceso de compilacién®.

Si no se producen errores, habremos creado nuestro primer programa. El programa se puede ejecutar desde
la linea de comandos con sélo teclar su nombre:

$ ./area

1.1.1. Ejercicios

Ejercicio 1.1 Utilizar el editor emacs para almacenar el cédigo 1.1 en el archivo fuente area . £90.

Ejercicio 1.2 Compile el programa fuente del ejercicio anterior. Verifique que se genera, efectivamente, el
programa ejecutable.

Ejercicio 1.3 Verificar que el programa da resultados correctos. En particular verificar que para un radio igual
a la unidad el drea que se obtiene es 7 y que el drea se cuadruplica cuando el radio es igual a 2.

Ejercicio 1.4 Modificar el programa para que calcule el drea A = wab de una elipse de semiejes a y b.

2De hecho, Fortran es el abuelo de todos los lenguajes de alto nivel, pues fue el primero ellos.
3Wall significa, en inglés, warnings all.
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1.2. Cuando las cosas fallan.

Tres tipos de errores se pueden presentar: errores de compilacion, errores de ejecucion 'y errores logicos.
Los errores de compilacién se producen normalmente por un uso incorrecto de las reglas del lenguaje de
programacion (tipicamente errores de sintaxis). Debido a ellos el compilador no puede generar el programa
ejecutable. Por otra parte, los errores de ejecucion se producen por instrucciones que la computadora puede
comprender pero no ejecutar. En tal caso se detiene abruptamente la ejecucién del programa y se imprime un
mensaje de error. Finalmente, los errores 16gicos se deben a un error en la 16gica del programa. Debido a estos
errores, ain cuando el compilador nos da un programa ejecutable, el programa dard resultados incorrectos.
Todos estos tipos de errores obligan a revisar el cédigo, originando un ciclo de desarrollo del programa que
consta de compilacidn, revisién y nueva compilacién hasta que resulten subsanados todos los errores.

1.2.1. Ejercicios

Ejercicio 1.5 Procediendo con la compilacion y ejecucidn, identificar que tipo de errores se producen en las
siguientes situaciones con nuestro c6digo.

a) La sentencia WRITE (*, x) ’'Ingrese el radio del circulo’ del cédigo es cambiada por
WROTE (%, *) ’'Ingrese radio del circulo’.

b) Durante la ejecucion se ingresa una letra cuando se pide el radio del circulo.

c¢) El valor de la constante P T es asignada a 2.7182818 en el cddigo.

1.3. Estructura general de un programa Fortran

Un programa en Fortran consiste de un programa principal (mmain, en inglés) y posiblemente varios subpro-
gramas. Por el momento asumiremos que el cddigo consta s6lo de un programa principal. La estructura del
programa principal es

PROGRAM nombre
declaraciones de tipo
sentencias ejecutables
STOP

END PROGRAM nombre

Cada linea del programa forma parte de una sentencia que describe una instruccién a ser llevada a cabo y tales
sentencias se siguen en el orden que estan escritas. En general, las sentencias se clasifican en ejecutables (las
cuales realizan acciones concretas como ser calculos aritméticos o entrada y salida de datos) y no ejecutables
(las cuales proporcionan informacién sin requerir en si ningliin cémputo, como ser las declaraciones de tipos
de datos involucrados en el programa). La sentencia (no ejecutable) PROGRAM especifica el comienzo del
programa principal. La misma estd seguida de un nombre identificatorio para el programa el cual no necesita
ser el mismo que el de su codigo fuente ni el del programa ejecutable que genera el compilador. La sentencia
(no ejecutable) END PROGRAM indica el final 16gico del programa principal. La sentencia (ejecutable) STOP
detiene la ejecucion del programa.

&> END PROGRAM y STOP.

Es importante comprender la diferencia entre estas dos sentencias. La sentencia END PROGRAM, siendo
la altima sentencia del programa principal, indica al compilador la finalizacién del mismo. Por su parte,
la sentencia STOP detiene la ejecucion del programa, cuando éste es ejecutado, devolviendo el control al
sistema operativo. Asi mientras sélo puede existir una sentencia END PROGRAM para indicar el final del
programa principal, puede haber mas de una sentencia STOP y puede aparecer en cualquier parte del
programa que la necesite. Por otra parte, una sentencia STOP inmediatamente antes de una sentencia
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END PROGRAM es, en realidad, opcional, puesto que el programa terminara cuando alcance el fin. Sin
embargo su uso es recomendado para resaltar que la ejecucién del programa termina alli.

I5" Una sentencia Fortran sobre una linea puede extenderse hasta 132 caracteres. Si la sentencia es més larga
ésta puede continuarse en la siguiente linea insertando al final de la linea actual el caracter &. De esta manera
una sentencia puede ser continuada sobre 40 lineas, en Fortran 95, o 256 lineas en Fortran 2003.

I5” QOriginalmente la codificacién de un programa Fortran sélo podia utilizar letras maytisculas. En la actualidad
todos los compiladores aceptan que en el programa haya letras mindsculas. Debe tenerse presente, sin embargo,
que el compilador Fortran no distinguird entre las letras mayuisculas y mindsculas (excepto en las constantes
literales de caracter).

15" Cualquier oracién precedida de un signo de exclamacién ! es un comentario. Un comentario es una
indicacion del programador que permite aclarar o resaltar lo que realiza cierta parte del codigo. Por lo tanto los
comentarios son de gran ayuda para documentar la operacién de un programa o una parte de ella y deben usarse
profusamente. Nétese que los comentarios son ignorados por el compilador.

I5" Es recomendable ser consistente con cierto estilo al escribir un programa Fortran. Aqui adoptaremos el
estilo en que las instrucciones de Fortran, tales como PROGRAM, READ, WRITE, son escritas con mayusculas,
mientras que las variables definidas por el programador son escritas con mindsculas. Asimismo los nombres que
sean compuestos a partir de varias palabras son unidos con el guién bajo, como ser, mi_primer_programa.
Por otra parte, constantes con nombres, utilizadas para valores que no cambian durante la ejecucion del programa,
como ser PI para almacenenar el valor del nimero 7, son escritos con mayusculas.

1.3.1. Ejercicios

Ejercicio 1.6 Identificar y clasificar las sentencias del programa dado en el codigo 1.1.

Ejercicio 1.7 Indicar los errores en el siguiente programa Fortran.

PROGRAMent

* Un simple programa

integer :: ent

ent = 12

WRITE (%, %) 'El valor del entero es ',
ent

END PROGRAM ent
STOP




Dios es real
A menos que sea declarado entero.

2.1. Tipos de datos simples.

Los diferentes objetos de informacién con los que un programa puede operar se conocen colectivamente
como datos. Todos los datos tienen un tipo asociados a ellos. La asignacion de tipos a los datos permite indicar
la clase de valores que pueden tomar y las operaciones que se pueden realizar con ellos. Fortran dispone de
cinco tipos de datos simples: enteros, reales, complejos, de cardcter y logicos (siendo los cuatro primeros datos
de tipo numérico). Esta clasificacion se ilustra en la figura 2.1. Por otra parte, los datos aparecen en el programa
como constantes literales, como variables o como constantes con nombres. Una constante literal es un valor de
cualquiera de los tipos de datos que se utiliza como tal y por lo tanto permanece invariable. Una variable, en
cambio, es un dato, referido con un nombre, susceptible de ser modificado por las acciones del programa. Una
constante con nombre es un valor referenciado con un nombre y su valor permanece fijo, es decir, no puede ser
alterado por las acciones del programa.

Existen razones tanto matemaéticas como computacionales para considerar distintos tipos de datos numéricos.
Un dato entero permite la representacion exacta de un nimero entero en la computadora (dentro de cierto
rango). Un dato real permite la representacion de un niimero real, aunque tal representacion no es exacta, sino
aproximada.
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Datos simples

Légicos Caracteres Numéricos

Enteros Reales Complejos

Figura 2.1. Tipos de datos simples.

&> Precisién de los datos reales.

En las computadoras personales (PC) actuales, un dato de tipo real tiene una precisién de no mas de
7 digitos significativos y puede representar nameros reales en el rango de 10738 a 1038, Este tema es
abordado mas exahustivamente en el capitulo 7.

Una constante literal entera es un nimero entero, como ser —1, 0, 2, y por lo tanto no puede tener parte
decimal. Una constante literal real es un nimero real con punto decimal, como ser 3.14159,-18.8,0.0056.
Nimeros muy grandes o muy pequefios se representan en notacioén cientifica en la forma

+tm.nE+p,

donde m. n es un nimero decimal y la E (de exponente) significa multiplicar por 10 a la potencia entera +p.
Asf, por ejemplo, 3.49 x 1072 se codifica como 3. 49E-2.

&> Constantes literales numéricas.

Fortran establece la diferencia entre constantes literales enteras y reales por la presencia o ausencia del
punto decimal, respectivamente. Estas dos formas no son intercambiables puesto que se almacenan y
procesan de forma diferente en la computadora.

Por razones de claridad y estilo es conveniente utilizar el cero explicitamente al escribir constante reales
sin parte fraccionaria con parte entera nula. Asi escribimos 11.0 en vezde 11. y 0.2 en vez de . 2.
También resulta conveniente codificar el cero real como 0. 0.

Un dato de tipo complejo permite representar un nimero complejo mediante un par ordenado de datos
reales: uno que representa la parte real, y otro, la parte imaginaria del niimero complejo. Una constante literal
compleja consiste un par ordenado de constantes literales reales encerradas entre paréntesis y separadas por una
coma. Por ejemplo (3.5,4.0) corresponde al niimero complejo con parte real 3.5 y parte imaginaria 4.0.

Un dato tipo cardcter permite representar caracteres alfanuméricos, esto es letras (a, b, A, B, etc.) y digitos
(tal como 6), y caracteres especiales (tales como $, &, *, el espacio en blanco, etc.). Una constante literal de
cardcter consiste en una secuencia de caracteres encerradas entre apdstrofes (comillas sencillas), por ejemplo:
" AbC’, o comillas dobles, "AbC" por ejemplo.




® 2.1. Tipos de datos simples.

Finalmente, un dato de tipo légico es un dato que solo puede tomar un valor entre dos valores posibles:
verdadero o falso. Sus valores literales se codifican en Fortran como . TRUE. y .FALSE. respectivamente.

Las variables son los datos de un programa cuyo valores pueden cambiar durante la ejecucién del mismo.
Existen tantos tipos de variables como tipos de datos diferentes. Una variable, en realidad, es una region dada en
la memoria de la computadora a la cual se le asigna un nombre simbdlico. El nombre simbdélico o identificador
se llama nombre de la variable mientras que el valor almacenado en la regiéon de memoria se llama valor de la
variable. La extension de la regién que ocupa la variable en la memoria viene dada por el tipo de dato asociado
con ella. Una imagen mental til de la situacion es considerar a las variables como cajas o buzones, cada una de
las cuales tiene un nombre y contiene un valor.

En Fortran los nombres de las variables s6lo pueden formarse con letras (incluyendo al guién bajo _ como
un carécter valido) o nimeros pero siempre deben comenzar con una letra. El nimero miximo de caracteres
que permite Fortran 95 para formar el nombre de una variables es de 31 caracteres, aunque en Fortran 2003 el
limite es de 63.

&> Sobre los nombres de las variables

Constituye una buena practica de programacién utilizar nombres de variables que sugieran lo que ellas
representan en el contexto del problema considerado. Esto hace al programa mas legible y de mas facil
comprension.

Antes de ser utilizadas, las variables deben ser declaradas en la seccion de declaracion de tipo de variables.
Para ello se utilizan las siguientes sentencias no ejecutables de acuerdo al tipo de dato que almacenaran:

INTEGER :: lista de variables enteras

REAL :: lista de variables reales

COMPLEX :: lista de variables complejas
CHARACTER (tamafio) :: lista de variables cardcter
LOGICAL :: lista de variables 1dégicas

Si la lista de variables cuenta con mas de un elemento, las mismas deben estar separadas por comas. Puede
también usarse una sentencia de declaracion de tipo por cada variable del programa. Esto tltimo permite
introducir un comentario para el uso que se hard en el programa, construyendo asi un util diccionario de datos
que permite comprender facilmente el uso dado a las variables del programa.

& Declaracién de variables implicita y explicita.

Fortran dispone de una (desafortunada) caracteristica cual es la declaracion implicita de tipos: nombres
de variables que comienzan con las letras en el rango a—h, o—z se consideran variables reales, mientras
que el resto, es decir las que comienza con las letras en el rango i-n, se consideran variables enteras.
Este estilo de programacion es altamente desaconsejado ya que es una fuente continua de errores. Por el
contrario, nosotros propiciamos la declaracién explicita de todas las variables utilizadas en el programa.
Mas aiin, con el fin de evitar completamente la posibilidad de declaraciones implicitas utilizamos la
sentencia IMPLICIT NONE al comienzo de la declaracién de tipo. Con esta sentencia el uso de variables
no declaradas generara un error de compilacién.

Finalmente, las constantes con nombres permiten asignar un nombre simbdlico a una constante literal y,
como tal, no podran ser alteradas. Esto resulta ttil para nombrar nimeros irracionales tales como 7 o constantes
fisicas como la velocidad de la luz ¢ que aparecen repetidamente, y también para reconfigurar valores que
pueden intervenir en un algoritmo. La declaracién de una constante con nombre se realiza en su declaracion de
tipo como sigue:

tipo, PARAMETER :: nombre = constante
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2.1.1. Ejercicios

Ejercicio 2.1 La siguiente lista presenta una serie de constantes validas o invélidas en Fortran. Indicar si cada
una de ellas es vélida o invalida. En el caso que sea vélida, especificar su tipo. Si es invalida indicar porque
razon.

10.0, —100,000, 123E-5, *Es correcto’, 3.14159, *3.14159°, *Distancia =, 17.8E+6, 13.0°2.

Ejercicio 2.2 Escribir los siguientes nimeros como constantes literales reales.

256, 2.56, —43000, 10'?, 0.000000492, —10, —107'6.

Ejercicio 2.3 Escribir los siguientes nimeros complejos como constantes literales complejas.
i, 3+i, 1.
Ejercicio 2.4 Indicar cuales de los siguientes son identificadores aceptables para variables en Fortran.

gamma, 379-12, epsilon, ab5, 5a, is real, is_real, r(2)19, stop, _ok.

& Ppalabras reservadas.

En la mayoria de los lenguajes de programacion las palabras que constituyen instrucciones del lenguaje no
pueden ser utilizadas como nombres de variables (se dice que son palabras reservadas). En Fortran, sin
embargo, no existen palabras reservadas y, por lo tanto, por ejemplo, es posible dar el nombre stop a
una variable. Esta forma de proceder, sin embargo, no es recomendable porque puede introducir efectos
no deseados.

Ejercicio 2.5 Escriba las declaraciones de tipo apropiadas para declarar la variables enteras i, contador,
las variables reales x, y, vx, vy, la variable 16gica clave y la variable cardcter mensa je (la cual tendrd un
maximo de 80 caracteres).

Ejercicio 2.6 Escriba sentencias de declaracién apropiadas para definir como pardmetros la velocidad de la luz
en el vacio ¢ = 2.9979 x 108 m s~! y la constante de Plank & = 6.6256 x 10734 J s.

2.2. Sentencias de asignacion.

La sentencia de asignacion permite asignar (almacenar) un valor en una variable. La operacién de asignacién
se indica tanto en el pseudocédigo de nuestros algoritmos como en un programa Fortran en la forma general

variable = expresion

Aqui el signo = no debe ser interpretado como el signo de igualdad matemadtico, sino que representa la operacién
en la cual el valor de la expresion situada a la derecha se almacena en la variable situada a la izquierda. Por
expresion entendemos aqui un conjunto de variables o constantes conectadas entre si mediante los operadores
que permiten sus tipos.

I E] tipo de dato correspondiente a la expresién debe ser el mismo tipo de dato correspondiente a la variable.
Para tipos numéricos si éste no es el caso ciertas conversiones de tipo implicitas se realizan (las cuales serdn
discutidas enseguida).

15" La operaci6n de asignacién es una operacién destructiva para la variable del miembro de la izquierda,
debido a que cualquier valor almacenado previamente en dicha variable se pierde y se sustituye por el nuevo
valor. Por el contrario, los valores de cualesquiera variables que se encuentren en la expresién del miembro de
la derecha de la asignacién no cambian sus valores.
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® 2.2. Sentencias de asignacion.

Simbolo  Significado Ejemplo

+ adicion a+b
- sustraccion a-b
opuesto -b
divisién a/b
* multiplicaciéon  axb
* potenciacién ax*b

Tabla 2.1. Codificacién de los operadores aritméticos en Fortran.

I En una sentencia de asignacién cualquier cosa distinta de un nombre de variable en el miembro de la
izquierda conduce a una sentencia incorrecta.

Entre los tipos de expresiones que podemos considerar nos interesan especialmente las expresiones aritméti-
cas, las cuales son un conjunto de datos numéricos (variables y constantes) unidos por operadores aritméticos y
funciones sobre los mismos. Cuando una expresion aritmética se evalia el resultado es un dato numerico y por
lo tanto puede ser asignada una variable de tipo numérico a través de una sentencia de asignacion aritmética.
Los operadores aritméticos son los usuales, cuya codificacién en Fortran es indicada en la tabla 2.1.

Pero ademas Fortran dispone de un conjunto de funciones intrinsecas que implementan una gran variedad
de funciones matematicas, algunas de las cuales se presentan en la tabla 2.2. Para utilizar una funcién se emplea
el nombre de la misma seguido por la expresion sobre la que se va a operar (argumento) dentro de un juego de
paréntesis. Por ejemplo, la sentencia y = ABS (x) calcula el valor absoluto de x y lo asigna a y.

> Funciones intrinsecas del compilador gfortran.

Una lista de todas las funciones implicitas que proporciona el compilador gfortan puede verse en la
pagina info del mismo, ejecutando en una terminal el comando:

$ info gfortran

y dirigiéndonos a la seccién titulada Intrinsic Procedures. (Para salir de la pagina info simple-
mente presionamos la tecla g).

2.2.1. Ejercicios

Ejercicio 2.7 Escribir sentencias de asignacion que efectden lo siguiente:

a) Incrementar en 1 el valor actual de una variable entera n y remplazar el valor de n por dicho incremento.
Una variable entera que se incrementa en una unidad o una cantidad constante se conoce como contador.
b) Incrementar en x (siendo x una variable numérica) el valor de la variable numérica suma y reemplazar el
valor de suma por tal incremento. Una variable que actiia de esta forma se conoce como un acumulador.

¢) Asignar a una variable l6gica el valor verdadero.
d) Intercambiar el valor de dos variables a y b del mismo tipo (Ayuda: el intercambio requiere de una tercera
variable).

Ejercicio 2.8 Considere el siguiente programa Fortran.

