CURSO
DE INICIACION
A LA PROGRAMACION
DE VIDEOJUEGOS
CON EL LENGUAJE

FENIX v(.92a
(en Windows)

Oscar Torrente Artero

©0€0)

Esta obra estd bajo una licencia Reconocimiento-No comercial-Compartir bajo la misma licencia
2.5 Espana de Creative Commons.

Para ver una copia de esta licencia, visite http://creativecommons.org/licenses/by-nc-sa/2.5/es/ o
envie una carta a Creative Commons, 171 Second Street, Suite 300, San Francisco, California
94105, USA.

http://creativecommons.org/licenses/by-nc-sa/2.5/es/

Agradecimientos

Quiero agradecer el empefio y las ganas que le ponen todas aquellas personas que tiran para
adelante este proyecto tan fantastico que es Bennu/Fénix y a toda la gente que participa en el foro
aportando toda la ayuda que estd en su mano. Gracias por todo.

A quién esta dirigido este texto

Este curso esta pensado para usuarios de Windows con ciertos conocimientos medios (p. ¢j:
saber qué es un megabyte, saber crear un acceso directo, saber qué es la extension de un archivo, haber
oido hablar alguna vez de la linea de comandos...) pero que no hayan programado nunca, y que quieran
aprender utilizando para ello el lenguaje Fénix. Por lo tanto, esta pensado para gente que se quiera iniciar
en el mundo de la programacion a través de la excusa de la creacion videojuegos, objetivo éste apasionante
y realmente reconfortante.Y finalmente, estd pensado para gente con ilusién para ilusionar (valga la
redundancia) a los demas creando mundos y experiencias magicas y Unicas.

En este manual el lector no encontrara temas avanzados tales como el manejo de punteros y
gestion de memoria, o la creacion de dlls: el objetivo de este texto es ser para el futuro programador una
introduccion elemental en el fascinante mundo de la algoritmia y del desarrollo de sotware mediante un
lenguaje potente y flexible como Fénix, asumiendo que el lector parte de un nivel de conocimiento escaso
en lo que se refiere a los conceptos basicos de programacion. Por tanto, la intencion de este libro es ensefar
a programar a aquellos que lo intentan por primera vez y facilitar la adquisicion de los procedimientos
basicos necesarios para el desempefio en esta actividad, utilizando como excusa los videojuegos y como
medio el lenguaje Fénix. Por eso no se han incluido temas que sobrepasarian el objetivo inicial planteado.

Asi mismo, este curso no es una referencia o compendio exhaustivo de las funciones y
comandos que Fénix aporta. El lector experimentado notard que en las paginas siguientes faltaran por
mencionar y explicar multitud de funciones interesantes (de manejo del CD, de manejo del joystick, de
gestion de memoria dinamica, de control de animaciones FLI/FLC, de todas las funciones relacionadas con
la manipulacién de paletas de color,etc). No se ha pretendido nunca que este texto albergara toda la
informacion sobre Fénix, y s6lo se ha incidido en aquellos aspectos del lenguaje que han sido considerados
mas relevantes, importantes o ttiles en el dia a dia de un programador de este lenguaje.

CAPITULO 0: ANTES DE EMPEZAR...

Conceptos basicos de programacion para el principiante:

.Qué es "programar''?

Pulsamos una tecla y los datos bailan en la pantalla o la impresora empieza a trabajar el papel.
Un torno moldea con destreza el trozo de madera. El brazo robotico de la cadena de montaje aplica los
puntos de soldadura con precision. L.a maquina de refrescos nos ofrece nuestra bebida favorita y ademas
nos devuelve el cambio con exactitud...

Detras de todas estas acciones estan los programadores que son personas que se han encargado
de elaborar unos programas (unas "recetas" que especifican qué acciones se han de realizar y como) para
cada maquina determinada. Es decir,los programas no son mas que un conjunto de instrucciones ordenadas,
entendibles por las maquinas, y que les permiten realizar tareas concretas como las enumeradas al
principio, (y muchas mas que vemos a nuestro alrededor).

Asi pues, para el buen funcionamiento de los aparatos anteriores podemos deducir que entran
en juego dos elementos fundamentales: el procesador y el programa. El procesador es la parte fisica: se
compone de una gran cantidad de elementos electronicos (transistores en su mayoria) miniaturizados y
encapsulados en una pastilla llamada microchip. Hay de muchos tipos y su estudio es muy interesante, pero
no entraremos en mas detalles. Y luego esta el programa. No se trata de algo fisico: ya hemos dicho que
estd compuesto de ordenes que van a guiar al procesador en sus tareas de manipulacion de la informacion.
Es decir, podemos definir finalmente un programa como un conjunto de comandos que un procesador
ejecuta siguiendo un orden determinado para lograr alcanzar un objetivo propuesto.

Como programadores que somos, escribiremos esas ordenes en un archivo, como si escribié-
ramos un documento de texto, y luego se lo daremos como alimento al procesador. En el momento de la
verdad, cuando queramos "poner en marcha" el programa, esas instrucciones que escribimos una vez van a
llegar al procesador en forma de impulsos eléctricos, y el conjunto de sefiales que interprete nuestro
procesador dard como resultado la ejecucion de nuestro programa.

Los lenguajes de programacion

Si el procesador recibe las ordenes en forma de impulsos eléctricos, jcomo se escriben los
programas?,;cémo codifico esas sefiales?.Afortunadamente para los programadores las cosas han cambiado
mucho en los ultimos afios. En la prehistoria de la informatica electronica (hace unos cincuenta afios), los
programas debian escribirse en un sistema que representara directamente los estados de las sefales
eléctricas que entendia el procesador.

De hecho, los unicos estados eléctricos que un procesador entiende son dos: o le llega corriente
o no le llega. Por lo que a cada una de estas sefiales se la denominé bit y los dos posibles estados que podia
recibir el procesador se representarian con un "1" (pasa corriente) o con un "0" (no pasa corriente) .Es
decir, que los programadores tenian que escribir directamente una secuencia de sefiales eléctricas
codificadas en 0 y 1 (bits) en un orden determinado para que la circuiteria de la maquina pudiera entender
lo que tenia que hacer: es lo que se llama el codigo maquina. Asi que un programa (ficticio) podria ser, por
ejemplo:

1001011101010101100110010110101010101010101101010100110101010110
Hay que decir, que aparte de ser tremendamente dificil escribir un programa en codigo

maquina (y tremendamente facil equivocarse), el codigo maquina valido para un procesador no lo es para
otro, debido a su propia construccidon electronica interna.Por lo tanto, un mismo programa se tenia que

codificar en tantos c6digos maquina como en procesadores se quisiera que funcionara.

A medida que los adelantos tecnologicos permitian disefiar ordenadores mas complejos y con
funciones mas amplias, se podia ir aliviando la tarea del programador. El primer gran cambio lo aporto la
llegada del lenguaje Assembler(o Ensamblador). Se trata de un lenguaje de programacién que asocia una
instrucciéon (o un comando, es lo mismo) con una determinada subsecuencia de ceros y unos que un
procesador concreto entiende. Asi, no hay que escribir tiras inmensas de 0 y 1: simplemente se escriben
instrucciones predefinidas que son simples sustituciones de subtiras concretas.

Seguidamente os pongo un ejemplo de programa Assembler que escribe la palabra "Hola" en
pantalla.

.MODEL SMALL
.CODE

Programa:

MOV AX,@DATA
MOV DS, AX

MOV DX, Offset Palabra
MOV AH,9

INT 21h

MOV AX,4C00h
INT 21h

.DATA

Palabra DB 'Hola$'
STACK

END Programa

Si tienes curiosidad por ejecutarlo, te alegrara saber que Windows incorpora de seria un programa que es capaz de
traducir el codigo Assembler a codigo maquina (es decir, un programa que puede ejecutar el programa escrito
arriba). Para arrancar este programa debes ir a Inicio->Ejecutar y escribri “debug” (sin comillas). Verds que
aparece una ventana negra intimidatoria. Antes de escribir ningun codigo deberas teclear “a” (sin comillas), para
preparar el programa para aceptar ordenes de Assembler. Una vez hayas acabado de escribirlas,deberas decirle que
guarde el texto en un fichero, mediante la orden “w ruta_del fichero”.Si quieres ejecutar el programa, primero
tendrds que cargar en memoria el fichero que creaste, con “l ruta_del fichero” y ejecutarlo seguidamente con “n
ruta_del_fichero”.Para salir del programa “debug” es pulsando “q”.

Examinando el ejemplo nos damos cuenta enseguida de dos cosas: la primera, de lo
complicado que es, no solo utilizar, sino entender estas lineas de codigo.La segunda, aunque quiza no lo
apreciemos tan claramente al no conocer otros lenguajes, de lo largo que resulta un programa que tan sélo
escribe la palabra "Hola en pantalla.

Precisamente por la caracteristica de representar directamente las instrucciones de codigo
maquina que soporta el procesador,el lenguaje Ensamblador pertenece a la categoria de los lenguajes
llamados de bajo nivel. Afortunadamente para los programadores, la cuestion de los lenguajes ha
evolucionado mucho y podemos distrutar actualmente de los lenguajes de alto nivel. La diferencia mas
importante en estos lenguajes es que las instrucciones se van a escribir usando una nomenclatura muy
proxima al lenguaje humano. Ahora, leer el codigo de un programa nos puede servir para saber, mas o
menos, qué es lo que hace el programa sin que tengamos que tener grandes conocimientos de
programacion. Uno de los lenguajes de alto nivel mas importante es sin duda el lenguaje C. El mismo
programa antes descrito podria escribirse en lenguaje C de la siguiente manera:

#include <stdio.h>
void main (void)
{ printf("Hola"); }

La instruccion printf("Hola"); resulta mucho més comprensible que todo el cédigo en
Ensamblador. Y ahora si que podemos ver la diferencia de tamafio en el coédigo total del programa.

Si quisieras ver el resultado de ejecutar este programa, no es tan facil como antes con la herramienta “debug”. En
Windows no disponemos de ninguna aplicacion que nos permita ejecutar codigos fuentes escritos en C (es decir,
compiladores de C). Deberiamos instalarlo por nuestra cuenta. Si te interesa el tema, mirate el entorno integrado de
programacion libre Dev-Cpp (http://www.bloodshed.net), que es una completa aplicacion que, entre otras cosas,
incorpora GCC, el compilador libre mas famoso de C. O como alternativa, también tienes el IDE libre para C/C++
CodeBlocks (http.//www.codeblocks.org), o incluso el IDE libre multilenguaje Eclipse (http.//www.eclipse.org)
.También puedes mirarte http://www.mingw.org , donde encontraras un compilador libre de C para Windows — de
hecho, es una version de GCC- , y otro mas en http.//www.cs.virginia.edu/~lcc-win32. Hay que decir también que
Microsoft ofrece un entorno de programacion en C/C++ llamado "Visual C++ 2005 Express Edition",que aunque
no es libre, se puede descargar gratuitamente desde http.//msdn.microsoft.com/vstudio/express/downloads/

Existe una gran variedad de lenguajes de programacion. La mayoria es de propdsito general,
esto es, sirven para dar solucion a problemas de ambitos muy dispares. Lo mismo se usan para crear (0 mas
técnicamente, desarrollar) aplicaciones cientificas que para videojuegos. De este tipo de lenguajes tenemos
el lenguaje C (aunque su aprovechamiento maximo se produce en la programacion de sistemas a bajo
nivel), C++ (una evolucion de C), C#, Delphi, Java, Basic, etc.

Otros lenguajes son de propoésito especifico -como Fénix- y estan muy bien optimizados para
la resolucidn de problemas de un campo muy concreto del saber. De este tipo tenemos lenguajes orientados
al tratamiento de las base de datos empresariales como Cobol, Clipper, SQL, etc; lenguajes orientados a la
resolucion de problemas matematicos como Fortran, MatLab,etc; lenguajes orientados a la generacion de
paginas web como XHTML, Javascript, Php, ASP.NET, etc; lenguajes orientados a la creacion de
videojuegos como Blitz3D o el propio Fénix, etc,etc.

Todos ellos (los de ambito general y ambito especifico) forman parte de los denominados
lenguajes de alto nivel pues su sintaxis es muy proxima al lenguaje humano. Sin embargo, sigue siendo
imprescindible traducir estos lenguajes al lenguaje que entiende el procesador, el codigo maquina.

Ya que estamos hablando de que los ordenadores so6lo entienden 0 y 1,conviene que nos paremos
un momento para comentar un tema importante: los sistemas de numeracion.

Un sistema de numeracion es eso: un sistema para crear y manipular simbolos que representan
cantidades.Todos los calculos que realizan los ordenadores, en realidad se reducen a simples sumas, restas,
multiplicaciones, divisiones de diferentes cantidades (nlimeros) y poca cosa mas. Hasta el mas espectacular
grafico 3D no es mas que el resultado de estas operaciones matematicas. Incluso el texto que escribes en
un procesador de textos se reduce al final a operaciones aritméticas y logicas. Y sabemos que estos
numeros dentro del ordenador estan representados siempre como 0 y 1. Asi pues, podemos decir que los
ordenadores trabajan con numeros representados en el sistema binario (este sistema se llama asi porque
so6lo utiliza dos simbolos para representar todos los nimeros posibles).

El numero 0 en el sistema binario se representa logicamente por el 0. Y el 1 por el 1. ;Pero el 27
Si s6lo tenemos el 0 y el 1, ;como entiende el 2 el ordenador? Bueno, segun la teoria matematica de los
sistemas de numeracion (tema en el que no vamos a profundizar aqui), el nimero 2 se representa asi: "10".
Y el 3 asi: "l11". A continuacion tienes una tabla de equivalencias de los 16 primeros nimeros
representados en sistema binario y en sistema decimal, que es el sistema que utilizamos los humanos (este
sistema se llama asi porque utiliza diez simbolos para representar todos los nameros
posibles:0,1,2,3,4,5,6,7,8 y 9).

http://msdn.microsoft.com/vstudio/express/downloads/
http://www.cs.virginia.edu/~lcc-win32
http://www.mingw.org/
http://www.eclipse.org/
http://www.codeblocks.org/
http://www.bloodshed.net/

Sistema decimal Sistema binario

0 0

1 1

2 10

3 11

4 100
5 101
6 110
7 111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Fijate en un detalle que luego veremos que es muy importante: dependiendo del numero que se
trate, el ordenador necesitard mas bits 0 menos de memoria para poder representarlo y trabajar con €l: para
usar el numero tres s6lo necesita dos bits,pero para el numero 14 necesitara cuatro. Si hubiéramos
representado el niimero 16 veriamos que habria necesitado 5 bits.

Puedes ver claramente que el sistema binario es un engorro para los humanos. Si tuviéramos que
escribir en un papel un nimero muy grande, no acabariamos de escribir 1 y 0s. Para evitar esto, se invento
el llamado sistema hexadecimal. El sistema hexadecimal es una manera de representar los niimeros
binarios pero que simplifica su escritura, con la ventaja adicional que es muy facil pasar los nimeros de
hexadecimal a binario y viceversa. Diriamos que el hexadecimal es un binario "para vagos". El truco
consiste en coger las primeras 16 (por eso se llama hexadecimal) combinaciones posibles de cuatro bits ,
-que justamente son las 16 combinaciones que he escrito antes -, y asignarle a cada una un simbolo, de la
siguiente manera:

Sistema binario Sistema hexadecimal

0 0

1 1

10 2

11 3

100 4

101 5

110 6

111 7

1000 8

1001
1010
1011
1100
1101
1110
1111

MmO O W > o

Asi, un numero binario como 10010011 lo podriamos escribir en hexadecimal asi: 93 (niimero
que en decimal seria el 147). ;Como lo hemos hecho?Muy fécil: empezamos por la derecha del niimero
binario y vamos haciendo grupos de cuatro bits (si el grupo de mas a la izquierda tiene menos de cuatro, se
rellena por la izquierda de O hasta llegar a cuatro). Cada grupo lo vamos sustituyendo por su simbolo
hexadecimal de la tabla anterior: y ya esta. Y a la inversa es igual de facil: vamos sustituyendo cada
simbolo hexadecimal por su equivalencia en binario.

Por cierto, ;como sabemos si un nimero esta escrito en hexadecimal o en decimal? Se pueden
confundir, como acabamos de ver. Existe un convenio que dice que los nimeros hexadecimales iran
seguidos de la letra "h" para indicar que efectivamente son ntimeros hexadecimales. O sea, que el 93
anterior lo tendriamos que haber escrito asi: 93h. Otro convenio equivalente dice que el ntmero
hexadecimal ha de ir precedido de los simbolos "0x", con lo que tendriamos que escribir por ejemplo 0x93.

Fijate por ltimo que un nimero hexadecimal puede incorporar simbolos alfabéticos entre la A
y la F. Un numero tal como AB3FE24h es perfectamente valido.

Finalmente, comentar que, sea cual sea la representacion de los nimeros, éstos seguiran siendo
los mismos y se podran realizar las mismas operaciones con las que estamos tan acostumbrados en el
sistema decimal: sumas, restas, multiplicaciones, divisiones,etc. Eso si, con ciertas reglas especificas a
seguir en cada uno de los sistemas de numeracion,como es natural.

Editores, intérpretes vy compiladores

Si podemos utilizar estos lenguajes de alto nivel es gracias a la aparicion de los intérpretes y
de los compiladores. Los programadores escriben sus programas siguiendo la sintaxis (las normas) de un
lenguaje determinado, por ejemplo C, y guardan el programa en un archivo como si se tratara de un texto.
De hecho, el programa lo podremos escribir con cualquier editor de texto que tengamos disponible, incluso
el "Bloc de notas" de Windows. Este archivo de texto que contiene el codigo de nuestro programa es el que
se denomina codigo fuente del programa. A continuacion interviene el intérprete o el compilador (o los
dos, como el caso de Fénix) para traducir ese codigo fuente en codigo maquina, y posibilitar la ejecucion
del programa por el procesador. Es decir, los intérpretes y los compiladores son programas especiales cuya
tarea es traducir el texto que hemos escrito nosotros a la secuencia de 0 y 1 que entiende el procesador.

Existe una diferencia fundamental entre los intérpretes y los compiladores, que va a decidir si
el programador se decanta por el uso de un lenguaje de programacion interpretado o compilado.

Los lenguajes interpretados son leidos y traducidos por el intérprete instruccion por
instruccién, a la misma vez que se esta ejecutando el programa. Es decir, el intérprete envia las
instrucciones traducidas al procesador a la misma vez que las va leyendo del codigo fuente. Y esto ocurre
cada vez que se ejecuta el programa.

Inconvenientes Ventajas

*Esta manera de funcionar los *Si el usuario tiene instalado el intérprete para un lenguaje concreto y lo

hace mas lentos, y ademas, que le suministramos es el cédigo fuente, no importa el tipo de procesador
para su correcto que esté utilizando ni el sistema operativo que tenga instalado. Un
funcionamiento tiene que programa en Java (lenguaje pseudointerpretado) podra funcionar en un
existir un intérprete alli donde Pentium IV con Windows o con Linux, o en un Motorola montado en un
el codigo deba ejecutarse. Apple con el sistema MacOS instalado. Si existe un intérprete de ese

lenguaje para una plataforma hardware determinada y para un sistema
operativo concreto, se puede ejecutar alli.

Lenguajes interpretados son: Php, Python, Tcl, Perl, Javascript,...

Cuando se utiliza un lenguaje compilado, como C, la cosa cambia. El compilador se encargara
de traducir el codigo fuente en codigo ejecutable directamente para el procesador y generard un archivo
separado incluyendo este codigo binario. En Windows esos archivos binarios suelen llevar la extension
.exe (ejecutables). Asi, el usuario solamente tendra que ejecutar este archivo que tiene las instrucciones ya
traducidas al codigo maquina.

Inconvenientes Ventajas
*Precisamente el hecho de generar el codigo final a ejecutar por el *El archivo binario obtenido
procesador es lo que trae su mayor desventaja. El codigo maquina se estd muy optimizado y su
generara para un procesador de una familia determinada -hemos gjecucion es muy rapida, ya
comentado antes que los codigos maquina son muy poco transportables-, | que no requiere de mas
por ejemplo para los Pentium, y no podra ejecutarse en otra plataforma, traducciones. Ademas, el
como un Macintosh. Y no so6lo para las plataformas hardwre, sino también usuario no necesita ningun
para los sistemas operativos. Un programa compilado para Linux no programa adicional para
funcionard bajo Windows. Esto obliga a los programadores a recompilar | poder ejecutarlo y asi el
el programa para las diferentes plataformas y entornos en los que va a programador puede distribuir
trabajar, generando diferentes versiones del mismo programa. Ademas el | sus productos con mas
programador también se encuentra con el trastorno de tener que facilidad.

recompilar el programa cada vez que le hace una modificacion o
correccion al codigo fuente.

Lenguajes compilados son: C, C++, Delphi, Cobol, Fortran...

Si quieres ver un resumen de la evolucion que han sufrido los distintos lenguajes de
programacion existentes a lo largo de su historia (cuando aparecieron, a partir de qué lenguajes anteriores
se crearon, cuando dejaron de existir los que ya no se utilizan,etc) es muy interesante ver los arboles

genealdgicos accesibles en http://www.levenez.com/lang

LY Fénix, qué es?;Lenguaje interpretado o compilado? Pues, como Java, C# o VB.NET, es las
dos cosas. Pero eso lo veremos en el siguiente capitulo...

Las librerias

Cuando programamos en un lenguaje determinado, hacemos uso de una serie de instrucciones,
ordenes o comandos (son sindnimos) que son los propios de ese lenguaje y que son, en definitiva, los que
le dan cuerpo . Por ejemplo, para imprimir "Hola" por pantalla en C hemos visto que podemos hacer servir
el comando printf("Hola");, en C# usariamos el comando Console. WriteLine("Hola");, en Java el comando
System.out.printin("Hola"),, etc. Cuando se disenid cada uno de los lenguajes existentes, se dotd de un

http://www.levenez.com/lang

conjunto mas o menos extenso de comandos para poder hacer algo con ellos: algo asi como el vocabulario
basico con el que poder trabajar con ese lenguaje.

La gente pronto se dié cuenta que con ese nimero limitado de comandos inicial era capaz de
crear programas que, a su vez, podian ser utilizados como un comando més "no estdndar" del lenguaje
utilizado. Es decir, que existia la posibilidad de generar nuevos comandos para un lenguaje determinado, a
partir de los comandos iniciales de ese mismo lenguaje, y hacer disponibles esos nuevos comandos para los
demas programadores. La utilidad era obvia: ;para qué escribir un programa de 100 lineas que me dibujara
un circulo en la pantalla cada vez que queria dibujar el circulo ? Lo mas inteligente era escribir ese
programa una vez, y convertirlo en un comando mas del lenguaje, para que asi todo el mundo a partir de
entonces no tuviera que empezar de 0 y escribir siempre esas 100 lineas, sino que solamente tuviera que
escribir ese nuevo comando que ¢l solito dibujaba un circulo.Asi pues, cada programador se podia crear sus
propios comandos personales que le facilitaban la faena: los codificaba una vez (es decir, escribia lo que
queria que hiciera ese comando, a partir de comandos mas elementales) y los podia utilizar a partir de
entonces cuando quisiera. Era una forma perfecta para encapsular la dificultad de un programa y acelerar el
desarrollo. Evidentemente, estos nuevos comandos - a partir de ahora los llamaremos funciones- se
compartian entre los programadores, y a los que no habian disefiado esa funciéon "no estandar”, no les
interesaba mucho como estaba hecho por dentro esa funcion, lo que les importaba es que hiciera bien lo
que tenia que hacer.

Para poder compartir mejor entre los programadores estas nuevas funciones, pronto surgio la
necesidad de agrupar las mas populares o las mas necesarias en conjuntos mas o menos amplios: las
librerias (o mejor, bibliotecas) de funciones. Las bibliotecas de funciones son, como su nombre indica,
almacenes de funciones disponibles para un lenguaje concreto, que los programadores pueden hacer servir
para facilitar tareas laboriosas que requeririan un monton de lineas de cdodigo si se partiera desde cero;
gracias a que alguien previamente ya las ha codificado y las ha puesto disponibles en forma de funcion
alojada en una biblioteca, se pueden evitar muchas horas de trabajo.

Para cada lenguaje hay disponibles bibliotecas de muchos tipos. Normalmente, las librerias
viene agrupadas por utilidad: hay librerias de entrada/salida, que almacenan funciones que manejan el raton
y el teclado, hay librerias de sonido, que almacenan las funciones que gestionan la posibilidad de
reproducir o grabar diferentes formatos de sonido, hay librerias GUI, que almacenan funciones que pintan
ventanas botones automaticamente sin tener que empezar desde cero, hay librerias de red, que posibilitan
tener funciones de comunicacion entre ordenadores,etc. Hay que saber también que un nombre técnico para
llamar a las librerias en general es el de API (Application Programming Interface -Interfaz de
programacion de aplicaciones), asi que en nuestro programa podriamos incorporar una API de
entrada/salida, una API GUI, una API de red.,..., y hacer uso de las funciones incluidas en ellas.

De hecho, ya veremos que el lenguaje Fénix incorpora un mecanismo especifico para poder
utilizar librerias de todo tipo, escritas en C y/o Fénix, -normalmente, las APIs estaran disponibles para
aquel lenguaje con el cual ellas mismas han sido creadas: Fénix se sostiene sobre C - dotando asi al
lenguaje de gran flexibilidad, extensibilidad y potencia, sin alterar para nada su nucleo central, el cual se
mantiene pequeio y optimizado.

Para acabar, antes hemos hablado de que para programar necesitas como minimo un editor de
textos, y un programa intérprete y/o compilador (depende del lenguaje).Pero estaras preguntando: las
librerias, fisicamente, ;qué son?;Donde estan? Normalmente las librerias son ficheros binarios -es decir, ya
compilados- que para hacer uso de ellos has de tener copiados/instalados en tu sistema, bien en la misma
carpeta que el archivo de texto con tu codigo fuente, bien en una localizacion estandar accesible. En
Windows generalmente tienen la extension dll. 'Y evidentemente, si quiere usar las funciones que incluyen,
tienes que hacer referencia a estos ficheros desde nuestro codigo fuente con un protocolo determinado
segun el lenguaje.

10

Las librerias graficas

Desengafiémosnos: C++ (y C) es el lenguaje mas utilizado para crear videojuegos a nivel
profesional. Asi que si queremos ser "profesionales" -jcuidado con esa palabra!-, hay que conocer C++.
C++ es un lenguaje muy potente y muy flexible, pero también bastante dificil de aprender. Ademas, C++
no incorpora funciones "nativas" (o sea, que pertenezcan al propio lenguaje en si) para la gestion de
graficos ni multimedia, por lo que si nos decidiéramos por usar este lenguaje tendriamos que echar mano
de alguna libreria grafica disponible y aprender a utilizarla.

Por libreria grafica se entiende aquella que te facilita mediante programacion la tarea de
dibujar en pantalla, ya sea bien en 2D o bien en 3D; y por multimedia que ademas dé soporte al control y
gestion de sonido, musica,video,interaccion teclado/raton/joystick/...,etc.

Asi pues, para incluir graficos en los juegos y también incluir sonido y sistemas de control
efectivos en C++ contamos con librerias pre-programadas. Si vamos a usar este lenguaje, seria una locura
de nuestra parte y un suicidio profesional rechazarlas y hacer nuestros propios codigos (o rutinas, es lo
mismo), desde cero: basta con aprender coémo funcionan las funciones incluidas en la libreria que elijamos.

Nosotros no programaremos en C++ sino en Fénix, un lenguaje creado especificamente para
hacer videojuegos - C++ es de proposito general - y infinitamente mucho mas facil de aprender.
Evidentemente, hay algo a cambio de la facilidad tiene que tener Fénix: no es tan flexible como C++ y hay
muchas cosas que no podremos hacer con ¢€l, pero ya hablaremos de eso en el siguiente capitulo.

A pesar de que programaremos en Fénix, y en principio no tendriamos por qué saberlo, como
programadores de videojuegos que seremos nos interesara conocer como minimo de oido las librerias (o
APIs) graficas/multimedia mas extendidas e importantes que existen para C++, y asi algun dia, quién sabe,
dar el salto.

Existen cuatro librerias principales, dos de ellas consideradas "amateur" y otras dos
consideradas "profesionales". Las primeras son Allegro y SDL, las segundas DirectX y OpenGL. Todas se
pueden utilizar basicamente en C o C++:

Allegro (_http://www.allegro.cc/) : Excelente libreria para graficos en 2 dimensiones que
tambien maneja sonido, joystick, teclado, mouse y temporizador. Tiene la expansion AllegroGL
(que permite utilizar OpenGL con Allegro) para poder crear graficos en 3D. Una de las principales
ventajas que tiene es que fue especificamente disefiado para la programacion de videojuegos, por lo
que todas las rutinas que utiliza estan hechas para ser faciles de manejar y sobretodo eficiente
desde el punto de vista de un juego. Ademas de que tiene ya preconstruidas ciertas funciones para
realizar algunos efectos que normalmente tendrias que programar a mano. Otro tanto a favor es que
es multiplataforma, lo que quiere decir que se puede generar codigo para Windows, Linux y otros
sistemas sin modificar linea alguna. Es una libreria bastante simple de utilizar y suficientemente
potente para una primera incursion en el mundo grafico. No obstante, no es muy usada en juegos
profesionales (o al menos no muchos aceptan que lo usan), quizas porque esta disefiada con una
vision general de como funciona un videojuego -por tanto, es ideal para novatos y como hobby- ,
pero en un juego profesional a los programadores les gusta exprimir hasta las raices de lo que estan
utilizando; por ejemplo, Allegro no tiene soporte para aceleracion grafica.

Un curso de programacion grafica en C++ (con una parte tedrica bastante interesante)
basado en la libreria Allegro y AllegroGL que puede resultar util se puede encontrar en
http://sp4br75.digiweb.psi.br/curso_programacion_grafica/pg_frames.htm

11

http://sp4br75.digiweb.psi.br/curso_programacion_grafica/pg_frames.htm
http://www.allegro.cc/

SDL - Simple DirectMedia Layer- (_http://www.libsdl.org/):Comparable a Allegro, es una
muy recomendable libreria para el que recién empieza porque ademas de ser simple de programar
es rapida y ademas tiene la posibilidad de trabajar con OpenGL para el manejo de aceleracion
grafica, ya que, aunque SDL por si misma realiza bastantes tareas, de video, sonido, entrada y red,
no tiene la potencia requerida para labores exigentes (éste es el caso de los graficos 3D en tiempo
real), por lo cual necesita asociarse con otras librerias, como por ejemplo, OpenGL. Algo
importante a tener en cuenta es que es también multiplataforma: es portable a diferentes sistemas
operativos como Windows, Linux, BeOS, MacOS, Solaris, IRIX, y FreeBSD sin tener que cambiar
ni siquiera una sola linea de codigo. Esta libreria fue escrita en C, pero trabaja en forma nativa con
C++, y puede utilizarse facilmente con otros lenguajes de programacion como Ada, Eiffel, ML,
Perl, Python y Ruby.Y otra de las caracteristicas muy importantes que tiene SDL es que se trata de
un proyecto libre, es decir el codigo fuente estd disponible para practicamente cualquier persona
que quiera echarle un vistazo, y si lo deseas puedes arreglarlo a tu gusto, por lo tanto actualmente
existen una gran cantidad de personas que continuamente, como hobbie, estan aportando algo
nuevo a esta libreria en sus ratos libres, ya sea mejorandolo en su desempefo o afiadiéndole nuevas
funciones.

Si se quiere utilizar la libreria SDL para programar sobre la plataforma NET (en lenguajes
como C# o VB.NET) en vez de con C/C++ clasico, existe una variante -un "port"- de SDL
enfocada para ello, la SDL.NET, en http://cs-sdl.sourceforge.net

DirectX (_http://msdn.microsoft.com/directx) :DirectX es la libreria de Microsoft por lo

que Unicamente puedes hacer Juegos para Windows con ella. Esa no es la unica desventaja,
también es dificil de programar.Para que quede mas claro, no es recomendable comenzar por
DirectX a menos que te decidas a hacer Juegos para Windows exclusivamente y tengas un solido
respaldo de conocimientos sobre programacion general. Recomiendo dejar la dificultad de DirectX
para una segunda etapa, cuando ya sepas manejar graficos y demas elementos multimedia. Tarde o
temprano tendras que aprender a trabajar con ella si quieres hacer videojuegos ambiciosos, pero es
mejor si te introduces en el mundo de las DirectX después de haber programado ya en otras
librerias. DirectX fue disefiada por Microsoft con el fin de permitir a los programadores escribir
programas multimedia para sistemas Windows de manera facil, sin tener que preocuparse sobre
qué hardware esta corriendo y como funciona, como es el caso del tipo de tarjeta de video, etc, es
decir, sin tener que escribir codigo especifico de hardware. Para la mayoria de las aplicaciones
tradicionales, el acceso a funciones de hardware se hacen a través del sistema operativo; sin
embargo, para las aplicaciones multimedia, que son mas exigentes, esta via puede resultar bastante
lenta;DirectX es un conjunto de librerias que permitieran acceso a funciones de hardware de forma
mas directa, sin pasar por todos los callejones que usualmente crea el sistema operativo.
Obviamente esto hace que , ademas de ser un producto de Microsoft, DirectX esta intimamente
ligado con el sistema operativo Windows. Por eso, esto hace que todas aquellas aplicaciones sean,
en extremo, dificiles de portar a otras plataformas,es decir, una vez que hayas terminado de
programar tu juego estard condenado a trabajar solamente en Windows, y cuando quieras convertir
tu juego para que pueda correr en otras computadoras que usen Mac o Linux tendras que hacerle
muchos cambio al cdodigo, lo cual no es nada deseable a menos que sepas que el unico mercado al
que va dirigido tu juego son personas con una computadora con Windows. No obstante, una de las
principales ventajas que tiene es que no esta hecho solamente para la parte grafica, sino que con
DirectX puedes manejar toda la multimedia de la computadora como sonidos, musica, dispositivos
de Entrada/Salida como teclado, joystick, y varias otras cosas mas, por lo que en este sentido es
ideal para programa videojuegos. Realmente DirectX esta compuesto de 7 componentes:

-DirectDraw: proporciona capacidades de graficos en 2D y sirve como base de
procesos de rendering para otros servicios de video.

-Direct3D: es un motor de rendering para graficos 3D en tiempo real que integra
una API de bajo nivel para el render de poligonos y vértices y uno de alto nivel para la

12

http://msdn.microsoft.com/directx/
http://cs-sdl.sourceforge.net/
http://www.libsdl.org/)

manipulaciion de escenas complejas en 3D.

-DirectShow: es una arquitectura multimedia que divide el procesamiento de tareas
multimedia, como la reproduccion de video, en un conjunto de pasos conocidos como
filtros: éstos tienen un nimero de entradas y salidas que se conectan entre ellas, ofreciendo
gran flexibilidad y modularidad al desarrollar, que puede combinar los filtros segin sus
necesidades.

-DirectInput: permite recoger informacion en tiempo real del raton, teclado y
joysticks

-DirectSound: ofrece drivers y mezcladores de sonido con soporte Dolby, los
cuales posibilitan un rendimiento 6ptimo de sonido posicional en 3D, permitiendo a los
programadores de juegos situar eventos de sonido en cualquier punto del espacio
perceptual del usuario.

-DirectMusic: es mucho mas que simplemente reproducir sonidos; provee un
sistema completo para implementar bandas sonoras dinamicas y sincronizadas que
aprovechan la acelaracion hardware y efectos de posicionamientos 3D avanzado, entre
muchas otras ventajas.

-DirectPlay: proporciona protocolos independientes para funciones de red, para
videojuegos de varios jugadores en Internet.

En el PC existe una gran variedad de tarjetas graficas, de sonido, y demas hardware. Esto
crea un problema a la hora de programar, ya que cada uno de stos dispositivos se programa de una
manera diferente. DirectX, al igual que las otras librerias, es un puente entre el programador y la
maquina. Dicho puente intenta evitar, en la medida de lo posible las diferencias que existen entre
los distintos tipos de hardware que hay en el mercado.Por ejemplo, para hacer un sonido usaremos
una instruccion de DirectSound, la cual sera igual para todas las tarjetas de sonido, ya que es el
propio DirectSound quien se encarga de dar las 6érdenes especificas a la tarjeta de sonido que tene-
mos conectada a nuestro PC. Si no existiera DirectSound, tendriamos que hacer rutinas de sonido
diferentes para modelos de tarjetas de sonido que no fueran compatibles entre si.

-OpenGL -Open Graphics Library- (_http://www.opengl.org/) : OpenGL es una libreria
3D profesional multiplataforma, y esa es su mayor ventaja. En la actualidad muchas personas
utilizan Linux u otros sistemas ajenos a Microsoft lo que abre nuevos e importantes nichos de
mercado. Aprender a programar en OpenGL nos facilita el ingreso a estos mercados y amplia
nuestros horizontes. Es interesante conocerla e implementarla con SDL para hacer tus primeros
trabajos serios usando C. Es la competencia de Direct3D, ya que, a diferencia de DirectX (en
conjunto), esta API s6lo posee rutinas para el manejo de graficos y no tiene soporte para sonido,
entrada, red, etc, el cual se ha de buscar en otras librerias (SDL, Allegro o mas especificas).La
especificacion del API de OpenGL es controlada por un grupo llamado Architecture Review
Board, conformado por varias empresas importantes del sector de las tarjetas graficas como nVidia,
ATI, Creative Labs, SGI, entre otras. La implementacion libre por excelencia de OpenGL se llama
MESA (http://www.mesa3d.org).OpenGL esta pensado para funcionar en sistemas con aceleracion
hardware, por lo que los fabricantes de tarjetas han de incluir soporte OpenGL en sus productos.

Para que no te quedes con las ganas, ahi va un cddigo de un programa escrito en C usando
OpenGL, para que veas qué pinta tiene. Este ejemplo en concreto lo que tinico que hace es, otra
vez, escribir "Hola" en la barra de titulo de la ventana y poner un fondo azul a ella.

#include <windows.h>
#include <conio.h>
#include <gl\gl.h>
#include <gl\glaux.h>

13

http://www.mesa3d.org/
http://www.opengl.org/

void main (void)

{

auxInitDisplayMode(AUX SINGLE| AUX RGBA);
auxlInitPosition(100,100,250,250);
auxInitWindow("Hola");

glClearColor(0.0f,0.0f,1.0f,1.0f);
glClear(GL_COLOR BUFFER BIT);
glFlush();

getch();
}

Evidentemente, para que podamos ver el resultado de ejecutar este codigo, necesitamos
tener instalada la libreria OpenGL (no son mas que unos pocos archivos con extension lib y dll que
actualmente vienen de serie con Windows), hacer referencia a ella en nuestro entorno de
programacion, y un compilador C que nos cree el ejecutable.

Por lo tanto, finalmente podriamos concluir, a modo de esquema, que en el panorama de la
programacion multimedia existe hoy en dia podria resumirse en esta correspondencia:

Librerias no portables Librerias portables (y libres)
DirectDraw, DirectInput SDL, Allegro
Direct3D OpenGL
DirectMusic MikMod (http://mikmod.raphnet.net/), etc
DirectSound OpenAL (http://www.openal.org)
DirectPlay Alguna libreria de red...

DirectShow

(MikMod es una libreria - entre otras- para reproducir cierto tipo de archivos musicales (archivos mod’s) usada
ademas por Fénix. OpenAL es una libreria libre para el manejo del audio tridimensional; tiene la capacidad de
acceder directamente a funciones avanzadas de la tarjeta de sonido y controlar la llamada aceleracion de audio.)

Un detalle que salta a la vista es que Microsoft ofrece una solucion totalmente integrada y
completa para todos los aspectos que conllevan la programacion de un videojuego, y que en el otro lado
tenemos multitud de librerias que cubren partes del todo, teniendo que buscarnos la vida con varias de
ellas; estas librerias estan dispersas y son muy heterogéneas, y su uso por parte de los desarrolladores
implica bastantes problemas a la hora del desarrollo En este sentido, es remarcable el proyecto libre Tao
Framework (http://www.taoframework.com) , el cual intenta integrar en un todo multimedia
multiplataforma coherente -mejor dicho, basado en la plataforma NET- algunas de estas librerias
independientes, como son SDL, OpenGL (+Glut), OpenAL, y otras mas especificas, como ODE
(http://ode.org) -un simulador de dinamica de cuerpos rigidos-, DevIL (http://openil.sourceforge.net) -una
libreria para el tratamiento de imagenes- ,Cg -computer graphics- e incluso incorpora un lenguaje de
programacion completo como es Lua (http://www.lua.org) , intentando ofrecer asi una competencia global
a DirectX.

14

http://www.lua.org/
http://openil.sourceforge.net/
http://ode.org/
http://www.taoframework.com/
http://www.openal.org/
http://mikmod.raphnet.net/

Lenguajes de programacion de videojuegos

Todo lo que hemos escrito en el apartado anterior respecto a las librerias nos seria util en la
practica si programaramos videojuegos en C o C++. No obstante, hemos dicho que ambos lenguajes son
bastante complejos y dificiles de aprender para un iniciado, con lo que facilmente uno se podria desesperar
y dejarlo todo correr.

Es por eso que existe Fénix. Un lenguaje de programacion facil y asequible para cualquiera.
Con Fénix el programador no necesita introducirse en los intrincados mundos del C y de sus librerias:
Fénix ya hace el “trabajo sucio” por ¢€l: asi, el programador puede dedicar todas sus energias al disefio y
programacion de su videojuego, en vez de pelearse con el manejo de las tarjetas graficas, la memoria y
otros monstruos.

No obstante, como es natural, Fénix no es la tinica alternativa para desarrollar videojuegos de
forma “casera”. No es superfluo conocerlas por encima, para saber si nos podrian interesar, y conocer otras
soluciones a los mismos objetivos.

Para empezar, tenemos el XNA Game Studio (http://msdn2.microsoft.com/es-
es/xna/default.aspx), que es basicamente un intérprete y un conjunto de librerias asociadas, ofrecido por
Microsoft gratuitamente -s6lo en la version Express- para el desarrollo especifico de videojuegos. En
realidad, XNA no es incorpora ningin lenguaje propio, sino que es un afiadido al lenguaje C# para facilitar
su uso en el cometido concreto de la creacion de videojuegos, por lo que de hecho el desarrollador
programara en C#, y por tanto, es evidente que para programar con esta plataforma se necesita tener
instalado previamente de forma obligatoria un intérprete de C# , y es muy recomendable contar también
con un IDE adecuado a este lenguaje. (Todo estos prerrequisitos se pueden encontrar -gratuitamente
también- en http://msdn.microsoft.com/vstudio/express/downloads).Finalmente, ademas también se
necesita tener instalada la libreria DirectX.

XNA esta especialmente pensada para desarrolladores aficionados, estudiantes o independientes,
y es una estrategia de Microsoft para crear una comunidad online de desarrolladores y juegos disponibles
-previa suscripcion en muchos casos- para Windows y también para su consola Xbox 360. Para saber mas
sobre esta plataforma, se puede consultar, a parte de la direccion anteriormente citada del XNA Developer
Center, ésta otra: http://creators.xna.com o también http://www.xnadevelopment.com/index.shtml

En otro nivel, tenemos 3D GameStudio (http://www.3dgamestudio.com) . Segin lo que dice en
su pagina web, “es la suite lider para creacion de aplicaciones en tiempo real 2D y 3D. Combina la
programacion en lenguaje C-Script con un motor 3D de alto nivel, un motor 2D, un motor de dinamica
fisica, un editor de modelos, un editor de niveles y un editor de terrenos, mas librerias extendidas de
objetos 3D, arte grafico y modelos de juegos prefabricados”. Segun ellos nunca ha sido tan facil crear
juegos de 1% persona (plano subjetivo) , de 3* persona, RPGs (Rol Playing Games: es decir, juegos tipo
“Zelda” para entendernos), juegos de plataforma, simuladores de vuelo, juegos de deportes, aplicaciones
3D, presentacion en tiempo real,etc. Ofrece tres nivels de creacion de juegos: con simples clics de ratéon a
partir de plantillas predisefiadas; programando en C-Script usando su compilador y depurador (programa
que se dedica a detectar errores en el cddigo fuente) o bien incluyendo el codigo C-Script a modo de
bloque interno dentro de un c6digo mayor programado en C++ o Delphi. Promete que incluso si ningin
conocimiento de programacion, siguiendo sus tutoriales paso a paso, un juego simple puede ser construido
en una tarde, y usando el C-Script juegos de calidad comercial pueden ser creados y distribuidos con éxito.
En la pagina web hay demos de juegos, seccion de preguntas frecuentes (FAQs), un magazine de
usuarios,etc.

Otra alternativa también a tener en cuenta es BlitzMax (http://blitzbasic.com) . Segtn lo que dice
su pagina web,”BlitzMax proporciona un entorno simple pero poderoso para la creacion de videojuegos —
simple porque se basa en el popular y comodo lenguaje de programacion BASIC, y poderoso gracias a un
optimizado motor 2D/3 que trabaja en segundo plano. Incluye muchos comandos para ayudar al
programador en la creacién del juego, pero no demasiados: en vez de confundir con toneladas de

15

http://blitzbasic.com/
http://www.conitec.net/a4info.htm
http://www.xnadevelopment.com/index.shtml
http://creators.xna.com/
http://msdn.microsoft.com/vstudio/express/downloads/
http://msdn2.microsoft.com/en-us/xna/default.aspx
http://msdn2.microsoft.com/en-us/xna/default.aspx

comandos, el conjunto de éstos ha sido cuidadosamente disefiado para proveer la méxima flexibilidad con
el minimo esfuerzo. Blitzmax es la nueva generacion del lenguaje de programacion para videojuegos de la
casa Blitz Research: mantiene las raices del lenguaje BASIC de anteriores productos, como Blitz3D y
BlitzPlus, pero afiade un montén de nuevas caracteristicas interesantes, como la mejora de su lenguaje
BASIC (anade punteros a funciones, polimorfismo y herencia, arrays dindmicos, paso de pardmetros por
referencia, cadenas UTF16,soporte para conectar con cddigo C/C++ y soporte para programar directamente
en OpenGL,etc), soporte multiplataforma para Windows, Linux y MacOS, disefio modular en ficheros
independientes, conjunto de comandos 2D extremadamente faciles de usar, inclusion de un IDE —
Integrated development environment- completo, etc. Y si el programador tiene problemas, siempre puede
consultar la excelente documentacion o acudir a la inmensa comunidad de usuarios en los diferentes foros
de Blitz para pedir ayuda.”. Un ejemplo de éstos ultimos lo puedes encontrar en el estupendo foro de
GameDevelopers http://portalxuri.dyndns.org/blitzbasico/index.php , donde podras preguntar en castellano
todas tus dudas sobre esta herramienta.

Otra alternativas (no estan todas, ni mucho menos) para Windows que pueden ser tanto o mas
recomendables que las anteriores son:

PlayBasic (http://underwaredesign.com) Lenguaje para videojuegos 2D de estilo Basic

DarkBasic (http://www.darkbasic.com) Similar al anterior pero permite trabajar también
con 3D.

Torque 2D (http:/www.garagegames.com) Motor de juegos en 2D multiplataforma, mas IDE

incorporado para programarlos en C++ o en un
lenguaje propio, TorqueScript.

Clanlib (http://www.clanlib.org) Libreria libre y multiplataforma para la
programacion de videojuegos 2D utilizando C++.

SDLBasic (http://sdlbasic.sourceforge.net/flatnuke) Lenguaje interpretado basado en la libreria SDL,
multiplataforma y libre. Puede utilizar toda la
potencia de SDL con la sintaxis Basic

FreeBasic (http://www.freebasic.net/index.php) Lenguaje de ambito general de estiloBasic. Libre y

multiplataforma.

Xblite (http://perso.orange.fr/xblite) Lenguaje de ambito general de estilo Basic pero con
la velocidad de C. Libre; para Windows.

PureBasic (http://www.purebasic.com) Lenguaje de ambito general de estilo Basic,
multiplataforma

Real Basic (http://www.realsoftware.com) Lenguaje de ambito general de estilo Basic,
multiplataforma.

Panda 3D (http://www.panda3d.org) Libreria 3D para ser utilizada en programas escritos

con el lenguaje Python (lenguaje libre y
multiplataforma - http:/www.python.org -). Vale la
pena también mirarse http:/www.pygame.org
(permite utilizar la libreria SDL con Python en vez
de C)

Crystal Space (http://www.crystalspace3d.org) Libreria 3D libre para ser utilizada en programas
escritos en C/C++ preferentemente para
videojuegos. Incorpora también un motor propio.

GDT (http://gdt.sourceforge.net) Libreria libre para C/C++ enfocada en el creacion
de videojuegos, desarrollada por la comunidad
hispana de los foros de Game Developers.

Lua (http://www.lua.org) Lenguaje de script embebible, ligero y rapido,

16

http://www.lua.org/
http://gdt.sourceforge.net/
http://www.crystalspace3d.org/
http://www.pygame.org/
http://www.python.org/
http://www.panda3d.org/
http://www.realsoftware.com/
http://www.purebasic.com/
http://perso.wanadoo.fr/xblite
http://www.freebasic.net/index.php
http://sdlbasic.sourceforge.net/flatnuke
http://www.clanlib.org/
http://www.garagegames.com/
http://www.darkbasic.com/
http://underwaredesign.com/
http://portalxuri.dyndns.org/blitzbasico/index.php

especialmente disefiado para el desarrollo de
videojuegos y multimedia. Libre y multiplataforma.

Basic4GL (http://www.basic4gl.net) Lenguaje Basic que incorpora un compilador con
soporte para OpenGL. Permite asi programar en esta
libreria 3D sin necesidad de utilitzar C/C++. Es
libre pero solo para Windows.

FANG (http://www.fangengine.org) Paquete libre con clases Java que facilitan la
programacion en este lenguaje de videojuegos 2D
con soporte de red. Especialmente pensado para
estudiantes de programacion

Phrogram (http://www.phrogram.com) Anteriormente conocido como KPL -Kid’s
Programming Language-, es un lenguaje de
programacion disefiado para ser facil y
divertido, y especialmente adecuado para la
programacion de multimedia/ videojuegos, mas
un IDE, con cierta similitud a Visual Basic. Se
ha de ejecutar sobre una plataforma NET.

Processing (http://www.processing.org) Lenguaje y entorno de programacion libre destinado
a la creacion de imagenes, animaciones e
interacciones. Especialmente pensado para artistas y
disefiadores

Por dltimo, no me gustaria dejar de comentar al Adventure Game Studio
(http://www.adventuregamestudio.co.uk/),cIRPGMaker (http://www.enterbrain.co.jp/tkool/RPG_XP/eng)
o ¢l FPSCreator (http://www.fpscreator.com) los cuales son programas especializados en generar
aventuras graficas el primero,RPGs el segundo y Shooters el tercero, sin practicamente programacion: a
golpe de raton.Pero claro, siempre llega un punto donde no son suficientemente completos ni tienen ni
mucho menos la flexibilidad que un lenguaje de programacion ofrece.

A destacar,no obstante, dentro de esta familia, el software generalista GameMaker
(http://www.yoyogames.com/make) , en cuya web ademas se pueden descargar bastantes recursos como
musicas, fondos y sprites de diversa indole. Una alternativa libre a este ultimo programa, todavia en
desarrollo, es Flexlay (http://flexlay.berlios.de/).

Por sprite (a partir de ahora se utilizard bastante esta palabra) se entiende cualquier imagen que se
mueva en la pantalla.

Bueno, las diferentes propuestas parecen la panacea: ofrecen poder crear supervideojuegos,
-3D ademas, cosa que Fénix de momento por si solo no puede-, sin demasiado esfuerzo. Y probablemente
sea verdad, pero la mayoria tienen un pequefio inconveniente (llamémoslo asi). Aparte de que son
productos comerciales y por tanto, para adquirirlos hay que pagar un precio, no son libres. Y eso, creo, que
es un factor relativamente importante.

Pero...;.qué es eso de "software libre'"?;Y eso de Linux?

Has leido en el apartado anterior que las diferentes propuestas de lenguajes de videojuegos no
son libres, o en apartados anteriores decia que tal libreria era o no libre, etc. Y que Fénix si que es libre.
Pero, ;sabes qué significa realmente eso de "software libre"? ;Por qué es tan importante que un programa
sea o no libre? ;Quiere decir que es gratis?...En este apartado aclararé lo que significa "software libre", y

17

http://flexlay.berlios.de/
http://www.yoyogames.com/gamemaker
http://www.fpscreator.com/
http://www.enterbrain.co.jp/tkool/RPG_XP/eng/
http://www.adventuregamestudio.co.uk/),el
http://www.processing.org/
http://www.phrogram.com/
http://www.cs.duke.edu/~cjj1/professional/fang
http://www.basic4gl.net/

por qué es un concept tan importante, no solo para el mundo de la informatica, sino para la vida en general.
Lo siguiente es un extracto de la definicion de software libre obtenido de la web del Proyecto GNU
(http://www.gnu.org), el cual se encarga de fomentar el desarrollo de software libre a nivel mundial.

“El "Software Libre" es un asunto de libertad, no de precio. "Software Libre" se refiere a la
libertad de los usuarios para ejecutar, copiar, distribuir, estudiar, cambiar y mejorar el software. De
modo mas preciso, se refiere a cuatro libertades de los usuarios del software:

-La libertad de usar el programa, con cualquier proposito (libertad 0).

-La libertad de estudiar como funciona el programa, y adaptarlo a tus necesidades (libertad
1). El acceso al codigo fuente es una condicion previa para esto.

-La libertad de distribuir copias, con lo que puedes ayudar a tu vecino (libertad 2).

-La libertad de mejorar el programa y hacer publicas las mejoras a los demds, de modo que
toda la comunidad se beneficie. (libertad 3). El acceso al codigo fuente es un requisito previo para esto.

Un programa es software libre si los usuarios tienen todas estas libertades. Asi pues, deberias
tener la libertad de distribuir copias, sea con o sin modificaciones, sea gratis o cobrando una cantidad por
la distribucion, a cualquiera y a cualquier lugar. El ser libre de hacer esto significa (entre otras cosas)
que no tienes que pedir o pagar permisos. También deberias tener la libertad de hacer modificaciones y
utilizarlas de manera privada en tu trabajo u ocio, sin ni siquiera tener que anunciar que dichas
modificaciones existen. Si publicas tus cambios, no tienes por qué avisar a nadie en particular, ni de
ninguna manera en particular. La libertad para usar un programa significa la libertad para cualquier
persona u organizacion de usarlo en cualquier tipo de sistema informdtico, para cualquier clase de
trabajo, y sin tener obligacion de comunicarselo al desarrollador o a alguna otra entidad especifica.

La libertad de distribuir copias debe incluir tanto las formas binarias o ejecutables del programa
como su codigo fuente, sean versiones modificadas o sin modificar (distribuir programas de modo
ejecutable es necesario para que los sistemas operativos libres sean faciles de instalar). Esta bien si no
hay manera de producir un binario o ejecutable de un programa concreto (ya que algunos lenguajes no
tienen esta capacidad), pero debes tener la libertad de distribuir estos formatos si se encontrara o se
desarrollara la manera de crearlos.

Para que las libertades de hacer modificaciones y de publicar versiones mejoradas tengan
sentido, debes tener acceso al codigo fuente del programa. Por lo tanto, la posibilidad de acceder al
codigo fuente es una condicion necesaria para el software libre.

"Software libre" no significa "no comercial”. Un programa libre debe estar disponible para uso
comercial, desarrollo comercial y distribucion comercial. El desarrollo comercial del software libre ha
dejado de ser inusual; el software comercial libre es muy importante.”

Para que un programa sea considerado libre ha de someterse a algin tipo de licencia legal de
distribucion, entre las cuales se encuentran la licencia GPL (General Public License), o la LGPL, entre
otras —hay muchas: el tema de las diferentes licencias es un poco complicado a nivel legal: son como los
contratos de jugadores de futbol: con muchas clausulas; si quieres saber mas, mirate
http://www.opensource.org/licenses/category -. Estas licencias son genéricamente conocidas como
licencias GNU y fueron redactadas en su dia por la Free Software Fundation, fundaciéon que se encarga de
mantener con fuerza este movimiento.

Supongo que conoceras, al menos de oido porque lo he nombrado varias veces, a Linux, la estrella
de los programas libres. Linux es un sistema operativo competencia de Windows, libre y gratuito. Es decir,
que en vez de que tu ordenador arranque en Windows —que se supone que lo has tenido que pagar- , podria
arrancar Linux gratuitamente, accediendo igualmente a multitud de programas de todo tipo (ofimatica,
multimedia, juegos,etc). Técnicamente, un sistema operativo es un programa que se comunica directamente
con el hardware de la computadora (procesador, memoria, discos duros) y hace de intermediario entre éste

18

http://www.opensource.org/licenses/category
http://www.gnu.org/

y los demds programas de todo tipo que se puedan instalar en la maquina, ofreciendo a cada programa los
recursos hardware que necesita en cada momento. Cuando decimos que un programa es portable o no , lo
que decimos es que puede ser utilizado con varios intermediaros (con varios sistema operativos) o no.
Linux es una implementacion escrita basicamente en C del sistema operativo UNIX (uno mas de entre los
numerosos clonicos del histérico Unix), que sale muy bien parado al compararlo con otros sistema
operativos comerciales. Comenzo como proyecto personal del -entonces estudiante- Linus Torvalds, pero a
estas alturas el principal autor es la red Internet, desde donde una gigantesca familia de programadores y
usuarios aportan diariamente su tiempo aumentando sus prestaciones y dando informacién y soporte
técnico mutuo. La version original -y aun predominante- comenzé para PCs compatibles (Intel 386 y
superiores), existiendo también en desarrollo versiones para practicamente todo tipo de plataformas
hardware:PowerPC, Sparc,Alpha, Mips, etc.

Si quisieras ver qué tal pinta eso de tener un Linux en tu ordenador, lo puedes descargar de
multitud de sitios en Internet e instalarlo. Ya que Linux es libre, ha habido gente que ha adaptado el Linux
original a sus propias necesidad, de forma que actualmente hay muchas versiones —llamadas distribuciones-
diferentes, aunque todas ellas son compatibles a nivel basico y mas o menos semejantes. Algunas
distribuciones importantes son:

Ubuntu (http://www.ubuntulinux.org ¢ http://www.ubuntu-es.org)
Fedora (http://fedoraproject.com)

Debian (http://www.debian.org)

OpenSuse (http://es.opensuse.org)

Mandriva (http://www.mandriva.com)
Gentoo (http://www.gentoo.org)

Si quieres ver mas distribuciones, visita http://www.distrowatch.com

Pero es mas: si no te atreves a instalarte tu Linux en casa porque temes destrozar tu Windows de
toda la vida (que puede pasar si no vas con cuidado), existe la posibilidad de descargarte distribuciones
Linux Live-CD. Estas distribuciones las puedes grabar en un CD y no hace falta instalar nada en el
ordenador para que funcionen: simplemente metes el CD en la lectora, arrancas el ordenador y ya estds en
Linux. Cuando te canses, quitas el CD y al volver a arrancar, aqui no ha pasado nada: continuia Windows
igual que estaba. La distribucion Live-CD reina es Knoppix (http://www.knoppix.org) , muy aconsejable
para iniciarse en el mundo Linux, pero también hay versiones Live-CD de las distribuciones "estandar",
como Ubuntu o Fedora.

Si quieres ver mas distribuciones Live-CD, clasificadas ademas segun su tematica (ya que existen
distribuciones especificas para trabajar en ambitos concretos, como por ejemplo distribuciones enfocadas a
juegos, a investigacion cientifica, a hacking, a diagnostico del PC, a recuperacion de desastres, a
multimedia,etc) visita http://www.livecdlist.com

Y bueno, finalmente resulta que Fénix es libre. ;Qué quiere decir eso? Pues que cualquiera que
quiera —y sepa, ojo!- puede ser parte participe del desarrollo de lenguaje. Es decir, ti mismo puedes
contribuir a mejorar el lenguaje Fénix. Fénix no tiene duefio que diga como ha de ser. Todo el mundo es
duenio de Fénix, y todos pueden hacer que evolucione como convenga. Esto va mucho mas alla de si Fénix
es gratis o no. Lo importante es que todos podemos acceder al codigo fuente de Fénix (es decir, Fénix no es
mas que un programa mas: accediendo a su codigo podemos ver como esta hecho por dentro) y ver qué
mejoras o caracteristicas se pueden implementar, y hacerlo, de tal manera que se cree una comunidad de
personas que colaboren mutuamente para llevar a cabo todo este gran proceso altruista. Esa es la gran
diferencia de Fénix con los demas lenguajes de videojuegos: no es una caja secreta.

19

http://www.livecdlist.com/
http://www.knoppix.org/
http://www.linuxiso.org/
http://www.gentoo.org/
http://www.mandriva.com/
http://www.novell.com/linux/suse
http://www.debian.org/
http://fedora.redhat.com/
http://www.ubuntu-es.org/
http://www.ubuntulinux.org/

Algunos recursos web sobre programacion de videojuegos

Algunos sitios web (algunos ademas incluyen foros de usuarios que te podran echar una mano) que
pueden ayudar a iniciarte en la programacion de juegos son:

http://Www.vjuegos.org Comunidad Iberoamericana de Desarrolladores de
Videojuegos.

Portal en espafiol enfocado a impulsar el desarrollo
de videojuegos a nivel profesional

http://www.gamasutra.com El portal mas importante sobre desarrollo de
videojuegos a nivel profesional

http://www.gamedev.net Excelente pagina para desarrollar videojuegos con
cualquier libreria.

http://www.devmaster.net Web llena de recursos para programadores de
videojuegos (foro -muy util-, articulos, noticias,
wiki, software...)

http://www.gdmag.com Revista para Desarrolladores de Videojuegos

http://www.gdconf.com Congreso Internacional de Desarrolladores de
Videojuegos

http://www.igda.org/ International Game Developers Association

http://www.adva.com.ar Asociacion de Desarrolladores de Videojuegos
Argentina

http://nehe.gamedev.net Pégina con tutoriales sobre OpenGL y mas.

http://www.webgamebuilder.com Portal donde podras descargar multiples

herramientas (entre otras, el Blitz3D) para disefiar
tus propios juegos, enfocados preferentemente a la
web, y consultar los foros relacionados.

http://www.stratos-ad.com Punto de encuentro para desarrolladores de
videojuegos hispanos. Incluye bolsa de trabajo

http://www.codepixel.com Articulos y tutoriales sobre programacion grafica y
animacion 3D.

http://www.ambrosine.com/resource.html Listado exhaustivo de enlaces a distintos programas
creadores de juegos tipo GameMaker, diferentes
lenguajes de programacion de videojuegos, recursos
como musica, sprites, fondos, etc listos para
descargar

Mencion aparte requiere la estupenda web "The Game Programming Wiki" (http://www.gpwiki.org)
, completisimo sitio donde se pueden encontrar articulos y referencias relacionados con los mas dispares
aspectos de la programacion de videojuegos: desde exhaustivisimas y completisimas comparativas de
diferentes lenguajes, librerias graficas y motores graficos , hasta tutoriales sobre planificacion y disefio de
proyectos; desde listados interminables de herramientas de disefio grafico/creacion multimedia e IDEs
hasta especificaciones oficiales de formatos de archivos; desde formales articulos matematicos que tratan
sobre simulaciones fisicas hasta direcciones legales de industrias del videojuego; desde entradas a
diferentes portales de comunidades de desarrolladores hasta tutoriales especificos para Allegro, SDL,
OpenGL, DirectX, DevIL, OpenAL, Java, C/C++, C#, Lua...; desde manuales de programacion genéricos
avanzados (estructuras dinamicas de datos, patrones de disefio,etc) hasta articulos sobre los diferentes
métodos de Inteligencia Artificial o los algoritmos de encaminamiento tipo A*,etc,etc.
IMPRESCINDIBLE.

20

http://www.gpwiki.org/
http://www.ambrosine.com/resource.html
http://www.codepixel.com/
http://www.stratos-ad.com/
http://www.webgamebuilder.com/
http://nehe.gamedev.net/
http://www.adva.com.ar/
http://www.igda.org/
http://www.gdconf.com/
http://www.gdmag.com/
http://www.devmaster.net/
http://www.gamedev.net/
http://www.gamasutra.com/
http://www.vjuegos.org/

Conceptos basicos de multimedia para el principiante:

Grificos

Seguro que tarde o temprano necesitaras imagenes para tu videojuego, y seguro que también
necesitaras tratarlas (colorearlas, enfocarlas, ampliarlas, encuadrarlas, trucarlas...) La primera pregunta es
obvia: ;de donde podemos sacar las imagenes que necesito?

Si necesitas una imagen determinada puedes hacer una buisqueda en Internet, y si la tienes ya
en la pantalla puedes hacer una impresion de toda la pantalla o de una parte para convertirla en una
imagen(ya sabras que con la tecla "ImpPant" colocaras lo que se ve en la pantalla en el portapapeles de
Windows). Si dispones de la imagen impresa (en libros,revistas, fotografias...) puedes digitalizarla con un
escaner. Si dispones de una camara fotografica digital puedes crear imagenes digitales a partir de la
realidad. Si dispones de una camara de video digital puedes extraer “fotogramas” o “encuadres” con el
programa adecuado. Si tienes tarjeta capturadora de video puedes extraer fotogramas de cualquier
grabacion en video o de la sefial de video de una camara. Y siempre tienes el recurso de crear ti mismo la
imagen con un programa de edicion grafica, ayudandote si quieres de algun periférico como una tableta
gréfica, para poder dibujar mejor.

Una vez digitalizada, la imagen se convierte en un fichero. Dependiendo del tipo de fichero
con que se guarde conservara caracteristicas mas o menos fieles a su fuente, tendra mas o menos calidad,
sera mas o menos facil retocarla sin perder calidad,serd mas o menos facil de interpretar por cualquier
ordenador...Todos estos factores vendran determinados por 4 parametros diferentes: la profundidad de
color,la resolucion, el peso (el tamafio que ocupa en el disco duro) del fichero de la imagen, i el formato de
la imagen.

Profundidad de color:

La tarjeta de video proporciona la comunicacion necesaria entre el PC y el monitor. Recibe las
sefales digitales provenientes del procesador y las convierte a un formato analégico que pueda utilizar el
monitor para crear una imagen visible. El software que se esta ejecutando en el sistema transmite a la
tarjeta informacion sobre los pixeles individuales que tienen que presentarse en la pantalla.La tarjeta de
video es en realidad una computadora ella sola: tiene su propio procesador y su propia memoria, pudiendo
realizar la mayor parte de sus funciones de forma independiente del procesador principal del sistema.Las
capacidades de la tarjeta de video pueden tener un efecto importante en el rendimiento global de un PC;
puede suceder que un equipo con el procesador mas rapido y con una gran cantidad de memoria funcione
con lentitud con una tarjeta de video por debajo del estdndar: esto es especialmente cierto con las
aplicaciones intensivas de video, especialmente con los juegos.

Un pixel es cada punto de luz que emite la pantalla; ésta esta formada por multitud de ellos. La
profundidad de color se refiere a la cantidad de bits que necesita cada pixel para guardar informacién de la
imagen. La cantidad de memoria que incorpora la tarjeta de video es la que determina las resoluciones de
pantalla y profundidades de color que un sistema puede soportar.Actualmente, gracias a la avanzada
capacidad grafica de las tarjetas, casi todas las imagenes son del tipo“true color” (color verdadero). Eso
quiere decir que para cada pixel se necesitan 24 bits de memoria grafica, o lo que es lo mismo, 3 bytes (8
bits corresponden a un byte), 8 bits para cada canal de color RGB “Red, Green, Blue”
(RVA:Rojo,Verde,Azul), ya que la formacion de color en la imagen se basa en la mezcla de estos tres
colores primarios. La profundidad color verdadero proporciona una paleta de colores casi real para el ojo
humano. No obstante, cuanta mas profundidad de colores tenga una imagen mejor se vera (mas
informacion habra para representar cada pixel), peré6 mas espacio ocuparard en la memoria de la tarjeta, i
de rebote, mas espacio ocupara el fichero en disco.

Los datos expuestos en el cuadro siguiente ayudaran a entenderlo mejor:

21

Numero de Bits Numero de colores

1 2 (blanco y negro)

2 4

4 16

8 256

16 65.536

24 16 millones
Resolucion:

La resolucion define la cantidad de pixeles que contiene una imagen, en términos de anchura y
altura de ésta. La resolucion mas corriente en los adaptadores de video fabricados actuamente es de
1024x768 pixeles, lo que significa que una imagen que ocupe toda la pantalla estaria formada por 30.720
pixeles.La relacion mas corriente entre el ancho y el alto de la imagen es de 4:3 de manera que los
adaptadores que proporcionan una resolucion mayor lo hacen utilizando la misma proporcion. En general,
utilizaremos una resolucion de 640x480 pixeles en monitores de 147, 800x600 en monitores de 157,
1024x768 en monitores de 177, 1280x1024 con un monitor de 21”. Evidentemente, a mas resolucion, mas
pequetias se ven las cosas: los pixeles son mas pequefios. Cuanto mas elevado es el numero de pixeles
existentes por unidad de superficie en pantalla, mayor es la sensibilidad y la calidad de la imagen.

La memoria de la tarjeta grafica estd formada por bits que estan dispuesto —tedricamente- en
tres dimensiones: al altura, que es el numero de pixels desde la parte superior a la parte inferior de la
pantalla; la anchura, que es el nimero de bits desde la izquierda hasta la derecha de la pantalla, y la
profundidad, que es el nimero de bits de memoria utilizados para cada pixel. Si una tarjeta utiliza por
ejemplo un color de 4 bits, dedica cuatro bits de memoria para cada pixel. Esto quiere decir que cada pixel
puede tener 16 colores —combinaciones- posibles. Para utilizar esta profundidad de color con una
resolucion de 640x480e¢l adaptador tiene que tener 1.228.800 (640x480x4) bits, que equivalen a 150
kilobytes (KB) de memoria. Dada una tarjeta grafica con una determinada memoria, s6lo de podran
conseguir combinaciones de las tres dimensiones(anchura,altura,profundidad) que puedan ser admitidas por
la memoria que tenga. Para los estdndares actuales, una resolucion de 640x480 con 16 colores es el minimo
admisible. Se conoce como resolucion VGA estandar, y los sitemas la utilizan normalmente de forma
predeterminada mientras no disponga de un controlador (un “driver”) de video disefiado especificamente
para la tarjeta instalada.

Peso:

Siempre que necesites reducir el peso de una imagen tendras que renunciar a alguna
caracteristica de la imagen original: tendras que prescindir de algunos datos (compresion con pérdida), o
guardarla con menos colores de los que tiene en realidad (bajar la profundidad de color), o hacer que se
componga de menos puntos de color que el original, y por tanto, que sea mas “granulosa” (bajar la
resolucion) o hacerla mas pequefia en tamafio (bajar los valores de las dimensiones de altura y anchura).

Formato:
El formato de la imagen es la manera como se codifica la informacion de ésta “fisicamente”
dentro de un fichero. Hay dos grandes familias de imagenes segun su formato: los graficos vectoriales y los

mapas de bits.

Graficos vectoriales

Los ficheros con graficos vectoriales contienen instrucciones (vectores) con informacién

22

matematica sobre las posiciones, color,etc de las linias y curvas que contienen las imagenes; o sea,
describen las imagenes a partir de sus caracteristicas geométricas. La visualizacion de la imagen en la
pantalla se basa en el calculo de estos vectores y la consecuente reconstruccion, por parte del programa
adecuado, de las formas y los colores.

Inconvenientes Ventajas

*Cuanto mds complejas son las imagenes, el *Son independientes de su tamafio de visualizacion,

ordenador tarda mas tiempo en calcularlas y en és decir, se escalan automaticamente para aparecer

representarlas. nitidas (a eso se le llama no perder definicion).
Cuando editas o modificas la posicion, forma,
tamafio y color de un grafico vectorial, éste no
pierde calidad ya que lo que modificas son las
propiedades de las linias y curvas que lo definen.

*No son aptos para mostrar fotografias o imagenes *Al estar definidas por vectores, las imagenes no

complejas. pesan tanto en comparacion con los mapas de bits,
aunque esto depende mucho de la imagen y de la
calidad que se desee: las imagenes formadas por
colores planos o degradados sencillos son mas
factibles de ser vectorizadas. A menor informacion
para crear la imagen, menor sera el tamafio del
fichero.

*Cada pieza de la imagen puede ser manipulada
separadamente. Es posible mover objetos
individuales alrededor de la pantalla, alargarlos,
rotarlos, duplicarlos o introducir distorsiones,etc.

* Algunos formatos permiten animacion. Esté ser
realiza de forma sencilla mediante operaciones
basicas como traslacion o rotacion y no requiere un
gran acopio de datos.

Los formatos de los archivos vectoriales (y sus correspondientes extensiones) pueden ser muy
variados: PS y PDF (formato PostScript),SVG(el estdndar internacional),SWF (Flash), WMF (Windows
MetaFiles), CDR,DFX, ...

Mapa de bits

En contraste, se encuentran los graficos formados por una cuadricula de puntos de color
(pixels): los bitmap, también llamados graficos rasterizados.Una imagen de este tipo esta definida por la
posicion y por el color de cada uno de los pixeles que la configuran. Al modificar una imagen de mapa de
bits se modifican los pixeles y no las linias o curvas. La representacion del grafico en pantalla es pues un
mosaico formado por piezas de colores diferentes.

Inconvenientes Ventajas

*Al depender del numero de pixels o resolucion, *Estas imagenes tiene la ventaja de reproducir

estas imagenes pueden perder calidad al ser rdpidamente y con mucha fidelidad gradaciones

ampliadas (es decir, al escalarlas pierden sutiles de sombras y colores. Los bitmaps son

definicion). tipicamente usados para reproducir imdgenes que
contienen muchos detalles, sombras y colores:
fotografias, negativos de peliculas y otras
ilustraciones.

23

*En comparacién, pesan mas que las imagenes
vectoriaes, ya que los bitmaps contienen
informacion especifica sobre cada pixel
representado en la pantalla.