PROGRAM problema
IMPLICIT NONE

REAL :: X,y

y =x + 1.0
WRITE (x, x) y

STOP

END PROGRAM problema
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r SIN(r) seno del dngulo en radianes

r COS (r) coseno del dngulo en radianes

r TAN (r) tangente del dngulo en radianes

r = ASIN(r) arco seno (en el rango —n/2 a + 71 /2)

r ACOS (r) arco coseno (en el rango 0 a + )

r ATAN (r) arco tangente (en el rango —7/2 a + 7/2)

r ATAN2 (r,r) arco tangente de argl/arg2 (en el rango —7 a 1)
r SQRT (r) raiz cuadrada

r EXP (1) funcién exponencial

r = LOG(r) logaritmo natural

r = LOG10 (r) logaritmo decimal

* = ABS (ir) valor absoluto

* MOD (ir,ir) resto de la divisién de argl por arg2

x = MAX(ir,ir) devuelve el mdximo entre argl y arg2

x = MIN(ir,ir) devuelve el minimo entre argl y arg2

i INT (r) convierte a un tipo entero truncando la parte decimal

r = REAL (1) convierte a tipo real

Tabla 2.2. Funciones intrinsecas importantes proporcionadas por Fortran. El tipo del
dato del argumento y del resultado que admiten es indicado por una letra: 1 = entero,
r = real. Un asterisco en el miembro de la derecha indica que el resultado es del
mismo tipo que el argumento.

(Qué sucede al ejecutarlo varias veces? ;A qué se debe tales resultados?

@& variables no inicializadas.

Una variable en el lado derecho de una sentencia de asignacién debe tener un valor antes de que la
sentencia de asignacion se ejecute. Hasta que una sentencia no le de un valor a una variable, esa variable
no tendrd un valor definido. Una variable a la que no se le ha dado un valor se dice que no se ha
inicializado. Entonces si, por ejemplo, x no tiene un valor antes de ejecutarse la sentenciay = x + 1.0,
se produce un error légico. Muchos lenguajes de programacion inicializan automaticamente sus variables
numéricas en cero. Sin embargo, este no es el caso de Fortran. Asi una variable sin inicializar contendra
esencialmente un valor espurio proveniente de lo que exista en dicho momento en la posicién de memoria
correspondiente a la variable. Su uso ciertamente conducird a una situacién de error en los datos de salida.
En Fortran 95 la inicializacién de una variable puede ser realizada en tiempo de compilacién asignando su
valor en la sentencia de declaracién correspondiente, como ser, por ejemplo, REAL :: x = 0.0.

2.3. Orden de precedencia de las operaciones aritméticas y conversion impli-
cita de tipo.

Cuando en una expresién aparecen dos o mds operadores se requiere de un orden de precedencia de las
operaciones que permita determinar el orden en que se realizaran las operaciones. En Fortran estas reglas son
las siguientes:

= Todas las subexpresiones entre paréntesis se evalian primero. Las expresiones con paréntesis anidados se
evalian de adentro hacia fuera: el paréntesis mds interno se evalda primero.

= Dentro de una misma expresion o subexpresion, las funciones se evalian primero y luego los operadores se
evaldan en el siguiente orden de prioridad: potenciacion; multiplicacién y divisidn; adicion, substraccién
y negacion.

= [os operadores en una misma expresion o subexpresion con igual nivel de prioridad se evalian de
izquierda a derecha, con excepcion de la potenciacion, que se evalda de derecha a izquierda.
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® 2.3. Orden de precedencia de las operaciones aritméticas y conversion implicita de tipo.

Asi, por ejemplo, a + bxc/desequivalenteaa + ((b*c)/d), mientras que x**y*=*z es equivalente a
XAkx (Yx*2Z).

Cuando en una expresion aritmética los operandos tienen el mismo tipo de dato numérico, el resultado tiene
el mismo tipo que éstos. En particular, la division de dos tipos enteros es un entero, mientras que la divisién de
dos tipos reales es un real. Si, en cambio, los operandos tienen tipos numéricos distintos, una conversion de tipo
implicita se aplica, llevando el tipo de uno de ellos al otro, siguiendo la siguiente direccion: enteros se convierten
a reales, reales se convierten a complejos. La excepcion a esta regla es la potenciacién: cuando la potencia
es un entero el cédlculo es equivalente a la multiplicacién repetida (por ejemplo, con x real, x**2 = x*x)
Sin embargo, si la potencia es de otro tipo numérico el computo se realiza implicitamente a través de las
funciones logaritmica y exponencial (por ejemplo, xx 2 . 0 es calculado como ¢>91°2¥). De la misma manera
una conversion de tipo implicita se realiza cuando en una sentencia aritmética la expresion y la variable difieren
en tipo numérico, en tal caso, la expresion después de ser evaluada es convertida al tipo de la variable a la que
se asigna el valor. Ciertamente, estas conversiones implicitas, producto de la “mezcla” de tipos en una misma
expresion o sentencia debe ser consideradas con mucho cuidado. En expresiones complejas conviene hacerlas
explicitas a través de las apropiadas funciones intrinsecas de conversion de tipo que se detallan en la tabla 2.2.

2.3.1. Ejercicios

Ejercicio 2.9 Determinar el valor de la variable real a o de la variable entera 1 obtenido como resultado de cada
una de las siguientes sentencias de asignacidn aritmética. Indicar el orden en que son realizadas las operaciones
aritméticas y las conversiones de tipo implicitas (si existen).

a)a = 2x6 + 1 k)a =1.0/3.0 + 1.0/3.0 + 1.0/3.0
b)a = 2/3 Da =1/3 + 1/3 + 1/3

c)a = 2.0x6.0/4.0 m)a = 4.0x*x(3/2)

d)i = 2%x10/4 nNa = 4.0xx3.0/2.0

e)i = 2x(10/4) f)a = 4.0%%(3.0/2.0)

fla = 2%(10/4) 0)i = 19/4 + 5/4

g)a = 2.0%(10.0/4.0) p)a = 19/4 + 5/4

hya = 2.0x(1.0el1/4.0) Qi = 100%x(99/100)

)a = 6.0%1.0/6.0 i = 10%%(2/3)

a = 6.0%(1.0/6.0) $)i = 10%%(2.0/3.0)

Ejercicio 2.10 Supongase que las variables reales a, b, ¢, d, e, £ y la variable entera g han sido inicializadas
con los siguientes valores:

a=3.0,b=2.0,¢c=5.0,d=4.0,¢c=5.0,d=4.0,e=10.0, £=2.0,g=3

Determine el resultado de las siguientes sentencias de asignacidn, indique el orden en que se realizan las
operaciones.

a) resultado = axbt+cxdte/fxxg
b) resultado a* (b+c) *d+ (e/f) xxg
¢) resultado ax* (b+c) * (d+e) /fxxg

Ejercicio 2.11 Escriba sentencias de asignacion aritméticas para los siguientes expresiones matemaéticas.
a)t=3x103x%,
b) y = (—x)",
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1+ sinx

1
:—1 ,
gy =glog—o

Ejercicio 2.12 Considere el siguiente programa

PROGRAM test
IMPLICIT NONE
REAL :: a,b,c

READ (*, *) a,b
c = ( (atb)**x2 — 2.0*xaxb — bx*x2 )/axx2
WRITE (%, *) cC

END PROGRAM test

(Cudl seria el valor esperado de c, cualquiera sean los valores de a y b ingresados? Ejectue el programa
ingresando los pares de valores a = 0.5, b = 888.0; a =0.0001, b = 8888.0 y a = 0.00001, b = 88888.0. ;A qué
se debe los resultados obtenidos?

2.4. Entrada y salida por lista.

Si se desea utilizar un conjunto de datos de entrada diferentes cada vez que se ejecuta un programa
debe proporcionarse un método para leer dichos datos. De manera similar, para visualizar los resultados del
programa debe proporcionarse un mecanismo para darles salida. El conjunto de instrucciones para realizar
estas operaciones se conocen como sentencias de entrada/salida. En los algoritmos tales instrucciones las
describimos en pseudocédigo como

Leer lista de variables de entrada.
Imprimir lista de variables de salida.

Existen dos modos bésicos para ingresar datos en un programa: interactivo y por archivos. Aqui solo discutiremos
el primero, dejando el segundo para otra practica. En el modo interactivo el usuario ingresa los datos por teclado
mientras ejecuta el programa. La sentencia Fortran apropiada para ésto es

READ (*,*) lista de variables
donde la lista de variables, si contiene mds de un elemento, esti separada por comas. Con el fin de guiar al
usuario en la entrada de datos interactiva es conveniente imprimir un mensaje indicativo previo a la lectura de

los datos. Por ejemplo,

WRITE (%, ) ’'Ingrese radio del circulo’
READ (*, *) radio

Para dar salida a los datos por pantalla utilizamos la sentencia
WRITE (x,*x) lista de variables

Nuevamente podemos utilizar constantes literales de cardcter para indicar de que trata el resultado obtenido. Por
ejemplo,

WRITE (%, *) 'Area del circulo = ', area
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® 2.5. Implementando lo aprendido.

24.1. Ejercicios

Ejercicio 2.13 Escribir la sentencia de entrada (para leer por teclado) y la sentencia de salida (por pantalla)
para los siguientes datos:

a)0.1E13

b) (0.0,1.0)

¢) 'Hola mundo!’

d)3 1.5 -0.6

e) .TRUE.

2.5. Implementando lo aprendido.

Los siguientes ejercicios plantean diversos problemas. Para cada uno de ellos se debe disefnar un algoritmo
apropiado el cual debe ser descrito en pseudocddigo y graficado por su diagrama de flujo. Luego implementar
dicho algoritmo como un programa Fortran. Testear el programa utilizando datos de entrada que conducen a
resultados conocidos de antemano.

Ejercicio 2.14 Dado los tres lados a, b y ¢ de un tridngulo, calcular su drea A por la férmula de Her6n,

A=+/s(s—a)(s—b)(s—c),

donde s = (a+b+c)/2.

Ejercicio 2.15 Dadas las coordenadas polares (r,8) de un punto en el plano R?, se desea calcular sus coorde-
nadas rectangulares (x,y) definidas por

x=rcos@,

y=rsin6.

Ejercicio 2.16 Calcular el area A y el volumen V de una esfera de radio r,
4
A=4nr?, V= 57”3'

Implementar el algoritmo de manera de minimizar el niimero de multiplicaciones utilizadas.

& Eficiencia de un algoritmo.

Una manera de medir |a eficiencia de un algoritmo (y un programa) es contabilizar el nimero de operaciones
utilizadas para resolver el problema. Cuanto menor sea este nimero mas eficiente sera el algoritmo (y el
programa).

Ejercicio 2.17 La temperatura medida en grados centigrados 7¢ puede ser convertida a la escala Farenheit 75

segln la férmula:

9
IF == g IC + 32
Dado un valor decimal de la temperatura en la escala centigrada se quiere obtener su valor en la escala

Fahrenheit.

Ejercicio 2.18 La magnitud de la fuerza de atraccién gravitatoria entre dos masas puntuales m; y m;, separadas
por una distancia r estd dada por la férmula
mj myp

F=G
2’

donde G =6.673 x 1078 cm? s> g~! es la constante de gravitacién universal. Se desea evaluar, dada la masas de
dos cuerpos y la distancia entre ellos, la fuerza de gravitacién. El resultado debe estar expresados en dinas; una
dina es dimensionalmente igual a un g cm s~2.Nétese que las unidades de una férmula deben ser consistentes,
por lo cual, en este problema, las masas deben expresarse en gramos y la distancia en centimetros.
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Se encuentra un programador muerto en la baiiadera.
En una de sus manos hay una botella de shampoo que dice:

Modo de uso: Aplicar, enjuagar, repetir.

3.1. Estructuras de control

Las estructuras de control permiten especificar el orden en que se ejecutaran las instrucciones de un
algoritmo. Todo algoritmo puede disefiarse combinando tres tipos basicos de estructuras de control:

= secuencial: las instrucciones se ejecutan sucesivamente una después de otra,

= de seleccion: permite elegir entre dos conjuntos de instrucciones dependiendo del cumplimiento (o no) de
una condicidn,

= de iteracion: un conjunto de instrucciones se repite una y otra vez hasta que se cumple cierta condicion.

Combinando estas tres estructuras bdsicas es posible producir un flujo de instrucciones mds complejo pero
que aun conserve la simplicidad inherente de las mismas. La implementacién de un algoritmo en base a estos
tres tipos de estructuras se conoce como programacion estructurada y este estilo de programacion conduce a
programas mads faciles de escribir, leer y modificar.
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Figura 3.1. Estructura secuencial.

3.2. Estructura secuencial.

La estructura de control mas simple estd representada por una sucesién de operaciones donde el orden
de ejecucion coincide con la apariciéon de las instrucciones en el algoritmo (o cédigo del programa). La
figura 3.1 ilustra el diagrama de flujo correspondiente a esta estructura. En Fortran una estructura secuencial es
simplemente un conjunto de sentencias simples unas después de otra.

3.3. Estructura de seleccion.

La estructura de seleccion permite que dos conjuntos de instrucciones alternativas puedan ejecutarse segtin
se cumpla (o0 no) una determinada condicién. El pseudocddigo de esta estructura es descrito en la forma si
...entonces ...sino ..., yaque si p es una condicién y A y B respectivos conjuntos de instrucciones, la seleccién
se describe como si p es verdadero enfonces ejecutar las instrucciones A, sino ejecutar las instrucciones B.
Codificamos entonces esta estructura en pseudocddigo como sigue.

Si condicidén entonces

instrucciones para condicidén verdadera
sino

instrucciones para condicidén falsa
fin_si

El diagrama de flujo correspondiente se ilustra en la figura 3.2. En Fortran su implementacion tiene la siguiente
sintaxis:

IF (condicidén) THEN

sentencias para condicidén verdadera
ELSE

sentencias para condicidén falsa
ENDIF

> Sangrado (“indentacion”)

Mientras que la separacién de lineas en la codificacién de una estructura de control es sintacticamente
necesaria, el sangrado en los conjuntos de sentencias es opcional. Sin embargo, la sangria favorece la
legibilidad del programa y, por lo tanto, constituye una buena practica de programacién.
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® 3.3. Estructura de seleccion.

v

Figura 3.2. Estructura de seleccion.

Operador  Significado

< menor que .
Operador  Significado

> mayor que
== igual a .NOT. negacién
<= menor o igual que .AND. conjuncién
>= mayor o igual que .OR. disyuncién (inclusiva)
/= distinto a .EQV. equivalencia

Tabla 3.1. Operadores relacionales. Tabla 3.2. Operadores 16gicos.

La condicion en la estructura de seleccion es especificada en Fortran por una expresion logica, esto es, una
expresion que devuelve un dato de tipo 16gico: verdadero (. TRUE . ) o falso (. FALSE. ). Una expresion logica
puede formarse comparando los valores de expresiones aritméticas utilizando operadores relacionales y pueden
combinarse usando operadores logicos. El conjunto de operadores relacionales involucra a las relaciones de
igualdad, desigualdad y de orden, las cuales son codificadas en Fortran como se indica en la tabla 3.1. Por otro
lado, los operadores 16gicos basicos son la negacion, la conjuncion, la disyuncion (inclusiva) y equivalencia,
cuya codificacion en Fortran se indica en la tabla 3.2. El operador .NOT. indica la negacién u opuesto de
la expresion 16gica. Una expresiéon que involucra dos operandos unidos por el operador . AND . es verdadera
si ambas expresiones son verdaderas. Una expresioén con el operador . OR. es verdadera si uno cualquiera o
ambos operandos son verdaderos. Finalmente en el caso de equivalencia ldgica la expresion es verdadera si
ambos operandos conectados por el operador . EQV. son ambos verdaderos.'.

Cuando en una expresion aparecen operaciones aritméticas, relacionales y 1égicas, el orden de precedencia
en la evaluacién de las operaciones es como sigue:

1. Operadores aritméticos.
2. Operadores relacionales.
3. Operadores l6gicos, con prioridad: .NOT., .AND. y .OR., .EQV..

Operaciones que tienen la misma prioridad se ejecutan de izquierda a derecha. Por supuesto, las prioridades
pueden ser modificadas mediante el uso de paréntesis.

En muchas circunstancias se desea ejecutar un conjunto de instrucciones sélo si la condicién es verdadera
y no ejecutar ninguna instruccion si la condicién es falsa. En tal caso, la estructura de control se simplifica,
codificdndose en pseudocddigo como sigue (y con un diagrama de flujo como se indica en la figura 3.3)

Si condicidén entonces
instrucciones para condicidén verdadera
fin si

IEstos enunciados no son més que las conocidas tablas de verdad de la 16gica matemética.
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Figura 3.3. Estructura de seleccién sin seccién sino.

La sintaxis correspondiente en Fortran es

IF (condicidén) THEN
sentencias para condicidén verdadera
ENDIF

Si, ademds, s6lo debe realizarse una sentencia ejecutable cuando la condicién es verdadera, Fortran permite
codificar esta situacién en un if logico:

IF (condicidén) sentencia ejecutable

Otra circunstancia que se suele presentar es la necesidad de elegir entre mds de una alternativa de ejecucion.
En este caso podemos utilizar la estructura multicondicional cuya légica se puede expresar en la forma si
... entonces sino si ... sino . ... El pseudocddigo correspondiente es descrito como sigue (y su diagrama de flujo
se ilustra en la figura 3.4)

Si condicidén 1 entonces
instrucciones para condicidén 1 verdadera
sino si condicidén 2 entonces
instrucciones para condicidén 2 verdadera
sino si condicidén N entonces
instrucciones para condicidén N verdadera
sino
instrucciones para todas las condiciones falsas
fin si

Aqui, cada condicién se prueba por turno. Si la condicién no se se satisface, se prueba la siguiente, pero si la
condicion es verdadera, se ejecutan las instrucciones correspondientes para tal condicion y luego se va al final
de la estructura. Si ninguna de las condiciones son satisfechas se ejecutan las instrucciones especificadas en el
bloque correspondientes al sino final. Deberia quedar claro entonces que para que un estructura condicional sea
eficiente sus condiciones deben ser mutuamente excluyentes. La codificacion de esta estructura en Fortran se
indica a continuacion.

IF (condicidén 1) THEN

sentencias para condicidén 1 verdadera
ELSEIF (condicidén 2) THEN

sentencias para condicidén 2 verdadera
ELSEIF (condicién N) THEN

sentencias para condicidén N verdadera
ELSE

sentencias para todas las condiciones falsa
ENDIF
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Bloque F Bloque N

Figura 3.4. Estructura multicondicional.
Consideremos, como ejemplo de una estructura de seleccion, el disefio e implementacién de un algoritmo
para calcular las raices de una ecuacién cuadrética
2 —
ax“+bx+c=0,

esto es,

—b++Vb?2—4ac

2= 2a

La naturaleza de estas raices dependera del signo del discriminante A = b*> — 4 ac, lo cual nos lleva a implementar
una estructura de seleccion: si A > 0 las raices serdn nimeros reales, de lo contrario serdn nimeros complejos
conjugados uno del otro. Por otra parte, al ingresar los coeficientes, deberiamos asegurarnos que el coeficiente a
no es nulo, pues, de lo contario la férmula conduciria a una divisién por cero. Nuevamente, una estructura de
decisién permite verificar ésto. El pseudocddigo de nuestro algoritmo es el siguiente.

Leer a, b, ¢

Si a = 0 entonces
Escribir ’"La ecuacidén no es cuadratica’.
Salir.

fin_si.

Calcular A = b® —4ac.

Si A > 0 entonces
Calcular x; = (—b++vA)/2a
Calcular x; = (—=b—+vA)/2a

sino
Calcular x; = (—b+ivV—A)/2a
Calcular x = X

fin_si.

Imprimir x1 y Xx3.

A continuacién damos una implementacién de este algoritmo. Nétese que no utilizamos variables complejas
sino dos variables reales que contendran la parte real y la parte imaginaria de las posibles raices complejas.
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Codigo 3.1. Calculo de las raices de la ec. cuadratica

PROGRAM ecuadratica
! Se calculan las raices de la ecuacidn cuadrdtica ax#**2+bx+c=0
! Declaracidén de tipos

|
IMPLICIT NONE

REAL :: a,b,c ! coeficientes de la ecuaciodn
REAL :: discr ! discriminante de la ecuacidn
REAL :: x1,x2 ! variables para soluciones
REAL :: term, den

! Entrada de datos

WRITE (%, *) "Ingrese coeficientes a,b,c’
READ (x, *) a,b,c

IF( a == ) THEN
WRITE (+, *) ’"La ecuacidén no tiene término cuadratico’
STOP

ENDIF

discr = b*xx2 — 4.0xax*c

den = 2.0%*a

SORT (ABS (discr))

IF (discr >= 0 ) THEN
xl = (-b+term)/den

o+
[0}
B
S
I

x2 = (-b-term) /den

WRITE (x,*) ’'x1 ="', x1

WRITE (*,*) 'x2 = ', x2
ELSE

x1 = -b/den

x2 = term/den

WRITE (x,*) ’'x1 = (", x1, ' ,’', x2, ")’

WRITE (*,*) 'x1 = (', x1, " ,’', -x2, ")’
ENDIF
-
! Terminar
STOP

END PROGRAM ccuadratica

3.3.1. Ejercicios

Ejercicio 3.1 Dadas las variables con los valores que se indican:

a= 2.0 d= 2.5 i= 2 f = .FALSE.
b 5.0 e = -4.0 j = 3 t = .TRUE.
c = 10.0 k = -2

deducir el valor 16gico de cada una de las expresiones logicas siguientes. Indicar el orden en que se evaldan.
a)t .AND. f .OR. .FALSE.

b) axxi+b <= b/c+d
¢)i/j == 2+k .AND. b/c+d >= et+c/d-ax~*j
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d) (bx3+3.0) == (d-e) .AND. (.NOT. f)

Ejercicio 3.2 Implemente una estructura de decisién para verificar si un niimero es negativo o no negativo
(positivo o cero).

Ejercicio 3.3 Implemente una estructura de decisién para determinar si un nimero entero es par o impar
(Ayuda: utilice la funcién MOD (x, y) , la cual devuelve el resto de la divisién de x por y).

Ejercicio 3.4 Dada una esfera de radio R, considerando su centro como origen de coordenadas se quiere
determinar si un punto de coordenadas (x,y,z) estd dentro o fuera de la esfera. Implemente un algoritmo para
éste problema.

Ejercicio 3.5 Considérese en el plano un rectangulo dado por las coordenadas (xs,ys) de su vértice superior
izquierdo y las coordenadas (x;,y;) de su vértice inferior derecho. Se quiere determinar si un punto (x,y) del
plano esté dentro o fuera del rectdngulo. Implemente la solucién en un algoritmo.

Ejercicio 3.6 Dado tres nimeros reales distintos se desea determinar cual es el mayor. Implemente un algoritmo
apropiado (Ayuda: considere ya sea un conjunto de estructuras de seleccidn anidadas o bien dos estructuras de
seleccion en secuencia).

&> Estructuras de seleccion anidadas

La sentencia que comienza en el bloque de instrucciones verdadero o falso de la estructura de seleccién
puede ser cualquiera, incluso otra sentencia IF-THEN-ELSE. Cuando ésto ocurre en una o ambas
bifurcaciones de la estructura, se dice que las sentencias IF estan anidadas.

Ejercicio 3.7 Compile y ejecute el siguiente programa. ;A qué puede atribuirse el resultado que se obtiene?

PROGRAM test_igualdad
IMPLICIT NONE

REAL :: a
a=2.0
IF (1.0/a == 0.5) THEN

WRITE (x,*) "1/2 es igual a 0.5’
ELSE

WRITE (x,*) ’"1/2 es distinto a 0.5
ENDIF
a = 10.0
IF (1.0/a == 0.1) THEN

WRITE (x,*) ’"1/10 es igual a 0.1’
ELSE

WRITE (x,*) "1/10 es distinto a 0.1’
ENDIF
STOP

END PROGRAM test_igualdad

u .

&> |gualdad entre datos reales

Las cantidades reales que son algebraicamente iguales pueden producir un valor légico falso cuando se
comparan los respectivos datos reales con == ya que la mayoria de los niimeros reales no se almacenan
exactamente en la computadora.

Ejercicio 3.8 Implemente un algoritmo que intercambie los valores de dos nimeros reales si estdn en orden
creciente pero que no realice ninguna accidn en caso contrario.

Ejercicio 3.9 Implementar el calculo del valor absoluto de un nimero real con un if 16gico.
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Ejercicio 3.10 Implementar una estructura multicondicional para la evaluacién de la funcién

efx

six < —1,
flx)=<e si—1<x<1,

er six>1.

Ejercicio 3.11 Un examen se considera desaprobado si la nota obtenida es menor que 4 y aprobado en caso
contrario. Si la nota estd entre 7 y 9 (inclusive) el examen se considera destacado, y entre 9 y 10 (inclusive)
sobresaliente. Implementar un algoritmo para indicar el estatus de un examen en base a su nota.

3.4. Estructura de iteracion.

La estructura de control iterativa permite la repeticién de una serie determinada de instrucciones. Este
conjunto de instrucciones a repetir se denomina bucle (loop, en inglés) y cada repeticién del mismo se denomina
iteracion. Podemos diferenciar dos tipos de bucles:

= Bucles donde el nimero de iteraciones es fijo y conocido de antemano.
= Bucles donde el numero de iteraciones es desconocido de antemano. En este caso el bucle se repite
mientras se cumple una determinada condicién (bucles condicionales).

Para estos dos tipos de bucles disponemos de sendas formas bésicas de la estructura de control iterativa.

Comencemos con un bucle cuyo nimero de iteraciones es conocido a priori. La estructura iterativa, en tal
caso, puede expresarse en pseudocddigo como sigue.

Desde indice = valor inicial hasta valor final hacer
instrucciones del bucle
fin_desde

El diagrama de flujo correspondiente se ilustra en la figura 3.5.

15" El indice es una variable entera que, actuando como un contador, permite controlar el niimero de ejecuciones
del ciclo.

5" Los valor inicial y valor final son valores enteros que indican los limites entre los que varia indice al
comienzo y final del bucle.

15" Est4 implicito que en cada iteracién la variable indice toma el siguiente valor, incrementdndose en una
unidad. En seguida veremos que en Fortran se puede considerar incrementos mayores que la unidad e incluso
negativos.

05" El nimero de iteraciones del bucle es N = valor final - valor inicial +1.

I5" Dentro de las instrucciones del bucle no es legal modificar la variable indice. Asimismo, al terminar todas
las iteraciones el valor de la variable no tiene porque tener un valor definido, por lo tanto, la utilidad de la
variable indice se limita a la estructura de iteracion.

En Fortran la estructura repetitiva se codifica como sigue.

DO indice = valor inicial, valor final, incremento
sentencias del bucle
ENDDO
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Figura 3.5. Estructura de iteracion.

Aqui indice es una variable entera, mientras que valor inicial, valor final e incremento pueden ser variables,
constantes o expresiones enteras y pueden ser negativos. Si incremento no se especifica se asume igual a la
unidad. El ndmero de iteraciones del bucle estd dado por

N = méx { [ (valor final — valor inicial + incremento) /incremento | ,0 },

donde | | denota tomar la parte entera, descartando cualquier fraccién decimal. Sélo si N es mayor que O se
ejecutard el bucle.

Consideremos ahora los bucles condicionales. Aqui, el niimero de iteraciones no es conocido a priori, sino
que el bucle se repite mientras se cumple una determinada condicién. En este caso, la estructura iterativa se
describe en pseudocddigo de la siguiente forma (y su diagrama de flujo se ilustra en la figura 3.6)

Mientras condicidén hacer
instrucciones del bucle
fin mientras

I La condicién se evalia antes y después de cada iteracién del bucle. Si la condicién es verdadera las
instrucciones del bucle se ejecutardn v, si es falsa, el control pasa a la instruccion siguiente al bucle.

15" Si la condicién es falsa cuando se ejecuta el bucle por primera vez, las instrucciones del bucle no se
ejecutaran.

5" Mientas que la condicién sea verdadera el bucle continuaré ejecutandose indefinidamente. Por lo tanto,
para terminar el bucle, en el interior del mismo debe tomarse alguna accién que modifique la condicién de
manera que su valor pase a falso. Si la condicién nunca cambia su valor se tendrd un bucle infinito, la cual no es
una situacidén deseable.

En Fortan un bucle condicional se codifica como sigue.

DO WHILE (condicidn)
sentencias del bloque
ENDDO

donde condicion es una expresion légica.

Fortran, ademds del DO WHILE, dispone de una estructura mas general para bucles condicionales, cuya
codificacidn es la siguiente:

DO
sentencias del bloque pre-condicidn
IF (condicidén) EXIT
sentencias del bloque post-condicidn
ENDDO
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Figura 3.6. Estructura de iteracién condicional. Figura 3.7. Estructura de iteracion condicional general.

El pseudocédigo correspondiente puede ser descrito como sigue (y su diagrama de flujo se ilustra en la
figura 3.7):

Repetir
instrucciones pre-condicidn
Si condicidén terminar repetir
instrucciones post—-condiciodn
fin repetir

I Las sentencias correspondientes tanto a los bloques previo y posterior al test de la condicién son ejecutadas
indefinidamente mientras la condicién sea falsa. Cuando la condicién resulta verdadera la repeticién es terminada
y la ejecucién continda con la sentencia que sigue a la estructura de control. Nétese que si la condicidn es
verdadera cuando se inicia el bucle por primera vez, las sentencias del bloque pre-condicién serdn ejecutadas
una vez y luego el control es transferido a la sentencia siguiente a la estructura, sin ejecutarse ninguna de las
instrucciones correspondientes al bloque posterior a la condicién.

5" Un bucle condicional DO WHILE

DO WHILE (condicidn)
sentencias del bloque
ENDDO

es equivalente a un bucle condicional general de la forma

DO
IF (.NOT. condicidén) EXIT
sentencias del bloque
ENDDO

Esto es, la condicion 16gica que controla la repeticién del bucle es evaluada al comienzo del bucle y es la
negacion légica a la condicién que controla al bucle DO WHILE.

I Un bucle condicional general de la forma

DO
sentencias del bloque
IF (condicidén) EXIT
ENDDO
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repetira las sentencias del bloque hasta que la condicién se haga verdadera. Pero debido a que la condicién se
verifica después de que el cuerpo del bucle se ha ejecutado, las instrucciones correspondientes se ejecutardn al
menos una vez sin importar si la condicién es verdadera o falsa. Este tipo de bucle condicional es conocido
como repetir hasta que (repeat-until).

Consideremos, como ejemplo de estructura de iteracion, la determinacién de la suma de los n primeros
enteros positivos, esto es, el valor de }'I' ;. Aqui un bucle iterativo DO permite calcular la suma puesto el
nimero de términos a sumar es conocido de antemano. El siguiente pseudoc6édigo muestra el algoritmo que

realiza la suma.

Leer n

Iniciar suma = 0

Desde i = 1 hasta n hacer
Tomar suma = suma + 1

fin_desde
Escribir suma
Terminar

Nétese la inicializacion a cero de la variable suma utilizada como acumulador para la suma pedida. La
implementacién en Fortran es como sigue.

Cédigo 3.2. Suma de los # primeros enteros positivos

PROGRAM sumar
! Se calcula la suma de los n primeros enteros positivos
! Declaracién de tipos

I ———————————————————
IMPLICIT NONE

integer :: n ! nimero de términos a sumar
integer :: suma ! valor de la suma
integer :: i ! indice del bucle

! Entrada de datos

WRITE (%, *) ’'Ingrese el nUmero de enteros positivos a sumar’
READ (%, *) n

END PROGRAM sumar

Considérese ahora el problema de determinar el primer valor n para el cual la suma Y} | excede a 10000.
En este problema no puede utilizarse un bucle DO ya que el nimero de términos a sumar no es conocido de
antemano. Es claro, entonces, que debemos utilizar un bucle condicional, tal como se muestra en el siguiente
pseudocddigo.
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Iniciar n = 0

Iniciar suma = 0

Mientras suma < 10000 hacer
Tomar n = n +1
Tomar suma = suma + n

fin_mientras

Escribir n

Terminar

La implementacién en Fortran de este algoritmo se muestra a continuacion.

Cédigo 3.3. Determinar valor a partir del cual la suma de los n primeros enteros positivos excede un limite

PROGRAM sumar

! Se determina el primer valor de n para el cual la suma de los n
! primeros enteros positivos excede a 10000.

! Declaracidén de tipos
| oo ce e o o e e e e e e e e e e e e o e e o o o e e e ) o e o o e e e e e ) 3 ) o e e o e e ) e 3 ey o e e e e e o

IMPLICIT none

INTEGER :: n ! nimero de términos a sumar
INTEGER :: suma ! valor de la suma
INTEGER :: limite = 10000 ! 1limite superior de la suma

DO WHILE (suma <= limite)
n =n +1
suma = suma + n

END PROGRAM sumar

3.4.1. Ejercicios

Ejercicio 3.12 Imprimir una tabla de los cuadrados y cubos de los primeros N nimeros enteros positivos.
Ordenar la tabla primero en orden ascendente y luego en orden descendente.

Ejercicio 3.13 Calcular la suma y multiplicacién de los N primeros nimeros enteros positivos,

& Inicializacién de los acumuladores.

Siempre recordar inicializar a cero la variable que sera utilizada para acumular una suma repetida y a uno
la variable que acumulara un producto repetido.
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Ejercicio 3.14 Considérese el siguiente conjunto de bucles repetitivos anidados.

DO i=1,5
WRITE (x,x) ’'Iteracién externa = ’,i
DO j=1,4
WRITE (x,x) ’'Iteracidén interna = ', ]
ENDDO
ENDDO

(Cuantas iteraciones del bucle interno se realizan por cada iteracion del bucle externo? ;Cudntas iteraciones se
realizan en total?

Ejercicio 3.15 Tabular la funcién f(x) = ¢~ para x en el intervalo [0, 1] con un paso h = 0.1 (Ayuda:

1
V21
Notar que si [a,b] es el intervalo bajo consideracion, los puntos donde hay que evaluar f estan dados por
xi=a+ihconi=0,...,N,siendo N = (b—a)/h).

Ejercicio 3.16 Determinar cual es el primer valor de N para el cual la suma de los N primeros nimeros enteros
positivos, Y~ , i, excede a 10 000.

Ejercicio 3.17 Reimplementar el ejercicio anterior con una estructura repetir hasta que.

3.5. Implementando lo aprendido.

Los siguientes ejercicios plantean diversos problemas. Disefiar un algoritmo apropiado implementando su
pseudocddigo y su diagrama de flujo correspondiente. Luego codificarlo en un programa Fortran.

Ejercicio 3.18 Determinar si un afio dado es bisiesto o no. Recordar que un afio es bisiesto si es divisible por 4,
aunque si es divisible por 100 no es bisiesto, salvo si es divisible por 400. Asi, 1988 fue bisiesto, como también
lo fue el afio 2000, pero no 1800.

Ejercicio 3.19 Dado un conjunto de N niimeros determinar cuantos de ellos son negativos, positivos o cero.

Ejercicio 3.20 Calcular las soluciones de una ecuacién cuadritica ax®> 4+ bx + ¢ = 0. Contemplar todas las
alternativas posibles (raices reales distintas, iguales y complejas). Testear el programa para el siguiente conjunto
de coeficientes:

a)a=12,b=2,c= —12 (raices reales distintas, 2 y —3),
b) a=2,b=4,c =2 (raices reales iguales, —1),
c)a=1,b=0,c =1 (raices complejas conjugadas, i y —i).

Ejercicio 3.21 Dado un conjunto de N nimeros reales determinar cual es el mdximo, el minimo y la media
aritmética del conjunto.

Ejercicio 3.22 El mdximo comiin divisor, mcd, (a,b) de dos niimero enteros positivos a y b, cona > b >0
puede ser calculado por el algoritmo de Euclides, segtn el cual el mcd es igual al dltimo resto no nulo que se
obtiene por aplicacion sucesiva de la division entera entre el divisor y el resto del paso anterior. Esto es,

(a,b) = (b,r1) = (r1,r2) =+ = (rn—1,ra) = (1, 0) = 1y

Implementar este algoritmo para calcular el mdximo comiin divisor de dos nimeros enteros cualesquiera dados,
contemplando la posibilidad de que alguno de ellos, 0 ambos, sea negativo o cero (Ayuda: (a,b) = (|al,|b]),
(a,0) = |a| y (0,0) no estd definido). Verificar el programa calculando (25950,1095) = 15, (252,-1324) = 4.

Ejercicio 3.23 La fecha del domingo de Pascua corresponde al primer domingo después de la primera luna
llena que sigue al equinocio de primavera en el hemisferio norte. Los siguientes cdlculos permiten conocer esta
fecha para un afio comprendido entre 1900 y 2099:
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= MOD
= MOD
= MOD (afio,7)

= MOD (19xa+24,30)

= MOD (2*b+4xc+6*d+5,7)
= 22+d+e

ano,19)
afo,4)

—~ o~~~

5 0 Q0 O w
|

donde n indica el nimero de dias del mes de marzo (o abril si n es superior a 31) correspondiente al domingo
de Pascua. Realizar un programa que determine esta fecha para un afio dado y comprobar que para el 2010, el
domingo de Pascua corresponde al 4 de abril.

Ejercicio 3.24 Todo nimero complejo z = (x,y) = x+ iy no nulo admite exactamente n raices n-ésimas distintas
dadas por
0 +2km .. (0+2km
Wy = \’Vﬁ[cos <7) +i sin (7)} ,
n n
donde k=0,1,...,n—1,y

p=\/x24+y2, tan@ = y/x.

Dado un nimero complejo z no nulo determinar todas sus raices n-ésimas (Ayuda: para determinar el argumento
0 utilizar la funcién ATAN2 (y, x) ).

Ejercicio 3.25 Calcular el seno de un niimero x a partir de su serie de Taylor:

© o X

sinx=x——-+_—-—=+--
3! + st +
Considerar tantos términos como sean necesarios para que el error cometido en la aproximacién finita sea
menor que cierta tolerancia prescrita (digamos < 107%). Observacion: Notar que dado un término de la serie, el
siguiente se obtiene multiplicando por —x? y dividiendo por el producto de los dos enteros siguientes. Testear el
programa tanto con valores pequefios como con valores muy grandes. Comentar los resultados obtenidos.