Los formatos mas corrientes de mapa de bits son GIF,JPG,BMP, PCX, TIF...
Ademas, cada programa de retoque de imagenes suele tener un formato propio (por ejemplo, el Paint Shop
Pro tiene el formato *.PSP que so6lo entiende él).

Comentemos los formatos de mapa de bits mas importantes:

Formato GIF

*Se desarrolld especificamente para graficos online, los cuales requieren tener poco peso para
poder ser visualizados y descargados rapidamente.

* Admiten transparencia. Eso quiere decir que tienen la posibilidad de convertir en transparente o
invisible un solo color, de manera que el fondo que tenga ese color sea invisible.

*Permiten hacer animacion con una técnica de poner muchas imagenes en el mismo archivo GIF.
*-Utiliza un algoritmo de compresion sin ningin tipo de pérdida. El formato *.GIF consigue
comprimir las imagenes rebajando el numero de colores, o sea, rebajando la profundidad de color
(es decir, la cantidad de informacion sobre la imagen que cada pixel necesita, expresada en bits).
Asi hablaremos de imagenes de 32 bits o 24 bits (“color verdadero”), 16 bits (miles de colores), 8
bits (256 colores), de 4 bits (16 colores) o de 1 bit (monocromos). Como hemos comentado antes,
cuanta mds profundidad de color tenga una imagen mas informacion sobre color tendré que tener;
por tanto, sera de mas calidad pero también ocupard mas espacio en la memoria y el disco.

*Los graficos estan limitados a una paleta de 256 colores (8 bits).

Importante: Hay que tener claro el concepto de paleta grafica.

Cuando se elige una/s paleta/s determinada/s para usarla/s en nuestro programa —si no se hace esto, se
elige por defecto la paleta genérica del sistema Windows- , al mostrar las imagenes cada pixel tendra un
valor asociado que representa un indice dentro de esa paleta o tabla de color.Esa tabla de colores
indexados se podra construir segin convenga, o bien distribuyendo en la paleta uniformemente unos
colores seleccionados, disponibles a lo largo del espacio de color RGB, desde el violeta al rojo pasando
por todos los colores intermedios (aunque hay que tener en cuenta que la cantidad de colores
susceptibles de ser elegidos para incluirse en una paleta depende de la profundidad de color usada en ese
momento) , o bien llenando la paleta de gradaciones sutiles de un mismo color, y utilizar una u otra
paleta alli donde sea necesario. Por ejemplo, si vamos a pintar un paisaje nevado, serd mas eficiente
utilizar una paleta llena de colores con diferentes tonalidades de blanco, azul...Si vamos a pintar una
selva, sera mejor disponer de una paleta especializada en colores verdes, marrones...Asi pues,
resumiendo, cada pixel tendra asociado en cada momento un valor numérico que es un indice dentro de
la paleta, el cual le dice al ordenador qué color utilizar cuando se visualiza dicho pixel.

Por ejemplo, en un modo de video paletizado de 1 bit, cada pixel solo puede tener dos valores posibles
(0 6 1), con lo que las imagenes que utilicen este tipo de paletas s6lo podran ser en blanco y negro. Con
una paleta de 4 bits, cada pixel podra tener un color dado por una de las 16 posiciones posibles en esa
paleta. En un modo de video paletizado de 8 bits, cada pixel es un valor que varia de 0 a 255. Por lo
tanto, la paleta puede contener 256 colores y punto, que es lo que ocurre con las imagenes en formato
GIF; la gracia esta en crear una paleta de 256 colores que representen los colores que mas usaremos.

24

Formato JPEG (JPG)

*Se desarroll6 como un medio para comprimir fotografias digitales.

*El algoritmo que utiliza descarta algunos bloques de datos de las imagenes cuando las
comprime. Por esta razon es mejor solo guardar una vez la imagen con compresion JPEG, porque
cada vez que se utilice este algoritmo se eliminaran mas datos.

*Permite escoger el grado de compresion: cuanta mas compresion mas pérdida y el peso del
fichero es menor.

*Las imagenes en formato JPG pueden conservar una profundidad de color de millones de
colores, reduciendo considerablemente el peso del fichero. Eso hace que este formato sea muy
utilizado en Internet para facilitar las descargas, en las camaras digitales (que tienen que poner
cuantas mas fotografias mejor en un espacio reducido), i , en general, siempre que se quiera
trabajar con imagenes con muchas gradaciones de sombras y colores y se precise ahorrar espacio.

Formato BMP

*El formato grafico estdindar de mapa de bits sin compresion usado en el entorno Windows. Con
la herramienta MSPaint se pueden crear facilmente ficheros BMP que tengan diferentes paletas:
de 1, 4, 8 bits...

Formato PNG

*Utiliza un algoritmo de compresion sin pérdidas, libre de patentes, que permite una mejora del 5-
25 % mejor que el GIF.

*Que sea libre de patentes quiere decir que cualquier desarrollador puede disefar programas que
generen imagenes PNG, y utilizarlas sin ningun tipo de restriccion. Esto no es asi con otros
formatos como el GIF: si un desarrollador quiere escribir un programa que en algun momento
hace uso del algoritmo de creacion de imagenes GIF, ha de pagar una suma econoémica por ello.
Los origenes del formato Portable Network Graphics se remontan a 1977 cuando dos
investigadores israelitas publicaron un algoritmo para la compresion sin pérdidas de imagenes que
se denomind LZ78. En 1983 la empresa Unisys desarrolld una variante de LZ78 que se denominé
LZW. Este solicitd una patente por el algoritmo que le fue concedida por la oficina de patentes de
EEUU en 1985. En 1987 la empresa Compuserve disefi¢ el formato GIF, que utiliza el algoritmo
LZW para comprimir las imagenes. Concedida la patente a Unisys y conociendo ésta en que era
utilizado en el formato GIF en 1993 inici6 acciones contra CompuServe. En 1994 CompuServe y
Unisys llegaron a un acuerdo para pedir royalties al software que soporte GIF, por lo que la
creacion de archivos GIFs sin permisos puede ser perseguida por la ley. Este hecho desat6 iras en
los grupos de usuarios de Internet, uno de los cuales comenzé el desarrollo de un nuevo formato
libre: el PNG.

*No solamente el formato PNG esta libre de patentes para su creacion y uso, sino que es un
formato libre. Es decir, la especificacion del formato es publica y cualquiera puede modificarlo
para mejorar el algoritmo de compresion de manera que toda la comunidad se beneficie de los
avances en la evolucion del formato.

*Existen dos profundidades de color para este formato: 8 y 16 bits lo que permiten 256 y 16,7
millones de colores respectivamente.

*Una de las principales mejoras que incluye este formato es el denominado canal alfa que permite
hasta 256 niveles de transparencia en el PNG-24 (24 bits), es decir que es posible tener
transparencias con distintos grados.

*Con este formato no pueden realizarse animaciones aunque se ha desarrollado uno nuevo basado
en este MNG (Multiple Network Graphics) que si lo permite.

Importante: Debido a ser un formato libre (y a que es de gran calidad), el formato PNG es el

formato nativamente soportado por Fénix. Esto quiere decir que Fénix esta especificamente disefiado para

25

trabajar con imagenes PNG, y por tanto, preferentemente todos los graficos que se utilicen en un juego
hecho en Fénix tendrian que ser PNG. Aunque es verdad Fénix soporta otros formatos,el recomendado sin
duda es el PNG, por su integracion y compatibilidad con la plataforma Fénix, su calidad intrinseca y su
licencia libre.

Video
Procesamiento del video digital:
Las 4 etapas basicas en el procesamiento del video digital son:

-Captura/Digitalizacién: el proceso de captura implica disponer de un ordenador con una placa
de captura. Su funcién es la conversion analdgica-digital de la sefial de video para la grabacion al disco
duro y posterior edicion. La digitalizacion del video es un proceso que consiste en grabar la informacion en
forma de un codigo de digitos binarios a través del cual el ordenador procesa los datos electronicamente.
Una buena digitalizacion requiere una accion combinada de las prestaciones del ordenador y de la tarjeta
digitalizadora (capturadora). La calidad se manifiesta en la velocidad de digitalizacion, variando de 1 a 10
Mb/s, el nimero de colores y las dimensiones de la imagen. De tarjetas capturadoras hay de todo tipo en el
mercado: normalmente permiten entrar imagenes y sonido desde una camara de video analdgica o digital, o
bien un magnetoscopio, y exportar a un televisor y magnetoscopio, o al disco duro directamente, de manera
conjunta o por separado. Es necesario, no obstante, hacer los correspondientes nexos a través de un
cableado adecuado dependiendo del caso (RCA o S-Video para conexiones analdgicas, Firewire —
IEE1394- para conexiones digitales, etc).

-Edicion: una vez realizada la digitalizacion, se dispone de herramientas informaticas que
facilitan la edicion (el tratamiento) de imagen y sonido y la generacion de efectos: ordenar, editar con corte
para desprenderse de los trozos no deseados, inclusion de transiciones, filtros, transparencias, titulos,
créditos. ..

-Compresion: si se prevee difundir secuencias de video, a las que son en formato digital se les
ha de aplicar un proceso de compresion para reducir el tamafio de los ficheros. Existen diversos estandares
de compresion, que se escogeran en funcion de la plataforma final de visualizacion.

-Difusién: una vez acabado el proceso de edicion, es cuando se entra en la tltima fase : la
exportacion a un destino particular, que puede ser a una cinta de video, un CD, un DVD, Internet...

Formatos de video digital:

En el mundo de la informatica personal se pueden encontrar principalmente los siguientes
formatos de video digital:

-Quicktime: sistema de compresion y visualizacion de video digital desarrollado por la
empresa Apple. Es un formato biplataforma (Mac/PC) porque dispone de programas visualizadores para
los dos entornos. Los ficheros se llaman movies y tienen extension MOV.

-Video for Windows (AVI): sistema de compresion y visualizacion de video digital en
ordenadores PC con el entorno Windows, desarrollado por la empresa Microsoft. Los ficheros tienen la
extension AVI (Audio Video Interlaced). Es importante saber que cada fichero AVI tiene un codec
especifico, propietario o genérico, y por tanto, no todos los archivos AVI son iguales. Por otra parte, es un
formato ideal para editar video aunque una excepcion son los archivos *.avi codificados con el codec
DivX, que es un formato final no editable (ya que, aunque tenga extension avi, el video tiene estructura

26

interna tipo mpeg).

-MPEG: destacaremos el subformato MPEG-1 (Moving Picture Expert Group) que fue el
estandar establecido en 1992. Se orienta al archivo y distribucion de video digital. El MPEG-1 esta pensado
para un flujo de imagenes de 352x288 pixeles con 16 millones de colores a 1.5Mbits/s (calidad VHS).
Posteriormente aparecié el MPEG-2, pensado para la TV digital (cable y satélite) y es el formato utilizado
en el DVD. Las pruebas actuales permiten distribuir secuencias de video de 720x485 pixeles. Es formato
final, nunca para editar video.

-Streaming —Video para la red internet: con extension *.rm, *.mov y *.wmv (y algun
derivado). Siempre es formato final, no editable, y de muy poca calidad —apto para la visualizacién en
tiempo real a través de la red).

Codecs:

En la actualidad, el gran problema que tiene el video digital es el gran peso de los archivos
generados, aumentando éste todavia mas cuando en el momento de la edicion se afiade sobre las imagenes
un texto, un filtro o cualquier otro efecto especial.

Los datos siguientes ayudaran a entenderlo mejor: un fotograma de video con millones de
colores, sin ningun tipo de compresion, ocupa alrededor de 1,2 Mbit. Un segundo de video (25
fotogramas), sin comprimir, alrededor de 30Mbit. Un minuto (1.500 fotogramas), 1.5 Gbit
aproximadamente. Es evidente que se necesitaria un disco duro con mucha capacidad para poder almacenar
todos los cplis que se quieren editar, mucha memoria y un procesador muy rapido.

El problema de capacidad y la velocidad de transmision se resuelve mediante la compresion,
imprescindible para reducir el peso de las imagenes de diferentes algoritmos de compresion, llamados
codecs, compresores o codificadores, elementos que forman parte del software de las tarjetas capturadoras
de video y audio.

Los codificadores mas estandarizados actualmente son los siguientes:

-El M-JPEG (Motion-JPEG): Es una variedad del JPEG (Joint Photographic Experts Group),
un sistema de compresion de fotografia que ha servido como modelo a muchos de los sistemas de
compresion de video, entre los cuales hay el M-JPEG, el Indeo, el Cinepak, etc, que consideran el video
como una sucesion de fotografias. Cuando comprime, digitaliza toda la informacion de cada fotograma de
video, independientemente de los otros. Es lo que se conoce como Intraframe. Aunque ocupa mucho
espacio, es el codificador que garantiza mayor calidad. Por esta razon, es el mas usado cuando se ha de
digitalizar material original que se ha de editar. El problema que presenta este sistema es la falta de
compatibilidad entre las diferentes tarjetas digitalizadoras (capturadoras) existentes con el codec M-JPEG,
ya que cada fabricante ha desarrollado su propia variante del formato.

-El MPEG (Moving Picture Experts Group): Es un sistema de compresion de video y audio
implantado por la Union Internacional de Telecomunicaciones.Al contrario que el anterior, es un
codificador universal, no presenta imcompatibilidades. Comprime completamente diferentes fotogramas a
la vez, y crea dependencia entre ellos. Es lo que se conoce como Interframe. Es un sistema mas complejo.
En el proceso de digitalizacion, comprime unos fotogramas principales, que son los de video y se llaman
keyframes; y otros, secundarios, que contienen la informacién de las imagenes y se llaman deltaframes.
Ahorra mucho espacio, pero no es muy utilizado para la edicion. El hecho de no digitalizar completamente
cada frame por separado comporta una pérdida de detalles no procesados, y consecuentemente una
recogida de informacion incompleta que interfiere considerablemente en la calidad fianl, con imagenes
poco definidas. En cambio, por su caracteristica universal, es muy apropiado para ver videos ya editados.

Hay 3 tipos de MPEG, algunos ya se han comentado antes.

27

*MPEG 1: Disefiado para poder introducir video en un CD-ROM, con un calidad de
imagen y sonido razonable.

*MPEG 2: Pensado para la television digital y para los DVD, por su alta resolucion
*MPEG 4: Con un formato y una resolucion baja para facilitar su transmision, esté ideado
para videoconferencias e Internet, basicamente.

A parte de estos codecs, hay muchos mas que hacen implementaciones propias del estandar
MPEG o que son totalmente diferentes. Algunos de estos codificadores ya estan instalados por defecto en
el sistema operativo del ordenador. Otros se instalan automaticamente cuando se instala la tarjeta
capturadora de imagen y sonido, o bien algiin programa de edicion de video. Hay que tener presente que
éste es un mundo en continua evolucion, y que , por tanto, conviene irse actualizando e incorporando los
nuevos codec que aparecen en el mercado segin las necesidades.

La eleccion de un codec u otro depende del destino final de la pelicula (cinta magnética, CD,
Internet, videoconferencia, etc), el método de compresion que se hard servir y la forma como gestiona la
imagen y el sonido.Codecs importantes son el Cinepak, el Sorenson, el Indeo...Si alguna vez tuvieras un
video que no lo puedes visualizar correctamente debido presuntamente a que te falta el cddec adecuado,
para saber qué codec concreto es el que te falta y poderlo ir a buscar a Internet y descargarlo (un buen sitio
para probar es buscarlo en http://www.free-codecs.com), puedes utilizar la estupenda herramienta Gspot,
descargable desde http://www.headbands.com/gspot .

3D

Antes de nada, hay que aclarar que Fénix es un lenguaje que -a dia de hoy- solo permite
programar juegos en 2D, por lo que no en este manual no tocaremos nada del mundo tridimensional. Sin
embargo, en apartados anteriores han aparecido salpicados conceptos propios del mundillo 3D tales como
aceleracion 3D, renderizado,etc, que es posible que te suenen a chino y probable que vuelvan a aparecer en
este texto mas adelante, por lo que es bueno explicarlos un poquito en este apartado para asi tener las cosas
claras.

.Qué es animar?

La animacion, ya sea 2D o 3D, se puede entender como una simulacion de la realidad pero con
unas leyes y unos objetos que le son propios. De hecho, la palabra viene del latin “animus”, que quiere
decir “alma”. La animacidn es posible gracias a la llamada "persistencia retiniana", que es el efecto dptico
por el cual las imagenes quedan durante unos instantes grabadas en nuestra memoria. Si hacemos pasar
rapidamente diferentes imagenes ante nuestros ojos ¢éstas se mezclan creando una sensacion de
movimiento. Para crear una buena sensacion de movimiento hace falta pasar aproximadamente un minimo
de doce imagenes por segundo. A mayor numero de imagenes por segundo la definicion del movimiento
mejorara. El cine como fotografia en movimiento necesita de un mayor numero de imagenes por segundo,
sobre todo en su grabacion. Las primeras peliculas se rodaban a 16 o menos imagenes por segundo, de aqui
el efecto estroboscopico de su movimiento. En la actualidad, tanto el cine como la television emiten y se
graban a un minimo de 24 imagenes por segundo (o fps, frames por segundo).

La animacion es el arte del movimiento: el movimiento parte de dos situaciones: A y B, y un
desplazamiento con un tiempo determinado. Para ir de A hasta B necesitaremos un nimero determinado de
pasos intermedios.Si queremos que el movimiento sea uniforme en la misma unidad de tiempo los espacios
tendran que ser iguales. Si lo que queremos es dar la sensacion de aceleracion o desaceleracion tendremos
que juntar o separar los espacios. La linea que marca la direccion del movimiento y sobre la cual
marcaremos los pasos se denomina linea directriz. Ademas del desplazamiento sobre el plano, las figuras
generan unos desplazamientos sobre ellas mismas, es decir, hace falta crear diferentes posiciones de la
figura. Hace falta tener claro qué son las posiciones inicial y final que denominaremos posiciones clave (en
dibujos animados se los denomina layouts, y en infografia keyframes). Estas posiciones nos muestran las

28

http://www.headbands.com/gspot
http://www.free-codecs.com/

caracteristicas de lo que sera el movimiento. El nimero de intervalos que queramos poner entre las dos
posiciones principales dependera de la velocidad de movimiento y la distancia, entre ellos del ritmo de
aceleracion o desaceleracion que le queramos dar en cada momento.

Las animaciones 3D se ven actualmente sélo en 2D, pero su creacién agrega realismo a las
texturas, la iluminacion, la profundidad de campo y otros muchos efectos que hacen que las imagenes
parezcan mas reales. La animacion puede generarse, o bien en tiempo real, en el cual cada cuadro se crea
con el tiempo del espectador o en tiempo simulado. Las animaciones de tiempo real son a menudo muy
lentas puesto que la potencia informatica necesaria para crear animaciones de alta calidad es sumamente
elevada y, por lo tanto, muy caras. Actualmente, el ordenador genera todavia los cuadros, que se imprimen
y fotografian o se envian a un dispositivo de salida de video. De este modo, un ordenador puede estarse
segundos, minutos, o horas generando cada cuadro, pero al reproducir la cinta o la pelicula pasa cada
cuadro en un fraccion de segundo.

Proceso de animacion 3D

El proceso de animacion por ordenador es una tarea compleja. En sus mas amplios términos,
la animacion 3D se divide en las tareas de: guion y storyboard, modelaje, aplicacion de texturas,
animacion, iluminacion, sombreado y renderizado.

*QGuion y StoryBoard: La creacion de una pelicula animada casi siempre empieza con la
preparacion de un "storyboard", una serie de bocetos que muestran las partes importantes de la historia y
que incluyen una parte del didlogo. Se preparan bocetos adicionales por establecer los fondos, la
decoracion y la apariencia y temperamento de los personajes. En ciertas secuencias, la musica y el dialogo
se graban antes de ejecutar la animacion final para que la secuencia final de imagenes sea gobernada por
las pistas de sonido. En otros, la serie final de imagenes se realiza primero y, por lo tanto, controla la
composicion y el arreglo de la musica y otros efectos de sonido asi como el estilo y el ritmo del didlogo. A
veces, se usan ambos tipo de sincronizacion dentro de la misma produccion

*Modelaje:Es el proceso de crear y manipular una forma geométrica 3D para representar un
objeto como en la vida real (o en la fantasia) en un ordenador, es decir, consta de ir dando forma a objetos
individuales que luego seran usados en la escena. Se utilizan numerosas técnicas por conseguir este efecto
que tienen coste y calidad diferentes:Constructive Solid Geometry, modelado con NURBS y modelado
poligonal son algunos ejemplos. Basicamente, la técnica consiste en crear puntos en un "espacio virtual"
que usa coordenadas X,Y,Z que representan anchura (X), altura (Y) y profundidad (Z). O conectar estos
puntos mediante poligonos, curvas o splines -un tipo de linea especial- , segun la calidad deseada.Una
alternativa a la creacién de modelos propios, es emplear una gran col*leccido de modelos ya creados, que
estd disponible en compafiias especializadas en este campo, como Viewpoint Fecha Labs, Reyes
Infografica, 4 Bytes y otras.

* Aplicacion de texturas: Es aplicar texturas a las formas 3D creadas con el modelaje. Este
proceso es el que contribuye principalmente a dar realismo a la vision del modelo acabado. No es suficiente
con dar simplemente el mismo color al modelo que el objeto que se desea emular. Hay otros atributos que
necesitan también ser condiderados, como la reflexion, la transparencia, la luminosidad, la difusividad, el
relieve, el mapeo de la imagen, el lustre, la suavidad y otros.

* Animacion: Es el arte de fabricar el movimiento de los modelos 3D. Hay muchas maneras de
conseguirlo que varian en complejidad, coste y calidad.Una manera muy cara y realista de animar a un ser
humano es la "Captura del movimiento". Para lo cual, se ponen sensores (captadores electronicos de
cambios de posicidon) en una persona y cuando esta lleva a término mejor poner "realiza" los movimientos
requeridos, un ordenador graba el movimiento a partir de las sefiales procedentes de los sensores. Los datos
grabados pueden aplicarse después a un modelo 3D. Otro método de producir una fluidez en los
movimientos es una técnica denominada Cinematica Inversa (normalmente IK). Diferentes objetos
(modelos) se unen jerarquicamente a otras formando como una cadena. Cuando uno de los objetos se

29

mueve, los otras son influidos por esta fuerza y se mueven de acuerdo con los parametros fijados, como si
tuvieran un esqueleto. El animador sélo necesita poner solo ciertas posiciones importantes conocidas como
"keyframes" (cuadros clave) y el ordenador completa el resto. Cono la ayuda de la técnica de keyframing,
en lugar de tener que corregir la posicion de uno objeto, su rotacién o tamafio en cada cuadro de la
animacion, solo se necesita marcar algunos cuadros clavo (keyframes). Los cuadros entre keyframes son
generados automaticamente, lo que se conoce como 'Interpolacion’.

*[luminacion:Es muy parecido a la de un estudio de television o de cine.Alld , segiin como y
donde se coloquen los diferentes tipos y cantidades de luz, queda alterada dramaticamente la percepcion de
la escena. La iluminacion de la animacion 3D utiliza los mismos principios y técniccas que en la vida real.

*Sombreado:Son las diferencias de color de la superficie de un objeto debidas a las
caracteristicas de la citada superficie y de su iluminacion. También afecta al sombreado la precision con la
que cada modelo particular es renderizado. Iria después de la iluminacion.

*Renderizado:Es el proceso de plasmar en una sola imagen o en una serie de imagenes todo el
complejo proceso de calculo matematico que se ha ido efectuado a partir del modelado, aplicacion de
texturas, animacion, il:luminacio,etc hecho hasta el momento por una escena concreta. Es convertir un
modelo matematico tridimensional en una imagen (o video) de aspecto real, aplicando a cada superficie las
adecuadas texturas, juegos de sombras y luces, etc... Es el acto de "pintar" la escena final haciéndola
visible, generada gracias a todos los calculos necesarios.Es obtener la forma definitiva de la animacion a
partir de todos los aspectos del proceso de animacion 3D, dibujando el cuadro completo.Esto puede ser
comparado a tomar una foto o lo caso de la animacion, a filmar una escena de la vida real. Hay muchas
maneras de renderitzar. En orden de menor a mayor calidad son: Pla, Gouraud, Phong y Ray Trazo. Las
técnicas van desde las més sencillas, como el rénder de alambre (wireframe rendering), pasando miedo el
rénder basado en poligonos, hasta las técnicas mas modernas como el Scanline Rendering, el Raytracing, la
radiosidad o el Mapeado de fotones.El método mas complejo de renderizado es el que cada cuadro necesita
mas tiempo por ser generado. El proceso de rénder necesita una gran capacidad de célculo, pues requiere
simular gran cantidad de procesos fisicos complejos. En escenas muy complejas como las de "Toy story",
cada cuadro de animacion puede necesitar hasta 12 horas por completarse.jNo es sorprendente que "Toy
story" necesitara 800.000 horas de maquina de renderizado!.El software de rénder puede simular efectos
cinematograficos como el lens flare, la profundidad de campo, o el motion blur (desenfoque de
movimiento). Estos artefactos son, en realidad, un producto de las imperfecciones mecanicas de la
fotografia fisica, pero como el ojo humano estd acostumbrado a su presencia, la simulacion de dichos
efectos aportan un elemento de realismo a la escena. Se han desarrollado técnicas con el propodsito de
simular otros efectos de origen natural, como la interaccion de la luz con la atmdsfera o el humo. Ejemplos
de estas técnicas incluyen los sistemas de particulas que pueden simular 1luvia, humo o fuego, wl muestreo
volumétrico para simular niebla, polvo y otros efectos atmosféricos, y las causticas para simular el efecto
de la luz al atravesar superficies refractantes.

La aceleracion hardware:

Los videojuegos son una de las aplicaciones mas exigentes, es por eso que a mediados de los
afios noventa, los desarrolladores se dieron cuenta de que los procesadores principales (CPUs) de los
computadores personales no bastaban para los requerimientos de operaciones como el renderizado 3D. Fue
entonces cuando a la industria se le ocurrid que los PC deberian tener un procesador adicional, que se
encargara exclusivamente de las operaciones relacionadas con los graficos. A estos nuevos procesadores se
les llamé GPU o Unidades de Procesamiento Grafico; su objetivo es precisamente el de liberar a la CPU de
las operaciones relacionadas con graficos.

Las GPUs se colocan en las tarjetas de video, es lo que ahora se conoce como tarjetas
aceleradoras 3D. De hecho, en el mercado se pueden encontrar tarjetas de video 2D "a secas", tarjetas
aceleradores 3D "a secas" -que obviamente en un ordenador han de ir acompafiadas por una tarjeta de video
de las anteriores - y tarjetas de video con aceleradora incorporada, que proveen de cierto grado de

30

aceleracion por hardware. Es evidente, pues, que la calidad de una tarjeta aceleradora viene dada por dos
factores: la cantidad de memoria que aloja, para realizar operaciones complejas, y la potencia de su GPU.

Con la aceleracion 3D por hardware, el renderizado tridimensional usa el procesador grafico
en su tarjeta de video en vez de ocupar valiosos recursos de la CPU para dibujar imagenes 3D. También se
le conoce como "aceleracion por hardware" en vez de "aceleracion por software" debido a que sin esta
aceleracion 3D, el CPU est4 obligada a dibujar todo por si misma usando bibliotecas de renderizado por
software disefiadas para suplir esa carencia hardware,(como las bibliotecas de Mesa), lo que ocupa una
considerable potencia de procesamiento.La aceleracion tridimensional via hardware es valiosa en
situaciones que requieran renderizado de objetos 3D tales como juegos, CAD 3D y modelamiento.

Los graficos 3D se han convertido en algo muy popular, particularmente en juegos de
computadora, al punto que ya hemos visto que se han creado APIs especializadas para facilitar los procesos
en todas las etapas de la generacion de graficos por computadora. Estas APIs han demostrado ser vitales
para los constructores de hardware para graficos por computadora, ya que proveen un camino al
programador para acceder al hardware de manera abstracta, aprovechando las ventajas de tal o cual placa
de video, sin tener que pasar por el molesto intermediario que representa el sistema operativo. Es por eso
que una de las caracteristicas de una tarjeta aceleradora es su compatibilidad con tal o cual libreria grafica
que pretenda acceder a sus capacidades. Actualmente la mayoria de las tarjetas de video toleran todas las
librerias software nombradas en apartados anteriores (Direct3D,0OpenGL,...) elegir se trata simplemente de
optar por la que mas nos convenga.

Pero, si en Fénix no se pueden hacer juegos 3D, ;para qué necesitaras entonces las herramientas
de modelaje 3D comentadas anteriormente?lLa posibilidad mas inmediata es para convertir una animacion
3D en un video que se pueda mostrar en el juego a modo de intro, por ejemplo. De esta manera, via video,
las animaciones 3D podran incrementar el atractivo visual de tu juego en varios puntos.

Sonido

El sonido es la sensacion por la cual percibimos los cambios de presion y densidad del aire que se
transmiten en forma de vibraciones. Tal y como hemos visto, los aparatos digitales pueden trabajar
unicamente con secuencias de cifras numéricas. Igual que pasa cuando escaneamos una imagen, por
ejemplo, el cual lee los colores de los puntos de la fotografia y los transforma en valores numéricos, si
queremos trabajar el sonido con el ordenador nos hara falta obtener una representacion numérica de estas
vibraciones. Primero hace falta convertir las vibraciones del aire en oscilaciones de una corriente eléctrica.
De esto se encargan los micréfonos y otros aparatos similares. El segundo paso consistira a mesurar la
intensidad de esta sefal eléctrica a intervalos regulares. La coleccion de los valores obtenidos serd ya una
representacion digital del sonido.

El proceso de digitalizacion:

En el proceso de digitalizacion intervienen tres factores:

*La frecuencia con que se mide la intensidad de la sefial eléctrica, que se indica en Hz (Hercio:
numero de lecturas por segundo). No se tiene que confundir esta magnitud con la frecuencia del sonido,
donde los Hz indican el nimero de vibraciones por segundo.

Los valores mas usuales empleados en las grabaciones digitales son:

-11.025 Hz para grabaciones de voz
-22.050 Hz para grabaciones de musica con calidad mediana

-44.100 Hz para grabaciones de musica con alta calidad.

*La resolucion con qué se anotan los valores de las lecturas.

31

Siempre que se hace una medida hay un redondeo. No es el mismo pesar con unas balanzas de
precision, que nos permiten afinar hasta los miligramos, que con una bascula doméstica donde siempre se
acaba redondeando a decenas o centenares de gramos. Debido al sistema binario de numeracion que usan
los ordenadores, tenemos dos posibilidades:

-8 bits (un byte por lectura) Permite usar una escala de 256 valores posibles. Viene a ser
como pesar con una bascula doméstica.

-16 bits (dos bytes por lectura) Ofrece una escala de 65.536 valores. Seria el equivalente a
las lecturas que podamos obtener de una balanza de precision.

*El namero de canales.

La digitalizacion se puede hacer a partir de una sefial monofonica (un solo registro sonoro) o
estereofonico (dos registros simultaneos).

Digitalizacion de alta y baja calidad. Codecs:

Los valores que escogemos para cada uno de estos tres parametros determinaran la calidad de la
digitalizacion, y nos indicaran también el numero de bytes que necesitaremos para almacenar los datos
recogidos. Los datos provenientes de una grabacion digital de audio podan ocupar mucho de espacio,
especialmente si la digitalizacion se ha realizado a alta calidad. Por ejemplo, por digitalizar una cancion de
3 minutos de duracion a 44.100 Hz se realizan casi 8 millones de lecturas:

44.100(muestras por seg.) x 3(min) x 60(seg. cada minuto) = 7.938.000 muestras

Si la grabacion es estereofonico hara falta multiplicar por 2, y si las lecturas se hacen a 16 bits (que
es el normal) necesitaremos 2 bytes por almacenar cada una de las cifras recogidas. En total la grabacion
ocupara:

7.938.000(muestras) x 2(canales) x 2(bytes por muestra) = 31.752.000 bytes
iEs decir, casi 32 millones de bytes por s6lo una cancion!

Los cddecs son algoritmos matematicos que permiten comprimir los datos, haciendo que ocupen
mucho menos espacio. La palabra codec viene de la contraccion de las expresiones COder y DECoder. Ya
hemos dicho en un apartado anterior que a vuestro ordenador hay instalados unos cuantos codecs
especializados en audio, y de otros especializados en video.

Siempre que se usa un codec se pierde algo de calidad, puesto que se acostumbran a sacrificar los
datos que nuestros sentidos no pueden percibir (por ejemplo, suprimiendo los armoénicos mas aguds que
quedan fuera de las frecuencias audibles por los humanos). Por esto conviene hacer el proceso de
compresion una sola vez, cuando ya haguem realizado todas las modificaciones deseadas a los datos
originales.

Los codecs de audio mas usuales son:

*MPEG Layer 3, también conocido como "MP3" : Es el codec mas tendido. Permito comprimir el
sonido digital hasta 1/10 de su medida original sin que se pierda demasiada calidad. Se utiliza en muchos
tipos de dispositivos portatiles, y es el rey de los codecs en el intercambio de musica por internet.

*Qgg Vorbis: A diferencia de la MP3, que tiene un complejo sistema de patentes, este formato se
basa en estandares de codigo abierto y libre, y la calidad es similar a de la MP3, si no mejor. El caso del
codec Ogg en el tema de licencias seria lo equivalente al formato PNG en graficos: ya que el formato MP3

32

estd patentado su creacion o utilizacion puede estar limitada por las restricciones que imponga el
propietario de la patente (actualmente, el Instituo Fraunhoffer), -basicamente el pago de royalties-, se vio la
necesidad de crear otro formato de compresion de audio, con altas capacidades,que fuera libre, y gratuito.
Que sea libre y gratuito quiere decir que los desarrolladores comerciales pueden escribir aplicaciones
independientes que sean compatibles con la especificacion Ogg sin ninguna carga econdmica y sin
restricciones de ningun tipo. Es evidente, otra vez, que este formato de audio es el preferido para ser usado
con la plataforma Fénix. Se soporta de forma nativa, con lo que la optimizacion estd asegurada, y ademas
su calidad es excepcional.

*GSM: Es el codec empleado por los teléfonos moviles. Esta pensado para comprimir el sonido de
la habla. Tiene una relacién de compresion muy alta, pero la calidad obtenida es también muy limitada.

*Real Audio: Este codec es el que utiliza la empresa Real Networks en sus sistemas de transmision
de audio en tiempo real por internet.

*PCM: Son las iniciales de "Pulse Code Modulation". De hecho el PCM no es un codec, sino el
nombre que reciben los datos de audio digital sin comprimir. Lo incluimos en esta lista por ayudar a
identificar los diversos formatos de codificacion de datos.

Formatos de almacenamiento:

Las secuencias numéricas provenientes de una digitalizacion de audio se pueden almacenar y
transmitir en formatos muy diferentes:

*CDAudio: Los CD de musica que usamos a los reproductores domésticos contienden los datos
provenientes de una digitalizacion a 44,1 KHz, 16 bits y estéreo, sin ningun tipo de compresion. En un CD
de 700 Mb caben unos 80 minutos de audio.

* Audio a chorro o streaming audio:Consiste en la transmision por internet de datos de audio digital
comprimidas, que el receptor recibe y consume al momento, convirtiéndolas en sonido. Se utiliza, entre
otras cosas, para escuchar una emisora de radio en tiempo real o programas "a la carta". Los sistemas mas
empleados son Real Audio y Windows Media, aun cuando empieza a haber emisoras virtuales que emiten
raigs de datos en MP3 y Ogg Vorbis.Podéis localizar emisoras de todo el mundo a http://www.radio-
locator.como

Ficheros:

El mas usual es desar los datos de audio digital en un fichero. Normalmente la extensiéon de un
fichero (las tres ultimas letras) indica el formato de sus datos:

.wav: Es la extension que se acostumbra a emplear en el Windows para identificar los ficheros de
audio digital. Proviene de la contraccion de "wave" (ola en inglés). Los datos de los ficheros .wav podan
estar en formato PCM (sin comprimir) o pueden haber sido comprimidas con cualquiera de los codecs
disponibles para Windows.

.ave y .aiff: Los ficheros con extension .ave y .aiff son los que se acostumbran a emplear en
sistemas Mac y Linux. Contienden datos sin comprimir.

.mp3 y .ogg: Los ficheros con estas extensiones contienden datos comprimidos en formato MPEG-
IIT 0 Ogg Vorbis

.ra: La extension .ra se acostumbra a utilizar en los ficheros codificados con el codec Real Player.

Hay otras extensiones y formatos, pero estos son quizas los mas usuales.

33

Los programas reproductores son capaces de reproducir todos estos formatos de ficheros, siempre
que los codecs correspondientes estén instalados en el sistema. Hablando ademas bajo nivel, es la tarjeta de
sonido la encargada de transformar la informacion digitalizada en un impulso eléctrico otra vez, el cual a
través de unos altavoces se vuelve a convertir en sonido.

(Qué es el MIDI?

El MIDI (acrénimo de Musical Instrumentos Digital Interface) es un sistema estandar de
comunicacion de informacion musical entre aparatos electronicos. Para hacer posible esta comunicacion, el
MIDI describe dos cosas a la vez:

-Un método para codificar la musica, basado en cifras numéricas que se transmiten una ultima la
otra.

-Un sistema de conexiones fisicas entre los aparatos: cables, conectores, tensiones eléctricas,
frecuencias...

Es importante tener presente que el MIDI no sirve para transmitir sonidos, sino s6lo informacion
sobre como se tiene que reproducir una determinada pieza musical. Seria el equivalente informatico a la
partitura, al carrete de una pianola o al tambor de agujas de una caja de musica: contiene toda la
informacién necesaria para interpretar una pieza musical, pero si la queréis convertir en sonidos
necesitaréis un buen instrumento y un musico o un mecanismo capaz de interpretarla.

Actualmente todos los fabricantes de sintetizadores y aparatos musicales incorporan en sus equipos
las conexiones y el circuitos atendiendo a la normativa estandar MIDI. Esto hace que siempre sea posible la
comunicacion entre los equipos, aunque no provengan del mismo fabricante o utilicen técnicas diferentes
de sintesis y proceso de datos.

MIDI y sonido digital

Tal y como se ha explicado anteriormente, hace falta diferenciar los ficheros MIDI de los ficheros
de sonido digital (WAV, MP3, Ogg...). El MIDI es el equivalente a una partitura, y por esto solo contiene
las instrucciones que haran que un dispositivo compatible active los sonidos. E1 WAV, en cambio, contiene
una descripcion detallada de la ola de sonido resultante. Esto hace que la medida que ocupa un fichero
MIDI sea muy menor a la de un fichero de sonido digital.

La ventaja de los ficheros de sonido digital es que ofrecen la misma calidad de sonido,
independientemente del ordenador donde los escuchamos. Por el contrario, la calidad del sonido de un
fichero MIDI dependera del sintetizador o la tarjeta encargada de interpretar la "partitura".

Otro aspecto a destacar del MIDI es su flexibilidad: la musica se puede editar y modificar muy
facilmente, cambiando el tiempo, la alzada de las notas, los diferentes timbres utilizados, etc.

Aparatos MIDI:

El sistema MIDI es empleado por varios tipos de aparatos musicales con funciones diversas.
Podriamos agruparlos en tres grandes familias:

* Aparatos generadores de sonido: Son los aparatos que reciben informacion que proviene de algun
otro y la transforman en sonido. Los aparatos MIDI pueden realizar esta funcidon principalmente de dos
maneras diferentes:

-Los sintetizadores generan el sonido de una manera totalmente artificial, basandose en
combinaciones de funciones matematicas por obtener los diferentes timbres.La tarjeta de sonido

34

del ordenador incorpora un sintetizador MIDI.

-Los mostreadores (denominados también samplers) reproducen muestras grabadas de un
instrumento tradicional. Las muestras de sonido se toman en un estudio y se almacenan
digitalmente en la memoria del aparato MIDI. Posteriormente, son manipuladas por adaptarlas a
diferentes niveles de intensidad y frecuencia. El sonido obtenido por este método puede tener una
calidad parecida a la de una grabacion en disco compacto hecho con el instrumento de dénde
provienen las muestras. Algunas tarjetas de sonido de gama alta tienen, ademas del sintetizador, un
sampler.

*Controladores: Reciben este nombre los dispositivos especializados al emitir informacion MIDI.
Podemos encontrar al mercado controladores que adoptan la forma de instrumentos convencionales
(teclados, saxofones, flautas, guitarras, acordeones, baterias...) y de otras con disefios especificos (sensores
de luz, de sonido o de movimiento, mesitas sensibles, platos giratorios...).

*Procesadores de datos: Se especializan en recibir, almacenar, procesar y generar informacion
MIDI. En este grupo encontramos los secuenciadores y los ordenadores.

Algunos aparatos integran en una misma unidad elementos que pertenecen ademas de un grupo de
los descritos. Por ejemplo, un sintetizador con teclado es a la vez un generador de sonido y un controlador,
y puede traer también un seqiienciador incorporado. En este caso la comunicacion MIDI entre los
diferentes componentes se efectiia internamente, sin cables ni conectores visibles, pero es importante
entender qué de las funciones utilizamos en cada momento.

Finalmente, por "Renderizar" un archivo MIDI se entiende que se convertirlo en un archivo WAV,
lo que seria parecido a grabarlo en un cassette, por ejemplo, y luego grabarlo de nuevo cono un programa
de grabacion como el Audacity o similares.

Las tarjetas de sonido:

Las sefiales analogicas de audio que llegan a la tarjeta, pasan primero por un amplificador que les
proporciona un nivel adecuado para la digitalizaciéon. El amplificador amplifica mas las entradas del
micréfono que las entradas de linea, por lo que si se tiene una sefial de una fuente que sea relativamente
débil, se debera conectar al puerto del microfono en vez del de linea. Las tarjetas que funcionan en estéreo
utilizan dos canales amplificadores. A continuacion, el amplificador pasa la sefial al convertidor analogico
digital, y finalmente se pasa las sefiales digitalizadas al sistema principal para su almacenamiento o su uso
en una aplicacion.

Las sefiales digitales de audio generadas por una aplicacion que ejecuta un archivo de forma de
onas llegan a la tarjeta de sonido y pasan a través del mezclador. El mezclador combina las salidas de
diferentes fuentes y entrega el resultado a otro amplificador que prepara la sefal para su salida a los
altavoces, auriculares o al sistema de sonido externo. Este proceso es similar a la reproduccion de sonido
via CD-Audio.

Cuando se utiliza una aplicacion para reproducir un archivo midi, la tarjeta recibe la sefial igual que
antes, pero la informacion no se envia al mezclador directamente porque el midi contiene instrucciones de
programacion, no audio digitalizado. En su lugar, la informacion midi se envia al sintetizador, que genera
el audio digital a partir de las instrucciones y pasa las sefiales de audio digital al mezclador, repitiéndose el
proceso de antes.

No hay ningtin estandar para tarjetas de audio. Antiguamente, existian pocos fabricantes de tarjetas
y la mayoria de disefiadores de juegos tenian pocas dificultades en incluir en sus programas los drivers
necesarios para soportarlas a todas. Pero cuando aument6 el nimero de fabricantes y éstos comenzaron a
sacar varios modelos de tarjetas, se hizo cada vez mas dificil para los disefiadores, mantener ese ritmo, y la

35

compatibilidad se convirtié en un asunto crucial. Cuando Windows conquist6é el mercado de los PC, la
compatibilidad perdi6 importancia porque s6lo era necesario instalar un controlador para su adaptador de
audio en Windows, no en cada aplicacion individual. Afiadiendo a esto el hecho de que la funcion
Plug&Play de Windows puede detectar de forma automatica e instalar un driver para la mayoria de las
tarjetas de audio del mercado, la compatibilidad ya no es un problema.

Lista de algunos programas utiles (para Windows) v recursos multimedia

Es evidente que para poder crear un juego minimamente vistoso, debemos mostrar unos
graficos minimos: una nave, un asteroide, un fondo de estrellas, un disparo...Para poder incluir estos
dibujos en nuestro programa, previamente deberemos crear los diferentes dibujos y sprites (recordemos que
un sprite es un dibujo en movimiento por la pantalla), e incluso si es necesario, crear nuestros sonidos para
incluirlos también, animaciones 3D,etc. Para todo eso deberemos utilizar unas aplicaciones concretas fuera
del entorno Fénix.

Se sale totalmente de los propositos de este curso profundizar en el uso de las diferentes
herramientas que un desarrollador de videojuegos necesitara para crear su mundo particular. Editores de
imagenes, editores de video, editores de sonido, suites 3D, etc son aplicaciones esenciales para poder
generar un juego creible, atractivo, interesante y profesional. Este curso s6lo pretende iniciar al lector en el
conocimiento de un lenguaje de programacion concreto como es Fénix, dejando a un lado una explicacion
pormenerizada de todas estas herramientas que también son imprescindibles. En este sentido, el lector
tendra que hacer un trabajo de busqueda y estudio particular de aquellas aplicaciones que en cada momento
le convenga mas o le ayuden mejor en su tarea de dibujar, crear musicas, incluir animaciones, etc.

Las posibilidades que se presentan al desarrollador son casi infinitas. Existen muchas
aplicaciones para todo lo necesario, y en la eleccion de una herramienta particular influira las necesidades
particulares de un juego, el conocimiento multimedia del programador, la posibilidad de adquision de la
aplicacion (algunas son libres) o incluso la apetencia personal.

A continuacion ofrezco una lista incompleta, ni mucho menos rigurosa ni definitiva, de
aquellas aplicaciones de las cuales tengo conocimiento (preferentemente libres), y que considero
interesante conocer. Dejo al lector la libertad de elegir la que considere mas oportuna para sus propositos, y
repito que sera tarea suya el aprendizaje del funcionamiento y posibilidades ultimas de la aplicacion
escogida. Para un listado mas exhaustivo, recomiendo visitar
http://www.gpwiki.org/index.php/Tools:Content

Editores de graficos vectoriales

Inkscape (http://www.inkscape.org): Inkscape es un excelente editor libre de SVG (EL editor), el
formato recomendado por el consorcio empresarial W3C para graficos vectoriales. Inskcape es una
escision de un proyecto anterior llamado Sodipodi.

OpenOffice Draw (http://www.openoffice.org): Dentro de la suite ofimatica libre OpenOffice, aparte del
procesador de textos, la hoja de célculo,etc nos encontramos con un simple pero muy funcional y eficaz
disefiador de graficos vectoriales.No se puede comparar en funcionalidad a los editores dedicados
(OpenOffice Draw no deja de ser una parte mas de una suite ofimatica), pero para un usuario medio
cumple de sobra su cometido.Para lo que haremos en este curso respondera de sobras a lo que podamos
pedirle.

Skencil (http://www.skencil.org): Programa de dibujo vectorial similar a CorelDraw o Illustrator,
programado en Python, pero libre..

36

http://www.skencil.org/
http://www.openoffice.org/
http://www.inksape.org/
http://www.gpwiki.org/index.php/Tools:Content

Alternativas no libres:

Anime Studio (http://www.lostmarble.com): Altamente recomendable por su sencillez de uso y su gran
potencia y versatilidad. Estd orientada a la creacion de dibujos y animaciones sin interaccion;
especialmente pensada para creadores de “dibujos animados”.Las herramientas que incorpora son muy
flexibles y utiles a la hora de trabajar con eficacia y rapidez. Viene provisto también de una serie de
tutoriales perfectamente progresivos, estructurados y coherentes que facilitan en extremo el aprendizaje
de esta herramienta. Altamente recomendable, pues. No obstante, no es libre y es de pago.

Un programa parecido al anterior, es decir, un programa para la animacion profesional 2D clasica dirigido a la industria de los
dibujos animados, es Ktoon (http.//ktoon.toonka.com) . Este programa es libre y gratuito. Igual que Anime Studio, trabaja con
diversos formatos y tiene la posibilidad de utilizar papel calco, secuencias, sonidos, ademds de guardar en varios formatos de
video y en formato Flash.No obstante, solo existe version para Linux. De todas maneras, contamos con otra alternativa libre y
esta vez multiplataforma que tiene los mismos objetivos -animacion 2D- , aunque todavia no tan desarrollada: Synfig
(http://www.synfig.com)

Flash(http://www.adobe.com): Aplicacién de referencia en lo que atafie al mundo multimedia en 2D.
Creador de dibujos y animaciones tanto interactivas como no interactivas con inclusion de multiples
posibilidades multimedia, desde sonido y musica hasta video. Es el programa original creador del formato
SWEF, el cual se utiliza en infinidad de webs para aumentar su atractivo visual. Incorpora ademas extensos
tutoriales y documentacion de referencia. Soporta ademas la posibilidad de programacion de script
mediante el cada vez mas potente y flexible lenguaje ActionScript, transformando las ultimas versiones
de Flash en todo un entorno integrado para el disefio grafico con la ayuda de la programacion. No
obstante,debido a sus posibilidades puede ser excesivamente complejo para el iniciado, ademas de no ser
ni libre ni gratis.Algunas webs de soporte y ayuda con ejemplos de codigo ActionScript o animaciones

son http://www.flash-es.net, http://www.flashkit.com o http://x-flash.org. Una aplicacion similar, también
comercial, es Swish (http://swishzone.com)

FreeHand (http://www.adobe.com): Otro excelente editor de graficos vectoriales de la casa Adobe, mas
centrado en el mundo editorial y de papel impreso. De esta misma casa también se puede obtener un
programa muy similar, Illustrator.

CorelDraw (http://www.corel.com): El equivalente al FreeHand, pero de la casa Corel.Una pagina de
soporte a los usuarios de CorelDraw interesante es http://www.coreldev.org

ArtRage (http://ambientdesign.com/artrage.html) : Programa de dibujo que simula el dibujo sobre un
lienzo utilizando pinceles, lapices, tizas, etc. Se puede manejar con el ratén o con una tableta gréafica.

Editores de mapa de bits

MSPaint (de serie en Windows, aunque no libre): Practico, sencillo, rapido y sin opciones rebuscadas.
Elemental e intuitivo. Y lo mejor, viene instalado de serie en Windows. Seguramente, sera el editor de
mapbits que usaremos mas durante el curso, para hacer los bocetos de los dibujos que usaremos en
nuestros juegos, sin necesidad de perfilarlos ni afadir detalles: para dibujar triangulos, cuadrados,
lineas...De igual manera, su ayuda es concisa y clara: buena idea echarle un vistazo.

The Gimp (http://www.gimp.org): La competencia libre al Adobe PhotoShop, la cual no le tiene nada que
envidiar en prestaciones, potencia y calidad de resultados. Demostracion palpable de que se puede
desarrollar una aplicacion libre que compita de igual a igual con los mejores programas propietarios de su
rama. Altamente recomendable para editar las imagenes y fotografias con un resultado excelente. No
obstante, al principio al usuario novel puede costarle entender el funcionamiento del programa, no es
demasiado intuitivo. Atencidon, para poder hacerlo funcionar se necesita que previamente se haya
instalado la libreria grafica GTK+ en el sistema. Dicha libreria y la version para Windows del Gimp las
podras encontrar si vas directamente a http://gimp-win.sourceforge.net .Una pagina web interesante de
soporte al usuario en espafiol, con muchos tutoriales, es http://www.gimp.org.es

37

http://gimp.hispalinux.es/
http://gimp-win.sourceforge.net/
http://www.gimp.org/
http://ambientdesign.com/artrage.html
http://www.coreldev.org/
http://www.corel.com/
http://www.macromedia.com/
http://swishzone.com/
http://x-flash.org/
http://www.flashkit.com/
http://www.flash-es.net/
http://www.macromedia.com/
http://www.synfig.com/
http://ktoon.toonka.com/
http://www.lostmarble.com/

MtPaint (http://mtpaint.sourceforge.net): Sencillo programa de dibujo especialmente pensado para el
Pixel Art -es decir, creacion de dibujos mediante la edicion de pixel a pixel- y la edicion simple de
fotografias.

Existen ademas aplicaciones muy interesantes llamadas trazadoras de imdgenes, cuya funcion principal es convertir imdgenes
que son mapa de bits en imagenes vectoriales, para su manipulacion posterior mas comoda. Un ejemplo de estas aplicaciones

seria Potrace (http.//potrace.sourceforge.net).

Alternativas no libres:

PhotoShop (http://www.adobe.com): El gran monstruo de la edicion grafica. El programa mas potente,
versatil y funcional. Con multitud de plugins que amplian el radio de accién de esta aplicacion hasta el
infinito. Con él se podran hacer todos los retoques imaginables a fotografias y dibujos de forma
totalmente profesional, ademas de aplicar filtros y efectos diversos. Posiblemente, tal cantidad de
posibilidades pueda abrumar al usuario novel, ya que no es tan facil de utilizar al principio como lo
pueda ser un PaintShopPro o un Office Picture Manager, pero las ventajas que obtenemos con €l no tienen
comparacion. Una web interesante de soporte con ayuda al wusuario en espafiol es
http://www.solophotoshop.com

Expression Studio (http://www.microsoft.com/expression) : Suite de disefio grafico de Microsoft
formado por varias herramientas, entre las cuales se encuentra un editor de mapa de bits llamado
Expression Design.

Paint Shop Pro (http://www.corel.com): Excelente editor de dibujos y fotografias para el usuario medio.
Oftrece las funcionalidades basicas que se le requieren a un programa de este tipo de una forma totalmente
solvente,facil y rapida. Dentro del paquete de instalacion incorpora una utilidad muy practica, Animation
Shop, que es un generador de animaciones GIF.

Office Picture Manager (http://www.microsoft.com): Similar en prestaciones al Paint Shop Pro: pensado
para el usuario medio que no necesite de grandes prestaciones sino de las mas elementales —a la par que
mas usadas-. Sencillo, répido y eficaz. Este programa viene integrado como un paquete mas a instalar en
la suite ofimatica Office.

Fireworks (http://www.adobe.com): Aplicacion pensada especificamente para la produccion de
elementos graficos que se utilizaran en la web.Es decir, permite hacer dibujos, manipular fotografias y
generar graficos animados para Internet asi como optimizar esas imagenes e incorporarles interactividad
avanzada.

Graphics Gale (http://www.humanbalance.net) : Editor de graficos y animaciones Gif muy facil de
utilizar, enfocado principalmente al PixelArt.

No obstante, si no quieres entretenerte creando tus propios dibujos/animaciones y deseas aprovechar
las creaciones graficas que existan ya realizadas por otras personas, en Internet hay multitud de webs de
donde puedes descargarte gran cantidad de sprites, imagenes de fondo, iconos,etc gratuitamente para
poderlos insertar en tus videojuegos inmediatamente. Puedes mirar por ejemplo http://www.gsarchives.net
Jhttp://www.panelmonkey.org , http://www.molotov.nu/?page=graphics , http://www.grsites.com/ ,
http://www.sprites-inc.co.uk/ , http://www.sprite-town.tk/ , http://www.cvrpg.com/sprites.php

http://www.kingdom-hearts2.com/zerov/sprites.html , http://rcz.saphiria.net/html/sprites/sonic.php

,http:/www.nes-snes-sprites.com/, http://www.goldensun-syndicate.net/sprites/ ,
http://dioxaz.free.fr/objets.htm ,

http://www.drshnaps.com/drshnaps/kirbyorigins/extras/sprites/ksprites.html ,
http://www.geocities.com/spritepage2003/update.html ,

38

http://www.geocities.com/spritepage2003/update.html
http://www.drshnaps.com/drshnaps/kirbyorigins/extras/sprites/ksprites.html
http://dioxaz.free.fr/objets.htm
http://www.goldensun-syndicate.net/sprites/
http://www.nes-snes-sprites.com/
http://rcz.saphiria.net/html/sprites/sonic.php
http://www.kingdom-hearts2.com/zerov/sprites.html
http://www.cvrpg.com/sprites.php
http://www.sprite-town.tk/
http://www.sprites-inc.co.uk/
http://www.grsites.com/
http://www.molotov.nu/?page=graphics
http://www.panelmonkey.org/
http://www.gsarchives.net/
http://www.humanbalance.net/
http://www.macromedia.com/
http://www.microsoft.com/
http://www.corel.com/
http://www.microsoft.com/expression
http://www.solophotoshop.com/
http://www.adobe.com/
http://potrace.sourceforge.net/
http://mtpaint.sourceforge.net/

http://lostgarden.com/2006/07/more-free-game-graphics.html ,
http://reinerstileset.4players.de/englisch.htm ,
http://forum.thegamecreators.com/?m=forum_view&t=85024&b=4 ,
http://www.angelfire.com/sc/Shining/Metal.html ,

http://www.gamedev.net/community/forums/topic.asp?topic_id=272386 ,
http://local.wasp.uwa.edu.au/~pbourke/texture/ (texturas)

Otra posibilidad, no siempre legal, es obtenerlos -"ripearlos" - de un videojuego que poseamos.

Suites de animacion 3D

Blender (http://www.blender3d.org): Blender es una suite integrada de modelacion, animacion,
renderizacion, post-produccion, creacion interactiva y reanimacion 3D-ideal para juegos-, con
caracteristicas tan interesantes como soporte a la programacion bajo el lenguaje Python. Blender tiene una
particular interfaz de usuario, que es implementada enteramente en OpenGL y disefiada pensando en la
velocidad. Hoy en dia todavia no exprime todas las posibilidades que los grandes productos ofrecen, pero
éste es un proyecto que esta gozando de una rapida evolucion debido a la gran participacion de la
comunidad involucrada, asi que es de esperar mejoras importantes en plazos cortos de tiempo.

Art of Illusion (http://www.artofillusion.org): Art of Illusion es un estudio de modelado y renderizado
3D. Es un programa Java, por lo que se necesita tener instalado Java Runtime Environment 1.4 (o
posterior).

AutoQ3D (http://autog3d.sourceforge.net): Programa de modelado 3D potente,flexible y facil de utilizar

Zmodeler (http://www.zmodeler2.com): Otro programa de modelado 3D libre y gratuito.

Gmax: (http://www.turbosquid.com/gmax): Software libre y gratuito de modelaje y animacion 3D
especialmente pensado para videojuegos.

Anim8or (http://www.anim8or.com) : Otro software libre y gratuito de modelaje y animacion 3D.

MilkShape3D (http:/chumbalum.swissquake.ch/ms3d/index.html) : Animador de esqueletos 3D.

También nos podemos encontrar programas mas especificos que no abarcan todo el proceso entero sino
que se dedican a modelar determinado tipo de imagenes. Por ejemplo, podemos utilizar un modelador
libre de poligonos con mallas —sin animacion- llamado Wings 3D (http://wings.sourceforge.net).o Pov-
Ray (http://www.povray.org) , herramienta para crear imagenes tridimensionales fotorealistas mediante la
técnica del trazado de rayos, o motores 3D listos para incorporar a proyectos de desarrollo, como Irrlicht
(http://irrlich.sourceforge.net) , que es libre y multiplataforma, igual que Ogre (http://www.ogre3d.org) o
NeoEngine (http://www.neoengine.org) . También nos podemos encontrar con generadores de
explosiones, particulas y efectos especiales 3D, como ExGen (http://exgen.thegamecreators.com/) -de
pago-, o Particle Illusion (http://www.wondertouch.com) -de pago también-.

Algunas webs de soporte y ayuda referentes al tema del disefio grafico 3D en general (sin asociarse a
ningun producto en concreto pueden ser: http://www.3drender.com/ref, http://www.highend3d.com,
http://www.beyond3d.com , http://humus.ca o http://www.es.3dup.com -ésta tltima en espafiol- entre
otros.

Alternativas no libres:

Maya (http://www.autodesk.com/alias): Es quiza el software mas popular en la industria. Es utilizado por
muchos de los estudios de efectos visuales mas importantes en combinacion con RenderMan, el motor de

39

http://www.alias.com/
http://www.es.3dup.com/
http://humus.ca/
http://www.beyond3d.com/
http://www.highend3d.com/
http://www.3drender.com/ref
http://www.wondertouch.com/
http://exgen.thegamecreators.com/
http://www.neoengine.org/
http://www.ogre3d.org/
http://irrlich.sourceforge.net/
http://www.povray.org/
http://chumbalum.swissquake.ch/ms3d/index.html
http://www.anim8or.com/
http://www.turbosquid.com/gmax
http://www.zmodeler2.com/
http://autoq3d.sourceforge.net/
http://www.artofillusion.org/
http://www.blender3d.org/
http://local.wasp.uwa.edu.au/~pbourke/texture/
http://www.gamedev.net/community/forums/topic.asp?topic_id=272386
http://www.angelfire.com/sc/Shining/Metal.html
http://forum.thegamecreators.com/?m=forum_view&t=85024&b=4
http://reinerstileset.4players.de/englisch.htm
http://lostgarden.com/2006/07/more-free-game-graphics.html

rénder fotorrealista de la empresa Pixar. Webs que pueden ayudar al usuario de esta aplicacion pueden
ser http://www.simplymaya.com y http://www.mayatraining.com

3Dstudio Max (http://www.discreet.com; http://www.autodesk.com): . Es el lider en el desarrollo de 3D
en la industria de juegos y usuarios hogarefios.

Lightwave 3D(http://www.newtek.com) : Otro “monstruo” del sector. Como los anteriores, se compone
de dos partes: modelador y renderizador.

TrueSpace (http://www.caligari.com) : Aplicacion 3D integrada, con una apariencia visual muy intuitiva.
Una caracteristica distintiva de esta aplicacion es que todas las fases de creacion de graficos 3D son
realizadas dentro de un unico programa, no como los demas que se componen de modulos separados. No
es tan avanzado como los paquetes lideres Maya,3Dstudio,Ligtwave),pero provee caracteristicas como
simulacion de fenomenos fisicos (viento, gravedad, colisiones entre cuerpos) muy interesantes.

Cinema 4D (http://www.maxon.net): Es un rapido motor de rénder.

RealSoft 3D (http://www.realsoft.fi): Modelador 3D para Linux y Windows. Incluye rénder también.

Softimage XSI (http://www.softimage.com/xsi): Excelente software de modelado, renderizado y
animacion 3D enfocado a videojuegos y cine.

DeleD (http://www.delgine.com) : Modelador 3D enfocado en el disefio para videojuegos 3D.Tiene una
version Lite gratuita.

Editores de sonido

Audacity (http://audacity.sourceforge.net) : Editor de audio que permite reproducir, grabar en multiples
pistas, editar, mezclar, aplicar efectos, etc a archivos de formato de onda, de una manera comoda y
sencilla.ldeal para usuarios noveles o no tanto.Permite la utilizacion tanto de Wav como de Ogg, y Mp3 si
se le incorpora el code LameMp3.

WaveSurfer (http://www.speech.kth.se/wavesurfer): Herramienta para la visualizaciéon y manipulacion
de sonido en formato de onda, cuyas capacidades pueden ampliarse mediante plug-ins.

Sweep (http://www.metadecks.org/software/sweep): Otro editor de sonidos en formato de onda (Wav y
Ogg)

ReZound (http://rezound.sourceforge.net): Y otro. Es parecido al CoolEdit. Permite aplicar
filtros,efectos, loops, cue points,etc

Mixere (http://mixere.sourceforge.net): Este programa libre no es un editor de sonido propiamente dicho:
solamente es un mezclador de ficheros de sonido. Muy sencillo pero perfecto para quien desee solamente
esta funcionalidad a partir de ficheros ya editados Wav,0Ogg,Mp3... para obtener curiosos efectos.

Alternativas no libres:

Audition (http://www.adobe.com) : Editor anteriormente 1llamado Cool Edit Pro. Ideal para manipular
archivos de onda: incorpora multiples efectos, filtros y posibilidades de edicion de cualquier sonido Wav.
Permite cambiar el formato del archivo y grabarlo en disco como Ogg.La herramienta completa para los
usuarios medios.

40

http://www.adobe.com/
http://mixere.sourceforge.net/
http://rezound.sourceforge.net/
http://www.metadecks.org/software/sweep
http://www.speech.kth.se/wavesurfer
http://audacity.sourceforge.net/
http://www.delgine.com/
http://www.softimage.com/xsi
http://www.realsoft.fi/
http://www.maxon.net/
http://www.caligari.com/
http://www.newtek.com/
http://www.autodesk.com/
http://www.discreet.com/
http://www.mayatraining.com/
http://www.simplymaya.com/

Nero Wave Editor (http://www.nero.com): Aplicacion que viene integrada dentro de la suite de
grabacion Nero, la cual reune todolo necesario para grabar y editar archivos de formato de onda de
manera clara y directa. Las opciones que incorpora son las basicas, pero trabaja de forma muy optimizada.
No obstante, por defecto no puede abrir ni grabar ficheros en formato Ogg, solamente Wav y otros
(mp3,etc).

Goldwave (http://www.goldwave.com): Otra excelente herramienta

A otro nivel muy diferente, ya completamente profesional, podriamos hablar de otro tipo de herramientas,
no ya simples editores de sonido sino completas suites de composicion,grabacion y manipulacion
completa de musica tanto MIDI como de formato de onda, como seria el Protools
(http://www.digidesign.com), el CuBase VST (http://www.steinberg.net), el SoundForge
(http://www.sonicfoundry.com) o el CakeWalk (http://www.cakewalk.com), las cuales son usadas en
los estudios de grabacion mas importantes. Las alternativas libres a este tipo de programas todavia no
estan lo suficientemente evolucionadas para competir en condiciones de igualdad con las anteriores
nombradas. Actualmente las mas relevantes podrian ser los secuenciadores: Rosegarden
(http://www.rosegardenmusic.org), el cual incorpora secuenciador MIDI y editor de partituras o, en menor
medida Ardour (http://ardour.org). Ambos funcionan sélo en Linux.

También podriamos hablar en este apartado de otro tipo de programas, que no son propiamente editores
de audio, sino que lo que permiten es extraer -"ripear"- sonidos y musicas de CDs de audio y convertirlos
en ficheros de formato de onda para, por ejemplo, editarlos y poderlos utilizar (siempre respetando la
legalidad sobre los derechos de autor) en tus propios juegos. Por ejemplo, tenemos como aplicaciones
libres:

AudioGrabber (http://www.audiograbber.com-us.net): Extrae canciones de los CD y los copia en
formato de archivo Wav al disco duro en formato Wav y Ogg, entre otros.

Cdex (http://cdexos.sourceforge.net): Extrae canciones de los CD y los copia en formato de archivo Wav
y Ogg al disco duro,entre otros.

Exact Audio Copy (http://exactaudiocopy.de) : Extrae canciones de los CD y los copia en formato de
archivo Wav y Ogg al disco duro, entre otros.

BeSweet (http://dspguru.doom9.net/) : Este programa libre no extrae canciones de CD: simplemente
transforma el formato de los archivos de sonido seleccionados en otro. Soporta los formatos
MP3,AC3,WAV,MP2,AVLAiff,VOB y Ogg.

Respecto a los MIDIS, no podemos hablar propiamente de editores de sonido, sino de programas
creadores y editores de MIDIS. Algunos podrian ser:

Band in a Box (http://www.pgmusic.com) : Atencion: este programa NO es libre. Es un generador de
canciones. Aplicacion ideal para componer melodias con multitud de arreglos armoénicos yritmicos. No
obstante, se ha de saber un minimo de solfeo y armonia musical para poderlo utilizar.

Visual Music (http://shitalshah.com/vmusic) : Permite tocar hasta 128 instrumentos musicales y grabar el
resultado. También puedes escribir scripts para crear tus propias composiciones. Guarda el resultado en
ficheros MIDI.

Jazz++ (http://jazzplusplus.sourceforge.net): Secuenciador de audio que permite grabar, editar y
reproducir archivos MIDI.

41

http://jazzplusplus.sourceforge.net/
http://shitalshah.com/vmusic
http://www.pgmusic.com/
http://dspguru.doom9.net/
http://exactaudiocopy.de/
http://cdexos.sourceforge.net/
http://www.audiograbber.com-us.net/
http://ardour.sourceforge.net/
http://www.all-day-breakfast.com/rosegarden
http://www.cakewalk.com/
http://www.sonicfoundry.com/
http://www.steinberg.net/
http://www.digidesign.com/
http://www.goldwave.com/
http://www.nero.com/

Hydrogen (http://hydrogen-music.org): Sintetizador de bateria por software que se puede usar por si solo,
emulando una caja de ritmo basada en patrones, o via un teclado/secuenciador MIDI externo por
software.Otro sotfware libre similar es HammerHead (http://www.threechords.com/hammerhead).

Respecto la existencia de conversores de ficheros MIDI a Wav y viceversa se ha de decir que es escasa,
debido a la dificultad que entrana la diferencia de estructura que poseen ambos formatos: uno esta
formado por instrucciones y otro por sonido digitalizado. Asi que la transformacion de uno a otro es muy
costosa y no siempre con resultados Optimos. Puedes mirar en http://www.midconverter.com o en
http://www.mp3-converter.biz a ver si encuentras la aplicaciéon que mas se ajuste a tus necesidades.

Por otro lado, también puedes recurrir a sitios web donde te puedes descargar sonidos
digitalizados de los mas variados ambitos: explosiones,truenos, ladridos, sonidos de oficina,etc,etc. Estas
web son almacenes de recursos muy interesantes para explorar. Ejemplos son:

http://recursos.cnice.mec.es/bancoimagenes/sonidos,http://www.flashkit.com/soundfx,
http://www.hispasonic.com,http://3dcafe.com/asp/sounds.asp,http://www.findsounds.com,

http://www.therecordist.com/pages/downloads.html, http://sounds.wavcentral.com, y, si queremos midis:
http://www.midisite.co.uk.Si queremos archivos en formato .mod, podemos ir a http://modarchive.org ,
http://www.modplug.com (donde podemos encontrar también software de creacion de ficheros mod), o
http://www.mirsoft.info.

Otro recurso a tener en cuenta es la posibilidad de utilizar musica libre (al igual que lo es el
software), descargable de Internet de forma totalmente legal y gratuita, fomentando ademas la promocion
de grupos y artistas que apoyan este tipo de iniciativas. Puedes echarle un ojo a
http://www.musicalibre.info, http://www.musicalibre.es, http://www.jamendo.com., y si quieres mas, hay
un listado completo en http://parolas.thebbs.org/sincanon/Musica_libre.html

Editores de video

Movie Maker (de serie en Windows, pero no libre): Lo que es el MsPaint en el mundo de los editores
graficos, es el Movie Maker en el mundo de los editores de video. Elemental, sencillo, con pocas
prestaciones pero las mas usuales y eficaz. Para todos aquellos que no deseen elaborar videos demasiado
complejos y que se contenten con un montaje sencillo y efectivo. Ideal para comenzar. Viene
instalado de serie en Windows.

VirtualDub (http://www.virtualdub.org): La gran alternativa libre en el mundo de la edicion de video se
llama VirtualDub. Esta a la altura de cualquier editor comercial importante como Premiere o Studio.
Ofrece las mismas funcionalidades y su eficiencia y calidad son comparables. Otro ejemplo de programa
libre que no tiene nada que envidiar a los “monstruos” de la rama. Comentar que existe una variante del
programa -lo que se llama un "fork"- llamada VirtualDubMod, en teoria mas completa y funcional pero
que hace tiempo que no se actualiza; se puede encontrar en http://virtualdubmod.sourceforge.net

Cinelerra (http://heroinewarrior.com/cinelerra.php3): Otro estupendo editor de video libre.

Wax(http://www.debugmode.com/wax): Este programa no es propiamente un editor de video sino un
programa de composicion de efectos especiales de video 2D y 3D. Puede utilizarse como programa
independiente o como plugin de Premiere. Otro programa libre y multiplataforma de edicion de video y
tratamiento de efectos especiales, con soporte para OpenGL vy OpenML
(http://www.khronos.org/openml), es Jahshaka (http://www.jahshaka.org).

Cinepaint (http://www.cinepaint.org) :Mas que un editor de video al uso, este programa es mas bien un

42

http://www.cinepaint.org/
http://www.jahshaka.org/
http://www.khronos.org/openml
http://www.debugmode.com/wax
http://heroinewarrior.com/cinelerra.php3
http://virtualdubmod.sourceforge.net/
http://www.virtualdub.org/
http://parolas.thebbs.org/sincanon/Musica_libre.html
http://www.jamendo.com/
http://www.musicalibre.es/
http://www.musicalibre.info/
http://www.mirsoft.info/
http://www.modplug.com/
http://modarchive.org/
http://www.midisite.co.uk.Si/
http://www.midisite.co.uk.Si/
http://sounds.wavcentral.com/
http://www.findsounds.com/
http://3dcafe.com/asp/sounds.asp
http://www.hispasonic.com/
http://www.flashkit.com/soundfx
http://recursos.cnice.mec.es/bancoimagenes/sonidos
http://www.mp3-converter.biz/
http://www.midconverter.com/
http://www.threechords.com/hammerhead
http://hydrogen-music.org/

editor de fotogramas individuales de una pelicula, siendo pues mas similar a un editor de bitmaps
realmente, como Gimp.

LimSee2. (http://limsee2.gforge.inria.fr/): Herramienta libre de autoria basado en el lenguaje SMIL
(estandar abierto internacional - http://www.w3.org/AudioVideo/ -), el cual permite integrar audio, video,
imagenes, texto o cualquier otro contenido multimedia dentro de una presentacion multimedia. Los
navegadores web estandar son capaces de reproducir contenido SMIL, pero un reproductor dedicado a
utilizar puede ser Ambulant (http://ambulant.sourceforge.net)

Existen unos cuantos editores de video libres mas a tener en cuenta, aunque la mayoria solo estan disponibles para
GNU/Linux. Un ejemplo ideal para el usuario doméstico seria Kino (http://www.kinodv.org), y una aplicacion mas
enfocada al profesional seria LiVES (http://lives.sourceforge.net), entre otros..

Alternativas no libres:

Studio (http://www.pinnaclesys.com): Aplicacion ideal para la edicion de video caseros. Permite todo
tipo de prestaciones para el montaje y tratamiento de las capturas y grabaciones digitales.

Premiere (http://www.adobe.com): Competencia directa del Pinnacle Studio, aunque tal vez orientado un
poco mas hacia el mercado profesional: ofrece mas funcionalidad que el Studio y es mas utilizado para
peliculas de larga duraciéon y con un montaje mas elaborado.

Si todavia no tienes suficiente con la lista anterior (ni con la de Gdwiki), todavia podras
encontrar una cantidad brutal de enlaces a muchisimas mas herramientas de disefio y multimedia en el
espectacular post del foro de GameDevelopers:
http://portalxuri.dyndns.org/gamedevelopers/modules.php?name=Forumsé&file=viewtopic&t=3141&highli

ght=mont%F3n++informaci%F3n+%FAtil

Finalmente, te comento que si quieres tener una lista bastante completa de programas libres,
no ya solamente de los ambitos tratados aqui sino de cualquier ambito (procesadores de texto, hojas de
calculo, juegos,etc) que funcionen en Windows —y en Linux también-, échale un vistazo a la estupenda web
http://www.cdlibre.org, y también a la no menos fantastica http://alts.homelinux.net.

Es mas, si lo que quieres es tener un entorno donde ya tengas preinstalados la mayoria de
programas libres para multimedia que he mencionado anteriormente (Inkscape, Skencil, Gimp, Blender,
Kino, Cinelerra, Audacity, Rosegarden, Ardour, Hydrogen,...) sin preocuparte de descargarlos, de manera
que estés listo para empezar a trabajar inmediatamente, puedes encontrar bastantes distribuciones de Linux
dedicadas al mundo grafico/video/3D/sonido con todo preparado y configurado. Incluso en formato Live-
CD, para que no tengas que cambiar nada de tu ordenador. Echale un ojo por ejemplo a UbuntuStudio
(http://www.ubuntustudio.org)

También existe una distribucion especializada solamente en software musical digna de mencion:
Musix (http://www.musix.org.ar)

De todas maneras, no esta de mas comentar (algo obvio, por otra parte) que es que en la creacion y
desarrollo de un videojuego medianamente complejo las tareas se han de dividir y repartir entre diversos
trabajadores, ya que si no es imposible tirar adelante un proyecto profesional. Es decir, la plantilla estara
formada por guionistas, los cuales habran pensado, escrito y corregido toda la historia y sus personajes
mediante técnicas al efecto -como storyboards-,; estara formada también por personal disenador grafico,
que se dedicara a crear la ambientacion (personajes, paisajes,etc) con las herramientas que se acaban de
enumerar anteriormente; también puede haber parte de los trabajadores dedicados a la creacion musical; y
un pequefio grupo dentro de la plantilla sera el de programadores propiamente dichos, que exclusivamente
se dedicaran a programar. Pueden haber mas departamentos, y todos ellos seran coordinados finalmente por

43

http://www.musix.org.ar/
http://www.ubuntustudio.org/
http://alts.homelinux.net/
http://www.cdlibre.org/
http://portalxuri.dyndns.org/gamedevelopers/modules.php?name=Forums&file=viewtopic&t=3141&highlight=mont%F3n++informaci%F3n+%FAtil
http://portalxuri.dyndns.org/gamedevelopers/modules.php?name=Forums&file=viewtopic&t=3141&highlight=mont%F3n++informaci%F3n+%FAtil
http://www.adobe.com/
http://www.pinnaclesys.com/
http://lives.sourceforge.net/
http://www.kinodv.org/
http://ambulant.sourceforge.net/
http://www.w3.org/AudioVideo/
http://limsee2.gforge.inria.fr/

una comision jefe de proyecto. Es decir, que un programador profesional no tiene por qué conocer las
herramientas de disefio y viceversa.

No obstante, como nosotros desarrollaremos videojuegos amateur, donde todo lo tendremos que
hacer nosotros, sera necesario tocar muchas teclas y tener minimas nociones de todo un poco: redaccion de
guiones, disefio grafico, musica, programacion, planificacion de proyectos, etc. Una ardua y completa
labor, pero a la vez muy gratificante.

44

CAPITULO 1: PRIMER CONTACTO CON FENIX

.Qué es Fénix? Proposito y caracteristicas :

Fénix es un sencillo lenguaje de programacion compilado/interpretado disefiado para crear y
ejecutar especificamente cualquier tipo de juego 2D. El lenguaje esta claramente orientado al manejo de
graficos 2D; es decir, que el propio lenguaje se preocupa de dibujar los graficos en pantalla, ahorrandole al
programador el trabajo que eso supone, que es mucho. Fénix incluye un motor de renderizado 2D por
software que convierte la programacion de juegos en una tarea facil pero potente. En general, cualquier
juego que no emplee objetos 3D real es posible realizarlo con Fénix. Sus caracteristicas principales son:

* Dibujo rapido de sprites con rotado, escalado, animacion y grados de transparencia.
*Deteccion de colisiones a nivel de pixel

*Procesos (programacion multihilo)

*Rutinas de scroll tipo "parallax"

» Multiples regiones en pantalla con o sin scroll

¢ Entrada por teclado, raton y joystick

*Modos de 256 y 65536 colores (8 y 16 bits).

*Soporte del formato grafico PNG, entre otros.

*Soporte (incompleto) para Modo 7

*Reproduccion de sonidos en formato WAV, PCM y Ogg Vorbis
e Libreria de sonido basada en MikMod

*Reproduccion de modulos de muisica en formato IT, MOD y XM
*Soporte de librerias externas (en Windows, DLL).

*Multiplataforma: funciona en Windows 95/98/Me/2000/XP, GNU/Linux sobre chips Intel, MacOSX,
BeOS, GP32 y Dreamcast. Ademas se prevee que pueda ser usado en Dreamcast, PSP,GP32 y GPX2
en futuro cercano. Esta caracteristica es posible gracias a que Fénix estd basado a mas bajo nivel en la
libreria grafica SDL, la cual es portable a todos estos sistemas operativos mencionados.

Incluso programadores experimentados encontrardn en Fénix una herramienta util. El lenguaje en
si soporta muchas de las caracteristicas comunmente encontradas en los lenguajes procedurales, tales como
multiples tipos de dato (INT, WORD, BYTE, STRING, FLOAT), punteros, tablas multidimensionales,
estructuras, y las sentencias habituales de control de flujo.

Los autores de Fénix creen en la filosofia de la libertad de uso del software y en la distribucion del
codigo fuente. El lenguaje Fénix, su compilador y su intérprete se distribuyen gratuitamente bajo los
términos de la GNU General Public License, con lo que las fuentes estan disponibles y eres libre de
extenderlas o hacer tu propia version, tal como comenté en el primer capitulo. La distribucion de Fénix
bajo la licencia GNU GPL implica que, si realizas cambios en Fénix, estas obligado a distribuir el codigo
fuente que hayas cambiado junto con tu version, sin ningun coste, y bajo la misma licencia, permitiendo su
redistribucion. Los juegos realizados con Fénix estdn libres de cualquier limitacion,asi como cualquier

45

DLL realizada por ti que enlace con dichos juegos, salvo las derivadas do terceros (dlls con las que linke tu
libreria por ejemplo).

Hay que decir que Fénix es un proyecto en desarrollo: NO ESTA TERMINADO. Actualmente esta
en un periodo "alfa": todavia faltan caracteristicas por implementar, y el codigo sufre cambios
relativamente importantes entre versiones. Se espera que existan todavia numerosos bugs.

Historia de Fénix:

En la década de los 90 el entonces estudiante Daniel Navarro Medrano cre6 como proyecto final de carrera
una herramienta orientada a la creacion de videojuegos de 32 bits bajo MS-DOS. El nuevo lenguaje, de
nombre DIV Games Studio, combinaba caracteristicas de C y Pascal con un entorno completo que permitia
la creacion y edicion de todos los aspectos de los proyectos: programacion, edicion grafica y sonora y un
largo etc.

Fénix, inicialmente bajo el nombre DIVC y de naturaleza GNU y gratuita, aparecio de la mano de Jose
Luis Cebridan como una herramienta capaz de compilar y ejecutar esos juegos en Linux. El nombre fue
cambiado en la version 0.6 del compilador, que ademas introducia otras mejoras, como la aparicion de un
fichero intermedio entre el entorno de compilacion y el entorno de ejecucion. Ya no era necesario distribuir
el codigo fuente de un juego para poder jugar a los juegos. La ventaja principal de esa practica (similar en
concepto a Java) era clara, compilar en una plataforma y ejecutar en muchas. En la version 0.71 el proyecto
qued6 parado, lo que dio lugar a multiples versiones derivadas que corregian fallos o afiadian nuevas
caracteristicas.

La version oficial de Fénix fue retomada por Slainte en el afio 2002, viejo conocido de la comunidad DIV
por ser el webmaster de una de las paginas web mas importantes para la comunidad, quien continu6 el
proyecto bajo el nombre de Fénix - Proyecto 1.0 al que pronto se reincorporaria su creador y cuyo primer
objetivo era limpiar el compilador de errores y estabilizarlo. Desde entonces el compilador ha sufrido
numerosos cambios y mejoras, dejando de un lado la compatibilidad con el lenguaje DIV, el desarrollo del
cual quedo paralizado hace tiempo en su version 2 desde la quiebra de la empresa que lo comercializaba,
Hammer Technologies. (De hecho, DIV2 soélo es compatible con Ms-Dos y Windows 95/98, pero no con
Windows 2000 o XP).

Tras un periodo de relativa inactividad en donde Fénix se habia estancado en su version 0.84/0.84a, a
mediados del 2006, Juan alias "SplinterGU" retom6 con fuerza el desarrollo de nuevas versiones del
compilador/intérprete, incorporandole muchas mejoras en rendimiento y velocidad, afiadiendo funciones
nuevas y corrigiendo bugs cronicos, hasta llegar a la version actual, la 0.92a. No obstante, debido a ciertas
desaveniencias con determinados miembros de la comunidad hicieron que Juan se decidiera por abandonar
el desarrollo oficial de Fénix y crear un fork (una variante independiente) a partir del codigo de Fénix
llamado Bennu,el cual a dia de hoy (afio 2007) todavia no ha salido a la luz.

Actualmente, el foro de Fénix (http:/forum.divsite.net) es un lugar muy activo lleno de gente que
intercambia informacidn, trucos y experiencias sobre este lenguaje.

Criticas v carencias de Fénix v.092a:

Fénix ha sido y/o es criticado por varios motivos.

1)Falta de documentacion actualizada. De todas maneras, se estan poniendo en marcha proyectos
como el Wiki de Fénix (http://www.fenixwiki.se32.com) o su version inglesa (http://www.fenixdocs.com) ,
donde se pretende recoger la descripcion de todas las funciones, variables, caracteristicas sintacticas y
entresijos del lenguaje. Cuando esté acabada, seria util como manual de referencia, pero no ensefiaria a

46

http://www.fenixdocs.com/
http://www.fenixworld.se32.com/
http://forum.divsite.net/

programar ni contendria tutoriales. Espero que con este curso se solucione en parte este problema ;)

2)Carencia de una buena base multilingiie, lo cual provoca en los usuarios no hispanoparlantes un
cierto recelo en su uso. Esta dificultad estd siendo trabajada en las tltimas versiones CVS, aun por
completar.

3)Inexistencia de IDEs completos para plataformas no-Windows, lo que conlleva cierta dificultad
en su uso para el resto de plataformas.

(Por si no lo sabéis, un IDE no es mas que un programa que integra en un solo entorno el editor, el intérprete,
el compilador, el depurador si lo hubiera, la ayuda del lenguaje,etc; de manera que todas las herramientas necesarias
para el programador estan accesibles inmediatamente dentro de ese entorno de forma coherente,comoda y sobretodo,
visual. Si no se trabaja dentro de un IDE, las diferentes herramientas —que en el caso de Fénix son de consola (es
decir, ejecutables via linea de comandos —la ventana negra del MS-DOS”- y por tanto no visuales)- son para el
desarrollador programas independientes, inconexos entre si, con lo que la utilizacion conjunta de uno u otro és mas
pesada e incomoda, y no es visual).

La explicacion de que no haya un IDE oficial que acompatie a las versiones oficiales del lenguaje
es porque el compilador/intérprete Fénix son programas multiplataforma, y su entorno oficial debe
obligatoriamente funcionaren cualquier plataforma donde funcione Fénix. El mejor modo de conseguir esto
seria programar dicho entorno en el propio Fénix, seguramente empleando alguna DLL a medida con
funciones comunes, pero todavia no hay ningun resultado en este aspecto.

Aparte, hay algunas carencias de Fénix que a primera vista podrian sorprender al recion llegado:

Inexistencia de soporte 3D: Existen DLLs no oficiales que permiten parcialmente trabajar
en 3D (como la VTE.dIl o la M8ee.dll) , pero Fénix ha sido disefiado para realizar juegos 2D. Un motor
3D es un cambio fundamental que implica cambiar practicamente todo el intérprete.

Ademas, no existe ningiin motor 3D que sea 6ptimo para cualquier tipo de juego (por ejemplo
un Quake es un programa muy distinto a un juego de estrategia tipo Starcraft).

Por otra parte hacer un juego 3D requiere multitud de medios y conocimientos. Ningun
lenguaje va a ayudar al programador a la hora de controlar la cantidad de poligonos en pantalla o escribir la
fisica de tu juego. Si ya tienes los conocimientos necesarios, no necesitas Fénix.

Aunque Fénix siga siendo un lenguaje en 2D, es posible emplear las caracteristicas de las
aceleradoras graficas para optimizar el rendimiento de los juegos. Sin embargo la libreria grafica de Fénix
estd escrita completamente por software para permitir la méaxima compatibilidad en todo tipo de
ordenadores y plataformas, independientemente de la calidad de la tarjeta grafica, memoria o procesador.
No obstante, se esta estimando portar la libreria grafica a OpenGL —acelerada por hardware-.

Inexistencia de soporte de modos graficos de 24/32 bits: La calidad visual de los modos
de 16 bits es indistinguible de los modos de 24/32 bits en un juego. Sin embargo, los modos de 32 bits

tienen ciertas ventajas:

- Precision completa de 0 a 255 para las componentes de los colores, lo que permitiria usar
mapas de durezas de forma preciso (ya veremos lo que es eso de mapa de durezas).

- Misma codificacion de color para todas las tarjetas, lo que significa que un nimero dado
representa el mismo color en todas partes.

- Mas facilidad para escribir rutinas que hagan operaciones de color (transparencias pixel a
pixel, transformaciones, etc)

Estas caracteristicas los hacen atractivos, pero un modo de 32 bits es como minimo cuatro veces mas lento
que uno de 256 colores, lo cual lo hace poco util para el desarrollo de juegos a no ser que se utilice
aceleracion por hardware. Por lo tanto, la aparicion de estos modos no se hara realidad al menos hasta que
se introduzca ésta (ver punto anterior).

47

Inexistencia de soporte para el formato MP3: Nunca se soportara el formato MP3, ya que
requiere costosas licencias. Pero puedes usar el formato OGG, gratuito, que funciona de forma similar pero
ofrece incluso mas calidad que el MP3 y es libre.

Inexistencia (aparente) de rutinas de red, para juegos on-line: Lo que existe es una DLL

oficial (la Fsock.dll). Sin embargo, este tipo de DLL requerira que el programador haga la mayor parte del
trabajo enviando y recibiendo paquetes de red , y controlando por su cuenta paquetes perdidos o recibidos
fuera de secuencia y demas problemas habituales. Programar un juego en red es un arte complejo.

Obtencion.instalacién y funcionamiento de Fénix:

Para descargarte Fénix, tiene que ir a la siguiente direccion:http://sourceforge.net/projects/fenix
(Sourceforge es un portal web que aloja multitud de proyectos de software libre, no so6lamente
Fénix).Bueno, una vez en esta pagina, lo tinico que tenemos que hacer es clicar sobre el boton "Download
Fenix". Verds que vas a parar a otra pagina desde la cual te podrias descargar tres cosas que vienen
indicadas bajo la columna llamada "Package": un paquete de codigos y ejemplos, un conjunto de librerias
DLL oficiales (que aportan modularidad y funcionalidad extra al nucleo del lenguaje Fénix, y que ya estan
listas para incluir en nuestros videojuegos y aprovechar asi sus comandos definidos: les dedicaremos a ellas
un capitulo entero), y el propio Fénix, identificado por el paquete "Fénix", la release del cual -release
quiere decir version en inglés- es en estos momentos la 0.92a.

Si clicas sobre el botén que pone "Download" correspondiente al nombre del paquete que deseamos
descargar (en este caso, el package "Fenix"), veras que vuelves a ir a otra pagina. En esta ocasion,
aparecera un lista de las distintas versiones de Fénix disponibles para descargar. Evidentemente, nos
interesara la ultima. Dentro del apartado para la version 0.92a vemos que podemos descargarnos dos
archivos: "fenix092a-src-release.tgz" y "fenix092a-win32-binary.zip". El primero es el codigo fuente del
propio Fénix, y so6lo nos interesaria si desedramos observar su funcionamiento interno o bien mejorar
alguna de sus caracteristicas, aspecto éste muy avanzado y que requiere altos conocimientos de lenguaje C
y de la libreria SDL. El archivo que nos interesa es el otro, el cual es nuestro Fénix listo para usar en
Windows.

Desde la seccion de “Descargas” de esta web te podras descargar diferentes versiones oficiales del
intérprete y del compilador de Fénix para cada plataforma disponible (Windows, Linux, BeOS,etc). Estos
programas estan todos incluidos dentro de un unico zip: es todo lo tnico realmente necesario para poder
empezar a programar y ejecutar los juegos que escribas. Fijate que te encontraras que para cada plataforma
puedes elegir entre obtener bien la version de Fénix ya compilada, lista para usar, o bien el cddigo fuente,
para que tu mismo puedas hacer las modificaciones que creas oportunas y lo compiles optimizado para tu
ordenador, (con cualquier compilador de C). Clicamos sobre el nombre de este archivo, y tras esperar unos
instantes, se iniciara su descarga. El fichero ocupa menos de 1Mb.

Una vez que lo descargues, basta con que descomprimas el archivo en una carpeta alli donde quieras
instalar Fénix y ya estd. Verds que dentro de la carpeta hay unos cuantos archivos.Echémosles un ojo a los
mas importantes:

FXC.EXE: Compilador de Fénix
FXI.EXE: Intérprete de Fénix para Windows

Ambos archivos son programas que se ejecutan en la ventana de comandos, antigua ventana de MSDOS:
ejecutandolos con doble clic no hard nada, ya que necesitan unos parametros determinados para que hagan
su funcion, como luego veremos.

Vamos a explicar un poco la razon de ser de estos dos archivos. Ya dije en el primer capitulo que
Fénix se compilaba y se interpretaba. Puede que te sorprendiera en su momento, pero ahora veras que no

48

http://sourceforge.net/projects/fenix

tiene ningtn secreto. El proceso a la hora de escribir y ejecutar un programa en Fénix es el siguiente:

1°)Nosotros escribimos el codigo Fénix de nuestro juego con cualquier editor de texto (el
Bloc de Notas mismo de Windows vale), y guardamos ese codigo fuente en un archivo que ha de
tener la extension .PRG.

2%)Seguidamente, compilamos con FXC.EXE este archivo .PRG. Obtendremos como
resultado un nuevo archivo, en formato binario, cuya extension se generara automaticamente y que
es .DCB

3°)Una vez obtenido este archivo .DCB, cada vez que queramos ejecutar nuestro juego
tendremos que interpretar dicho archivo mediante FXI.EXE, y asi poner en marcha nuestro
programa. ;Y ya estal!, esto es todo lo que necesitas para programar en Fénix.

Resumiendo: primero compilamos con FXC.EXE los archivos con extension PRG (donde esta
escrito el codigo fuente) y luego, si queremos poner en marcha el juego ejecutamos con FXIL.EXE el
archivo con extension DCB obtenido de la compilacién previa.

Es decir, el compilador de Fénix deja el programa en un pseudo-codigo (jque no es codigo
magquina!) y luego el intérprete de Fénix (el exclusivo para esa plataforma concreta) ejecuta el programa.
Por eso Fénix es multiplataforma: existe un intérprete para cada maquina diferente.

Uno se podria preguntar, si lo que se pretende es ser multiplataforma, por qué es necesario el
compilador previo: se podria interpretar directamente los codigos fuentes y ya esta. Bueno, hay varias
razones para seguir la estructura existente. La primera es que al haber compilado el codigo previamente, la
entrada que recibe el intérprete estd mucho mas optimizada y le facilita mucho su trabajo, con lo que esto
redunda en la velocidad e integridad de la ejecucion de los juegos. Y otra razéon es que gracias al
compilador, si no te interesa ensefiar el codigo fuente por ahi —eso no es libre (!?)-, puedes repartir tu juego
simplemente ofreciendo el archivo .DCB, sabiendo que seguira siendo igual de portable.

A parte de FXC.EXE y FXIL.LEXE veras que hay mds archivos en el zip descargado. Hay varios
archivos DLL: SDL.DLL y SDL_ MIXER.DLL, que precisamente es la libreria SDL, libreria grafica sobre
la que se sustenta Fénix; (de hecho, Fénix se puede interpretar como un recubrimiento, una capa superior
de esta libreria, que encapsula, que oculta la dificultad intrinseca que tiene a la hora de programar con ella
en C); LIBPNG-3.DLL, necesaria para la manipulacion por parte de Fénix de imagenes en formato PNG;
OGG.DLL, VORBIS.DLL y VORBISFILE.DLL, necesarias para la manipulacion de sonidos en formato
OGG; y SMPEG.DLL, necesaria para la manipulacion de videos en formato MPG.

También hay (a parte de algin que otro archivo mas prescindible) dos ejecutables mas, a parte del
compilador y el intérprete, que son MAP.EXE y FPG.EXE. El primero sirve para manipular imagenes en
un formato propio de Fénix, (el MAP), pero no comentaremos nada mas de este ejecutable en este manual
porque no lo utilizaremos: nosotros utilizaremos siempre imagenes en formato PNG. El segundo ejecutable
si que lo utilizaremos alguna vez, y por eso su funcionamiento estd explicado mas adelante, cuando se
introduzca el concepto de contenedor FPG.

La version 0.93preview9 de Fénix:

Existe una version mas moderna, con menos errores y mas optimizada que la version oficial 0.92a.
Es la llamada version 0.93preview9. Esta version la podras conseguir en dos sitios: o bien te la podras
descargar desde la pagina principal de http://www.fenixdocs.com , o bien directamente de esta otra

49

http://www.fenixdocs.com/

direccion: http://fenixworld.se32.com/e107 plugins//depot/files/fw247.0.93preview9.zip En ambos casos,
lo que al final tendras descargados tan sélo son dos archivos: FXC.EXE y FXI.EXE, nada maés.

Lo que tendras que hacer con estos dos ejecutables es sustituirlos por los existentes en la version
0.92a, y ya estd. No te engafies: el resto de archivos (Dlls y demas) que vienen con el paquete Fénix
estandar y que son necesarios en la 0.92a, también son imprescindibles para la 0.93, pero como en ambas
versiones de Fénix todos estos archivos extra son exactamente iguales, podemos aprovechar los que ya
tenemos de la 0.92a. Es decir, que para poder utilizar la 0.93preview9 deberemos de haber descargado
previamente la 0.92a, porque sélo ésta bien completa con todos los archivos necesarios para funcionar. La
0.93preview9 no deja de ser un parche (como su nombre indica, “preview”) de tan sélo dos archivos
ejecutables (el compilador y el intérprete), y ya esta.

Es muy recomendable que “actualices” tu Fénix a esta version 0.93preview9, porque se soluciones
unos cuantos errores relativamente graves. No obstante, si te interesara utilizar esta version en Linux, no
esta disponible. Ni tampoco su codigo fuente.

Tu primer programa en Fénix:
(extraido del tutorial de EvilDragon y Josebita, en http://gp32x.de/Fénix)

Bueno, se acabo la teoria. Vamos a crear nuestro primer programa en Fénix de una vez. Abre
el Bloc de Notas o cualquier editor de texto que te guste y escribe el siguiente codigo (con las tabulaciones
tal como estan):

Program MiPrimerPrograma;

Private
int mivarl;
End
Begin
mivarl=10;
while(mivarl<320)
delete_text(0),
mivarl=mivarl+2;
write(0,mivarl, 100,1,"Hola mundo!");
frame;
end
end

Un detalle importante antes de continuar es saber que Fénix es lo que se llama un lenguaje “case-
insensitive”; es decir, que es igual que escribas todas las palabras del c6digo en mayusculas o minusculas,
o alternandolas si quieres (?): es lo mismo escribir “while” que “While” que “whlLe” que “wHilLe”....
Esto, que parece una tonteria, en algunos lenguajes como C o Java no es asi y hay que ir con cuidado con
ellos.Pero Fénix no tiene ese “problema”.

Bien. Guarda el texto que has escrito en un archivo con extension PRG en la misma carpeta de Fénix.

Ahora abre la linea de comandos de Windows. Si no te acuerdas como se hacia, ve al menu Inicio-
>Ejecutar y escribe “cmd.exe” (sin comillas). Veras que aparece la tipica ventana negra. Muévete a la
carpeta donde tienes Fénix (acuérdate del comando cd...). Esto es muy importante porque si no te mueves

50

http://fenixworld.se32.com/e107_plugins//depot/files/fw247.0.93preview9.zip

a dicha carpeta, seguramente tendras errores y no podras hacer nada. Una vez alli, pues, escribe
fxc <miprograma>.prg
donde <miprograma> sea el nombre de fichero para tu PRG (p.e. para compilar el programa de test de

Fénix utiliza fxc test.prg). Si todo va bien veras un listado del resultado de la compilacion, o un mensaje de
error si ha habido algun problema.

Ya has compilado, pero... ;donde esta tu juego? El compilador genera un fichero resultado con la
extension .DCB y el mismo nombre que el fichero PRG que ha compilado (p.e. test.prg genera test.dcb), en
la misma carpeta donde estaba el fichero prg. En nuestro caso, como el fichero prg estabe en la misma
carpeta de Fénix, pues el nuevo archivo dcb estara también alli.

Para ejecutar ahora tu programa debes hacerlo usando el interprete (FXI) de Fénix. Para ejecutar el
programa teclea en la linea de comandos lo siguiente:

fxi <miprograma>

Si todo va bien tu programa se estara ejecutando (p.e. teclea fxi test para ejecutar el test de Fénix).
Esta chulo lo que sale, ;jno?: has hecho que la frase “Hola mundo” se mueva con scroll de un lado a otro, y
con solo este codigo tan corto. Eso muestra un poco de la potencia de Fénix, ¢verdad?. Si no te funciono,
asegurate de haberlo escrito correctamente y haber elegido la ruta del Fénix correctamente.

No es imprescindible que grabes los archivos PRG en la misma carpeta de Fénix. Siempre podras hacer,
desde dicha carpeta, algo asi como: fxc x:\ruta\donde\esta\mi\prg\archivo.prg, donde x es la letra que
sea. Evidentemente, el DCB se te creara en la misma carpeta donde esta el PRG. Es mas, ni tan siquiera es
imprescindible moverse a la carpeta de Fénix para ejecutar FXC y FXI: podrias ejecutarlos en la linea de
comandos desde cualquier ruta donde estuvieras si tienes la precaucion de escribir ANTES de hacer nada la
siguiente linea:

PATH=%PATH%;x:\carpeta\de\Fénix

Esta linea es simplemente un comando de Windows que lo que hace es permitir que todos los
programas dentro de, en este caso, la carpeta de Fénix se puedan ejecutar desde cualquier sitio. Vamos, lo
que queriamos.

Existe otra manera alternativa de poder compilar y ejecutar tus programas sin tener que recurrir a la
consola de comandos, y sin tener que grabar los *.prg en una carpeta determinada. Basta con arrastrar con
el ratén el icono que representa el archivo prg que has escrito, desde donde lo hayas guardado, y soltarlo
sobre el icono que representa el fxc.exe (tendrds que tener una ventana abierta con el contenido de la
carpeta del Fénix visible). De esta manera, obtendras igualmente el archivo dcb. Y para ejecutar, tendras
que arrastrar el archivo dcb y soltarlo sobre el icono del fxi.exe.

A lo mejor, después de haber arrastrado y soltado el archivo prg sobre fxc.exe intentas buscar el archivo
dcb y no lo encuentras, y a cambio notas que se ha creado un archivo llamado "stdout.txt" . Esto indica que
algo has escrito mal en el codigo, porque el compilador no ha sido capaz de generar el deb. Si quieres saber
cual ha sido tu error, dentro de "stdout.txt" veras el mensaje de error correspondiente (por ejemplo, si se te
ha olvidado escribir un signo) , indicindote ademas en qué linea de tu codigo se ha detectado. Asi que, si te
ocurre esto, comprueba qué es lo que tienes que rectificar en tu codigo, hazlo y vuélvelo a intentar.

El archivo "stdout.txt" se generard igualmente también si no ha habido ningun error en la compilacion,
ademas del dcb. En este caso, la informacion que contiene es puramente técnica.

51

Si eres observador, también te dards cuenta que cuando arrastramos el archivo dcb y lo soltamos sobre
fxi.exe se generard otro archivo llamado "stderr.txt". La tarea de este archivo es, al igual que el anterior
"stdout.txt" mostraba errores de compilacion, es mostrar si ha habido algun error en la interpretacion. Si
ves que tu programa no se ejecuta como ti esperabas, puedes observar el contenido de este archivo. De
todas maneras, no lo busques mucho: si todo ha ido de forma correcta y no ha habido errores, este archivo
se autodestruye cuando se acaba la ejecucion del programa.

Respecto a las tabulaciones del texto, has de saber que no son en absoluto necesarias para que la
compilacion se produzca con éxito.Simplemente son una manera de escribir el codigo de forma ordenada,
clara y comoda para el programador, facilitindole mucho la faena de “leer” codigo ya escrito y mantener
una cierta estructura a la hora de escribirlo. Enseguida sabras lo que quiero decir.

Y tranquilo: pronto explicaré qué es lo que hace cada una de las lineas del programa, paso a paso:
este ejemplo simplemente era para que vieras como funciona la dinamica de editar, compilar e interpretar.

El IDE FlameBird2:

Ya es visto el proceso que se ha de seguir para escribir, compilar e interpretar nuestro programa. Y
estaras de acuerdo en que es bastante incomodo utilizar estas herramientas independientes por linea de
comandos.

Por eso, algunas personas han creado por su cuenta varios IDEs (“Integrated Developent
Environment”: recuerda que es basicamente un editor de cddigo con un montén de funciones utiles -
corregir codigos, compilar y ejecutar, y muchas funciones mas-), a falta de uno oficial. Est4 en proyecto de
desarrollar, ya lo he escrito antes, un entorno oficial multiplataforma hecho en Fénix mismo, pero de
momento no hay nada.

De entre los IDEs existentes, creo que el mas completo que puedes encontrar para Windows es el
FlameBird2. Puedes bajarlo de la web oficial: http://fbtwo.sourceforge.net O también de FénixWorld:
http://fenixworld.se32.com.,en el apartado de descargas.

Por cierto, FéenixWorld (no lo he dicho antes), es un portal donde los fans de Fénix escriben sus
impresiones sobre los diferentes juegos de Fénix, cuelgan sus proyectos y sus extensiones al lenguaje en
forma de dlls, intercambian opiniones y experiencias...bastante recomendable

Una vez descargado el FlameBird2 y descomprimido su contenido en una carpeta, no hay que
hacer nada mas. No hay que instalar nada. Dentro de la carpeta ya viene el ejecutable listo para abrir el
IDE. Y ya esté. Si quieres, puedes crearte un acceso directo desde el menu Inicio.

Al iniciar FlameBird2 te preguntara que tipo de archivos deberia asociar con ¢l para que al hacer
doble click en alguno de ellos se abriera el FlameBird2 automaticamente. Selecciona “.PRG”, de momento,
y “.FBP” también. Y también tienes que seleccionar donde dice “Abrir archivos .dcb con el intérprete de
Fénix”: esto es para poder interpretar el juego —y por lo tanto, ejecutarlo- desde dentro del propio entorno
FlameBird2, sin tener que salir fuera a probar el FXI.

Una vez iniciado por primera vez el FlameBird2, lo que hay que hacer primero es decirle
justamente en qué carpeta tienes instalado Fénix, para que el FlameBird2 sepa donde ir a buscar el
compilador y el intérprete cada vez que lo necesites, sin tener que hacerlo tu. Para eso tienes que ir al menu
“Editar”, y seleccionando “Preferencias”. Alli habra una pestana “Compilacion” donde se le puede decir la
ruta de la carpeta de Fénix.Si da error en este paso es que no pusiste bien la ruta de Fénix, corrigela. Y ya

52

http://fenixworld.se32.com/
http://fbtwo.sf.net/

tendras el FlameBird?2 listo para usar.

Veras que arriba tienes los iconos tipicos (Nuevo -codigo fuente, proyecto-, Abrir, Guardar,Copiar,
Pegar, Compilar y ejecutar, etc.)En medio tienes el espacio para programar. A la izquierda controlas todos
los ficheros que necesitara tu programa. A la derecha veras todas las variables,procesos e identificadores
que usa tu programa para que puedas tenerlo todo a mano.Abajo aparecen los textos de error al compilar, te
acostumbraras a ello con el uso.

Puedes probar de escribir, grabar el prg en una carpeta cualquiera y ejecutar el mismo programa de
antes. Veras que es mucho mas comodo porque lo tienes todo a mano.

Mediante FlameBird2 podras crear archivos individuales de codigo fuente, o bien proyectos, que
vienen a ser conjuntos de varios archivos de codigo fuente relacionados entre si (cuando un programa
empieza a ser complejo es conveniente dividir su codigo fuente en diferentes archivos). Si creas un nuevo
proyecto, veras que aparece un nuevo tipo de fichero aparte de los PRG y DCB: los ficheros FBP. Estos
archivos son los archivos de proyectos del FlameBird2 (si eliges este IDE), y son los que guardan toda la
informacion sobre las relaciones entre los distintos codigos fuente de un mismo proyecto y la configuracion
general del proyecto. Cuando hagas un proyecto, el archivo que tendras que seleccionar para abrir todo el
proyecto, con sus diferentes PRGs, en el FlameBird2 sera éste (acuérdate de que hace cuatro parrafos
hemos asociado esa extension al FlameBird2). En un proyecto se seguira generando un tinico DCB.

Otros programas importantes: “FPG Edit” v “FNT Edit”

Existen por ahi otro par de programas que, pese a no ser imprescindibles, son de una gran
ayuda porque facilitan un monton la faena del programador, son muy comodos y son muy utiles.

Se trata del “FPG Edit”, y del “FNT Edit”. Ahora no es el momento de explicar como funcionan ni
sus caracteristicas, lo haremos mas adelante. Baste con decir que el “FPG Edit” es una especie de gestor de
todas las imagenes que usaremos en nuestro juego —las clasifica, ordena,etc-, y el “FNT Edit” es un creador
de fuentes de letras especificas para nuestro juego. Ya hablaremos de ellos cuando toque, pero creo que es
importante sefialarlos aqui como programas que necesitaremos mas adelante.

Ambas herramientas las puedes bajar de aqui:
http://cdiv.sourceforge.net/html/down/down.htm. O también de FénixWorld:
http://fenixworld.se32.com/download.php?list. 10 . Instalalos, porque los usaremos mucho en este curso.

El Fénix Pack:

Es posible que estés pensando que es un rollo tener que ir descargandote tantas cosas -en
realidad no son tantas, pero bueno- desde tantos sitios diferentes: que si Fénix de un lugar, que si el
Flamebird de otro, que el FPGEdit y el FNTEdit de otro...Esto mismo es lo que pensaron los chicos del
grupo de desarrolladores Coldev, y lo que han hecho ha sido reunir en un Gnico paquete instalable todas
estas herramientas -y mas-, para disfrute y comodidad de los usuarios de Windows. Es lo que ellos llaman
el Fénix Pack, y se puede encontrar en http://fenixpack.blogspot.com.

Es decir, en vez de tener que instalar una a una las diferentes herramientas, aspecto un poco
pesado sobre todo para el principiante -y peor si no se conocen-, con el Fénix Pack v2.7 dispondremos de
un tnico fichero "Setup", el cual instalara (creando sus correspondientes accesos directos del ment Inicio
de Windows y también un desinstalador accesible desde el menu "Agregar/quitar programas " del panel de
control de Windows) los siguientes programas, todos ellos de una sola vez, como si fueran uno solo:

*Compilador e intérprete Fénix 0.92a
*IDE FlamebirdMX 0.53

53

http://fenixpack.blogspot.com/
http://fenixworld.se32.com/download.php?list.10
http://cdiv.sourceforge.net/html/down/down.htm

*FPGEdit 2005 0.5.440

*FNTEdit 2006 0.3.285

*Generador de sprites desarrollado por el propio grupo Coldev (http://coldev.blogspot.com)
con soporte para modelos en formato MD2, X, 3DS o B3D. El FenixPack también incorpora otro
generador de sprites llamado Charas.EX.

*Generador de explosiones Explogen (http://www.kengine.illusionfxnet.com)

*QGenerador de paquetes autoinstalables PakAtor de Xwolf (http://semitex.iespana.es/)

*Editores graficos Idraw3 y EA Graphics Editor (http://www.nba-live.com/eagraph)

*Multitud de codigos fuente de ejemplo, clasificados en tres niveles de dificultad (muchos de
los cuales se han utilizado en este manual como soporte para las explicaciones). El nivel avanzado de
ejemplos corresponde de hecho a juegos totalmente acabados y funcionales de todo tipo (lucha, carreras,
plataformas,rpgs...). Para mas informacion, consultar el ultimo capitulo, donde se detalla mas en
profundidad el contenido de estos ejemplos.

Sobre el uso de 1a avuda de Fénix:

Es completamente imprescindible que consultes y explores la/s ayuda/s online que ofrece/n
Fénix, aunque en verdad es éste uno de los aspectos donde este proyecto flaquea mas,, ya que no existe
todavia una ayuda oficial completa, ni completamente actualizada. El centro de informacién que pretende
llegar a ser eso, la referencia central completa y actualizada del lenguaje, ya lo hemos comentado, es
http:fenixwiki.se32.com (aunque esta en proceso de completado), y en inglés, http://www.fenixdocs.com.
Con el tiempo, aqui tendras toda la informacion necesaria para poder programar con plena seguridad: es la
referencia completa de los comandos de Fénix (como se utilizan, qué parametros tienen, ejemplos...).
Imprescindible.

Si te encontraras en el caso de buscar alguna informacion en esto dos sitios y no encontrarla
porque no esti todavia, puedes probar suerte y consultar http://jlceb.cir.es/fenix . Esta es la antigua
referencia del lenguaje, para las versiones 0.84/0.84b, que aunque incompleta también, contiene valiosa
informacion todavia.

De todas maneras, a dia de hoy, la mejor fuente de informacion sobre Fénix es, evidentemente,
el foro de Fénix: http://forum.divsite.net , integrado por una comunidad dispuesta en todo momento a
ayudar y a resolver las dudas que surjan respecto a este lenguaje.

Ten en cuenta que el presente manual sélo abarca los conceptos mas basicos de la
programacioén, y no repasa ni mucho menos —tampoco es su objetivo- toda la funcionalidad Fénix que
puede aportar.Para ampliar y profundizar en el conocimiento del lenguaje y de su entorno, la ayuda es,
pues, visita obligada.

Recursos web sobre Fénix:

A continuacion tienes una lista que reune algunas de las mas importantes direcciones de recursos web sobre
Fénix en espafiol existentes actualmente , para que la tengas como referencia a lo largo de todo el curso:

http://forum.divsite.net Foro Espafiol de Fénix donde la comunidad participa
activamente.Muy recomendable. La cantidad de informacién que se
reune en sus post es de un valor incalculable. La asiduidad de sus
miembros y la gran voluntad en aportar nuevas ideas y soluciones y
ayudar a los mas novatos lo convierten un lugar permanente de
intercambio.

http://fenixwiki.se32.com Referencias Online del lenguaje

54

http://fenixwiki.se32.com/
http://forum.divsite.net/
http://forum.divsite.net/
http://jlceb.cir.es/fenix
http://www.fenixdocs.com/
http://fenixwiki.se32.com/
http://www.nba-live.com/eagraph
http://semitex.iespana.es/
http://www.kengine.illusionfxnet.com/
http://coldev.blogspot.com/

http://jlceb.cir.es/fenix (desactualizada) En este wiki con el tiempo vendran explicadas todas las
especificaciones sobre cada una de las funciones del lenguaje Fénix
(qué parametros usan, qué devuelven, para qué sirven,etc), sobre
las diferentes variables (de qué tipo son, para qué sirven, qué
valores pueden tener), sobre las palabras claves del lenguaje
(construccion de bucles, condicionales, declaracion de variables,
creacion de procesos,etc), incluso codigos de ejemplo que muestran
el uso de las funciones.

Es una visita obligada para todo aquél que quiera programa en
Fénix. De hecho, recomiendo descargar su contenido en el disco
duro local para poderla tener mas a mano.

Para realizar la descarga de multiples paginas web de un mismo sitio podemos
recurrir a aplicaciones como WebCopier (http:/www.maximuxsoft.com)
-comercial- , o HTTrack (http://www.httrack.com) —libre-, o incluso Acrobat
(http://www.adobe.com), el cual convertira toda la referencia en un inico pdf muy
practico.

http://fenixworld.se32.com Portal Espafiol especializado en Fénix. Es el punto de reunion de
los desarrolladores en Fénix, donde se intercambian impresiones,
trucos y donde se cuelgan los proyectos acabados. En esta web hay
un apartado donde también se pueden descargar diferentes
herramientas que nos pueden ayudar a la hora de programar en
Fénix, como pueden ser “FPG Edit” y “FNT Edit”, las cuales
utilizaremos en este curso (y el IDE Flamebird2 también).

http://fbtwo.sourceforge.net Web oficial de FlameBird2, el IDE de Fénix que utilizaremos en
este curso, desde donde lo podremos descargar.

http://fenixpack.blogspot.com

http://www.fenixdocs.com Para la documentacion inglesa. También tiene una seccion de
tutoriales muy interesante, y sobre todo, la seccion de descargas,
donde estan disponibles multitud de librerias DLL que aportan
funcionalidad extra al lenguaje Fénix (la Lib3DmS8e.dll, la
LibDPlay.dll, la LibOdbec.dll, la LibRegistry.dll,la WPF.dllla
VTE.dll,la net.dll,etc) ademas de varios IDEs aparte del
FlameBird2, el FPGEdit, y el propio Fénix en sus versiones para
diferentes plataformas.

http://div.france.online.fr/ Portal de la comunidad francesa de DIV/Fénix. Con bastante
contenido en tutoriales y juegos. Existe un foro.

http://www.gp32spain.com/foros/for | Foro dedicado especificamente al desarrollo y utilizaciéon de Fénix
umdisplay.php?f=27 en la consola GP32.

Si te atreves a lidiar con el codigo fuente de Fénix, por ejemplo para compilar un binario de Fénix mas optimizado
para tu maquina particular, (ya advierto que se necesitan elevados conocimientos del lenguaje C) , ya sabes que te lo puedes
descargar desde la misma pagina desde donde te descargaste el binario para Windows. Pero si deseas estar a la ultima de los mas
recentisimos cambios que puedan haberse producido en el cddigo, tienes que consultar el repositorio CVS de Fénix. Me explico.

El codigo que hay en Sourceforge puede sufrir leves modificaciones y mejoras que no se reflejan publicamente hasta
que son suficientes para sacar una nueva "release" -version-, y todos esos pequeiiitos cambios se van acumulando en este llamado
repositorio CVS, hasta que se decide sacar una nueva version oficial. Por lo tanto, el codigo del CVS siempre sera una versiéon un
poquito mas moderna que la oficial de Sourceforge.

Para acceder a ¢l lo mas recomendable es utilizar algun cliente CVS. Windows no tiene ninguno por defecto, asi
que tendremos que recurrir algin cliente gratuito. Uno libre que no estd mal es el WinCVS (http://cvsgui.sourceforge.net o
http://www.wincvs.org). Una vez instalado, lo tinico que tendras que hacer para acceder al codigo fuente CVS de Fénix es ira al

55

http://www.wincvs.org/
http://cvsgui.sourceforge.net/
http://www.gp32spain.com/foros/forumdisplay.php?f=27
http://www.gp32spain.com/foros/forumdisplay.php?f=27
http://div.france.online.fr/
http://www.fenixdocs.com/
http://fenixpack.blogspot.com/
http://fbtwo.sourceforge.net/
http://fenixworld.se32.com/
http://www.adobe.com/
http://www.httrack.com/
http://www.maximuxsoft.com/
http://jlceb.cir.es/fenix

menu "Admin"->"Commandline" y escribir el siguiente comando:
cvs -z3 -d:pserver:anonymous@fenix.cvs.sourceforge.net:/cvsroot/fenix co -P Fenix

Veras que se empieza a descargar el codigo fuente de Fénix, a tu carpeta personal.

La distribucién de tus programas:

Todavia no hemos aprendido a programar ni un solo c6digo nosotros solos, pero hay un detalle
que es importante que sepas ya como va: el tema de pasar tus juegos a otras personas, y que les funcione en
su ordenador.Cuando ya hayas acabado de desarrollar tu juego, y en tu ordenador vaya perfectamente, ;qué
es lo que tienes que dar a otra persona para que lo pueda disfrutar en su ordenador?

Salta a la vista que lo primero imprescindible para que a otra persona le vaya el juego es darle
el fichero DCB y ADEMAS, el intérprete adecuado a su plataforma para que lo pueda ejecutar: FXI.LEXE.

Para ello, lo mas habitual es incluir estos ficheros necesarios (de momento ya tenemos dos, pero
ahora veremos que habrd mas), dentro de un paquete tipo Zip. De esta manera, el usuario del juego
recibiria un sélo archivo dentro del cual, una vez descomprimido, se encontrarian todos los archivos
necesarios para poder ejecutar el juego sin problemas.

Existen bastantes programas compresores-empaquetadores libres y gratuitos que permiten
trabajar con multitud de formatos de compresion, entre los cuales esta el formato casi omnipresente Zip,
pero también el formato RAR, el ACE,etc ademas de sus formatos propios. Programas de este tipo que
puedes utilizar podrian ser: 7-Zip (www.7-zip.org) o [ZARC (www.izarc.org).

El programa FXI.EXE, no obstante, necesita a su vez de otros archivos en su misma carpeta
para para poder funcionar, que son: SDL.DLL y SDL_MIXER.DLL (siempre necesarias) y LIBPNG-
3.DLL (necesaria si en tu juego usas imagenes PNG), OGG.DLL, VORBIS.DLL y VORBISFILE.DLL
(necesarias si en tu juego usar sonidos OGG) y SMPEG.DLL (necesaria si en tu juego usas videos
MPEG). Asi que ademas de incluir el fichero DCB y FXI.LEXE, en el paquete tipo Zip que contenga tu
juego distribuible deberas incluir también -en la misma carpeta que FXI.EXE- las DLL que se necesiten
(SDL.DLL, SDL. MIXER.DLL siempre, y las otras depende).

Dije anteriormente que Fénix es multiplataforma, pero si usas estos archivos, por ejemplo, en
Linux, el juego no respondera, y es porque el FXI no es compatible. El archivo DCB y los otros (los de
imagenes, video y sonido) si lo son, lo Ginico que tienes que conseguir son los ejecutables de la version
Linux (tendrias que compilar el codigo fuente descargable de Fénix para ello, tema que requiere ciertos
conocimientos elevados de programacion y del propio Linux) y sustituir el FXI.exe y las .DLL por las de la
version LINUX y listo; lo mismo vale para otros sistemas operativos

Si tu juego tiene imagenes —las tendra- ,es evidente que las tendrds que meter también dentro del
paquete que quieres distribuir; asi que tendras que incluir todos los archivos FPG que hayas utilizado,o
bien, si en tu codigo has cargado las imagenes individualmente —con load png por ejemplo, tendras que
incluir en el paquete una a una las imagenes PNG por separado (del tema imagenes ya hablaremos mas
adelante). Ademas, si incluyes sonidos, también tendras que meterlos dentro del paquete a distribuir,
incluyendo pues cada uno de los archivos WAV,0GG,MOD,PCM,XM... individuales. Lo mismo si has
utilizado videos, o cualquier otro tipo de archivo auxiliar.

Es importante que te acuerdes de poner (dentro del paquete a distribuir) todos los videos,sonidos e
imagenes en las direcciones relativas que usaste en la carga de éstos dentro del codigo fuente. Es decir, si
pusiste load fpg(“graficos.fpg”) tendras que guardar el archivo graficos.fpg en la misma carpeta que el

56

http://www.izarc.org/
http://www.7-zip.org/

DCB, pero si pusiste load_fpg(“imagenes/graficos.fpg”’) debes crear una carpeta dentro de la que tienes el
DCB llamada “imagenes” y meter en ella el archivo “graficos.fpg”. Esto lo entenderds mejor cuando
veamos el tema de la carga de imagenes —o video o sonido, es igual-.

Otro detalle muy importante es que en otros sistemas operativos no Windows no es lo mismo “Uno”
que “uno”, es decir, que distinguen entre mayusculas y minusculas, y es necesario que al escribir las
direcciones donde tienes los ficheros te asegures que escribes las mayusculas y minusculas de la misma
manera.

Ya tienes el paquete creado con todos los archivos necesarios en su interior. Lo importante del tema
ahora es que si entregas por ejemplo tu programa en un Zip que incluye tu DCB, mas los archivos de
imagenes/sonidos/videos, mas el FXI.EXE mas las DLL necesarias, el usuario final que lo inico que quiere
es jugar, no tendra ni idea de lo que tiene que hacer cuando reciba este conjunto de archivos.;Donde clica:
en el EXE? Le saldra un pantallazo negro...

El truco es el siguiente: renombras el archivo FXI.LEXE a <nombrearchivodcb>.EXE. Es decir, si
tienes inicialmente el archivo DCB que se llama “Pepito.dcb”, haces que el intérprete FXI.LEXE se llame
ahora “Pepito.exe”. Y ya esta. El jugador potencial hara clic en el unico exe que ve y ahora si, el juego se
ejecutara sin mas problema.

Incluso podrias cambiarle ademas la extension al archivo DCB y ponerle la extension DAT —queda
como mas profesional, ;no?- , y funcionara también. Puedes probarlo, si quieres, con nuestro primer
programa Fénix que hemos visto y un amigo con su ordenador.

Ya has visto que el icono del FXI.EXE es una especie de ave de fuego, y si renombramos el archivo
como nuestro nuevo juego, nuestro juego tendrda como icono ese mismo ave. Existe una manera (que yo
conozca) de cambiar este icono y poner el que nosotros queramos, pero de eso hablaremos en otro capitulo
posterior, cuando comentemos precisamente el uso de este tipo de imagenes.

Un aspecto curioso respecto el tema de la distribucion de nuestro juego es que disponemos de la
posibilidad de crear “stubs”. Y esto ;qué es? Pues generar a partir de nuestro archivo PRG, en vez de un
archivo DCB, un archivo EXE. Este archivo EXE incorporard en su interior el intérprete FXI.exe mas el
codigo DCB del juego. Es decir, que en vez de tener el intérprete por un lado y el cédigo compilado por el
otro, podremos tener las dos cosas juntas (el intérprete “con mochila”) en un ejecutable. Esto se hace en el
proceso de compilacion: usaremos nuestro compilador fxc.exe de forma normal, pero ahora haciendo uso
de un parametro concreto del fxc.exe, el -s, asi:

fxc -s fxi.exe nombreDelJuego.prg

Lo que hemos hecho aqui es indicar explicitamente que al archivo generado en la compilacion (lo
que hasta ahora habia sido un archivo DCB) se le va a "incluir dentro" un ejecutable, indicado justo
después del parametro -s, que en este caso (y siempre) sera el "fxi.exe". El resultado sera un ejecutable
llamado nombreDelJuego.EXE.

Pero todavia podemos ir mas alla: podemos incluir dentro de este archivo nombreDelJuego.EXE a
mas a mas todos los archivos que utilicemos en el juego (archivos de sonido, imagenes, videos, archivos
FPG,etc,etc), de tal manera que podamos distribuir nuestro juego en forma de un tnico archivo ejecutable,
sin nada mas. (Esta seria una manera posible de dificultar la apropiacion de parte de otras personas de los
archivos de recursos del juego -musicas, imagenes,etc-). Para lograr esto, tenemos que escribir:

fxc -a -s fxi.exe nombreDelJuego.prg

57

Fijate que simplemente hemos afiadido el parametro -a. Un detalle importante es que, para que esta
opcidn funcione, todos los recursos que se incrusten en el ejecutable han de estar dentro de carpetas cuyas
rutas relativas especificadas dentro del codigo fuente tienen que ser las mismas que respecto el directorio
donde esta ubicado el fxc.exe (es decir, se toma la carpeta donde esta fxc.exe como directorio base).
Cuidado con esto.

Con la opcion -a (y la -s también, obviamente) hay un tipo de archivos -sélo ése- que no se incluye
dentro del ejecutable: las librerias DLL. Esto es asi por la propia naturaleza de estas librerias. Asi que, si
utilizas la opcion -a (junto con la -s) lo que obtendras finalmente sera un ejecutable inico, pero necesitaras
incorporar ademas en el paquete Zip las DLL necesarias para que el juego se pueda ejecutar correctamente.

Finalmente, existe otra opcion interesante del compilador que es la opcién -f seguida del
nombre/ruta de un fichero, asi:

fxc -f graficos.fpg -s fxi.exe nombreDelJuego.prg
Esta opcion sirve para lo mismo que la opcion -a (es decir, para incluir ficheros dentro del
ejecutable resultante de la compilacion) pero so6lo para incluir un fichero concreto (el especificado despues

de -f). Es decir, en vez de incluir todos los ficheros de recursos, solo se incluye uno, el que se le diga.

El compilador de Fénix tiene mas opciones interesantes: puedes ver el listado completo si escribes
simplemente fxc y nada mas en la linea de comandos y consultas el texto escrito en el archivo "stdout.txt".

De todas maneras, supongo que estaras pensando que distribuir tu juego dentro de un simple
archivo Zip es demasiado "cutre". A ti te gustaria que tu juego se pueda distribuir en un Unico ejecutable
"Setup", y que la gente, al clicar en él, instalara el juego en su ordenador como cualquier otro programa:
con un asistente que copiara automaticamente todos los archivos a una ruta especificada por el usuario, que
fuera preguntando si se desea una entrada en el menu Inicio de Windows o si quiere crear un acceso directo
en el escritorio,etc...el procedimiento habitual en una instalacién de cualquier programa en Windows.

Para conseguir esto, necesitas utilizar algiin programa disefiado para esto: los generadores de
instalaciones. Aqui tienes una lista —incompleta y limitada- de algunos de estos programas que te pueden
ayudar, por si te los quieres mirar.

Nisis (http://nsis.sourceforge.net) Es libre.

Wix (http://sourceforge.net/projects/wix) Es libre

Inno Setup Compiler (http://www.jrsoftware.org) Es freeware (gratis pero no libre)
Setup Generator (http:/www.gentee.com/setupgen) Es freeware

AdminStudio (http://www.macrovision.com -dentro del apartado FLEXnet InstallShield-

Advanced Installer (http://www.advancedinstaller.com)

Createlnstall (http://www.createinstall.com)

InstallConstruct (http://www.mg-india.com)

Installer VISE (http://www.mindvision.com)

58

http://www.mindvision.com/
http://www.mg-india.com/
http://www.createinstall.com/
http://www.advancedinstaller.com/
http://www.macrovision.com/
http://www.gentee.com/setupgen
http://www.jrsoftware.org/
http://sourceforge.net/projects/wix
http://nsis.sourceforge.net/

Y de regalo, tu segundo programa en Fénix:

59

CAPITULO 2: EMPEZANDO A PROGRAMAR CON FENIX

Explicacion paso a paso de “Mi primer programa en Fénix”

2

Recordemos el codigo que utilizamos para ver ese scroll tan bonito de la frase “Hola mundo™:

Program MiPrimerPrograma;

Private
int mivarl;
End
Begin
mivarl=10;
while(mivarl<320)
delete_text(0),
mivarl=mivarl+2;
write(0,mivarl, 100,1,"Hola mundo!");
frame;
end
end

Vamos a ir viendo poco a poco el significado de las diferentes lineas de este cddigo, el cual
nos servird para introducir diferentes conceptos importantes sobre programacion en general y programacion
en Fenix en particular.

Palabra reservada “Program”:

Fijémosnos en la primera linea:
Program MiPrimerPrograma;

Esto es lo que se llama la cabecera del programa. Todos los programas deben comenzar con la
palabra reservada PROGRAM seguida del nombre del programa (cualquier nombre) y un simbolo ; (punto
y coma).

Por “palabra reservada” se entiende cualquier palabra o comando propio e intrinseco del
lenguaje Fenix,(es decir, es un nombre que estd reservado como palabra clave del lenguaje de
programacion) y que por tanto, se ha de escribir tal cual —aunque recordad que Fenix es “case-
insensitive”-, y no se puede utilizar para ninguna otra funcion que no sea la que Fenix tiene prevista para
ella.

Esta cabecera es obligatoria en todos los programas. Acordarse del punto y coma final.

Antes de la misma sélo puede aparecer, de forma opcional, uno o varios comentarios.

Comentarios:

Un comentario, por cierto, es simplemente una nota aclaratoria sobre el programa. Los comentarios
no son necesarios para el correcto funcionamiento del programa, aunque son muy utiles para entender su
funcionamiento. Sirven sobre todo para explicar dentro del codigo fuente partes de éste que puedan ser mas
o menos complejas. Hay dos tipos de comentarios:

60

-De una sola linea, comienzan con el simbolo // y terminan al final de la linea en que se definen.

-De varias lineas, comienzan con el simbolo /* y terminan con el simbolo */. También pueden
también comenzar y terminar en la misma linea.

Todos los textos incluidos en un comentario son ignorados por el compilador. Se pueden poner
tantos comentarios en un programa como sea necesario, y en cualquier punto del programa.

Por ejemplo, nuestro programa se podria haber escrito:

//Esto es un comentario de una linea.
Program MiPrimerPrograma;

/*Y este
comentario es
un comentario
de varias*/

Private
int mivarl;
End
Begin
mivarl=10;
while(mivarl<320)
delete_text(0),
mivarl=mivarl+2;
write(0,mivarl, 100,1,"Hola mundo!");
frame;
end
end

Bloque “Private/end”:

Los ordenadores tienen una memoria en la que pueden almacenar valores. Una “variable” es una
posicion concreta de la memoria del ordenador que contiene un valor determinado que es utilizado en un
programa. Ese valor puede ser un nimero entero, decimal, un caracter, una cadena de caracteres,etc. En su

nyn.

programa el desarrollador puede asignar a las variables un nombre, como por ejemplo "X"; y en ese

[{3 1)

programa “x” se utilizaria para referirse al valor que contiene.

Declarar una variable es “crear” esa variable; es decir: reservar un espacio de la memoria del
ordenador con un nombre, disponible para almacenar alli un valor determinado. Declarar una variable es
como dejar sitio en el cajon de la habitacion, y ponerle una etiqueta, para saber que ese lugar esta reservado
para colocar tus calcetines, por ejemplo.

En Fénix se delimita muy claramente la parte del programa que se encarga de declarar variables —al
principio-, de la parte que el cddigo a ejecutar propiamente dicho. Primero de declaran las variables que
pretendemos usar, y una vez hecho esto, se comienza el programa en si.

Fijarse también que esta vez las lineas PRIVATE y END no acaban en punto y coma.

Es muy importante saber que hay cuatro clases de variables (también llamadas “datos”)
claramente diferentes en Fénix segun sus prestaciones y objetivos -y excluyentes entre si- : las variables

61

privadas —la que acabamos de ver- , las variables publicas, las variables locales y las variables globales.
Cuando hable de procesos en el siguiente capitulo explicaré la diferencia entre estas clases y el porqué de
tal importante distincion.

Baste saber por ahora que para declarar una variable local, lo Unico que tendriamos que hacer es
reemplazar la palabra “private” por “local”; y para declarar una variable global, habria que reemplazarla
por “global”. Las variables publicas funcionan de una manera diferente y no se tendran en cuenta en este
manual hasta més adelante.

Asi pues, nada nos impide poder declarar variables de estos tres tipos (privadas,locales y globales)
diferenciados en un mismo programa, lo cual en general tendria finalmente el siguiente aspecto:

Program miprograma;
Global

//Declaracion de variables privadas
End

Local

//Declaracion de variables locales
End

Private

//Declaracion de variables globales
End

Begin
//Programa principal
End

De hecho, lo que acabo de escribir es una plantilla que siguen todos los programas en Fénix: la
sentencia “program” inicial, la seccion de declaraciones de las variables que son necesarias de los tres tipos
posibles (el orden es indiferente, y si no hay variables de un tipo determinado, evidentemente no hace falta
escribir su seccion de declaraciones correspondiente), y la seccion del codigo principal.

Linea: “int mivarl;”. Tipos de datos en Fénix:

Esta linea es la que propiamente declara una variable, que la llamamos “mivarl”, y ademas dice de
qué tipo es.

El nombre de la variable nos lo podemos inventar absolutamente (hay algunas excepciones exoticas:
no podemos darle un nombre que sea igual a algiin comando existente de Fénix por razones obvias —habria
confusion-; o que el nombre no puede empezar por un nimero; o que no puede incluir espacios en blanco —
logicamente, porque Fénix no sabria qué es la segunda palabra-,etc).

El tipo de la variable indica qué contenido es el que la variable estd preparada para contener.Fénix
necesita saber siempre qué tipo de valores puede o no albergar una variable determinada. No es lo mismo
que una variable sea declarada para poder guardar nimeros enteros que para guardar cadenas de caracteres.
Si declaramos una variable como entera, si quisiéramos asignarle un valor de cadena de caracteres daria un
error. Asi pues, siempre, cuando se declara la variable, hay que decirle que sera de un tipo determinado, y
que por tanto, los valores que incluird, sean los que sean, siempre seran de ese tipo determinado.
Dependiendo de lo que queramos hacer con esa variable, nos convendra crearla de un tipo o de otro, segiin
lo que tengamos previsto almacenar en ella.

62

Los tipos de variables disponibles en Fénix son:

BYTE Almacenan valores numéricos enteros que pueden valer entre 0 y 255.
Una variable de este tipo necesita 8 bits de memoria (sin signo y sin coma decimal) para almacenar
ese valor.

SHORT Almacenan valores numéricos enteros que pueden valer entre -32767 y +32768
Una variable de este tipo necesita 16 bits de memoria (con signo y sin coma decimal) para almacenar
ese valor.

WORD Almacenan valores numéricos enteros que pueden valer entre 0 y 65535.
Una variable de este tipo necesita 16 bits de memoria (sin signo y sin coma decimal) para almacenar
ese valor.

INT Almacenan valores numéricos enteros que pueden valer entre -2147483648 y +2147483647.
Una variable de este tipo necesita 32 bits de memoria (con signo y sin coma decimal) para almacenar
ese valor.

DWORD Almacenan valores numéricos enteros que pueden valer entre 0 y 4294967296. .
Una variable de este tipo necesita 32 bits de memoria (sin signo y sin coma decimal) para almacenar
ese valor.

FLOAT Almacenan valores numéricos decimales, de poca precision.
Estos ntimeros decimales son del tipo llamados "con coma flotante"; es decir: el numero de
decimales no es fijo porque puede variar en funcion de las operaciones matematicas que se
realicen con ellos.
A la hora de escribir un numero float , el simbolo utilizado para separar la parte entera de la
parte decimal es el punto: "."
Una variable de este tipo necesita 32 bits de memoria (con signo y con coma decimal) para almacenar
ese valor.

STRING Almacenan cadenas de texto (una serie de varios caracteres que también puede estar vacia),
de longitud variable -potencialmente ilimitada-, y que estaran comprendidas entre comillas
dobles o simples.

Una variable de este tipo necesitard mas o menos bits de memoria para almacenar un valor segun la
cantidad de caracteres que tenga esa cadena: mas corta la cadena, menos espacio necesitara.

CHAR Almacenan un un unico caracter (una letra, signo, espacio o caracter especial de control).
Es posible realizar operaciones numéricas con un caracter o asignar su valor a una variable
de tipo entero, con lo que se extrae el valor ASCII del carécter.
Una variable de este tipo necesita 8 bits de memoria para almacenar este valor; por lo tanto, hay 256

(2%) posibles caracteres diferentes reconocidos por Fénix, normalmente usando el juego de caracteres
ISO8859-1, similar al estandar de Windows.

POINTER | Hacen referencia a una direccion de memoria donde estd alojada una variable, NO al valor
contenido en ella. No lo veremos en este curso.

También podriamos crear nosotros, como programadores que somos, nuestros propios tipos de datos,
con el bloque TYPE/END, pero este tema lo abordaremos mas adelante.

Llama la atencion que haya tantos tipos de datos diferentes para almacenar numeros enteros. Esto es
porque si sabemos que los valores de una variable nunca van a ser mayores que 255 por ejemplo, seria una
tonteria declarar una variable de tipo INT porque se estaria desperdiciando gran cantidad de memoria del
ordenador para nada. Es como si tuviéramos un gran cajon del cual s6lo utilizamos una pequefia parte.
Debemos ajustar el tipo de las variables a los valores que preveemos que van a contener para ajustar
recursos y no despilfarrar memoria con variables que la requieren pero que luego no se aprovecha.

Otra cosa importante: los tipos de dato enteros tienen un rango limitador: cuando sumas o restas una

63

cantidad que provoca que el numero salga fuera del rango que admiten, los bits mas significativos del
nuevo numero se pierden. En otras palabras menos técnicas: se provoca que el nimero "dé la vuelta": si a
una variable WORD que contiene 65535 le sumas 1, el valor resultante es 0 en lugar de 65536, ya que
65536 queda fuera del rango admitido por los tipos WORD.

Todos los datos de tipo entero vistos en el apartado anterior permiten especificar como prefijo
SIGNED o UNSIGNED para obtener versiones de los mismos con o sin signo. Esto equivale a usar un
tipo de dato entero del mismo numero de bits pero con la salvedad del signo. Por ejemplo, UNSIGNED
INT equivale exactamente a DWORD. La tnica variante de este tipo que no tiene una palabra clave como
alias es SIGNED BYTE, un entero de 8 bits que puede contener un nimero entre -128 y 127.

Es posible que alguna vez os encontréis con algin cddigo donde declaren las variables sin
especificar su tipo. Es una practica que yo no recomiendo, pero basta saber que Fenix asume por defecto
que esa variable es tipo INT.

Vemos claramente pues, volviendo a nuestro ejemplo, que la variable “mivarl” es de tipo INT.
Para definir el tipo de una variable cuando se declara, pues, es siempre

tipo nombre;

Opcionalmente, a la vez que escribimos esta linea donde declaramos la variable y definimos su
tipo, podriamos también a la vez rellenar de valor la variable, lo que se dice inicializar la variable —darle su
valor inicial-. Si la declaramos y ya esta, automaticamente su valor queda establecido por Fénix a 0 (cero).
Para hacer esto, simplemente es de la forma

tipo nombre= valor;
En el ejemplo no lo hemos hecho asi, pero perfectamente podriamos haber escrito
int mivarl1=10;
y habernos ahorrado la linea posterior mivari=10; (escribiendo pues en una sola linea la declaracion y la

inicializacion de la variable), ya que de hecho lo tnico que hace esa linea precisamente es darle un valor a
“mivarl” (ahora lo veremos).

Fijarse que ahora volvemos a acabar la linea con punto y coma.

64

Bloque “Begin/end”:

El codigo principal de un programa —donde estan los comandos que va a ir ejecutando- siempre
comienza con la palabra reservada BEGIN (“empezar”), tras la cual puede aparecer cualquier nimero de
sentencias(=6rdenes—=comandos,etc), y siempre finaliza con la palabra reservada END (“acabar”). (En
nuestro codigo hay dos “ends”: el del begin es el Gltimo de todos).

Es decir, que de hecho, el minimo programa que podriamos escribir en Fénix (que no use variables)
y que funcionaria seria algo asi como

Program MinimoPrograma;
Begin
End

Por supuesto, si lo ejecutaras, no pasaria nada, como mucho la pantalla se pondria negra un momento
y puede que saliera otra diciendo que el programa ha finalizado, y es que realmente no hemos hecho nada.

Fijarse que esta vez las lineas BEGIN y END no acaban en punto y coma.

Linea “mivar1=10;":

Un programa puede poner en cualquier momento de su ejecucion un valor concreto en una
variable.

Para poner el valor numérico 123 en la variable “x” por ejemplo, el programa utilizard una
sentencia (orden) como la siguiente, (si la variable no la hemos declarado previamente como de tipo entero,
puede que dé error):

x =123;

Los programas pueden también consultar el valor de las variables, o utilizarlos en diferentes
expresiones; por ejemplo, para poner en una variable entera llamada "y" el valor de "x" mas 10, se utilizaria
una sentencia como la siguiente:

y=x+10;
Antes de que el ordenador ejecutara esta sentencia, “y” podria tener cualquier valor pero, después

de ejecutarla, la variable contendria exactamente el resultado de sumarle 10 al valor numérico que tuviera
la variable "x" en ese momento.

Queda claro despué¢s de todo lo dicho, que la tercera linea de nuestro programa lo que hace es
asignarle a una variable “mivarl” creada por nosotros el valor de 10. Con ese valor almacenado en
memoria con el nombre de “mivarl” y que le hemos dado el valor 10 se supone que en lineas siguientes
haremos algo.

Fijarse que ahora volvemos a acabar la linea con punto y coma.

Por cierto, digo ya que las operaciones que podemos realizar con valores numéricos son la suma
(+), la resta (-), la multiplicacion (*), la division (/) y el modulo (%), que es en realidad el resto de una
division —es decir, que 12%S5 seria 2, 27%4 seria 3, 3%2 seria 1,etc-.

Un detalle muy importante que hay que tener en lo que respecta a estas operaciones aritméticas

65

basicas es que el tipo de datos del resultado (int,word,byte.float...) vendra dado por el tipo de datos de los
operandos. Es decir, que una suma de dos nimeros Int dara un Int, la multiplicacion de dos nimeros Float
dara un Float, etc.

Esto es especialmente delicado cuando estamos realizando estas operaciones (division,
multiplicacidn,etc) entre numeros decimales y sin darnos cuenta asignamos el resultado a una variable de
tipo entera. Lo que ocurrird es que el resultado se trunca sin redondear, por lo que si éste era por ejemplo
32.94, se convertira en un 32; si era un 86.351 sera un 86.

Cuando un operando es de un tipo (por ejemplo, byte) y el otro operando es de otro tipo (por
ejemplo, int), el tipo del resultado sera siempre igual a aquél tipo de los dos que esté por encima en la
jerarquia siguiente: float>dword>int>word>short>byte.

Bloque “While/End”:

La sentencia WHILE (“mientras”) es una sentencia que implementa un bucle, es decir, que es capaz
de repetir un grupo de sentencias un nimero determinado de veces. Para implementar este bucle se debe
especificar entre paréntesis la condicion que se debe cumplir para que se ejecute el grupo de sentencias a
continuacion de la palabra reservada WHILE. Tras especificar esta condicion, se pondran todas las
sentencias que se necesita que se repitan y, finalmente, se marcara el final del bucle con la palabra
reservada END (no importa que dentro del bucle aparezcan mas palabras END si éstas forman parte de
sentencias interiores a dicho bucle).En nuestro ejemplo, el END correspondiente al While seria el segundo
empezando por el final.

Asi que la estructura genérica seria:
While (condicion)
End

Cuando se ejecute la sentencia WHILE se realizard la comprobacion que se especifica y, si ésta
resulta cierta, se ejecutaran las sentencias interiores; en caso contrario, se continuara el programa a partir
del END que marca el final del WHILE.

Si se han ejecutado las sentencias interiores (lo que se denomina realizar una iteracion del bucle),
se volverd a comprobar la condicion y, si ésta vuelve a ser cierta, se realizard otra iteracion (se volveran a
ejecutar las sentencias interiores). Se denomina iteracion a cada ejecucion del grupo de sentencias
interiores de un bucle. Este proceso continuara hasta que, al comprobarse la condicion del WHILE, ésta
resulte falsa.

Si se llega por primera vez a una sentencia WHILE la condicion resulta falsa directamente,
entonces no se ejecutaran las sentencias interiores ninguna vez.

Las sentencias interiores a un bucle WHILE pueden ser tantas como se quieran y de cualquier tipo,
incluyendo, por supuesto, nuevos bucles WHILE

En nuestro ejemplo concreto, tenemos el bucle:

while(mivarl<320)
delete_text(0),
mivarl=mivarl+2;
write(0,mivari, 100,1,"Hola mundo!");
frame;

66

end

Podemos comprobar que hay una condicion —que “mivarl” sea menor que 320-, que es la que
dira si hay que ejecutar o no (y si es que si, hasta cuando) las siguientes cuatro lineas. Justo en la linea de
antes hemos visto que dabamos el valor de 10 a dicha variable. Pues bien, la condiciéon del while no hace
mas que comprobar si el valor de esa variable “mivarl” es menor que 320. Como nada mas llegar al while
eso es verdad (10<320), se pasa a ejecutar una a una las sentencias incluidas dentro del bucle, hasta llegar
al end. Cuando la ejecucion del programa llega al end, se vuelve otra vez a la linea del while y se vuelve a
comprobar la condicion a ver si contintia siendo verdadera. Si “mivarl” contintia siendo menor que 320, se
vuelve a ejecutar el interior del bucle, y asi, y asi hasta que llegue un momento que a la hora de efectuar la
comparacion otra vez, “mivarl” ya no valga menos que 320. En ese caso, el programa salta todas las lineas
internas del bucle y continta su ejecucion justo después del end del while. Se supone que en algiin
momento durante la ejecucion de las sentencias del interior del bucle, el valor de “mivarl” cambiara,
porque si no cambiara, “mivarl” siempre valdria 10 y la condicion siempre seria verdadera, por lo que
siempre se ejecutarian las sentencias del interior del bucle y eso daria lugar a un bucle infinito: el programa
no se acabaria nunca.

Fijarse que en nuestro programa cuando la condiciéon sea falsa y el programa vaya a la
siguiente linea después del end del while, se encontrara con que ya no hay nada mas: (el end del programa);
con lo que la ejecucion del programa se acabara cuando la condicion del while sea falsa.

Fijarse también que esta vez las lineas WHILE y END no acaban en punto y coma.