Ejercicio 3.26 En la ecuacion ctibica general de tercer grado
3 2 _
x +ax +ax+ag=0

poniendo x = x’ — a, /3, obtenemos una ecuacién cibica sin término cuadratico, cuyas raices son las de la
primera, incrementadas en —ay /3. Alcanza, pues, con considerar las ecuaciones cubicas del tipo

x3+px+q:0,

donde, para simplificar, supondremos que p y g son niimeros reales. Se sigue entonces del teorema fundamental
del algebra que esta ecuacion tiene o bien una Unica raiz real, o bien tres raices reales (pudiendo coincidir dos
de ellas). Tales raices reales pueden ser calculadas como sigue. Sea

2 3

q p
A:— _—

4+27’

el discriminante de la ecuacion cubica. Si A > (, entonces existe una Unica raiz real, x;, dada por x| = u; + vy,

donde

1/3 1/3

s (e B4 () ]
Si A = 0, tendremos tres raices reales (siendo al menos dos iguales), x; , x, = x3, dadas por
xX1=2u1, X2=x3=-—u

donde

3

ason(9]-4
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Finalmente, si A < 0, habra tres raices reales (distintas) x1,x;,x3, dadas por

2 4
x1:2p1/3cos<g), x2:2p1/3c0s(2+37r>, x3:2p1/3cos<z+37t>

donde

3
Y __41
p= 77 cos 0 20

Teniendo en cuenta lo anterior implemente un algoritmo (y su programa) para calcular las raices reales de las
ecuaciones ctibicas del tipo x> 4 px + g = 0. Compruebe el programa con los siguientes casos triviales:

x3:0, x3—1:0, X —x=0
Finalmente, encuentre las raices reales de la ecuacion
x> —3.5292x+2.118176 = 0

(Rta: Redondeado a cinco decimales, las raices son x| = 1.43167,x, = —2.1272,x3 = 0.69552)
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Modularizacion

Divide et vinces.
(Divide y vencerds)
— Julio Cesar

4.1. Programacion modular

Frente a un problema complejo una de las maneras més eficientes de disefiar (e implementar) un algoritmo
para el mismo consiste en descomponer dicho problema en subproblemas de menor dificultad y éstos, a su vez,
en subproblemas mds pequefios y asi sucesivamente hasta cierto grado de refinamiento donde cada subproblema
involucre una sola tarea especifica bien definida y, preferiblemente, independiente de los otros. El problema
original es resuelto, entonces, combinando apropiadamente las soluciones de los subproblemas.

En una implementacién computacional, cada subproblema es implementado como un subprograma. De este
modo el programa consta de un programa principal (1a unidad del programa de nivel mds alto) que llama a
subprogramas (unidades del programa de nivel m4s bajo) que a su vez pueden llamar a otros subprogramas. La
figura 4.1 representa esquematicamente la situacién en un diagrama conocido como diagrama de estructura.
Por otra parte en un diagrama de flujo del algoritmo, un subprograma es representado como se ilustra en la
figura 4.2 el cual permite indicar que la estructura exacta del subprograma serd detallada aparte en su respectivo
diagrama de flujo.

Este procedimiento de dividir el programa en subprogramas mds pequefios se denomina programacion
modular y la implementacién de un programa en subprogramas que van desde lo mds genérico a lo mds
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Programa principal

Subprograma A Subprograma B
Subprograma C Subprograma D Subprograma C
Figura 4.1. Diagrama de estructura de un algo- Figura 4.2. Representacién de un subprograma
ritmo o programa modularizado. en un diagrama de flujo.

particular por sucesivos refinamientos se conoce como diseiio descendente (top-down, en inglés).

Un disefio modular de los programas provee la siguientes ventajas:

El programa principal consiste en un resumen de alfo nivel del programa. Cada detalle es resuelto en los
subprogramas.

Los subprogramas pueden ser planeados, codificados y comprobados independientemente unos de otros.
Un subprograma puede ser modificado internamente sin afectar al resto de los subprogramas.

Un subprograma, una vez escrito, pueden ser ejecutado todas las veces que sea necesario a través de una
invocacién al mismo.

Una vez que un subprograma se ha escrito y comprobado, se puede utilizar en otro programa (reusabili-
dad).

&> No reinventar la rueda.

Esta es una regla basica de la programacion. Aqui la expresion reinventar la rueda se utiliza para referirse
a la situacién en que se desperdicia tiempo y recursos en la implementacién de una solucién a un
problema que ya ha sido resuelto apropiadamente.

4.2. Funciones y subrutinas.

Fortran provee dos maneras de implementar un subprograma: funciones y subrutinas. Estos subprogramas
pueden ser intrinsecos, esto es, provistos por el compilador o externos'. Ya hemos mencionado (y utilizado)
las funciones intrinsecas que provee el propio lenguaje. Por otra parte los subprogramas externos pueden ser
escritos por el propio usuario o bien formar parte de un paquete o biblioteca de subprogramas (library, en
inglés) desarrollado por terceros. En lo que sigue consideraremos la creacién de subprogramas externos propios.
Para ello presentamos, como ejemplo, una versién modularizada del c6digo 1.1para el calculo del drea de un
circulo tratado en el capitulo 1.

Cédigo 4.1. Implementacion modular del codigo para calcular el area de un circulo

PROGRAM principal

IFortran también proporciona subprogramas internos, los cuales son procedimientos contenidos dentro de otra unidad de programa,
pero ellos no serdn considerados aqui.
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IMPLICIT NONE
REAL :: radio, area

INTERFACE
SUBROUTINE leer_radio(radio)
IMPLICIT NONE
REAL, INTENT (OUT) :: radio
END SUBROUTINE leer_ radio
FUNCTION calcular_area (radio)
IMPLICIT NONE
REAL :: calcular_area
REAL, INTENT (IN) :: radio
END FUNCTION calcular_area
SUBROUTINE imprimir_area(a)
IMPLICIT NONE
REAL, INTENT (IN) :: a
END SUBROUTINE imprimir_ area
END INTERFACE

CALL leer_radio(radio)
area = calcular_area(radio)
CALL imprimir_area (area)

END PROGRAM principal

SUBROUTINE leer_radio (radio)

IMPLICIT NONE
REAL, INTENT (OUT) :: radio

! Ingreso de datos

WRITE (x, *x) ’'Ingrese radio’
READ (x, *) radio

END SUBROUTINE leer_ radio

FUNCTION calcular_area (radio)

! Declaracioén de tipo de la funcidn y
! de los argumentos formales

IMPLICIT NONE
REAL :: calcular_area
REAL, INTENT (IN) :: radio
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REAL, PARAMETER :: PI = 3.14159

END FUNCTION calcular_area

SUBROUTINE imprimir_ area(a)

IMPLICIT NONE
REAL, INTENT (IN) :: a

END SUBROUTINE imprimir_area

Como vemos subrutinas y funciones comparten caracteristicas comunes, por cuanto son subprogramas,
pero poseen también ciertas diferencias. Desde el punto de vista de la implementacién de un subprograma, la
diferencia fundamental entre una funcion y una subrutina es que las funciones permiten devolver un tinico valor
a la unidad del programa (programa principal o subprograma) qgue la invoca mientras que una subrutina puede
devolver cero, uno o varios valores. La forma sintdctica de una funcién y una subrutina es como sigue:

FUNCTION nombre (argumentos) SUBROUTINE nombre (argumentos)
declaracidén de tipo de nombre declaraciones de tipo
declaraciones de tipo sentencias
sentencias RETURN
nombre = expresidn END SUBROUTINE nombre
RETURN

END FUNCTION nombre
A continuacion detallamos las caracteristicas comunes y distintivas de subrutinas y funciones.

" Un programa siempre tiene uno y sélo un programa principal. Subprogramas, ya como subrutinas o
funciones, pueden existir en cualquier nimero.

5" Cada subprograma es por si mismo una unidad de programa independiente con sus propias variables,
constantes literales y constantes con nombres. Por lo tanto cada unidad tiene sus respectivas sentencias
IMPLICIT NONE y de declaraciones de tipo. Ahora, mientras que el comienzo de un programa principal es
declarado con la sentencia PROGRAM, el comienzo de una subrutina estd dado por la sentencia SUBROUTINE
y, para una funcidn, por la sentencia FUNCT ION. Cada una de estas unidades del programa se extiende hasta su
respectiva sentencia END PROGRAM | SUBROUTINE | FUNCTION, la cual indica su fin 16gico al compilador.

¥ [os subprogramas deben tener un nombre que los identifique. El nombre escogido debe seguir las reglas
de todo identificador en Fortran. Ahora bien, como una funcién devuelve un valor el nombre de una funcion
tiene un tipo de dato asociado el cual debe, entonces, ser declarado dentro del cuerpo de la FUNCTION. Por el
contrario, al nombre de una subrutina no se le puede asignar un valor y por consiguiente ningtin tipo de dato
estd asociado con el nombre de una subrutina.
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=" Alcance de los identificadores. En Fortran los nombres del programa principal y de los subprogramas son
globales, esto es, conocidos por todas las unidades del programa. Por lo tanto, tales nombres deben ser tinicos a
lo largo de todo el programa. Los restantes identificadores (correspondientes a nombres de variables, constantes
con nombres y funciones intrinsecas) dentro de una unidad de programa son /ocales al mismo. Esto significa
que una unidad de programa desconoce la asociacién de un identificador con un objeto local de otra unidad
y por lo tanto el mismo nombre pueden ser utilizado en ambas para designar datos independientes. Asi, por
ejemplo, en nuestro cédigo, la constante con nombre P I sélo es conocida por la funcién calcular_area,
mientras que el identificador radio utilizado en el programa principal y dos de los subprogramas se refieren a
variables distintas.

15" El nombre del subprograma es utilizado para la invocacién del mismo. Ahora bien, una funcién es invocada
utilizando su nombre como operando en una expresion dentro de una sentencia, mientras que una subrutina se
invoca en una sentencia especifica que utiliza la instruccién CALL.

I Al invocar un subprograma el control de instrucciones es transferido de la unidad del programa que realiza
la invocacién al subprograma. Entonces las respectivas instrucciones del subprograma se ejecutan hasta que se
alcanza una sentencia RETURN, momento en el cual el control vuelve a la unidad del programa que realiz6 la
invocacion. Ahora bien, en la invocacidn de una funcién el control de instrucciones retorna a la misma sentencia
que realiz6 el llamado, mientras que en una subrutina el control retorna a la sentencia siguiente a la del llamado.

I La forma de compartir informacién entre una unidad de programa y el subprograma invocado es a través
de una lista de argumentos. Los argumentos pueden ya sea pasar informacion de la unidad del programa al
subprograma (argumentos de entrada), del subprograma hacia la unidad de programa (argumentos de salida) o
bien en ambas direcciones (argumentos de entrada/salida).

I Los argumentos utilizados en la declaracién de una subrutina o funcién son conocidos como argumentos
formales o ficticios y consisten en una lista de nombres simbdlicos separados por comas y encerrada entre
paréntesis. La lista puede contar con cualquier nimero de elementos, inclusive ninguno, pero, por supuesto,
no puede repetirse ningin argumento formal. Si no hay ningin argumento entonces los paréntesis pueden ser
omitidos en las sentencias de llamada y definicién de una subrutina, pero para una funcidn, por el contrario,
siempre deben estar presentes. En Fortran la distincién entre argumentos formales de entrada, salida y entrada/-
salida es especificada a través del atributo INTENT (tipo) en la sentencia de declaracién de los mismos, donde
tipo puede tomar los valores IN, OUT 6 INOUT, respectivamente. En particular en una funcion los argumentos
formales son utilizados solamente como argumentos de entrada, por lo que los argumentos de la misma siempre
deben ser declarados con el atributo INTENT (IN). Nétese que es el nombre de la funcién en si mismo el
que es utilizado para devolver un valor a la unidad de programa que lo invocé. De este modo, el nombre de
una funcién puede ser utilizada como una variable dentro de la misma y debe ser asignada a un valor antes de
que la funcion devuelva el control. Considerando nuestro ejemplo, vemos que el argumento formal radio en
la definicién de la subrutina leer_radio actia como un argumento de salida, mientras que el argumento
formal a, de la subrutina imprimir_area, actia como un argumento de entrada. Por su parte en la funcién
calcular_area, vemos que el argumento formal radio actia efectivamente como un dato de entrada y
que la devolucién del valor de la funcién es dada por una sentencia en donde se asigna el valor apropiado a
calcular_area.

I Los argumentos que aparecen en la invocacién de un subprograma son conocidos como argumentos
actuales. La asociacion entre argumentos actuales y formales se realiza cada vez que se invoca el subprograma
y de este modo se transfiere la informacién entre la unidad del programa y el subprograma. La correspondencia
entre los argumentos actuales y los formales se basa en la posicion relativa que ocupan en la lista. No existe
correspondencia a través de los nombres (esto es, los nombres de variables en los argumentos formales y actuales
no deben ser necesariamente los mismos, por ejemplo, en nuestro c6digo el argumento formal a de la subrutina
imprimir_area se corresponde con el argumento actual area del programa principal a través de la llamada
correspondiente). Pero, el tipo de dato de un argumento actual debe coincidir con el tipo de dato del argumento
formal correspondiente. Un argumento formal de salida (y de entrada/salida) es una variable en el subprograma
cuyo valor serd asignado dentro del mismo y s6lo puede corresponderse con un argumento actual que sea una
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variable (del mismo tipo, por supuesto) en la unidad de programa que invoca al subprograma. Un argumento
formal de entrada, por otra parte, es una variable que preserva su valor a través de todo el subprograma y puede
corresponderse a un argumento actual de la unidad del programa que pueden ser no s6lo una variable sino
también a una expresion (incluyendo una constante). Si al argumento actual es una expresion, ésta es evaluada
antes de ser transferida.

= Pasaje por referencia.

En programacién existen varias alternativas para implementar la manera en la cual los argumentos actuales
y formales son transmitidos y/o devueltos entre las unidades de programa. Fortran, independientemente
de si los argumentos son de entrada, salida o entrada/salida, utiliza el paradigma de pasaje por referencia.
En este método en vez de pasar los valores de los argumentos a la funcién o subrutina (pasaje por valor),
se pasa la direccién de memoria de los argumentos. Esto significa que el argumento actual y formal
comparten la misma posicién de memoria y por lo tanto, cualquier cambio que realice el subprograma en el
argumento formal es inmediatamente "visto" en el argumento actual. Por este motivo los argumentos que
actuaran como datos de entrada deben ser declarados en el subprograma con el atributo INTENT (IN),
ya que de este modo cualquier intento de modificar su valor dentro del subprograma originara un error de
compilacion.

5" Interfaz implicita y explicita. De acuerdo a la nota anterior, es claro que la lista de argumentos actuales
en la llamada de un subprograma debe corresponderse con lista de argumentos formales en niimero, tipo y
orden®. Ahora bien, debido a que cada subprograma externo es una entidad completamente independiente de
otra (inclusive del programa principal), el compilador asume que tal correspondencia de argumentos es siempre
correcta. Se dice entonces que los subprogramas externos tienen una interfaz implicita. Esto implica que si
existe un error de correspondencia en la invocacién del subprograma, el programa aiin compilard, pero generard
resultados inconsistentes y erréneos. Para que el compilador pueda verificar la consistencia de las llamadas
a los subprogramas debe hacerse explicita las interfaces de los mismos. Una manera de proveer una interfaz
explicita de un subprograma consiste en utilizar un bloque de interfaz en la unidad de programa que efectia la
llamada?®. La forma de un bloque de interfaz para una subrutina y funcién externas es

INTERFACE
SUBROUTINE nombre_subrutina(argumentos)
IMPLICIT NONE
declaracién de argumentos
END SUBROUTINE nombre_ subrutina
FUNCTION nombre_ funciodn(argumentos)
IMPLICIT NONE
declaracidén de nombre_ funcion
declaracién de argumentos
END FUNCTION nombre funciodn
END INTERFACE

Esto es, se declaran las cabeceras (del inglés, header) de cada una de las subrutinas y funciones externas
que utilizard la unidad de programa en cuestién. Nétese que la cabecera incluye solamente el nombre del
subprograma y la declaracion de los argumentos formales, por lo que no incluye la declaracion de variables
locales ni instrucciones ejecutables. El bloque de interfaz es colocado en la unidad de programa que invoca
al subprograma en la parte reservada para la declaracién de tipos. El programa principal de nuestro ejemplo
muestra claramente como definir una interfaz explicita para los tres subprogramas utilizados. Nétese que cada
interfaz, ain cuando esta contenida dentro de una unidad de programa, es una entidad separada de la misma,
asi que el mismo nombre de variable puede aparecer en la interfaz y la unidad de programa que la incluye
sin causar ningun conflicto. Con la informacién proporcionada por el bloque interfaz, el compilador puede

2Fortran permite construir subprogramas con argumentos opcionales y con nombre, pero esta caracteristica avanzada no serd
considerada aqui.

3Una forma alternativa de hacer explicita la interfaz de un subprograma consiste en construir un médulo de procedimientos como se
verd mds adelante.
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entonces verificar la consistencia en las llamadas de los subprogramas y en caso de error abortard la compilacién
indicando el origen del mismo.

5" Bajo circunstancias normales, las variables locales de un subprograma resultan en un estado indefinido tan
pronto como el control vuelve a la unidad de programa que lo llamé. En aquellas (raras) circunstancias en que
debe asegurarse que una variable local preserve su valor entre sucesivas llamadas al subprograma se utiliza el
atributo SAVE en la declaracién de tipo tal variable. Pero ademds, cualquier variable local que es inicializada
en su declaracion de tipo preserva también su valor entre llamadas, sin necesidad de especificar el atributo
SAVE en la misma.

4.2.1. Ejercicios

Ejercicio 4.1 Ampliar el cédigo del ejemplo implementando una funcién para calcular el perimetro del circulo.

Ejercicio 4.2 Escribir una subrutina que permita el intercambio de dos variables reales. Explicar por qué tal
subrutina funciona.

Ejercicio 4.3 En el plano una rotacién de dngulo 6 alrededor del origen transforma las coordenadas (x,y) de
un punto en nuevas coordenadas (x’,y") dadas por

x' =xcosO+ysin6,
y = —xsin0 +ycos 6.

Implementar: (a) funciones, (b) una subrutina, para realizar tal rotacién.

Ejercicio 4.4 Identificar los errores cometidos en los siguientes subprogramas o en la invocacién de las mismos.