Orden “Delete_text”:

La primera linea que nos encontramos dentro del bucle del while es el primer comando
propiamente dicho que “hace algo”. Este comando se encarga, como su nombre indica, de borrar de la
pantalla todos los textos que haya en ese momento. jPero si de momento no hay ningtn texto que borrar:
solo le hemos dado un valor a una variable!, dirds. Es verdad, pero el texto. escribiremos mas adelante.
Pero entonces, diras otra vez: ;por qué no escribimos el texto, y luego, si hay que borrarlo, se borra?;Por
qué lo que se hace es borrar primero la pantalla cuando no hay nada y luego escribir en ella? Bueno, tiempo
al tiempo, pronto lo explicamos...

Es importante, ya que nos hemos topado con el primer “comando” de Fenix, aclarar el concepto de
parametro. Veras que cuando vayan apareciendo mas y mdas comandos, TODOS llevaran al final de su
nombre un par de paréntesis —()- y el consabido punto y coma. Dentro del paréntesis puede o no haber
nada, o haber un numero/letra/palabra/signo... (como en el caso de delete text , o haber dos
numeros/letras/palabras/signos... separados por comas, o haber tres numeros/letras/palabras/signos...
separados por comas, o haber cuatro,etc. Cada uno de los valores que aparecen dentro de los paréntesis se
denominan parametros de ese comando, y el niimero de ellos y su tipo (si son numeros, letras, palabras,etc)
depende de cada comando en particular. ;Y para qué sirven los parametros? Para modificar el
comportamiento del comando en algtn aspecto.

Me explico: los comandos que no tienen parametros son los mas faciles, porque hacen una cosa, su
tarea encomendada, y punto. No hay posibilidad de modificacion: siempre hardn lo mismo de la misma
manera. Cuando un comando tiene uno o mas parametros, también hara su funciéon preestablecida, pero el
como la hara viene dado por el valor de cada uno de los parametros que tenga, los cuales modificaran
alguna caracteristica concreta de esa accion a realizar.

Por ejemplo: supongamos que tenemos un comando, el comando “lalala” que tiene —que “recibe”,
técnicamente dicho- un parametro. Si el pardmetro vale 0 lo que hard el comando serd imprimir por
pantalla “Hola, amigo”; si el parametro vale 1 lo que hara el comando serd imprimir por pantalla “;Qué tal

67

estds?” y si el parametro vale 2 imprimira “Muy bien”,etc. Evidentemente, en las tres posibilidades el
comando “lalala” hace esencialmente lo mismo: imprimir por pantalla (para eso es un comando, sino
podriamos estar hablando de tres comandos diferentes), pero dependiendo del valor de su unico parametro
—numérico, por cierto: no valdria en este caso dar otro tipo de valor (como una letra) porque si no
seguramente daria error- su accidon de imprimir por pantalla un mensaje es modificada en cierta manera.
Asi,

Lalala(0); O Imprime “Hola amigo”
Lalala(1); [Imprime “;Qué tal estas?”
Lalala(2); [0 Imprime “Muy bien”

Para entendernos: los comandos serian como los verbos, que hacen cosas, que ejecutan ordenes, y
los parametros serian como los adverbios, que dicen como se han de hacer estas cosas, de qué manera se
ejecutan esas ordenes (mas lento, mas suave, en la esquina superior o inferior de la pantalla,etc).

Dicho esto, vemos claramente que delete text recibe un inico parametro que ha de ser numérico. Y
;qué significa en concreto que ese parametro valga 0? Pues significa lo que hemos dicho ya: que
delete text se dedicard a borrar TODOS los textos que aparezcan por pantalla. Poniendo otros valores
como parametros —ya lo veremos-, se podria especificar mas y decirle a delete text que borrara tal o cual
texto concreto.

Por cierto, poner como valor del parametro de delete text la palabra "all text" (sin comillas) es
equivalente a poner el nimero 0.

Linea “mivarl=mivarl+2:;”:

He aqui una linea que puede sorprender a quien no haya programado nunca: una “igualdad” que
no es igual...;Como es eso? Pues porque esto no es una igualdad: es una asignacion. El valor de mivarl+2
se le asigna como nuevo valor a mivarl. Las asignaciones siempre hay que leerlas de derecha a izquierda.

Hemos comentado que las variables son trocitos de memoria del ordenador con un nombre donde
se guardan valores usados por el programa.Pues bien, lo que hace esta linea es coger el valor que tiene
mivarl, sumarle dos, y el resultado guardarlo en mivarl otra vez (con lo que perderiamos su antiguo valor).
Es como abrir un cajon —la variable- y coger su contenido, sumarle dos, y posteriormente poner ese nuevo
contenido sumado en el mismo cajon de antes (podria haber sido otro cajon, también).

De hecho, en Fenix, cuando queramos especificar que algo ES IGUAL a algo, no usaremos el
signo = -signo de “asignacion” -, sino que se usara el signo == (dos iguales) —signo de “igualdad”. Cuidado
porque son signos diferentes con significado diferentes y pueden dar muchos problemas para el que se
despista. Un ejemplo de utilizacion del signo == seria por ejemplo en un while:

While (mivarl == 30)
End

En este ejemplo, lo que se estaria comprobando es si mivar ES IGUAL a 30, y mientras eso
sea verdad, realizar el bucle. Hubiera sido un gran error haber puesto

While (mivarl = 30)

End

68

ya que la condicion del while en este caso SIEMPRE seria verdad, porque lo que estaria pasando es que se
le asignaria el valor 30 a la variable mivarl (y eso siempre es verdad), y por lo tanto, nunca se incumpliria
una condicion que de hecho no es tal.

Y para acabar, normalmente, en vez de hablar de signos, en la jerga técnica hablaremos de
operadores (son sindnimos).

Por cierto, seguramente cuando empieces a leer codigos de otros desarrolladores te percataras de
que utilizan operadores un tanto peculiares. Estos operadores son del tipo ++,--,+=,-=*=,/=, etc.No son
imprescindibles, porque lo que hacen se puede hacer con los operadores de toda la vida (+,-,*,/,etc) pero se
utilizan mucho. En este manual no los utilizaremos por razones pedagdgicas: para asi facilitar atin mas la
comprension de los codigos fuente a aquellos que se inician en el mundo de la programacion; sin embargo,
es probable que cuando cojas un poco mas de soltura empieces a usarlos porque facilitan mucho la
escritura (y lectura) del codigo y para el programador son muy comodos de utilizar.

Pero, ;qué es lo que hacen? A continuacion presento una tabla de “equivalencias” —incompleta-
entre el uso de algunos de los operadores “raros” de los que estamos comentando y su correspondencia con

el uso de los operadores “normales” equivalente.

Asi pues, las expresiones:

at++ Equivale a a=a+1 .(Al operador “++” se le llama
operador “incremento”)

a-- Equivale a a=a-1 (Al operador “— se le llama
operador “decremento”)

at+=3 Equivale a a=at3

a-=3 Equivale a a=a-3

a*=3 Equivale a a=a*3

a/=3 Equivale a a=a/3

Orden “Write”:

Podéis observar que este nuevo comando tiene bastantes parametros. Su tarea principal es, como
su nombre indica, escribir un texto determinado en pantalla. Pero,;qué texto? ;En qué sitio de la
pantalla?...eso lo dirdn el valor de sus parametros.

No obstante, antes de saber como funcionan dichos pardmetros, es necesario aprender algo: el origen de
coordenadas en Fenix esta en la esquina superior izquierda de la ventana donde se visualiza el videojuego
(y si el videojuego se ve a pantalla completa, pues sera la esquina superior izquierda de la pantalla).Ese
punto es el punto (0,0).Podréis comprobarlo facilmente si ponéis esas coordenadas en write junto con una
alineacion que conozcais. A partir del punto (0,0), si nos movemos para la derecha estaremos
incrementando la coordenada X, y si nos movemos para abajo estaremos incrementando la coordenada Y.
Un esquema seria:

(0,0): extremo superior izquierdo de la ventana madre
----- [J Coord. X

69

Coord. Y

Ahora si, el significado de los parametros de la orden "write" son:

-1r parametro (de tipo entero): Indica un coédigo correspondiente a la fuente de
letra que se va a utilizar para el texto.Si no queremos usar ninguna fuente concreta, la fuente
predeterminada del sistema se representa por el codigo 0.

-2° parametro (de tipo entero): coordenada horizontal del texto en pixeles

-3r parametro (de tipo entero): coordenada vertical del texto en pixeles

-4° parametro (de tipo entero): codigo correspondiente al tipo de alineacion.
Indica como se han de interpretar las coordenadas del 2° y 3r parametro. Por ejemplo, si este 4° parametro
vale 0, la coordenada escrita en el 2° y 3r pardmetro corresponderd al extremo superior izquierdo del texto;
si este 4° parametro vale 1, la coordenada correspondera al punto centrado horizontalmente en el texto de
su limite superior; si este 4° parametro vale 2, la coordenada corresponderé al extremo superior derecho;si
vale 3, correspondera al punto centrado verticalmente del extremo izquierdo; si vale 4, el texto estara
centrado horizontalmente y verticalmente alrededor de ese punto; si vale 5, correspondera al punto
centrado verticalmente del extremo derecho; si vale 6, la coordenada correspondera al extremo inferior
izquierdo, si vale 7 el punto estard centrado horizontalmente en el extremo inferior; y si finalmente vale 8,
la coordenada corresponderd al extremo inferior derecho. Lo mdas rdpido es jugar con la funcion
cambiando el valor de este parametro y ver los resultados.

De forma alternativa, en vez de asignar a este parametro el valor numérico directamente, se
pueden utilizar palabras concretas que significan lo mismo y son mas entendibles a primera vista. Su tabla
de equivalencias es la siguiente:

Valor real del 4° parametro Cadena posible a utilizar como alternativa
0 ALIGN _TOP LEFT
ALIGN_TOP
ALIGN_TOP RIGHT
ALIGN_CENTER LEFT
ALIGN_CENTER
ALIGN_CENTER _RIGHT
ALIGN BOTTOM_LEFT
ALIGN_BOTTOM
ALIGN BOTTOM_RIGHT

0NN R WD

-5° parametro (de tipo cadena de caracteres —string-): el texto a escribir (entre
comillas).

Queda claro pues que la linea write(0,mivari, 100,1,"Hola mundo!"); lo que hace, primero de todo, es
escribir el texto “jHola mundo!” —vaya descubrimiento!-, con la fuente predeterminada del sistema (todavia
no sabemos manejar con Fénix los diferentes tipos de fuente disponibles), y con la alineacioén de tipo 1, que
quiere decir que la coordenada horizontal especificada en wrife estara en el centro del texto y la coordenada
vertical sera el “techo” justo debajo del cual se escribira el mensaje.

La coordenada vertical es facil de ver: vale 100 pixeles. Si valiera mas veriamos como el texto
aparece mas abajo en la ventana, y si vale menos, pues saldria mas arriba; con lo dicho tendrias que deducir
como saldria el texto con el tercer parametro igual a 0.

Pero la coordenada horizontal es un poco mas dificil: vale mivarl. Y claro, mivarl vale un

70

numero, ya lo sabemos, pero ;cual?

Déjame que acabe de explicar la ultima orden, y te explico como podemos averiguar el valor del 2°
parametro del write.(De hecho, ya deberias de ser capaz de adivinarlo con lo explicado).

Orden “Frame”:

Este comando es muy especial y FUNDAMENTAL: en TODOS los programas Fénix aparece, y
fijate que es de los pocos que no llevan paréntesis alguno.

Antes de nada, prueba de ejecutar el mismo programa sin esta 6rden (borrala del codigo fuente, o
mejor, coméntala detras de las //: asi el compilador no la leera pero bastard retirar otra vez las // para
tenerla otra vez disponible). Veras que el programa no parece ejecutarse: no pasa nada. Vaya.

Imaginate que el comando Frame es como si fuera una puerta, un agujero o algo parecido que
permite visualizar por pantalla todo lo que el programa ha estado ejecutando hasta el momento durante un
instante minusculo. Si no hay Frame, por mucho que el programa haga, no se vera nada porque esa puerta,
ese agujero estara cerrado. Cada vez que se lea el comando Frame, jzas!, se abre la puerta, se visualiza todo
lo que en todas las lineas anteriores (desde el Frame anterior) ha estado haciendo el programa y se vuelve a
cerrar la puerta, asi hasta el siguiente Frame.

De esta manera, un programa Fénix se basa en trozos de codigo que se van ejecutando pero que
realmente no se ven sus resultados en pantalla hasta que llega un Frame. A partir de él, si hay mas lineas de
codigo se vuelven a ejecutar, pero sin llegar a visualizarse hasta que no se encuentre con el siguiente
Frame. Y asi.

Es por eso, y esto es muy importante que lo recuerdes, TODOS los programas en Fenix contienen
un bucle principal donde en su interior aparece un Frame al final. Lo que hay en el bucle es el programa
propiamente dicho que se va ejecutando hasta que se llega al Frame, que visualiza el resultado, y luego se
va a la siguiente iteracion, donde el programa vuelve a ejecutarse y se vuelve a llegar al Frame, que vuelve
a visualizar los resultados —que seran diferentes de la primera vez dependiendo del valor que vayan
cogiendo las distintas variables, etc-, y se vuelve a ir a la siguiente iteracion, y asi, y asi se consigue un
programa cuya ejecucion sera visible durante un tiempo: el tiempo que se tarde en salir de ese bucle
principal (bien porque es un bucle finito por una condicién —como el while del ejemplo-, o bien porque se
sale forzadamente de un bucle infinito).

Esta es una explicacion mas o menos de estar por casa: posteriormente volveremos a explicar mas
profundamente el sentido de este comando (cuando hablemos de los procesos), pero por ahora esto es lo
que debes entender.

De hecho, si has entendido bien el funcionamiento de Frame, podras entonces contestar por qué

hemos puesto primero delete_text cuando no habia ningun texto que borrar y luego hemos puesto el write.
Acabo de decir que el Frame se encarga de poner en pantalla el resultado de todas las operaciones que ha
venido efectuando el programa hasta ese momento (lo que se dice el “estado” del programa).
Si ponemos el write primero, y luego el delete_text, primero escribiremos algo y luego lo borraremos, con
lo que cuando se llegue al Frame en ese momento no habrd ningtn texto que visualizar en pantalla y se
vera una pantalla negra y ya estd. Pruébalo.Podras comprender pues la importancia de saber colocar en el
lugar apropiado de tu cédigo el Frame: sera ese lugar donde estés seguro de que quieres mostrar el estado
de tu programa; generalmente el Frame es la tltima linea del bucle principal del programa.

71

Funcionamiento global del programa:

Ahora que hemos acabado de explicar las lineas una a una, podriamos ver cual es el funcionamiento global
del programa, ¢no? Primero se le da el valor de 10 a mivarl. Luego se entra en lo que es el bucle principal
—ineludible en Fenix- del programa. Es un while que se ejecutara siempre que mivarl sea menor que 320.
Evidentemente, cuando se llega aqui por primera vez esto es cierto porque acabamos de darle el valor de 10
a mivarl; por lo tanto, entramos en el bucle. Borramos todos los textos que hubiera en pantalla,
aumentamos el valor de mivarl en 2 —con lo que en esta primera iteracion ahora mivarl vale 12- y
escribimos un texto en unas coordenadas por (mivarl,100), que en esta primera iteracion seran (12,100).
Finalmente llegamos a Frame, que lo que hara es imprimir en pantalla el resultado de nuestro programa,
que no deja de ser poner un texto en las coordenadas (12,100).Segunda iteracion: borramos todos los textos
que hubiera en pantalla aumentamos mivarl en 2 —ahora valdrd 14-, y escribimos el mismo texto en —
ahora- (14,100), con lo que al llegar al Frame, ahora en la segunda iteracion el texto aparece un poco mas a
la derecha que la primera vez. Tercera iteracion: mismo proceso pero ahora se escribe el texto en las
coordenaas (16,100).Y asi. ;Y asi hasta cuando? Pues hasta que mivarl, que define la coordenada
horizontal del texto, valga 320.

LY por qué es 320? Fijate que da la casualidad que “mivarl” vale 320 justo cuando el texto (o
mejor dicho, segun el 4° pardmetro del write, el punto horizontal central del texto) ha llegado al otro
extremo de la ventana. Por tanto, podemos concluir que el extremo derecho de la ventana esta en x=320.
De hecho, date cuenta que nosotros en ningiin momento hemos establecido el tamafio de la ventana de
nuestro juego; esto se puede hacer, pero si no se hace, por defecto Fénix crea una ventana de anchura 320
pixels y de altura 240 pixels, por lo que sabremos siempre que la coordenada horizontal de los puntos del
extremo derecho de la ventana valdra 320.;Qué pasaria si en el while, en vez de poner 320 ponemos por
ejemplo 32007 Pues que el texto se moveria igual hasta llegar al extremo derecho de la ventana (x=320),
pero como el bucle del while todavia no habria acabado, aunque el texto habria desaparecido por la derecha
y ya no seria visible, el programa continuaria ejecutindose —nosotros veriamos so6lo una ventana negra-
hasta que por fin, después de un rato, “mivarl” llegara a valer 3200, momento en el que el programa
acabaria. ;Y si hiciéramos al revés, en vez de poner en el while 320 ponemos 32? Pues ocurriria lo
contrario: el programa acabaria antes de que el texto pudiera llegar al extremo derecho, de hecho acabaria
enseguida porque el texto pronto llega a esa coordenada.

También nos podemos preguntar otras cosas. ;Qué pasaria si, en el programa original, asigndramos un
valor inicial de 100 a “mivarl”? Pues, evidentemente, que al iniciar el programa el texto ya apareceria en la
ventana en una posicion mas centrada horizontalmente, y tendria menos recorrido para llegar hasta la
coordenada x=320, con lo que el programa también duraria menos. Y si inicializaramos “mivarl” a 1000?
Pues que no veriamos nada de nada porque nada mas empezar la condicion del while resulta falsa, y como
tal, el while es saltado y se acaba el programa. También podemos probar de inicializar “mivarl” a 1000 y
ademas cambiar la condicion del while para que “mivarl”<3200. Es este caso, el programa se ejecutaria un
rato, hasta que “mivarl” llegara a valer 3200, pero no veriamos nada, porque el valor inicial de “mivarl”
ya de entrada es muy superior a la coordenada derecha de la ventana del juego, y por tanto, el texto estara
fuera de la region visible.

Otro efecto curioso es el de cambiar el incremento en el valor de la variable “mivarl”. Asi, en vez
de hacer mivarl=mivarl+2; podriamos haber escrito mivarl=mivarl+10;, por ejemplo.En este caso,
veriamos como el texto se mueve mucho mas rapido, ya que en cada iteracion, el texto se desplaza una
cantidad mayor de pixels y por tanto recorre la ventana en menos iteraciones.

Podemos jugar con el “write” también. Si ponemos un valor constante en su segundo parametro, es
evidente que el texto no se movera, pero aun asi, veremos que el programa tarda un rato en cerrarse. Esto
es, evidentemente, porque aunque no hayamos utilizado “mivarl” para hacer el scroll del texto, el bucle del

72

while sigue funcionando, y cuando se llega a la condicidon falsa se sale igual: estaremos borrando y
escribiendo en cada iteracidon una y otra vez el mismo texto en la misma posicion hasta que la variable
“mivarl” valga 320. También podriamos probar de poner “mivarl” en el tercer parametro del “write”’; de
esta manera, hariamos un scroll vertical del texto. En este caso, el extremo inferior de la pantalla es 240, asi
que si no queremos esperar un rato con la pantalla negra después de que el texto haya desaparecido por
debajo de la ventana, tendriamos que modificar la condicion del while consecuentemente. Y podriamos
incluso hacer un scroll en diagonal, simplemente afiadiendo otra variable y poniendo las dos variables en el
2°y 3r parametro del “write”. Algo asi como esto:

Program MiPrimerPrograma;

Private
int mivarl;
int mivar2;
End
Begin
mivarl=10;
mivar2=10;
while(mivarl<320)
delete_text(0),
mivarl=mivarl+2;
mivar2=mivar2+2;
write(0,mivarl,mivar2,1,";Hola mundo!");
frame;
end
end

Fijate que lo unico que hemos hecho es declarar,inicializar e incrementar correspondientemente una nueva
variable que representara la coordenada vertical donde se escribira el texto. La condicion del while puede
continuar siendo la misma o depender de la nueva variable, segun nos interese.

Deberias intuir ya con lo explicado hasta ahora como se podria hacer, por ejemplo, un scroll vertical que
fuera de abajo a arriba. El c6digo seria éste:

Program MiPrimerPrograma;

Private
int mivarl;
End
Begin
mivarl=240;
while(mivarl>10)
delete_text(0),
mivarl=mivarl-2;
write(0,100,mivarl, 1,";Hola mundo!");
frame;
end
end

Lo que he hecho ha sido: primero, darle un valor inicial a “mivarl” de 240; segundo, cambiar la condicion
del while poniendo que el bucle se acabara cuando “mivarl” deje de ser mayor que 10; y tercero, el
incremento de la “mivarl” lo hago negativo. Con estos tres cambios, lo que consigo es que inicialmente el
texto se escriba en el extremo inferior de la ventana, y que en cada iteracion se vaya escribiendo 2 pixeles

73

mas arriba —recordad que la coordenada vertical decrece si vamos subiendo por la ventana- y este proceso
se ira ejecutando hasta que lleguemos al momento donde “mivarl” vale menos de 10, es decir, que el texto
se ha escrito casi en el extremo superior de la ventana.

Otro efecto interesante es el de comentar la linea delete text. Al hacer esto, estamos evitando que en cada
iteracion el texto acabado de escribir se borre, con lo que estaremos escribiendo cada vez un nuevo texto
sobre el anterior, desplazado unos pixeles a la derecha. El efecto de superposicion que se crea es un linea
continua curiosa.

Y otra cosa que puedes probar es (con el delete text descomentado) cambiar el valor de su parametro -0-
por otro nimero cualquiera. La explicacion de lo ocurrido lo dejaremos para mas adelante.

Notas finales:

Fijate en las tabulaciones: he tabulado todo el cddigo entre el BEGIN/END y luego, otra vez, he vuelto a
tabular el codigo entre el WHILE/END. Esto, ya lo comenté anteriormente, es por claridad. Tabulando se
tiene una rapida vision de donde empiezan y donde acaban los distintos trozos de cédigo que componen
nuestro programa, y podemos localizar rdépidamente zonas concretas. Tabulando sabemos que un conjunto
de sentencias pertenecen a un mismo bucle, condicional, programa, etc, aportando asi una gran claridad en
la lectura del cédigo. Y sobretodo, ayudando en gran medida para corregir posibles errores de escritura. Es
muy recomendable acostumbrarse a tabular los distintos tipos de bucles, condiciones, procesos,etc, para
una buena salud mental y ocular. Ya iréis viendo ejemplos de programas donde se pone en practica esta
manera de organizarse (por otra parte, estandar en el mundo de la programacion).

Otra cosa que posiblemente no hayas visto es cuando en general se escriben los puntos y coma y cuando
no. En general, si no digo explicitamente lo contrario, los puntos y coma hay que escribirlos SIEMPRE al
final de una sentencia (como puede ser un comando, una asignacion, o cualquier cosa). La tinica excepcion
—que de hecho no es tal porque no son sentencias- es cuando abrimos y cerramos un bloque de codigo,
como puede ser un bucle (WHILE/END es un ejemplo) , un condicional (IF/END...) o el bloque principal
del programa (BEGIN/END). En general, todas las parejas de palabras que tengan la palabra END no
llevan punto y coma.

Y un ultimo comentario. Te habras fijado que, independientemente del trozo de bloque que
cerremos (bucle, condicional, begin principal...), todos acaban con la misma palabra: END. Esto a la larga
puede ser un poco lioso porque cuando tienes cuatro o cinco ENDs seguidos no sabes cual corresponde a
qué bloque. Por eso siempre es muy recomendable afiadir un comentario al lado del END diciendo a qué
bloque corresponde, de esta manera:

Program MiPrimerPrograma;

Private
int mivarl;

End

Begin
mivarl=10;
while(mivarl<320)

delete_text(0),
mivarl=mivarl+2;
write(0,mivari, 100,1,"Hola mundo!");
frame;
end //End del while

74

end //End del begin

Asi no tendras tantas posibilidades de confusion.

Explicacion paso a paso de “Mi segundo programa en Fénix”

Recordemos el codigo:

Program Misegundoprograma;

private
int mivarl;
end
begin
loop
delete_text(0),
mivarl=rand(1,10);
if (mivar1<=5)
write(0,200,100,2, "Menor o igual que 5");
else
write(0,200,100,2, "Mayor que 5");
end
frame;
end
end
De aqui, lo unico novedoso es lo que hay entre el BEGIN/END, o sea:
loop
delete_text(0),
mivarl=rand(1,10);
if (mivar1<=5)
write(0,200,100,2,"Menor o igual que 5");
else
write(0,200,100,2,"Mayor que 5");
end
frame;
end

lectura

Podemos ver que esto es un bloque definido en el inicio por la palabra LOOP y terminado al
final por —siempre- la palabra END. Como bloque que es, su interior ha sido tabulado para facilitar la

Bloque “Loop/End”. Sentencias BREAK y CONTINUE:

La sentencia LOOP (bucle) es una sentencia que implementa un bucle infinito, es decir, que repite
indefinidamente un grupo de sentencias. Para implementar este bucle vemos que se debe comenzar con la
palabra reservada LOOP, seguida de las sentencias que se quieren repetir continuamente y la palabara

75

reservada END al final. Cuando un programa se encuentra una sentencia LOOP...END se ejecutaran a
partir de entonces, una y otra vez, todas las sentencias interiores a dicho bucle.Las sentencias interiores a
un bucle LOOP pueden ser tantas como se quieran y de cualquier tipo, incluyendo, por supuesto, nuevos
bucles LOOP.

Aprovecho aqui para comentar un par de 6érdenes muy ligadas al bucle LOOP y a todos los bucles en
general, aunque no aparezcan en el ejemplo

Sentencia BREAK::

Si en alglin momento quisiéramos finalizar un bucle LOOP, se puede utilizar la sentencia BREAK; que, al
ejecutarse dentro de un bucle de este tipo, forzard al programa a seguir a continuacion del END. Es decir,
una sentencia BREAK; dentro de un bucle lo finalizara de forma inmediata, continuando el programa por
la sentencia siguiente a dicho bucle. Esta sentencia puede ponerse, ademas de dentro del bucle LOOP,
dentro de los bucles WHILE, REPEAT, FOR o FROM.(ya los veremos). Por ejemplo, una sentencia
BREAK dentro de un bucle WHILE funcionard de la misma manera: finalizard el bucle de forma
inmediata, continuando el programa a partir de la sentencia siguiente a dicho bucle.

En caso de haber varios bucles anidados (unos dentro de otros) la sentencia BREAK saldra unicamente del
bucle mas interior de ellos.

Y la sentencia BREAK no es valida para finalizar secuencias IF, ni SWITCH ni sentencias CLONE (ya las
veremos)

Sentencia CONTINUE;:

La sentencia CONTINUE;, dentro de un bucle, finalizara la iteracion actual y comenzara la siguiente (el
programa continuara ejecutandose tras la palabra LOOP). Es decir, una sentencia CONTINUE; dentro de
un bucle forzara al programa a finalizar la iteracion actual del mismo y comenzar la evaluacion de la
siguiente. Aparte del bucle LOOP,puede usarse esta sentencia en los bucles WHILE,REPEAT, FOR o
FROM (ya los veremos). Por ejemplo, una sentencia CONTINUE dentro de un bucle WHILE forzara al
programa a comprobar la condicién inicial inmediatamente, y si €sta es cierta, volvera a ejecutar las
sentencias interiores desde el principio (tras el WHILE), y si la condicion resultara falsa, la senetencia
CONTINUE finalizara el bucle.

En caso de haber varios bucles anidados (unos dentro de otros) la sentencia CONTINUE tendra
efecto tnicamente en el bucle mas interior de ellos.Y la sentencia CONTINUE no es valida para finalizar
secuencias IF, ni SWITCH ni sentencias CLONE (ya las veremos).

Vamos a ver estas sentencias con ejemplos. Si tenemos este codigo:

Program ejemplo;
Private
Int mivarl=0;
End
Begin
Loop
mivarl=mivarl+1;
If (mivarl1==30)
Break;
End
write_var(0,100,100,4,mivarl),

76

Frame;
End
End

lo que tendra que ocurrir es que aparecera escrito en pantalla un ntimero que ird aumentando en una unidad
desde el 0 hasta el nimero 29.;Por qué? Porque inicializamos la variable mivarl con el valor 0, y en cada
iteracion le incrementamos en una unidad su valor y lo escribimos. Esto seria un proceso infinito si no
fuera porque en cada iteracion se comprueba una condicion —el “if” lo veremos enseguida, pero aqui es
facil ver como funciona- que dice que si “mivarl” en ese momento vale exactamente 30, entonces se haga
un break. Y hacer un break implica salir automaticamente del interior del bucle donde se esta en este
momento. Como en este ejemplo, al salir del bucle ya no hay nada mas, se acaba el programa. Hay que
puntualizar que so6lo se verd hasta el nimero 29 porque la condicion de comprobacion esta antes del
“write”, y por tanto, cuando “mivarl” sea igual a 30, se saldra del bucle sin pasar por el “write”, y por
tanto, el valor 30 no se escribira. Otra cosa seria —es facil verlo-, si hubiéamos escrito el mismo programa
pero cambiando el orden:

Program ejemplo;

Private
Int mivarl=0;
Begin
Loop
mivarl=mivarl+1;
write_var(0,100,100,4,mivarl),
If (mivar1==30)
Break;
End
Frame;
End
End

Un par de detalles: fijarse que para escribir el valor de una variable no hemos utilizado el comando “write”
sino otro muy parecido que es “write_var”. Este comando funciona igual que “write”, pero este tltimo s6lo
sirve para escribir textos concretos y fijos establecidos como 5° parametro entre comillas, y en cambio
“write_var” sirve normalmente para escribir el valor que tiene una variable, pasada también como 5°
parédmetro (sin comillas).

Mas correctamente, la gran diferencia entre "write" y "write var" es que el valor que se escriba con "write"
quedard permanentemente inalterado en pantalla una vez escrito, y lo que se escriba con "write var"
(valores de variables), en cada frame se comprobara automaticamente si ha cambiado; en ese caso ese dato
se refrescard en pantalla mostrando su nuevo valor. Por tanto, la funcion "write var" es la mas adecuada
para hacer un seguimiento "en tiempo real" frame a frame de la evolucion del valor de una variable.

Otra cosa a tener en cuenta es, como siempre, recordar la existencia de la orden “frame;” al final del bucle
principal del programa, ya que si no esta no se ve nada, tal como hemos visto.

Ahora cuando veamos el funcionamiento del “if” lo veremos, pero fijate que en la condicién de igualdad
if(mivar]==30) he escrito dos iguales seguidos (=) y no uno. Esto es porque ya he comentado que el
signo = a secas es un operador de asignacion, pero no de igualdad. Para escribir que a es igual a b, hemos
de escribir a==b; si escribiéramos a=b estariamos diciendo que el valor de b pasa a ser el valor de a, y por
tanto, una sentencia como if (a=b) siempre seria verdad, porque siempre seria verdad si no hay errores que
le paso el valor de b a a.

77

Ahora pongo otro ejemplo para ver el funcionamiento del CONTINUE:

Program ejemplo,

Private
Int mivarl=0;
Begin
Loop
mivarl=mivarl+1;
If (mivar1==30)
continue;
End
write_var(0,100,100,4,mivarl);
Frame;
End
End

Es el mismo codigo que antes, pero cambiando BREAK por CONTINUE. Lo que ocurre, en
cambio, es que se genera un bucle infinito con el nimero que aparece en pantalla incrementando su valor
en una unidad hasta el infinito (de hecho en teoria hasta su valor maximo que puede albergar segun el tipo
de variable que lo contiene, pero ocurre un error antes, pero no nos incumbe ahora). Entonces, ;qué hace el
CONTINUE? El programa se ejecuta muy rapido para verlo, pero lo que ocurre es que el nimero 30 no
aparece: se visualiza hasta el 29 y después se ve el 31 y siguientes. Lo que ocurre es que cuando se realiza
la comprobacion del if 'y se ve que en esa iteracion “mivarl” vale 30, se salta todo lo que queda de iteracion
y se vuelve otra vez para arriba, a la palabra LOOP, y se empieza la siguiente iteracion. Es decir, hacer un
CONTINUE es como poner un END en medio de la iteracion y dejar inutilizadas las sentencias que hay
dentro del bucle posteriores a él. Asi pues, cuando “mivarl” vale 30, no se hace el write_var y se vuelve al
LOOQOP, donde “mivarl” pasa a valer 31.

En este caso, es indiferente poner el if antes o después del write var, porque en ambos casos la
sentencia Frame es la que se salta si se ejecuta el CONTINUE. Si se salta la sentencia frame, nada se
muestra por pantalla.

“mivarl=rand(1,10);”.Valores de retorno de las funciones:

Esta linea es una simple asignacion de un valor a una variable, pero en vez de ser un valor concreto como
podria ser mivari=10;, por ejemplo, lo que se hace es utilizar el comando rand.

Ves que el comando rand que es una orden con dos parametros. Lo que no hemos comentado
hasta ahora es que los comandos, a parte de recibir parametros de entrada —si lo hacen-, y a parte de hacer
la tarea que tienen que hacer, también devuelven valores de salida, generalmente INT. Estos valores
enteros que devuelven pueden servir para varias cosas dependiendo del comando; el significado de ese
valor devuelto depende: algunos valores son de control, avisando al ordenador que el comando se ha
ejecutado bien o mal, otros sirven para generar nimeros especificos, (como rand), etc.

De hecho, no lo hemos visto pero el comando write por ejemplo devuelve un valor entero cada vez
que se ejecuta. Si nos interesa recoger ese valor, se lo asignamos a una variable y lo utilizamos, y si no,
pues no hacemos nada. Ahora no nos interesa saber cual es el significado de este numero que devuelve el
write, pero para que lo veas, ejecuta esto:

Program ejemplo,
Private
Int mivarl;

78

End

Begin
Loop
mivarl=write(0,100,100,4, ”Hola”),
write_ var(0,150,150,4,mivarl);
Frame;
End
End

Veras que se escribe la palabra “Hola” y que ademas aparece un nimero que va aumentando, hasta
que ocurre un error —el mismo que con el ejemplo del CONTINUE-. Este ntimero ;qué es?. Podras intuir
que es el valor que en cada iteracion devuelve el comando write. Efectivamente: en este ejemplo, cada vez
que se llama a write, éste realiza su conocida tarea de imprimir por pantalla la palabra “Hola”,pero ademas,
recogemos el valor entero que devuelve —cosa que antes no haciamos porque no nos interesaba, aunque
write lo devuelve siempre- en una variable, para seguidamente visualizar dicho valor también por pantalla.

En el caso del write, el valor devuelto representa un niimero identificador del texto impreso en
pantalla; es como un DNI de la frase escrita,un numero al que podremos hacer referencia en nuestro
programa posteriormente y mediante el cual podremos manipular ese texto cuando lo deseemos. Es decir,
que si escribimos un texto con write y recogemos lo que devuelve, alli tendremos el numero que
identificard ese texto, y si luego en nuestro programa queremos cambiarlo o hacer lo que sea con él,
simplemente tendremos que recurrir a ese numero para saber de qué texto estamos hablando y hacer lo que
sea con ¢l (ya veremos ejemplos, tranquilo).

Respecto al error que aparece, puede que no entiendas lo que dice: “Demasiados textos en pantalla”.
iComo, si so6lo escribo “Hola” y ya estal. Pues no, fijate bien. Si acabo de decir que lo que devuelve el
write es un identificador del texto escrito, y ese identificador vemos que sube como la espuma, eso quiere
decir que estamos escribiendo muchos textos diferentes, cada uno de los cuales, como es logico, tiene un
identificador diferente. Es decir, que si vemos que el niimero que aparece sube hasta el 500, es porque
hemos escrito 500 textos diferentes, cada uno de los cuales con un identificador diferente. ;Y esto como
es? Pues porque en cada iteracion ejecutamos la orden write de nuevo, por lo que en cada iteracion estamos
escribiendo un nuevo texto, que se superpone al anterior. Es por esta razon que al final aparece este
error,porque hemos escrito tantos textos en pantalla que la memoria del ordenador se desborda. Entonces,
(,como se puede escribir un texto fijo que esté presente durante toda la ejecucion del programa sin que dé el
error? Prueba esto:

Program ejemplo,

Private
Int mivarl;
Begin
mivarl=write(0,100,100,4,"Hola");
write_var(0,150,150,4,mivarl);
Loop
Frame;
End
end

Deberias entender lo que ocurre. Escribimos una sola vez “Hola”, vemos como el identificador de ese
texto, efectivamente es el numero 1 (siempre se crean los identificadores a partir del 1 para el primer texto
escrito y a partir de alli para arriba) y es s6lo después cuando nos metemos en el bucle principal del
programa con el frame, para que se pueda visualizar la frase fija todas las veces que haga falta.

Otra solucién al mismo problema seria:

79

Program ejemplo;

Private
Int mivarl;
Begin
Loop
delete_text(0);
mivarl=write(0,100,100,4,"Hola");
write_var(0,150,150,4,mivarl);
Frame;
End
end

Hemos hecho el mismo truco que en nuestro primer programa en Fénix.

Ahora es el momento donde se puede entender mejor cual es el significado del parametro del delete text.
Ya sabemos que si ponemos un 0 quiere decir que borrara todos los textos que haya en pantalla —escritos
con el comando write-. Prueba de ejecutar el mismo programa anterior pero poniendo un 1 como valor del
delete text. Y luego poniendo un 2,etc. Veras que se vuelven a escribir muchos textos otra vez y se vuelve
a generar el error que hemos visto. ;Por qué? Porque si no ponemos un 0 en delete text y ponemos
cualquier otro nimero, ese numero representara el identificador de un texto concreto, y solo borrara ese
texto concreto. Es decir,que si con write hemos creado un texto con identificador 1, delete text(1) solo
borrara ese texto y ninguno mas. Por eso, con este codigo,por ejemplo:

Program ejemplo;

Private
Int mivarl;
Begin
Loop
delete_text(1);
mivarl=write(0,100,100,4,"Hola"),
write_var(0,150,150,4,mivarl);
Frame;
End
end

lo que ocurre es que delete text so6lo borrara un texto (el que tenga identificador 1) de entre todos los textos
que se escriban —que van a ser tantos como iteraciones haya: infinitos, y cada uno con un identificador
diferente-. Por tanto, el error volvera a aparecer porque s6lo hemos borrado el primer texto que se escribio,
pero a partir del segundo (con identificador 2) para adelante no se ha borrado ninguno.

Bueno. Una vez explicado todo este rollo sobre los valores de retorno de las funciones (o comandos) de
Fénix, vamos al ejemplo que teniamos entre manos. Teniamos la linea:

mivarl=rand(1,10);

Claramente, “mivarl” va a valer un numero que sera lo que devuelva el comando rand. El comando rand
precisamente sirve para devolver un numero, cuya caracteristica mas importante es que es pseudo-
aleatorio.

Ves que tiene dos pardmetros enteros: el primero es el limite inferior y el segundo es el limite superior —
ambos incluidos- de los valores que puede tomar el numero que rand va a generar. Cada llamada a esta
funcion generara un nimero diferente, siempre dentro del rango especificado. Por lo tanto, cada vez que se
ejecute la linea anterior, “mivarl” va a valer un nimero diferente, entre 1 y 10. Y ya esta.

80

Bloque “If/Else/End”. Condiciones posibles:

La sentencia IF no es ningin bucle. Como dice su nombre, simplemente sirve para ejecutar un
bloque de sentencias solamente si se cumple una condiciéon determinada. Y opcionalmente, también es
posible incluir una secciéon ELSE con otro bloque de sentencias que se ejecutarian en caso de que NO se
cumpla esa condicion, teniendo pues el programa respuesta para las dos posibilidades. Tanto si se ejecutan
las sentencias de la seccion IF como si se ejecutan las sentencias de la seccion ELSE, cuando se llega a la
ultima linea de esa seccion, se salta a la linea inmediatamente posterior al END para continuar el programa.

Es decir, en general, la sintaxis del bloque IF/ELSE sera:

IF (condicion)

Sentencias -una o mas-que se ejecutan si la condicion es verdad;
ELSE

Sentencias —una o mas- que se ejecutan si la condicion es falsa;
END

Y cuando se hayan ejecutado todas las sentencias de una u otra secciéon(IF o ELSE), se contintia en la linea
inmediatamente posterior al END.

He dicho que el ELSE es opcional. Si no ponemos ELSE, el IF quedaria:

IF (condicion)
Sentencias -una o mas-que se ejecutan si la condicion es verdad;
END

y, en este caso, si la condicion fuera falsa, el if no se ejecuta y directamente se pasa a ejecutar la linea
inmediatamente posterior al END (el programa no hace nada en particular cuando la condicion es falsa).

Es posible anidar sentenicas IF sin ningn limite, es decir, se pueden poner mas sentencias IF
dentro de la parte que se ejecuta cuando se cumple la condicion (parte IF) o dentro de la que se ejecuta
cuando la condicion no se cumple (parte ELSE).

.Y qué tipo de condiciones podemos escribir entre los paréntesis del IF? Cuando vimos el WHILE
en el primer programa que hemos hecho, vimos los operadores para las condiciones de menor (<) o mayor
que (>) un numero, y el de la condicion de igualdad (==), cuyo operador,jojo!, recordad que son dos signos
iguales, ya que un solo signo representa el operador de asignacion. Pero hay muchas mas operadores para
diferentes condiciones:

== Comparacion de igualdad

< Comparacion de diferencia (también sirve !=)

> Comparacion de mayor que

>= Comparacion de mayor o igual que (también sirve =>)
< Comparacion de menor que

<= Comparacion de menor o igual que (también sirve =<)

Ademas, también se pueden utilizar los operadores llamados logicos, usados para encadenar dos o mas
comprobaciones dentro de una condicién. Los operadores logicos son:

81

OR Comprueba que, al menos, una de dos expresiones sea cierta. (también sirve | |)
AND Comprueba que las dos expresiones sean ciertas. (también sirve &&)

XOR Comprueba que so6lo una de las dos expresiones sea cierta (también sirve ")
NOT Comprueba que no se cumpla la siguiente condicion (también sirve !)

Y los paréntesis (), para establecer el orden de comparacion de varias expresiones, pues siempre se
comparan primero las expresiones situada dentro de los paréntesis, o en el mas interior, si hay varios
grupos de paréntesis anidados.

Ejemplos de condiciones podrian ser:

mivarl==100 AND mivar2>10 Esta condiciéon comprueba que “mivarl” sea
exactamente 100 Y QUE ADEMAS, “mivar2” sea
mayor que 10

mivarl<>0 OR (mivar2>=100 and mivar2<=200) Esta condicion primero comprueba lo que hay
dentro del paréntesis, o sea, que “mivar2” sea mayor
o igual que 100 Y QUE ADEMAS “mivar2” sea
menor o igual que 200. Eso, O A VER SI “mivarl”
es diferente de 0

El anidamiento de condiciones puede ser todo lo complejo que uno quiera, pero conviene asegurarse de que
realmente se estd comprobando lo que uno quiere, cosa que a veces, con expresiones muy largas, es dificil.

No estd de mas finalmente tener presente un par de reglas matematicas que cumpliran todas las posibles
expresiones que podamos escribir:

!(condicionl OR condicion?2) Equivale a Icondicionl AND !condicion2

!(condicionl AND condicion2) Equivale a Icondicionl OR !condicion2

Un dato importante: a la hora de realizar comprobaciones de condiciones en clausulas IF, por ejemplo, el
resultado de la comprobacion esta claro que s6lo puede ser o VERDADERO o FALSO. Pero estos valores
logicos un ordenador, y Fénix en concreto, no los entiende, porque s6lo entienden de ceros y unos. Asi que
Fénix entiende internamente que si una condicion es falsa en realidad €l entiende que vale 0, y si es
verdadera, en realidad ¢l entiende que vale diferente de 0 (1,-1 o lo que sea).

Esta asociacion (FALSO=0 y VERDADERO!=0) es comun a otros muchos lenguajes de programacion
(C,Java,Php,Python,etc). No obstante, por comodidad, en todos estos lenguajes de programacion -incluido
Fénix- existe la posibilidad de utilizar dos constantes logicas: "TRUE" y "FALSE", que equivalen a sus
valores numéricos, en vez de €stos.

En el caso concreto del programa que nos ocupa, teniamos, recordemos, el siguiente codigo:
Program Misegundoprograma,

private

int mivarl;

82

end

begin
loop
delete text(0);
mivarl=rand(1,10);
if (mivar1<=5)
write(0,200,100,2, "Menor o igual que 5");
else
write(0,200,100,2,"Mayor que 5");
end
frame;
end
end

Esta claro que lo que hace el programa es, una vez que la funcién rand ha devuelto un nimero
aleatorio entre 1 y 10 —ambos incluidos- y lo ha asignado a la variable “mivarl”, comprueba el valor de
dicha variable con un if. Si el recién valor de “mivarl” es menor o igual que 5, saldrd un texto en pantalla,
en una coordenada concreta que dira “Menor o igual que 5”. En cambio, si “mivarl” es mayor que 5, saldra
otro texto, en las mismas coordenadas, que diga “Mayor que 5”.

Y ya esta.

Funcionamiento global del programa:

El programa bésicamente, pues, hace lo siguiente. Nada més comenzar se introduce en un bucle infinito
(LOOP), por lo que, ya que no vemos ninguna sentencia BREAK, sabemos que este programa en principio
nunca finalizara su ejecucion — a no ser que nosotros le demos al boton de cerrar de la ventana, menos mal
que podemos hacer eso-. Nada mas entrar en el bucle, borramos todo el texto que pueda haber. Recordad
que ponemos primero el delete text antes de cualquier write porque si lo hiciéramos al revés, al llegar a la
sentencia FRAME; no habria ninglin texto que mostrar y no saldria nada en pantalla: hemos de recordar
siempre de dejar justo justo antes del FRAME todo lo que queremos mostrar tal como lo queremos mostrar.
Seguidamente ejecutamos la funcion rand, que nos devuelve un entero aleatorio entre 1 y 10 y lo
asignamos a una variable declarada previamente como privada. A partir de entonces esa variable tiene un
valor que puede ser cualquiera entre 1 y 10. Seguidamente se realiza la comprobacion mediante el [F/ELSE
del valor de esa variable, y si es mayor o igual que 5 se escribira un texto en pantalla y si es menor se
escribira otro, pero eso no se hard hasta que se llegue a FRAME. Una vez que salimos de ejecutar la
correpondiente linea del bloque IF/ELSE, es cuando aparece precisamente FRAME, porque deseamos
poner en pantalla en este momento el resultado del proceso del programa: es decir, la impresion de la frase
de la seccion IF/ELSE que se haya ejecutado. Llegado este punto, la iteracion acaba y comenzamos una
nueva iteracion: borramos el texto, asignamos a la variable un nuevo valor aleatorio que no tendra nada que
ver con el que tenia antes, y se vuelve a hacer la comprobacion. Como los valores que tendra “mivarl” en
las distintas iteraciones son aleatorios, unas veces seran mayores o iguales que 5 y otras veces seran
menores que 5, por lo que en algunas iteraciones aparecera una frase y otras la otra, mostrando asi el efecto
que vemos por pantalla: la frase cambia rapidamente de una en otra casi sin tiempo para leerla. Y asi hasta
el infinito.

(Qué pasaria si quitiramos —comentaramos- el bloque LOOP/END? Pues que la ejecucion del
programa dura un suspiro, ya que solo se ejecuta una sola vez su cddigo —no hay iteraciones que se
repitan-, y por lo tanto, s6lo se ejecuta una vez el FRAME, y por lo tanto, s6lo se muestra en una fraccion
de segundo lo que seria una tnica frase, antes de llegar al END del programa. Logico, {no?

83

Otros bloques de control de flujo. Switch,for,from,repeat:

En los dos programas anteriores hemos visto diferentes maneras de hacer bucles y condiciones. En
concreto hemos visto los bucles WHILE/END y LOOP/END Yy el condicional IF/ELSE/END. Pero en
Fénix hay mas bloques que permiten la existencia de iteraciones o condiciones.

En general, a todos estos bloques se les llama bloques de control de flujo, porque controlan donde tiene que
ejecutar el programa la siguiente instruccion, es decir, controlan el devenir del programa y dicen cual es la
siguiente linea a ejecutar.

Vamos a ver ahora los bloques de control de flujo que nos faltan para poder tener ya todas las herramientas
necesarias para poder escribir programas flexibles:

Bloque “SWITCH/END”:

SWITCH (variable o expresion)

CASE valores:
Sentencias;

END

CASE valores:
Sentencias;

END

CASE valores:
Sentencias;

END

DEFAULT:
Sentencias;
END
END

Una sentencia SWITCH/END consta en su interior de una serie de secciones CASE/END vy,
opcionalmente, una seccion DEFAULT/END.

El SWITCH/END es como una especie de Mega-IF. Cuando se ejecuta una sentencia SWITCH,
primero se comprueba el valor de la variable o expresion que hay entre los paréntesis,y después, si el
resultado esta dentro del rango de valores contemplados en la primera seccion CASE, se ejecutaran las
sentencias de la misma y se dard por finalizada la sentencia. En caso de no estar el resultado de la
expresion en el primer CASE se pasara a comprobarlo con el segundo CASE , el tercero, etc. Y por ultimo,
si existe una seccion DEFAULT y el resultado de la expresion no ha coincidido con ninguna de las
secciones CASE, entonces se ejecutaran las sentencias de la seccion DEFAULT.

Hay que hacer notar que una vez ejecutada una de las secciones CASE de una sentencia SWITCH
ya no se ejecutaran mas secciones CASE, aunque éstas especifiquen también el resultado de la expresion.

No es necesario ordenar las secciones CASE segtin sus valores (de menor a mayor, o de mayor a
menor), pero si es imprescindible que la seccion DEFAULT (en caso de haberla) sea la Gltima seccion. No
puede haber mas que una seccion DEFAULT. Es posible anidar sentencias SWITCH sin ningun limite, es
decir, se pueden poner nuevas sentencias SWITCH dentro de una seccion CASE (y cualquier otro tipo de
sentencia).

En una seccion CASE se puede especificar:

84

-Un valor
-Un rango de valores minimo..méaximo (es importante separar estos valores extremos por dos
puntos, no por tres)
o -Una lista de valores y/o rangos separados por comas.

Un ejemplo:

program pepito,
private
byte mivar1=220;
end
begin
loop
delete_text(0);
switch (mivarl)
case (..3:
write(0,200,100,4,"La variable vale entre 0y 3, incluidos"),
end
case 4.
write(0,200,100,4,"La variable vale 4");
end
case 5,7,9:
write(0,200,100,4,"La variable vale 50 7 0 9");
end
default:
write(0,200,100,4,"La variable vale cualquier otro valor diferente de los anteriores");
end
end // switch
frame;
end //loop
end // begin

Bloque “FOR/END”:

FOR(valor_inicial contador;condicion final bucle;incrment cont)
Sentencias;
END

La sentencia FOR es una sentencia que implementa un bucle. Se deben especificar, entre
paréntesis, tres partes diferentes, separadas por simbolos ; (punto y coma) tras la palabra reservada FOR.
Estas tres partes son opcionales (pueden omitirse) y son las siguientes:

-Valor inicial del contador:. En esta parte se suele codificar una sentencia de asignacion
que fija el valor inicial de la variable que va a utilizarse como contador de iteraciones del bucle.Un
ejemplo puede ser la sentencia de asignacion x=0; que fijaria la variable x a cero a inicio del bucle
(valor para la primera iteracion).

-Condicion final del bucle:. En esta parte se especifica una condicidn; justo antes de cada
iteracion se comprobara que sea cierta para pasar a ejecutar el grupo de sentencias. Si la condicion
se evalua como falsa, se finalizara el bucle FOR, continuando el programa tras el END del bucle
FOR. Un ejemplo de condicion puede ser x<10; que permitira que se ejecute el grupo interior de

85

sentencias nicamente cuando la variable x sea un nimero menor que 10.

-Incremento del contador: En la ultima de las tres partes es donde se indica el incremento
de la variable usada como contador por cada iteracion del bucle; normalmente, ésto se expresa
también con una sentencia de asignaciéon. Por ejemplo, la sentencia x=x+1; le sumaria 1 a la
variable x tras cada iteracion del bucle.

Tras la definicion del bucle FOR, con sus tres partes, es donde debe aparecer el grupo de sentencias
interiores del bucle que se van a repetir secuencialmente mientras se cumpla la condicion de permanencia
(parte segunda). Tras este grupo de sentencias la palabra reservada END determinara el final del bucle
FOR.

Cuando en un programa llega a una sentencia FOR se ejecuta primero la parte de la inicializacion y
se comprueba la condicion; si ésta es cierta se ejecutara el grupo de sentencias interiores y, después, la
parte del incremento, volviéndose seguidamente a comprobar la condicion, etc. Si antes de cualquier
iteracion la condicion resulta falsa, finalizara la sentencia FOR inmediatamente.

Como se ha mencionado, las tres partes en la definicion del bucle son opcionales; si se omitieran
las tres, seria equivalente a un bucle LOOP...END.

Ademas, en un bucle FOR pueden ponerse varias partes de inicializacion, condicion o incremento
separadas por comas, ejecutindose todas las inicializaciones primero, luego comprobandose todas las
condiciones de permanencia (si cualquiera resultara falsa, el bucle finalizaria), las sentencias interiores, y al
final, tras cada iteracion, todos los incrementos.

Una sentencia BREAK dentro de un bucle FOR lo finalizara de forma inmediata, continuando el
programa por la sentencia siguiente a dicho bucle.Una sentencia CONTINUE dentro de un bucle FOR
forzara al programa a ejecutar directamente la parte del incremento y, después, realizar la comprobacion de
permanencia y, si ésta es cierta, volver a ejecutar las sentencias interiores desde el principio. Si la
condicion resulta falsa, la sentencia CONTINUE finalizara el bucle FOR.

Las sentencias interiores a un bucle FOR pueden ser tantas como se quieran y de cualquier tipo,
incluyendo, por supuesto, nuevos bucles FOR.

Un ejemplo:

program pepito,;
private
byte mivarl,;
end
begin
for (mivarl=1; mivarl<I0; mivarl=mivarl+1)
write(0,(mivarl *25)+30,100,4,mivarl);

frame(2000);
end
loop
frame;
end
end

86

Este ejemplo tiene bastante miga. Vamos a repasarlo linea por linea. Nada mas empezar el
programa, nos metemos en el bucle FOR. Lo primero que ocurre alli es que asignamos el valor de 1 a
“mivarl”, declarada previamente como de tipo BYTE.Después comprobamos si el valor de “mivarl” es
menor que 10. Evidentemente, 1<10, y por lo tanto, se ejecutardn las sentencias internas del for (en la
primera iteracion no se tiene en cuenta para nada la seccion del FOR tras el ultimo ;). Una vez ejecutadas,
se volvera arriba y antes de nada, se efectuara, ahora si, el incremento, pasando asi “mivarl” a valer 2.
(Fijarse que a partir de la segunda iteracion ya no se usa para nada la seccion del FOR de delante del
primer ;).Después de hacer el incremento, se volvera a comprobar la condicion. Como todavia 2<10, se
volvera a ejecutar el interior del FOR. Una vez hecho esto, se vuelve para arriba, se incrementa “mivarl”
para que valga 3, se vuelve a comprobar la condicion, y si es verdadera, se vuelve a ejecutar el interior del
FOR, y asi hasta que llegue una iteracion donde al comprobar la condicion ésta sea falsa. En ese momento,
la ejecucion del programa seguira en la linea inmediatamente posterior al END del FOR.

Las sentencias interiores del FOR son dos. La primera lo que hace es escribir el valor de “mivarl”,
que cambia en cada iteracion, en posiciones diferentes segiin también el valor de “mivarl”, de manera que
se vea claramente los incrementos y el momento donde el bucle acaba. Primero se imprime el numero 1(el
primer valor de “mivarl”), después, un poco mas a la derecha —fijarse en el segundo parametro del write-
se imprime el nimero 2 (el nuevo valor de “mivarl”), y asi, hasta imprimir el nimero 9. Es importante
recalcar que el nimero 10 no se imprimira, porque, tal como hemos comentado, el proceso es primero
incrementar, y luego hacer la comprobaciéon: en la ultima iteracion tendriamos que “mivarl” vale 9,
entonces se va arriba, se incrementa a 10, se comprueba que 10 no es menor que 10, y se sale del FOR, por
lo que cuando “mivarl” vale 10 ya no tiene la oportunidad de ser imprimida. Puedes jugar con los valores
iniciales del contador, la condicidn de finalizacion o los valores de incremento. Asi lo veras mas claro.

La otra sentencia interior del FOR es la conocida FRAME para que cada vez que se realice una
iteracion, en la cual se quiere escribir un valor diferente de “mivarl”, se haga efectivo esa impresion. Como
siempre, FRAME esta dentro de un bucle, en este caso el FOR. Lo diferente es ese parametro que no
conociamos que tuviera. ;Para qué sirve?

Primero prueba de quitar ese parametro y dejar el FRAME a secas como siempre. Veras que el
programa se ejecuta tan rapidamente que casi no hay tiempo de ver que los nlimeros van apareciendo uno
seguido de otro.

El parametro del FRAME lo que indica es cuanto tiempo ha de pasar para que el programa espere a
que el “agujero” del FRAME se abra y muestre el resultado del programa. Es decir, si no ponemos nigin
parametro, o ponemos el valor 100 —es lo mismo-, cada vez que se llegue a la linea FRAME, la “puerta” se
abre y se muestra lo que hay ipsofacto.Este proceso es lo que se llama imprimir el siguiente fotograma. El
fotograma es la unidad de tiempo utilizada en Fénix, (profundizaremos en ello en el siguiente capitulo),
pero imaginate por ahora que el ritmo de aparicion de los distintos fotogramas es como un reloj interno que
tiene el programa, y que viene marcado por FRAME: cada vez que se “abre la puerta”, se marca el ritmo de
impresion por pantalla. De ahi el nombre al comando FRAME: cada vez que se llega a ese comando es
como gritar “;Mostrar fotograma!”.

Si se pone otro numero como parametro del FRAME, por ejemplo el 500, lo que ocurrira es que
cuando se llegue a la linea FRAME, la “puerta” no se abrird inmediatamente sino que se esperard 5
fotogramas para abrirse. Es como si el programa se quedara esperando un rato mas largo en la linea
FRAME, hasta ejecutarla y continuar. Asi pues, este parametro permite, si se da un valor mayor de 100,
ralentizar las impresiones por pantalla. En el caso concreto de nuestro ejemplo, pues,cada iteracion tardara
en mostrarse 20 veces mas que lo normal (el parametro vale 2000). Si quieres, puedes cambiar su valor.
También es posible poner un nimero menor de 100. En ese caso, lo que estariamos haciendo es “abrir la
puerta” mas de una vez en cada fotograma: si pusiéramos por ejemplo 50, estariamos doblando la
velocidad normal de impresion por pantalla.Puedes comprobarlo también.

87

Para entender mejor esto ultimo que estamos comentando, en un apartado del cuarto capitulo de
este manual he escrito un pequefio codigo que creo que te podra ayudar a entender mejor el sentido de este
parametro que puede llevar el frame, aunque en este momento este programa contiene elementos que no
hemos visto todavia.

Volvamos al cédigo que teniamos.Fijate que después de haber escrito el bucle FOR, el programa
no acaba ahi sino que se afiade un bucle LOOP con una unica sentencia FRAME. Prueba de quitar ese
LOOP. Veras que el programa se ejecuta pero cuando ya se ha impreso todos los valores de “mivarl”,
evidentemente, el programa se acaba. Si queremos mantener el programa permaneciendo visible aun
cuando se haya acabado el bucle del FOR, nos tenemos que inventar un sistema que tambien sea un bucle,
infinito, cuya Unica funcion sea seguir mostrando el contenido de la pantalla tal cual. Esto es justo lo que
hace el LOOP: va ejecutando el FRAME infinitamente para poder seguir visualizando la lista de nimeros.

Por cierto, ;qué pasaria si ahora comentamos la linea frame(2000);? Veras que el programa se
gjecuta igual, pero que los numeros no van apareciendo por pantalla uno seguido de otro, sino que ya
aparecen de golpe los 10 numeros. Esto es facil de entender: si eliminamos la orden frame del bucle FOR,
lo que estamos haciendo es evitar que en cada iteracion se muestre por pantalla el resultado de dicha
iteracion justamente. Es decir, si eliminamos el frame, el bucle se realizard igual, iteracion a iteracion, pero
hasta que no encuentre un frame no va a poder visualizar el resultado de sus calculos. Por eso, cuando el
programa entra en el Loop y se encuentra un frame (el primero), pone en pantalla de golpe todo aquello que
llevaba haciendo hasta entonces, que es precisamente todas y cada una de las iteraciones del bucle FOR.

En apartados anteriores he comentado que para poder imprimir variables y no textos fijos se tenia
que utilizar la funcion write var en vez de write, cosa que no he hecho en este ejemplo. ;jPor qué? En
realidad, la funcion write, tal como acabamos de comprobar, si que permite la impresion de valores de
variables, incluso podriamos escribir algo asi como

mivarl=10;
write(0,100,100,4, ”Esta variable vale:” + mivarl);

donde puedes ver que el signo + sirve para poder unir trozos de frases y valores separados para que
aparezcan como un unico texto (el signo + es pues en Fénix el llamado técnicamente operador de
"concatenacion”" de cadenas).

La razon de haber elegido en este ejemplo la funcion write en vez de write var viene de su
principal diferencia de comportamiento, ya explicada anteriormente, respecto la impresion por pantalla de
valores variables. Recordemos que con write una vez que se escribe el valor de la variable, éste pasa a ser
un valor fijo en pantalla como cualquier otro y no se puede cambiar y que en cambio, con write var, los
valores de las variables que se hayan escrito, a cada fotograma se comprueba si han cambiado o no, y si lo
han hecho, se actualiza automaticamente su valor. Es decir, que con write var los valores impresos de las
variables cambiaran al momento que dichos valores cambien en el programa, permanentemente.

Lo puedes comprobar: si cambiar la funcion write por write var, veras que a cada iteracion se
va imprimiendo un nuevo nimero, pero los nimeros impresos anteriormente también cambian al nuevo
valor: esto es asi porque como estamos cambiando los valores a “mivarl”, todos los valores de esa
variable, impresos en cualquier momento de la ejecucion del programa cambiardn también a cada
fotograma que pase.

Un detalle curioso es ver que, si usamos write var, si que se llega a imprimir el nimero 10. ;Por
qué? Porque, tal como hemos comentado, en la tltima iteracion “mivarl” vale 9, entonces se sube arriba,
se le incrementa a 10, se comprueba que sea cierta la condicion, y al no serlo se sale del for. Entonces,

88

aparentemente el 10 no se tendria que escribir, ;verdad? La clave esta en darse cuenta que “mivarl” llega a
valer 10 en el momento de salir del FOR. Y como seguidamente nos encontramos con un LOOP, este bucle
nos permite continuar con la ejecucion del programa, y por tanto, permite la aparicion de sucesivos
fotogramas. Como he dicho que a cada fotograma del programa se realiza una comprobacion y
actualizacion automatica de todos los valores impresos por write var, como en ese momento “mivarl” vale
10, cuando se llega la primera vez al FRAME del LOOP, se llega a un fotograma nuevo, y asi, se realiza la
actualizacion masiva de todos los nimeros. A partir de alli, como el programa ya tinicamente consiste en ir
pasando fotogramas y ya estd, el valor 10 de “mivarl” va a continuar siendo el mismo y ya no se ve ningin
cambio en pantalla.

Una ultima apreciacion: fijate que el bucle FOR no es imprescindible para programar. Cualquier
bucle FOR se puede sustituir por un bucle WHILE. Fijate en los cambios que se han producido al ejemplo
que estamos trabajando: hemos cambiado el FOR por un WHILE, pero el programa sigue siendo
exactamente el mismo. Es facil de ver:

program pepito,
private
byte mivarl;
end
begin
mivarl=1;
while (mivarl<10)
write(0,(mivarl*25)+30,100,4,mivarl);
mivarl=mivarl+1;
frame(2000),
end
loop
frame;
end
end

Y ya para acabar, a ver si sabes qué hace este codigo antes de ejecutarlo:
program nuevo;

private
int a,b ;
end
begin
for (a=0,b=10;a<5 AND b>5;a=a+1,b=b-1)
write(0,0,10%a,0,"a="+a+" b="+b) ;
end
loop
frame;
end
end

Bloque “REPEAT/UNTIL”:

REPEAT
Sentencias;
UNTIL (condicion)

89

La sentencia REPEAT/UNTIL es una sentencia muy similar a WHILE.

Debe comenzar con la palabra reservada REPEAT, seguida de las sentencias que se quieren repetir
una o mas veces y el final de la sentencia se determinard poniendo la palabra reservada UNTIL —“hasta”-
seguida de la condicion que se debe cumplir para que se dé por finalizada la sentencia.

Cuando se ejecute una sentencia REPEAT se ejecutaran primero las sentencias interiores (las que
estan entre el REPEAT y el UNTIL) vy, tras hacerlo, se comprobara la condicion especificada en el UNTIL
y si ésta contintia siendo falsa, se volveran a ejecutar las sentencias interiores. El proceso se repetira hasta
que la condicion del UNTIL resulte cierta, continuando entonces la ejecucion del programa en la sentencia
siguiente al bucle.

Las sentencias interiores a un bucle REPEAT pueden ser tantas como se quieran y de cualquier
tipo, incluyendo, por supuesto, nuevos bucles REPEAT.

Una sentencia BREAK dentro de un bucle REPEAT lo finalizara de forma inmediata, continuando
el programa a partir de la sentencia siguiente a dicho bucle.Una sentencia CONTINUE dentro de un bucle
REPEAT forzara al programa a comprobar la condicion del UNTIL inmediatamente, y si ésta es falsa,
volvera a ejecutar las sentencias interiores desde el principio (tras la palabra reservada REPEAT). Si la
condicion resulta cierta, la sentencia CONTINUE finalizara el bucle.

Cada vez que se ejecutan las sentencias interiores se dice que se ha realizado una iteracion del
bucle. La sentencia REPEAT...UNTIL (literalmente traducida como REPETIR...HASTA (que se cumpla
la) condicion) siempre ejecutara las sentencias interiores al menos una vez, ya que comprueba la condicion
siempre tras ejecutarlas. Ahi estd de hecho la diferencia con el bucle WHILE. Como en el WHILE la
condicion se comprueba antes de ejecutar las sentencias interiores, puede darse el caso que la primera vez
que se llegue a un WHILE la condicion ya sea directamente falsa, y por tanto, las sentencias interiores no
se lleguen a ejecutar nunca. En cambio, como en el REPEAT la condiciéon se comprueba después de
ejecutar las sentencias interiores, como minimo éstas siempre se ejecutaran una vez, porque no se
comprobara la falsedad de la condicion hasta después se haber ejecutado dichas sentencias interiores.

La diferencia comentada anteriormente entre un WHILE/END y un REPEAT/UNTIL la puedes ver
en estos ejemplos:

program ejl;
private
byte mivarl=1;
end
begin
while(mivarl<I)
write(0,100,100,4,mivarl);
frame;
end
loop
frame;
end
end

program ej2;

90

private
byte mivarl=1;

end
begin
repeat
write(0,100,100,4,mivarl);
frame;
until (mivarl<lI)
loop
frame;
end
end

En el primer ejemplo solo veremos una pantalla negra, y en el segundo el nimero 1 impreso. Esto
es porque en el primer ejemplo, antes de nada, se comprueba si la condicion es verdadera. Como no lo es,
el while/end no se ejecuta y se pasa directamente al Loop, donde no hay nada que mostrar. En cambio, en
el segundo ejemplo, primero se realiza el write y el frame siguientes al repeat, y después se comprueba la
condicion. Al ser falsa, no se realiza ninguna iteracion mas y se va a loop, pero como minimo se ha
impreso el nimero debido a la unica ejecucion del write que ha existido.

Bloque “FROM/END”:

FROM variable = valor num TO valor num STEP valor num;
Sentencias;
END

La sentencia FROM implementa un bucle también. Para ello, se necesita una variable que sirva
como contador del bucle. De hecho, su funcionamiento es casi idéntico al FOR/END, lo tnico que el
FROM tiene una sintaxis mas sencilla y solo sirve para bucles incrementales/decrementales mientras que el
FOR permite muchisimos otros usos gracias a que se puede definir la comparacion y la funcion de
incremento.

Antes de las sentencias que conformaran el grupo interior de sentencias se debe poner la palabra
reservada FROM seguida del nombre de la variable contador, el simbolo de asignacion (=), el valor inicial
de la variable, la palabra reservada TO y, finalmente, el valor final de la variable. Tras esta declaracion del
bucle FROM se debe poner el simbolo ; (punto y coma). Después de esta cabecera definiendo las
condiciones del bucle vendra el grupo interior de sentencias que se pretende repetir un numero determinado
de veces v, al final, la palabra reservada END.

La primera iteracion se hara con el valor inicial en la variable usada como contador; tras esta
iteracion se le sumaré 1 a esta variable (si el valor inicial es menor que el valor final) o se le restard 1 (en
caso contrario). Tras actualizar el valor de la variable, se pasara a la siguiente iteracién siempre que el valor
de la variable no haya llegado (o sobrepasado) el valor final del bucle.

Las sentencias interiores a un bucle FROM pueden ser tantas como se quieran y de cualquier tipo,
incluyendo, por supuesto, nuevos bucles FROM.

Una sentencia BREAK dentro de un bucle FROM lo finalizara de forma inmediata, continuando el
programa por la sentencia siguiente a dicho bucle (tras el END).Una sentencia CONTINUE dentro de un
bucle FROM forzara al programa a incrementar inmediatamente la variable usada como contador y,
después, si no s eha sobrepasado el valor final, comenzar con la siguiente iteracion.

91

Como opciodn, es posible poner tras los valores inicial y final de la sentencia, la palabra reservada
STEP seguida de un valor constante que indique el incremento de la variable contador tras cada iteracion
del bucle, en lugar de +1 o -1, que son los incrementos que se haran por defecto si se omite la declaracion

STEP (paso).

Los valores inicial y final de un bucle FROM deben ser diferentes. Si el valor inicial es menor que
el valor final, no se puede especificar un valor negativo en la declaracion STEP, y viceversa.

Profundizando en la escritura de texto en la pantalla:

Hasta ahora para trabajar con textos en pantalla hemos utilizado las funciones write,write_var, delete_texty
poco mas. Pero hay mas funciones relacionadas con los textos.

92

move_text(l,mivarl,100);
frame;
end
end

Move_text tiene tres parametros: el identificador del texto que se quiere mover, y la nueva coordenada X y
Y donde se quiere mover.Fijate que como valor del primer parametro en el ejemplo ponemos un 1, porque
recuerda que write devuelve siempre (aunque nosotros no lo recojamos) el identificador tinico del texto que
escribe, y siempre empieza por el nimero 1 y va aumentando (2,3...) por cada nuevo texto que se imprime.
Asi pues, en vez de borrar y reescribir el mismo texto, simplemente se mueve a la coordenada
(mivar1,100).

Fijate ademas en otro detalle. Para poder utilizar move text hemos tenido que escribir previamente el texto
con write (para conseguir su identificador). Es decir, que el funcionamiento es imprimir una vez el texto en
una posicion inicial de pantalla, y posteriormente, irlo moviendo. Por tanto, el write lo hemos sacado fuera
del while, porque s6lo imprimiremos el texto una sdla vez, la primera.Y el delefe text lo hemos quitado
porque ya no hace falta.

Bueno, ahora cambiaremos un poco el programa y afiadiremos otro texto que diga “;Y adios!”,
pero que permanecera fijo en pantalla.Y lo que haremos sera cambiarle el color.Asi:

Program MiPrimerPrograma;

Private
int mivarl;
End
Begin
mivarl=10;
write(0,10,100,1,";Hola mundo!");
set_text_color(25);
write(0,250,50,1, Y adios!”),
while(mivarl<320)
mivarl=mivarl+1;
move_text(l,mivarl,100);
frame;
end
end

Lo que hemos introducido de novedad es la funcion set text color. Esta funcion cambia el
color de los textos impresos por TODOS los comandos write que aparezcan a partir de entonces en el
codigo el codigo fuente.; Y cual es el nuevo color? El que se especifique como valor en el inico parametro
que tiene.

Este numero es, en el modo de 16 bits, el resultado de mezclar unas componentes RGB
determinadas . Me explico.

Todos los colores en la pantalla del ordenador se forman a partir de tres colores basicos, que
son el rojo, el azul y —atencion- el verde. El negro absoluto es la falta de color, y por tanto es aquel color
que no contiene ni pizca de los tres colores basicos, es decir, el que tiene sus componentes RGB (Red-

93

Green-Blue, o Rojo-Verde-Azul en espafiol) a cero. El blanco entonces seria aquel que tiene cada uno de
sus componentes RGB al méaximo valor (porque el blanco es la suma de los colores primarios en plenitud).
Cualquier color de entremedio tendra una cierta cantidad de R, una cierta cantidad de G y otra de B.

Se denomina modo de 16 bits porque se reserva esta cantidad de memoria para generar el
color: en concreto, 5 bits para el rojo, 6 para el verde y 5 para el azul. En este tipo de graficos, no se utiliza
paleta, a diferencia del de 8 bits.

Has de saber que también existen graficos de 24 bits (donde cada componente tiene reservado
8 bits), con lo que el nimero de combinaciones (y por tanto, de colores) posibles aumenta de forma muy
sensible respecto los demas modos graficos. La mala noticia es que Fénix ain no los soporta. Y para
rematar el asunto, también existen los graficos de 32 bits, que son iguales que los de 24 pero reservan 8 bits
para informacion sobre la posible transparencia.

En este manual vamos a trabajar siempre, salvo advertencia expresa, con graficos de 16 bits.
En este modo grafico, para poder utilizar un color determinado a partir de sus componentes RGB lo normal
es hacerlo con cualquier programa de edicion de imagenes. No hay ningin secreto: se eligen las
componentes de color a partir del cuadro de didlogo correspondiente y se pinta con la herramienta
seleccionada. Por defecto, tanto el MSPaint como el Gimp (por poner dos ejemplos de programas que
usaremos mas) guardan las imagenes que sean PNG en 24 bits, pero esto no sera ningiin problema porque
Fénix al cargarlas las convierte automaticamente en 16 bits -perdiendo informacion en el proceso, eso si- ,y
por tanto, no tendremos que preocuparnos de nada.

Si quisieras crear con el Gimp una imagen de 8 bits paletizada (en algin lugar de este manual lo
necesitaremos, como por ejemplo en el apartado del seguimiento de caminos con las funciones
PATH *,0 en la creacion de scrolls Modo7), deberias, antes de guardarla, de cambiarla a modo 8 bits,
yendo al menu "Imagen->Modo->Indexado" y elegir la paleta deseada.

No obstante, si el color lo quieres utilizar programando en Fénix, tendras que usar una nueva
funcion, la funcion RGB(). Esta funcion tiene tres parametros, que son respectivamente la cantidad de rojo
que queremos para nuestro nuevo color, la cantidad de verde y la cantidad de azul. El minimo es 0 -no hay
nada de esa componente en nuestro color- y el maximo es 255. Asi pues, para generar el negro tendriamos
que escribir algo asi como rgb(0,0,0), y para generar el blanco rgb(255,255,255). Para generar el rojo mas
intenso, tendriamos rgb(255,0,0); asimismo, para el verde mas intenso rgb(0,255,0); para el azul mas
intenso, rgb(0,0,255);, y a partir de aqui, con todas las combinaciones que se nos ocurran podremos crear
los colores que queramos.

Pero si nos fijamos bien en el ejemplo anterior, la funcion set_text color tiene como valor de
su parametro el nimero 25. ;Qué quiere decir esto?. En realidad, cada color viene identificado por un
numero. De hecho, lo que hace la funcién rgb() es devolver un nimero, un Unico nimero resultado de
realizar complicados calculos matematicos a partir de las cantidades de las componentes. Y este nlimero
entero es el que realmente identifica al color en si. Por lo tanto, ese nimero 25 identifica a un determinado
color de entre todos los posibles que se podrian obtener a partir de todas las combinaciones de las
componentes. Como este resultado del complejo calculo de mezcla puede depender de la tarjeta grafica que
se tenga, mas que poner un numero directamente es mas recomendable utilizar la funcion RGB, ya vista,
porque asi tendremos mas control sobre el color que queremos que aparezca. Es decir, que poniendo el
numero 25 podriamos encontrarnos que para un ordenador el color n® 25 es parecido al fucsia y en otro
ordenador es mas parecido al marron. Por lo tanto, seria mas seguro poner set text color(rgb(255,0,0));
para imprimir los textos que venga a continuacioén de color rojo puro, por ejemplo.

Existe una funcion inversa a RGB() llamada GET RGB(), que a partir de un niimero entero que identifica a
un color, obtiene la cantidad correspondiente de su componente roja,verde o azul. Esta funcion es un poco
mas avanzada (y menos util) y la veremos en proximos capitulos

94

También existe otra funcion, GET TEXT COLOR(), la cual no tiene ningiin parametro y lo que devuelve
es un numero que corresponde al color con el que en este momento se estan escribiendo los textos.

Es decir, que en ejemplo anterior, si se utilizara esta funcion,devolveria el nimero 25.

Volvamos a nuestro ejemplo. Nota que el nuevo texto permanecera fijo porque el move text sélo afecta al
texto con codigo 1, y como “iY adios!” se imprime después de “jHola mundo!”, “;Y adiés!” tendra
automaticamente el codigo 2.

Por tultimo, un ejercicio. ;Como hariamos para hacer que el texto “;Y adios!”, que ahora esta
fijo, realice un scroll horizontal, y que lo ademas haga de derecha a izquierda? Pues asi:

Program MiPrimerPrograma;

Private
int mivarl;
End
Begin
mivarl=0;
write(0,10,100,1,";Hola mundo!");
set_text _color(25);
write(0,320,50,1, Y adios!”);
while(mivarl<320)
mivarl=mivarl+2;
move_text(l,mivarl,100);
move_text(2,320-mivarl,50);
frame;
end
end

Hacemos que el segundo texto (cddigo identificador 2) se mueva también,procurando que la
coordenada X inicial sea la mas a la derecha posible (320) y que en cada iteracion vaya disminuyendo para
asi irse moviendo hacia la izquierda.Cuando “mivarl” valga 0, el primer texto se imprimira en (0,100) y el
segundo en (320,50); cuando “mivarl” valga 100 el primer texto se imprimira en (100,100) y el segundo en
(220,50), cuando valga 320 el primer texto se imprimira en (320,100) y el segundo en (0,50)...

Otro ejemplo un poco mas avanzado y bonito: un texto oscilante. En este caso utilizamos junto con
move_text la funcion get disty, que no me hemos visto y que se estudiara mas adelante.

Program lala;
private
int var=10;
int idtexto;
end
Begin
set_mode (800,600,16),;
idtexto=write(0,100,30,4, "texto oscilante");
Loop
var=var+22500;
move_text(idtexto, 100+get disty(var,20),30);

95

Frame;
If(key(esc)) Break,; End
End

End

Dejando de banda los ejemplos anteriores, hay otros detalles importantes relacionados con los
textos en pantalla, como la variable entera global predefinida TEXT Z que, al modificarla, estamos
cambiando la profundidad a la que se escriben los textos que se escribiran a partir de entonces. Esta
variable es util por si nos interesa que los textos queden detras o delante de algun grafico (ya que éstos -ya
lo veremos- también tienen una profundidad regulable) , o detras del fondo para hacerlos invisibles....

Cuanto mas "atras", mas alejado queramos poner el texto, mayor sera tendra que ser su valor
-hasta el maximo que permite el tipo Int- , y cuanto mas "adelante", mas cercano queramos escribirlo,
menor tendra que ser. Por defecto, si no se indica nada, los textos se escriben con un valor de TEXT Z
igual a -256.

Que esta variable sea "predefinida" significa que no es necesario declararla en ningun sitio: se
puede usar directamente con ese nombre en cualquier parte de nuestro codigo. Eso si, para la tarea que
tiene asignada (cambiar la profundidad del texto), no para otra cosa. Lo de que sea "global" no nos importa
ahora: ya se explicara en posteriores capitulos.

También disponemos de las funciones text height() y text width(), dos funciones que, pasandoles como
primer parametro el identificador correspondiente a la fuente de letra que se quiera utilizar (si no queremos
usar ninguna concreta y con la predefinida del sistema nos basta, tendremos que escribir un 0), y como
segundo parametro un texto cualquiera, nos devuelven el alto y el ancho, respectivamente, de ese texto en
pixeles (es decir, la altura o ancho del caracter mas grande que vaya a dibujarse de toda la cadena), pero sin
llegar a escribir nada: algo importante para calcular en qué posicidon escribir ese u otro texto, antes de
hacerlo de forma efectiva.

Algunos ejemplos mas de cédigos fuente:

A continuacidén mostraré unos cuantos codigos fuente, sin explicarlos, a modo de sintesis de
todo lo que ha explicado hasta ahora. En estos codigos no se introduce ninglin concepto nuevo: han de servir
como refresco y ejemplo practico de todo lo leido hasta ahora. Si se han comprendido las ideas basicas de
programacion (condicionales, bucles,variables...) no deberia de ser dificil adivinar qué es lo que hacen cada
uno de los codigos siguientes, (antes de ejecutarlos, por supuesto).

Primer ejemplo:

program ejemplol;

private
int mivarX=33,//Un valor inicial cualquiera
int mivarY=174, //Un valor inicial cualquiera
end
begin

set_mode(320,200,16),

loop
mivarX=rand(0,320);
mivarY=rand(0,200);

96

if(mivarX>100 and mivarX <250 and mivarY>50 and mivarY<150)

continue;
end
write(0,mivarX,mivarY,4,".");
frame;

end
end

Con este codigo se podria jugar a poner un delete text(0) justo antes del write,para ver qué
efecto curioso da (y asi tampoco dara el error de “Demasiados textos en pantalla”), aunque haciendo esto
no se notara el efecto del bloque IF/END.

Segundo ejemplo:

program ejemplo2;

private
int columna,
int fila;
end
begin
set_mode(320,200,16),
for(columna=1;columna<=>5;columna=columna+1)
for(fila=0,fila<5,fila=fila+1)
write(0, (columna*20)+30,(fila*20)+30,4,"*"),
frame;
end
end
loop
frame;
end
end

Con este codigo también se podria jugar a poner un delete text(0)) delante del write para
observar mejor como cambian en las distintas iteraciones los valores de las variables “columna” y “fila”.

Explico un poco el codigo: fijate que hay dos FOR anidados: esto implica que por cada
iteracion que se produzca del FOR externo for(columna=1;...) -en total son 5: de 1 a 5-, se realizarén 5
iteraciones del FOR interno for(fila=1I,...) —de 0 a 4-, por lo que se acabaran haciendo finalmente 25
iteraciones con los valores siguientes: columna=1 y fila=0, columna=1 y fila=1, columna=1 y fila=2,
columna=1 y fila=3, columna=1 y fila=4, columna=2 y fila=0, columna=2 y fila=1, etc. Luego ya so6lo
basta imprimir el signo * en las coordenadas adecuadas para dar la apariencia de cuadrado.

Un detalle interesante es observar qué pasa si eliminamos la linea frame, del interior de los
bucles FOR. El cuadrado se vera igual, pero de golpe: no se vera el proceso de impresion gradual de los
asteriscos. Esto es facil de entender. Si mantenemos la orden frame dentro de los FOR, en cada iteracion
estaremos obligando al programa a mostrar por pantalla el resultado de los calculos que ha realizado desde
el ultimo frame anterior. Pero en cambio, si no lo ponemos, los calculos se realizaran igualmente —las
iteraciones y la orden wrife se ejecutaran- pero no se mostrara ningin resultado visible hasta que se
encuentre con alguna orden frame;,orden que aparece en el bloque LOOP/END del final (necesario para
permitir que el programa continie ejecutandose indefinidamente y no se acabe ipsofacto). Por tanto,
cuando, una vez que el programa haya salido de los FOR anidados, se encuentre la primera vez con el
frame, del interior del LOOP, “vomitara” de golpe en la pantalla todo aquello que ha venido calculando y
“escribiendo” hasta entonces, por lo que el cuadrado de asteriscos aparecera directamente completo.

97

Una variante interesante de este codigo es el siguiente:

program ejemplo2;

private
int columna;
int fila;
end
begin
set_mode(320,200,16),
Jfor(columna=1;columna<=35;columna=columna+1)
for(fila=1,fila<=columna,fila=fila+1)
write(0, (columna*20)+30, (fila*20)+30,4,"*"),
frame;
end
end
loop
frame;
end
end

Lo unico que se ha cambiado son los valores de los elementos que componen el FOR mas
interno. Fijate que ahora este FOR realizara tantas iteraciones como el valor de “columna” le permita,
porque ahora el limite maximo de iteraciones de este FOR viene impuesto por dicho valor. Es decir, que
tendremos este orden de valores para las dos variables: columna=1 y fila=1, columna=2 y fila=1,
columna=2 y fila=2, columna=3 y fila=1, columna=3 y fila=2,columna=3 y fila=3, etc. Por eso sale ese
triangulo.

Si queremos que salga otro tipo de triangulo podriamos hacer:

program ejemplo2;

private
int columna;
int fila;
end
begin
set_mode(320,200,16),
for(fila=1,fila<=5,fila=fila+1)
for(columna=1,;columna<=fila;columna=columna+1)
write(0, (columna®20)+30, (fila*20)+30,4,"*"),
frame;
end
end
loop
frame;
end
end

O bien,otra manera seria:

program ejemplo2;

98

private

end
begin

end

int columna;
int fila;

set_mode(320,200,16);
Sfor(fila=S5,fila>=1,fila=fila-1)

for(columna=35;columna>=fila; columna=columna-1)
write(0, (columna*20)+30, (fila*20)+30,4,"*"),

frame;
end
end
loop
frame;
end

private

end
begin

end

O ésta:

private

end
begin

Podemos "pintar" mas figuras curiosas como ésta:

program ejemplo?2;

inti;

set_mode(320,200,16),

for(i=100;i<=200;i=i+10)
write(0,i,50,4,"*");
write(0,i,100,4,"*");

end

Sfor(i=50,i<=100;i=i+10)
write(0,100,i,4,"*");
write(0,200,i,4,"*");

end

loop
frame;
end

program ejemplo?2;

inti;

set_mode(320,200,16),

Sfor(i=75;i<=125,i=i+10)
write(0,i,65,4,"*");

end

Sfor(i=50,i<=100;i=i+10)

99

write(0,100,i,4,"*");
end

loop
frame;
end
end

Y ya para acabar, un juego. Evidentemente, el siguiente codigo no escribird nada en pantalla. ;Por qué?

program ejemplo2;

private
int columna;
int fila;
end
begin
set_mode(320,200,16);
for(fila=0,fila>=1,fila=fila-1)
for(columna=35;columna>=fila,; columna=columna-1)
write(0, (columna®20)+30, (fila*20)+30,4,"*"),
frame;
end
end
loop
frame;
end
end

Tercer ejemplo:

El siguiente ejemplo imprimird por pantalla los 20 primeros niimeros de la serie de Fibonacci. La serie de
Fibonacci es una secuencia de numeros enteros que tiene muchas propiedades matematicas muy
interesantes, y que en la Naturaleza se ve reflejada en multitud de fenomenos.

La serie de Fibonacci comienza con dos numeros 1. A partir de ahir, los nimeros que forman
parte de esta serie han de cumplir lo siguiente: ser el resultado de la suma de los dos nimeros anteriores. Es
decir, el siguiente numero ha de ser la suma de los dos 1. Por tanto, 2. El siguiente numero ha de ser la
suma de un 1 con ese 2. Por tanto, 3. Y asi.Es facil ver, por tanto, que el resultado que queremos que
obtenga nuestro programa ha de ser el siguiente:

1123581321345589 144 233 377 610 987 1597 2584 4181 6765

Antes de nada, hay que decidir qué bucle utilizaremos para imprimir estos niumeros (porque
estd claro que utilizaremos un bucle, ;no?). Como queremos exactamente 20 nimeros, lo mas sencillo y
directo es utilizar un bucle FOR, porque con este bucle tenemos controlado cuantas iteraciones
exactamente queremos realizar (en este caso, 20). Asi que el codigo fuente es el siguiente:

program ejemplo3;
private
int num=1;
int num2=1;

100

int suma,
int cont;
end
begin
set_mode(640,480,16);
//Imprimimos los dos primeros numeros de la serie (1 y 1)
write(0,200,10,4,num);
write(0,200,20,4,num?2);
for(cont=3;cont<=20,;cont=cont+1)
suma=num-+num2;
write(0,200,cont*10,4,suma);
/*Corremos los numeros."num" se pierde, "num2" pasa a ser "num" y "suma" pasa a ser "num2"*/

num=num?2;
num2=suma,
frame;

end

loop
frame;

end

end

Otro ejemplo de programa "matematico", el cual escribe por pantalla los quince primeros nimeros que
cumplen ser multiples de 3 pero no de 6:

program ejemplo2;

private
int i=0;
int cont=0;
end
begin
set_mode(320,200,16),
loop
i=i+1;
if(i%3==0 and i%6!=0)
write(0,20+3%i,100,4,i + ".");
cont=cont+1;
end
if(cont==15) break, end
end
loop
frame;
end
end

(Sabrias decir antes de ejecutar este codigo, qué es lo que saldra por pantalla?

program ejemplo2;
private
int i=0;
int result;

end

101

begin
set_mode(320,200,16),
Sfor(i=1;i<=20;i++)
result=i*i;
write(0,150,10*i,4,result),
end
loop
frame;
end
end

(Entiendes las operaciones matematicas que se utilizan en este ejemplo?

program hola;

private
inta=57;

end

begin
write(0,160,90,4, "Tengo billetes de 5 euros y monedas de 2 y I euro.");
write(0,160,100,4,"Para conseguir " + a + " euros necesito");
write(0,160,110,4,a/5 + " billetes y " + (a%5)/2 + " monedas de 2y " + (a%5)%2 + " monedas de 1");
loop
frame;
end

end

102

CAPITULO 3: INCLUSION DE GRAFICOS

Todos los ejemplos que hemos hecho hasta ahora no han incluido ningun tipo de grafico: solo textos.
Es evidente que para disefiar un juego necesitaras graficos, ademas de posiblemente musica y otros efectos.
En este capitulo se tratara las diferentes maneras de incluir los graficos de nuestro juego.

Los modos de pantalla:

Hasta ahora, la pantalla donde se visualizaba cualquier programa era de un tamafo de 320x240
pixeles, ya que no habiamos indicado nada que dijera lo contrario. Una de las cosas que debemos aprender
primero es configurar el modo de pantalla, es decir, la resolucion de nuestro juego. Esto es un paso
importante porque determina muchas cosas del juego, como el tamafio de los graficos o los recursos
necesarios: a grandes resoluciones tenemos gran cantidad de pixeles (puntos) en la pantalla, gracias a eso
conseguimos una mayor nitidez en la imagen y se reduce el efecto de bordes dentados o los escalones, pero
a cambio, los graficos deben ser mas grandes y por lo tanto aumenta la cantidad de calculos que tiene que
hacer el ordenador.

Para establecer la resolucion de nuestro juego (o sea, establecer el "modo grafico"), se utiliza la
funcion set_mode.

Es valido llamar a esta funciéon aunque ya haya un modo grafico en funcionamiento, sea para
cambiar la resolucién de pantalla, o pasar de ventana a pantalla completa, por ejemplo, aunque se
recomienda llamar a set_mode nada mas comenzar el programa, para evitar efectos de parpadeo al iniciar el
modo grafico dos veces.

Esta funcion tiene cuatro parametros, (los dos ultimos opcionales). Los dos primeros son
justamente la resolucién horizontal y vertical del juego respectivamente. Algunos valores posibles son:
320x200, 320x240 —por defecto-, 320x400, 360x240, 376x282, 400x300, 512x384, 640x400, 640x480,
800x600, 1024x768 o 1280x1024.En el caso de que se escriba una resolucion no soportada, Fenix tratara
de emularla estableciendo la resoluciéon siguiente de mayor tamafio y dibujando un borde negro
automaticamente alrededor, creando un efecto Cinemascope. Probémoslo:

Program ejemplo;

Begin
Set_mode(640,480);
Loop
Frame;
end
End

El tercer parametro de set mode puede tener dos valores: el nimero 8 (o de forma equivalente, la
palabra MODE 8BITS) o el niimero 16 (o de forma equivalente, la palabra MODE 16BITS). Este
parametro sirve para indicar la profundidad de color a la que funcionara el juego. Fijate que un juego en
Fénix so6lo puede usar pues la profundidad de 8 bits (256 colores) o 16 bits (color de alta densidad). Una
profundidad de 16 es mas que suficiente para alcanzar todas las tonalidades que el ojo humano es capaz de
distinguir, asi que en principio no es imprescindible profundidades mayores, las cuales acarrearian mas
carga de procesamiento por parte del intérprete. Ya que este parametro es opcional, si no se escribe nada se
sobreentiende que la profundidad sera de 8 bits.

Por defecto, esta funcion inicializa un modo grafico en ventana. El cuarto parametro permite
especificar un modo grafico a pantalla completa, ademas de otros parametros adicionales. Si este parametro

103

se especifica —es opcional- , puede ser una combinacion (suma) de uno o mas de los valores -sin comillas-
siguientes:

MODE_FULLSCREEN Crea un modo a pantalla completa. Trabajando a pantalla completa
podemos usar cualquier resolucion que admita nuestra tarjeta de video y el
monitor. Nosotros vamos a trabajar en modo ventana por varios motivos:
por ejemplo, si trabajamos en pantalla completa no podemos ver los
errores que cometemos:si hay demasiados textos en pantalla deberia salir
una ventana informandonos de ello y al aceptar se cerraria el programa,
pero en pantalla completa la ventana no se ve y el programa se cuelga.

MODE_WINDOW Crea un modo en ventana —por defecto-.

MODE 2XSCALE Dobla la resolucién grafica de nuestro juego. Los bordes de los graficos
apareceran suavizados.

MODE_HARDWARE Crea una superficie en buffer de video para la ventana o pantalla.
Normalmente, Fenix dibuja sobre la memoria RAM del ordenador y copia
el resultado en la memoria de la tarjeta grafica. Con este parametro
activado, Fenix dibujara directamente sobre la memoria de video. Esto
acelera algunas operaciones, pero enlentece otras (como por ejemplo, el
dibujo con transparencias).

MODE_DOUBLEBUFFER Habilita un segundo buffer. Su interés suele venir en combinacion con
MODE HARDWARE.

MODE_MODAL Hace que la ventana se abra en modo MODAL, evitando que la ventana
pierda el foco y confinando el movimiento del raton a su superficie.
MODE_FRAMELESS Crea una ventana sin bordes.

De manera alternativa, en vez de especificar los valores de la tabla anterior como cuarto parametro de la
funcion set_mode, también existe la posibilidad de asignarlos a una variable global predefinida llamada
GRAPH MODE. Esa asignacion se ha de producir antes de la llamada a set_mode para que funcione.

Por ejemplo, el siguiente codigo hace uso indistinto o bien de la variable GRAPH MODE o bien de utilizar
su valor como cuarto parametro de set mode. Si lo ejecutas veras que este ejemplo pondra la ventana del
programa inicialmente a pantalla completa, al cabo de un segundo cambiard la resoluciéon y pondra la
ventana "normal", seguidamente volvera a cambiar la resolucion y pondra la ventana sin marcos, y
finalmente, volvera a cambiar la resolucion y pondra la ventana en modo modal:

program hola;

begin
set_fps(1,1); //Pronto se explicara para qué sirve esta funcion.Para entender el ejemplo no es importante.
graph_mode=mode_fullscreen;
set_mode(640,480,16);
frame;
set_mode(320,240,16, mode window);
frame;
set_mode(800,600,16, mode_frameless),
frame;
graph_mode=mode_modal;
set_mode(640,480,16);
frame;
loop

frame;

end

104

end

Y todavia un dato mas: la variable GRAPH MODE también puede valer, aparte de los valores anteriores,
los dos valores del tercer parametro de set_mode: mode 8bits 0 mode 16bits, de manera que esta variable
puede servir para especificar ambas cosas a la vez (profundidad de color y modo grafico) sumando los
valores respectivos. Por ejemplo, si estableciéramos GRAPH MODE=mode 8bitstmode frameless;
tendriamos una profundidad de 8 bits en una ventana sin marco. Si hiciéeramos GRAPH MODE=16,
tendriamos una profundidad de 16 bits y como no se especifica nada mas, el modo grafico seria el por
defecto, que es la ventana "normal". Depende de los valores que se le asignen, entonces no haria falta
especificar ni tercer ni cuarto pardmetro en set_mode, ¢l cual solo serviria para establecer la resolucion.

Que sepas que también existe otra variable global predefinida llamada FULL SCREEN, la cual
puede valer "true" (1) o "false" (0) que se puede utilizar como alternativa tanto al cuarto parametro de
set_mode como a la propia variable GRAPH MODE si se desea especificar simplemente si el juego
funcionard a pantalla completa o no, respectivamente.

Si la funcion set_mode crea una ventana de juego, ésta utilizara por titulo el nombre del fichero
DCB y un icono estandar. La funcion set title establece el titulo de la ventana del juego (el cual se pasa
entre comillas como el tinico parametro que tiene), y la funcion set_icon usa un grafico determinado como
icono para mostrar en la barra de titulo de la ventana del juego (el funcionamiento de esta funcion lo
estudiaremos posteriormente, cuando hayamos introducido el uso de gréficos).Es recomendable siempre
usar estas funciones (set_title y set_icon) inmediatamente antes de cada llamada a set mode que se haga en
el programa, ya que si después de estas funciones no aparece la funcion set mode, no se visualizaran sus
efectos.

Por ejemplo, si quisiéramos hacer que nuestro juego funcionara a 800x600 de resolucién, con
profundidad de 16 bits, con ventana modal sin bordes, tendriamos que escribir lo siguiente:

Program ejemplo;

Begin
Set_ mode(640,480, MODE 16BITS, MODE MODAL + MODE FRAMELESS);
Loop
Frame;
end
End

Si queremos que se vea un titulo, hemos de hacer que se vean los bordes:

Program ejemplo;

Begin
Set title(“Prueba”);
Set_mode(640,480,MODE 16BITS, MODE MODAL);
Loop
Frame;
end
End

Configuracion de los frames per second (FPS):

Lo siguiente que haremos sera definir el nimero de imagenes por segundo que vamos a visualizar.

105

Ya he comentado que cualquier animacion o imagen en movimiento se consigue haciendo dibujos similares
con pequenas diferencias, por ejemplo, de posicion. Esto es lo que se hace en la television, se muestran
imagenes fijas a mucha velocidad, una tal que el ojo humano no pueda diferenciarlo. Pues nosotros
podemos decidir cuantas imagenes por segundo vamos a ver, o como se dice en inglés, los “frames per
second” (FPS).

Si estas curtido en videoconsolas, ya habras oido aquello de juegos a 50Hz o a 60Hz (herzios) que no
es mas que la medida de imagenes por segundo que es capaz de “pintar” la television, y ciertamente
hablamos de valores muy elevados, esto viene a que es importante recalcar la utilidad de escoger un buen
“frame rate”: el ojo humano, se ha demostrado, que no es capaz de distinguir imagenes fijas a mas de 32
imagenes por segundo, pero realmente, si tienes buena vista, puedes notar que la imagen va a saltos, y a
mayor nimero de imagenes por segundo mas suave se vera el juego, y por supuesto menos perjudicial para
la vista; pero en el otro extremo tenemos los requisitos del sistema: un ordenador necesita hacer cientos de
operaciones entre imagen e imagen, como calcular la posicion de los objetos, “pintar” la pantalla, manejar
inteligencia artificial y demads, y para ello es necesario dejarle el tiempo suficiente, por eso, cuantas mas
imagenes por segundo tengamos, menos tiempo tiene el ordenador para realizar todas las operaciones y
mas rapido debe ser, de lo contrario, el juego se detendria hasta que se hubieran completado todas las
operaciones, es lo que normalmente se le llama “ralentizacion”.

A la hora de disefar un videojuego es muy importante tener presente en qué tipo de ordenadores se
va a poder jugar: si la potencia no es un problema (estan destinados a unas pedazo de maquinas que cuestan
1200€) podemos poner un numero elevado de imagenes por segundo, pero si es para ordenadores mas
modestos hay que reducir ese valor, incluso sacrificar algo de suavidad en los movimientos a favor de la
velocidad general del juego. Yo te recomiendo que, a la hora de valorar la situacion, te mantengas en unos
valores entre 30 y 60 iméagenes por segundo, aunque realmente, con las maquinas que hay ahora, los juegos
que vas a realizar y el rendimiento general que estan consiguiendo el equipo de desarrollo de Fénix, es facil
que puedas usar los 60 FPS en casi todos tus juegos sin problemas.

Para especificar un valor de fps, se utiliza la funcion Set fps.Si escribimos por ejemplo
Set_fps(60,1);, lo que estaremos diciendo al ordenador es que trabaje a 60 imagenes por segundo.

Quizas te llame la atencidn el segundo pardmetro. Ese 1 es algo que puede ayudar al rendimiento,
porque le da permiso al ordenador literalmente a “saltarse 1 frame". Es decir, le dice al ordenador que en
cada segundo, si le falta tiempo, puede ahorrarse una vez el “dibujar” en la pantalla, lo que puede provocar
un salto en la secuencia de la imagen. Visualmente esto no es aceptable, pero darle un cierto margen al
ordenador para que termine su trabajo a tiempo es algo mas que recomendable, sobre todo si los equipos
que van a ejecutar tu juego son mas bien modestos. La cifra puede variar entre 0 (sin saltos) y el nimero de
saltos por segundo que tu quieras.

Como nota adicional, si especificamos un valor de 0 FPS, le estamos diciendo al ordenador que
ejecute el juego tan rapido como sea posible, de tal manera que cuanto mas rapido sea el ordenador mas
ligero ira el juego (esta utilidad estd especialmente recomendada para programas que deben mostrar
resultados en pantalla cuanto mas rapido mejor, como dibujar una grafica o contar bucles, pero si se usa
para juegos piensa en como ira en un Pentium a 133Mhz y luego en un Pentium IV a 1.7GHz). También,
desde el mismo equipo de desarrollo de Fénix, se recomienda usar, al menos, un salto de frame (yo pondria
tres) para mejorar el rendimiento general.

Para jugar un poco con esta funcion, recuperemos el primer programa que hicimos, el del scroll
horizontal de un texto:

Program MiPrimerPrograma;

Private

106

int mivarl;

End
Begin
mivarl=10;
while(mivarl<320)
delete_text(0),
mivarl=mivarl+2;
write(0,mivarl, 100,1,"Hola mundo!");
frame;
end
end

Vemos que aqui no hay ninguna funcion Set fps. Si no aparece, se toma por defecto el valor de 25
fps. Afiadamos la orden, con un valor de 60 fps. ;Qué es lo que ocurrira?:

Program MiPrimerPrograma;

Private
int mivarl;
End
Begin
Set fps(60,1);
mivarl=10;
while(mivarl<320)
delete_text(0),
mivarl=mivarl+2;
write(0,mivari, 100,1,"Hola mundo!");
frame;
end
end

El scroll se mueve mas rapido. Esto es logico: estamos obligando a que se pinten mas fotogramas en cada
segundo. Es decir,estamos forzando a que el ritmo de ejecucion del programa sea tal que la orden frame; se
ejecute 60 veces por segundo, o al menos 59. Es otra manera de decir que Set fps establece la velocidad
del juego. Es facil ver esto si ponemos que se vea un frame cada segundo:

Program MiPrimerPrograma;

Private
int mivarl;

End

Begin
Set fps(1,1);
mivarl=10;
while(mivarl<320)

delete text(0);
mivarl=mivarl+2;
write(0,mivarl, 100,1,"Hola mundo!");
frame;
endi

107

end

Vemos que el texto se mueve en cada segundo, porque es la frecuencia a la que se ejecuta FRAME.

Existe una manera de visualizar en todo momento a cuantos FPS funciona un programa mientras
éste se esta ejecutando (ya que este valor, segin lo que hayamos puesto como segundo parametro de
set fps, puede ir variando). Esto es interesante para detectar cuellos de botella en determinados momentos
de la ejecucion de un programa debido al uso excesivo de recursos de la maquina (memoria, disco, CPU...)
por parte de éste. Simplemente tienes que poner en cualquier sitio entre el BEGIN/END del programa
princpal -aunque se recomienda al principio de todo, justo después de set fps-:

write_var(0,100,100,4,fps),

Lo que estamos haciendo simplemente es imprimir por pantalla el valor actualizado de una variable,
llamada obligatoriamente "FPS", que nos marcaré precisamente lo que queremos: a cada frame nos dira a
cuantos FPS esta funcionando nuestro programa. Esta variable NO LA TIENES que declarar: ya viene
declarada por defecto en Fénix: es decir, ya esta lista para usar (dentro de write_var como hemos puesto o
en cualquier otro sitio) y no tienes que hacer nada més. Esta variable es una (entre otras muchas) de las
llamadas "variables predefinidas" de Fénix, y en concreto, es una variable predefinida global. Tranquilo:
sobre los tipos de variables ya hablaremos en el capitulo siguiente.

La funcion set_fps la puedes invocar en cualquier punto de tu c6digo, con lo que podras alterar la
frecuencia de frames por segundo segiin convenga (si el personaje esta en una fase u otra del juego,etc).

Concepto de FPG. La aplicacion “FPGEdit” y la utilidad de linea de comandos “fpg.exe”:

Todavia no hemos pintado ningin grafico. Ya es hora. Antes de nada, hay que disponer de los
graficos a utilizar. Estos se pueden crear,ya lo hemos visto, de multiples maneras. Aconsejo utilizar el
Inkscape para creacion de graficos vectoriales muy eficaces o el Gimp para mapas de bits. Si no los tienes
instalado, puedes usar cualquier otro programa. A malas, siempre podras usar el limitado MSPaint, que ya
es suficiente para hacer nuestras pruebas.

Una vez que tenemos los graficos, ;cémo los incluimos en el cédigo de nuestro programa para que
se muestren? Hay dos maneras: o referenciar uno a uno cada grafico que utilicemos en el juego de forma
independiente, o haber generado antes un fichero unico que sirva de paquete contenedor de los graficos, de
manera que solamente se referencie en el codigo ese archivo, a partir del cual se pueden localizar los
graficos individuales. Este archivo contenedor ha de tener la extension FPG. Asi que el FPG es como un
cajon, un almacén donde se guardan todos los graficos. Ambas soluciones son validas, aunque cuando el
numero de graficos empieza a ser elevado, es conveniente irlos empaquetando en unos pocos FPG
dependiendo de su funcioén especifica dentro del juego, para tener una clasificacion més o menos clara de
los graficos: asi, tendriamos los archivos fondos.fpg, enemigos.fpg,etc conteniendo los distintos graficos de
fondos, enemigos,etc respectivamente.

La pregunta que surge ahora es: si ya se tienen los graficos, y si quieren utilizar ficheros fpg,
,como se crean éstos? Existen varias aplicaciones que realizan este proceso, e incluso se la puede
programar uno mismo con Fénix,pero la aplicacion mas extendida y solvente actualmente es “FPGEdit"
disponible en la web de recursos de Fénix, FenixWorld (http:/fenixworld.se32.com), en concreto en el
enlace http:/fenixworld.se32.com/download.php?view.36 ~, o también en SourceForge:
http://osdn.dl.sourceforge.net/sourceforge/cdiv 0 http://cdiv.sourceforge.net/html/down/down.htm.,.
También se encuentra incluido en el Fenix Pack (http://fenixpack.blogspot.com)

108

http://fenixpack.blogspot.com/
http://cdiv.sourceforge.net/html/down/down.htm
http://cdiv.sourceforge.net/html/down/down.htm
http://osdn.dl.sourceforge.net/sourceforge/cdiv
http://fenixworld.se32.com/download.php?view.36
http://fenixworld.se32.com/

El FPGEdit es muy sencillo de utilizar: basta recorrer el disco duro mediante el arbol que aparece
en la zona superior izquierda de la ventana del programa en busca de las imagenes que queremos incluir en
el FPG. A medida que nos movamos por las diferentes carpetas, iran apareciendo listadas las imagenes
incluidas en su interior, en la parte superior derecha de la ventana del programa.Seguidamente, hemos de
decirle que queremos crear un nuevo fichero FPG e introducir en él los graficos que deseemos.Esto se hace
utilizando la parte inferior de la ventana del programa, donde crearemos el FPG. En el cuadro que aparece
cuando queremos crear un FPG nuevo, escogeremos la ruta donde se grabara el archivo FPG con el nombre
que queramos y como tipo de FPG el de 16 bits de Fénix (jesto es muy importante!) y a partir de ahi iremos
seleccionando desde la zona superior derecha de la ventana los graficos que deseamos incluir (se pueden
seleccionar varios manteniendo pulsada la tecla CTRL) , arrastrandolos y soltandolos en la zona inferior de
la ventana

Fijate, es importante, que cada grafico, una vez incluido en el FPG, tendréa asociado un nimero de
tres cifras. Este nimero sera el identificador unico de ese grafico en aquel codigo fuente donde se utilice el
FPG. Es decir, que cuando se quiera hacer referencia a ese grafico en el codigo, aparte de decir en qué FPG
esta incluido, habra que decir cual es el nimero concreto que corresponde al grafico buscado. Como podras
deducir, “s6lo” caben hasta 999 graficos en un FPG(el 000 no vale), y puedes comprobar que ese codigo lo
puedes cambiar segun tus intereses (con el boton "Edit" de la barra superior de la zona inferior de la
ventana), siempre que mantengas que es un nimero unico para ese FPG. Una vez hayamos seleccionado
los graficos que queriamos, hemos de guardar el fichero FPG.Y siempre podremos abrir un archivo FPG ya
creado para editarlo: quitar o poner nuevas imagenes o cambiar sus codigos identificativos,etc.

Si entras en la carpeta donde tienes guardados el intérprete y el compilador de Fénix ("fxi.exe" y
"fxc.exe") veras que ademas hay dos ejecutables mas: "map.exe" y "fpg.exe". El primero sirve para
manipular ficheros graficos de tipo MAP, que no utilizaremos en este manual, pero el segundo si que es
una utilidad interesante.

"Fpg.exe" permite hacer operaciones basicas de edicion de un fichero FPG, como crear un
nuevo archivo FPG, anadir imagenes dentro €I, extraerlas, etc. Es algo asi como un "FPGEdit" que viene de
serie, pero sin tantas opciones (ni mucho menos), y ademas, funciona en forma de linea de comandos,
como el intérprete y el compilador. Evidentemente, el FPGEdit es mucho mas comodo, flexible y versatil
de utilizar, pero no estd de mas conocer la funcionalidad bésica de este ejecutable, el cual es oficial y forma
parta de cada version de Fénix (cosa que no pasa con el FPGEdit)

Para probar este ejecutable, lo mas fécil serd que creemos una carpeta concreta en cuyo interior
almacenaremos las imagenes que van a formar parte del FPG, y donde se guardara también el FPG creado.

En el ejemplo la ruta de esta carpeta sera "C:\hola".

Para crear un nuevo FPG de 16 bits vacio: nos situamos en la carpeta de instalacion de Fénix y
escribimos

FPG -n "C:\hola\mifpg.fpg"

donde la ruta entre comillas indica donde guardaremos el archivo recién creado, y su nombre (con
extension)

Una vez creado el FPG, queremos introducir varias imagenes en su interior. Para ello hacemos:
FPG -a "C:\hola\mifpg.fpg" "C:\hola\a.png" '"C:\hola\a.png" '"C:\hola\a.png"
La primera ruta es la del FPG de destino, y todas las rutas siguientes a partir de esta primera, indican las

rutas completas de las diferentes imagenes que se van a introducir en el FPG destino. El orden con el que
se escriban las rutas de las imagenes definira su codigo interno dentro del FPG (001,002, etc).

109

Puedes comprobar que el fichero FPG contiene lo que se espera si lo abres por ejemplo con el FPGEdit.

En vez de haber especificado los nombres de cada una de las imagenes a introducir, también se podrian
haber utilizado los comodines que ofrece el S.O Windows para el tratamiento multiple de ficheros (el
comodin *, el comodin ?, el comodin [-]), aunque en ese caso las rutas de las imagenes no han de ir entre
comillas. No obstante, este tema se sale un poco del ambito de este manual y no profundizaremos en ello:
baste comentar que la linea anterior seria equivalente a ésta:

FPG -a "C:\hola\mifpg.fpg" C:\hola*.png
Hay que tener muy presente que la opcion "-a" siempre anadira las imagenes al FPG desde el principio,
partiendo del codigo 001. Asi que sobreescribira (elimindndolas) las imagenes que ya pudieran haber

anteriormente en esas posiciones.

No es necesario crear el archivo FPG vacio primero y luego introducir las imagenes: se puede
hacre las dos cosas a la vez, asi:

FPG -n "C:\hola\mifpg2.fpg'" "C:\hola\a.png" 'C:\hola\a.png" '"C:\hola\a.png"

Otro caso frecuente es el de eliminar una imagen del interior del FPG. Para ello se ha de
especificar el codigo identificador que tiene esta imagen dentro del contenedor, asi:

FPG -d "C:\hola\mifpg.fpg" 2
Con esta orden se eliminaré la imagen con codigo 002 del interior del archivo FPG.

Si se quiere listar el contenido de un archivo FPG (es decir, saber qué imagenes contiene en su
interior), se puede escribir indistintamente:

FPG "C:\hola\mifpg.fpg" 6 FPG -v "C:\hola\mifpg.fpg" 6 FPG -1 "C:\hola\mifpg.fpg"
Si lo pruebas, verds que obtienes informacion sobre la ruta original de cada imagen, el codigo identificador
que tienen éstas dentro del FPG, el tamafio en altoxancho de cada imagen y el tipo de imagen que es

-normalmente, "bitmap"-.

Para saber qué otras opciones ofrece este ejecutable, escribir: FPG a secas.

Carga de la imagen de fondo:

Lo primero que vamos a hacer es utilizar una imagen PNG como imagen de fondo de pantalla. Como
he dicho, siempre tendremos la posibilidad de utilizar o bien imdgenes individuales o bien imdgenes
incluidas dentro del contenedor FPG. En los ejemplos siguientes utilizaremos los dos sistemas para que
los compares, pero posteriormente utilizaremos uno u otro indistintamente.

Una vez que tengas creada la imagen de fondo, (y de hecho, todas las imagenes que vayas a utilizar
en el juego), lo mds comodo es que la/s guardes en la misma carpeta donde tienes el PRG que estaras
haciendo.Asi no habra problemas de rutas y se encontraran las imagenes inmediatamente.

Si se supone que nuestra imagen PNG de fondo se llama “fondo.png", escribe el siguiente co6digo:

Program MiPrimerFondo;

private

110

intidl;

end
Begin
set_mode(600,400,16),;
idl=load png("fondo.png");
put_screen(0,idl);
loop
frame;
end
end

Fijate que hemos hecho que el juego tenga una profundidad de 16 colores. A partir de ahora siempre
trabajaremos asi. De esta manera nos evitamos posibles problemas a la hora de utilizar PNGs que han sido
creados con esta profundidad —que es lo habitual-, ya que si quisiéramos visualizar una imagen de 16 bits
teniendo definida una profundidad de 8 bits, nos daria error.

Lo novedoso empieza en la linea idl=load png("fondo.png");. Fijate que esta funcion tiene un
parametro que es el nombre de la imagen que queremos mostrar. En realidad, esta funcion lo tinico que
hace es cargar —de ahi su nombre- en memoria RAM dicha imagen, posibilitando asi su manipulacién
posterior por parte del programa. Es importante saber que cualquier imagen o sonido o video con el que
deseemos trabajar en nuestro codigo siempre tendremos que cargarlo previamente desde el disco duro a la
RAM, mediante una funciéon load XXX —dependiendo de lo que carguemos-; esto es una condicion
indispensable. De hecho, de aqui viene la importancia de tener una memoria RAM lo mas grande posible:
para que quepan cuantas mas imagenes, sonidos y videos mejor. Y también hay que tener claro que cargar
una imagen en memoria no significa que se vaya a ver nada de nada: la carga es un proceso necesario pero
que es interno del programa, en la pantalla no se va a ver nada.

Si la imagen no estuviera en la misma carpeta que el archivo DCB, tendriamos que poner como
parametro la ruta de la imagen a partir del lugar donde esta el archivo DCB, en vez de solo el nombre. Es
decir, que si tenemos por ejemplo una carpeta “Juego” que contiene tanto el archivo DCB como una
carpeta llamada “imagenes” donde esta a su vez nuestro “fondo.png deberiamos poner

idl=load_png(“imagenes|\fondo.png”);

o bien, de forma alternativa, poner toda la ruta desde la unidad donde estemos —la ruta absoluta que se
dice-.Si tenemos por ejemplo la carpeta “Juego” en la raiz C:, pues seria:

idl=load_png(*“C:\Juego\imagenes\fondo.png”);

Puedes observar que esta funcion devuelve un valor entero, que se lo asignamos a una variable creada por
nosotros llamada “id1”. Este valor entero es un identificador Unico, que nos servira para referenciar en
cualquier momento del codigo a la imagen que hemos cargado. Es decir, a partir de ahora, para manipular y
gestionar la imagen “fondo.png nos referiremos a ella mediante esa variable “id1 que contendra el “DNI”
particular e instransferible de dicha imagen: en vez de nombrarla cuando sea necesario con su nombre, la
nombraremos con ese numero identificador,(el cual pocas veces nos interesara saber cual es en concreto y
simplemente lo asignaremos a la variable entera con la que se trabajard).

Puedes ver también que rapidamente utilizamos la variable “id1 porque en la linea siguiente aparece
la funcion put_screen, con dos parametros, que valen 0 e “id1” respectivamente. Esta funcion lo que hace
es pintar sobre el fondo un grafico que no cambia ni se mueve. Ese grafico viene dado por el segundo
pardmetro, el cual es el valor numérico identificativo del PNG que acabamos de cargar. El primer

111

parametro siempre ha de valer 0 si lo que queremos es visualizar una imagen cargada individualmente, tal
como hemos hecho; si hubiéramos cargado un archivo FPG —ahora lo veremos-, este primer parametro ha
de valer otra cosa.

La funcién put_screen no necesita que indiques la posicion del grafico, pues este siempre se pondra
en el centro de la pantalla, independientemente de la resolucion, por eso normalmente la imagen usada con
esta funcion ocupa toda la pantalla o gran parte de ella.Si no llegara a ocupar toda la pantalla lo que falta se
rellena en negro.

Ahora vamos a hacer lo mismo que veniamos haciendo hasta ahora -es decir, poner un grafico de
fondo y ya esta-,pero en vez de cargar la imagen individualmente con load png, vamos a incluirla dentro
de un fichero FPG —que de momento s6lo contendra esta imagen-, y lo que vamos a hacer es cargar el
fichero FPG, con lo que todas las imagenes que contuviera quedarian cargadas automaticamente y no se
tendria que ir cargandolas una a una.

Lo primero que hay que hacer es crear el archivo FPG con FPGEdit.Lo nombraremos
“imagenes.fpg” e incluiremos “fondo.png" con el codigo 001. Seguidamente, escribimos este programa:

Program MiSegundoFondo,

Private
int id2;
end
Begin
set_mode(640,480,16);
id2=load_fpg(‘“prueba.fpg”);

112

put_screen(id2,1);
Loop
Frame;
End
end

Lo que hacemos aqui es utilizar la funcion load fpg, la cual es equivalente a load_png, pero
en vez de cargar en memoria un archivo PNG, carga un archivo FPG. Solo a partir de estonces podran estar
accesibles en el codigo las imagenes que contiene. Igual que antes, esta funcion devuelve un nimero entero
—aleatorio-, que se recoge en la variable id2, que identificara al archivo FPG univocamente a lo largo del
programa para lo que sea necesario. Y como antes también, cargar un archivo de imagenes no quiere decir
que se vea nada de nada. Para ello hay que decirle mas cosas al ordenador. Si queremos por ejemplo,
volver a poner “fondo.png” como imagen de fondo estatica, hemos de volver pues a utilizar la funcion
put_screen.

La diferencia con el ejemplo anterior esta en que ahora el primer parametro no vale 0 sino el identificador
devuelto por load fpg. Siempre que carguemos el FPG, cuando queramos hacer referencia a alguna de las
imagenes que contiene, tendremos primero que indicar en qué FPG se encuentra, y posteriormente decir
qué cdodigo de imagen tiene dentro de él. Es lo que hacemos aqui: decimos que queremos cargar una
imagen que esta en el fichero identificado por “id2 cuyo coédigo interno es 001 (el valor del segundo
parametro). Es por esta razon que cuando cargamos las imagenes directamente, el primer parametro vale 0,
porque no necesitamos referenciar a ningtin FPG.

Descarga de imagenes:

Acabamos de decir que para poder utilizar imagenes en nuestro juego hay que cargarlas previamente en
memoria RAM. Pero la RAM es finita. Si empezaramos a cargar y cargar imagenes sin control, al final no
tendriamos suficiente RAM disponible y nuestro juego se colgaria. Para evitar esto, es necesario descargar
las imagenes que ya no estén siendo utilizadas, para dejar libre espacio de RAM que pueda ser usado otra
vez.

Antes de continuar, he de decir que no he logrado descubrir la manera de descargar las imdgenes si se
cargan de manera individual con load png. Parece ser que no existe una funcion “unload png” (?) que
realice esta tarea, asi que por el momento solamente podremos descargar las imagenes si las cargamos con
load fpg, mediante la funcién “unload fpg”. Este hecho es un punto a favor mas para que la carga de
imagenes se realice mediante FPGs y no por separado.No obstante, hay que tener en cuenta que si se
descarga un FPG, ninguna de las imagenes incluidas en ¢l se podran utilizar en el programa, por lo que hay
que estar seguro de que ninguna imagen del FPG sera ya mas utilizada.

Para aprender como se descargan las imagenes cargadas mediante un FPG con load fpg, primero
modificaremos el ejemplo que acabamos de hacer en el apartado anterior. Modificalo asi:

Program MiSegundoFondo;

Private
int id2;
end
Begin
set_mode(640,480,16);
id2=load_fpg(“prueba.fpg”);
put _screen(id2,1);

113

Loop
if (key(_esc))
break;
end
Frame;
End
end

Fijate que lo tinico que hemos hecho ha sido afiadir el siguiente if:

if (key(_esc))
break;
end

(Este if también se podria haber escrito en una sola linea, asi: if(key(_esc)) break; end , para
facilitar la lectura del codigo. De hecho, el salto de linea en el codigo fuente, Fénix no lo tiene en cuenta
nunca para nada: es como Si no estuviera).

Lo que dice este if es que si es cierta la condicion que contiene entre paréntesis (ahora
veremos qué es), se ha de salir del LOOP. Al salir del LOOP, de hecho se acaba el programa. Por lo que la
condicion del if que hemos puesto sirve para salir del programa en el momento que “key(_esc)” sea cierto.
Mientras que no lo sea, el if no se ejecutara y el LOOP ira funcionando.

Y qué quiere decir esto de key(_esc)? Pues key es una funcion, la cual devuelve o “verdadero” o “falso” —
en realidad, 1 6 0 respectivamente- si se ha pulsado una determinada tecla del teclado, o no. Es decir,
key(_esc) devolverd “verdadero” -1- si se ha pulsado la tecla ESC, y “falso” -0- si no se ha pulsado.

Por lo tanto, lo que hace el if es comprobar, a cada iteracion de LOOP, si se ha pulsado la tecla ESC. Si no
se ha pulsado, el if no se hace y se ejecuta FRAME vy el programa contintia. Si llega un momento en que si
se ha pulsado ESC, entonces la condicion key(_esc) es verdadera, se ejecuta el interior del if y por tanto se
sale del bucle y se acaba el programa. jAcabamos de descubrir una nueva forma de acabar el programa que
no sea dandole al boton de Cerrar de la ventana!: pulsando una tecla determinada podemos hacer lo mismo.

Evidentemente, la funcion key no sélo funciona con la tecla ESC. Aqui tienes la lista de posibles teclas
(son faciles de deducir) que la funcion key puede tratar:

_ESC] _SCROLL_LOCK
1 K _HOME
2 L “UP
3 _SEMICOLON _PGUP
4 _APOSTROPHE _C_MINUS
5 _WAVE _LEFT
6 _L_SHIFT _C_CENTER
7 _BACKSLASH _RIGHT
8 Z _C_RIGHT
9 X _C_PLUS
0 e _END
_MINUS v _DOWN
_PLUS B _PGDN
_BACKSPACE N INS
_TAB M _DEL
o) _COMMA “Fl1

w _POINT “F12

E _SLASH _LESS

R _C_BACKSLASH _EQUALS

T _R_SHIFT _GREATER
Y _PRN_SCR _ASTERISK
U _ALT R ALT

1 SPACE “R_CONTROL
0 _CAPS_LOCK L_ALT

P “F1 _L_CONTROL
_L_BRACHET F2 _MENU
_R_BRACHET _F3 _L_WINDOWS
_ENTER _F4 _R_WINDOWS
_CONTROL F5

A “F6

S “F7

D _F8

F F9

G “F10

H _NUM_LOCK

LY por qué explico todo este rollo? Porque con el anadido del if, podemos parar el programa por codigo
cuando deseemos. Y justo en ese momento, antes de salir de la ejecucion, insertaremos la funcién de
descarga de imagenes, para acabar el programa limpiamente sin dejar ningun residuo en la memoria RAM.
Para lograr esto, lo que debemos hacer es utilizar la funciéon de descarga unload_fpg.

Program MiSegundoFondo,

Private
intid2;
end
Begin
set_mode(640,480,16);

id2=load_fpg(“prueba.fpg”);
put_screen(id2,1);

Loop
if (key(_esc))
break;
end
Frame;
End
Unload_fpg(id2)

end

Se ve que una vez salido del bucle, y justo antes de acabar el programa se descarga el FPG que
hayamos utilizado. Para ello,la funcioén unload fpg requiere un parametro, que vuelve a ser el identificador
del fichero FPG que se quiere descargar entero. Y ya esta.

Prueba por ultimo este otro codigo curioso. A ver si sabes qué es lo que ocurre; (necesitaras para poderlo
ejecutar un archivo FPG con cuatro iméagenes en su interior como minimo).

program ejemplo2;
private

intidl;

115

end

begin
set_mode(640,480,16),
idl=load_fpg("graficos.fpg");
loop
put_screen(idl,rand(1,4));
frame;
end
end

Iconos. Set_icon(). Editores de iconos y de recursos:

Un icono es, como sabes, un tipo de imagen con unas caracteristicas muy concretas. Suelen ser
imagenes de un tamafio reducido (16x16,32x32,48x48 pixeles) que se utilizan por ejemplo como
indicadores de acciones en una barra de botones de una aplicacion, o aparecen en un listado de una carpeta
de Windows,etc.Este tipo de imagenes tiene un formato propio (diferentes del PNG) y normalmente tiene
la extension *.1CO.

(Ademdas, en Windows también existen un tipo de imdgenes con un formato muy parecido que es formato
utilizado para mostrar cursores de raton: son los ficheros con extension CUR, pero en Fénix no se trabaja
con éstos).

No obstante, la mayoria de iconos que se pueden ver en Windows (el icono “carpeta”, el icono
“documento de texto” , el icono “Mi PC”,etc) no son archivos ICO.;Por qué? Porque se utiliza otro
sistema para visualizar iconos.

Cualquier ejecutable (y por ejecutable se entiende un fichero con extension EXE o bien DLL),
a parte de incluir el codigo compilado en binario del propio programa, tiene un apartado donde, dentro del
mismo fichero, almacena uno o mas iconos. /Y esto por qué? Porque si te has fijado, cada programa tiene
un icono distintivo: seria una lata que ademas del archio EXE (o DLL) el programador que ha creado el
juego tuviera que acompanarlo de uno o mas archivos ICO, con la posibilidad de que se borrara alguno
accidentalmente y quedara pues una referencia en el ejecutable a ese archivo invalida. La alternativa es
incorporar dentro del propio fichero EXE (o DLL) los iconos, integrandolos en el cddigo binario como una
bacteria fagocitada por una ameba. De esta manera, se tiene solo el archivo ejecutable con todos los iconos
que usara, en su interior.

Y respecto los iconos de Windows, la mayoria utilizan este sistema: no son archivos ICO
independientes sino que estan integrados dentro de los distintos ejecutables del sistema. Haz una prueba:
abre el Explorador de Windows y en el menu “Herramientas” selecciona “Opciones de carpeta”. Alli, elige
la pestafia “Tipo de fichero” y clica en el boton “Avanzadas”. En la ventana que sale, clica en el boton
“Cambio de icono...” y alli podras navegar y elegir cualquier archivo EXE o DLL del sistema. Veras que
apareceran todos los iconos que existen en el interior de éstos. Concretamente, los iconos estandares del
escritorio de Windows estan en el archivo “shell32.dll”, dentro de la carpeta “System32” del
sistema.También hay iconos chulos en el archivo "moricons.dll".

Anteriormente comenté que si queremos que en la barra de titulos (es decir, la barra de color azul que
aparece en la parte superior de la ventana)de nuestro juego —si éste no se ejecuta a pantalla completa-
aparezca otro icono diferente que no sea el del fénix naranja, tal como he dicho deberemos utilizar la
funcion set_icon. Esta funcion tiene dos parametros: el primero es la libreria FPG que contiene el grafico
(es obligatorio utilizar alguna libreria FPG donde esté incluido el icono: los iconos no se pueden cargar
independientemente, entre otras cosas porque no existe ninguna funcion del tipo “load ico”) y el segundo
es el codigo del grafico dentro del FPG.Posiblemente te sorprenda que podamos incluir un icono dentro de

116

un FPG. El formato ICO es un formato plenamente aceptado en Fénix, y por tanto, no hay ningin problema
en utilizar este otro formato de imagenes diferente del PNG, y por tanto, en incluirlos dentro de cualquier
FPG. Incluso se puede perfectamente incluir en un mismo FPG imagenes en formato PNG y en formato
ICO indistintamente.

Recuerda que es necesario llamar a esta funcion antes que llamar a set mode , ya que ésta es la funcion que
creara y visualizara dicha ventana. Importante: para esta funcion, debes utilizar obligatoriamente s6lo un
grafico de 32x32 pixels. El grafico puede estar a 8 6 16 bits de color, y no debes nunca borrar este grafico
de memoria usando funciones como unload map o unload fpg No es posible cambiar el icono de una
ventana ya inicializada, pero se puede volver a llamar a set mode para activar los cambios.

Por ejemplo: si tenemos un archivo llamado “iconos.fpg” que representa un FPG que incluira el icono de
nuestro juego,el cual tendra el codigo 001, el programa necesario para mostrar el icono deseado en la barra
de titulos seria algo parecido a esto:

Program ejemplo;

Private
Int iconfpg;
End
Begin
Iconfpg=load_fpg(‘‘iconos.fpg”);
Set_title(“Prueba”);
Set icon(iconfpg,1);
Set_mode(640,480,MODE 16BITS, MODE MODAL);
Loop
Frame;
end
End

En este momento te surgira la duda de saber como se pueden conseguir y crear iconos. Se pueden utilizar
los editores graficos mencionados en el primer capitulo,pero, no obstante, existen en el mercado editores
especificos de iconos (y cursores) que permiten personalizar al maximo el disefio y comportamiento de los
iconos que queramos crear desde cero o bien modificar a partir de alguno ya existente.

Algunos editores de iconos podrian ser:

MicroAngelo (http://www.microangelo.us): El editor de iconos lider. El mas versatil, potente,funcional y
flexible.

IconArt (http://www.conware-pro.com): Freeware

LiquidIcon (http://www.x2studios.com): Freeware

IconEdit (http://www.iconedit2.com)

Awicons (http://www.awicons.com)

IconCoolEditor (http://www.iconcool.com)

IconPackager, Image Icon Converter, IconCoolEditor, Coffe IconEditor y muchos otros mas:

(http://www.popularshareware.com/010-rating-1.html)

Después de todo lo explicado, y después de haber probado el codigo de ejemplo anterior, es
posible que hagas algtin juego utilizando set icon y lo quieras distribuir. Tal como comenté en un capitulo
anterior, para ello hay que renombrar el FXl.exe con el nombre de tu juego. Pero queda un detalle
pendiente y es que el icono de FXI.exe es un cuadrado mostrando un fénix naranja, pero tu querras que el
icono de tu ejecutable sea el icono que has disefiado tu y que aparece —eso si- en la barra de titulo mientras
el juego esta en marcha. ;Como se pueda cambiar el icono del FXI.exe entonces?

117

http://www.popularshareware.com/010-rating-1.html
http://www.iconcool.com/
http://www.awicons.com/
http://www.iconedit2.com/
http://www.x2studios.com/
http://www.conware-pro.com/
http://www.microangelo.us/

El icono del fénix naranja no es ningun icono ICO: esta integrado dentro del propio fichero
FXI.exe.Por lo tanto, la solucion seria “destripar” el codigo binario del FXI.exe, “extirpar” el icono del
fénix naranja e “implantar” nuestro icono dentro, para que el ejecutable resultante tuviera ahora si una
apariencia totalmente profesional. Y este proceso se puede realizar mediante utilidades llamadas editores
de recursos.

Un recurso es un icono, 0 un cursor, o una cadena de texto que estd integrada dentro de un
ejecutable. Por tanto, con un editor de recursos podriamos modificar, suprimir o afiadir iconos, cursores o
frases a un ejecutable, sin alterar su correcto funcionamiento (puede ser una manera, por ejemplo, de
traducir una aplicacion: editando los recursos de cadenas de texto). Nosotros lo podriamos usar para lo que
te he comentado: para explorar y localizar dentro del ejecutable el icono propio de FXI.exe y sustituirlo por
el nuestro.

Editores de recursos pueden ser:

Resource Explorer (http://www.sharewaresoft.com o,http://www.brothersoft.com, entre otros)

PE Resource Explorer: http://www.wilsonc.demon.co.uk/d7resourceexplorer.htm

Resource Hunter e Icon Hunter: http://www.boilsoft.com/rchunter.html e
http://www.boilsoft.com/iconhunter.html

Los nuevos formatos: FGC, FBM y FPL.:

El lenguaje Fénix surgio a partir del lenguaje y entorno DIV. Una consecuencia de esa
herencia es que los formatos graficos con los que trabajaba DIV continuan siendo los formatos con los que
trabaja Fénix actualmente. Estos formatos graficos en concreto son tres: FPG,MAP y PAL.

El primero ya lo conocemos. El segundo es un formato de archivo grafico con posibilidad de
animacion, como podria ser también el GIF o el PNG animado, pero con la particularidad de que el formato
MAP es propio de DIV/Fenix, y éste lo utiliza internamente cuando carga graficos en memoria y tiene que
operar con ellos, por ejemplo. La razén de utilizar un formato propio internamente, y no PNG, por ejemplo,
es para aprovechar las caracteristicas nativas del lenguaje, especialmente disefiadas para apoyar la creacion
de videojuegos. Ademas, este formato estan especialmente optimizados para guardar los graficos a la
misma calidad que se muestran en pantalla, por lo que suelen ocupar menos que otros formatos graficos de
uso habitual (salvo formatos que perjudican la calidad del grafico y no suelen ser por lo tanto aptos para un
videojuego donde debe preservarse cada grafico pixel a pixel). Por ultimo, el formato PAL es el formato de
las paletas de color de 8 bits (hablaremos de qué son las paletas muy pronto) propio de DIV/Fénix.

No obstante, DIV pasé a ser propiedad legal de una empresa britanica, Fastrack (actualmente
en quiebra), que tenia en mente comercializar este lenguaje en el Reino Unido. Al tener ellos la licencia,
puede ocurrir que en cualquier momento esa empresa demande a los desarrolladores de Fénix por seguir
utilizando los mismos formatos graficos que ellos, ya que legalmente ahora son de su propiedad. Asi que
para que la comunidad Fénix no incurra en un posible delito, se propuso el cambio de formatos en estas tres
areas: contenedores de imégenes, formatos de imagenes en si y paletas, para asi poder desarrollados sus
propios ficheros independientes de DIV y desmarcarse por completo de su antecesor.

Asi pues:

El sustituto del formato FPG es el llamado FGC (Fenix Graphic Container).
El sustituto del formato MAP es el llamado FBM (Fenix BitMap)
El sustituto del formato PAL es el llamado FPL (Fenix Palette)

118

http://www.boilsoft.com/iconhunter.html
http://www.boilsoft.com/rchunter.html
http://www.wilsonc.demon.co.uk/d7resourceexplorer.htm
http://www.brothersoft.com/
http://www.sharewaresoft.com/

No obstante, tenemos un problema. La utilidad "FPGEdit" de momento s6lo es capaz de
trabajar (abrir,editar,guardar) archivo con formato FPG. Y la utilidad "fpg.exe" de linea de comandos
también. Asi que provisionalmente nos veremos obligados a utilizar los formatos "antiguos", hasta que
hayan disponibles utilidades que permitan trabajar con los nuevos, especialmente el FGC.

A raiz de estos cambios de formato, han habido ciertos cambios en algunas funciones del
lenguaje Fénix que trabajaban con ellos. Los he resumido en la siguiente tabla (no he puesto las funciones
que trabajan con paletas PAL y FPL ya que en este manual no utilizaran):

FUNCIONES "ANTIGUAS" FUNCIONES OBSERVACIONES
(todavia operativas) "NUEVAS"
Load fpg() Load fgc() Incompatibles. La primera sélo es capaz de cargar en

memoria un archivo en disco con formato FPG y la
segunda lo mismo pero con archivos con formato FGC

Unload_fpg() Unload fge() Son funciones equivalentes (sindnimas)

Load map() Load fom() Cargan en memoria un archivo de disco con formato
MAP o FBM, respectivamente. No se veran en este
manual, en favor de otras funciones como Load png() o
Load_fpg()/Load fgc().

Unload map() Unload fbm() Son funciones equivalentes (sinonimas)

- Save fgc() Graba en el disco duro un archivo con formato FGC. Es
la Gnica manera actual de generar ficheros de este tipo,
para poder cargarlos posteriormente con Load fgc() y
poderlos usar en nuestros programas.

- Save fbm() Graba en el disco duro un archivo con formato FBM.
No se vera en este manual, en favor de otra funcion
como Save png(), que hace lo mismo pero en formato
PNG.

Uso de paletas de colores:

Anteriormente hemos comentado de pasada la existencia de las llamadas paletas de colores,
(en el primer capitulo se explicd qué es lo que son), e incluso hemos comentado que hay archivos en Fénix
(los antiguos .PAL y los nuevos .FPL) que se dedican a guardarlas en disco. Pero en realidad, estas paletas
solo tiene sentido utilizarlas cuando trabajemos con graficos de 8 bits, y como en este manual se trabajara
siempre con graficos de 16 bits, no profundizaremos en este tema. Por ejemplo, Fénix aporta muchas
funciones para trabajar con paletas como CONVERT PALETTE, ROLL PALETTE, FIND COLOR,
GET _COLORS, SET _COLORS, LOAD_FPL, SAVE FPL.etc que no se explicaran. No obstante, merece
la pena introducir el posible uso que podrian tener las paletas en el caso que se hicieran servir.

Acabamos de decir que las paletas se usan con modos graficos de 8 bits, en los cuales ya
sabemos que como maximo se pueden usar 2° colores en pantalla = 256 colores. Y hay que tener cuidado,
ya que solo se puede tener una paleta cargada a la vez

Dado que este numero de colores no es muy alto como para crear imagenes muy realistas
(degradados de color suaves, etc), se suelen "elegir" los 256 colores que se van a utilizar para representar
una imagen. Por eso, para mostrar una imagen de una selva, se usarian muchos tonos de verdes, algunos
naranjas o rojos, y menos azules. O para representar un cielo,la mayoria de los colores serian azules, en sus

119

tonalidades desde el negro hasta el blanco, etc.

Cuando se trabaja en modo 16 bits no se necesitan paletas porque hay muchisimos mas colores
2'® = 65536 colores. Entonces ya no tenemos que elegir colores :se pueden utilizar tantos que las imagenes
tendran buena calidad. En ese modo simplemente 1llamamos a los colores con la funcion RGB(r,g,b), por
ejemplo, estableciendo la intensidad deseada de cada componente de color.

Si queremos que nuestros juegos vayan rapidos independientemente del ordenador en el que vayan
a ejecutarse, una de las cosas que tendria sentido plantearnos es usar paletas de 8 bits (256 colores). Ya
hemos dicho que al hacerlo tendremos que elegir bien estos 256 colores para sacarles el mayor partido
posible: tendremos que construir nuestra paleta de 256 colores de acuerdo a los que vayamos a utilizar ,
mediante programas de edicion de graficos como el Gimp y con la ayuda de varios comandos de Fénix de
manipulacion de paletas que podran ser usados durante la ejecucion de un juego, bien para cambiarlas por
completo, bien para cambiar colores individualmente, etc. De todas maneras, piensa que nada te impide
usar varias paletas por turnos (por ejemplo, en un juego de plataformas con una 1* fase de hielo
-predominaran los blancos y los azules- y una 2* de fuego -tonos rojos-; al pasar de la fase 1 a la 2 se
descargaria de memoria (o simplemente se dejaria de utilizar) los graficos (contenidos en un fpg, por
ejemplo) de la 1* y se cargaria los graficos contenidos en otro fpg (y por consiguiente las paletas) de la 2%,

Hemos dicho que podemos usar un editor grafico para crear una paleta. Pero, ;eso como se hace?
En general no sera necesario crear explicitamente ninguna paleta, porque cuando se crea una imagen de 8
bits, ésta ya incorpora dentro su propia paleta. También es verdad que la mayoria de programas graficos
dan la opcidn, a partir de una determinada imagen de 8 bits, de guardar las paletas por separado, para asi al
crear una nueva imagen se le pueda asociar alguna paleta guardada previamente.

El uso de 256 colores tiene otras ventajas, y no solo el ahorro de memoria o mayor velocidad de
gjecucion: te permite tener control total sobre los colores que usas, pues manejar 256 colores es mas
sencillo que los 65000 y pico; sobre todo porque cada "casilla" (es decir, cada color de la paleta) lo puedes
modificar para conseguir efectos de brillos, cambios de color... € incluso, con conocimientos de los efectos
del color, modificando una paleta entera puedes usar una misma imagen para representar el dia, la noche y
todas las tonalidades intermedias, cosa que en 16 bits puede ser algo tedioso porque tendrias que modificar
todos los graficos, en lugar de 256 "casillas".

120

CAPITULO 4: DATOS Y PROCESOS

Concepto de proceso:

Se llama proceso a cada uno de los diferentes objetos que hay dentro de un juego. Por ejemplo, en un
juego de marcianos sera un proceso la nave que maneja el jugador, otro proceso cada enemigo, cada
explosion, cada disparo,etc. Normalmente se equiparan a los diferentes graficos en movimiento (también
llamados sprites), aunque pueden existir procesos que no aparezcan en pantalla.

Los procesos son “partes” de codigo. Cada proceso tiene su propio codigo que se ejecuta y se
relaciona con los demas procesos segun sus ordenes concretas. A diferencia de otros lenguajes, Fénix se
basa en programacion concurrente; esto quiere decir que en lugar de seguir linea por linea el programa en
un orden, éste se ejecuta en trozos que avanzan al mismo tiempo,los procesos. Esto al principio resulta
confuso, pero una vez te acostumbras, ves que gracias a ello cada proceso act@ia casi de forma
independiente y es muy util por ejemplo en juegos como donde cada personaje es un proceso independiente
y asi no tiene que esperar a que se ejecuten antes los demas.

De esta manera, podemos crear programas mas flexibles muy facilmente. Ademas, la deteccion de
errores es también mas sencilla, porque si todo funciona excepto el movimiento de tu nave, sabras
exactamente donde tienes que buscar. Pero esta manera de codificar también exige una planificacion previa
con lapiz y papel y decidir antes de ponerse a teclear codigo como un loco cuantos procesos se van a crear,
de qué tipo, etc, para tenerlo claro antes de perderse.No es broma: es muy importante no llegar al momento
donde estan en mitad del c6digo pensando por qué no funciona sin tener ni idea. ..

Un proceso, o bien consta de un bucle (infinito o no), o bien sélo se ejecuta una vez hasta que llega a su
fin y se termina.

Expliquémoslo con un ejemplo.Bésicamente, el ordenador ejecuta los programas linea a linea, desde arriba
hasta el final, parecido a leer un libro.Entonces, por ejemplo, si hacemos un videojuego de matar enemigos,
seria algo asi como:

Principio:

Dibujar tu nave

Dibujar los enemigos

Dibujar los disparos

Chequear si hay colisiones

Si un disparo toca un enemigo, matarlo

Si un del enemigo te toca: matarte

Chequear si hay algun movimiento de joystick

Calcular la nueva posicion acorde al movimiento del joystick
Crear un nuevo disparo si has apretado el boton de disparar
Calcular los movimientos de los enemigos

Ir al Principio.

Este ejemplo es muy basico y espero que se entienda. Hace todo lo necesario desde arriba
hasta abajo, y vuelve a empezar, haciendo lo mismo una y otra vez. Evidentemente, se necesitan mas partes
del programa, como concretar qué es lo que pasa cuando un enemigo o tii muere, pero este ejemplo so6lo es
para mostrarte la manera de programar que en Fénix NO se utiliza.;Por qué? Porque cuando el videojuego
se vuelve cada vez mas complicado,el bucle del programa se hace cada vez mayor y el codigo se vuelve
pronto desordenado y cadtico. La solucion, ya digo, pasa por la multitarea (programacion concurrente).
Multitarea significa que mas de un programa (los procesos) estan ejecutandose al mismo tiempo. Asi, en
vez de un Unico bucle inmenso como el anterior, donde las lineas una tras otra se ejecutan para hacer todos
los movimientos, colisiones, chequeos,etc, se tiene mas programas/procesos pequefios que hacen todo esto

121

continuamente por separado.

Entonces,basicamente tendriamos los siguientes procesos funcionando al mismo tiempo para
lograr lo mismo que con el ejemplo anterior:

TuNave (joy polling, movimiento,dibujo,proceso_creacion_disparos, chequeo_colisiones)
Enemigo (movimiento, dibujo, chequeo_colisiones)

Disparo (movimiento, dibujo, chequeo_colisiones)

En vez de tener un cédigo grande y desordenado, se tiene tres codigos simples funcionando a la vez.

Otro detalle a tener en cuenta es que es posible ejecutar multiples instancias de un proceso. Es decir, si
cada enemigo y disparo es un proceso, podremos ejecutar ese proceso mas de una vez y simultaneamente,
por lo que tendriamos tantos enemigos o disparos en pantalla como procesos de ese tipo estuvieran
funcionando a la vez, de forma independiente cada uno de ellos.

Las variables locales predefinidas GRAPH, FILE, X e Y:

Hasta ahora hemos visto que para poder utilizar una variable cualquiera (s6lo hemos usado
variables privadas, pero para las locales y las globales pasaria lo mismo) le tenemos previamente que
declarar, porque si no el programa no puede reconocer dicha variable en el coédigo. Esto es asi para todas
las variables que nosotros creemos.

No obstante, Fénix dispone de un conjunto de variables (que son o globales o locales, pero
nunca privadas o publicas) que existen y que pueden ser usadas en nuestro c6digo sin ninguna necesidad de
declararlas. Son variables listas para usar, predefinidas con un tipo de datos concreto —normalmente INT-,
y estan disponibles en cualquier programa Fénix. Evidentemente, nosotros no podemos crear variables que
tengan el mismo nombre que alguna de las predefinidas existentes, porque si no habria confusiones en los
nombres. Ya vimos en un capitulo anterior un ejemplo de este tipo de variables: TEXT Z.