PROGRAM main PROGRAM main
IMPLICIT NONE IMPLICIT NONE
REAL :: a,b INTERFACE
INTERFACE SUBROUTINE funny (output)
SUBROUTINE silly (input, output IMPLICIT NONE
) REAL, INTENT (OUT) :: output
IMPLICIT none END SUBROUTINE funny
REAL, INTENT (IN) :: input END INTERFACE
REAL, INTENT (OUT) :: output [ ommmmmmeesseesseeeeeeesses
END SUBROUTINE silly CALL funny (1.0)
END INTERFACE | memmmmeeeeeessseeesseseeee
f memmmmeeessessseeesssseeee STOP
a=20.0 END PROGRAM main
CALL silly(a,b)
WRITE (*,*) a, b SUBROUTINE funny (output)
L e IMPLICIT NONE
STOP REAL, INTENT (OUT) :: output

END PROGRAM main P —

SUBROUTINE silly (input, output) R i e
IMPLICIT NONE RETURN
REAL, INTENT (IN) :: input END SUBROUTINE funny
REAL, INTENT (OUT) :: output

output = 2.0xinput
input = -1.0

END SUBROUTINE silly
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Ejercicio 4.5 El siguiente ejercicio muestra que, sin una interfaz explicita, la invocacién a un subprograma con
un argumento incorrecto produce resultados indeseables. Considere el siguiente programa:

PROGRAM main
IMPLICIT NONE
REAL :: x = 1.0
CALL display (x)

END PROGRAM main

SUBROUTINE display (i)
IMPLICIT NONE
INTEGER, INTENT (IN) :: i
WRITE (*, *) 1

END SUBROUTINE display

(Compila el programa? ;Cudl es el resultado obtenido? ;Que resultado hubiera esperado? Escriba un bloque
interfaz para la subrutina en el programa principal y vuelva a compilar el programa. ;Qué se obtiene?

4.3. Compilacion por separado de las unidades del programa.

En la préctica pareceria que las diversas unidades que conforman un programa deben ser guardadas en
un dnico archivo fuente para proceder a su compilacion. Ciertamente nada impide proceder siempre de esta
forma. Sin embargo, es posible compilar el programa a partir de las distintas unidades que lo conforman cuando
éstos son guardados en archivos fuente separados. Por ejemplo, consideremos nuevamente nuestro codigo
modularizado para el célculo del area del circulo. Asumiendo que el programa principal es guardado en el
archivo fuente area . £ 90 mientras que los subprogramas son guardados en los archivos leer-radio.£90,
calcular—-area.f90, imprimir—area.f90 respectivamente, el programa ejecutable area puede ser
compilado con la siguiente linea de comandos

$ gfortran -Wall -o area area.f90 leer-radio.f90 calcular-area.f90 \
imprimir-area.f90

Mis aun las distintas unidades pueden ser compiladas separadamente y luego unidas para generar el programa
ejecutable. Para ello utilizamos el compilador con la opcién —c sobre cada unidad del programa como sigue:

gfortran -Wall -c area.f90

gfortran -Wall -c leer-radio.f90
gfortran -Wall -c calcular-area.f90
gfortran -Wall -c imprimir-area.f90

Ur U 0

Estos comandos generan, para cada archivo fuente, un nuevo archivo con el mismo nombre pero con extension
. 0. Estos archivos, conocidos como archivos objeto, contienen las instrucciones de maquina que corresponden a
los archivos fuente. El programa ejecutable resulta de la unién de los archivos objetos (procedimiento conocido
como linking), lo cual se logra con la siguiente linea de comandos:

$ gfortran -o area area.o leer-radio.o calcular-area.o imprimir-area.o

Aunque esta forma de proceder puede parecer innecesaria para pequefios programas, resulta de gran versatilidad
para la compilacién de programas que son construidos a partir de un gran ndmero de subprogramas. Esto se debe
a que si se efectian cambios sobre unas pocas unidades del programa, sélo ellas necesitan ser recompiladas.
Por supuesto, para obtener el ejecutable final, el proceso de linking debe repetirse. Todo este proceso puede ser
automatizado con herramientas apropiadas como ser la utilidad make.
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4.4. Implementando lo aprendido.

Los siguientes ejercicios plantean diversos problemas. Disefiar un algoritmo apropiado como se indique
implementando su pseudocddigo (con su respectivo diagrama de flujo) para luego codificarlo en Fortran.

Ejercicio 4.6 Implementar un subprograma apropiado (funcién o subrutina) para expresar un dngulo dado en
grados, minutos y segundos en radianes y viceversa.

Ejercicio 4.7 Implementar una funcién para el cilculo del factorial de un nimero entero positivo, n!, el cual es
definido en forma recursiva segun:
1 sin=0,
n! =
nn—1)! sin>0.

Utilizar tal funcién para determinar el factorial de los 35 primeros enteros positivos.
Observacion I: En vez del procedimiento recursivo calcular el factorial comon! =1-2-3---(n—1)-n.
Observacion 2: Es probable que deba implementar nuevamente la funcién para que devuelva un valor real.

Explicar por qué esto es asi.

Ejercicio 4.8 Dado dos enteros no negativos n 'y r con n > r implementar una funcién para el calculo del

coeficiente binomial
n\ n!
r)  rl(n—r)!

a) Testee la funcion calculando (3), (3) y (37)-

b) Utilice la funcién para imprimir las N primeras filas del tridngulo de Tartaglia o Pascal.

Observacion: En vista de los resultados del ejercicio anterior considere no utilizar la funcién factorial. Para ello

note que:
(n) nn—1)n—-2)---(n—r+1) n(n—l)(n—Z)---(n—r—i—l)'

r

r! N 1-2---(r—1)-r

Ejercicio 4.9 Escribir una funcién que devuelva un valor 16gico (esto es, verdadero o falso) segiin un nimero
entero positivo dado es primo o no. Observacion: Recordar que un entero positivo p es primo si es divisible
s6lo por si mismo y la unidad. El método mds simple para determinar si p es primo consiste en verificar si no
es divisible por todos los nimeros sucesivos de 2 a p — 1. Debido a que el tinico primo par es el 2, se puede
mejorar el método separando la verificacion de la divisibilidad por 2 y luego, si p no es divisible por 2, testear la
divisibilidad por los enteros impares existentes entre 3y p — 1.

a) Utilice la funcién para determinar los N primeros nimeros primos.

b) Utilice la funcién para imprimir los factores primos de un entero positivo dado.

¢) Mejore la rapidez de la funcién notando que podemos terminar el testeo de la divisibilidad no en p — 1 sino
antes, en [,/p], ya que si hay un factor mayor que [,/p] entonces existe un factor menor que [,/p], el cual ya
ha sido revisado. Esta modificacién ;afecta a la escritura de los programas anteriores? ;Y a la ejecucion de
los mismos?

4.5. Subprogramas como argumentos.

Fortran permite que un subprograma sea pasado a otro subprograma en su lista de argumentos. Para tal
efecto, el correspondiente argumento formal es declarado con un bloque de interfaz dentro del subprograma, lo
cual permite, entonces, especificar completamente las caracteristicas del subprograma que serd pasado. Notese
que en esta circunstancia, el atributo INTENT no tiene relevancia, y por lo tanto no se aplica. Por ejemplo, la
siguiente subrutina estima la derivada de cualquier funcién f(x) suave en un punto x = a haciendo uso de la
aproximacion f’(a) ~ [f(a+h) — f(a—h)]/(2h) siendo h un paso pequefio dado.
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Codigo 4.2. Subrutina para estimar la derivada primera en un punto

SUBROUTINE derivada (f,a,h,df)
! -

IMPLICIT NONE

REAL, INTENT (IN) a ! Punto a estimar la derivada
REAL, INTENT (IN) h ! Paso para la estimacidn
REAL, INTENT (OUT) :: df ! Estimacidén de la derivada
INTERFACE
REAL FUNCTION f (x) ! Funcion a derivar
IMPLICIT NONE
REAL, INTENT (IN) :: X
END FUNCTION f
END INTERFACE
! -
df = (f(a+h)-f(a-h))/(2.0%h)

END SUBROUTINE derivada

Asi, con ayuda de esta subrutina, podemos estimar, por ejemplo, la derivada del seno y el coseno en x = /4
con el siguiente programa.

Codigo 4.3. Ejemplo del uso de la subrutina derivada

PROGRAM main

IMPLICIT NONE
REAL :: a = 0.785398163397448

REAL :: h = 0.01
REAL :: df
INTERFACE

SUBROUTINE derivada (f,a,h,df)
IMPLICIT NONE

REAL, INTENT (IN) a
REAL, INTENT (IN) h
REAL, INTENT (OUT) :: df
INTERFACE
FUNCTION f (x)
IMPLICIT NONE
REAL :: f
REAL, INTENT (IN) :: x
END FUNCTION f
END INTERFACE
END SUBROUTINE derivada
FUNCTION f1 (x)
IMPLICIT NONE
REAL :: f1l
REAL, INTENT (IN) :: x
END FUNCTION f1
FUNCTION f2 (x)
IMPLICIT NONE
REAL :: f2
REAL, INTENT (IN) :: x

END FUNCTION f2
END INTERFACE

CALL derivada(fl,a,h,df)
WRITE (*, ) ’'Derivadal = ', df
CALL derivada (f2,a,h,df)
WRITE (*, *) ’'Derivada2 = ', df
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STOP

END PROGRAM main

FUNCTION f1 (x)

IMPLICIT NONE

REAL :: f1l

REAL, INTENT (IN) :: x

! -
fl = sin (x)

END FUNCTION f1l
FUNCTION f2 (x)

IMPLICIT NONE

REAL :: f2

REAL, INTENT (IN) :: x

! -
f2 = cos(x)

END FUNCTION f2

4.5.1. Ejercicios

Ejercicio 4.10 Escribir una subrutina que tabule una funcién arbitraria f sobre un conjunto de (N + 1) puntos
igualmente espaciados del intervalo [a, b], esto es, que imprima los valores de f en los puntos

XxX; =a-+ih, i=0,1,...,N,

siendo h = (b —a)/N el paso de la tabulacién y xo = a, xy = b.

Utilice la subrutina para imprimir la tabla de f(x) = ¢ y de f(x) = cos (x) sobre el intervalo [—1,1] en nueve
puntos igualmente espaciados.

Ejercicio 4.11 Escribir una subrutina que determine la localizacién del maximo y minimo valor de una funcién
arbitraria f sobre un cierto rango a < x < b evaluando la misma sobre n puntos de dicho rango. La subrutina
debe tener como argumentos de entrada: a, b, n 'y la funcién f. Los argumentos de salida deben ser: el valor de
x donde se alcanza el minimo (mdximo), el valor de f en dicho minimo (maximo). Utilizar esta subrutina para
buscar el mdximo y minimo de f(x) = x> — 5x% + 5x + 2 sobre el rango —1 < x < 3 utilizando n = 200 puntos.

4.6. Modulos.

Un médulo es una unidad de programa que permite agrupar subprogramas relacionados (y otros datos) para
construir una biblioteca de rutinas que podra ser reutilizada en cualquier otro programa. La forma méas simple
de un médulo que contiene s6lo subprogramas es:

MODULO nombre_del _médulo
CONTAINS
subprograma 1
subprograma 2

subprograma n
END MODULO nombre del_mddulo

donde subprograma 1, ..., subprograma n son funciones y/o subrutinas. Cada uno de estos subprogramas son
llamados subprogramas o procedimientos del médulo. El nombre del médulo sigue las convenciones usuales
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para cualquier identificador en Fortran. Para que los procedimientos de un mddulo resulten accesibles a una
dada unidad del programa se debe utilizar la instruccion:

USE nombre_del_ moédulo

la cual debe escribirse inmediatamente después de la identificacion de la unidad, inclusive antes de la sentencia
IMPLICIT NONE que llevan todos nuestros programas.

Por ejemplo, el siguiente mdédulo contiene dos funciones que permiten convertir una temperatura de la
escala Fahrenheit a la escala Celsius y viceversa.

Cédigo 4.4. Médulo para convertir escalas de temperatura

MODULE escalas_temperatura

! Modulo para convertir el valor de la temperatura
! en diversas escalas:

! fahr2cent: Funcidén que convierte de la escala
! Fahrenheit a la escala centigrada.

! cent2fahr: Funcidén que convierte de la escala
! centigrada a la escala Fahrenheit.

CONTAINS
FUNCTION fahr2cent (temp)

! -
IMPLICIT NONE

REAL :: fahr2cent

REAL, INTENT (IN) :: temp

!
fahr2cent = (temp - 32.0)/1.8

RETURN

END FUNCTION fahrZcent

FUNCTION cent2fahr (temp)
! -
IMPLICIT NONE
REAL :: cent2fahr
REAL, INTENT (IN) :: temp
|
cent2fahr = 1.8xtemp + 32.0
RETURN
END FUNCTION cent2fahr

END MODULE escalas_temperatura

Entonces el siguiente programa hace uso de este médulo para convertir una temperatura expresada en grados
centigrados, ingresada por el usuario, en la escala Fahrenheit.

Cédigo 4.5. Ejemplo del uso del médulo de escalas de temperatura para convertir de grados Centigrados a

Fahrenheit

PROGRAM main
USE escalas_temperatura
IMPLICIT NONE
REAL :: temp_cent, temp_fahr
WRITE (%, *) ’"Ingrese temperatura en grados centigrados’
READ (*, x) temp_cent
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temp_fahr = cent2fahr (temp_cent)
WRITE (%, *) ’'Grados centigrados = ', temp_cent
WRITE (%, *) ’'Grados Fahrenheit = ', temp_fahr
STOP

END PROGRAM main

5" Como puede verse en el ejemplo, no es necesario crear interfaces explicitas para los subprogramas del
modulo con un bloque interfaz en la unidad de programa que las utiliza. Esto se debe a que los subprogramas
dentro de un médulo, e importados por la sentencia USE en otra unidad de programa, tienen una interfaz
explicita, esto es, todos los detalles de la interfaz del subprograma resultan disponibles al compilador, quien
puede, entonces, verificar la consistencia de las llamadas al subprograma.

I Existen diferentes maneras de compilar un programa junto con un médulo.

La primera opcién es incluir el cddigo fuente del médulo en el archivo del cédigo fuente de la unidad del
programa que lo utiliza, justo antes del c6digo de tal unidad de programa obteniendo un nico archivo . £90, el
cual es compilado como es usual. Claramente, esta forma de incluir médulos no es flexible.

Una segunda opcion es escribir el c6digo fuente en un archivo (digamos modulo. £90) independiente del
cdédigo fuente del programa que lo utiliza, (guardado, digamos, en el archivo main. £90) y compilar ambos en
la linea de comandos, anteponiendo el archivo del médulo a cualquier otro archivo:

$ gfortran -Wall -o ejecutable modulo.f90 main.f90

La tercer opcidn consiste en compilar por separado el médulo y el programa, para luego generar el ejecutable
final:

$ gfortran -Wall -c modulo.f90
$ gfortran -Wall -c main.f90
$ gfortran -Wall -o ejecutable modulo.o main.o

15" La compilacién de un médulo deja, ademds, como resultado un archivo .mod, el cual contiene toda la
informacion relevante para hacer explicita la interfaz de sus subprogramas y es utilizado cada vez que se invoca
al mismo con la sentencia USE.

15" En la forma USE nombre_del_mdédulo, todos los subprogramas del médulo son importados a la unidad del
programa que emplea la sentencia. Si s6lo se desea importar algunos subprogramas determinados, entonces la
sentencia USE puede escribirse en la forma:

USE nombre_del_mdédulo, ONLY: lista de subprogramas del modulo a importar

Por ejemplo, en nuestro ejemplo, la sentencia USE puede ser reemplazada por USE escalas_temperatura,
ONLY: cent2fhar.

I5” Un médulo puede contener también datos para ser compartidos con otras unidades de programas. Por
ejemplo, en nuestro ejemplo, podemos incorporar las constantes de calor de fusién y evaporacién del agua
(medidas en caloria por gramo) como sigue:

Cédigo 4.6. Inclusion de variables compartidas en un médulo

MODULE escalas_temperatura

IMPLICIT NONE

REAL, PARAMETER :: CALOR_DE_FUSION = 79.71
REAL, PARAMETER :: CALOR_DE_VAPORIZACION = 539.55
CONTAINS

END MODULE escalas_temperatura
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Una unidad de programa que haga uso del médulo, via la sentencia USE, podra disponer de las constantes
con nombre CALOR_DE_FUSIONy CALOR_DE_VAPORIZACION. Esta forma de proceder permite crear un
repositorio de constantes para todo problema general donde existan constantes “universales” de uso frecuente,
eliminando la necesidad de definirlas en cada unidad de programa que las necesiten.

4.6.1. Ejercicios

Ejercicio 4.12 Implementar un médulo con los subprogramas del ejercicio 4.6 que expresan un dngulo dado en
radianes en grados, minutos y segundos y viceversa. Escribir un programa principal que haga uso del mismo.

Ejercicio 4.13 Implementar un médulo que permita a cualquier unidad de programa importar los siguientes
datos sobre el planeta Tierra: radio medio, radio ecuatorial, volumen, masa, densidad media. Implementar un
programa que haga uso de este médulo para calcular el momento de inercia del planeta (Ayuda: asuma que el
planeta es un cuerpo rigido esférico de radio R y masa M, entonces [ = %MRZ).
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Archivo no encontrado... ¢Falsifico? (S/N)

5.1. Entrada/salida por archivos.

Hasta ahora hemos asumido que los datos que necesita un programa han sido entrados por teclado durante la
ejecucion del programa y que los resultados son mostrados por pantalla. Es claro que esta forma de proceder es
adecuada sdlo si la cantidad de datos de entrada/salida es relativamente pequefia. Para problemas que involucren
grandes cantidades de datos resulta mas conveniente que los mismos estén guardados en archivos. En lo que
sigue veremos las instrucciones que proporciona Fortran para trabajar con archivos.

Un archivo es un conjunto de datos almacenado en un dispositivo (tal como un disco rigido) al que se le ha
dado un nombre. Para la mayoria de las aplicaciones los tnicos tipos de archivos que nos interesa considerar
son los archivos de texto. Un archivo de texto consta de una serie de lineas o registros separadas por una marca
de fin de linea (newline, en inglés). Cada linea consta de uno o mas datos que es un conjunto de caracteres
alfanuméricos que, en el procesamiento de lectura o escritura, se trata como una sola unidad. El acceso a los
datos del archivo de texto procede en forma secuencial, esto es, se procesan linea por linea comenzando desde
la primera linea hacia la dltima. Esto implica que no es posible acceder a una linea especifica sin haber pasado
por las anteriores.

Para fijar ideas consideremos el problema de calcular el baricentro de un conjunto de N puntos (x;,y;) del
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plano. Esto es, queremos computar las coordenadas del baricentro, definidas por

N N
Yl Xi il Vi

N YT TN

Supongamos que las coordenadas de los N puntos se encuentran dispuestas en un archivo preexistente llamado
coordenadas.dat que consta de una linea por cada punto, cada una de las cuales tiene dos columnas: la
primera corresponde a la coordenada x y la segunda a la coordenada y. Asi, este archivo consiste de N lineas,
cada una de los cuales consta de dos datos de tipo real. Por otra parte, supondremos que el resultado (X,y) se
quiere guardar en un archivo denominado baricentro.sal. El siguiente cédigo Fortran efectia lo pedido.

X =

Codigo 5.1. Calculo del baricentro de un conjunto de puntos en el plano

PROGRAM baricentro

IMPLICIT NONE
INTEGER :: n,i
REAL :: x,y,bar_x,bar_y

READ (*,*) n

bar_x = 0.0

bar_y = 0.0

DO i=1,n
READ (8, ) x,Vy
bar_x = bar_x + x
bar_y = bar_y + vy

END DO

bar_y = bar_y/n

WRITE (9, x) ’'Cooordenadas del baricentro’
WRITE (9,*) 'x = ', bar_x
WRITE (9,x) 'y = ', bar_y

! Cerrar archivo de salida
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END PROGRAM baricentro

En base a este programa podemos detallar las caracteristicas bésicas de la entrada/salida por archivos.