(Por qué existen estas variables predefinidas? Porque cada una de ellas realiza una tarea muy
especifica y especialmente encomendada a ella. Es decir, que estas variables predefinidas cada una de ella
existe por una razon determinada; y se tendran que usar en consecuencia. No son variables generales como
las que podamos crear nosotros, en las que diciendo que son de un tipo de datos determinado pueden
almacenar cualquier cosa. Cada variable predefinida tiene un significado concreto, y los valores que pueda
almacenar en consecuencia seran unos determinados. Las variables predefinidas se utilizan, basicamente,
para controlar los diferentes dispositivos del ordenador (raton,teclado, pantalla, tarjeta de
sonido,joystick...)y los graficos de los juegos.

A continuacion vamos a conocer el significado de dos variables predefinidas (locales) enteras
muy importantes, como son GRAPH y FILE.

Como primera aproximacion, ya hemos dicho que podemos asumir que en un juego de matar enemigos, por
ejemplo, cada enemigo representara un proceso diferente, los disparos otro, nuestra nave otro, etc. Lo
primero que tendriamos que hacer para que todos estos procesos se vieran en pantalla es asociarles a cada
uno de ellos una imagen: los enemigos tienen una imagen (o varias si queremos hacer enemigos
diferentes), los disparos también, nuestra nave también,etc. Aqui es donde interviene la variable GRAPH.

Cuando creamos un proceso, la manera de asignarle una imagen es estableciendo un valor para
la variable GRAPH dentro de dicho proceso. Cada proceso puede tener asignado un valor diferente a
GRAPH de forma independiente: los distintos valores no se interferiran unos con otros porque el cddigo de
cada proceso se ejecuta aislado del de los demas, y la variable GRAPH guarda la asociacion de los distintos
valores que puede tener en los diferentes procesos con el proceso al que le corresponde (de hecho, esto que

122

acabo de decir es la definicion de variable local, que ya la veremos mas adelante). El valor que puede tener
esta variable GRAPH es un numero entero, que resulta ser el identificador devuelto por load png que hace
referencia a la imagen asociada a ese proceso.

Si en vez de utilizar load png utilizamos load fpg, aparte de GRAPH necesitariamos otra
variable local predefinida entera: FILE. Esta variable toma como valor el identificador del archivo FPG
cargado mediante load fpg, de tal manera que entonces GRAPH pasa a valor el codigo numérico interno
que tiene la imagen buscada dentro del archivo FPG. Asi pues, para definir la imagen de un proceso que ha
sido cargada con load fpg, tendriamos que indicarle en qué archivo FPG se encuentra, pasandole el
identificador de ese archivo a la variable FILE, y dentro del FPG, de qué imagen se trata, pasandole el
c6digo numérico interno a la variable GRAPH.

Ademas de GRAPH y FILE, existen otras dos variables locales predefinidas mas de las que querria decir
cuatro cosas ahora: son la variable X y la variable Y. Estas tienen como valor la coordenada x e y
respectivamente del centro de la imagen dada por GRAPH (y FILE en su caso). Es decir, sirven para
establecer las coordenadas del centro de la imagen asociada al proceso donde se definen. Igual que
GRAPH, cada proceso puede dar valores diferentes a X e Y de forma independiente unos de otros porque
cada proceso no interfiere — a priori- en los demas: es como si cada proceso tuviera una copia particular de
las variables X e Y con sus valores propios.

Supongo que toda esta parrafada habra sido un poco dificil de digerir. Pronto veremos
ejemplos de todo esto, donde se vera mucho mas claro lo explicado arriba.

Creacion de un proceso:

Cada proceso debe empezar con la palabra reservada PROCESS, el nombre del proceso y la lista entre
paréntesis de parametros —especificando su tipo- que puede tener, si es que tiene. Los pardmetros son una
lista de variables en los que el proceso va a recibir diferentes valores cada vez que sea invocado (llamado o
utilizado desde otro proceso. Los paréntesis son obligatorios incluso cuando el proceso no tenga
parametros. Seguidamente viene la declaracion de variables que necesite,las cuales so6lo podran ser del tipo
“privadas” —las que venimos usando hasta ahora-, y luego un BEGIN, el codigo del proceso y un END. Es
decir:

PROCESS NombreProceso (tipo paraml, tipo param2,...)
PRIVATE
Declaraciones de variables privadas;
END
BEGIN
Cddigo del proceso;
END

Fijate que la estructura de un proceso se parece mucho a lo que hemos visto hasta ahora, que
es la estructura del programa principal. De hecho, el programa principal no es mas que otro proceso mas.

Ese proceso puede ejecutar todas las ordenes que se quieran, llamar a otros procesos,
"matarlos" (hacer que dejen de ejecutar su codigo), congelarlos (hacer que paren de ejecutar su codigo,
pero sin "matarlo"), dormirlos (congelarlo haciendo que su grafico no aparezca en pantalla), interactuar con
ellos y cualquier otra cosa que se nos ocurra. Como hemos dicho, se puede hacer més de una llamada a un
proceso concreto (ej.: cada vez que el protagonista tenga que disparar se llama al mismo proceso disparo,
ahorrando muchisimas lineas de codigo). Y pueden existir infinidad de procesos a la vez, cada uno
ejecutando su codigo tnico (lo que puede ralentizar el ordenador si hay demasiados, pero nada es perfecto).

123

Es importante diferenciar entre los bloques PROCESS de los programas, que definen el
comportamiento de un tipo concreto de proceso, y lo que es un proceso del juego en tiempo de ejecucion,
que es un objeto del juego cuyo comportamiento estara regido por uno de los bloques PROCESS del
programa, segun del tipo que sea (lo que se llama técnicamente "instancia" de un proceso).

El concepto de los procesos espero que lo hayas entendido, pero ahora te surgira la duda de, ;como
insertar el codigo de los procesos dentro del programa principal PROGRAM, que conocemos tan bien? (De
hecho, el programa principal no es mas que otro proceso mas del programa, el primer proceso). ;Y donde
aparecen esas variables GRAPH y FILE comentadas antes?

He aqui un ejemplo, que es vital entenderlo para poder continuar, asi que atento (necesitaremos un
archivo FPG llamado “imagenes.fpg” con una imagen —de 30x30 estaria bien- en su interior de cddigo 1):

PROGRAM ejemplo_procesos;
GLOBAL
INT idl;
END
BEGIN
set_mode(640,480,16, MODE FULLSCREEN);
idl=load fpg("imagenes.fpg");
personaje();
END

PROCESS personaje()
BEGIN
x=320; y=240; file=idl, graph=1;
LOOP
IF (key(_up)) y=y-10; END
IF (key(_down)) y=y+10; END
IF (key(left)) x=x-10; END
IF (key(right)) x=x-10; END
FRAME;
END
END
Fijate que el codigo se estructura en dos partes, que son los dos procesos de los que consta el
programa. La primera parte es la que ya conocemos, que es el proceso correspondiente al programa
principal, y la segunda a un proceso llamado “personaje” que hemos creado. Si hubiera mas procesos, la
estructura se repetiria con los correspondientes bloques PROCESS/END para cada proceso extra.

Lo primero que salta a la vista es que, a diferencia de hasta ahora, hemos declarado una
variable en el programa principal de tipo “global”. Esto es necesario para que funcione, (si fuera privada no
lo haria), pero el por qué lo explicaré dentro de poco, ahora no es relevante.

Seguidamente puedes observar ponemos la resolucion y la profundidad del juego y decimos que el
programa se vea a pantalla completa, cargamos un archivo FPG al cual le damos el identificador “id1”, y
finalmente, y aqui esta la novedad, llamamos —o mejor dicho, creamos- al proceso “personaje”.

Fijate que la manera de crear un proceso es simplemente escribir su nombre, y si tuviera parametros,
poner los valores que queramos que tengan a la hora de la creacion del proceso. En este caso, “personaje”
€s un proceso sin parametros, y por tanto, sélo se ponen los paréntesis vacios. Al crearse este proceso, si
éste es visible porque esta asociado a un grafico, se vera ese grafico por pantalla. Si se volviera a ejecutar la
linea personaje(); otra vez (porque estuviera dentro de un bucle), se crearia otro proceso idéntico en el
juego y por tanto tendriamos dos procesos “personaje” funcionando, y por tanto, dos imagenes iguales en

124

pantalla. Y asi. Como ves, es una forma facil de crear muchos enemigos a atacar!

Pero, ;qué es lo que ocurre exactamente cuando se crea un proceso? Pues que se comienza a
ejecutar el codigo que hay entre el BEGIN y el END de ese proceso. De manera, y ESTO ES
IMPORTANTE, que podriamos tener ejecutandose a la vez muchos procesos, porque mientras el proceso
principal crea un proceso "hijo" y las lineas de codigo de éste se empiezan a ejecutar, el programa principal
puede tener todavia lineas por ejecutar —no en este ejemplo, pero si es lo normal-, por lo que el ordenador
empezard a ejecutar en paralelo los cédigos de todos los procesos existentes en ese momento.

Miremos el codigo del interior del proceso “personaje”. Lo primero que hacemos es establecer
valores a las variables locales predefinidas X, Y, GRAPH y FILE. Es decir, decimos de qué FPG (FILE)
vamos a sacar la imagen (GRAPH) que va a visualizar el “personaje” en pantalla, y ademas decimos en qué
coordenada inicial se va a situar el centro de esa imagen.Como hemos puesto una resolucion de 640x480,
fijate que el grafico aparecera en el centro de la pantalla, inicialmente.

A continuacidon nos encontramos un LOOP, que comienza un bucle infinito,mientras el proceso
exista, claro. Y los Ifs lo que comprueban es si alguna de las teclas de las flechas del teclado (izquierda,
derecha, arriba, abajo) se ha pulsado.Si alguna condicion de éstas se cumple, corrige las coordenadas del
grafico, es decir, lo mueve, porque varia los valores de las coordenadas X o Y, y por tanto,reubica el centro
de la imagen dada por GRAPH.

Finalmente llegamos a la sentencia FRAME. Esta sentencia es fundamental y conviene hacer unas
cuantas apreciaciones. Sabéis que FRAME indica cuando esta el proceso listo para volcar la siguiente
imagen a la pantalla. Lo importante —y novedoso- del asunto es que, cuando nuestro programa consta de
mas de un proceso, hay que saber que el programa se pausara hasta que todos los procesos activos hayan
llegado hasta una sentencia FRAME, momento en el cual el programa —s decir, el conjunto de procesos-
reanudara su ejecucion. Es decir, como podemos tener varios procesos, cada uno de los cuales con una
sentencia FRAME particular, Fénix coordina el funcionamiento del programa de tal manera que espera a
que todos los procesos hayan llegado, en su cddigo particular, hasta la sentencia FRAME. El primero que
llegue se tendra que esperar al segundo y asi. Esto es para que la impresion en la pantalla se haga de una
manera sincronizada, con todos los procesos a la vez. Es como mandar la orden de “jVisualizar
fotograma!” para todos los procesos al unisono, de manera coordinada y al mismo tiempo. Si no se hiciera
asi, seria un caos, porque un proceso que tuviera poco cddigo llegaria pronto al FRAME, mientras que uno
con mucho codigo llegaria después y entonces se estarian visualizando fotogramas en tiempos diferentes
para cada proceso, lo que seria un verdadero caos. Por lo tanto, los procesos que terminen antes su
ejecucion tendrdn que esperarse siempre a los procesos mas lentos para ir todos al mismo compas que
marca el FRAME. De todo esto se puede deducir, por ejemplo, que si escribimos un bucle infinito sin
sentencia FRAME el programa posiblemente se cuelgo. ;Por qué? Porque el proceso que tenga ese bucle
infinito nunca llegara al FRAME, y los demas procesos estaran pausados esperandole sin remedio. O sea
que cuidado.

Para acabar de rematar el concepto de proceso, por si todavia quedan algunas dudas, vamos a modificar el
ejemplo anterior para introducir otro proceso, ademas del que ya tenemos, de manera que aparezcan por
pantalla dos objetos independientes, los cuales podran ser movidos por teclas diferentes.

El grafico del nuevo proceso puede ser cualquiera. Puedes reutilizar el mismo grafico que hemos utilizado
para el primer proceso (no hay ningin problema para que procesos diferentes tengan el mismo valor de
GRAPH), o bien, que es lo mas normal, utilizar otro grafico para este nuevo proceso, en cuyo caso
tendriamos que incluirlo légicamente dentro del FPG correspondiente y usarlo como ya sabemos. Vamos a
hacer esto ultimo: crea una nueva imagen, de 30x30 por ejemplo, e incliyela dentro del archivo
"imagenes.fpg", con el codigo 2.

125

Lo que deberiamos de escribir para que aparecieran por pantalla estos dos procesos, y que pudiéramos
controlarlos de forma independiente con teclas diferentes seria algo parecido a esto:

PROGRAM ejemplo_procesos;
GLOBAL
INT idl;
END
BEGIN
set_ mode(640,480,16,MODE FULLSCREEN);
idl=load_fpg("imagenes.fpg");
personaje();
personaje2();
END

PROCESS personaje()
BEGIN
x=320; y=240; file=idl,; graph=1;
LOOP
IF (key(_up)) y=y-10; END
IF (key(_down)) y=y+10; END
IF (key(_left)) x=x-10; END
IF (key(right)) x=x-10; END
FRAME;
END
END

PROCESS personaje2()
BEGIN
x=100; y=100; file=idl; graph=2;
LOOP
IF (key(_w)) y=y-10;, END
IF (key(_s)) y=y+10; END
IF (key(_a)) x=x-10; END
IF (key(_d)) x=x-10; END
FRAME;
END
END

Fijate en los cambios, marcados en negrita. Lo primero que hacemos es llamar al proceso
"personaje2()" desde el programa principal, para comenzar la ejecucion del codigo que hay en su interior
(en otras palabras: para que "personaje2()" se pueda ejecutar, y por tanto, entre otras cosas, visualizarse).

Y luego, lo tnico que hemos hecho ha sido copiar practicamente el mismo codigo de "personaje()"
en "personaje2()". Un detalle que se ha cambiado ha sido la posicion inicial. Efectivamente, comprueba
que "personaje2()" ha de salir en la pantalla mas a la izquierda y més arriba,porque sus X e Y son menores.
Lo hemos hecho asi porque si ambos procesos tuvieran la misma posicion inicial, esta claro que el grafico
de un proceso solaparia al otro -el ultimo proceso que aparece en el codigo principal (en este caso
"personaje2()") seria el que estaria por encima de los demas procesos anteriores-.

Otro detalle que se ha cambiado ha sido el valor de GRAPH, para que "personaje2()" tenga asociado
otra imagen, incluida no obstante en el mismo FPG, ya que si te fija, la variable FILE no se ha cambiado y
continiia haciendo referencia al mismo archivo "imagenes.fpg".

126

Y finalmente, se han cambiado las teclas de control del movimiento de "personaje2()". Si se pulsa la
tecla "W", "personaje2()" se movera hacia arriba, si se pulsa la tecla "S", se movera hacia abajo, etc. No
habria ninglin problema si se asocian las mismas teclas de movimiento que a "personaje()" -los cursores-,
pero entonces ;qué pasaria?. Es facil. Que cuando apretaramos la tecla "Left", por ejemplo, AMBOS
procesos se moverian a la vez hacia la izquierda, y asi con los demas cursores igual. Pruébalo.

Importante recalcar otra vez la presencia de la orden FRAME; en el nuevo proceso "personaje2()",
al igual que estaba en "personaje()". Recuerda que TODOS los procesos han de tener como minimo una
orden FRAME para poderse ejecutar -y visualizar si es el caso- en cada fotograma evitando asi los
cuelgues del programa.

A partir de aqui, s6lo nuestra imaginacion nos pondra limites a loque queramos hacer. Por ejemplo,
(qué se tendria que modificar del ejemplo anterior para que pulsando la tecla "n", el grafico del
"proceso2()" pasara a ser el mismo que el del "procesol()", y pulsando la tecla "m" el grafico del
"proceso2()" volviera a ser el inicial? Efectivamente, tendriamos que incluir las siguientes dos lineas en el

interior del bucle LOOP/END del "proceso2()" -antes de la orden Frame;-

if(key(_n)) graph=1; end
iftkey(_m)) graph=2; end

Pruébalo y juega con las posibilidades que se te ocurran.

Variables globales, locales y privadas:

Bueno, por fin ha llegado el momento de definir eso que hemos estado evitando durante todo el
manual: ;qué diferencias hay entre una variable global, local ,privada (y ptblica)? No le he explicado hasta
ahora porque antes era necesario aprender el concepto de proceso poder entender dichas diferencias.

La diferencia entre estos tres tipos de variables estd en su alcance.

*Variables GLOBALES:

Las variables globales tienen alcance en todo el programa; esto quiere decir que cuando se declara
una variable global, ésta serd una variable —una posicién de memoria- que puede accederse desde cualquier
punto del programa. Se entiende por cualquier punto del programa, cualquier zona de sentencias, bien sea
la zona de sentencias generales (en el programa principal), o bien sea cualquier zona de sentencias
pertenecientes a cada proceso.

Por lo tanto, cuando se dice que un dato es global es porque puede utilizarse el mismo dato en el
programa principal y en cualquiera de los procesos.

Y por tanto, y esto es importante, cualquier cambio que se realice en el valor de esta variable desde
cualquier punto del programa repercutira inmediatemente en el resto del codigo.

Es como si fuera un cajon compartido, el cual todos los procesos pueden abrir y cambiar su
contenido cuando les tercie, de manera que cada proceso que abra el cajon se encontrard con lo que haya
metido en ¢l algun proceso anterior.Asi que hay tener cuidado cuando se cambie el valor de una variable
global en un proceso concreto, porque ese nuevo valor sera el que vean todos los demas procesos a partir
de entonces.

127

So6lo se podran declarar variables globales en el proceso principal; en ningin otro proceso se
pueden declarar —cosa légica por otra parte-.Para declarar variables globales, si son necesarias,
simplemente hemos visto que es necesario escribir antes del bloque BEGIN/END del proceso principal lo
siguiente:

GLOBAL
Declaraciones_y posibles_inicializaciones;
END

En general, se declaran como datos globales todos aquellos que establecen condiciones generales
del juego que afecten a varios procesos; un ejemplo pueden ser los puntos obtenidos por el jugador, que
podrian almacenarse en la variable global “puntuacion”, de modo que cualquier proceso del juego pudiera
incrementarla cuando fuera necesario.

*Variables LOCALES:

Las variables locales son variables que existen en cada proceso con un valor diferente pero que
tienen el mismo nombre en todos.

Por ejemplo, si se crea una variable local “puntuacion”, ésta existira y estara disponible en todos
los procesos, pero si en el proceso 1 se le asigna un valor determinado, ese valor solo estara asignado para
el proceso 1. El proceso_2 también podra tener propio valor para la variable “puntuacion”, diferente del de
la “puntuacion” de proceso 1. Y si se cambia el valor de “puntuacion” del proceso 2, no afectara para
nada al valor de “puntuacion” del proceso_1. Las variables GRAPH o X son ejemplos de variables locales
(predefinidas): todos los procesos tienen una variable llamada GRAPH o X, pero cada uno de ellos les
asigna un valor distinto. Es decir, que cuando en un programa se utilice el nombre X, dependiendo de en
qué proceso se utilice, se accedera a un valor numérico u otro. Cada proceso accedera con la variable local
X, a su propia coordenada X

En resumen, todos los procesos poseen el mismo conjunto de variables locales (predefinidas y
definidas por nosotros), pero cada proceso asigna un valor diferente a estas variables locales.

Ademas, otro aspecto importante de las variables locales es que sus valores para un proceso
concreto pueden ser consultados/modificados desde otros procesos diferentes. Es decir, que si desde el
c6digo de un proceso A se quiere consultar/modificar el valor de la variable GRAPH del proceso B, es
posible (y viceversa)

Soélo se podran declarar variables locales en el proceso principal; en ningun otro proceso se pueden
declarar, ya que las variables locales tienen que existir para todos los procesos por igual y la tinica manera
de conseguirlo es declarandolas en el main. Para declarar variables locales, si son necesarias, simplemente
hemos visto que es necesario escribir antes del bloque BEGIN/END del proceso principal lo siguiente:

LOCAL
Declaraciones_y posibles_inicializaciones;
END

En general, se declaran como datos locales todos aquellos que se consideren informaciones
importantes de los procesos. Un ejemplo puede ser la energia que le queda a un proceso (puede ser la
energia de una nave, la de un disparo, la del protegonista, etc). Esta informacion podria almacenarse en la

128

variable local “energia” de modo que cualquier proceso pudiera acceder y modificar su propia energia, e
incluso la de los demas (por ejemplo, cuando colisionara con ellos les podria quitar energia), ya que
también es posible leer y escribir los valores de una varible local de un proceso desde otro. Eso ya lo
veremos. Asi pues, en general este tipo de variables se usan cuando hay cosas en comuin en varios procesos
distintos, como pueden ser energias, vidas, puntos de fuerza, de magia, o contadores.

*Variables PRIVADAS:

Por tultimo, los datos privados son datos que se utilizan exclusivamente en un proceso del
programa.

Por ejemplo, si un objeto del juego requiere una variable para contar de 0 a 9 guardara este valor en
una variable privada, pues los demas procesos no necesitan utilizar este valor. Es decir, que si se define en
un proceso un dato privado llamado "micontador", éste sera un nombre que no significara nada dentro de
otro proceso.

Es por esta razon, por ejemplo, que en el primer codigo de ejemplo de este capitulo (el programa
“ejemplo_procesos”) se declaré como global la variable “id1”,ya que si no el ejemplo no funcionaba. Esto
es porque si se declaraba privada, la variable “id1” solamente tendria sentido dentro del proceso del
programa principal, pero no dentro de los demas procesos, donde “id1” no significaria nada. Como en el
proceso “personaje” se utiliza la variable “id1”, ya que su valor se le intenta asignar a FILE, es necesario
que “id1” sea reconocida por ambos procesos. Podria ser pues o una variable local o una global, pero esta
claro que ha de ser global porque “id1” solamente va a contener un valor Unico para todos los procesos que
existan: el identificador —inico- del fichero FPG cargado. No tendria ningin sentido que la variable fuera
local.

Otra diferencia importante de las variables privadas respecto las locales es que en el caso de las
privadas NO es posible consultar/modificar sus valores para un proceso concreto desde otros procesos
diferentes. Es decir, que si desde el codigo de un proceso A se quiere consultar/modificar el valor de una
variable privada del proceso B, NO es posible (y viceversa)

Para declarar variables privadas, si son necesarias, simplemente hemos visto que es necesario
escribir antes del bloque BEGIN/END de cualquier proceso lo siguiente:

PRIVATE
Declaraciones_y posibles_inicializaciones;
END

Esta seccion puede aparecer tanto en el programa principal como en cualquier otro proceso del
programa, ya que el programa principal se considera como otro proceso mas.

En general se declaran como datos privados todos aquellos que vayan a ser utilizados como
contadores en un bucle, las variables para contener angulos o codigos identificadores secundarios, etc. Si
un dato declarado como privado necesita consultarse o modificarse desde otro proceso (identificador.dato),
entonces se debera declarar dicho dato como local, (dentro de la seccion LOCAL del programa); de esta
forma, todos los procesos poseeran el dato, pudiendo acceder cada uno a su valor o al valor que tenga dicho
dato en otro proceso.

En resumen: a los datos globales se puede acceder desde cualquier punto del programa; los locales son

129

aquellos que tienen todos los procesos (cada proceso tienen su propio valor en ellos) y se pueden
consultar/modificar entre procesos, mientras que los privados son los que pertenecen a un solo proceso
determinado y no puede ser consultado/modificado por ninglin otro proceso diferente.

Los datos globales se utilizan principalmente para controlar dispositivos como la pantalla, el raton,
el joystick, el teclado o la tarjeta de sonido. Los datos locales sirven para conocer cosas como cual es el
grafico de un proceso, en qué posicion aparece, ctial es su tamario, su angulo, su plano de profundidad, etc.
De hecho, éstos son valores que pueden indicarse en diferentes variables locales predefinidas de los
procesos; y todas tienen un valor valido por defecto, por lo que unicamente se tendran que establecer
aquellos valores que quieran alterarse.Los datos privados se utilizan basicamente para contadores y
variables de soporte.

He dicho que los valores de las variables locales de un proceso pueden ser manipulados desde otro
proceso. Veremos como se hace esto cuando conozcamos (un poquitin mas adelante) otro concepto: los
llamados identificadores de procesos.

Ambito de las variables:

Ya conocemos tres de los cuatro tipos de variables que existen en Fénix (globales, locales y
privadas: las publicas las trataremos mas adelante). Y ya sabemos lo que son los procesos. Es posible que
te estés preguntando en este momento si es posible o no declarar cualquiera de los tres tipos dentro de
cualquier proceso, o si s6lo se pueden declarar en el programa principal...vamos, en definitiva: en qué lugar
del codigo se han de declarar las variables de distinto tipo.

Vamos a partir del ejemplo que estuvimos viendo unos parrafos mas atras: lo vuelvo a escribir
aqui:

PROGRAM ejemplo_procesos;
GLOBAL
INT idl;
END
BEGIN
set_ mode(640,480,16,MODE FULLSCREEN);
idl=load fpg("imagenes.fpg");
personaje();
personaje2();
END

PROCESS personaje()
BEGIN
x=320; y=240; file=idl, graph=1;
LOOP
IF (key(_up)) y=y-10; END
IF (key(_down)) y=y+10; END
IF (key(left)) x=x-10; END
IF (key(right)) x=x-10; END
FRAME;
END
END

PROCESS personaje2()
BEGIN
x=100; y=100; file=idl,; graph=2;

130

LOOP
IF (key(w)) y=y-10; END
IF (key(_s)) y=y+10; END
IF (key(_a)) x=x-10; END
IF (key(d)) x=x-10; END
FRAME;

END

END

La unica seccion de declaraciones que vemos es la seccion de variables globales, en el programa principal.
(Tendria sentido escribir alguna seccion mas de variables globales dentro de algiin proceso? Es decir,
escribir por ejemplo:

PROCESS personaje()
GLOBAL

int varGlobalPersonaje;
END
BEGIN

x=320; y=240; file=idl,; graph=1,

LOOP

IF (key(_up)) y=y-10; END

END
END
Pues no, no tiene ningun sentido, porque ya hemos visto que las variables globales son como un tnico
cajon compartido,donde todos los procesos pueden acceder a él y leer y escribir valores. Asi que las

variables globales no son propias de ninun proceso, y por lo tanto, la tinica seccion de declaraciones de
variables globales estara s6lo en el programa principal.

Vayamos ahora a por las variables locales. ;Déonde se declaran? En el programa principal o
también dentro de los procesos que queramos? Piensa en lo que significa ser una variable local: es una
variable de la cual TODOS los procesos tienen una copia (eso si, con valores posiblemente diferentes). Es
decir, si TODOS los procesos tienen una misma variable local “X”, podemos concluir que la inica seccion
de declaraciones de variables locales estara sélo en el programa principal, ya que es el unico sitio al
cual tienen acceso todos los procesos sin problemas.

LY las variables privadas? Tal como su nombre indica, estas variables son particulares de cada
proceso :ningun proceso tiene por qué saber qué variables privadas tiene declaradas otro, y viceversa. Asi
que queda claro que en el caso de las variables privadas, existira una seccion de declaraciones de
variables privadas dentro del cédigo interno de cada proceso (y del cédigo principal) donde sea
necesario.

Asi pues, para escribir correctamente un programa que utilizara estos tres tipos de variables,
tendriamos que hacer lo siguiente (tomando el codigo de los ejemplos anteriores):

PROGRAM ejemplo_procesos;
GLOBAL
INT idl;
END
LOCAL
INT varLocal; //No se usa, pero para declararla lo tengo que hacer aqui
END
PRIVATE

131

INT varPrivadaCodigoPrincipal; //No se usa, pero para declararla lo tengo que hacer aqui
END
BEGIN
set_ mode(640,480,16,MODE FULLSCREEN);
idl=load fpg("imagenes.fpg");
personaje();
personajel();
END

PROCESS personaje()
PRIVATE
INT varPrivadaPersonaje; //No se usa, pero para declararla lo tengo que hacer aqui
END
BEGIN
x=320; y=240; file=idl,; graph=1,
LOOP
IF (key(_up)) y=y-10; END
IF (key(_down)) y=y+10; END
IF (key(left)) x=x-10; END
IF (key(right)) x=x-10;, END
FRAME;
END
END

PROCESS personaje2()
PRIVATE

INT varPrivadaPersonaje2; //No se usa, pero para declararla lo tengo que hacer aqui
END

BEGIN
x=100; y=100; file=idl,; graph=2;
LOOP
IF (key(_w)) y=y-10; END
IF (key(_s)) y=y+10; END
IF (key(_a)) x=x-10; END
IF (key(_d)) x=x-10; END
FRAME;
END
END

El orden en el que aparezcan las secciones de declaraciones es irrelevante.

Si te fijas, veras que en el codigo anterior, dentro del cddigo principal, hemos escrito una seccion
GLOBAL, LOCAL y PRIVATE. Las variables globales y locales ya sabemos que sirven para todos los
procesos y por eso esta claro que han de ir declaradas en el codigo principal, pero, ;esta seccion PRIVATE,
de qué proceso es privada?

Resulta que lo que hasta ahora habiamos llamado “cédigo principal” no deja de ser un proceso
mas como otro cualquiera. La unica particularidad es que es el Unico proceso que obligatoriamente ha de
existir, y es el proceso que se ejecutara primero de todos. jEs un proceso?, te estards preguntando.
(Entonces por qué no aparece la linea PROCESS... por ningln sitio? Pues porque en el caso de este
proceso, (el “proceso-codigo principal”), esta linea es opcional. Por eso no la hemos escrito nunca, pero si
quisiéramos, la podriamos escribir. Lo unico que tienes que tener en cuenta es que este proceso ha de tener
un nombre muy concreto y fijo: se ha de llamar “MAIN” -”principal”, en inglés-. Esto es asi porque Fénix

132

necesita saber cual de los multiples procesos que pueden existir es el que primero se ha de ejecutar, y esto
lo sabe si llamamos a dicho proceso asi. Por lo tanto, podriamos reescribir el c6digo anterior anadiendo la
linea PROCESS...que falta.

PROGRAM ejemplo_procesos;
GLOBAL
INT idl;
END
LOCAL
INT varLocal; //No se usa, pero para declararla lo tengo que hacer aqui
END

PROCESS MAIN()
PRIVATE

INT varPrivadaCodigoPrincipal;, //No se usa, pero para declararla lo tengo que hacer aqui
END
BEGIN

set_mode(640,480,16,MODE FULLSCREEN);

idl=load_fpg("imagenes.fpg");

personaje();

personaje2();
END

PROCESS personaje()
END
PROCESS personaje2()
END

Y jatencion!, fijate que hemos tenido gran cuidado en dejar fuera del codigo del proceso “main”
las declaraciones de variables globales y locales (las de las privadas no, evidentemente) , porque, repito,
aquéllas no pertenecen a ningun proceso, y por lo tanto, han de ir fuera de cualquier codigo particular de

ningin proceso. Asi pues, podemos concluir que las declaraciones de variables globales y locales iran
siempre después de la linea “program...” y antes de la linea “process main()”, si es que ésta existiera.

Ahora que ya sabemos donde ubicar las distintas declaraciones de las distintas variables,
podremos comprender el funcionamiento del siguiente ejemplo, que muestra algunas de las caracteristicas
definitorias de los tres tipos de variables comentados hasta ahora (globales, locales, privadas):

PROGRAM ejemplo_procesos;
GLOBAL
int varGlobal;
END
LOCAL
int varLocal;
END
PROCESS Main()
PRIVATE
int varPrivCodPrinc;
END
BEGIN
set_mode(320,240,16);

133

personaje();

personaje2();
write_var(0,100,80,4,varGlobal);
write_var(0,150,80,4,varLocal);
write_var(0,200,80,4,varPrivCodPrinc);

LOOP
iftkey(_a)) varGlobal=varGlobal+1; end
if(key(_d)) varLocal=varLocal+1; end
if(key(_g)) varPrivCodPrinc=varPrivCodPrinc+1; end
FRAME;
END
END
PROCESS personaje()
PRIVATE
int varPrivPersl;
END
BEGIN

write_var(0,100,100,4,varGlobal);
write_var(0,150,100,4,varLocal);
write_var(0,200,100,4,varPrivPersl);

LOOP
if(key(_b)) varGlobal=varGlobal+1; end
if(key(_e)) varLocal=varLocal+1; end
if(key(_h)) varPrivPersl=varPrivPersl+1; end
FRAME;
END
END
PROCESS personaje2()
PRIVATE
int varPrivPers2;
END
BEGIN
write_var(0,100,120,4,varGlobal);
write_var(0,150,120,4,varLocal);
write_var(0,200,120,4,varPrivPers2),
LOOP
if(key(_c)) varGlobal=varGlobal+1; end
if(key(_f)) varLocal=varLocal+1; end
if(key(_i)) varPrivPers2=varPrivPers2+1; end
FRAME;
END
END

Ejecuta el programa. Veras nueve 0 dispuestos en tres columnas de tres filas.;Qué pasa si
pulsamos la tecla “a”? Que aumentaran los valores de los numeros de la columna de mas a la izquierda
(Por qué? Si te fijas en el codigo, cuando pulsamos “a” lo que hacemos es aumentar el valor de
“varGlobal”, y su nuevo valor lo imprimimos en tres sitios diferentes -fijate en el write var
correspondiente dentro de cada uno de los tres procesos que hay en el codigo-. ;Por qué ponemos en
pantalla ese valor en tres sitios? Para demostrarte que el valor de una variable global lo podemos modificar
desde cualquier proceso y ese valor sera el que usaran de forma compartida el resto: apreta la tecla “b” o la
tecla “c” y veras que ocurre lo mismo que pulsando “a”, ya que, aunque lo hagamos desde un proceso u
otro diferente, estamos modificando la misma variable “varGlobal”.

134

Si pulsas “d”, estarads aumentando sélo el nimero de la fila superior de la columna central, que
se corresponde con el valor de la variable local del proceso “main”. Otra variable local diferente pero con
el mismo nombre pertenecera al proceso “personaje” y otra también diferente pero homénima pertenecera a
“personaje2”: el valor de la primera se modifica con la tecla “e” y el de la segunda con la tecla “f”,
observando el correspondiente aumento en las cifras central e inferior-central, respectivamente.

Si pulsamos “g” estaremos modificando el valor de la variable privada del c6digo principal, si
pulsamos “h” el de “personaje” y si pulsamos “i” el de “personaje2”. En este ejemplo no se puede ver la
diferencia que existe entre variables locales y privadas porque no estamos accediendo desde procesos
diferentes a sus valores, (esto ya veremos mas adelante como se hace con las variables locales), momento
donde se nota la diferencia entre éstas, aunque ahora lo que si que puedes probar es escribir por ejemplo
dentro del proceso “personaje” (después del begin) una linea como ésta:

write var(0,100,200,4,varPrivPers2);

Veras que al intentar ejecutar el programa ocurre un error, ya que el proceso “personaje” estd intentando
acceder a una variable privada de otro proceso, cosa que no puede hacer.

Siguiendo con el ejemplo anterior, ;qué ocurriria si tenemos dos variables distintas con el mismo
nombre? ;Ocurriria algin error o funcionaria bien el programa? De entrada, decir que es una practica
MUY poco recomendable utilizar el mismo nombre para distintas variables, porque se presta a confusion y
a medio plazo es una fuente inagotable de lios, errores y dolores de cabeza. Pero si aun asi lo quieres
probar, has de saber que solamente se permiten dos casos en los que dos variables diferentes pueden
llamarse igual (en el resto de posibilidades da error de compilacion):

1.-Dos variables privadas de distintos procesos se pueden llamar igual ya que son completamente
independientes entre si.

2.-Una variable global y una variable privada se pueden llamar igual. No obstante, siempre que se haga
referencia al nombre de ambas variables dentro del codigo del proceso donde se ha definido la variable
privada homonima, dicho nombre hara referencia siempre a la variable privada, y no la global.

A lo mejor el segundo punto es el mas enredado de todos: nada mas facil que verlo en un
ejemplo:

PROGRAM ejemplo_procesos;
GLOBAL
int hola=4;
END
PROCESS Main()
BEGIN
set_mode(320,240,16);
personaje();
personaje2();
write_var(0,100,80,4,hola); //Se muestra el contenido de la variable global
LOOP
FRAME;,
END
END

PROCESS personaje()
PRIVATE
int hola=2;

135

END
BEGIN
write_var(0,100,100,4,hola), //Se muestra el contenido de la variable privada
LOOP
FRAME,
END
END

PROCESS personaje2()
BEGIN
write_var(0,100,120,4,hola), //Se muestra el contenido de la variable global
LOOP
FRAME;
END
END

Por cierto, no lo he comentado hasta ahora, pero una regla basica (entre otras mas esotéricas) a la
hora de nombrar a las variables de nuestro programa, -sean del tipo que sean-, es que su nombre no puede
empezar por un digito numérico. Es decir, variables llamadas “lvar” o “Ocrack” son invalidas y provocaran
un error de compilacion. Existen mas normas que prohiben la inclusion de determinados caracteres
especiales en el nombre de las variables (como %,$,etc), pero a menos que seas un poco extravagante, no te
deberas preocupar por esto, ya que siempre usaremos para nombrar variables caracteres alfabéticos, o en
todo caso alfanuméricos.

Constantes:

Las constantes son nombres (como los que se dan a las variables) que se utilizan como sinénimos
de valores. Se pueden entender como variables que siempre tienen un mismo valor definido, un valor que
no se puede cambiar. Estos valores pueden ser numeros enteros, decimales o cadena de caracteres, pero en
ningun caso, a diferencia de las variables, se especificara explicitamente su tipo de datos: simplemente se
asignara al nombre de la constante su valor correspondiente, del tipo que sea,y ya esta.

Utilidad: se podria utilizar, por ejemplo, una constante denominada “altura_maxima” como un
sinébnimo permanente del valor numérico 100. Es decir, que seré indiferente utilizar “altura_maxima” o 100
en el programa.

Las constantes se utilizan para ver el listado de un programa de una forma mas clara. En el ejemplo
anterior se haria para informar a las personas que leyeran el programa de que el numero 100 que utiliza el
programa es la altura maxima (de cualquier cosa u objeto del juego que fuera).

Otro uso de las constantes es el siguiente. Si en un juego se establece en varias ocasiones 3 como el
numero de vidas del protagonista, cuando se quiera modificar para aumentarlo o disminuirlo se tendria que
buscar y sustituir ese nimero por todo el programa, corriendo ademas el riesgo de sustituir otro nimero 3
que pudiera aparecer en el programa para otra cosa. Una alternativa es declarar una constante denominada,
por ejemplo, “maximo_vidas” como un sinénimo del valor numérico 3 y utilizar en el programa dicha
constante en lugar del numero; ahora, cuando se quiera cambiar este valor por otro, simplemente habra que
hacerlo una sola vez en la declaracion de constante “maximo_vidas”.Y ya esta.

Para declarar constantes, si son necesarias, simplemente es necesario escribir antes del bloque
BEGIN/END de cualquier proceso —aunque lo mas habitual es hacer siempre en el proceso principal por
logica- lo siguiente:

136

CONST
Nombre Constante= Valor numérico;
END

Fijate que no es necesario especificar el tipo de la constante, tal como se ha explicado anteriormente. Igual
que pasa con las variables, también hay constantes predefinidas. Un ejemplo de constantes predefinidas
podria ser MIN INT, que es un sinénimo del menor valor numérico que puede tomar un entero tipo INT
(-2147483648) o MAX INT, que es sinébnimo del mayor valor numérico que puede tomar un entero tipo
INT (2147483648).

Parametros de un proceso:

Ahora veremos ejemplos de programas con procesos que admiten parametros, para ver como funcionan. En
general, los procesos pueden recibir parametros en los siguientes tipos de datos:

Una variable local predefinida (como X,GRAPH,SIZE,FLAGS,...), por lo que no habra de declararlas
en ningun sitio, NI TAMPOCO SERA NECESARIO ESPECIFICAR SU TIPO EN LA CABECERA
DEL PROCESO.

Una variable privada del PROPIO PROCESO. En este caso, la definicion se realiza directamente en la
cabecera del proceso y por tanto, NO SE HA DE ESCRIBIR NINGUNA SECCION PRIVATE/END
en el cuerpo del proceso.

Una variable global definida por nosotros dentro de la seccion GLOBAL del programa principal.

Una variable local definida por nosotros dentro de la seccion LOCAL del programa principal.

Una variable publica definida por nosotros dentro de la seccion PUBLIC del programa principal.

Como ejemplo, ahi va un programa con un proceso que recibe cuatro parametros diferentes de los
tipos indicados anteriormente:

PROGRAM mi_juego;
GLOBAL

INT puntos;
END
LOCAL

INT energia;
END
BEGIN

mi_proceso(1,2,3,4);
//Mas instrucciones
END

PROCESS mi_proceso(x,int energia,int puntos,int n)
BEGIN

//Mas instrucciones
END

Vemos que el funcionamiento es el siguiente: a la hora de crear el proceso se ponen los
valores que queramos que tengan los parametros, y en la cabecera del proceso —en la linea del PROCESS
etc- se escriben los nombres de las variables a las cuales se les va a asignar esos valores, en el mismo
orden. Es decir, que en este ejemplo, cuando se cree mi_proceso, la variable local predefinida X de dicho

137

proceso valdrad 1, la variable local “energia” valdra 2, la variable global “puntos” valdra 3 y la variable
privada del proceso “n” valdra 4. Y con estos valores se ejecutara el codigo interno de ese proceso.

Fijate que en la cabecera de “mi_proceso()” no hemos especificado el tipo de X porque no
hace falta: es una variable predefinida, pero si que lo hemos hecho con las otras. Y ademas, la variable “n”
es privada al proceso (no aparece en las secciones GLOBAL/END ni LOCAL/END) pero no tiene ninguna
seccion de declaracion PRIVATE/END dentro de éste porque el aparecer en la cabecera, este hecho ya
implica que se declare automaticamente.

Fijate también que con este sistema podemos ir creando diferentes procesos que tengan el mismo codigo
pero que tengan distintos valores iniciales para algunas variables: un ejemplo es crear un proceso
“enemigo”, que segun los valores que pongamos a la hora de crearlo tenga asociado un grafico u otro, una
posicion u otra, una energia u otra, creando asi multiples enemigos que son ligeramente diferentes
mediante un unico codigo. Bien,;no?.

Ahora, a ver si entiendes el siguiente codigo:

PROGRAM mi_juego;
PRIVATE

id2;
END
BEGIN

id2=mi_proceso(160,100);
//Mas instrucciones

END
PROCESS mi_proceso(x,y)
PRIVATE
n:
END
BEGIN
set_mode(640,480,16),
graph=Iload_png("imagen.png");
FROM n=0TO 99;
x=x+2;
y=y+l;
FRAME;
END
END

En este ejemplo, cuando se llama a un proceso, éste devuelve un nimero entero, que lo recogemos
en una variable privada del codigo principal, “id2”. No lo hemos dicho hasta ahora, pero cada vez que
creamos un proceso, ¢ste nos devuelve un niimero —aleatorio- el cual podremos utilizar para hacer
referencia a ese proceso a lo largo de todo el codigo (para matarlo, o dormirlo por ejemplo). De hecho, en
el programa de ejemplo no se usa para nada, pero se ha escrito para que veas la posibilidad.

Este codigo lo que hace es crear un proceso llamado mi_proceso, el cual tiene dos parametros y ya
estd. Si luego nos fijamos en el codigo de este proceso, podemos ver que lo que representan estos dos
parametros es la posicion inicial X e y (porque asi esta escrito en la cabecera del proceso) del grafico
asociado al proceso, el cual se obtiene a partir del archivo “imagen.png”. Una vez, pues, definida la
posicion inicial y el grafico, se entra en un bucle el cual €l solo va moviendo la coordenada del centro del
dibujo hacia la derecha y para abajo, hasta que finalmente el contador “n” llega a 99, momento en el cual el
proceso mi_proceso muere. Fijate que si cambiamos los valores de los parametros de mi_proceso,

138

estaremos cambiando la posicion inicial donde se dibuja el proceso.

Un codigo identificador es un nimero entero diferente de 0 que Fénix asigna automaticamente
a cada proceso y lo identifica individualmente mientras el juego se estd ejecutando.Los ID son como el
DNI de cada uno de los procesos individuales que en un momento determinado estén ejecutandose en
nuestro juego.

Que un ID sea asignado a un proceso en tiempo de ejecucion —es decir, cuando el juego se ejecuta y
no antes-, significa que no podemos saber cudles seran esos numeros mientras programamos ni tampoco
podremos asignarlos o cambiarlos. De todas formas, es muy sencillo obtener ese valor: estd almacenado en
la variable local ID de cada proceso y también —importante- es el valor de retorno que devuelven los
procesos cuando son llamados.

Los ID son fundamentales a la hora de interactuar con procesos, ya que gracias a su ID
podemos leer y modificar las variables locales y publicas de un proceso (las privadas no) desde otro. Por lo
tanto, podriamos mover un proceso desde otro, cambiar su grafico, rotarlo o hacer cualquier cosa que
podamos hacer mediante variables locales.

Pongamos un ejemplo ahora que es importante y nos va a servir para dos cosas: 1°) Para aclarar un poco las
diferencias entre estos los tres tipos de variables vistos hasta ahora (globales, locales, privadas); 2°) Para
observar la utilizacion de los ID de los procesos para manipular los valores de las variables locales:

program ejemplo2;
global
int varglobal=20;
int idprocl, idproc2;

int idfpg;

end

local
int varlocal;

end

begin
set_mode(640,480,16);
idfpg=load_fpg("graficos.fpg");
idprocl=procesol();
idproc2=proceso2();
write(0,500,80,4, "El identificador de procesol: " + idprocl);
write(0,500,180,4,"El identificador de proceso2: " + idproc2);
loop

frame;

end

end

process procesol ()

private
int varprivadal =1;

end

begin

file=idfpg;

graph=1;

x=200;

139

y=300;

varlocal=10;

write(0,200,80,4,"El identificador de procesol visto desde él mismo: " + id),;
write(0,200,100,4,"La variable local de procesol vista desde él mismo: "+ varlocal);
/write(0,200,120,4,"La variable local de proceso?2 vista desde procesol: "+ idproc2.varlocal);
write(0,200,140,4,"La variable privada de procesol vista desde él mismo: " + varprivadal);

loop
varglobal=varglobal+1;
frame;
end
end
process proceso2()
begin
file=idfpg;
graph=2;
y=100;

varlocal=20;
write(0,200,180,4,"El identificador de proceso?2 visto desde él mismo: " + id);
write(0,200,200,4, "La variable local de proceso? vista desde él mismo: "+ varlocal);
write(0,200,220,4,"La variable local de procesol vista desde proceso2: "+ idprocl.varlocal);
/write(0,200,240,4,"La variable privada de procesol vista desde proceso?2 : " + idprocl.varprivadal);
loop
x=varglobal;
frame;
end
end

En este codigo hay mucha chicha. Por un lado tenemos una variable global llamada "varglobal”,
la cual tiene inicialmente un valor de 20. Si te fijas, desde "procesol" se accede a ella modificando en cada
iteracion (por tanto, en cada fotograma) su valor: como es global podemos hacerlo. Pero ademas, desde
"proceso2" también se accede a ella en cada iteracion, haciendo que el valor de la posicion x de su grafico
coja el valor que tiene en ese momento "varglobal". Como las variables globales son tnicas para todo el
programa, si "procesol" ha aumentado en 1 su valor, esto repercutira en que en ese mismo fotograma la
posicion horizontal de "proceso2" serd de un pixel mas a la derecha.

Por otro lado, tenemos una variable local llamada "varlocal". Esto quiere decir que todos los
procesos del programa tienen una variable llamada asi. Si te fijas, en "procesol" le asigno el valor de 10 y
en "proceso2" le asigno el valor de 20. El punto interesante estd en que es posible acceder/modificar al
valor de "varlocal" de "procesol" desde "proceso2" asi como al valor de "varlocal" de "proceso2" desde
"procesol". Y esto lo conseguimos gracias a los identificadores de cada proceso.

Recuerda que cuando se llama a un proceso, éste devolvera siempre su identificador (que no es
mas que un numero entero Unico en ese momento). Asi pues, dicho identificador lo recogemos en el
instante que creamos cada proceso, almacendndolo en una variable (en nuestro caso, "idproc1" e "idproc2".

Pero a partir de aqui, cuando ya tenemos guardado en estas variables el identificador de cada
proceso, /,como accedemos al valor de alguna de sus variables locales? Pues esto se hace en general con la
sintaxis:

identificadorProceso.nombreVariableLocal

...que es lo que hemos hecho en el ejemplo: fijate que en "proceso2" logro saber cudl es el valor de
"varlocal" de "procesol" gracias a la notacion "idprocl.varlocal".

140

Si eres perspicaz te habras fijado en un detalle: la linea que nos tenia que imprimir en pantalla el
valor encontrado desde "procesol" de la "varlocal" de "proceso2" estd comentada...Si pruebas a
descomentarla veras que el programa lanza un error desagradable. Y esto es por una razon sutil: ocurre que
hasta que todos los procesos no llegan por primera vez a la linea frame; -al primer fotograma-, cada
proceso no es consciente de la existencia de los demas procesos que han sido creados posteriormente a €l.
Es decir, en el codigo principal primero creamos a "procesol" y luego a "proceso2". Bien, hasta que
"procesol" no llegue a ejecutar el primer frame (y con él, todos los demas procesos.claro), dentro de su

c6digo no se podra hacer referencia a ningiin otro proceso que haya sido creado después de él, porque no
sabe de su existencia.

Prueba un experimento: intercambia el orden de creacion de los procesos (o sea, pon primero la
linea que crea "proceso2", antes que "procesol" y descomenta la linea problematica. Veras que continuas
teniendo el mismo problema, pero ahora causado por otra linea: la que pretende acceder desde "proceso2"
al valor de "varlocal" de "procesol". Y esto, ;como lo solucionamos?. Una manera seria poner las
referencias que se hagan a los procesos posteriores al actual después de la primera linea frame;. Es decir, si
cortas la linea problematica y la pegas justo después del frame del mismo "procesol" -y la descomentas-,
veras que al ejecutar el programa funciona perfectamente. De todas maneras, la solucién optima es utilizar
un bloque DECLARE/END, cosa que veremos posteriormente.

Fijate también que mostramos por pantalla los identificadores de "procesol" y "proceso2" de dos
maneras distintas: por un lado, en el programa principal a partir de las variables (globales, para que se
puedan usar cada una de ellas con su valor tnico en todo el programa) "idprocl" y "idproc2", pero también,
dentro de cada proceso, haciendo uso de una variable local predefinida -al igual que lo son las variables
X,Y,GRAPH o FILE, ya conocidas- llamada ID. Esta variable ID almacena, para cada proceso particular,
su identificador.

Por ultimo, tenemos en "procesol" la variable privada "varprivadal". Podriamos intentar acceder
desde "proceso2" al valor de "varprivadal" utilizando la misma notacidn por ejemplo que para las variables
locales (y de hecho, hay una linea comentada que lo haria), pero si la descomentas veras que se produce un
error sin solucion: no se reconoce "varprivadal" porque las variables privadas solo se pueden usar dentro
del proceso donde se han definido.

Hasta ahora hemos visto como averiguar el codigo identificador de una instancia de un proceso
concreto (bien obteniéndolo a partir del valor devuelto en la creacion de ésta, o bien mediante la variable
local ID para esa instancia de proceso en cuestion). Pero existen ocasiones en que nos puede interesar
obtener no uno solo, sino todos los codigos identificadores de los procesos activos que son de un tipo
concreto. Es decir, obtener los Ids de todos los procesos activos que sean “enemigos”, o todos los procesos
activos que sean “disparo”, o “bola”, o “procesol”,etc...

Fénix aporta una funcion que nos facilita la vida en este aspecto: la funcion “get id()”.

GET_ID(TIPO)

Esta funcion devuelve el identificador del primer proceso activo que encuentre que corresponda al tipo
especificado. Si no encontrase ninguno, esta funciéon devolvera 0.

En las siguientes llamadas a esta funcion que se realicen utilizando el mismo parametro, GET ID
devolvera sucesivamente los identificadores de los siguientes procesos de ese tipo que se encuentren en
memoria, hasta que ya no quede ninguno, en cuyo caso devolvera 0.

Es posible llamar a GET ID con un parametro de tipo de proceso 0. En este caso, GET ID devolvera los
identificadores de todos los procesos en memoria, de cualquier tipo.

141

GET _ID no devolvera nunca identificadores de procesos muertos o marcados para matar el proximo
frame mediante la funciéon SIGNAL.

El estado de GET _ID se reinicia cada frame, con lo que si los procesos del tipo buscado han variado (han
aparecido nuevos, han muerto algunos), GET ID lo reflejara..

PARAMETROS:

INT TIPO : Un tipo de proceso, dado por la expresion TYPE nombre_del proceso_en_el codigo

Un ejemplo de esta funcion puede ser el siguiente. Necesitaras dos archivos PNG de unos 30x30 pixeles,
llamados “circulo.png” y “cuadrado.png”, respectivamente:

program Test GET ID;
global
int IDP;
int cont;
int pngl,png2;
end
begin
set_mode(320,200,16);
pngl=load png("circulo.png"),
png2=load png("cuadrado.png”);
from cont=1 to 10
bola(rand(0,299),rand(0,199),pngl),
cuadrado(rand(0,299),rand(0,199),png2);
end
frame; //Para ver los 10 circulos y los 10 cuadrados en su posicion inicial
repeat
/*Voy del 1 al 10 porque sé que hay 10 procesos de tipo cuadrado y por tanto, he de ejecutar la funcion
get _id 10 veces para encontrar sus 10 IDs*/
from cont=1 to 10
/*En cada iteracion IDP valdra el identificador de un proceso "cuadrado” distinto.*/
IDP=get id(type cuadrado);
/*Este if hace simplemente que los cuadrados se detengan en el extremo derecho de la pantalla y no vayan
mas alla.*/
if(IDP.x < 320) IDP.x=IDP.x + 10, end
end
frame;
until(key(_esc))
exit();
end

process cuadrado(x,y,graph)
begin
loop
frame;
end
end

process bola(x,y,graph)
begin
loop

142

frame;
end
end

Puedes comprobar, si ejecutas el codigo, que lo que ocurre es que inicialmente tenemos diez procesos de
tipo “bola” y diez procesos de tipo “cuadrado”. Y unicamente los de tipo “cuadrado” se mueven hacia la
derecha: los de tipo “bola” se mantienen inmoéviles en sus posiciones iniciales. Esto es porque la funcion
get_id() so6lamente devuelve los identificadores de los procesos “cuadrado”, y por tanto, s6lo variamos los
valores de la variable local X de dichos procesos.

Jerarquias de procesos:

Otro concepto que deberias tener claro trabajando con procesos en Fénix es el de las jerarquias.

Si un proceso a partir de su codigo crea otro proceso, dentro del codigo de éste siempre se
podra hacer referencia a su proceso creador utilizando una variable local llamada “Father” —padre- que
guarda el codigo identificador de éste, y, desde el codigo de ese proceso padre, el proceso creado se podra
identificar con su cédigo guardado en otra variable local: “Son” —hijo-, siempre que éste sea el ultimo
proceso creado (es decir, si el padre genera muchos hijos, sdlamente el ultimo de ellos podra ser llamado
"Son" en el cddigo del padre). Es decir, dicho de otra manera, un proceso Father es aquel que crea a otro, el
cual sera el proceso Son respecto el primero (hasta que Father genere un nuevo hijo, que entonces sera el
nuevo proceso Son).

Si un proceso no crea otros procesos, no tendra ningin hijo y "Son" valdra 0. Si se destruye un
proceso que ha generado previamente otros procesos, éstos se dice que se han quedado huérfanos, y su
variable local “father” valdra 0.

También podemos utilizar la variable local "Bigbro" -hermano mayor- para identificar al Gltimo
proceso que el creador -el padre- del proceso actual cred antes que éste, (y valdra O si no se habia creado
ningun proceso anterior al actual). Y "Smallbro" servira para referenciar al primer proceso que el creador
del proceso actual cre6 después de éste, (y también valdra 0 si no se ha creado ningln proceso posterior al
actual).

Asi pues, resumiendo: en un proceso “procesol” cualquiera, la variable FATHER guarda el
codigo identificador del proceso que llamo a “procesol”, la variable SON guarda el codigo identificativo
del ultimo proceso “procesol” ha llamado, la variable BIGBRO guarda el codigo identificador del proceso
que el padre de “procesol” llamo justo antes que “procesol” y SMALLBRO guarda el del proceso que el
padre de “procesol” llamé justo después de él.

Como sabemos, el primer proceso que se ejecuta siempre es el proceso principal (también conocido
como Main), el cual es el Father de todos los procesos, porque €l es el que crea (llama) a todos los demas
procesos que se van a ejecutar. Puesto que estos procesos tienen el mismo padre, se puede decir que son
hermanos. A su vez, estos procesos pueden llamar a otros procesos, por lo que se convertirdn a su vez en
padres de estos procesos, que seran sus hijos y hermanos entre ellos,etc.

Esta nomenclatura tiene una razon de ser.

Por ejemplo, si se pausa o muere el Father, ineludiblemente también se pausaran o terminaran sus
procesos hijos (todos, no solamente el ultimo referenciado por "Son". ;y esto, para qué sirve? Imaginate la
siguiente situacion con el juego de matar enemigos: hay sobre 20 disparos y 10 enemigos en pantalla (que
hacen ya 30 procesos). Entonces te matan, el juego se acaba y la pantalla de créditos aparece. Cuando esta
pantalla aparece, todos los enemigos y disparos ya no deberian de estar en pantalla: tienes que terminar sus

143

procesos. Podrias terminar los 30 procesos uno a uno, pero lo mejor es terminar el Father, ya que asi,
siempre que lo hagas de la manera adecuada, terminas todos sus procesos hijo de un plumazo. Enseguida lo
Veremos.

Otra utilidad fundamental de esta nomenclatura es la posibilidad de acceder a variables locales del
proceso deseado. Por ejemplo, usando el identificador "Father", podemos acceder desde el codigo de
cualquier proceso hijo a variables como father.x o father.y, que nos devolveran en todo momento la
posicion en pantalla del proceso padre (muy util por ejemplo si queremos seguirle). De esta manera, con el
uso de las variables father,son,bigbro y smallbro podemos tener controlada a toda la parentela cercana de
un proceso con facilidad, consultando o modificando los valores que se deseen de X,Y,GRAPH,FILE...y
otras variables locales que iremos viendo (como ANGLE,SIZE,Z etc).

Un ejemplo que ilustra el significado de las variables locales predefinidas de jerarquia
(father,son,bigbro,smallbro) podria ser éste:

//AUTHOR : COLDEV
/*
Si father crea sonl, después son2 y después son3, entonces:
sonl.bighro = 0
son2.bigbro = sonl
son3.bigbro = son2
sonl.smallbro = son2
son2.smallbro = son3
son3.smallbro = 0
father.son = son3

%

program jerarquias;

global
int count=0;

end

local
int varl,var2;

end

begin
set_mode(320,240,16);
myProcessi();

end

process MyProcessl()

begin
varl=777;
var2=111;
MyProcess2();

//Imprime el valor de varl del proceso actual (MyProcessl), ya que el nieto de su abuelo es él mismo
write(0,100,20,0, son.son.father.father.varl);
loop frame;end

end

process MyProcess2()
private
inti;
end
begin

144

i=MyProcess3();
MyProcess3(),
MyProcess3(),
MyProcess3(),
//Imprime el valor de varl del proceso smallbro del primer proceso MyProcess3 creado
write(0,100,40,0, i.smallbro.varl);
//Imprime el valor de varl del proceso bigbro del ultimo proceso MyProcess3 creado
write(0,100,60,0, son.bigbro.varl); //Por curiosidad: ;qué seria entonces “son.bigbro.bigbro.varl”?
loop frame;end
end

process MyProcess3()
begin
count++;

varl=count;
//Imprime el valor de var2 del abuelo del proceso actual (es decir, MyProcessl)

write(0,100,80,0, father.father.var2),
loop frame; end
end

Fijate en los valores mostrados por pantalla y deduce, a partir del codigo, por qué son los que son.

Seiales entre procesos. Comando “Signal()”:

145

‘ ‘ pongamos en signal, congela a toda su descendencia ‘
S_WAKEUP_TREE

Igual que S WAKEUP, pero ademas de actuar sobre el proceso destino que
pongamos en signal, despierta a toda su descendencia

La razon de la existencia de las sefiales * TREE es facil de ver. Si se mata a un proceso, toda
su descendencia se queda huérfana, con lo que los diferentes procesos hijo pierden su relacion directa entre
ellos (los hermanos ya dejan de tener una relacion comin porque el padre ha muerto y cada uno va por su
lado -parece una telenovela ;verdad?-), y mandar sefales a estos procesos se convierte en tarea
complicada. Por eso es conveniente en mas de una ocasion eliminar a todo el arbol. Para eso existen las
sefiales TREE, que afectan a todo el arbol que crea el proceso que le pasamos por parametro en signal.

Como primer parametro de la orden signal también se pueden poner directamente las variables
FATHER,SON,etc (recordemos que su valor no es mas que el identificador de un proceso determinado,
como cualquier otro).

Hasta ahora he comentado que la orden signal era capaz de enviar una sefial a una instancia de un
proceso especificado. Pero esto no es todo. Esta orden también se puede utilizar para enviar la misma senal
a la vez a un conjunto amplio de instancias de procesos de un tipo concreto.

Es decir, si estas programando un matamarcianos, es posible que necesites en algin momento
matar a todos los enemigos de golpe (porque el jugador ha conseguido un mega-caiién ultraséonico que los
deja a todos fritos de golpe con su onda expansiva). Recuerda que cada enemigo es una instancia concreta
(con su ID propio) de un proceso llamémosle “enemigo”. Si utilizaramos la orden signal como hasta ahora
se ha explicado, tendriamos que ingeniarnos un complicado sistema para recoger todos los identificadores
de los diferentes enemigos existentes en el juego (todos ellos, recordemos, instancias del proceso
“enemigo”) e ir llamando dentro de un bucle a la orden signal pasandole en cada iteracion un ID diferente,
para ir matando a los enemigos uno a uno.

(No seria mas facil enviar una sefial a todos los procesos que sean instancias de un proceso
determinado? Algo asi como “enviar esta sefial a todos los procesos de tipo 'enemigo, en nuestro caso. Y
ahorrarnos un montén de faena...Pues se puede, con la misma orden signal.

Si quieres saber como se haria para enviar una sefial a un conjunto de procesos del mismo
tipo, lo tnico que hay que escribir es como primer parametro de la orden signal —el destinatario de la
sefial-, en vez de un cédigo identificador, la sentencia TYPE nombre_del proceso_en el codigo. Es decir,
que si quisiéramos destruir todos los enemigos de golpe, tendriamos que escribir:

signal(TYPE disparo,s_kill),

y asi todos los procesos activos de tipo “enemigo” recibirian la sefial S KILL.

Un ejemplo del envio de senales mediante signa/ podria ser el siguiente. Necesitaras un archivo FPG
llamado “fpg.fpg” con un grafico de unos 30x30 pixeles con codigo 001:

program Test SIGNAL,
global

int fpg;

int IDB;
/*Valdra 1 si el proceso “Bola” esta vivo y 0 si no. Nos servirda para que, en el momento que “Bola” se
detecte que esté muerta, se vuelva a generar otro proceso “Bola” y se pueda continuar el programa. Un
proceso dejard de estar vivo SOLO si ha recibido una sefial de tipo KILL.*/

146

int bolaActiva;
/*Valdra 1 si el proceso “Bolal” estd vivo y 0 si no. Nos servira para que, en el momento que “Bolal’ se
detecte que esté muerta, se vuelva a generar otro proceso “Bola2”. Un proceso dejard de estar vivo SOLO
si ha recibido una sefial de tipo KILL.*/
int bolaActiva?2;
end
begin
set_mode(640,480,16);
write_var(0,600,450,4,fps);
Jpg=load_fpg("fpg.frg");
write(0,10,30,3,"1) S_KILL");
write(0,10,40,3,"2) S FREEZE");
write(0,10,50,3,"3) S_SLEEP");
write(0,10,60,3,"4) S WAKEUP"),
write(0,10,70,3,"5) S_KILL TREE");
write(0,10,80,3,"6) S FREEZE TREE");
write(0,10,90,3,"7) S SLEEP TREE"),
write(0,10,100,3,"8) S WAKEUP TREE");
IDB=Bola(),; bolaActiva=1;
repeat
iftkey(_1) && bolaActiva==1) signal(IDB,s_kill);bolaActiva=0;end
iftkey(2) && bolaActiva==1) signal(IDB,s_freeze),end
iftkey(3) && bolaActiva==1) signal(IDB,s_sleep);end
iftkey(4) && bolaActiva==1) signal(IDB,s wakeup),end
iftkey(5) && bolaActiva==1) signal(IDB,s_kill tree);bolaActiva=0; bolaActiva2=0; end
if(key(_6) && bolaActiva==1) signal(IDB,s_freeze_tree);end
iftkey(7) && bolaActiva==1) signal(IDB,s sleep tree);end
if(tkey(8) && bolaActiva==1) signal(IDB,s wakeup_tree),;end
/*Este if lo unico que hace es, si la bola de arriba esta muerta, esperar un poco y volver a crear una nueva
bola. No te preocupes por el parametro -no visto todavia- que tiene la orden frame: solo decir que sirve
para pausar un poquitin el juego de manera que se note que durante unos instantes no hay bola de
arriba.*/
if(bolaActiva==0)
frame(2000);
IDB=Bola(), bolaActiva=1,
end
frame;
until(key(_esc))
exit();
end

process Bola()
begin
graph=1;
x=180;
y=40;
/*Este if lo unico que hace es, si la bola de abajo esta muerta, esperar un poco y volver a crear una nueva
bola. No te preocupes por el parametro -no visto todavia- que tiene la orden frame: solo decir que sirve
para pausar un poquitin el juego de manera que se note que durante unos instantes no hay bola de
abajo.*/
if(bolaActiva2==0)
frame(2000),
Bola2(); bolaActiva2=1;
end

147

loop
while(x<600) x=x+5; frame, end
while(x>180) x=x-5; frame; end
end
end

process Bola2()
begin
graph=1;
x=180;
y=80;
loop
while(x<600) x=x+5; frame; end
while(x>180) x=x-5; frame; end
end
end

Si ejecutas este codigo, lo que podras ver serd dos graficos que no paran de moverse constantemente
de un lado a otro de la pantalla, y un menti con 8 opciones para aplicar cada una de las 8 sefiales existentes
a alguno (o todos) de los procesos activos. El grafico de arriba es un proceso (“Bola”) y el grafico de abajo
es otro (“Bola2”). El de arriba es padre del de abajo, al menos al principio de la ejecucion del
programa.Estudiemos lo que pasa y su relacion con el codigo fuente de la siguiente manera:

*Si pulsamos la tecla “2”, siempre que “Bola” esté vivo, lo congelamos. Se puede comprobar
que el grafico correspondiente se para y deja de moverse, pero al grafico de debajo no le pasa nada porque
es otro proceso diferente que no resulta afectado por la senal.

*Si seguidamente pulsamos la tecla “4”, siempre que “Bola” esté vivo, lo descongelamos 6
despertamos, segun el caso. En este caso, al descongelarlo, lo que veremos es que el grafico comienza otra
vez a moverse de forma normal desde el sitio donde permanecia congelado.

*Si ahora pulsamos la tecla “3”, siempre que “Bola” esté vivo, lo dormimos. Se puede comprobar
que el grafico correspondiente desaparece de la pantalla, pero al grafico de debajo no le pasa nada porque
es otro proceso diferente que no resulta afectado por la sefal. Si volvermos a pulsar otra vez la tecla “4”,
veremos que despertamos a “Bola”, con lo que volveremos a ver el grafico en pantalla y éste comenzara
otra vez a moverse de forma normal desde el sitio donde desaparecio.

*Si pulsamos la tecla “6”, siempre que “Bola” esté vivo, congelamos el proceso “Bola” y toda su
descendencia, que en este caso es solo el proceso “Bola2”. Es decir, en definitiva congelamos dos procesos
con una sola orden signal. Podemos comprobar como en este caso, ambos graficos se paran y dejan de
moverse.

*Si seguidamente pulsamos la tecla “8”, siempre que “Bola” esté vivo, descongelamos 6 desperta-
mos, segln el caso, al proceso “Bola” y toda su descendencia, que en este caso es so6lo el proceso “Bola2”.
Lo que veremos como resultado es que ambos graficos comienzan a la vez a moverse de nuevo de forma
normal desde el sitio donde permanecian congelados, como si no hubiera pasado nada.

*Si ahora pulsamos la tecla “7”, siempre que “Bola” esté vivo, dormimos el proceso “Bola” y
toda su descendencia, que en este caso solo es “Bola2”. Podemos comprobar como en este caso, ambos
graficos desaparecen de la pantalla.Si volvermos a pulsar otra vez la tecla “8”, veremos que despertamos a
“Bola” y a toda su descendencia (o sea, “Bola2” también), con lo que volveremos a ver ambos graficos en
pantalla y éstos comenzaran otra vez a moverse de forma normal desde el sitio donde desaparecieron cada
uno.

148

*Si pulsamos la tecla “5”, siempre que “Bola” esté vivo, matamos a éste y toda su descendencia
(es decir, al proceso “Bola2” también lo matamos). Como resultado, ambos procesos desapareceran de la
pantalla. No obstante, al cabo de unos instantes, el codigo fuente del ejemplo ha sido escrito de tal manera
que se vuelve a generar un nuevo proceso “Bola” -y éste, un nuevo proceso “Bola2”- volviendo a empezar
de nuevo.

*Si pulsamos la tecla “1”, siempre que “Bola” esté vivo, lo matamos. Se puede comprobar que el
grafico correspondiente desaparece, pero al grafico de debajo no le pasa nada porque es otro proceso
diferente que no resulta afectado por la sefial. No obstante, al cabo de unos instantes, el cédigo fuente del
ejemplo ha sido escrito de tal manera que se vuelve a generar un nuevo proceso “Bola” -y éste, un nuevo
proceso “Bola2”-, con lo que tendremos tres graficos en pantalla: el perteneciente a los nuevos “Bola” y
“Bola2”, y el perteneciente al antiguo “Bola2” que ha quedado huérfano. Si ahora pruebas por ejemplo de
pulsar la tecla 5 (la sefial S KILL TREE) verds que so6lo moriran los dos procesos acabados de generar,
porque son los unicos que estan emparentados: el antiguo “Bola2” tiene un padre que ya no existe, y por
tanto, no pertenece a la misma familia que los nuevos. Esto implica que, tal como esté escrito el cédigo de
ejemplo, no le podemos enviar ninguna sefal a este proceso huérfano,por lo que permanecera en pantalla a
perpetuidad, independientemente de la creacion/destruccion de nuevas familias de procesos.

Otro ejemplo,similar al anterior, de utilizaciéon de sefiales dirigidas a toda la descendencia
completa de un proceso padre (todo un arbol), es el siguiente. Para poderlo visualizar necesitaras crear una
imagen PNG llamada “circulo.png” de unos 40x40 pixeles -que sera como su nombre indica, una bola-.
//Author: Wakroo
Program pausa;

Global
Int mapCirculo;
Int idCirculator,
int texto,
Int pausado = 0;
end
Begin
set_title("Ejemplo de Pausa");
set_mode (640,480,16);
mapCirculo = load_png("circulo.png");
idCirculator = circulator(),
write(0,0,0,0,"P para pausar todos los hijos");
write(0,0,10,0,"0O para quitar la pausa de todos los hijos");
write(0,0,20,0,"S para pausar el ultimo hijo ("Son')");
write(0,0,30,0,"4 para quitar la pausa del ultimo hijo");
write(0,0,40,0,"ESC para salir");
Loop
If (key(_esc)) exit(); End
If (key(_p) AND NOT pausado)
signal(idCirculator,s_freeze tree);
texto = write(0,320,240,4, "Pausa total"),
pausado = 1;
End
If (key(_ o) AND pausado)
signal(idCirculator,s_wakeup tree);
delete_text(texto);
pausado = 0;
End
Frame;
End
End

149

Process circulator()
Begin
circulo(50,100),
circulo(100,170);
circulo(150,240);
circulo(200,310);
circulo(250,380);
Loop
if (key(_s) AND NOT pausado)
signal(son,s_freeze);
texto=write(0,320,240,4, "Pausado solo el ultimo hijo");
pausado=1;
end
if (key(_a) AND pausado)
signal(son,s_wakeup);
delete_text(texto),
pausado=0;
end
Frame;
End
End

Process circulo(x,y)
Private
Int direc = 10;
end
Begin
graph = mapCirculo,
Loop
x =x+ direc;
If (x < 50) direc = 10, End
If (x > 590) direc = -10; End
Frame;
End
End

En este caso tenemos un proceso padre, “circulator”, que genera cinco procesos hijos (y
hermanos entre si), “circulo”, por lo que enviando desde el programa principal una sefial de tipo * TREE a
“circulator”, controlamos todos los circulos a la vez. Ademads en este ejemplo, dentro del propio proceso
“circulator”, podemos controlar individualmente el ultimo de los cinco procesos creados por éste mediante
la variable local “Son”.

Variables piblicas y sentencia Declare:

Una novedad de las ultimas versiones de Fénix es la inclusion de un nuevo tipo de variables
anteriormente inexistentes: las variables publicas.

Una variable publica es una variable que es especifica de un proceso/funcion, igual que lo es una
variable privada. Sin embargo, a diferencia de ésta, una variable publica puede ser accedida desde el resto
del programa, igual que como se utilizaria una variable local (a partir del identificador de ese proceso).

Es decir, dicho de otra forma, una variable publica seria igual que una variable local, pero solo
existente para el proceso concreto donde se haya definido, no para todos.

150

La manera de acceder al valor de una variable publica de un proceso desde otro es similar a como
se hacia con las variables locales: identificadorProceso.nombreVariablePublica.

No obstante, una particularidad novedosa de este tipo de variables es que la wvariable
“identificadorProceso” ha de declararse obligatoriamente no como Int -que es lo normal- sino como un tipo
de datos “nuevo” cuyo nombre es igual al nombre de dicho proceso.Es decir, para poder acceder a las
variables publicas de un proceso desde otro proceso, esa variable se ha declarar no como int, sino con el
nombre del proceso. (En realidad el tipo de dato finalmente acaba siendo un int, pero se ha de declarar tal
como se comenta).

Esta particularidad tiene una consecuencia importante que ahora veremos. Prueba este cddigo:

Program example;
Public
int speed = 50;
String name = "Galactica";
End
Global
Nave ship;
End
Begin
ship = Nave(),
write(0,100,100,4,ship.name + ":" + ship.speed),
Repeat
frame;
Until(key(_esc))
End

Process Nave()
Begin
Loop
frame;
End
End

En principio, este codigo lo unico que haria es escribir en pantalla el valor de dos variables
locales del proceso “Nave”. Fijate, tal como he comentado, que el identificador del proceso no lo
declaramos como Int sino con el nombre del proceso al que pertenecen las variables locales que queremos
usar: “Nave”. No obstante, se produce un error en la compilacion.

Fijate en este otro codigo:
Program example;

Process Nave()
Begin
Loop
frame;
End
End

Public
int speed = 50;

151

String name = "Galactica";
End
Global
Nave ship;
End
Begin
ship = Nave(),
write(0,100,100,4,ship.name + ":" + ship.speed),
Repeat
frame;
Until(key(_esc))
End

Si te fijas, es el mismo programa de antes,pero con una diferencia. Hemos escrito el codigo del
proceso “Nave” entre la primera lina (“program ...”) y la seccion de declaraciones de variables. Esto no lo
habiamos explicado hasta ahora, pero es perfectamente posible alterar el orden “habitual” de nuestro
codigo, que hasta ahora consistia en Linea program+declaraciones de variables+codigo programa principal
+ codigo procesos por este otro, donde el codigo de los diferentes procesos se pueden escribir (casi) al
principio de todo.

Si ejecutas este programa, veras que ahora funciona. ;Por qué? Porque en la primera version
del programa, al declarar la variable ship como “Nave”, éste no es ningtn tipo de dato reconocido y el
compilador lanza un error, ya que el codigo del proceso “Nave” esta escrito después de esa declaracion, y
alli el compilador todavia no ha llegado en ese momento. En cambio, en la segunda version del programa,
al haber escrito el codigo del proceso “Nave” antes de las declaraciones, cuando el compilador llega a leer
éstas, ¢l ya sabe qué significa la palabra “Nave”.

De esta manera ya podemos utilizar las variables publicas sin problemas. No obstante, si no te
acabas de acostumbrar al nuevo orden de escritura del codigo, existe una alternativa.El truco estd en
mantener el orden del c6digo como siempre (Linea program+declaraciones de variables+codigo programa
principal + coédigo procesos), pero declarar las variables publicas de otra manera. Con la sentencia
DECLARE.

La sentencia DECLARE tiene la siguiente sintaxis:
DECLARE PROCESS nombreProceso (tipo paraml,tipo param2,...)
END
donde los parametros que se especifiquen seran los mismos que tiene el propio proceso.

Dentro de este bloque es donde se escribira el bloque de declaraciones PUBLIC/END para las
variables publicas, y todo en conjunto se escribira en la seccion de declaraciones de variables del programa
principal, como hasta ahora.

Es decir, que la tercera version de nuestro programa, con la orden DECLARE, quedaria asi:

Program example;
Declare Process Nave()
Public
int speed = 50;
String name = "Galactica";
End
End

152

Global
Nave ship;
End
Begin
ship = Nave();
write(0,100,100,4,ship.name + ":" + ship.speed),
Repeat
frame;
Until(key(_esc))
End

Process Nave()
Begin
Loop
frame;
End
End

Fijate que cerramos con un END el bloque PUBLIC y con otro END el bloque DECLARE.

Pongo otro ejemplo muy similar al anterior para afianzar estos nuevos conceptos:

//Author:Coldev
program hola;
DECLARE PROCESS mi_proceso()
public
int hola;
int adios;
END
END

process main()
begin
mi_proceso();
otro_proceso();
end

process mi_proceso()
begin

hola=20;

adios=30;

loop frame; end

end

process otro_proceso()
private
//Asignas el tipo mi_proceso a la variable "consulta” y ya estd. ya puedes usar variables publicas
mi_proceso consulta;
end
begin
consulta=get _id(type mi_proceso),
WRITE var(0,100,100,4,consulta.hola);
loop FRAME; end
end

153

En este ejemplo, declaro dos variables publicas llamadas “hola” y “adios” para el proceso
“mi_proceso()”, asignandoles de paso un valor inicial. Y desde otro proceso diferente, accedo al valor de
una de estas variables -“hola”-, a partir del identificador del proceso “mi_proceso()” obtenido gracias a la
funcioén get id, y lo muestro por pantalla.

Fijate (repito otra vez) que la manera de acceder al contenido de una variable publica desde otro
proceso es idéntica a la manera de acceder al de una variablo local, con la salvedad de que el identificador
del proceso que tiene definida la variable publica a la que se quiere acceder ha de ser declarado no como
Int sino con el nombre de dicho proceso, tal como se puede observar también en el ejemplo.

Mas en general, la sentencia DECLARE, como su nombre indica, sirve para declarar no ya
variables, sino un proceso (o una funcion: en seguida veremos qué es lo que son) antes de utilizarlo en el
codigo del programa.Es decir, DECLARE permite definir procesos y funciones antes de que vayan a ser
implementados. Esto es 1itil, como hemos visto, cuando el compilador necesita saber de la existencia de ese
proceso antes de que el codigo de éste lo haya leido.

La aplicacion mas habitual es la que hemos visto: declarar variables publicas de ese proceso en
concreto, pero también es posible incluir dentro del bloque DECLARE/END un bloque PRIVATE/END
para declarar también las variables privadas que utilizara el proceso en cuestion.No obstante, hay que
tener en cuenta que si se declaran variables privadas en un bloque DECLARE, no se podra declarar
después ninguna otra variable privada dentro del codigo especifico de ese proceso.

Los comandos “Let me_alone()” y “Exit()”:

Como bien sabes, nuestros programas constan de un codigo principal, a partir del cual se van
llamando a diferentes procesos,y éstos a otros, etc. A partir de ahi, cada proceso “es como si” fuera un
programa independiente que esta ejecutandose en paralelo.

Esto quiere decir que, por ejemplo, si hacemos que el cddigo principal termine en pulsar la tecla
ESC, esto no quiere decir ni mucho menos que nuestro programa de deje de ejecutar, ya que posiblemente
tendremos multitud de procesos continuando su ejecucion gracias a sus bucles loop infinitos. Es probable
que hayas notado esta circunstancia en alguno de los ejemplos anteriores cuando intentaste acabar la
ejecucion de un programa y aparentemente €ste no respondia: el codigo principal si que habia terminado
pero el codigo de los diferentes procesos todavia estaba funcionando, a perpetuidad.

Para solucionar éste y otros posibles problemas que pudieran surgir, tenemos la funcién
let me _alone() --“déjame solo” literalmente-. Let me alone() acaba con todos los procesos existentes
SALVO el que ejecuta esta instruccion.

Si por ejemplo colocamos esta funcion justo al final del cédigo principal, nos aseguramos de
matar todos los procesos primero, para seguidamente acabar la ejecucion del programa de forma limpia, sin
tener que controlar cuantos procesos activos hay.

Esta solucion es util también cuando se quiere salir del juego y volver a alguna especie de men,
introduccion o parecido.

Un ejemplo que creo que no necesita demasiada explicacion (necesitas un archivo FPG llamado
“graficos.fpg” con un grafico en su interior de codigo 001 y 20x20 pixeles):

program Test LET ME ALONE y EXIT;
global

int fpg;

154

int bolas=1;
end
begin
set_mode(640,480,16),
Jpg=load_fpg("graficos.[pg");
write(0,160,30,4,"SPACE = elimina todos los procesos excepto el programa principal”);
write(0,160,50,4,"ENTER = crea de nuevo los procesos grdficos");
bola(160,60);
bola(200,100),
bola(160,140),
bola(120,100);
repeat
/*La condicion de “bolas==1" es para que solo se realice el interior del if si los graficos son visibles en
ese momento*/
if(key(_space) && bolas==1)
let_me_alone();
bolas=0;
end
/*La condicion de “bolas==0" es para que solo se realice el interior del if si los graficos no son visibles
en ese momento*/
if(key(_enter) && bolas==0)
bola(160,60);
bola(200,100),
bola(160,140),
bola(120,100),
bolas=1;
end
frame;
until(key(_esc))
exit();
end

process Bola(x,y)
begin
graph=1;
loop
frame;
end
end

155

El comando “Exists()”:

y=100;
loop
frame;

end
end

La clausula ONEXIT:

Hay casos donde el programador asigna recursos a un determinado proceso (impresion de un
texto, carga de un sonido o un fpg, creacion de una tabla blendop,etc) y en un momento dado ese proceso
es “killeado” por otro proceso diferente -por ejemplo: cuando un enemigo es matado por nuestra nave-. En
ese momento, cuando ese proceso esta a punto de morir,es posible que nos interese realizar la descarga de
los recursos que estaba utilizando, porque se dé el caso que éstos ya nos los utilizara ningin proceso mas.
El hecho de que un proceso muera no implica que los recursos que esté utilizando sean descargados de la
memoria, ni mucho menos, (con el desperdicio de memoria y el ralentizamiento del juego que esto
comporta). Para facilitar esta labor, disponemos de la clausula ONEXIT:

Su sintaxis es la siguiente:

Process ... //Cabecera del proceso

//Seccion de declaraciones de variables

Begin

//Cédigo del proceso

OnExit

//Cédigo de salida (normalmente, para descargar recursos utilizados por el proceso)
End

Por lo que puedes ver, la clausula OnExit se usa al final de un bloque BEGIN/END de un
proceso. Y el codigo que hay posterior a ella se ejecutara cuando el proceso/funcién/programa principal
termine su ejecucion, ya sea de “muerte natural” al llegar al final de su c6digo o bien porque haya recibido
una senal Kill.

En realidad, después de la clausula OnExit se puede poner cualquier codigo que se te ocurra, pero
ya he comentado que su utilidad mas evidente es escribir codigo de descarga de recursos. Piensa, por
ejemplo, que si se escribe después de la cldusula OnExit algo como Loop frame;End, el juego se quedara
bloqueado, ya que habra un proceso que no terminara de morir nunca y se quedara en un estado inestable.

Un ejemplo:

Program example;
global
int idfpg;
int idproc;
end
Begin
set_mode(640,480,16);
idfpg=load fpg("tetris.fpg");
idproc=procesol(),
Repeat
if(key(x)) signal(idproc,s_kill); end
frame;
Until(key(_esc))
End

157

Process procesol ()
Private
int idtexto;
End
Begin
file=idfpg;,
graph =1;x=320;y=240;
idtexto=write(0,100,100,4,"Hola");

Loop
frame;
End
OnExit
unload_fpg(file),
delete text(idtexto);
End

Otro ejemplo mas ilustrativo, si cabe:

//AUTHOR:COLDEYV
program hola;
private
inti;
end
begin
SET MODE(640,480,16);
i= test_process();
loop
if (key(_e))
if (EXISTS(i)) SIGNAL(i,s_kill); end
end
frame;
end
end

process test_process()
begin
write(0,150,200,0,"Proceso creado - Pulsa (E) para matarlo”),
loop
frame;
end
OnExit
write(0,150,300,0,"Proceso matado.");
end

Sobre 1a ejecucion paralela de los procesos. La variable local predefinida PRIORITY:

Ejecuta el siguiente codigo:

program hola;

begin
set_mode(320,240,16);
procesol();

158

proceso2();
loop
if(key(_esc)) exit(),;end
frame;
end
end

process procesol ()
begin
x=320;
loop
if(key(_a)) x=x+1; end
delete_text(0);
write(0,20,10,4,x);
frame;
end
end

process proceso2()
begin
x=220;
loop
if(key(_ b)) x=x+1; end
delete_text(0);
write(0,50,10,4,x),
frame;
end
end

Miremos qué hace este programa con detenimiento. Vemos que el codigo principal basicamente
llama PRIMERO a “procesol” y DESPUES a “proceso2”. Tanto “procesol” como “proceso2” son
“invisibles” porque no hemos asociado ningtin grafico con la variable GRAPH, pero eso no quita que estén
funcionando como cualquier otro proceso. En concreto, a ambos le asignamos una coordenada X diferente.
Y a partir de entonces, en ambos entramos en el bucle Loop. En “procesol” lo que hacemos
indefinidamente es borrar todos los textos de la pantalla, escribir el valor actual de su X y plasmarlo en un
fotograma (con la opcion previa de haber modificado su valor pulsando una tecla). En “proceso2” hacemos
lo mismo: borramos todos los textos de la pantall, escribimos el valor actual de su X y lo plasmamos en el
fotograma.

Un répido (y erroneo) analisis de este codigo puede llevar a pensar que lo que se tendria que
imprimir en pantalla son los dos valores de cada una de las X de los dos procesos. Pero no. Sélo se
imprime la X de “proceso2”.;Por qué?

He explicado en apartados anteriores que todos los procesos muestran en pantalla de forma
sincronizada el resultado de sus lineas de codigo anteriores a cada linea frame; se encuentren en su
ejecucion.De forma sincronizada quiere decir que hasta que todos los procesos activos existentes no hayan
llegado a una linea frame; el resto de procesos esperard en su linea frame; correspondiente: y cuando por
fin todos los procesos hayan llegado a ella, es cuando el fotograma se muestra por pantalla ofreciendo a la
vez el resultado de todos los calculos efectuados en las lineas anteriores de cada proceso.

Pero hay que tener cuidado. Siguiendo esta interpretacion, uno podria pensar del codigo
anterior lo siguiente: pongo en marcha los dos procesos, en uno se borra toda la pantalla, se escribe su X y
se llega al frame y en el otro se borra la pantall, se escribe su X y se llega al frame, con lo que cuando
llegan al frame los dos procesos, uno ha de escribir su X y el otro la suya. {NO!

159

Porque el codigo de los procesos se ejecuta se forma secuencial: un codigo de proceso después
de otro.Es decir, el primer proceso que sea creado desde el programa principal ejecutara primero sus lineas
de codigo hasta llegar a su frame, momento en el que se para; el proceso que haya sido creado justo
después del anterior es en ese momento cuando comenzara la ejecucion de su codigo, hasta llegar a su
frame; y asi con todos los procesos hasta que todos hayan llegado al frame, momento en el que, entonces si
que sincronizadamente, se visualiza el resultado en pantalla.

Esto implica, en el ejemplo anterior, que primero se ejecutan las lineas de “procesol” hasta el
frame, y luego las lineas de “proceso2” hasta el frame, y es en ese momento cuando (como ya no quedan
mas procesos mas) se visualiza el resultado. Asi, lo primero que ocurre es que se borran todos los textos de
la pantalla, luego se escribe el valor de X de “procesol”, luego se vuelve a borrar toda la pantalla, luego se
escribe el valor de X de “proceso2” y es en ese instante cuando se muestra en pantalla el resultado de todo
esto. Puedes entender ahora perfectamente ahora por qué solo se ve la X de “proceso2”: porque el
delete text(0) que aparece en “proceso2” borra todos los textos anteriormente escritos, que en este caso es
la X de “procesol”.

Si cambias el orden de invocacion de los procesos en el programa principal (es decir, llamas
primero a “proceso2” y luego a “procesol”), veras que ahora el resultado es al revés: s6lo se ve en pantalla
la X de “procesol”, por el mismo motivo.

NOTA: evidentemente, existe una manera mas optima de visualizar el valor cambiante de una variable
que la mostrada en el ejemplo anterior: escribiendo un write_var fuera del loop de los procesos. Pero el
codigo se ha escrito como excusa para demostrar la explicacion dada de sincronia y secuencialidad.

Después de toda la explicacion precedente, ya estamos en condiciones de entender que la orden
Frame no dibuja nada, sino que lo que realmente es ceder la ejecucion al proximo proceso: aunque
aparentemente Fénix ejecute los procesos de forma concurrente, realmente el procesador sélo los puede
atender de uno en uno, y para que se pase al siguiente proceso a ejecutar, o se termina con el proceso actual
o se lee la instruccion Frame. Solamente cuando todos los procesos hayan terminado de ejecutarse o han
llegado al Frame, se dibujan en pantalla, se espera el tiempo que sobre (ver el comando “set fps()”) y se
pasa al siguiente Frame.

Seguramente te estaras preguntando ahora si no tenemos mas remedio que limitarnos a respetar
el orden de ejecucion impuesto por el orden de creacion de los procesos. {No hay ninguna manera de hacer
que el codigo de un proceso se ejecute antes que el de otro, aunque éste haya sido creado antes que aquél?
Pues si, hay una manera: utilizando la variable local predefinida PRIORITY.

La variable local PRIORITY define el nivel de prioridad del proceso pertinente.Por defecto su
valor es 0.

Los procesos que tienen una prioridad mayor se ejecutan antes ya que a la hora de dibujar cada
FRAME del juego el intérprete utiliza el valor de esta variable para determinar el orden de ejecucion.
Recuerda que los procesos se ejecutan primero y so6lo cuando ya no queda ningun proceso por ejecutar en
el FRAME actual, se dibujan en pantalla.

Para que veas en accion esta variable, jugaremos con el ejemplo siguiente (necesitaras dos
imagenes de unos 50x50 pixeles de tamafio, llamadas “dibujo.png” y “dibujo2.png”):

program prioridades;

process main()
begin

160

set_mode(640,480,16);

procesol();

loop if(key(esc)) exit();end frame; end
end

process procesol ()
begin
graph=load_png("dibujo.png"); x=320;y=240;
proceso2();
loop
if(key(_left)) x=x-10;end
if(key(_down))y=y+10;end
if(key(_right))x=x+10;end
ifkey(_up))y=y-10;end

frame;
end
end
process proceso2()
begin
graph=load _png("dibujo2.png"); x=320,y=240;
loop
x=father.x;
y=father.y;,
frame;
end
end

En este ejemplo tenemos un proceso “procesol” que podremos mover con el cursor, y ademas es
padre de “proceso2”, el cual, lo tinico que hace seguir en cada fotograma la posicion de “procesol”.

Si ejecutas el ejemplo, veras que lo tinico que se ve es “proceso2”, ya que al ser el altimo proceso creado,
¢ste siempre se pintara por encima de los demas (éste es un tema que ahora no nos interesa: ya
volveremos a ¢l cuando hablemos de la profundidad de pintado de los procesos y la variable local
predefinida Z). Hay que notar que este hecho, el de que el ultimo proceso creado es el que se pinta
encima de los anteriores, siempre sera asi independientemente del valor de PRIORITY: para cambiar esto
repito que lo que es necesario es utilizar otra variable que no tiene nada que ver, Z, de la cual ya se
hablara mas adelante.

Lo importante del asunto es que te fijes que, ya que “procesol” ha sido creado antes que “proceso2”
(de hecho, éste es hijo de aquél), el codigo de “procesol” se ejecutara antes que el de “proceso2”, y una
vez que ambos codigos hayan llegado a la orden FRAME -junto con la del proceso principal-, es cuando se
mostrara el resultado por pantalla. Estudiemos esto con mas detenimiento.

Si pulsamos una tecla del cursor, cambiamos la X e Y de “procesol”, y llegamos al Frame.
Entonces pasaremos la ejecucion al codigo de “proceso2”, en el cual se toman los valores actuales de X e Y
de “procesol” y se asignan a la X e Y de “proceso2”, y llegamos al Frame. Una vez ya hemos llegado al
Frame de todos los procesos, es cuando se pinta la pantalla: en este momento la X e Y de “procesol” y de
“proceso2” valen exactamente lo mismo, por lo que veremos lo que ya hemos comentado: “proceso2” se
mueve a la vez que “procesol” y lo tapa.

Pero, ;qué pasa si afiadimos la linea siguiente justo después del BEGIN de “proceso2”?

priority=1;

161

Estaremos haciendo que la prioridad de “proceso2” sea mayor que la de “procesol” (1>0). Asi
pues, la cosa cambia. Si ejecutas ahora el programa, veras que cuando pulsas los cursores, parece que el
grafico de “procesol” se avanza un poquito al de “proceso2”, dejandose entrever; aunque cuando dejamos
d e pulsar los cursores ambos graficos vuelven a superponerse perfectamente. ;Por qué es esto?

Ahora el codigo de “proceso2” se ejecuta primero hasta la linea Frame; después se ejecuta el
codigo de “procesol” hasta el Frame y cuando todos los procesos han llegado a su Frame, se pinta por
pantalla el resultado. Estudiemos esto con mas detenimiento.

Esta claro que “proceso2” tomard la X e Y de la posicion que en este momento tiene su padre
(“procesol”), la cual puede cambiar si se esta pulsando los cursores. Pero “procesol” se ejecuta después
que “proceso2”, con lo que en cada frame, la X e Y de “proceso2” sera la X ¢ Y que tenia “procesol” en el
frame anterior, por lo que “proceso2” siempre ira retrasado un frame respecto a “procesol”, y es por eso el
efecto. Es decir, que “proceso2” no se enterara de que su padre ha cambiado su posicion hasta que no pase
el siguiente frame, porque el codigo de su padre siempre se ejecuta después de el suyo propio, con lo que
los movimientos que pueda sufrir el padre ya nos notara hasta que se vuelva a reiniciar una vuelta entera de
ejecuciones para el nuevo frame. Parece un poco lioso pero si lo piensas un poco veras que tiene su logica.

El parametro de la orden Frame:

En el capitulo 2 ya se vié un ejemplo de uso del parametro -opcional- de la orden Frame;, pero ya que
posiblemente éste es uno de los conceptos que mas cuesta de entender al iniciado en Fénix, no esta de mas
mostrar un ejemplo especifico.Es un codigo bastante simple con el que confio se acabe de entender la
utilidad de este parametro.

El parametro del FRAME lo que indica es cuantos fotogramas mas han de pasar extra para que la
orden frame sea realmente efectiva. Es decir, si no ponemos nigiin parametro, o ponemos el valor 100 —es
lo mismo-, cada vez que se llegue a la linea FRAME, el fotograma de ese proceso esta listo para ser
imprimido de ipsofacto (a falta de esperar que los otros posibles procesos lleguen también a sus respectivas
lincas FRAME).

Si se pone otro niimero como parametro del FRAME, por ejemplo el 500, lo que ocurrird es que
cuando se llegue a la linea FRAME, el fotograma del proceso no estaré listo inmediatamente sino que ese
proceso esperara a que los demas procesos hayan ejecutado 5 veces una linea FRAME para ejecutar €l la
suya (es decir, esperara a que se hayan visualizado 5 fotogramas por parte de los demds procesos antes se
visualizar nada él). Es como si el programa se quedara esperando un rato mas largo en la linea FRAME,
hasta ejecutarla y continuar.

Asi pues, este pardmetro permite, si se da un valor mayor de 100, ralentizar las impresiones por
pantalla de un proceso determinado. También es posible poner un numero menor de 100. En ese caso, lo
que estariamos haciendo es “abrir la puerta” mas de una vez en cada fotograma: si pusiéramos por ejemplo
50, estariamos doblando la velocidad normal de impresion por pantalla. Puedes comprobarlo.

Aqui presento un ejemplo que espero que ayude a entender este concepto:

Program ejemplo_avisos;
Global
int nivel_actual;
end
Local
Int info=1;
end

162

Begin
set_mode(640,480);
set fps(10,0); //Diez pantallazos por segundo.
titulo_nivel(info);

End

Process titulo_nivel(int info)
Private
int id_text;
int id_numero,
int contador==6;
end
Begin
Repeat
If(key(_esc)) exit();End
id_text=write(0,340,140,5,"NIVEL"),
id_numero=write var(0,370,140,3,info),
Frame(400); // Espera 4 pantallazos
delete text(id_text);
delete_text(id_numero),
Frame(400); // Espera 4 pantallazos
contador=contador-1;
// el aviso se repite 5 veces
Until (contador<1)
nivel();
End

Process nivel()

Begin
info=nivel_actual,;
nivel actual=nivel actual+1;
Frame (8000); //pausa de 80 pantallazos (8 segundos a FPS=10)
titulo_nivel(nivel actual+1);
write(0,50,50,0,"CUANDO TE CANSES DE AVISOS PULSA Esc");
Frame;

End

Concepto y creacion de una funcién:

Una funcién es un comando que ejecuta un cierto codigo y que al finalizar nos devolvera un
resultado numérico entero, (el cual podremos recoger, o no, segin nos interese).

Una funcion es una manera para “encapsular’” con un nombre una porcion de codigo fuente de forma
que cuando sea necesario €ste, y las veces que sea necesario, no haya que escribirlo siempre integramente
sino que simplemente se llame (se “invoque”) por su nombre y entonces su codigo interno —escrito
solamente una vez- se ejecutara.Utilizar funciones es una forma de trabajar mucho mas elegante, eficiente
y fécil de depurar.

Hemos visto varias funciones hasta ahora: load png, key, let me alone... Estas funciones son
pequefios programas en si mismos que se ejecutan siempre que las llamamos: a nosotros no nos interesa
como se han escrito internamente estas funciones: lo que nos interesa es que realicen una determinada
tarea, devolviendo o no un valor numérico entero que podremos utilizar posteriormente para lo que
consideremos oportuno.

163

Las funciones no son capaces de devolver otra cosa que no sea un nimero entero. No devolveran
numeros decimales o cadenas (a no ser que utilicemos punteros, un tema demasiado avanzado para este
manual).

Pues bien, nosotros también podemos crear nuestras propias funciones. Pero, ;qué diferencia hay
entre crear una funcién y crear un proceso?

Cuando creamos un proceso, este nuevo proceso se pondra en marcha a la vez que contintia el
proceso padre, de manera que los dos procesos se ejecutaran de forma paralela, (concurrente). Cada uno de
estos procesos tendra el comando Frame; y cada uno de ellos llegara por su cuenta a este comando
sincronizandose en ese momento y ejecutandose pues a la vez en cada fotograma.

Una funcion es diferente: una funcion es un trozo de cddigo igual que un proceso, pero cuando una
funcion es llamada, el proceso que la llamo se detiene automaticamente (se “congela”) hasta que la funcion
acabe de hacer lo que tiene encomendado. En ese instante, el proceso que la llamo se “despierta”
automaticamente y contintia la ejecucion de su propio codigo.

Por lo tanto, las funciones NUNCA tienen la orden Frame;, porque no son mas que trozos de coédigo
que se ejecutan de forma secuencial al estilo C, parando mientras tanto la ejecucion del proceso que lo
llamo. Piensa un poco: por ejemplo, la funcion load png (y todas las demas) hacen esto: hasta que no se
haya cargado una imagen PNG el codigo del proceso no continta.

Acabamos de decir que mientras se esta ejecutando el codigo del interior de una funcion, el proceso
que la ha llamado se queda en espera de que la funcion termine -y opcionalmente, devuelva algtin valor-,
para continuar en la siguiente de su propio cédigo. En principio, pues, el llamar a una funciéon sélo
“paraliza” a un proceso, pero fijate que como en Fénix hasta que todos los procesos no han llegado a una
orden Frame; no se pasa al siguiente fotograma, si existe un proceso que se ralentiza por el uso de una
determinada funcion -es posible que ocurra-, esto provocara el ralentizamiento general del juego ya que los
demas procesos estan esperando a aquél.

Lo acabado de comentar implica algo muy importante: las funciones no pueden contener bucles
infinitos bajo ningun concepto. La razon es evidente: si una funcion tuviera un bucle infinito, nunca
finalizaria su ejecucion y por tanto todos los procesos del programa permanecerian congelados en espera
un tiempo infinito, con lo que tendriamos nuestro programa “colgado”.

Que las funciones nunca incorporan en su codigo la orden Frame no es cierta del todo. Pueden
incorporarla, pero entonces gran parte (aunque no todas) de sus caracteristicas se asimilan a la de un
proceso normal y corriente, por lo que la diferencia entre ambos se hace mas ténue y no resultan tan tiles.
En este curso no veremos ninguna funcion con Frame.

Asi pues, ¢qué hay que escribir para crear una funcion?

Las funciones se crean igual que un proceso cualquiera, como los que hemos creado hasta ahora,
pero tienen dos o tres pequefias grandes diferencias:

Nuestra funcion NO ha de tener ningiin comando FRAME ni ningin bucle infinito (ya hemos
comentado este aspecto).

En vez de escribir la palabra PROCESS en la cabecera de nuestra funcién, escribiremos la palabra
FUNCTION. Opcionalmente, igual que los procesos, puede recibir parametros. En ese caso, la regla de
escritura de éstos en la cabecera son las mismas que para los procesos.

164

Nuestra funcion podra devolver opcionalmente un valor numérico entero. Para ello,se utilizara el
comando RETURN(valor_numérico).Pero cuidado porque con RETURN se acaba la ejecucion de la
funcidn, alli donde esté, por lo que hay que saberla colocar en el lugar adecuado.

Lo que hace la sentencia RETURN() es finalizar —“matar”- la funcién actual de forma inmediata,
como si se llegara al END de su BEGIN.

Se pone entre paréntesis un valor —escrito explicitamente o bien a través de una variable que lo
contenga- que queremos devolver al proceso que llamo a dicha funcion (el cual recogera ese valor en
alguna variable suya, seguramente). Es decir, escribir RETURN(29); hard que la funcion finalice su
ejecucion y devuelva al proceso invocante el valor 29; y ese proceso recogera ese valor y ya hara con €l lo
que estime oportuno.

Pero el valor escrito entre los paréntesis del RETURN es opcional. También no se puede escribir
nada, dejando los paréntesis vacios (o incluso, que es lo mismo,sin escribir ni siquiera los paréntesis: s6lo
RETURN;). En este caso, la funcion termina su ejecucion igual que en la otra manera, pero ahora el valor
de retorno de la funcién -que no se suele utilizar demasiado en realidad- sera el codigo identificador de ésta
(ya que, las funciones al igual que los procesos tienen cada una un codigo identificador).

Si la funcion carece de sentencia RETURN (que es perfectamente posible), cuando llegue al final
de su codigo -el ultimo END- también devolvera el codigo identificador de dicha funcion al proceso que lo
llamo.

La sentencia RETURN de hecho también se puede utilizar dentro del cddigo perteneciente a un
proceso, aunque so6lo en su forma mas simple (es decir, sin escribir ningun valor dentro de los paréntesis),
asi RETURN;

Esta sentencia dentro de un proceso tendra el mismo efecto que dentro de una funcion: finaliza
inmediatamente la ejecucion de su cddigo (y por tanto, en el caso de los procesos, destruye esa instancia
concreta de proceso de la memoria).

Si escribes la sentencia RETURN en el codigo principal lo finalizara, pero recuerda que si quedan
procesos vivos €stos se seguiran ejecutando. Ya sabes que finalice la ejecucion del codigo principal no
implica que finalice la ejecucion del programa, pues ésta continuard si no se ha tenido la precaucion de
matar todos los procesos existentes. Por eso, acuérdate en estos casos de utilizar la funcion let me_alone()
justo antes del END que marca el final del coédigo principal, para eliminar al resto de procesos que puedan
quedar vivos.

Recuerda ademas que también se puede finalizar en cualquer punto del programa su ejecucion
mediante la funcion exit() que automaticamente eliminara todos los procesos.

Es evidente que, al no ser un proceso, las funciones no tienen definidas ninguna de las variables
locales predefinidas de cualquier proceso: asi que GRAPH,X,ANGLE...no tendran ningin sentido para
una FUNCTION.

Posiblemente, después de haber leido los parrafos anteriores tan técnicos no creo que hayas
entendido muy bien todavia como funcionan las funciones. Basicamente lo que tienes que recordar es que

para escribir una funcion (que no deja de ser una porcioén de cédigo que no se visualiza en pantalla pero que

realiza algiin determinado célculo) se ha de hacer como si escribiéramos un proceso normal, pero éste NO
ha de tener la orden FRAME, la cabecera ha de poner FUNCTION en vez de PROCESS v si se pretende

165

que la funcidén retorne algun resultado, ha de tener la orden RETURN(valor numérico), o simplemente

RETURN si se quiere salir del cddigo de la funcién en aletin momento antes de su END.

Un ejemplo, que espero que lo aclare:

program hola;

private
int c;
end
begin
loop
c=mifuncion(rand(2,8));
write_var(0,100,100,4,b);
frame;
end
end

function mifuncion(int a)

private
int by
end
begin
b=a*a;
return (b);
end

Lo que hemos hecho aqui es crear un nuevo comando o funcion llamada “mifuncion” que
recibe un parametro entero. El objetivo de esta funcion es realizar un célculo y devolver el resultado (en
este caso, la multiplicacion por si mismo del valor pasado por parametro). Fijate que en el programa
principal se recoge lo que devuelve “mifuncion” en una variable y a partir de aqui se continua ejecutando el
programa principal.

La gracia de este ejemplo es ver que el programa principal no continta hasta que “mifunciéon” haya
acabado (se deja de ejecutar el codigo del programa principal para comenzarse a ejecutar el codigo de la
funcion “mifuncion”, hasta que éste acabe), y que, como siempre, la sincronizacioncon otros procesos (si el
proceso principal se ha retrasado un pelin respecto los demas) se realizara en su frame; correspondiente.

Por experiencia, aconsejo que si se quiere que una funcion devuelva algun valor, éste se guarde en
una variable privada de la funcién, que sera la que se coloque entre paréntesis del RETURN, tal como he
hecho en el ejemplo. Como ves, no hay ninguna necesidad de nombrar a las diferentes variables
involucradas (“a”,”b”,”’c” en el ejemplo) de la misma manera, porque cada una de ellas son variables
diferentes del resto.

A continuacion presento un cddigo rebuscado a propdsito: no tiene ninguna utilidad practica pero
sirve para comprobar si se ha entendido todo lo explicado hasta ahora.;Qué es lo que saldra por pantalla?

program fafafa;
global
int v=2;
nt w;
end

166

begin

PO;
end
function p()
begin

v=3;

q0;
end
function q()
begin

w=v;

r();
end

process r()

begin
write(0,1,1,0,w);
loop
frame;
end
end

Las funciones pueden ser recursivas: no existe ningiin inconveniente(de hecho, los procesos
también). Una funcion recursiva es la que dentro de su codigo se llama a si misma. Un ejemplo, (original
de Animanegra):

program hola;
private
int resultado;
end
begin
resultado=prueba(4);
write(0,100,100,4,resultado);
loop frame, end
end

function prueba(int a)
begin
ifta < 10)
a = prueba(a+1);
end
return(a);
end

(,Sabrias razonar por qué se ve un “10” en la pantalla si ejecutas el codigo anterior?

Cuando hablamos de las variables ptblicas comentamos la existencia de la sentencia DECLARE,
que servia para hacer saber a Fénix de la existencia de un proceso antes de llegar a su definicion, escrita
posteriormente en el codigo. Pues bien, podemos hacer lo mismo con funciones. Para utilizar la sentencia
DECLARE con funciones, su sintaxis es la siguiente:

167

DECLARE FUNCTION tipoDatoRetornado nombreFuncion (tipo paraml, tipo param2,...)

END

donde los parametros que se especifiquen seran los mismos que tiene la propia funcion, y
tipoDatoRetornado es el tipo de datos del valor que serd devuelto con la sentencia RETURN (si es que ésta
lo hace).

Un ejemplo:

Program lala;
Declare Function string ejemplofunc(int paraml)

Private
int privint;
End
End
Private
string texto,
End
Begin
texto=ejemplofunc(l);
write(0,150,10,4,texto);
texto=ejemplofunc(2);
write(0,150,20,4,texto);
loop
if(key(_esc)) exit(); end
frame;
end
End

Function string ejemplofunc(int paraml)
Begin
privint=paraml;
if (privint==1) return (";Qué taaaal?!!!");end
if (privint==2) return (";;Muy bien!!!!");end
End

En el ejemplo anterior hemos usado la sentencia DECLARE para declarar una variable privada
(“privint”) de la funcién “ejemplofunc”.

Si lo que queremos es otra cosa diferente, que es utilizar dentro de una funcion una variable
publica de un proceso externo, lo deberiamos hacer de la siguiente manera:

DECLARE process coche()
public

Int gasolina;

end

END

function coche_llenar _gasolina(coche idcoche)
begin
idcoche.gasolina=100;

168

end

En este caso, tenemos una funcion “coche llenar gasolina” con un parametro que seré el identificador de
una instancia de un supuesto proceso “coche”. Fijate (ya lo hemos visto otras veces) que dicho parametro
esta definido no como INT sino como el nombre del proceso:”coche”. La funcion lo que hace es
modificar el valor de una variable publica llamada “gasolina”, de esa instancia concreta del proceso
“coche”.

En parrafos anteriores se ha comentado que las funciones solo son capaces de devolver valores
enteros (a no ser, repito, que se utilicen punteros, cosa que no veremos). No obstante, ya debes saber que en
Fénix hay varios tipos de datos que se corresponden con valores enteros: BYTE, WORD, INT,
DWORD...;Cual es el tipo de entre éstos que se devuelve realmente?. Por defecto, si no se especifica nada,
este tipo serd INT. Pero es posible especificar otro tipo de datos -siempre que sea entero- para el valor de
retorno de una funcion. Y ;jesto como se hace?.

Simplemente hay que indicar el tipo de datos a devolver en la cabecera de la funcidn, asi:
FUNCTION tipodatosretorno nombrefuncion(tipoparaml nombreparaml, tipoparam?2 nombreparam?2,...)
y ya esta. Con el siguiente ejemplo se vera mejor:
program devoluciones;

global
inti;
byte b;
word w;
dword dw;
float f;
string c;
tipo t;

end

process main()

begin
write(0,150,60,4,cero());
write(0,150,70,4,uno());
write(0,150,80,4,dos());
write(0,150,90,4,tres());
write(0,150,100,4,cuatro()),
write(0,150,110,4,cinco());
write(0,150,120,4,seis()),
Loop frame; end

end

//Una funcion tipica de las de toda la vida
function cero()

begin

i = 0;return i;

end

//Equivalente a la funcion "cero”

169

function int uno()
begin
i=1returni;
end

//Especificamos explicitamente que el valor a devolver es BYTE
function byte dos()

begin

b = 2;return b;

end

//Especificamos explicitamente que el valor a devolver es WORD
function word tres()

begin

w = 3;return w,

end

//Especificamos explicitamente que el valor a devolver es DWORD
function dword cuatro()

begin

dw = 4;return dw;

end

//No devuelve lo que uno esperaria. No funciona
function float cinco()

begin

f=5.5; return f;

end

//No devuelve lo que uno esperaria. No funciona
function string seis()

begin

c="Seis": return c;

end

La sentencia #DEFINE:

Esta sentencia permite definir -“crear”- macros (mas exactamente, asignar un texto a una macro).
Y una macro es simplemente una palabra que, una vez definida, al aparecer mas adelante en el codigo es
sustituida por un texto determinado, especificdo también en la sentencia #define..

Una macro es similar a una constante, pero tiene alguna diferencia importante. La mas evidente es
que, a diferencia de en las constantes, los valores de las macros pueden ser expresiones aritméticas/logicas
donde pueden intervenir diferentes operandos, los cuales pueden tener un valor diferente cada vez que la
macro sea utilizada, ya que éstas -otra diferencia con las constantes- pueden admitir pardmetros. En este
sentido, una macro se pareceria mas a la definiciéon de una funcién extremadamente simple.

La sintaxis de la sentecia #DEFINE es la siguiente:

#DEFINE Macro(paraml,param2,...) ExpresionAsignadaALaMacro

Los paréntesis que incluyen los pardmetros de la macro son opcionales.

170

iFijarse que no escribimos el punto y coma al final (aunque si lo escribes tampoco pasa nada! Ni
tampoco especificamos el tipo de los parametros: siempre seran Int.

Un ejemplo:

#define CALCULO 2+3
Program lala;

Begin
write(0,100,100,4,4*CALCULO);
loop
frame;
end
End

En este caso hemos definido una macro con el nombre de “CALCULO”, sin parametros: cada vez que
aparezca la palabra CALCULO en el codigo sera sustituida por su valor, que es 2+3.

Fijate en un detalle. El resultado mostrado es 11, ya que, evidentemente, 11=4*2+3. Pero, ;qué
resultado obtenemos si ejecutamos este codigo?

#define CALCULO (2+3)
Program lala;

Begin
write(0,100,100,4,4*CALCULO);
loop
frame;
end
End

Obtenemos 20, ya que 20=4*(2+3). Como puedes ver, es muy importante el uso de los paréntesis en
expresiones matematicas definidas en macros, porque un despiste nos puede hacer que obtengamos valores
que no esperabamos.

Otro ejemplo, con una macro que admite parametros:

tdefine CALCULO(res,a,b) res=a+b
Program lala;

Private
int mivar,
End
Begin
CALCULO(mivar,2,3);
write(0,100,100,4,4*mivar);
loop
frame;
end
End

En este caso hemos utilizado una macro casi como si de una funcion se tratara. Puedes ver que el resultado
del célculo lo asignamos a una variable “mivar”. Fijate también ahora que poner paréntesis o no ponerlos
es lo mismo, ya que “res” (y por tanto, “mivar”), siempre va a valer 5.

Podemos complicar las macros con parametros hasta un nivel de sofisticacion que lleguen a tener

171

una versatilidad practicamente igual a la de una funcion estandar con la ventaja ademas de que las macros,
por su naturaleza, se ejecutan mas rapidamente que las funciones. Por ejemplo, a ver si sabes interpretar lo
que obtienes de ejecutar el siguiente codigo:

#define operacion(a,b,c) if(b==0) b=c+1; else a=b+1; end
program hola;
private

int varl,var2=3;

end

begin
operacion(varl,var2,3);
write(0,100,100,4,varl);
write(0,100,120,4,var2);
loop FRAME; end

end

Por cierto, para que no cometas posibles errores en tus futuras macros, has de saber que si asignas
algun valor a alguno de sus parametros dentro de la macro (como hacemos en el ejemplo anterior con “a” y
“b”), cuando invoques a la macro dentro del codigo, el lugar que ocupan dichos parametros debera ser
rellenado con nombres de variables (que recogeran el valor asignado correspondiente) y no con valores
explicitos, porque si no dard un error. De hecho, esto es una comportamiento logico y esperable, ya que si

lo piensas bien, no tiene sentido hacerlo de otra manera.

Seguramente te estaras preguntando por qué esta sentencia tiene ese misterioso simbolo “#”
delante. Bien,este simbolo indica que el “comando” DEFINE en realidad es lo que se llama una directiva
de preprocesador.

El preprocesador es un pequefio programa que filtra el contenido de tu codigo antes de pasarselo al
compilador, y una de sus misiones es interpretar ciertas directivas que pueden estar presente en cualquier
punto del programa -aunque se recomienda por claridad que estén al principio de todo, antes incluso de la
linea “program...” -y se que caracterizan por ocupar una linea completa y empezar por el caracter # al
principio de la misma (opcionalmente, precedido por espacios).

Asi pues, cada vez que el preprocesador encuentre una linea que contiene una macro previamente
definida, la sustituye por su valor real, y una vez ha acabado todo este proceso, es cuando transfiere el
codigo fuente al compilador para que éste realice su funcion.

Aparte de la directiva #DEFINE, existen unas cuantas mas, como por ejemplo #IFDEF, que sirve
para crear secciones de codigo compilables opcionalmente (es decir, zonas que sélo se compilan si se
cumple una condicion determinada), entre otras. Para mas informacion, consulta la ayuda online de Fénix.

172

CAPITULO 5: TABLAS Y ESTRUCTURAS

Las clases de datos que hemos explicado en el capitulo anterior (las variables de todo tipo y las
constantes) son las que hemos utilizado en los ejemplos hasta ahora exclusivamente. Estos son los datos méas
simples: un nombre asociado con valor guardado en una determinada posicion de la memoria del ordenador,
cuyo contenido puede variar (variables) o no (constantes). No obstante, existen tipos mas complejos de
datos: las tablas y las estructuras.

Tablas

Una tabla es una lista de variables, es decir, una tabla es un nombre que se relaciona, no con una sola
posicion de memoria (un solo valor) sino con tantas (tantos valores) como sea necesario.

Igual que las variables, las tablas pueden ser globales,locales, privadas o publicas.

Para definir por ejemplo una tabla global formada por niumeros enteros en un programa se
hace una declaracion —¢ inicializacion- como la siguiente:

GLOBAL
Int mitablal[3]=0,11,22,33;
END

Estas lineas declararian en un programa "mitablal" como una lista de 4 variables. Se debe
tener en cuenta que se comienza a contar siempre desde la posicion 0, y esta tabla tiene hasta la posicion 3,
como indica el nimero entre los simbolos [] (que se denominan corchetes y no se deben confundir con los
paréntesis): ese numero indica pues el numero de la ultima posicidon. En este ejemplo, cuatro posiciones de
la memoria del ordenador se reservarian para "mitablal", y se pondria inicialmente (antes de comenzar el
programa) los valores, 0, 11, 22 y 33 en dichas posiciones.

Esta inicializacion no es necesaria: también se podria haber declarado la tabla y ya esta:

GLOBAL
Int mitablal[3];
END

en cuyo caso todos los valores de los elementos de la tabla valdrian 0 por defecto.

Hay que saber que si en la declaracion de la tabla a la vez se inicializa (es decir, ya se introducen los
valores de los elementos, como es el primer caso tratado), el ntimero entre corchetes es opcional ponerlo,
ya que si por ejemplo en ese momento se introdujeran cinco valores, Fénix reservaria sitio para cinco
elementos en esa tabla, ni uno mas ni uno menos, igual que si hubiéramos escrito un "4" entre los
corchetes.

Evidentemente, nada evita que se pueda inicializar una tabla con un determinado niimero de valores y
poner entre corchetes un nimero mayor de elementos: todos aquellos elementos que no sea rellenados por
los valores en ese momento seran puestos a 0.

Cuando en un programa se tiene que consultar o modificar una de estas posiciones de memoria, se debe
indicar el nombre de la tabla y, entre los corchetes, un valor numérico para especificar qué posicion de la
tabla se quiere consultar o modificar. Por ejemplo, una sentencia para poner el valor 999 en la posicion 1
de "mitablal" (que inicialmente valdria 11) seria como sigue:

173

mitablal[1]=999;

Asimismo, seria posible definir tablas de mas dimensiones, mediantes corchetes extra; por ejemplo, en una
tabla global entera:

GLOBAL
Int mitabla2[2][4];
END

crearia una tabla con 3 filas x 5 columnas = 15 posiciones de memoria.

Fijate que todos los elementos de cualquier tabla han de ser del mismo tipo: o enteros, o decimales, o
cadenas... No puede haber dentro de una misma tabla elementos de distintos tipos.

Las tablas son muy futiles cuando necesitamos almacenar muchos valores que de alguna manera estan
relacionados entre si por su significado o proposito. Podriamos trabajar igualmente con variables
“normales”, pero es mucho mas facil declarar una tnica tabla (un nombre) con 100 posiciones por ejemplo
que no declarar 100 variables diferentes (100 nombres) para guardar cada uno de esos 100 valores.

Un sinénimo de “tabla” es la palabra “array”. También veras que a veces se les llama “vectores” a las
tablas de una dimension, y “matrices” a tablas de dos o mas dimensiones.

Pongamos un ejemplo donde se vea todo mas claro. En el siguiente codigo (imaginemos que estamos
dentro de una seccion PRIVATE/END) hemos declarado cinco tablas, cada una de forma distinta.

int tablal[]=5,3,65;

int tabla2[4];

string tabla3[]="hola","que", "tal";
string tabla4[4];

int tabla5[2][3];

La primera es una tabla (un vector) de elementos enteros a la que inicializamos en el mismo momento de
declararla; al no haber especificado entre corchetes el nimero de elementos, ésta tendra los mismos que
valores se le introduzcan en la inicializacion, es decir, 3.

La segunda también es un vector de enteros, pero con un numero determinado de elementos -cinco- y que
no se inicializa, por lo que los valores iniciales de estos cinco elementos sera 0.

La declaracion de la tercera tabla es similar a la de la primera con la salvedad de que aquélla es un vector
de cadenas. De igual manera, la cuarta tabla es una tabla de cinco cadenas, inicialmente vacias.

La quinta tabla es una tabla bidimensional (una matriz). Imaginatela como si fuera la rejilla de una hoja de
calculo o similar, formada por celdas dispuestas en filas y columnas. Cada celda vendra identificada por
dos indices, que vienen dados por los numeros dentro de los dos corchetes; el primer corchete indicara el
numero de la fila donde esta situada la celda, y el segundo corchete indicara el nimero de la columna
donde esta situada la celda, empezando siempre por 0, y desde arriba hacia abajo y desde izquierda a
derecha.. En la declaracion de la tabla, el primer corchete indicara pues el ultimo elemento de todas las
filas -por lo tanto, nuestra tabla tiene tres filas- y el segundo corchete indicara el Gltimo elemento de todas
las columnas -por lo tanto, nuestra tabla tiene cuatro columnas-.

Las dos preguntas mas evidentes cuando trabajamos con tablas es: ;como recupero los distintos

174

valores de todos los elementos de una tabla? y ;como puedo asignar nuevos valores a dichos elementos?

La respuesta a la primera pregunta es: mediante un bucle que recorra la tabla elemento a elemento y vaya
trabajando como sea necesario con el valor que obtiene en cada iteracion. El bucle que se utiliza mas
tipicamente a la hora de recorrer tablas es el bucle FOR, porque sabemos cuando empezamos (en el primer
elemento) y sabemos cuando acabamos (en el tltimo elemento, que sabemos qué posicion ocupa).

Asi, la manera mas normal de recorrer un tabla -la "tablal" anterior, en este caso- y mostrar por ejemplo
por pantalla los distintos valores de los elementos por los que se va pasando, seria algo asi:

for (i=0,i<3;i++)
write(0,100,10+10%*i,4,tablal[i]);
end

Fijate en un detalle muy importante. Este for va a realizar tres iteraciones, cuando i valga 0, 1 y 2, ya que
en el segundo parametro del for se especifica que i ha de ser siempre MENOR que 3. Y lo hemos hecho asi
precisamente porque sabemos que "tablal" tiene solo 3 elementos, tablal[0], tablal[1] y tabla[2]. Es decir,
que hubiera sido un error haber puesto algo asi como (es bastante frecuente que pase):

for (i=0;i<=3;i++)
write(0,100,10+10%i,4,tablal [i]);
end

ya que en este bucle se haria una iteracion de mas, en la cual tablal[3] no existe y provocaria un error.Hay
que tener ojo con esto.

De igual manera, podemos recorrer cualquier otro tipo de tablas, como las de cadenas. Si
probamos con "tabla4":

for (i=0;i<5;i++)
write(0,100,10+10%i,4,tabla4[i]);
end

veremos que no aparece nada en pantalla. Esto es porque esta tabla esta vacia y no tiene ningun valor que
mostrar (a diferencia de las tablas numéricas, las tablas de cadena no se rellenan automaticamente con
ningun valor.

Podemos ya por tanto escribir un programa completo que recorra las cuatro tablas
unidimensionales de este ejemplo y muestre por pantalla los valores almacenados en ellas (si es que

tienen), asi:

program ejemplo;

private
int tablal[]=5,3,65;
int tabla2[4];
string tabla3[]="hola","que", "tal";
string tabla4[4];
int tabla5[2][3];
inti;
end
begin

set_mode(640,480,16);
//Recorremos la primera tabla
for (i=0,i<3;i++)
write(0,100,10+10%i,4,tablal [i]);

175

end

//Recorremos la segunda tabla (vacia)
for (i=0,i<5;i++)
write(0,200,10+10%i,4,tabla2[i]);
end

//Recorremos la tercer tabla
for (i=0,i<3;i++)
write(0,300,10+10%i,4,tabla3[i]);
end

//Recorremos la cuarta tabla (vacia)
for (i=0,i<5;i++)
write(0,400,10+10%*i,4,tabla4[i]);
end
loop
frame;
end
end

La segunda pregunta que teniamos era que como podemos asignar nuevos valores a los elementos
de una tabla. Es bien sencillo. Tal como se ha comentado anteriormente, si se quiere cambiar el valor de un
elemento concreto, simplemente hay que asignarle su valor como hariamos con cualquier otra variable. Por
ejemplo, asi:

tablal[1]=444;

asignariamos el valor 444 al elemento 1 (el segundo) de la tabla "tablal". Si quisiéramos cambiar los
valores de un conjunto de elementos de la tabla, otra vez tendriamos que recurrir a un bucle para ir
elemento a elemento y cambiar su valor. Por ejemplo, si haces asi:

for (i=0,i<3;i++)
tablal[i] =444;
write(0,100,10+10%i,4,tablal[i]);
end

veras como antes de imprimirse por pantalla los valores de los elementos de "tablal" se les da a todos por
igual el valor de 444, sobreescribiendo el valor anterior que tuvieran. Si introduces este bucle en el ejemplo
anterior podrds comprobar como se imprimiran 3 ntimeros 444 correspondientes a los 3 elementos de
"tablal".

Pero, ;qué pasa con la tabla bidimensional? ;Como se asignan los valores? Podriamos asignarlos a
la vez que se declara:

program ejemplo;
private
int tabla5[2][3]=1,2,3,4,5,6,7,8;
end
begin
set_mode(640,480,16);
write(0,100,10,4,tabla5[0][0]);
write(0,100,20,4,tabla5[0][1]);
write(0,100,30,4,tabla5[0][2]);

176

write(0,100,40,4,tabla5[0][3]);
write(0,100,50,4,tabla5[1][0]);
write(0,100,60,4,tabla5[1][1]);
write(0,100,70,4,tabla5[1][2]);
write(0,100,80,4,tabla5[1][3]);
write(0,100,90,4,tabla5[2][0]);
write(0,100,100,4,tabla5[2][1]);

loop

frame;
end
end

Fijate el orden que se sigue para ir llenando los elementos: primero es el [0][0], después el [0][1], después
el [0][2], luego el [1][0], y asi.

También se puede asignar un valor en mitad del codigo a un elemento concreto:
tabla5[1][2]=444;

O también se puede asignar nuevos valores a multiples elementos recorriendo de arriba a abajo todos los
elementos de la matriz. Y ;jeso como se hace? Si piensas un poco, lo deduciras. Si hemos necesitado un
bucle para recorrer los elementos uno detras de otro de un vector, necesitaremos dos bucles para recorrer
las filas por un lado y las columnas por otro de esa matriz bidimensional. No obstante, la forma correcta de
hacerlo puede que te sorprenda un poco: estos dos bucles iran uno dentro de otro (lo que se llaman bucles
anidados). Vamos a poner primero un ejemplo de recorrido de una matriz para leer los valores de sus
elementos (hace lo mismo que el ejemplo anterior pero usando bucles), y luego pondremos otro ejemplo
que no los lea, sino que los modifique por un valor dado. El ejemplo de lectura es:

program ejemplo;

private
int tabla5/2][3]=1,2,3,4,5,6,7,8;
int i,j,a=10;

end

begin

set_mode(640,480,16);
for(i=0,i<3;i++)
Jor(j=0;j<4;j++)
write(0,100,10+a ,4,tabla5[i][j]);

a=a+10;
end
end
loop
frame;
end
end

El ejemplo de escritura es simplemente afiadir una linea al anterior:

program ejemplo;
private
int tabla5[2][3]=1,2,3,4,5,6,7,8;

177

int i,j,a=10;
end
begin
set_mode(640,480,16);
for(i=0,i<3;i++)
Jor(=0;j<4;j++)
tabla5[i] [j] =444,
write(0,100,10+a ,4,tabla5[i] [j]);

a=a+10;
end
end
loop
frame;
end
end

Y los dos bucles ;por qué? Fijate. En la primera iteracion del bucle mas exterior, i=0. En la
primera iteracion del bucle mas interior, j=0. A partir de aqui, se van a ir sucediendo iteraciones en el bucle
interior, de manera que mientras i vale 0, j valdrd consecutivamente 1,2 y 3. Es decir, se abran realizado
cuatro iteraciones con los valores i=0 y j=0, i=0 y j=1, i=0 y j=2 y i=0 y j=3. En este momento, se ha
llegado al limite de iteraciones en el bucle interior, se sale de él y se va a la siguiente iteracion del bucle
exterior, con lo que i=1, y se vuelve a repetir el proceso de las cuatro iteraciones internas con i=1, por lo
que ahora tendremos los valores i=1 y j=0, i=1 y j=1, i=1 y j=1 y i=1 y j=3. Y asi hasta llegar a la Gltima
iteracion del bucle exterior, que es cuando i=2. Si te fijas, con este método hemos logrado recorrer todos
los elementos de la matriz.

Y con una matriz tridimensional ;qué? Pues se usaran de forma similar tres bucles anidados.

Un ejemplo practico de uso de tablas (para implementar por ejemplo un sistema de didlogos
entre personajes de un juego):

Program texto_dialogos;
Private
int contador=0;
// Todos los textos que apareceran
string textosjuegof]=
"Volver..."
"con la frente marchita”,
"las nieves del tiempo",
"platearon mi sién.",
"Sentir...",
"que es un soplo la vida,",
"que veinte arios no es nada,",
"1qué febril la mirada!”,
"Errante, la sombra”,
"te busca y te nombra.",
"Vivir..."
"con el alma aferrada”,
"a un dulce recuerdo”,
"que lloro otra vez.";
end

178

Begin
set_mode(640,480,16);
Loop
delete_text(0);
If(key(_down))
contador++;
//Hasta que no se suelte la tecla no pasa nada
while(key(_down) <> () frame, end
End
//Muestro la cadena que ocupa la posicion dada por el indice "contador”
write_var(0,300,120,4,textosjuego/contador]);
//8i llego al final de la tabla, vuelvo a empezar
If(contador=>14) contador=0, End
If(key(esc)) exit();End
Frame;
End
End

Estructuras y tablas de estructuras:

Una estructura es como cada una de las fichas tipicas de oficina que contienen informaciéon sobre una
persona diferente (cada una de ellas) como el nimero de identidad, el nombre, direccion, teléfono,etc.

Normalmente no se utiliza una estructura sola, sino que se trabajan con tablas de estructuras.Las tablas de
estructuras serian entonces como el cajon que alberga todas las fichas/estructuras. A las estructuras también
se les llama a menudo registros. Y cada anotacion dentro de una ficha (el nombre, direccion, teléfono...) se
denomina campo.

Aunque no es formalmente correcto, es muy comun denominar, para abreviar, estructura a lo que realmente
es una tabla de estructuras.

Igual que las variables, las estructuras pueden ser globales,locales, privadas o publicas.

Por ejemplo, en un juego se podria definir la siguiente estructura global para guardar la informacion sobre
la posicién en pantalla de tres enemigos:

GLOBAL
STRUCT posicion_enemigos[2]
Int coordenada_x;
Int coordenada y;
END = 10,50,0,0,90,80;
END

Este cajon de fichas se llamaria posicion _enemigos, contendria 3 fichas para 3 enemigos (con
los nimeros 0,1 y 2, como indica el 2 entre corchetes), y cada ficha dos anotaciones, la coordenada
horizontal de un enemigo y la vertical.

En la jerga correcta, posicion enemigos es una estructura de 3 registros, cada uno con 2 campos, que serian
coordenada x y coordenada y.La lista de valores siguiente posicionaria el primer enemigo en la
coordenadas (10,50), el segundo en (0,0) y el tercero en (90,80).Como veras, el 10 es el valor de
coordenada x para posicion_enemigos[0], el 50 es el valor de coordenada y para posicion_enemigos[0], el
0 es el valor de coordenada x para posicion enemigos|1],etc.

179

Fijarse en el ejemplo anterior que como a la vez de declarar la estructura, se inicializan con valores sus
campos, al final de dichos valores se escribe un punto y coma. Si se declara la estructura y ya esta (dejando
inicialmente los campos vacios), no se escribira ningun punto y coma detras del END, como es habitual.

Para acceder después en el programa a uno de estos valores numéricos se deberia indicar el nombre de la
estructura, el nimero de registro y el nombre del campo. Por ejemplo, para poner el valor 66 en la posicion
de memoria que guarda las coordenada vertical (y) del segundo enemigo (el registro numero 1, ya que el
primer enemigo tiene sus coordenadas en el registro 0), se utilizaria la siguiente sentencia:
posicion_enemigos[1].coordenada_y = 66;

Y para visualizarlo por pantalla, se podria utilizar por ejemplo:

write(0,100,100,4,posicion_enemigos[1].coordenada_y);

En realidad es muy parecido a las tablas, pero indicando después del nimero de registro el simpolo "." (un
punto) y el nombre del campo.

La gran diferencia que tienen con las tablas es que los campos pueden no ser del mismo tipo.

De hecho, cada campo de la estructura puede ser una variable, una tabla u otra estructura completa, con sus
diferentes registros o campos. Por ejemplo, seria completamente correcto crear una estructura global como
ésta:

GLOBAL
STRUCT datos_clientes [9]
Byte codigo_interno;
String DNI;
String nombre;
String apellidos;
Int num_articulos comprados;
Float dinero_que debe;
END
END

En este caso, habriamos creado 10 fichas para los datos de nuestros clientes, en las cuales
incluiriamos, para cada uno de ellos, datos de diferente tipo.

Fijate aqui que no es necesario inicializar la estructura cuando se declara: se pueden rellenar los valores de
los campos mas adelante.En este caso, en el momento de la declaracion de la estructura todos los valores de
sus campos se inicializan a 0 por defecto.

Si quisiéramos darle valores a un registro concreto (por ejemplo el 2), ya sabemos que no tendriamos mas
que hacer:

datos_clientes[2].codigo_interno=34;
datos_clientes[2].DNI="89413257F";
datos_clientes[2]. nombre="Federico";
datos_clientes[2].apellidos="Martinez Fernandez";
datos_clientes[2].num_articulos_comprados=2;
datos_clientes[2].dinero _que debe=789.04;

180

Y repito, para consultar el valor de un campo concreto de ese registro, un write bastaria:

write(0,100,100,4, datos_clientes[2].nombre);

Veamos un ejemplo de codigo que utilice una tabla de estructuras para almacenar las
posiciones de un determinado numero de enemigos al principio de la partida y al final también.
Asignaremos valores a los campos de cada registro y luego los comprobaremos mostrandolos por pantalla.

La tabla de estructuras del ejemplo contendra la posicién inicial y final de hasta un méximo
de 10 procesos enemigos (seria como una caja con 10 fichas, cada una de ellas indicando la (x,y) incial y la
(x,y) final de un proceso):

STRUCT movimiento_enemigos[9]
Int x_inicial;
Inty final;
Int x_inicial;
Inty final;
END

Vemos que esta tabla tiene diez registros y en cada uno cuatro campos. El ejemplo primero se
encargara, mediante bucles que recorreran las 10 estructuras, de asignar valores a todos los cuatro campos
de cada registros. Y posteriormente los visualizara, utilizando para recorrer las 10 estructuras otra vez
bucles.

program ejemplo;

private

STRUCT movimiento_enemigos[9]
Int x_inicial;
Int y_inicial;

Int x_final;

Inty final;
END

inti,a;
end
begin

set_mode(640,480,16);

for(i=0,i<10;i++)
movimiento_enemigos[i].x_inicial=i;
movimiento_enemigos[i].y_inicial=i;
movimiento_enemigos[i].x_final=i+1;
movimiento_enemigos[i].y final=i+1;

end

for(i=0,i<10;i++)
write(0,10+a, 10,4, "Enemigo " + i);

write(0,10+a,20,4,movimiento_enemigos[i].x_inicial);
write(0,10+a,30,4,movimiento_enemigos[i].y_inicial);
write(0,10+a,40,4,movimiento_enemigos[i].x_final);
write(0,10+a,50,4,movimiento_enemigos[i].y final);
a=a+67;

end

loop

181

frame;

end
end

Otro ejemplo més complicado. Si se hace la siguiente declaracion:
STRUCT a[2]

Int b;

Int c[1];

END = 1,2,3,4,5,6,7,8,9;
Los valores inicializados, ;a qué campo van a parar?

Sabemos que la estructura a[] tiene 3 registros (desde a[0] hasta a[2]) y en cada registro 3 campos (b, c[0] y
c[1]), luego la anterior declaracion inicilizaria la estructura de la siguiente forma:

a[0].b=1;
a[0].c[0] =2;
a[0].c[1]=3;
a[l].b=4;
a[1].c[0] = 5;
a[l].c[1] =6;
a[2].b=17;
a[2].c[0] =§;
a[2].c[1]1=9;

Se puede comprobar haciendo el bucle pertinente que recorra los elementos y los muestre por pantalla,
como ya sabemos.

La funciéon SIZEOF():

Esta funcion devuelve el numero de bytes que ocupa en memoria el tipo de dato, tabla o
estructura (o tabla de estructuras) que se le pase por pardmetro.

Explico esta funcion aqui porque es muy util y practica en muchos casos donde se necesita
saber el tamafio total que ocupa determinada tabla o estructura (que es bastante frecuente).

Por ejemplo, sabemos que un dato Int ocupa 4 bytes en memoria, pues la sentencia
variable= sizeof(int);
deberia de asignar el valor de 4 a "variable". Y asi con todos los tipos de datos, incluyendo ademas tablas y
estructuras. Si tenemos una tabla de 20 elementos Int, ;cuanto ocupara en memoria? Pues 20x4=80 bytes,
por lo que la sentencia
variable=sizeof(mitabla);
deberia de asignar el valor de 80 a "variable".

Hay que hacer notar que sizeof devuelve el tamafio TOTAL de la tabla en memoria, el cual se
calcula a partir de sumar el tamafo del total de elementos, ya sean elementos que hayamos llenado nosotros

explicitamente como también aquellos que aparentemente estén vacios, pero que en realidad no lo estan
porque ya sabes que si no se les asigna un valor explicitamente, los elementos de una tabla siempre son

182

asignados al valor 0, por lo que siempre tendremos las tablas llenas completamente y su tamafio en
memoria siempre sera el mismo tenga mas o menos elementos rellenados "a mano".

Igualmente pasa con estructuras. Si tenemos una estructura llamada "miestructura", simplemente
deberiamos de escribir sizeof(miestructura) para saber cuanto ocupa en memoria esa estructura.

Ojo, porque si estamos hablando de una tabla (ya sea de elementos simples como de estructuras
con varios registros) llamada por ejemplo "mitabla", sizeof(mitabla) devolvera el tamafio completo que
ocupan todos los registros que forman parte de la tabla, y en cambio sizeof(mitabla[0]) devolvera el tamafio
que ocupa so6lo el primer registro -que es el mismo que cualquiera de los otros-. A partir de aqui es facil ver
que una operacion -bastante comun- como esta division: sizeof(mitabla)/sizeof(mitabla[0]) lo que
devolvera sera el nimero de elementos que puede albergar dicha tabla.

Los tipos definidos por el usuario. TYPE:

Es decir, resumiendo, el bloque TYPE/END declara un tipo de dato definido por el usuario y
compuesto a su vez por varios datos de otro tipo, y no crea ninguna variable concreta en el momento en el
que aparece: simplemente, le otorga un significado al identificador utilizado y permite que sea usado
posteriormente en cualquier declaracion de otras variables.

Un uso tipico de las tablas de TDU es por ejemplo, para almacenar en cada registro determinada
informacion sobre un enemigo (grafico,posicion x e y, vida, nivel...) , o una pieza de un rompecabezas
(grafico, posicion x e y, ancho, alto...), etc. Ya verds que sus aplicaciones son multiples, y se te iran
ocurriendo mas cuando los necesites.

Veamos un ejemplo. En el siguiente codigo se crea un TDU compuesto de un campo entero, otro
decimal y otro de cadena. También se crea otro TDU compuesto de una tabla de enteros y de una tabla de
caracteres. A partir de aqui, en la seccion PRIVATE/END se declaran dos variables del primer TDU y una
del segundo. El programa lo tnico que hace es asignar valores a los campos de las tres variables declaradas
y seguidamente mostrarlos por pantalla.

program mistipos,

type tipol
inta;
float b;
string c;
end
type tipo2
int af20];
char b[15];
end
private

tipol hola,adios;
tipo2 quetal,;
end
begin
set_mode(640,480,16);

hola.a=2;
hola.b=4.5;
hola.c="Lalala";

adios.a=87;
adios.b=96.237;
adios.c="Lerele";

quetal.af0]=3;
quetal.a[l]=64;
quetal.a[2]=9852;
quetal.b{0]="c";
quetal.b[1]="g";

write(0,100,10,4,hola.a);
write(0,100,20,4,hola.b),
write(0,100,30,4,hola.c);
write(0,100,40,4,adios.a);
write(0,100,50,4,adios.b);
write(0,100,60,4,adios.c);
write(0,100,70,4,quetal.af0]);
write(0,100,80,4,quetal.af1]);
write(0,100,90,4,quetal.af2]);
write(0,100,100,4,quetal.b[0]);
write(0,100,110,4,quetal.b[1]);

loop

frame;
end
end

185

Como se puede ver, la mayor utilidad de los TDU es poder crear un tipo estructura con un determinado
nombre identificador para declarar posteriormente estructuras a partir simplemente de ese identificador, y
cuyo contenido sera el escrito en el interior del bloque TYPE. Se puede deducir de esto que TYPE es
mucho méas cémodo que STRUCT si se tienen que crear multiples variables en lugares diferentes del
programa con la misma estructura.

En definitiva,si, por ejemplo, al principio del programa aparece este codigo:

TYPE color
BYTET, g, b;
END

seria posible declarar una o mas variables del nuevo tipo "color" en cualquier seccion de datos, por ejemplo
GLOBAL:

GLOBAL
color p;
END

siendo en este ejemplo, la variable "p" es una estructura con tres componentes de tipo byte (r, g, b).

Copia y comparacion entre dos tablas o dos estructuras. Gestion basica de memoria:

En ciertas ocasiones nos puede interesar copiar el contenido completo de una tabla en otra, o de
una estructura a otra. Lo mas inmediato que se nos ocurriria seria probar esto:

program laringe;

private
struct structl
Int c;
Intd;
end =1,4;
struct struct2
Int c;
Int d;
end
int tablal[1]=6,2;
int tabla2[1];
end
begin

set_mode(640,480,16);

//Las estructuras han de ser idénticas en lo que se refiere a numero,tipo y orden de campos
struct2=structl; //Copio los valores de los campos de structl a struc2
/*Los elementos de las dos tablas han de ser del mismo tipo, y el tamario de tabla2 ha de ser igual o mayor
al de tablal.*/
tabla2=tablal; //Copio los valores de los elementos de tablal a tabla2

//Muestro que efectivamente se han copiado bien.
write(0,100,10,4,struct2.c); //Deberia de salir un 1
write(0,100,20,4,struct2.d),; //Deberia de salir un 4

186

write(0,100,30,4,tabla2[0]), //Deberia de salir un 6
write(0,100,40,4,tabla2[1]), //Deberia de salir un 2

loop

frame;
end
end

Bien. Si intentamos ejecutar esto el intérprete nos devolvera un error en la linea donde se
supone que copio el contenido de structl a struct2. Parece pues que no se hace asi la copia. Si comentamos
esa linea para probar al menos la copia de las tablas, veremos otra cosa curiosa: el programa se ejecuta sin
errores pero resulta que solo se ha copiado el valor del primer elemento: los valores del resto de elementos
no. O sea que tampoco funciona copiar tablas de esta manera.

Copiar tablas o estructuras no es tan facil como copiar valores entre variables simples.Para
lograr hacerlo correctamente, necesitamos hacer uso de la funcion MEMCOPY

MEMCOPY(&DESTINO,&ORIGEN,BYTES)

Esta funcion copia un bloque de memoria de tamafio BYTES desde la tabla/estructura especificada por su
nombre ORIGEN (precedido del simbolo &), a la tabla/estructura especificada por su nombre DESTINO
(precedido del simbolo &).

Te estards preguntando por qué hay que poner el & delante de los dos primeros parametros de este comando (v de
muchos otros que iremos viendo). Este simbolo indica que no se trabaja con valores sino con sus direcciones de
memoria.

La memoria del ordenador estd organizada en forma de casillas, donde cada una tiene una direccion,gracias a la
cual el ordenador sabe donde tiene guardados los datos: la memoria RAM del ordenador es como un inmenso
apartado de correos. Cada vez que veas un simbolo & delante del nombre de alguna variable, estaremos utilizando
no el valor que contiene esa variable, sino la direccion de memoria donde esta alojado esa variable (y por tanto, su
valor). De hecho, por eso el comando MEMCOPY se llama asi: porque lo que hace en realidad es copiar un bloque
entero de memoria de un tamario dado por BYTES, desde una direccion de memoria dada por donde empieza a
guardarse ORIGEN, a una direccion de memoria que es donde empieza a guardarse DESTINO, sobrescribiéndolo
en este caso. El tipo de datos POINTER ("puntero”) es el requerido para este tipo de parametros

En la practica lo unico que hay que acordarse cuando se quiera utilizar esta funcion es afnadir un simbolo &
delante de los nombres -ojo, nada de valores concretos- de las variables estandar que seran el primer y segundo
parametro de la funcion

Ambas zonas de memoria ORIGEN y DESTINO pueden solaparse, en cuyo caso la zona de destino
contendra tras la ejecucion los valores que antes estaban en la de origen, machacando cualquier posicion
compartida.

Es recomendable NO usar esta funcién con bloques de memoria (tablas o estructuras) que incluyan
elementos de tipo cadena, pues el intérprete de Fénix puede quedar en estado inconsistente.