I=5" En Fortran, un programa referencia indirectamente a un archivo a través de un niimero de unidad légica
(lun, del inglés logic unit number), el cual es un entero positivo pequeiio (pero distinto de 5 y 6 pues estas
unidades estan pre-conectadas a la entrada y salida estandar por teclado y pantalla, respectivamente). Asi, para
trabajar con un archivo, el primer paso consiste en establecer la relacién entre el nombre del archivo y una
unidad 16gica. Esta conexidn se realiza con la sentencia OPEN y el proceso se conoce como abrir el archivo (en
nuestro ejemplo, el nimero de unidad 8 es asignado al archivo coordenadas . dat, mientras que el nimero
de unidad 9 es asignado al archivo baricentro.sal). Nétese que excepto por esta sentencia, los archivos
son referidos dentro del programa a través de su unidad légica y no por su nombre.

I Para poder leer o escribir datos de una linea del archivo, conectado a la unidad niimero, Fortran utiliza las
sentencias READ y WRITE, respectivamente, en la forma

READ (numero, *) variables
WRITE (numero, *) variables

Cada dato tiene su correspondiente variable del tipo apropiado en la lista de variables.

En nuestro ejemplo la lectura procede en un bucle DO desde el inicio hasta el final del archivo, avanzando linea
por linea en cada lectura y asignando, cada vez, los dos datos del registro en sendas variables. Esta operacién de
lectura se comprende mejor introduciendo el concepto de posicion actual de linea. A medida que el bucle DO se
ejecuta imaginemos que un puntero se mueve a través de las lineas del archivo de modo que la computadora
conoce de cual linea se deben leer los datos. Comenzando con la primera linea, la primer sentencia READ asigna
a x e y los dos datos de dicha linea y luego mueve el puntero a la siguiente linea. Asi, la segunda vez que la
sentencia READ es ejecutada los datos de la segunda linea son asignados a las variables x e y. El proceso se
repite N veces hasta alcanzar el final del archivo. De manera similar, cada vez que se ejecuta una sentencia de
escritura WRITE se comienza en una nueva linea en el archivo.

I5" Asi como un programa debe ser abierto para poder trabajar con el mismo, una vez finalizada la lectura o
escritura el archivo debe ser cerrado, esto es, debe terminarse la conexién existente entre el archivo y la unidad
l6gica respectiva. Esta operacion se realiza con la sentencia CLOSE seguida por el nimero de unidad entre
paréntesis. Constituye una buena practica de programacioén cerrar el archivo tan pronto no se necesita mas.
Nétese que mientras un archivo esté abierto su nimero de unidad no debe ser utilizado para abrir otro archivo.
Sin embargo, una vez cerrado un archivo, el nimero de unidad correspondiente puede ser reutilizado. Por otra
parte, un archivo que ha sido cerrado puede ser nuevamente abierto con una sentencia OPEN. Todos los archivos
que no han sido cerrados explicitamente con una sentencia CLOSE serdn cerrados automaticamente cuando el
programa termine (salvo que un error aborte el programa).

I Los nimeros de unidades son un recurso global. Un archivo puede ser abierto en cualquier unidad del
programa, y una vez abierto las operaciones de entrada/salida pueden ser realizadas por cualquier unidad
del programa (en tanto se utilice el mismo nimero de unidad). Nétese que los nimeros de unidades puede
ser guardados en variables enteras y ser pasados a un subprograma como argumento. Por otra parte, un
programa resultard mas modular si en lugar de utilizar directamente los nimeros de unidad en las sentencias de
entrada/salida se utilizan constantes con nombres (esto es, pardmetros) para referirnos a los mismos.

I5" Desde el punto de vista del programa los archivos se utilizan o bien para entrada, o bien para sa-
lida. Un archivo es de entrada cuando el programa lee datos del mismo para usarlos (como el archivo
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coordenadas.dat en nuestro ejemplo), y es de salida cuando los resultados son escritos en él (como
el archivo baricentro.sal). Lacldusula ACTION en la sentencia OPEN permite indicar si el archivo serd
tratado como un archivo de entrada o bien de salida. Especificamente, ACTION=’ READ’ indica que el archivo
serd abierto para lectura, con lo que cualquier intento de escribir sobre el mismo producird un error. Esta cldusula
es entonces apropiada para un archivo de entrada. Por el contrario, ACTION='WRITE’ indica que el archivo
serd abierto para escritura solamente, con lo que un intento de lectura sobre el mismo conduce a un error. Esta
cldusula es apropiada para un archivo de salida.

I5" Por otra parte, es claro que para que un programa funcione correctamente los archivos de entrada deben
existir previamente a la ejecucién del mismo. Esto puede controlarse facilmente utilizando las clausulas STATUS
y IOSTAT en la sentencia OPEN:

OPEN (UNIT=numero, FILE='nombre del archivo’, ACTION='READ’, &
STATUS='OLD’, IOSTAT=variable entera)

La cldusula STATUS='OLD’ indica que el archivo a abrirse debe existir previamente. Por otra parte la
asignacién de una variable entera en la cldusula correspondiente a TOSTAT' permite discernir si el archivo
fue abierto o no, puesto que la variable entera tomara el valor cero si el archivo se abri6 exitosamente o un
valor positivo si hubo un error (en este caso, el error es que el archivo no existe). Esto permite implementar una
estructura de seleccidn para manejar el error que puede producirse:

IF (variable entera /= 0) THEN
WRITE (%, *) 'El archivo de entrada no puede ser leido’
STOP

ENDIF

I5" En el caso de un archivo de salida, éste puede o no existir previamente. Si, en el caso que exista, nos
interesa no sobreescribir el archivo, entonces la cldsula apropiada es STATUS=' NEW’ . De este modo, si el
archivo existe previamente la sentencia OPEN generard un error y con ello evitaremos sobreescribir los datos
que contenga el archivo. Si el archivo no existe, entonces la sentencia OPEN lo creara (estando vacio hasta que
se escriba algo en él). Nétese que adn en este caso puede un error que impida crear el archivo, por ejemplo, por
falta de permisos adecuados. Nuevamente la cldusula TOSTAT nos permite manejar estas situaciones de error.

OPEN (UNIT=numero, FILE='nombre del archivo’, ACTION=’'WRITE’', &
STATUS='NEW’ , IOSTAT=variable entera)
IF (variable entera /= 0) THEN
WRITE (%x,*) ’'El archivo de salida no puede ser escrito. Posiblemente exista.’
STOP
ENDIF

Si, por el contrario, no nos importa preservar el archivo de salida original en el caso que exista, entonces la
cldsula apropiada es STATUS=' REPLACE'.

OPEN (UNIT=numero, FILE='nombre del archivo’, ACTION='WRITE’, &
STATUS='REPLACE’, IOSTAT=variable entera)
IF (variable entera /= 0) THEN
WRITE (%, x) 'El archivo de salida no puede ser escrito.’
STOP
ENDIF

15" Una situacién que se presenta muchas veces es la necesidad de leer un archivo de entrada cuyo niimero de
lineas es arbitrario (esto es, no estd fijado de antemano por el problema). Bajo esta circunstancia un bucle DO no
resulta adecuado. Para implementar la alternativa (un bucle DO WHILE) se necesita disponer de una forma de

'El nombre TOSTAT hace referencia a Input/Output status, esto es estado de entrada/salida.
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detectar el final del archivo conforme éste se va recorriendo. Esto puede lograrse agregando la cldusula TOSTAT
a la sentencia de lectura. La correspondiente variable entera asignada tomar4 el valor cero si la lectura se realizé
sin error, un valor positivo si se produjo un error (por ejemplo, intentar leer un dato de tipo distinto al que se esta
considerando) y un valor negativo si el final del archivo es encontrado. Utilizando un contador para el nimero
de datos leidos y el bucle DO WHILE podemos resolver el problema con el siguiente fragmento de cédigo.

n =0

io =0

DO WHILE (io >= 0)

READ (numero, », IOSTAT=10) variables

IF (io == 0) THEN
n = n+l
procesar variables leidas
ENDIF

ENDDO

Aqui 1o es una variable entera para controlar los errores de lectura del archivo mientras que n es un contador
entero cuyo valor final se corresponde con el nimero de datos validos leidos.

5.1.1. Ejercicios

Ejercicio 5.1 Modificar el cédigo 5.1 parametrizando los nimeros de unidades l6gicas y permitiendo que el
usuario asigne, por teclado, los nombres de los archivos de entrada y salida. (Ayuda: los nombres de los archivos
pueden ser asignados a variables caricter).

Ejercicio 5.2 Modificar el cédigo anterior para controlar que el archivo de entrada exista previamente y que
el archivo de salida puede ser escrito. Detener el programa con un mensaje apropiado si la correspondiente
situacién no se cumplen.

Ejercicio 5.3 Remover en el programa anterior la lectura del nimero de puntos N y reescribir la seccién de
lectura de manera que sea el propio programa determine el nimero de datos que lee.

5.2. Formatos.

Otro aspecto a considerar en la entrada/salida de datos (ya sea por archivos o por teclado/pantalla) es la
forma de estos datos. Hasta el momento hemos dejado que el compilador escoja automaticamente el formato
apropiado para cada tipo de dato. Sin embargo es posible dar una forma precisa de la representacién de los
datos con una especificacion de formato la cual consiste en una cadena de caracteres de la forma ’ ( lista de
especificaciones de formatos )’ . Cada conjunto de especificaciéon de formato consiste de un descriptor de
edicion de una letra, dependiente del tipo de dato, un tamafio de campo y una ubicacién decimal si es pertinente.
La tabla 5.1 muestra los descriptores de formatos de mas utilidad. Para hacer efectiva esta especificacion de
formato se coloca la misma en la correspondiente sentencia de entrada/salida reemplazando al segundo cardcter
", Por ejemplo, para imprimir las coordenadas con tres decimales en el resultado del programa del cédigo 5.1
podemos escribir

WRITE (9, (A)’) ’'Coordenadas del baricentro’
WRITE(9,’ (A,F7.3)’) '"x ="', bar_x
WRITE(9,’ (A,F7.3)’) 'y = ', bar_y

I5” En la especificacién de formato Fw.d de un dato real debe ser w > d + 3 para contemplar la presencia del
signo del ndmero, el primer digito y el punto decimal.
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Tabla 5.1. Descritores de formatos mas comunes.

Descriptor de formato Uso

Iwé Iwm Dato entero

Fw.d Dato real en notacién decimal
Ew.d Dato real en notacién exponencial
ESw.d Dato real en notacion cientifica
A6 Aw Dato caracter

"x...x’ Cadena de caracteres

nX Espaciado horizontal

w: constante positiva entera que especifica el ancho del campo.

m: constante entera no negativa que especifica el minimo ndmero de digitos a
leer/mostrar.

d: constante entera no negativa que especifica el nimero de digitos a la derecha
del punto decimal.

X: un caricter.

n: constante entera positiva especificando un niimero de posiciones.

I Con la especificacion de formato Ew.d de un dato real, éste es mostrado en forma normalizada, esto es,
con un signo menos (si es necesario) seguido de una parte entera consistente de un cero, el punto decimal, y
una fraccion decimal de d digitos significativos, y una letra E con un exponente de dos digitos (con su signo
menos si es apropiado). Por lo tanto, debe ser w > d + 7. La especificacion de formato ES es similar, s6lo que el
nimero no es normalizado, esto es, la parte entera mostrada es un nimero comprendido entre 1 y 9. Debido a
ésto, para un mismo ancho w, el descriptor ES mostré un digito significativo mas que el descriptor E, debido a
que el cero inicial de éste es ahora reemplazado por un digito significativo.

I5” En la especificacién de formatos de un dato real si el nimero de digitos de la parte fraccionaria excede
el tamafo asignado en la misma los digitos en exceso seran eliminados después de redondear el niimero. Por
ejemplo, la especificacién F 8. 2 hace que el nimero 7.6543 se escriba como 7.65, mientras que el niimero
3.9462 se escribe como 3.95.

I En el descriptor A para variables cardcter si el ancho del campo no se especifica se considera que el mismo
es igual a la longitud de la variable especificada en su declaracién de tipo.

¥ [a especificacién nx hace que n posiciones no se tomen en cuenta en la lectura o bien que se llenen n
espacios en blanco en la escritura.

I¥" Cuando varios datos tienen las mismas especificaciones de formato, puede repetirse una sola especificacién
colocando un nimero entero frente a ella. Encerrando un conjunto de especificaciones entre paréntesis y
colocando un nimero frente al conjunto indicamos que dicho conjunto sera repetido tal nimero de veces.

I5" Sj la especificacién de formato es demasiado pequeiia para el dato que se quiere procesar el campo serd
llenado con asteriscos. jEsta es una situacién que suele ser muy desconcertante!

I La especificacién de formato puede ser almacenada en una variable o pardmetro de tipo cardcter y ser
utilizada como tal en la correspondiente sentencia de lectura o escritura.

" En general para leer datos (ya sea por teclado o archivo) la lectura por lista sin formato es el método
adecuado. Sélo si los datos tienen una forma especifica predeterminada debe utilizarse la lectura con formato.

5.2.1. Ejercicios

Ejercicio 5.4 Establezca un formato con tres decimales para la tabla que debe crearse en el ejercicio 4.10.

Ejercicio 5.5 En cierto observatorio meteoroldgico el promedio de la temperatura exterior en un dia es anotada
en un archivo dia por dia con el formato:
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yyyy—mm—dd:£xxx . xx

Esto es, la fecha es descrita en el formato afio-mes-dia, con el afio descrito con cuatro digitos y el mes y el dia
con dos digitos cada uno; la temperatura, por su parte, es un dato real con tres digitos para la parte entera y dos
digitos para la parte decimal. Los dos datos estdn separados por el signo de dos puntos. Realizar un programa
para crear un nuevo archivo en base al anterior pero con la fecha descrita en el formato dia/mes/afo.

Ejercicio 5.6 Si la especificacion de formato no es adecuada para los datos considerados, entonces los mismos
pueden ser mostrados incorrectamente. Pruebe los siguientes ejemplos:

WRITE (%, (I4, 2X, I4)") 12, 12345
WRITE (x,’ (F6.2)") 0.12345
WRITE (x,’ (F6.2)") 123.45
WRITE (x,’ (F6.2)") 12345.0

& Ancho ajustable en los descriptores | y F

Con el fin de utilizar el menor espacio posible en la salida de datos, los descriptores de formato Iy F
permiten especificar un ancho w igual a cero. Esto no sélo elimina todo espacio en blanco precedente al
dato, sino que también evita el desbordamiento con asteriscos cuando la especificacién del ancho del
campo es pequefia para el mismo.
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‘Don’t Panic’

— Douglas Adams, ‘The Hitch-Hiker’s Guide to the Galaxy’

6.1. Datos compuestos indexados: arreglos.

Los objetos matematicos como vectores, matrices (y con mas generalidad, tensores) pueden ser almacenados
en Fortran en arreglos unidimensionales, bidimensionales (y multidimensionales), respectivamente. Un arreglo
(array en inglés) es una estructura de datos compuesta formada por una coleccién ordenada de elementos del
mismo tipo de datos (por lo que se dice que la estructura de datos es homogénea) y tal que los elementos se
pueden acceder en cualquier orden simplemente indicando la posicién que ocupa dentro de la estructura (por
lo que se dice que es una estructura indexada). Un arreglo, como un todo, se identifica en el programa con
un nombre, y un elemento particular del mismo es accedido a partir de cierto conjunto de indices, los cuales
son, en Fortran, de tipo entero. La dimension del arreglo es el niimero de indices necesarios para especificar un
elemento, y su tamario es el nimero total de elementos que contiene. Antes de ser usado, un arreglo debe ser
declarado especificando el tipo de elementos que contendrd y el rango de valores que puede tomar cada indice
(lo cual define la cantidad de elementos que lo componen). Asi, un arreglo unidimensional V que contendra 3
elementos reales y un arreglo bidimensional A que contendrd 5 x 4 = 20 elementos reales son declarados con la
sentencia de declaracidn de tipo:

REAL :: V(3), A(5,4)
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En el programa, un elemento particular de un arreglo es accedido a través del nombre del arreglo junto
con los valores de los indices que especifican su posicién. Asi V (1) indica el primer elemento del arreglo
unidimensional V, en tanto que A (2, 3) corresponde al elemento en la fila 2 y la columna 3 de la matriz
almacenada en el arreglo bidimensional A. N6tese que cada elemento de un arreglo constituye de por s una
variable, la cual puede utilizarse de la misma forma que cualquier variable del mismo tipo es utilizada.

5" Al igual que las variables ordinarias, los valores de un arreglo debe ser inicializados antes de ser utilizados.
Un arreglo puede ser inicializado en tiempo de ejecucion a través de sentencias de asignacién ya sea elemento a
elemento a través de bucles DO, como ser, por ejemplo:

DO i=1,3
V(i) = REAL(1)
ENDDO
DO i=1,5
DO j=1,4
A(i,J) = REAL(i+j)
ENDDO

ENDDO

o bien a través del constructor de arreglos [ ] implementado en Fortran 2003:

vV = [1.0,2.0,3.0]

A = RESHAPE ([2.0,3.0,4.0,5.0,6.0, &
3.0,4.0,5.0,6.0,7.0, &
4.0,5.0,6.0,7.0,8.0, &
5.0,6.0,7.0,8.0,9.01,1[5,41)

donde para el arreglo bidimensional se utiliza la funcién intrinsica RESHAPE para construirlo a partir de un
arreglo unidimensional cuyas componentes resultan de ordenar por columna los valores iniciales de la matriz.
Estas construcciones permiten el uso de bucles DO implicitos lo cual es especialmente ttil para inicializaciones
mds complicadas o arreglos de muchos elementos, como ser:

\Y4 [( REAL(i), i=1,3)]
A = RESHAPE ([ (( REAL(i+j), 1i=1,5), 3j=1,4 )1,I[5,4])

También es posible inicializar todos los elementos de un arreglo a un mismo y tnico valor con las sentencias:

VvV =
A =

[N e]
o O

La inicializacién puede realizarse también en tiempo de compilacion realizando la asignacién en la sentencia de
declaracién de tipo:

REAL :: V(3) = [1.0,2.0,3,0]
REAL :: A(5,4) = 0.0

Por supuesto, la inicializaciéon también puede realizarse leyendo los datos del arreglo con sentencias READ, lo
cual nos lleva a la siguiente nota.

5" La forma mads flexible de leer por teclado (o, con el nimero de unidad apropiado, de un archivo) n elementos
de un vector para almacenarlo en un arreglo unidimensional V consiste en utilizar un bucle DO implicito:

READ (*, *) (V(i), i=1,n)
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el cual, al involucrar s6lo una sentencia de lectura, permite que los elementos del arreglo no necesariamente
estén cada uno en una linea, sino que de hecho pueden estar dispuesto de cualquier manera (inclusive todos
en la misma linea, o uno por linea, o varios en una linea y el resto en otra, etc.). De manera andloga, una
matriz de n X m puede ser ingresada en la forma usual (esto es, fila por fila) para ser almacenada en un arreglo
bidimensional A utilizando dos bucles DO implicitos:

READ (%, *) ((A(i,]),J=1,m),i=1,n)

Por otra parte, para el vector el remplazo de la sentencia READ por WRITE permite escribir los n elementos
del vector sobre una unica linea. Para imprimir una matriz en la forma usual (esto es, fila por fila), en cambio,
recurrimos a la combinacién de un bucle DO usual y uno implicito:

DO i=1,n
WRITE (%, *) (A(i, ), J=1,m)
ENDDO

5" [os arreglos pueden ser utilizados como un todo en sentencias de asignacién y operaciones aritméticas
siempre y cuando todos los arreglos involucrados tengan la misma forma, esto es, el mismo nimero de
dimensiones y el mismo nimero de elementos en cada dimension. Si esto es asi, las correspondientes operaciones
serdn realizadas elemento a elemento. Por ejemplo, si X, Y, V son arreglos unidimensionales de 3 elementos, la
sentencia:

V =2.0«X + Y

permite asignar a V la combinacién lineal resultante de sumar el doble de cada elemento de X con el correspon-
diente elemento de Y. M4s atn, ciertas funciones intrinsecas de Fortran que son usadas con valores escalares
también aceptardn arreglos como argumentos y devolverdn un arreglo cuyo resultado serd su accién elemento a
elemento del arreglo de entrada. Tales funciones son conocidas como funciones intrinsecas elementales. Por
ejemplo, para nuestro arreglo V inicializado como:

v =[-3.0,2,0,-1.0]

la funcién ABS (V) devolverd el arreglo [3.0,2.0,1.0].

5" Ademds de poder utilizar los elementos de un arreglo o, bajo las circunstancias indicadas, el arreglo como
un todo en una sentencia, es posible utilizar secciones de los mismos. Por ejemplo, para nuestros arreglos V'y

V(1:2) 6 V(:2) eselsubarreglode V deelementos V(1) y V(2),

V(1:3:2) 6 V(::2) eselsubarreglode V de elementos con indice impar: V(1) y V(3),
A(l:5,2) 6 A(:,2) eslasegundacolumna de la matriz contenida en el arreglo A,
A(3,1:4) 6 A(3,:) eslatercer fila de la matriz contenida en A.

15" Un error muy comiin al trabajar con arreglos es hacer que el programa intente acceder a elementos que estdn
fuera de los limites del mismo. Es nuestra responsabilidad asegurarnos que ésto no ocurra ya que tales errores
no son detectados en tiempo de compilacion. Un error de este tipo puede producir, durante la ejecucién del
programa, que el mismo se aborte con una condicién de error denominada violacion de segmento (segmentation
fault en inglés) o bien que acceda a la posiciéon de memoria que corresponderia al elemento como si éste
estuviera asignado. En este dltimo caso, el programa no abortard pero, puesto que tal posicién de memoria
puede estar asignada para otro propdsito, el programa conducird a resultados erréneos.

El compilador gfortan permite detectar, en tiempo de ejecucion, el intento de acceso fuera de limites de un
arreglo si el cédigo es compilado con la opcién —fbounds—check. Sin embargo, el ejecutable originado
correrd mucho més lento ya que la tal comprobacién demanda mucho tiempo de cémputo. Por éste motivo esta
opcion solo debe utilizarse durante la fase de prueba del programa con el propésito de detectar posibles errores.
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&> Violacién de segmento.

La violacion de segmento (segmentation fault) es una condicién de error que ocurre cuando un programa
intenta acceder a una posicion de memoria que no le corresponde o cuando intenta acceder en una manera
no permitida (por ejemplo, cuando se trata de escribir una posicién de memoria que es de sélo lectura).
Cuando ésta situacién se produce el sistema operativo aborta el programa. Esto garantiza que ningin
programa incorrecto (o malicioso) puede sobreescribir la memoria de otro programa en ejecucién o del
sistema operativo.

La posibilidad de operar con el arreglo como un todo, junto con las funciones intrinsecas especificas
proporcionada por el lenguaje para manipular arreglos, permite que los algoritmos del 4lgebra lineal puedan
ser implementados en Fortran en forma muy compacta. Por ejemplo, consideremos el calculo de las normas

vectoriales ||x||«, ||x||1 ¥y ||x||2 para un vector x = (x1,x2,...,x,) de R". Por definicién:
N
ellee = max {lxaf, Jxal, el el = i;!xih

Asumamos que el vector x estd almacenado en un arreglo unidimensional x de tamafio n. Una primera
implementacién de la norma infinito utilizaria un bucle explicito para recorrer el arreglo en busca de su
maximo:

norm_inf = 0.0
do i=1,n

norm_inf = MAX (norm_inf,ABS (x (1))
enddo

Sin embargo, a través de las funciones ABS y MAXVAL, donde esta dltima devuelve el maximo valor de un
arreglo dado como argumento, la explicitacién del bucle ya no resulta necesaria:

norm_inf = MAXVAL (ABS (x))
Similarmente, la implementacién de la norma 1 a través de un bucle explicito
norm_1 = 0.0
do i=1,n
norm_1 = norm_1 + ABS(x (1))

enddo

puede ser reimplementada con ayuda de la funcién SUM, la cual devuelve la suma de todos los elementos del
arreglo pasado como argumento de la misma, en la linea:

norm_1 = SUM(ABS (X))

Finalmente, la norma 2 puede ser implementada a través de la funcién DOT_PRODUCT, la cual calcula el
producto interno euclideano entre dos vectores, considerando la raiz cuadrada del producto interno consigo
mismo:

norm_2 = SQRT (DOT_PRODUCT (x, x) )

En Fortran 2008 se incorpord la funcién implicita NORM2 con lo cual el célculo de la norma 2 simplemente se
reduce a invocar esta funcién !:

norm_2 = NORM2 (x)

ILa funcién NORM2 est4 disponible en el compilador gfortran a partir de su versién 4.6.
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De manera similar podemos considerar el cémputo de las normas matriciales ||Al|. y ||A||; de una matriz
cuadrada real A = (g;j) de n x n, siendo

N

N
[A]|ee = ggﬂj;!aii\y A]l1 = lfgf;‘n;\aij\-

Asumiendo que la matriz A se encuentra almacenada en una arreglo bidimensional A de tamafio n X n, tales
cantidades pueden implementarse como

norm_inf = MAXVAL (SUM (ABS (A),2))
norm_1 = MAXVAL (SUM(ABS(A), 1))

donde hemos aprovechado la posibilidad que tiene la funcién intrinseca SUM de indicar como segundo argumento
la dimension sobre la cual realizar la suma de los elementos.

6.1.1. Ejercicios

Ejercicio 6.1 Sea A una matriz de n X p y B una matriz de p X m elementos reales, la multiplicacion matricial
de A por B es la matriz C de n x m elementos c;; dados por:

P
cij= Y auby;
k=1

bl Sl )

a) Implementar un programa Fortran para la multiplicacién de dos matrices de acuerdo con la definicién anterior.

Asi, por ejemplo,

b) Simplificar el algoritmo notando que el elemento ¢;; puede considerarse como el producto interno de la fila
i-ésima de A por la columna j-ésima de B.

c¢) Finalmente utilizar la funcién intrinsica MATMUL (A, B) que Fortran posee para la multiplicacién matricial.

6.2. Asignacion estatica y dinamica de memoria.

En la asignacién de tipo dada para los arreglos V y A de la seccién anterior, sus tamafios ha sido predefinidos
en tiempo de compilacién y por lo tanto no varian durante la ejecucion del programa. Se dice, por lo tanto,
que la asignaciéon de memoria para los arreglos es estdtica. Notese que si el tamafio de los arreglos con los
que se trabajard no es conocido a priori, esto obliga a definir los arreglos de tamafios suficientemente grande
como para contenerlos. La manera mds flexible de proceder consiste en asignar el rango de sus indices a través
de parametros enteros. Asi el siguiente fragmento de cédigo define un arreglo unidimensional vV que puede
contener un vector de a lo mds NMAX elementos reales, y un arreglo bidimensional A que puede contener una
matriz real de a lo mas NMAX filas y MMAX columnas, donde fijamos, para nuestros propdsitos NMAX = MMAX =
6.

INTEGER, PARAMETER :: NMAX = 6
INTEGER, PARAMETER :: MMAX = 6
REAL :: V(NMAX), A (NMAX,MMAX)

De este modo el vector de 3 elementos estd contenido en el subarreglo V (1 : 3) de V, mientras que la matriz de
5 x 4 estd almacenada en el subarreglo 2 (1:5, 1:4). Si, posteriormente, el problema requiere de arreglos de
mayor tamaiio que los mdximos asignados, simplemente ajustamos los valores de los pardmetros y recompilamos
el programa.
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Como una alternativa mas eficiente en el uso de la memoria disponible en el sistema, Fortran 90 dispone
también de un esquema conocido como asignacion dindmica de memoria, donde el tamafio de los arreglos son
asignados durante la ejecucion del programa. Para utilizar esta caracteristica los arreglos deben ser declarados
con el atributo ALLOCATABLE. En nuestro ejemplo:

REAL, ALLOCATABLE :: V(:), A(:,:)

Esta instruccion indica al compilador que los objetos V y A son un arreglo unidimensional y bidimensional,
respectivamente, cuyos tamaifios serdn especificados cuando el programa esté en ejecucion. Esto es efectuado a
través de la sentencia ALLOCATE, como ser, para nuestro ejemplo:

ALLOCATE (V (3) , STAT=variable entera)
ALLOCATE (A (5,4) ,STAT=variable entera)

Si el valor devuelto en la variable entera asignada por la cldusula STAT es igual a cero, entonces la asignacién
se ha realizado sin problemas y a partir de este momento podemos trabajar con los mismos. Si, en cambio, el
valor devuelto es no nulo, ha ocurrido un error en la asignacién de memoria con lo que debemos proceder a
tratar esta situacion de error (usualmente abortamos el programa). Una vez que los arreglos asignados no sean
mas necesarios, debemos liberar 1a memoria utilizada con la sentencia DEALLOCATE:

DEALLOCATE (V)
DEALLOCATE (A)

Para ejemplificar los puntos anteriores consideremos la implementacién de un programa que lea por teclado
una matriz (de dimensiones especificadas previamente también por teclado) y a continuacién imprimir la misma
y su transpuesta. Una implementacién con asignacion estitica de memoria es dada en el siguiente cédigo.

Codigo 6.1. Lectura e impresion de una matriz y su transpuesta (version estatica)

PROGRAM implementacion_estatica
IMPLICIT NONE

INTEGER, PARAMETER :: NMAX = 10
INTEGER, PARAMETER :: MMAX = 10
REAL :: A (NMAX,MMAX)

INTEGER :: n, m, i, J

READ (%, *) n
(

, M
READ(*/*) (A(i,j),jzl,m),izl,n)

DO i=1,n

WRITE (*,x) (A(i,3J), Jj=1,m)
ENDDO
WRITE (x, %)
DO i=1,m

WRITE (%, x) (A(]Il)l j=lln)
ENDDO

END PROGRAM implementacion_estatica

En tanto que el siguiente c6digo hace uso de la asignacidon dindmica de memoria.

Cédigo 6.2. Lectura e impresion de una matriz y su transpuesta (version dinamica)

PROGRAM implementacion_dinamica
IMPLICIT NONE
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REAL, ALLOCATABLE :: A(:,:)
INTEGER :: n, m, i, Jj, ok

READ (x, ) n,m

ALLOCATE (A (n,m), STAT=o0k)

IF (ok /= 0) THEN
WRITE (*, ) ’'Error de asignacidén de memoria’
STOP

ENDIF

READ (, *) ((A(i,]),J=1l,m),1i=1,n)

DO i=1,n
WRITE (x,*) (A(i,3J), J=1,m)
ENDDO

WRITE (%, *)

DO i=1,m
WRITE (*, *) (A(j,1), j=1,n)
ENDDO

DEALLOCATE (A7)

END PROGRAM implementacion_dinamica

6.3. Arreglos en subprogramas.

Los arreglos pueden ser pasados a subrutinas o funciones de diversas maneras, aunque la forma mds
flexible consiste es aquella que declara los argumentos que recibirdn arreglos en forma asumida indicando
simplemente los tamafios de cada dimension del arreglo mediante el caracter :. Dentro de la subrutina, el
tamariio del arreglo a lo largo de cada dimensioén puede obtenerse via la funcién intrinseca SIZE. En virtud de
ésto los arreglos pasados deben ser del tamafio realmente utilizado, lo cual no es un problema para un arreglo
declarado dindmicamente, pero para el caso de la asignacién estdtica, debe pasarse el subarreglo que contenga
efectivamente los datos y no el arreglo de trabajo total. Ademds subprogramas escritos de este modo requieren
una interfaz explicita ya sea alojdndolos dentro de un mddulo o escribiendo la interfaz via la instruccién
INTERFACE en el programa que realiza la llamada.

Para ejemplificar, consideremos la implementacion de una funcién para calcular la fraza de una matriz A de
n x n elementos reales, esto es, trA =Y "', a;;. Dicha funcién, que s6lo requiere como argumento de entrada la
matriz cuya traza quiere calcularse, la implementamos dentro de un médulo de manera de hacer explicita su
interfaz.

Cédigo 6.3. Funcion para calcular la traza de una matriz

MODULE op_matrix
CONTAINS
FUNCTION tr (A)
IMPLICIT NONE
REAL :: tr
REAL, INTENT(IN) :: A(:,:)
INTEGER :: i
tr = SUM([(A(i,1),1=1,SIZE(A,1))])
END FUNCTION tr
END MODULE op_matrix

Asumiendo, por simplicidad, que la dimensién n de la matriz y ella misma es ingresada fila por fila desde
el teclado, el siguiente programa implementa el uso de la funcién t r que hemos construido para una matriz
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almacenada en un arreglo dindmico.

Cédigo 6.4. Calculo de la traza de una matriz (version dinamica)

PROGRAM calculo_traza
USE op_matrix
IMPLICIT NONE

REAL, ALLOCATABLE :: A(:,:)
INTEGER :: n,i, j, err
READ (%, *) n
ALLOCATE (A (n,n) , STAT=err)
IF ( err /= 0 ) THEN
WRITE (*, *) "Error de memoria."
STOP
ENDIF
READ (*, ) ((A(i,73),3=1,n),i=1,n)

WRITE (x, *) tr (A)
END PROGRAM calculo_traza

Si, en cambio, la matriz es almacenada en un arreglo estético, el cédigo adecuado es el siguiente.

Cédigo 6.5. Calculo de la traza de una matriz (version estatica)

PROGRAM calculo_traza
USE op_matrix
IMPLICIT NONE
INTEGER, PARAMETER :: NMAX = 10
REAL :: A (NMAX,NMAX)
INTEGER :: n,i, 7

READ (%, *) n
(

READ(*/*) (A(i,j),j=l,n),i=1,n)

WRITE (x, *) tr(A(l:n,1l:n))

END PROGRAM calculo_traza

6.3.1. Ejercicios

Ejercicio 6.2 Implementar como una subrutina de Fortran el método (modificado) de ortogonalizacion de
Gram-Schmidt en R", esto es, determinar para el subespacio generado por un conjunto de m vectores linealmente
independientes {v;,vy,...,v,,} de n elementos reales (m < n) una base ortonormal {w,w»,...,w,,} de dicho
subespacio, segiin el siguiente algoritmo:

Dados vi,va,..., vy
Para j=1,2,...,m
Tomar w; =v;
Parai=1,2...,j—1
Calcular rij = <W,"Wj>
Tomar Wi =W;—TjjWw;
Calcular r;; = |lwj||2
Tomar w; = ﬁ
Ayuda: Para la implementacion disponga los m vectores v; (cada uno de n componentes) como las columnas de
una matriz A de n x m. De esta manera la subrutina recibe como argumento de entrada dicha matriz y reescribe,
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en su salida, las columnas de dicha matriz con los vectores ortonormalizados buscados. Aplique la subrutina a
los siguientes vectores de R*: v = (1,0,0,—1), v, = (1,2,0,—1),v3 = (3,1,1,—1).
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Solo hay 10 tipos de personas:
Las que saben binario y las que no.

7.1. Representacion de punto flotante.

Como ya hemos mencionado, en las computadoras personales actuales, un dato numérico de tipo REAL tiene
una precision de unos seis a siete digitos significativos y puede representar niimeros en el rango de 10738 a 103,
Sin embargo, muchas aplicaciones cientificas requieren un mayor niimero de digitos significativos y un rango
mds amplio. Por ello, Fortran dispone de una extension del tipo de dato real que permite una precisién entre 15
y 16 digitos significativos con un rango de 1073 a 103%8. Una comprensién cabal de estas dos clases para los
tipos de dato real nos obliga a discutir la representacion interna de los nimeros reales en una computadora, la
denominada representacion de punto flotante.!

Debido a su naturaleza finita, una computadora (y de hecho todo dispositivo de cdlculo) puede representar
a los nimeros reales sélo con cierta precision y dentro de cierto rango. Por precisién entendemos el niimero
de digitos significativos que puede ser preservado en la representacion de un niimero, mientras que el rango
indica la diferencia entre la magnitud de los mayores y menores nimeros que pueden ser representados. Por
otra parte, virtualmente todas las computadoras actuales almacenan y operan internamente con representaciones

IEste capitulo se basa en el apunte Representacion de los niimeros en la computadora de mi autoria, en el cual se discute con mayor
profundidad la anatomia de la representacidn interna de los nimeros reales y enteros y las consecuencias de cara al usuario de dicha
representacion.
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de los nimeros no en el sistema decimal que utilizamos cotidianamente, sino en el denominado sistema binario.
Si bien la conversidn se realiza internamente y por lo tanto estamos tentados a asumir que el hecho de que la
computadora opere de este modo es irrelevante para el usuario, tal representacion deja sus huellas en un hecho
tan simple como que, mientras el nimero real 0.5 puede ser representado exactamente, no sucede lo mismo con
el nimero real 0.1.

Cotidianamente para representar los nimeros utilizamos un sistema posicional de base 10: el sistema
decimal. En este sistema los nimeros son representados usando diez diferentes caracteres, llamados digitos
decimales, a saber, 0,1,2,3,4,5,6,7,8,9. La magnitud con la que un digito a; contribuye al valor del nimero
depende de su posicién en el nimero de manera tal que la representacién decimal

(=1 (anan—1---arap.a1a_2---)
corresponde al nimero
(_1)S(an10n ‘i‘an—llon_1 +--- +611101 +a()100 +Cl_1 10_1 —l—a_210_2 ... ),

donde s depende del signo del nimero (s = 0 si el niimero es positivo y s = 1 si es negativo). De manera
andloga se puede concebir otros sistemas posicionales con una base distinta de 10. En principio, cualquier
nimero natural 3 > 2 puede ser utilizado como base. Entonces, fijada una base, todo nimero real admite una
representacion posicional en la base 8 de la forma

(—1)*(anB" +an-1B" '+ a1 +af’ +a 1B +a 2 +..0),

donde los coeficientes a; son los “digitos” en el sistema con base f3, esto es, enteros positivos tales que
0 <a; < B — 1. Los coeficientes a;>¢ se consideran como los digitos de la parte entera, en tanto que los a;<(,
son los digitos de la parte fraccionaria. Si, como en el caso decimal, utilizamos un punto para separar tales
partes, el niimero es representado en la base 3 como

(_l)s(anan—l cea1ap.a—1a—y - )[37

donde hemos utilizado el subindice 3 para evitar cualquier ambigiiedad con la base escogida. Aunque cualquier
nimero natural B > 2 define un sistema posicional, en el &mbito computacional sélo son de interés los sistemas
decimal (B = 10), binario (B = 2), octal ( = 8) y hexadecimal ( = 16). El sistema binario consta sélo de los
digitos 0 y 1, llamados bits (del inglés binary digits). Por su parte, el sistema octal usa digitos del 0 al 7, en
tanto que el sistema hexadecimal usa los digitos del 0 al 9 y las letras A, B, C, D, E, F.

Por otra parte, cuando se quiere representar nimeros reales sobre un amplio rango de valores recurrimos a la
notacion cientifica. En dicha notacién sélo unos pocos digitos no necesarios, por ejemplo, 976 000000000000
se representa como 9.76 x 10'* y 0.0000000000000976 como 9.76 x 10~ !4, Aqui el punto decimal se mueve
dindmicamente a una posicién conveniente y se utiliza el exponente de 10 para registrar la posicién del punto
decimal. En particular, todo nimero real no nulo puede ser escrito en forma tnica en la notacién cientifica
normalizada

(=1)'0.a1a2a3 - - - aray 110442 - - X 10°,

siendo el digito a; # 0. De manera andloga, todo ndmero real no nulo puede representarse en forma unica,
respecto la base 3, en la forma de punto flotante normalizada:

(71)‘?0-“1(12613 .. 'atat+1at+2 Lo X ﬁe,

donde los “digitos” a; respecto de la base 3 son enteros positivos tales que 1 <a; < —1,0<a; < — 1 para
i=1,2,... y constituyen la parte fraccional o mantisa del nimero, en tanto que e, el cual es un nimero entero
llamado el exponente, indica la posicion del punto correspondiente a la base . El problema que se presenta
ahora es que en todo dispositivo de célculo, como una computadora o calculadora, el nimero de digitos posibles
para representar la mantisa es finito, digamos ¢ digitos en la base 3, y el exponente puede variar s6lo dentro

2Para sistemas con base B > 10 es usual reemplazar los digitos 10, 11,..., 3 — 1 por las letras A, B, C, ...
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de un rango finito L < e < U (con L < 0y U > 0). Esto implica que s6lo un conjunto finifo de nimeros reales
pueden ser representados, los cuales tienen la forma

(=1)*0.a1a2a3 - --a, x B°.

Tales niimeros se denominan niimeros de punto flotante de precision t en la base B y rango (L,U). Al conjunto
de los mismos lo denotaremos por F(f,¢,L,U).

5" El ndmero de elementos del conjunto T, esto es, la cantidad de nimeros de puntos flotantes de F, es
2B-1DB (U -L+1).

5" Debido a la normalizacién el cero no puede ser representado como un niimero de punto flotante y por lo
tanto estd excluido del conjunto FF.

I Si x € IF entonces su opuesto —x € F.

I E] conjunto F estd acotado tanto superior como inferiormente:
-1 U -
xmin:ﬁ S‘x‘gxméx:ﬁ (1_B [)a
donde xyin ¥ Xmax son el menor y mayor niimero de punto flotante positivo representable, respectivamente.

IZ" Se sigue de lo anterior que en la recta de los niimeros reales hay cinco regiones excluidas para los niimeros
de FF:

= [os nimeros negativos menores que —xpsx, region denominada desbordamiento (overflow) negativo.
= Los nimeros negativos mayores que —xnpm, denominada desbordamiento a cero (underflow) negativo.
= El cero.

= Los nimeros positivos menores que Xy, denominada desbordamiento a cero (underflow) positivo.

= [os nimeros positivos mayores que xpnsix, denominada desbordamiento (overflow) positivo.

I Los nimeros de punto flotante no estdn igualmente espaciados sobre la recta real, sino que estin mds
proximos cerca del origen y mds separados a medida que nos alejamos de él.

15" Una cantidad de gran importancia es el denominado epsilon de la mdquina € = B~ el cual representa la
distancia entre el nimero 1 y el nimero de punto flotante siguiente mds préximo.

El hecho de que sélo el subconjunto [ de los nimeros reales es representable en una computadora implica
que dado cualquier nimero real x, para ser representado, debe ser aproximado por un nimero de punto flotante
de tal conjunto, al que denotaremos por fI(x). La manera usual de proceder consiste en aplicar el redondeo
simétrico a t digitos a la mantisa de la representacion de punto flotante normalizada (infinita) de x. Esto es, a
partir de

x=(=1)°0.a1ay...a1a,1 1042 X B,

si el exponente e estd dentro del rango —L < e < U, obtenemos f/(x) como

a; Sia[_l,_] <ﬁ/2

I(x) = (=1)0.a1a;...a; x B°, a =
fl(x) = (=1)°0.a1az...a, x B ! a+1 sia > /2.

El error que resulta de reeemplazar un ndmero real por su forma de punto flotante se denomina error de
redondeo. Una estimacion del mismo estd dado en el siguiente resultado: Todo niimero real x dentro del rango
de los niimeros de punto flotante puede ser representado con un error relativo que no excede la unidad de
redondeo u:

x— f1(x)] 1

——<u= - §&y.
E
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7.1.1. Ejercicios

Ejercicio 7.1 Mostrar que (13.25)10 = (1101.01), = (15.2)g = (D.4) 6.

Ejercicio 7.2 Considere el conjunto de nimeros de punto flotante (2,3, —1,2).

a) Determinar Xy, Xmax» € y €l nimero de elementos de IF.
b) Determinar los nimeros de punto flotante positivos del conjunto F.
¢) Graficar sobre la recta real los nimeros de puntos flotantes determinados en el punto anterior.

Ejercicio 7.3 Determinar la representacion de punto flotante decimal (f = 10) de 5 digitos de .

7.2. Numeros de punto flotante de simple y doble precision

Con el fin de evitar la proliferacién de diversos sistemas de puntos flotantes incompatibles entre si a fines de
la década de 1980 se desarroll6 la norma o estandar IEEE754/IEC559° el cual es implementado en todas las
computadoras actuales. Esta norma define dos formatos para la implementacion de nimeros de punto flotante
en la computadora, ambos con base 8 = 2, pero con diferente precision y rango, a saber:

» precision simple: F(2,24,—125,128),
» precision doble: F(2,53,—1021,1024).

Para el formato de precisién simple tenemos que

Xy = 7126 10738’
xméx — 2128(1 _ 2—24) ~ 1038
ey=2"3~10",
1

u=Seu= 27 L6-1078.

lo cual implica unos 7 digitos decimales significativos con un rango entre 1073 y 103, En tanto que para el
formato de precision doble tenemos que
X = 271022 1 107308,
xméx — 21024(1 _ 2753) ~ 10308,
ey =2"2~10716
1

=gy =2""~10""°
u 5 M

07308 0308

lo cual implica unos 16 digitos decimales significativos con un rango entre 1 y1

7.3. Implementacion en Fortran de los nimeros de punto flotante de simple y

doble precision.

Todos los compiladores Fortran admiten, al menos, dos clases para los tipos de datos reales: el primero,
simple precision y, el segundo tipo, doble precision tal como se especifica en la norma IEEE754/IEC559. Para
declarar el tipo de clase de una variable real se utiliza la siguiente sintaxis:

REAL (KIND=numero de clase) :: nombre de variable

3IEEE = Institute of Electrical and Electronics Engineeers, IEC = International Electronical Commission.
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donde el niimero de clase es un nimero entero que identifica la clase de real a utilizar. Este ntimero, para el
compilador gfortran, es 4 en el caso de simple precision y 8 para doble precisién. Si no se especifica la
clase, entonces se utiliza la clase por omision, la cual es la simple precision.

15" Dado que el miimero de clase es dependiente del compilador es recomendable asignar los mismos a
constantes con nombres y utilizar éstas en todas las declaraciones de tipo. Esto permite asegurar la portabilidad
del programa entre distintas implementaciones cambiando simplemente el valor de las mismas.

INTEGER, PARAMETER :: SP = 4 ! Valor de la clase de simple precisidn
INTEGER, PARAMETER :: DP = 8 ! Valor de la clase de doble precisidn
REAL (KIND=SP) :: variables
REAL (KIND=DP) :: variables

" Constantes reales en el c6digo son declaradas de una dada clase agregando a las mismas el guién bajo
seguida del ndmero de clase. Por ejemplo:

34.0 ! Real de clase por omisidén
34.0_SP ! Real de clase SP
124.5678_DP ! Real de clase DP

Es importante comprender que, por ejemplo, 0.1_SP y 0.1_DP son nimeros de punto flotante distintos,
siendo el dltimo guardado internamente con un nimero mayor de digitos binarios.

I5” Una manera alternativa de especificar la clase de los tipos de datos reales y que resulta independiente
del compilador y procesador utilizado consiste en seleccionar el nimero de clase via la funcién intrinseca
SELECT_REAL_KIND. Esta funcién selecciona automdticamente la clase del tipo real al especificar la precision
y rango de los nimeros de punto flotante que se quiere utilizar. Para simple y doble precision la asignacién
apropiada es como sigue:

INTEGER, PARAMETER :: SP = SELECTED_REAL_ KIND (6,37) ! simple precisidn
INTEGER, PARAMETER :: DP SELECTED_REAL KIND (15,307) ! doble precisién

Una manera simple y eficiente de escribir un programa que pueda ser compilado con variables reales ya
sea de una clase u otra segtin se requiera, consiste en utilizar un médulo para definir la precisién de los tipos
reales y luego en el programa invocarlo especificando el tipo de clase via un alias como ser WP (por working
precision, precision de trabajo), la cual es utilizada para declarar los tipos de datos reales (variables y constantes).
Especificamente, definimos el médulo precision como sigue:

Cédigo 7.1. Médulo de precision simple y doble

MODULE precision

! SP : simple precision de la norma IEEE 754
! DP : doble precision de la norma IEEE 754

! Uso: USE precision, WP => SP 6 USE precision, WP => DP
INTEGER, PARAMETER :: SP = SELECTED_REAL_KIND (6, 37)

INTEGER, PARAMETER :: DP = SELECTED_REAL_KIND(15,307)
END MODULE precision

Entonces podemos escribir un programa que se compile ya sea con reales de simple o doble precisién escogiendo
apropiadamente la sentencia que importa el médulo. Por ejemplo:
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Codigo 7.2. Uso del modulo de precision

PROGRAM main
USE precision, WP => SP ! 6 Wp => DP
IMPLICIT NONE
REAL (KIND=WP) :: a

a=1.0_WP/3.0_WP
WRITE (*,*) a

END PROGRAM main

&> ; Cuando utilizar doble precisién?

La respuesta corta es siempre. Para las aplicaciones cientificas la precision de los resultados es gene-
ralmente crucial, con lo cual debe utilizarse la mejor representacién de punto flotante disponible en
la computadora. Nétese ademas que ain cuando los nimeros de punto flotante de doble precision
utilizan el doble de digitos binarios que los de simple precisién, en las computadoras personales (PC) el
procesador matematico realiza internamente los calculos con 80 bits independientemente de la precision
de los datos a ser procesados. Por lo tanto, la diferencia de velocidad entre célculos en doble y simple
precisiéon en una PC es infima.

7.3.1. Ejercicios

Ejercicio 7.4 Fortran dispone de un conjunto de funciones intrinsecas para determinar las propiedades de la
representacion de punto flotante implementada en una clase de tipo real. Utilizando el siguiente programa
verifique que en una computadora personal la clase asignada a los datos de tipo real son efecticamente los
nimeros de punto flotante de precision simple y doble de la norma IEEE754.

PROGRAM machar

USE precision, WP => SP ! &6 WP => DP
IMPLICIT NONE

INTEGER :: i

REAL (KIND=WP) :: X

WRITE (*x,*) ' base = ', RADIX (i)

WRITE (+,*) ' t = 7, DIGITS(x)
WRITE (x,*) ' L = ', MINEXPONENT (x)
WRITE («,*) ' U = ’, MAXEXPONENT (x)
WRITE (x, *) ' x_max = ', HUGE (x)

WRITE (*,*) ' x_min = ', TINY(x)

WRITE (*,*) ' eps_M = ', EPSILON(x)

STOP
END PROGRAM machar

7.4. Numeros especiales.

La condicién de normalizacion sobre la mantisa de los niimeros de punto flotante impide la representacién
del cero, por lo tanto debe disponerse de una representacioén separada del mismo. Por otra parte, en la aritmética
de punto flotante pueden presentarse las tres siguientes condiciones excepcionales:

= una operacién puede conducir a un resultado fuera del rango representable, ya sea porque |x| > xmsx
(overflow) o porque |x| < xmin (underflow),

= ¢l cdlculo puede ser una operacién matemética indefinida, tal como la divisién por cero, o

= el célculo corresponde a una operaciéon matemdtica ilegal, por ejemplo 0/0 6 v/—1.
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Antes de la implementacion de la norma IEEE754, frente a tales situaciones excepcionales las computadoras
abortaban el célculo y detenian el programa. Por el contrario, la norma IEEE754 define una aritmética cerrada
en [ introduciendo ciertos nimeros especiales. De esta manera, con la implementacion de la norma IEEE754
en las computadoras actuales, cuando un cdlculo intermedio conduce a una de las situaciones excepcionales
el resultado es asignado al ndimero especial apropiado y los célculos contindian. Asi, la norma permite una
aritmética de no detencion.

= Ceros. En la norma IEEE754 el cero es representado por un nimero de punto flotante con una mantisa
nula y exponente e = L — 1, pero, como ninguna condicién es impuesta sobre el signo, existen dos ceros:
40y —O0 (con la salvedad de que en una comparacién se consideran iguales en vez de —0 < 4-0). Un cero
con signo es ttil en determinadas situaciones, pero en la mayoria de las aplicaciones el cero del signo es
invisible.

» Infinitos. Cuando un cédlculo produce un desbordamiento (overflow) positivo el resultado es asignado
al niimero especial denominado infinito positivo, codificado como +Infinity®*. De la misma manera,
el cédlculo de un desbordamiento negativo es asignado al nimero especial infinito negativo, codificado
como —Infinity. Los infinitos permiten considerar también el caso excepcional de la divisién de
un nimero no nulo por cero: el resultado es asignado al infinito del signo apropiado. Los infinitos son
representados en el estandar por los nimeros de punto flotante con mantisa nula y exponente e = U + 1
con el correspondiente signo.

= Numeros denormalizados. Tradicionalmente si una operacion producia un valor de magnitud menor
que X, (desbordamiento a cero, o underflow), el resultado era asignado a cero. Ahora bien, la distancia
entre cero y Xy = B! (el menor niimero de punto flotante positivo representable) es mucho mayor
que la distancia entre este ndmero y el siguiente por lo que la asignacién a cero de una condicién de
underflow produce errores de redondeo excepcionalmente grandes. Para cubrir esta distancia y reducir
asi el efecto de desbordamiento a cero a un nivel comparable con el redondeo de los nimeros de
punto flotante se implementa el desbordamiento a cero gradual (gradual underflow) introduciendo los
niimeros de punto flotante denormalizados. Los nimeros denormalizados son obtenidos removiendo
en la representacién de punto flotante la condicién de que a; sea no nulo solo para los nimeros que
corresponden al minimo exponente ¢ = L. De esta manera la unicidad de la representacién es mantenida
y ahora es posible disponer de niimeros de punto flotante en el intervalo (—B%~!, B£~1). La magnitud del
mds pequefio de estos niimeros denormalizados es igual a B2 ~'. De este modo, cuando el resultado de
una operacion tiene magnitud menor que Xy, €l mismo es asignado al correspondiente nimero de punto
flotante denormalizado mds préximo. En el estandar, los nimeros denormalizados son representados
como nimeros de punto flotante con mantisa no nula y exponente e = L — 1.

» NaN. Operaciones matemdaticamente ilegales, como 0/0 6 /x para x < 0, son asignadas al nimero
especial denominado Not a Number (no es un nimero), codificado como NaN. En el estandar un NaN es
representado por un nimero de punto flotante con mantisa no nula y exponente e = U + 1 (puesto que la
mantisa no esté especificada no existe un tnico NaN, sino un conjunto finito de ellos los cuales pueden
utilizarse para especificar situaciones de excepcion particulares).

Las operaciones aritméticas que involucran a los nimeros especiales estan definidas de manera de obtener
resultados razonables, tales como

(£Infinity )+ (+1)==+Infinity
(£Infinity)-(—1)=FInfinity
(XInfinity )+ (+Infinity )=+Infinity
(£Infinity )+ (FInfinity )=NaN
1/(£0) =+Infinity 1/(£Infinity ) =40
0/0 =NaN (£Infinity)/(£Infinity )=NaN
0-(£Infinity )=NaN

4Noétese que “infinito” no significa necesariamente que el resultado sea realmente oo, sino que significa “demasiado grande para
representar”.
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Por otra parte un NaN se propaga agresivamente a través de las operaciones aritméticas: en cualquier operacion
donde un NaN participe como operando el resultado serd un NaN.

&> Anulando la aritmética de no detencién de la norma IEEE754.

La filosofia detras de la aritmética de no detencién de la norma IEEE754 es que el sistema de punto flotante
extendido simplifica la programacién en algunos casos, en particular cuando los calculos involucran puntos
singulares. Sin embargo, muchos usuarios la encuentran confusa y prefieren que los calculos sean abortados
con un apropiado mensaje de error. Para anular el comportamiento del estandar en las situaciones excepcio-
nales se puede utilizar la opcién —ffpe-trap=invalid, zero, overflow, underflow, denormal
en la compilacién del programa con el compilador gfortran

7.4.1. Ejercicios

Ejercicio 7.5 Determinar los nimeros de punto flotante denormalizados positivos asociados al conjunto
F(2,3,—1,2).
Ejercicio 7.6 Compilar y ejecutar el siguiente programa para mostrar la accién de los nimeros especiales.

PROGRAM excepciones
IMPLICIT NONE

INTEGER :: i

REAL :: xX,x_max,xX_min, X _min_den, cero

x_max = HUGE (x)

x_min = TINY (x)

x_min_den = REAL (RADIX (1)) *x (MINEXPONENT (x)-DIGITS (x))

cero = 0.0

WRITE (%, *) ’'Desbordamiento =’, 2.0%xX_max
WRITE (%, *) ’'Desbordamiento gradual a cero =’, x_min/2.0
WRITE (*,*) ’'Menor numero denormalizado =’, x_min_den
WRITE (*,*) ’Desbordamiento a cero =’, x_min_den/2.0
WRITE (x,*) ’Division por 0 =", 1.0/cero
WRITE (*,*) "0/0 =’ , cero/cero
WRITE (*,*) ’'NaN + 1 =’, cero/cero + 1.0
STOP

END PROGRAM excepciones
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