PARAMETROS:
POINTER DESTINO : Puntero a la zona de destino
POINTER ORIGEN: Puntero a la zona de origen
INT BYTES : Numero de bytes a copiar

Es decir, que para copiar el contenido de una tabla a otra (o de una estructura a otra), lo que se
tendra que hacer es copiar el bloque de memoria donde esta almacenada la tabla/estructura de origen a otro

187

sitio de la memoria del ordenador, el cual sera el bloque de destino. Parece muy extrafio, pero en verdad es
muy sencillo si volvemos a intentar el ejemplo anterior haciendo uso de esta nueva funcion:

program laringe;

private
struct structl
Int ¢,
Int d;
end =1,4;
struct struct2
Int c;
Intd;
end
int tablal[1]=6,2;
int tabla2[1];
end
begin

set_mode(640,480,16);
//Las estructuras han de ser idénticas en lo que se refiere a numero,tipo y orden de campos
memcopy(&struct2, &structl,sizeof(structl)),;//Copio los valores de los campos de structl a struc2

/*Los elementos de las dos tablas han de ser del mismo tipo, y el tamario de tabla2 ha de ser igual o
mayor al de tablal.*/
memcopy(&tabla2, &tablal,sizeof(tablal));//Copio los valores de los elementos de tablal a tabla2

//Muestro que efectivamente se han copiado bien.
write(0,100,10,4,struct2.c); //Deberia de salir un 1
write(0,100,20,4,struct2.d),; //Deberia de salir un 4
write(0,100,30,4,tabla2[0]), //Deberia de salir un 6
write(0,100,40,4,tabla2[1]), //Deberia de salir un 2

loop

frame;
end
end

Podemos comprobar que ahora si se realiza la copia correctamente.

No es necesario utilizar la funcion MEMCOPY si solamente se desea copiar un campo concreto de una
estructura a otra, o un elemento concreto de una tabla a otra. En estos casos, una simple asignacion del tipo:

tabla2[indiceelementoconcreto] =tablal [indiceelementoconcreto];
0
struct2.uncampoconcreto=structl.uncampoconcreto;

funcionard perfectamente. El uso de MEMCOPY esté disefiado para copiar tablas o estructuras enteras (y
también variables de TDU).

Nos encontraremos con un problema similar al acabado de comentar en los parrafos precedentes

188

si lo que deseamos es comparar el contenido completo de una tabla con otra, o de una estructura con otra.
Lo més inmediato que se nos podria ocurrir podria ser esto:

program laringe;

private
struct structl
Int c;
Intd;
end =1,4;
struct struct2
Int c;
Intd;
end = 3,8;

int tablal[1]=6,2;
int tabla2[1]=6,5;

end
begin
set_mode(640,480,16);

if (structl == struct2)

write(0,100,100,4,"Todos los valores de las estructuras son iguales");
else

write(0,100,150,4,"Algun valor de las estructuras es diferente”);
end

if (tablal == tabla2)
write(0,100,200,4, "Todos los valores de las tablas son iguales");

else
write(0,100,250,4,"Algun valor de las tablas es diferente”);
end
loop
frame;
end
end

Nos vuelve a pasar lo mismo. El if que compara las estructuras devuelve un error que no nos permite
ejecutar el programa, y la comparacion de tablas s6lo compara el primer elemento, obviando los siguientes.
No es asi pues como se comparan tablas, estructuras o TDU. Necesitamos para ello la funcion MEMCMP.

MEMCMP(&BLOQUE1,&BLOQUE2,BYTES)

Esta funcion compara el contenido de un bloque de memoria dado por el primer parametro con el
contenido de otro bloque de memoria dado por el segundo parametro. Ambos bloques tendran un tamafio
idéntico en bytes, dado por el tercer parametro.

Esta funcion devolvera 0 si los bloques son iguales, y -1 si no lo son

PARAMETROS:
POINTER BLOQUETL : Puntero a comienzo de un bloque de memoria
POINTER BLOQUE2: Puntero al comienzo del otro bloque de memoria cuyo contenido se
comparé con el primero
INT BYTES : Tamafio en bytes de los bloques de memoria (es el mismo para los dos, l6gicamente)

VALOR RETORNADO: INT : Resultado de la comparacion (0 si son iguales, -1 si son diferentes

189

Sabiendo esto, modificaremos nuestro ejemplo para que ahora funcione:

program laringe;

private
struct structl
Int ¢,
Intd;
end =1,4;
struct struct2
Int c;
Int d;
end = 3,8;

int tablal[1]=6,2;
int tabla2[1]=6,3;

end
begin
set_mode(640,480,16);

if (memcmp(&structl, &struct2, sizeof(structl))==0)

write(0,200,100,4, "Todos los valores de las estructuras son iguales”);
else

write(0,200,150,4,"Algun valor de las estructuras es diferente");
end

if (memcmp(&tablal, &tabla?2, sizeof(tablal))==0)
write(0,200,200,4,"Todos los valores de las tablas son iguales"),

else
write(0,200,250,4,"Algun valor de las tablas es diferente");
end
loop
frame;
end
end

Otro ejemplo muy similar de la funcion MEMCMP , pero esta vez utilizando tipos definidos
por el usuario podria ser éste:

program test;

type tipoper
intvarl;
int var2;
end

global
tipoper vi;
tipoper v2;
inti;

end

190

begin

vivarl = 1; vl.var2 = 2;

v2varl = 1; v2.var2 = 3;
i=memcmp(&vi, &v2,sizeof(tipoper));
write(0,10,10,0,i),

v2varl = 1; v2.var2 = 2;
i=memcmp(&v1, &v2,sizeof(tipoper));
write(0,10,20,0,i),;

while(!key(ESC))
frame;

end

end

No es necesario utilizar la funcion MEMCMP si solamente se desea comparar el valor contenido en un
campo concreto de una estructura y en otra, o en un elemento concreto de una tabla y en otra. En estos
casos, una simple comparacién del tipo:

if(tabla2[indiceelementoconcreto] ==tablal [indiceelementoconcreto])

0

if(struct2.uncampoconcreto==structl.uncampoconcreto)

funcionara perfectamente. El uso de MEMCMP esta disefiado para comparar tablas o estructuras enteras (y
también variables de TDU, como hemos visto).

Pasar un vector (tabla unidimensional) o un TDU como parametro de un proceso/funcion:

En péginas anteriores se ha explicado como pasar parametros en un proceso o funcion. Pero
estos parametros eran siempre de tipos simple (enteros, decimales, cadenas). ;Como se puede pasar un
vector o un TDU? Es algo que nos interesara saber y no se hace de la misma manera.

El hecho que se haga de otra forma viene dado porque se utilizan direcciones de memoria y
punteros, conceptos avanzados que no se trataran en este curso. Es decir, que para entender completamente
el proceso de paso por parametro de vectores necesitariamos tener mas conocimientos sobre programacion.
No obstante, a pesar de no ser muy pedagogico, a continuacion voy a resumir en forma de receta los pasos
que hay que hacer siempre para lograr conseguir nuestro objetivo, sin profundizar mas en ello.
Simplemente hay que hacer dos cambios respecto como pasariamos un parametro simple:

1) En la cabecera del proceso/funcion, hemos de especificar que el pardmetro es un vector
escribiendo, en el lugar que le corresponde como parametro que es:

tipo pointer nombrevector
donde "tipo" es el tipo de datos de los elementos del vector, "pointer" es una palabra que se ha de escribir

tal cual y "nombrevector" es el nombre del vector que queramos ponerle para trabajar con €l en el interior
del codigo del proceso/funcion. A partir de ahi, en ese codigo utilizaremos el vector como normalmente.

191

Si estamos hablando de TDUs, se hace muy parecido. En la cabecera de la funcién hay que especificar
que el parametro de es un tipo personalizado escribiendo, en el lugar que le corresponde como parametro
que es: tipoPropio pointer variableDeEseTipo , donde "tipoPropio" es el nombre del TDU, "pointer" es
una palabra que se ha de escribir tal cual y "variableDeEseTipo" es el nombre de la variable de ese tipo
de datos que utilizaremos.

Fijate que estamos hablando siempre de vectores o de TDUs, no de tablas multidimensionales. Para lograr
pasar estos datos por parametro, el proceso es diferente y todavia un poco mas "rebuscado" (repito que se
necesitan tener conocimientos de gestion de memoria) con lo que no se explicara en este manual.

2) En la llamada al proceso/funcion, se ha de preceder con el simbolo "&" el nombre del
vector (y no poner corchetes ni nada) que se pasa por parametro o bien el de una variable cuyo tipo sea el
TDU , asi:

proceso(&mivector);

proceso(&mivariabledeuntipopersonalizado);

Veamos un ejemplo. Vamos a crear un proceso que reciba un vector por parametro y se dedique y mostrar
por pantalla el valor de sus elementos:

program ejemplo;
private
string mitabla[3]="aswert","asd2", "asdfa", "ppaw";

end
begin

set_mode(640,480,16);

miproceso(&mitabla);
end

process miproceso(string pointer lalala)
private
inti;
end
begin
for(i=0;i<4;i++)
write(0,100,10+10% ,4,lalala[i]);
end
loop
FRAME;
end
end

Un detalle importante: cuando pasamos vectores como parametros, Fénix esta disefiado de tal
manera que cualquier cambio que hagamos dentro del codigo interno del proceso/funcion en cuestion a los
valores de los elementos de ese vector, esos cambios permaneceran fuera de dicho proceso/funcion, con lo
que si accedemos a esos elementos desde otro sitio, esos cambios se veran reflejados. Esto se puede ver
facilmente con este ejemplo:

private

192

Igual que hemos hecho con vectores, también podriamos utilizar tipos definidos por el usuario
(TDU) como parametros de funciones, con (otra vez) la particularidad de que cualquier modificacion en los
valores de sus campos efectuada dentro del cuerpo de la funcién se mantendran una vez acabada la
ejecucion de ésta (en la continuacion de la ejecucion del programa). Un ejemplo:

program ratata,

type tipo
inta;
string b;
end

process main()
private
tipo t;
end
begin
ta=1;
th="a H’.

193

hola(&t);
write(0,100,100,4,t.a),
write(0,100,110,4,t.b);
Loop frame; end

end

function hola(tipo pointer pepito)

begin

pepito.a = 2;
pepito.b ="b";
end

Veras que lo que aparecera por pantalla seran los nuevos valores de los campos de la variable "t" -del TDU
"tipo"-, una vez se haya ejecutado la funcion "hola()".

Si piensas un poco, veras que lo que hemos hecho en estos ejemplos, sin decirlo, es crear una
funcion que devuelve no ya enteros como hasta ahora -que también: la sentencia return se puede seguir
usando- sino que es capaz de devolver otro tipo de valores, como vectores o TDUs, debido a que las
modificaciones hechas internamente en la funcion se mantienen después. Esta manera de hacer se podria
hacer extensible a otros tipos como cadenas o decimales, con lo que ya podriamos construir funciones que
pudieran devolver cualquier tipo de datos. ¢ Te animas?

194

CAPITULO 6:TUTORIAL PARA EL JUEGO DEL LABERINTO

(extraido del tutorial de Wakroo,en http://divnet.divsite.net)

En este capitulo realizaremos paso a paso nuestro primer juego, el juego de conseguir salir de un
laberinto mediante los cursores del teclado. No es nada espectacular, pero por algo se empieza, ;no crees?

Imagenes y transparencias:
Lo primero que vamos a hacer es crearnos un fichero FPG —llamado “imagenes.fpg” con dos
imagenes PNG. Una sera de 30x30 pixeles y tendré el cddigo 001: representara el personaje que moveremos

nosotros con el cursor. La otra representara el laberinto; sera de 640x480 —la pantalla completa- y tendra el
codigo 002.

La imagen 001 puede ser algo parecido a esto:

y la imagen 002 —a escala- a esto:

Un detalle importantisimo antes de continuar: fijate que ambas imagenes tiene el negro
absoluto como color de fondo. Esto no es porque si. En Fénix, para las imagenes de profundidad de 16 bits
—que son las que usaremos siempre- el color negro absoluto en un trozo de la imagen indica que ese trozo
es como si no existiera:es “transparente”, no se pinta. Esto quiere decir que no podremos dibujar nunca
nada de color absoluto porque no se vera, pero no te preocupes, eso no es mucho problema porque luego
veremos que podemos pintar lo que sea de un color casi casi casi negro, donde nuestro ojo no notara la
diferencia pero Fenix si y lo tratara como un color normal.

De todas formas, y a pesar de lo dicho, cuando ejecutes el juego veras que el color de fondo es
negro: esto es porque no se ha definido ninguna imagen de fondo con put_screen. Si la definiéramos, lo que
se veria —si hemos puesto el negro absoluto como fondo del personaje y el laberinto- es la imagen de fondo

195

perfectamente y encima solo visibles las lineas del laberinto y el triangulo del personaje, pero no sus
rectangulos completos respectivos (que si que se verian, y taparian entonces el fondo de la pantalla si
hubiéramos puesto como fondo del personaje y del laberinto otro color que no fuera el negro).

Asi pues,para Fenix la zona negra absoluta no forma parte de ninguna imagen. Este es el
mecanismo que tenemos para poder dibujar imagenes que no sean rectangulares.O sea, que si hemos
creado un personaje cuadrado de 30x30 como es el caso, pero hemos dibujado un triangulo en su interior y
el resto lo hemos puesto negro, para Fénix el dibujo del personaje solo sera el triangulo rojo, con lo que eso
comporta (contorno de la imagen, transparencias respecto otros dibujos de debajo,etc). Y lo que es mas
importante para nosotros, el laberinto también tiene el color negro de fondo. Piensa un poco: si hubiéramos
dibujado las lineas que forman el laberinto en un fondo blanco por ejemplo, Fenix interpretaria que la
imagen que corresponde al proceso laberinto es todo el rectangulo de la imagen. En cambio, si ponemos el
color de fondo negro, el grafico correspondiente al proceso laberinto solo serd las lineas de su contorno.
Esto es vital para nuestro programa,porque si lo que queremos es comprobar cuando nuestro personaje
choca contra el laberinto, si el laberinto Fenix lo toma como todo el rectangulo de la imagen, el personaje
siempre estaria chocando con €l a pesar de no tocar ninguna linea —el personaje siempre esta dentro de la
imagen rectangular del laberinto- , pero si en cambio hacemos que Fénix tome como el grafico del
laberinto solo las lineas, haciendo transparente todo lo demas, entonces podremos detectar las colisiones
del personaje con las lineas solamente cuando éstas se produzcan, ya que el resto de la imagen del laberinto
no se toma como tal: no es imagen.

El juego basico. El comando "Collision()":

Bueno, empecemos. Vamos a aprovechar el primer ejemplo de codigo que escribimos en el
capitulo anterior, el “ejemplo_procesos” para empezar a escribir nuestro juego. Aqui os lo vuelvo a pasar
para que os acordéis.

PROGRAM juego laberinto;
GLOBAL
INT idl;
END
BEGIN
set_mode(640,480,16, MODE FULLSCREEN);
idl=load fpg("imagenes.fpg");
personaje();
END

PROCESS personaje()
BEGIN
x=320; y=240; file=idl,; graph=1;
LOOP
IF (key(_up)) y=y-10; END
IF (key(_down)) y=y+10; END
IF (key(left)) x=x-10; END
IF (key(right)) x=x-10; END
FRAME;
END
END

Con este codigo, recordaras que lo que teniamos es nuestro personaje que se puede mover por
cualquier sitio de nuestra pantalla, incluso salir de ella. Ahora vamos a afiadir el laberinto, el cual,

evidentemente, sera otro proceso.

Recuerda que para hacer esto, hay que hacer dos cosas. Primero modifica el programa principal asi:

196

PROGRAM juego laberinto;
GLOBAL
INT idl;
END
BEGIN
set_mode(640,480,16,MODE FULLSCREEN);
idl=load fpg("imagenes.fpg");
personaje();
laberinto();
END

Fijate que lo tnico que hemos hecho ha sido afiadir después de la creacion del personaje, la
llamada al proceso “laberinto()” para que se cree y visualice el laberinto. Esta claro que lo segundo que
tendremos que hacer es codificar este nuevo proceso “laberinto()”. Para eso, después del END que cierra el
codigo del proceso “personaje()” , escribe lo siguiente:

PROCESS laberinto()
BEGIN
x=320,y=240;graph=2;
LOOP
frame;
END
END

Con esto lo Unico que hacemos es visualizar el laberinto en el centro de la pantalla:
(establecemos valores a las variables X,Y y GRAPH y nos metemos en un bucle infinito para ir mostrando
siempre la imagen), pero nuestro personaje, -el cual ha de aparecer en el centro del laberinto segun las X e
Y que hemos puesto-, se puede seguir moviendo igual.

Lo que vamos a hacer ahora es obligar a que si el personaje se mueve y choca contra el
laberinto, vuelva al centro de la pantalla. Para ello, hemos de modificar el proceso “personaje()” de la
siguiente manera:

PROCESS personaje()
BEGIN
x=320; y=240; file=idl,; graph=1;
LOOP
IF (key(_up)) y=y-10; END
IF (key(_down)) y=y+10; END
IF (key(left)) x=x-10; END
IF (key(right)) x=x-10; END
IF (collision(TYPE laberinto)) x=320;y=240; END
FRAME;
END
END
Fijate que so6lo hemos afnadido una linea mas a las que habia: la linea /F (collision(TYPE
laberinto)) x=320;y=240,; END.

Nos encontramos con una nueva orden: collision(TYPE laberinto);. Esta sentencia devuelve cierto
si el grafico del proceso que la ejecuta -o sea, "personaje”- y el grafico del proceso cuyo nombre se escribe

197

entre paréntesis seguido de TYPE -o sea, "laberinto"- se superponen —colisionan- de alguna manera. Por lo
tanto, el IF es cierto y se ejecutan las sentencias del interior. Y ahi nos encontramos dos ordenes, que
vuelven a poner el proceso personaje en el centro de la pantalla. jYa hemos hecho nuestro primer juego!

ACLARACION IMPORTANTE: Fijate que dentro de los paréntesis de la orden collision, antes
de poner el nombre del proceso con el que se quiere comprobar la colision, hemos escrito la palabra
resevada TYPE. ;Por qué? Porque en realidad, poniendo esta palabra, lo que estamos intentando detectar
son todas las colisiones que tenga el proceso "personaje" con TODAS las instancias del proceso "laberinto"
que estén activas en este momento. Es decir, que si hubiéramos hecho varias llamadas dentro de nuestro
codigo al proceso "laberinto", tendriamos por cada una de ellas una instancia de él (se verian multiples
laberintos en nuestro juego), y con la palabra TYPE lo que hacemos es detectar las colisiones con
cualquiera de ellas.

Evidentemente, en este juego no seria necesario utilizar TYPE porque s6lo tenemos una instancia de
"laberinto" funcionando (o sea, solo creado el proceso "laberinto" una vez), pero funciona igual. De todas
maneras, alguna vez nos encontraremos con la necesidad de detectar la colision de nuestro personaje con
una instancia CONCRETA de un proceso (como por ejemplo, un enemigo concreto de entre tantos creados
a partir de un unico proceso "enemigo"). ;Como lo hariamos? En ese caso, el parametro de collision
deberia ser el ID de esa instancia concreta con la que se desea detectar si hay colision o no.

Es decir, resumiendo, podemos utilizar la orden collision de dos formas. O bien:
collision(TYPE nombreProceso);

donde detectamos las colisiones del proceso actual con TODAS las instancias de un proceso concreto dado
por nombreProceso, o bien:

collision(idProceso);

donde detectamos las colisiones del proceso actual s6lo con aquella instancia que tenga un identificador
dado por idProceso.

OTRA ACLARACION IMPORTANTE: En el caso de utilizar collision de la manera
collision(TYPE nombreProceso); en realidad, collision no devuelve “verdadero” o "falso" simplemente. Lo
que devuelve en realidad es el ID del proceso con el que colisiona. Como un ID valido (es decir,
correspondiente a un proceso activo existente) es siempre mayor que 0, y Fénix entiende que cualquier
valor diferente de 0 es tomado como "verdadero", nos aprovechamos de este hecho para utilizar collision
de esta manera: si devuelve 0 es que no ha habido colision, y si devuelve otra cosa, si que ha habido, y en
realidad esa "otra cosa" es el ID del proceso con el que se ha colisionado.Esto es importante porque aunque
ahora no lo necesitemos, mas adelante veremos que nos interesara recoger este ID para saber con qué
proceso hemos colisionado en concreto.

Un detalle: collision se comprueba en cada frame del proceso actual, pero puede ocurrir que
antes de llegar a €I, varios procesos hayan colisionado con el proceso actual. En ese caso, collision s6lo
devolvera el ID del ultimo proceso con el que ha colisionado antes del fotograma, perdiéndose los otros
ID anteriores. Esto se podria evitar, por ejemplo, usando un bucle y un vector, del tipo:

i=0;
while (vectorids[i] =collision (type otroProc))

... *Vectorids[i] guarda el identificador de la instancia concreta de otroProc con la que se ha
colisionado, las cuales pueden ser varias a la vez. Cuando se haya acabado de registrar todas esas

198

colisiones, se habran rellenado unos determinados elementos de dicho vector y el bucle se termina
porque la condicion pasa a ser 0 -falsa-, (que es lo que devuelve collision cuando no se detecta
colisiones). Justo después de este bucle se puede proseguir con el codigo normal del juego pudiendo
utilizar todos los elementos de Vectoids.*/

it+;

end

En el caso de utilizar collision en el modo collision(idProceso),, cuando existe colision no se
devuelve idProceso, sino simplemente 1.

Fijaros finalmente que en este ejemplo, si quisiéramos hacer que se moviera mas despacio o mas
deprisa tendriamos que alterar las cuatro cifras. Si en vez de 10 hubiésemos creado en la seccion de
declaraciones del programa principal una constante llamada “velocidad”, por ejemplo, bastaria con alterar
el valor de la constante al principio del programa para alterar todo el movimiento, lo que en un programa
extenso nos ahorraria muchisimo tiempo y nos aseguraria que no nos hemos dejado nada por cambiar.

Tampoco seria mala idea crear dos constantes mas, llamadas por ejemplo RESHOR y RESVER (de
"resolucion horizontal" y "resolucion vertical”, respectivamente, y asignarles el valor de 640 y 480. De esta
manera, cuando usemos la orden set mode, podriamos hacer set mode(RESHOR,RESVER,16); y cuando
queramos situar al grafico del laberinto y al personaje en el centro de la pantalla simplemente tendriamos
que asignar a sus variables X e Y los valores RESHOR/2 y RESVER/2 respectivamente. Con esto ganamos
que, si algn dia decidiéramos cambiar la resolucion de la pantalla del juego por otra (por ejemplo
800x600), no tuviéramos que cambiar "a mano" todas los valores numéricos de las coordenadas de los
diferentes procesos (es decir, el 320 que vale la X por el 400 y el 240 de la Y por el 300): simplemente
tendriamos que cambiar los valores de las dos constantes y automaticamente todo quedaria ajustado sin
hacer nada mas

Ahora veamos el siguiente caso: avanzar y girar. Cuando creamos un grafico en Fenix siempre
estara "mirando" hacia la derecha. Por lo tanto al dibujar objetos vistos desde arriba la parte de delante
debe esta mirando hacia la derecha. Asi nos evitaremos muchos problemas (fijaros que yo el triangulo lo he
dibujado hacia la derecha). Para girar nuestro tridangulo y hacer que “mire” hacia otro sitio habria que
sustituir los cuatro IF de movimiento por estos otros:

IF (key(_up)) advance(10); END

IF (key(_down)) advance(-10); END

IF (key(_left)) angle=angle+7500; END
IF (key(_right)) angle=angle-7500; END

Como veis es muy simple. La sentencia advance(), hace avanzar el grafico el nimero de pixeles indicado
entre paréntesis en el sentido en el que estd "mirando" el grafico. Si el nimero es negativo lo hace
retroceder

ANGLE es una variable local predefinida, y representa el angulo que existe entre una flecha imaginaria
apuntando hacia la derecha hasta la orientacion actual donde "mira" el proceso correspondiente.

Esta variable se mide en milésimas de grado y va en sentido contrario a las agujas del reloj. Por lo tanto si

199

ponemos angle=90000; el proceso estara mirando hacia arriba, ANGLE=180000; mirara hacia la izquierda,
ANGLE=270000; mirara hacia abajo y ANGLE=360000; o ANGLE=0; hacia la derecha.

Tened cuidado con los angulos, puesto que Fenix, al pasar de 360000 no ajusta el angulo a 0, sino que
sigue hacia adelante. Lo mismo pasa al bajar de 0. Se podria dibujar el grafico en otro sentido y luego
ajustarlo, pero lo mas sencillo es ponerlo mirando hacia la derecha y evitar complicaciones.

Asi pues, si apretamos el cursor de arriba o abajo veremos que lo que hace el triangulo es desplazarse
10 pixeles en la direccion en la que esta “mirando” en ese momento, y si apretamos derecha o izquierda el
tridngulo no se mueve de donde est4 pero si que varia su orientacion (gira) para un lado o para el otro.

Inclusion de multiples enemigos diferentes. La variable local predefinida SIZE:

.Y si ahora quisieramos incluir enemigos que dificulten nuestro juego? La idea es que, ademas de
no poder chocar contra el laberinto, nuestro personaje evite chocar contra enemigos que iran surgiendo al
azar por la pantalla.

Para que apareciera un enemigo seria suficiente con crear un proceso llamada, por ejemplo,
"enemigo();" y hacer una llamada a ese proceso. ;Pero y si queremos crear mas de un enemigo? Basta con
hacer més de una llamada. Asi:

PROGRAM juego laberinto;
GLOBAL
INT idl;
END
BEGIN
set_mode(640,480,16,MODE FULLSCREEN);
idl=load fpg("imagenes.fpg");
personaje();
laberinto(),
LOOP
enemigo();
Frame;
END
END

Fijate: hemos puesto un LOOP en el proceso principal y dentro una llamada al proceso enemigo();.
Ademas, hemos escrito —antes no estaba- la sentencia FRAME dentro del bucle porque recordad que si no
aparece una sentencia FRAME en un proceso con un bucle infinito, el programa se puede colgar (porque
los demas procesos estaran pausados siempre hasta que el que no tiene FRAME llegue a €1, y si esta en un
bucle infinito sin FRAME, eso nunca ocurrira).

Tal como lo hemos hecho, en cada frame se creara un enemigo. Pero como por defecto el programa
funciona a 25 frames por segundo (fps, o sea, imagenes que muestra en un segundo; y que recordad que se
puede cambiar con la sentencia set_fps();) se crean demasiados enemigos -j25 por segundo!-. Por lo tanto
hay que hacer algo para que aparezcan menos. Para solucionar eso vamos a usar la conocida sentencia
rand(); dentro del proceso principal. Asi:

PROGRAM juego laberinto;
GLOBAL
INT idl;

200

END
BEGIN
set_ mode(640,480,16,MODE FULLSCREEN);
idl=load_fpg("imagenes.fpg");
personaje();
laberinto(),
LOOP
IF (rand(1,100)== 1)
enemigo();
END
Frame;
END
END

Esto haria que en uno de cada 100 frames se creara un enemigo, porque hay una probabilidad de 1
contra 100 de que el valor devuelto de rand sea igual a 1, y que por tanto se ejecute el interior del IF. Como
es aleatorio a veces seran mas, a veces seran menos. Pero es muy poco probable que aparezcan todos a la
vez, o incluso mas de uno o dos cada segundo. Naturalmente, podéis poner la frecuencia que os de la gana.
Ej.: IF (rand(1,100)<11),... Esta claro por ejemplo que si pusiéramos IF(rand(1,100)<=100) no estariamos
haciendo nada de nada,;no?.

Ahora toca escribir el codigo del proceso “enemigo()”. Pero antes, fijate que llamando tal cual al
proceso “enemigo()” asi a secas, todos los enemigos seran iguales. La manera més practica —hay otras que
se te pueden ocurrir- para solucionar esto existen los parametros.

Los parametros recuerda que son datos que le pasamos al proceso en el momento de crearlo, y que
se ponen entre los paréntesis al final de la llamada al proceso; luego, en la cabecera del cddigo del proceso
en si, debemos poner qué es cada dato. Por ejemplo, -s6lo lo estoy recordando: esto ya lo vimos-, en la
llamada al proceso personaje(); podriamos haber puesto personaje(320,240,1); , y en la cabecera de su
proceso PROCESS personaje(x,y,graph), omitiendo entonces en su codigo las asignaciones de los valores
X ,Y, GRAPH. De esta manera le hemos asignariamos directamente en la llamada al proceso esos valores a
esas variables (el primer valor a la primera variable, el segundo valor a la segunda variable,...). Por lo tanto,
podriamos hacer lo mismo con el proceso enemigo(); , siendo asi muy facil modificarlos y hacer que un
enemigo salga, por ejemplo, en un lugar concreto de la pantalla.

Vamos alli: el codigo del enemigo, suponiendo que los enemigos aparecen en la parte superior de
la pantalla y que van hacia abajo, podria ser algo parecido a esto:

PROCESS enemigo(x,y,graph,size,int incrementox, int incrementoy)

BEGIN

LOOP
x=xtincrementox;
y=y-+incrementoy,
IF (x<-20) BREAK,; END
IF (x>660) BREAK,; END
IF (y>500) BREAK; END
FRAME;

END

201

END

Y la llamada al proceso desde el programa principal quedaria finalmente:

enemigo(rand(1,640),-50,3,rand(50,150),rand(-10,10),rand(5,10));

De esta manera se crearia un enemigo en una x al azar entre 1 y 640, 50 puntos por encima de la
pantalla, con grafico 3 (habra que crear un grafico y meterlo en el fpg), con tamaiio aleatorio (SIZE es una
variable local predefinida que indica el tamafio del grafico con respecto al original, en tanto por ciento: 50
quiere decir la mitad y 200 el doble) y cantidad de movimiento horizontal y vertical aleatorio (variables
estas dos ultimas creadas por nosotros: no son predefinidas). Con estos datos es muy poco probable que se
creen dos enemigos exactamente iguales.

Los tres IF que se han escrito son por motivos practicos. Que el grafico salga de la pantalla no
quiere decir que el proceso haya terminado Por lo tanto seguiré ejecutando el codigo para siempre (o hasta
que se termine el programa, una de dos). Puede no parecer importante, pero hasta el ordenador mas rapido
terminara por dar saltos cuando tenga que manejar demasiados procesos, puesto que se estan creando
nuevos procesos continuamente. Por eso al proceso se le obliga a terminar cuando sale de la pantalla. Fijate
que aparece un BREAK;, el cual fuerza al programa a romper el bucle y continuar justo después del END
del mismo. En este caso, como después del END del LOOP viene el END del BEGIN (es decir, no hay mas
ordenes que ejecutar) el proceso finaliza.

Utilizando parametros de esta manera, es mucho mas facil crear procesos similares pero con
caracteristicas diferentes. Imaginate que quieres en algin momento queréis crear un enemigo con estas
caracteristicas: x=100; , size=150; , incrementox=10; , incrementoy=5; y un grafico diferente
(graph=4:habria que meter ese grafico también). Con los pardmetros seria suficiente con llamar a ese
proceso pasandole esos datos. Sin los parametros habria que crear un nuevo proceso con su propio codigo
(en el que la mayoria seria idéntico al del otro proceso, pero bueno). Como ves los pardmetros son muy
utiles.

Pero por ahora los enemigos son inofensivos. Lo tinico que hacen es aparecer en la pantalla, darse
un paseito y desaparecer. Ahora los vamos a convertir en un peligro para el personaje. En el proceso
“personaje();” , después de la comprobacion de colision con el laberinto, habria que hacer una
comprobacion de colision con los enemigos. El cddigo a anadir en su proceso seria el siguiente:

IF (collision(TYPE enemigo)) BREAK,; END

De esta manera, al chocar con algin enemigo (cualquiera), la sentencia BREAK; romperia el bucle
LOOP, continuando después del END y terminando el proceso (puesto que después se llega al END del
proceso), y por tanto, haciendo desaparecer el protagonista y no teniendo pues el jugador nada que
controlar, aunque el programa principal seguira ejecutandose.

Vamos a jugar con ese BREAK;. Si después del END del LOOP escribimos alguna sentencia, ésta
se cumplird una vez que el personaje choque con algin enemigo, y antes de finalizarse. Por lo tanto

202

podriamos poner algiin comando que, por ejemplo, finalice el programa principal. De esta manera, cuando
finalice el proceso “personaje()”, éste hard finalizar también el proceso principal. La sentencia para ello, ya
la vimos, es exit();.

Aifadiendo explosiones:

Aunque la verdad es que eso de salir asi, sin mas, queda un poco soso. Pues vamos a hacer que el
personaje explote. Para eso crearemos otro proceso, llamado ‘“explosion();” . La llamada la haremos
después del LOOP del proceso “personaje()” ya que queremos mostrar la explosion justo después de que
un enemigo cualquiera haya colisionado con el personaje y justo antes de que el proceso del personaje esté
a punto de finalizar. Ademas, quitaremos de alli el exit() que acabamos de poner, porque si no no
podriamos ver la explosion, ya que el programa principal acabaria ipsofacto sin dar tiempo a nada mas. Por
lo que de momento volveriamos otra vez a la situacion de que después de ver la explosion el juego
continuaria pero sin ningun personaje al que controlar.

TRUCO IMPORTANTE: Como queremos que la explosion suceda en el lugar donde esta el
personaje habrd que pasarle como parametros la X y la Y del personaje, para que se conviertan en la X y
la'Y de la explosion. ;Y como se hace eso? Muy sencillo. Supongamos que desde el proceso_1 se llama a
proceso 2. En general, si en la llamada que hacemos desde proceso 1 a proceso 2 ponemos como
parametro el nombre de alguna de las variables de proceso_1, éste le pasara el valor actual de esa variable
a la variable de proceso 2 que ocupe la posicion correspondiente dentro de su cabecera. Por lo que si
desde “personaje()” hacemos la llamada asi: explosion(x,y); le estamos pasando el valor actual de X e Y
del proceso “personaje()” a los dos parametros de “explosion()” , y si en la cabecera de “explosion()”
estos dos parametros precisamente se llaman X e Y,estaremos déndole los valores de X e Y del proceso
personaje a los valores X e Y del proceso explosion, y por lo tanto la explosion tendra Iugar en el sitio
donde esta el personaje. Justo lo que queriamos. El codigo de “personaje()” queda asi finalmente:

PROCESS personaje()
BEGIN
x=600; y=240; graph=1;
LOOP
IF (key(_up)) advance(10); END
IF (key(_down)) advance(-10); END
IF (key(_left)) angle=angle+7500; END
IF (key(right)) angle=angle-7500; END
IF (collision(TYPE laberinto)) x=320,; y=240; END
IF (collision(TYPE enemigo)) BREAK; END

FRAME,
END
Explosion(x,y);
END

Y el nuevo proceso “explosion()” es —cuidado con las tildes: no es lo mismo llamar a un proceso
“explosion()” que “explosion()”, serian dos procesos diferentes-:

PROCESS explosion(x,y)
BEGIN
FROM graph=11 TO 20; FRAME,; END

203

END
Asi de simple. Le hemos pasado como parametros las coordenadas X e Y del proceso personaje,
que es el proceso donde se llamara a “explosion()”.

TRUCO IMPORTANTE: Habrés visto que usamos es una sentencia FROM (FOR también
vale). Fijate que como contador se ha puesto la variable GRAPH, por lo que a cada iteracion el grafico
asociado al proceso “explosion()” sera diferente. Como a cada iteracion hemos puesto que se ejecute la
sentencia FRAME; a cada iteracion se visualizara el cambio de grafico en pantalla, por lo que se creara
un efecto que parecera que haya una explosion —si las imagenes las has dibujado que parezcan de fuego y
que vayan creciendo en tamafio-, ya que se veran 10 imagenes rapidamente seguidas en el mismo sitio.
Este es un truco muy eficaz, pero depende de lo bueno que seas dibujando los momentos diferentes de la
explosion.En el ejemplo he usado diez imagenes, y he empezado a contar desde el 11 por una cuestion de
orden, nada mas: para dejar las imagenes 4-10 para otros usos todavia no especificados (los codigos de
los FPGs no hace falta que sean correlativos: puede haber “saltos” entre ellos!).

También se podria aplicar el mismo método de las explosiones a las colisiones con el laberinto (cambiando
el reseteo de los valores de X e Y por una sentencia BREAK).

Ahora deberiamos decidir qué pasa cuando ya ha pasado la explosion: o se acaba el programa
definitivamente, o podemos volver a empezar mostrando otra vez el protagonista intacto en el centro de la
pantalla como si no hubiera pasado nada. En ambas opciones deberiamos modificar el proceso
“explosion()”.Veamos la primera:

Ya vimos que tuvimos que quitar el exit() del proceso personaje porque no nos daba tiempo de ver
la explosion. Pero esto no ocurre si ponemos el exit() después del FROM, asi:

PROCESS explosion(x,y)
BEGIN
FROM graph=11 TO 20; FRAME,; END
exit();
END

(Por qué? Porque si ponemos el exit dentro de explosion, primero se hara el FROM entero, y
una vez que acabe —cuando ya hayamos visto toda la explosion- entonces se dice al programa principal que
acabe. De la manera anterior, metiendo exit() en el proceso “personaje()”’, cuando se llegaba a la linea de
llamada de “explosion()” ésta comenzaba a ejecutarse, pero “personaje()” por su lado también sigue
ejecutandose linea a linea —recordad el tema de la concurrencia y la multitarea-, de manera que cuando
“explosion()” iniciaba su ejecucion, “personaje()” continuaba con la linea siguiente, que era el exit(), por lo
que el programa se acababa directamente sin tener la posibilidad de verse la explosion completa.

La otra alternativa, volver a empezar, se realiza modificando el proceso “explosion()” asi:

PROCESS explosion(x,y)

BEGIN
FROM graph=11 TO 20; FRAME,; END
personaje();

END

204

Fijate que lo que hacemos es una nueva llamada, una vez se ha visto la explosion, al proceso
“personaje()”, con lo que se vuelve a ejecutar el codigo de ese proceso, que define las variables X,Y y
GRAPH, y los movimientos de nuestro protagonista. Fijate también que cuando “explosion()” llama a
“personaje()” para crearlo de nuevo, el proceso “personaje()” anterior hace tiempo que dejo de existir —y
por eso solo se vera un personaje cada vez y no mas-, ya que justamente cuando desde “personaje()” se
llama a “explosion()”, a “personaje()” se le acaba el c6digo y muere. Por lo que digamos que lo que ocurre
es que “personaje()” justo antes de morir crea a “explosion()”, la cual, a su vez, justo antes de morir, vuelve
a crear a “personaje()”, con lo que se convierte en un bucle infinito de creacion/destruccion de los procesos
“personaje()”/”explosion()”.

ANGLE,SIZE y otras variables locales predefinidas:SIZE X, SIZE_Y, ALPHA y FLAGS:

Ya hemos acabado nuestro juego del laberinto. No obstante, no estd de mas comentar con mas calma
y profundidad las posibilidades que nos ofrecen las nuevas variables introducidas en parrafos anteriores
(ANGLE y SIZE), y de paso introduccir también el conocimiento y uso de otras variables locales
predefinidas muy interesantes , que se utilizaran extensamente a partir de ahora en este manual. Se trata de
las variables SIZE X, SIZE Y , ALPHA, ALPHA STEPS, FLAGS y XGRAPH.

Miremos primero un ejemplo donde se insiste en el uso de ANGLE y SIZE. Utilizaremos para ello el
mismo archivo "imagenes.fpg" del juego del laberinto(en concreto, su grafico 001, el triangulo). Lo que
hace este programa es cambiar la orientacion (el angulo) y el tamano del grafico en forma de triangulo
segun pulsemos la tecla adecuada del cursor del teclado. Lee los comentarios del codigo.

Program ROTZOM;
Global
int rzarrowid;
int fpg;
End
Begin
set_mode(640,480,16);
fpg=load_fpg("imagenes.fpg");
/*Creamos un nuevo proceso llamado "flecha" y almacenamos su ID en la variable global "rzarrowid",
para que podamos modificar su angulo y su tamario posteriormente*/
rzarrowid = flecha();
write_var(0,60,0,0,rzarrowid.angle); //Escribimos el angulo actualizado del proceso "flecha"
write_var(0,60,10,0,rzarrowid.size); //Escribimos el tamario actualizado del proceso "flecha”
Loop
if(key(_left))rzarrowid.angle=rzarrowid.angle+2000; end //Incrementamos el angulo en 2 grados
if(key(_right))rzarrowid.angle=rzarrowid.angle-2000, end //Decrementamos el angulo en 2 grados
if(key(_up))rzarrowid.size=rzarrowid.size+10; end //Incrementamos el tamario en un 10%
if(key(_down))rzarrowid.size=rzarrowid.size-10;end //Decrementamos el tamario en un 10%
If(key(esc)) exit();End;
Frame;
End
End

/*Este proceso mostrara el triangulo en la pantalla. Modificando su variable ANGLE o SIZE podremos
rotarlo o hacerle zoom. Esto se podria hacer desde dentro del propio proceso (mds facil) o, como en este
ejemplo, obteniendo el identificador del proceso en el momento de su creaacion y modificando esas
variables desde el programa principal™®/

Process flecha()

205

Begin
x =320,
y = 240;
file=fpg;
graph = 1;
Loop

Frame;

End

End

Si pruebas el programa,podras ver los valores que cogen ambas variables a medida que pulsemos
las diversas teclas del cursor.

Ya se coment6 anteriormente que cuando se gira una vuelta entera una imagen, el valor de la
variable ANGLE no se pone a 0 automdticamente sino que continia creciendo mds alla de las 360000
milésimas de grado. Y esto puede ser un lio, y a la larga un problema. Si queremos que a cada vuelta, la
variable ANGLE vuelva a valer 0, el truco esta en aplicar al valor que queremos que no sobrepase nunca el
limite, el modulo con la cantidad maxima a partir de la cual se produce el “reseteo”. Es decir, en nuestro
cas0,360000. Pruébalo: sustituye las dos lineas donde se modifica el valor de ANGLE del triangulo
(cuando se pulsan los cursores izquierdo y derecho) por éstas otras:

if(key(_left))rzarrowid.angle=(rzarrowid.angle+2000) %360000, end
if(key(_right))rzarrowid.angle=rzarrowid.angle-2000%360000; end

Si vuelves a ejecutar el programa, veras que ahora el grafico gira igual, todas las vueltas que
quieras, pero cada vez que se acaba de girar una vuelta, el valor de ANGLE vuelve a resetearse a 0, con lo
que su valor maximo siempre sera 360000.

Este efecto es resultado de aplicar la teoria de la matematica modular, que en general viene a
decir que cualquier operacion matematica que obtenga un resultado, si a éste se le aplica el modulo de un
numero determinado, el resultado permanecera invariable si es menor que ese nimero, pero si es mayor, el
resultado pasara a valer la parte "sobrante". Es decir, (2*5+3)%15=13, pero (2*5+3)%10=3. Es otra manera
(mas practica) de entender lo que llamamos el resto de una division.

Tal como se ha dicho antes, tenemos otras variables locales predefinidas aparte de las ya vistas
que son importante que conozcas:

SIZE_Y: Esta variable especifica el escalado vertical que se va a realizar sobre el grafico. A diferencia de
SIZE el escalado solo se aplica al alto del gréafico, siendo el valor por defecto 100 (100% del alto original).
Cuando se especifica un valor distinto de 100 en esta variable o en SIZE X, se utilizan siempre los valores
de SIZE Xy SIZE Y , despreciandose el valor de SIZE.

SIZE X:Esta variable especifica el escalado horizontal que se va a realizar sobre el grafico. A diferencia
de SIZE el escalado s6lo se aplica al ancho del grafico, siendo el valor por defecto 100 (100% del ancho
original).Cuando se especifica un valor distinto de 100 en esta variable o en SIZE Y , se utilizan siempre
los valores de SIZE Xy SIZE Y , despreciandose el valor de SIZE.

Un ejemplo (donde utilizaremos el mismo FPG del juego del laberinto, "imagenes.fpg", y mostraremos el
grafico del laberinto, ya que al ser mas grande que el del tridngulo, se podra apreciar mejor el efecto)

206

bastante similar al anterior seria éste:

Program SIZES;
Global
int idlab;
int fpg;
End
Begin
set_mode(640,480,16);
frg=load_fpg("imagenes.fpg");
/*Creamos un nuevo proceso llamado "laberinto" y almacenamos su ID en la variable global "idlab"*/
idlab = laberinto();
write_var(0,60,0,0,idlab.size_x); //Escribimos el tamario horizontal del grafico en % respecto el original
write_var(0,60,10,0,idlab.size_y), //Escribimos el tamario vertical del grdfico en % respecto el original
write_var(0,60,20,0,idlab.size); /*Para comprobar como SIZE no se tiene en cuenta cuando se utilizan
SIZE X 6 SIZE Y*/
Loop
if(tkey(left))idlab.size x=idlab.size x+10; end
if(key(right))idlab.size x=idlab.size x-10; end
iftkey(_up))idlab.size_y=idlab.size y+10; end
if(key(_down))idlab.size_y=idlab.size y-10;end
If(key(_esc)) exit();End;
Frame;
End
End

Process laberinto()

Begin
x = 320;
y = 240;
file=fpg;
graph = 2;
Loop

Frame;

End

End

ALPHA: Contiene un valor entre 0 y 255 para indicar el grado de transparencia que tiene el grafico. La
transparencia total viene dada por ALPHA=0 y la transparencia original de la imagen no se ve alterada con
ALPHA = 255. Para que esta variable sea tenida en cuenta por Fénix, la variable FLAGS -vista a
continuacion- ha de valer 8 (o la suma de 8 mas otros valores:8+1,8+2,8+2+1 etc).

ALPHA estd intimamente relacionada con otra variable predefinida GLOBAL. que es ALPHA_STEPS.
Esta otra variable indica los niiveles de transparencia necesitados.Contiene un valor entre 1 y 255 (por
defecto, 16) para indicar la cantidad de niveles de transparencia que se van a definir. Dicho en otras
palabras, indica el nimero de saltos visibles de transparencia que puede haber entre el valor 0 y 255 de
ALPHA. Por ejemplo, si ALPHA STEPS vale 4, s6lo habra 4 cambios apreciables de transparencia a lo
largo de todos los valores posibles de ALPHA. Para saber cada cudntos valores de ALPHA se producira el
cambio de transparencia, se puede usar la formula 256/ALPHA STEPS. Si, para ALPHA STEPS=4, habra
256/4=64 valores de ALPHA consecutivos que ofreceran la misma transparencia hasta llegar a un salto. Es
evidente que a mayor valor de ALPHA STEPS, mayor "sensibilidad" existe al cambio de valores de
ALPHA. Los casos extremos serian ALPHA STEPS=1 (donde no se produciria ningiin cambio de

207

transparencia en el grafico a pesar de cambiar el valor de su ALPHA) y ALPHA STEPS=255, donde cada
cambio en una unidad de ALPHA se traduciria visualmente en un cambio de transparencia en el grafico.

Un ejemplo (donde utilizaremos el mismo FPG del juego del laberinto, "imagenes.fpg", y mostraremos el
grafico del laberinto, ya que al ser mas grande que el del triangulo, se podra apreciar mejor el efecto)
bastante similar al anterior seria éste:

Program ALPHAS;
Global
int idlab;
int fpg;
End
Begin
set_ mode(640,480,16),;
fpg=load_fpg("imagenes.fpg");
write_var(0,60,10,0,alpha_steps),
idlab = laberinto();
write_var(0,60,0,0,idlab.alpha);
Loop
if(key(_space))while(key(_space))frame; end idlab.alpha=(idlab.alpha-1)%255; end
if(key(_enter))while(key(enter))frame; end alpha_steps=(alpha_steps+10)%255;end
If(key(_esc)) exit();End;
Frame;
End
End

Process laberinto()

Begin
x = 320;
y = 240;
file=fpg;
graph = 2;
Loop

Frame;

End

End

En general, por “flag”(bandera en inglés) se entiende aquel parametro —o variable seglin el caso- que
dependiendo del valor que tenga,modifica la configuracion de algo de una manera o de otra: es como un
cajon de sastre donde cada valor que puede tener ese parametro o variable “flag” cambia un aspecto
diferente de aquello a lo que afecta.

FLAGS: El valor de esta variable activa operaciones especiales que se realizardn en el momento de dibujar
el grafico del proceso en la pantalla. Puede contener uno o la suma de varios de los valores siguientes (si es
la suma, los efectos se afiadiran uno sobre otro):

1 Espejado horizontal

2 Espejado vertical

4 Transparencia del 50%
8

La transparencia se tomara del valor de ALPHA

208

16 Blit aditivo
32 Blit sustractivo
128 NO_COLOR _KEY (sin transparencias)

*El valor por defecto de esta variable es 0.

*El espejado es mucho mas rapido de dibujar que una rotacion convencional.

*El indicador de transparencia (valor 4) corresponde siempre a una transparencia del 50% mientras que el
de alpha trabaja en combinacion con la variable local ALPHA .

*El blit aditivo y sustractivo consiste en hacer que el grafico sume/reste sus componentes de color pixel a
pixel con el valor que tenia antes de dibujar el grafico ese pixel de pantalla, por tanto colores con
componentes de color elevadas tiende a la saturacion (se acercan al blanco) en el caso del blit aditivo y

tienden a 0 en el caso del sustractivo.

*Para graficos grandes que no deban respetar transparencias, es interesante utilizar como valor de flags el
de NO COLOR KEY ya que el dibujado sin transparencia es mucho mas rapido que el dibujado con
transparencias.

También existe la posibilidad de asignar como valor de FLAGS una constante (que equivale a alguno
de los valores numéricos anteriores), en vez de directamente dicho valor. Asi se gana mas claridad en el
codigo.La tabla de correspondencias es la siguiente:

Valor numérico real Constante equivalente
1 B_HMIRROR
2 B_VMIRROR
4 B_TRANSLUCENT
8 B _ALPHA
16 B _ABLEND
32 B _SBLEND
128 B NOCOLORKEY

Un ejemplo trivial:

Program ALPHAS;

Global
int idlab;
int fpg;

End

Begin
set_mode(640,480,16);
Jpg=load_fpg("graficos.fpg");

209

idlab = laberinto(),

write_var(0,60,0,0,idlab.flags);

Loop
if(key(_enter))while(key(_enter))frame; end idlab. flags=(idlab.flags+1)%128;end
If(key(_esc)) exit(), End;
Frame;

End

End

Process laberinto()

Begin
x = 320;
y = 240;
file=fpg;
graph = 2;
Loop

Frame;

End

End

A continuacioén presento un ejemplo donde se muestra el efecto de establecer la variable FLAGS a 4
(transparencia). Para lograr observar el resultado, necesitaras tener un FPG llamado "mezclas.fpg" que
contengan tres graficos: un cuadrado rojo de 250x250 pixeles, un cuadrado verde de 250x250 y un
cuadrado azul de 250x250. Lo que veras si ejecutas este codigo es simplemente estos tres cuadrados
superpuestos, pero como todos tienen transparencia del 50%, se podran observar las mezclas de colores que
se producen en sus interesecciones. Ademas, uno de los cuadrados aparecera y desaparecera de la pantalla a
intérvalos regulares, para poder apreciar mejor dichas mezclas.

Program mezclas_colores;
Global

int contador;
end
Begin
set_mode(640,480,16);
load_fpg("mezclas.fpg");
cuadrado(250,320,1);
cuadrado(350,280,2);

parpadeo();
End

Process cuadrado(x,y,graph)
Begin
flags=4;
Loop
Frame;
End
End

Process parpadeo()
Begin
cuadrado(150,180,3);
Loop

contador++;

210

If(contador>10)
signal(son,s_sleep);

If(contador>20)
signal(son,s_wakeup);
Frame(500);
contador=0;
End
End
If(key(esc)) exit();End
Frame;
End
End

Finalmente, si quisiéramos por ejemplo, un espejado horizontal y vertical a la vez con transparencia,
FLAGS tendria que valer 1+2+4=7.

211

CAPITULO 7: TUTORIAL DE UN PING-PONG

En este capitulo vamos a crear nuestro segundo juego escrito en Fénix: el ping-pong clasico de
toda la vida: con dos palas a los lados que se moveran arriba y abajo y una pelota que ira rebotando en ellas o
perdiéndose fuera de la pantalla si algin jugador no es suficientemente rapido.

Lo primero, como siempre, los graficos. Solo necesitaremos dos: el de la pelota y el de las dos
palas.
El grafico de las dos palas sera un rectangulo blanco de 30 pixeles de anchura x 100 pixeles de alto, y el
grafico de la pelota serd un circulo blanco de unos 30 pixeles de didmetro. Ambas imagenes las incluiremos
en un archivo FPG llamado “pingpong.fpg” (el rectangulo que representa las palas con codigo 001 y el
circulo que representa la pelota con codigo 002).

Comencemos. Lo primero que vamos a escribir (de un tirén) va a ser el esqueleto semivacio de
nuestro programa, incluyendo la creacion desde el programa principal de los diferentes procesos necesarios,
de tal manera que empecemos visualizando todos los elementos que van a jugar un papel en nuestro
programa (bola y palas).

Es posible que, en este momento, te preguntes si es necesario que creemos un proceso
diferente para cada pala (izquierda y derecha), o si con un mismo proceso ya vale, ya que tienen el mismo
grafico y su comportamiento es muy similar...(igual que hemos hecho en el capitulo anterior con los
enemigos, en este caso solo habria que indicar unas coordenadas en pantalla diferentes para cada pala, pero
serian el mismo proceso...)

La respuesta es clara: necesitards un proceso por cada pala. Las razones pueden ser multiples,
pero la mas sencilla y rapida de entender es que para mover cada pala independientemente una de la otra,
necesitaras definir teclas diferentes de movimiento. Es decir, si queremos que la pala izquierda se mueva
arriba podriamos hacer que esto ocurra pulsando la tecla “q”, pero si queremos que sea la pala derecha la
que suba, tendremos que utilizar otra tecla diferente. Si tuviéramos un sélo proceso, pulsando “q” subirian

las dos palas a la vez...So6lo por eso, ya tenemos un motivo para hacer dos procesos separados.

Asi pues, el codigo que serd nuestro punto de partida serd algo asi como éste (espero que no tengas
ningun problema en entenderlo):

program hola;

global
intidl;
end
begin
set_mode(640,480,16);
idl=load_fpg("pingpong.fpg");
palal();
pala2();
bola();
end
process palal()
begin
x=90;
y=240;
file=idl;

212

graph=1I;
loop
iftkey(_q)) y=y-10;end
iftkey(_a)) y=y+10;end
frame;
end
end

process pala2()
begin
x=550;
y=240;
file=idl;
graph=1;
loop
if(key(_up)) y=y-10;end
if(key(_down)) y=y+10;end
frame;
end
end

process bola()
begin
x=320;
y=240;
file=idl;
graph=2;
loop
frame;
end
end

Vemos que el programa principal se encarga basicamente de crear los tres procesos involucrados
en el juego, y jatencion! morir seguidamente. Es la primera vez que no vemos un bucle LOOP/END en un
programa principal. Te preguntards por qué no se acaba entonces la ejecucion: bueno, porque aunque el
codigo principal ya no esté en ejecucion, €l antes ha puesto en marcha tres procesos (“palal”,”pala2”, y
“bola”) los cuales si tienen un bucle LOOP/END, con lo que estos tres procesos estaran ejecutandose en
paralelo perpétuamente. Mientras quede un s6lo proceso en funcionamiento, el programa todavia estara
corriendo.

Fijate también que ya hemos hecho que las dos palas se muevan para arriba y para abajo con
sendas teclas. No hemos limitado su movimiento vertical a fuera de la pantalla, pero seria facil hacerlo.

Ahora lo que nos falta es hacer que la bola se mueva, y que al rebotar en alguna de las palas,
cambie su direccion de movimiento. Ademas haremos que si la bola sale de los limites de la pantalla (esto
es, ninguna pala ha llegado a tocarla), se acabe el programa.

Para ello, vamos a implementar un sistema provisional que luego mejoraremos. La idea es que nada
mas crearse el proceso “bola”, ésta empiece a moverse mediante la funcion advance(). Como esta funcion
dirige el grafico en el sentido que viene marcado por su variable ANGLE, y como el valor de esta variable
al inicio de cada proceso es 0 por defecto, la bola empezara a moverse hacia la derecha horizontalmente.

Lo que tenemos que hacer también es que cuando la bola colisione con la pala derecha (la primera
que se encontrard), la bola cambie su orientacion y se siga moviendo en esa nueva orientacion. El calculo

213

de la nueva orientacién se puede hacer de muchas maneras mas o menos complicadas, pero ahora lo
haremos facil: ya que la bola inicialmente se mueve horizontalmente lo que haremos de momento sera que
solamente se pueda mover en esta direccion, pero cambiando el sentido. O sea, si la bola va de izquierda a
derecha antes de impactar con la pala, después tendra que ir de derecha a izquierda.

Para ello, fijate lo que tenemos que hacer: la bola inicialmente va a la derecha porque su ANGLE
vale 0. Si quisiéramos que fuera hacia la izquierda, tendria que valer 180 grados. Asi que lo que haremos
sera que cuando colisione con la palal, ANGLE valga 180000. Lo probamos. Modificamos el proceso
“bola” de la siguiente manera (el resto del codigo permanece igual):

process bola()
begin
x=320;
y=240;
file=idl;
graph=2;
loop
advance(10);
if(collision(type pala2))angle=180000;end
frame;
end
end

Si lo pruebas, veras que efectivamente, al chocar la bola con la pala de la derecha, rebota y va directa a la
pala de la izquierda, la cual no reacciona porque todavia no lo hemos dicho que lo haga. Es lo siguiente que
haremos.

Un paréntesis antes de continuar: es posible que te hayas preguntado donde colocar la deteccion de
la colision: o en el proceso “bola” o en el proceso “pala2”. Si hubiéramos optado por hacerlo en “pala2” no
habria sido mas dificil que escribir (no lo hagas) la siguiente condicion dentro de su codigo:

if(collision(type bola)) identificadorProcesoBola.angle=180000;end

No obstante, y esto es una recomendacion para todos los juegos que hagas, es MUCHO MAS facil,
comodo y limpio detectar las colisiones en aquel proceso que vaya a colisionar con mas procesos. Es decir,
“bola” colisionara con “palal” y “pala2”. En cambio, las palas s6lo colisionaran con “bola”. Esto quiere
decir que si detectaramos las colisiones en las palas, ya hemos visto que tendriamos que escribir una linea
como la anterior en “pala2” pero otra de muy similar en el codigo de “palal”, con lo que tendriamos en dos
procesos distintos la colision con un proceso “bola”. ;No es mucho mas facil detectar desde el propio
proceso “bola” las posibles colisiones que éste puede tener con los deméas procesos -en este caso, “palal” y
“pala2”?

Es por tanto buena idea centralizar la deteccion de colisiones en aquél proceso que vaya a colisionar
con mas procesos diferentes. Es un consejo

Bueno, volvamos a nuestro ping-pong. ;Coémo hacer para que cuando la bola choque con la pala de
la izquierda (“palal”), cambie su sentido otra vez 180 grados para volver a dirigirse horizontalmente hacia
la derecha? Viendo lo que hemos escrito antes, parece claro que lo que tendremos que escribir justo antes
del frame del loop de “bola” es una linea como ésta:

if(collision(type palal))angle=0,end

i Ya tenemos nuestra bola que rebota!

214

Abhora lo que nos falta es hacer que cuando la bola se pierda en la inmensidad, fuera de los limites
de la pantalla, porque una pala se ha movido y no ha logrado colisionar con ella,el programa se acabe. Esto
es simple, s6lamente hay que afiadir una ultima linea dentro del loop de “bola’:

if(x<0 or x>640) exit(); end

Nuestro ping-pong ya funciona tal como en principio hemos decidido. No obstante, vamos a
hacer el codigo fuente un poco “mds elegante”: sustituye los dos ifs que detectan las colisiones de “bola”
con “palal”y “pala2” dentro del codigo de “bola” por este tnico if:

if(collision(type palal) or collision(type pala2))angle=(angle-+180000)%360000;end

Esta linea hace lo mismo que las otras dos que hemos quitado. ;Como lo hace? Para empezar,
la condicién comprueba si la bola colisiona con “palal” O “pala2”. En cualquiera de estas dos colisiones,
hard lo mismo, que es cambiar el ANGLE de la bola por un valor obtenido de una expresion un tanto
exotica.

Estudiemos qué valores obtenemos. Inicialmente, cuando la bola se mueve horizontalmente a
la derecha, su ANGLE es 0, asi que cuando choca con “pala2”, su nuevo ANGLE es el que tenia antes (es
decir, 0) mas 180000 modulo 360000: es decir, 180000. Correcto. Ahora la bola va horizontalmente hacia
la izquierda. Cuando choca con “palal” su nuevo ANGLE es el que tenia antes (es decir, 180000) mas
180000 modulo 360000, es decir 360000 modulo 360000, es decir, 0. jVolvemos a la situacion inicial, con
la bola dirigida horizontalmente a la derecha! Es decir, que con una expresion un poco mas ingeniosa,
podemos hacer las cosas mas bien hechas.

Supongo que estaras pensando ahora mismo que este ping-pong es un churro: la pelota so6lo se
mueve en horizontal, no hay marcador de puntuaciones, no se vuelve a empezar la partida cuando la bola
sale fuera de la pantalla...Vamos a intentar solventar estas carencias.

Lo tnico que sera modificado respecto el codigo que tenemos en estos momentos es el proceso
“bola”: el resto de procesos y el cddigo principal seran los mismos.

Un consejo: por cada cosa que cambiemos en el codigo, pruebalo a ejecutar, para ir observando
como el juego va cambiando poco a poco: si introduces todos los cambios de golpe y lo pruebas al final, no
habras notado las pequefias mejoras que pasito a pasito se han ido incorporando, y te habras perdido parte del
encanto de este tutorial.

Lo primero que vamos a hacer es que la bola se pueda mover en cualquier direccion de la
pantalla, no solamente en horizontal. Para ello, haremos que cuando el proceso “bola” se cree, su
orientacion sea aleatoria. Esto consiste simplemente en afadir justo antes (fuera) del bucle Loop la linea

angle=rand(0,360000);

Y también cambiaremos lo de que si la bola excede los limites laterales de la pantalla el
juego se acaba. Ahora haremos que cuando ocurra esto, la bola se resitue en el centro de la pantalla, y
ademads, con una nueva orientacion aleatoria, como si volviéramos a empezar. Para hacer esto, has de quitar
el if que ejecutaba la orden exit() y poner en su lugar estos dos ifs:

if{(x<0)
x=320;
y=240;
angle=rand(0,360000),

215

end

if(x>640)
x=320;
y=240;
angle=rand(0,360000);
end

(Por qué escribimos dos ifs diferentes si hacen lo mismo? Con una condiciéon OR -como
estaba antes- ya valdria...Si, es cierto, pero lo hemos hecho asi pensando en los puntos de cada jugador. No
es lo mismo que la bola haya salido por el lado izquierdo de la pantalla (momento en el que el jugador que
maneja la pala derecha aumentard un punto en su marcador) que la bola haya salido por el lado derecho
(momento en el que el jugador que maneja la pala izquierda aumentara un punto en su marcador). Dentro
de cada uno de los dos ifs tendremos que aumentar en uno la puntuaciéon de un jugador diferente. Es por
eso que tenemos que escribir dos. Vamos a ello: a continuacion presento el coédigo del proceso “bola” tal
como tiene que quedar (las lineas nuevas estan marcadas en negrita) para que se vea la puntuacion de cada
jugador:

process bola()
private
int puntsl,punts2;
end
begin
x=320;
y=240;
file=idl;
graph=2;

angle=rand(0,360000),
write_var(0,90,50,4,punts1);
write_var(0,550,50,4,punts2);

loop
advance(10);
if(collision(type palal) or collision(type pala2)) angle=(angle+180000)%360000;end
if{x<0)
punts2=punts2+1;
x=320;
y=240;
angle=rand(0,360000),
end
if(x>640)
puntsl=puntsl+I;
x=320;
y=240;
angle=rand(0,360000),
end
frame;
end

end

Vemos que hemos declarado dos variables privadas, “puntsl” y “punts2” que representan
respectivamente los puntos del jugador que maneja “palal” y del que maneja “pala2”. Vemos también que
mostramos los puntos por pantalla mediante write var (actualizandose cuando sea necesario,pues, sin

216

necesidad de escribir texto dentro del loop -con el engorro de estar usando delete text() para evitar el error
de “Demasiados textos en pantalla”-). Y vemos que si la bola sale por la izquierda de la pantalla, aumenta
un punto en el marcador del jugador de la pala 2, y si sale por la izquierda, aumenta un punto en el
marcador del jugador de la pala 1.

Ya que estamos, podriamos hacer ahora que cuando se llegara a un maximo de puntuacion, el
juego acabara. Por ejemplo, si un jugador cualquiera llega a 3 puntos, ya ha ganado y se acaba el
juego.;Como hacemos esto? Por ejemplo, escribiendo el siguiente if justo antes de la linea Frame; del Loop
del proceso “bola”.

if (puntsl == 3 or punts2 == 3)
while(not key(_enter))
delete_text(0),
write(0,320,200,4,"GAME OVER!");
frame;
end
exit();

end

Estudiemos este if. Lo que dice es que si cualquiera de los dos jugadores llega a tres puntos (es
decir, si “puntsl” o “punts2” vale 3), nos meteremos en un bucle, del cual s6lo podremos salir si pulsamos
la tecla Enter. Cuando la pulsemos, se acabara el programa. Y mientras no la pulsemos, lo que veremos
sera un simple texto centrado en la pantalla que dice “Game Over”. Fijate que necesitamos poner la orden
delete text() para evitar que el bucle while imprima demasiados “Game Over” uno encima de otro -y nos
dé el error ya conocido de “Demasiados textos...”-, y también necesitamos poner una orden Frame; porque
recuerda que para que se vea ese texto (y el programa no se quede colgado), necesitamos lanzar un
fotograma.

Fijate también que cuando hemos llegado al Game Over y no hemos pulsado todavia el Enter (y
por tanto, estamos dentro del while), podemos seguir moviendo las palas tranquilamente -son procesos
independientes- , y la bola se ha vuelto a situar en el centro de la pantalla con una orientacion al azar, pero
no se mueve (evidentemente). ;Por qué no se mueve? Porque para hacerlo se ha de ejecutar la linea que
consta de la orden advance(), al principio del Loop de este proceso, cosa que ahora es imposible hacer
porque estamos encerrados dentro de las iteraciones infinitas del while y no podemos salir de alli, a no ser
que pulsemos el Enter, el cual no es solucion porque en ese momento saldremos ya del programa.

Y llegamos a la parte posiblemente mas complicada: la gestion de los rebotes. Hay muchas maneras
de simularlos, y muchas maneras mejores que la que se va a presentar aqui, pero en general, las maneras mas
realistas y sofisticadas necesitan por parte del programador de unos conocimientos elevados de geometria y
de fisica. Nosotros ahora no implementaremos ningun sistema de choques, deformaciones ni rebotes basado
en ninguna ley fisica ni formularemos grandes ecuaciones, sino que programaremos un sistema
sencillamente pasable y minimamente creible.

217

Lo que haremos seré lo siguiente: distinguiremos (porque asi lo queremos) entre los choques de la
bola contra los limites inferior y superior de la pantalla y los choques de la bola contra las dos palas.

*En los choques que sufre la bola contra los extremos inferior y superior de la pantalla, el
angulo de salida de la bola respecto la superficie de choque serd el mismo que el dngulo de incidencia de
la bola respecto ésta.O dicho de otra manera, el angulo de reflexion sera el mismo que el de incidencia
(respecto la superficie, aunque de hecho, respecto la perpendicular también seria igual).

*En los choques que sufre la bola contra las palas, para hacer el juego mas interesante e
imprevisto, lo que haremos sera que el angulo de salida de la bola respecto la superficie de choque sea un
angulo aleatorio, pero siempre dentro del mismo cuadrante donde estaria el dngulo de reflexion si éste
fuera el mismo que el de incidencia (el caso anterior).

Una vez claro este punto, debemos estudiar los posibles casos con que podemos encontrarnos, que
son varios.

*Si la bola choca contra el limite superior de la pantalla, puede hacerlo viniendo desde la izquierda (hacia
la derecha) o viniendo desde la derecha (hacia la izquierda), o sea:

[V el iy VST

= 5 = L]

*Si la bola choca contra el limite inferior de la pantalla,puede hacerlo viniendo desde la izquierda (hacia la
derecha) o viniendo desde la derecha (hacia la izquierda), o sea:

) S) S

STANSANR SYANSUN

*Si la bola choca contra la pala derecha (“pala2”), puede hacerlo viniendo desde arriba (hacia abajo) o
viniendo desde abajo (hacia arriba), o sea:

218

NARSEER
BYFIVAES

*Si la bola choca contra la pala izquierda (“palal”), puede hacerlo viniendo desde arriba (hacia abajo) o
viniendo desde abajo (hacia arriba), o sea:

.r".ﬂ'"/.’rr"’/’.“',-r
NAR RS

A partir de aqui, deberiamos coger lapiz y papel y empezar a dibujar triangulitos rectangulos para
descubrir equivalencias de angulos gracias a que sabemos de la escuela que la suma de los tres angulos de
cualquier triangulo es 180°. Si hacemos esto con calma y ademas tenemos en cuenta que ANGLE siempre
sera el angulo entre la linea horizontal y donde apunte el grafico del proceso, nos saldran las siguientes
expresiones para conseguir que la orientacion de la bola después del choque sea la que nosotros queremos:
*Si la bola choca contra el limite superior viniendo desde la izquierda (es decir, con ANGLE>0° y <=90°):
angle=(360000-angle)%6360000; o lo que es lo mismo: angle=-angle;

*Si la bola choca contra el limite superior viniendo desde la derecha (es decir, con ANGLE>90° y <=180°):

angle=(360000-angle) %360000; o lo que es lo mismo: angle=-angle;

*Si la bola choca contra el limite inferior viniendo desde la izquierda(es decir,con ANGLE>180° y
<=270°):

angle=(360000-angle)%6360000; o lo que es lo mismo: angle=-angle;

*Si la bola choca contra el limite inferior viniendo desde la derecha (es decir, con ANGLE>270° y
<=360°):

219

angle=(360000-angle)%6360000; o lo que es lo mismo: angle=-angle;
*Si la bola choca contra la pala derecha viniendo desde la arriba (es decir, con ANGLE>270° y <=360°):
El nuevo ANGLE puede tener cualquier valor entre 180°y 270°
*Si la bola choca contra la pala derecha viniendo desde la abajo (es decir, con ANGLE>0 y <=90°):
El nuevo ANGLE puede tener cualquier valor entre 90°y 180°
*Si la bola choca contra la pala izquierda viniendo desde la arriba (es decir, con ANGLE>180° y <=270°):
El nuevo ANGLE puede tener cualquier valor entre 270°y 360°
*Si la bola choca contra la pala izquierda viniendo desde la abajo (es decir, con ANGLE>90° y <=180°):
El nuevo ANGLE puede tener cualquier valor entre 0°y 90°
Sorprendentemente, en todos los casos donde chocamos contra los limites inferior o superior de

la pantalla nos ha salido la misma expresion, y vemos también que las expresiones son diferentes para las
dos palas, incluso dependiendo de la orientacion inicial de la bola en cada una de ellas.

Una vez que ya hemos encontrado las expresiones adecuadas a cada caso, lo unico que nos falta
es escribirlas convenientemente en nuestro codigo fuente, y ya habremos acabado nuestro juego. A
continuacién presento el codigo fuente completo, y en negrita las lineas que tenemos que afadir para

implementar todo lo que acabamos de discutir sobre los choques contra los limites de la pantalla y las palas

program hola;

global
intidl;
end
begin
set_mode(640,480,16);
idl=load_fpg("pingpong.fpg");
palal();
pala2();
bola();
end
process palal()
begin
x=90;
y=240;
file=idl;
graph=1;
loop
if(key(_q)) y=y-10,end
iftkey(_a)) y=y+10;end
frame;
end
end
process pala2()

220

begin
x=550;
y=240;
file=idl;
graph=1I;
loop
iftkey(_up)) y=y-10;end
if(key(_down)) y=y+10;end
frame;
end
end

process bola()

private
int punts1,punts2;

end

begin
x=320;
y=240;
file=idl;
graph=2;
angle=rand(0,360000),
write_var(0,90,50,4,puntsl),
write_var(0,550,50,4,punts2),;
loop

advance(15);

/*Hemos quitado la sentencia que teniamos hasta ahora que controlaba el chocque de la bola con las
dos palas, y hemos separado en dos ifs las colisiones dependiendo de si la bola choca con palal o pala2,
ya que su orientacion serd diferente dependiendo de con quien choque*/
if(collision(type palal))//Pala izquierda
if(angle > 90000 and angle < 180000) //La bola viene de abajo
angle=rand(0,90000);//Va al primer cuadrante
end
if(angle > 180000and angle < 270000)//La bola viene de arriba
angle=rand(270000,360000); //Va al cuarto cuadrante
end
end

if(collision(type pala2))//Pala derecha
if(angle > 270000 and angle < 360000)//La bola viene de arriba
angle=rand(180000,270000); //Va al tercer cuadrante
end
if(angle > 0 and angle < 90000) //La bola viene de abajo
angle=rand(90000,180000); //Va al segundo
cuadrante
end
end

/*%8i la bola choca con el limite superior o inferior de la pantalla, venga de donde venga, se comportard
igual*/
if(y<0 or y>480)
angle=(360000-angle) %360000;

221

end

if(x<0)
punts2=punts2+1;
x=320;
y=240;
angle=rand(0,360000),
end
if(x>640)
puntsl=puntsl+1;
x=320;
y=240;
angle=rand(0,360000),
end

if (puntsl == 3 or punts2 == 3)
while(not key(_enter))
delete text(0);
write(0,320,200,4,"GAME
OVER!");
frame;
end
exit();
end

frame;
end
end

En verdad, el movimiento de la bola y la gestion de sus choques se podria haber hecho de una
manera mucho mas simple e igualmente efectiva: s6lo con un poco de ingenio, y sin tanto lio con los
angulos.

A continuacion presento el codigo completo de otro juego de pingpong muy similar (funcionara
con el mismo FPG del ejemplo anterior), donde se puede apreciar una técnica diferente para hacer que la
bola se mueva y detecte los choques con la parte superior e inferior de la pantalla y con las dos palas.

program pingpong2;

global

/*Cuando "fin" valga 1 (es decir, cuando la bola salga por primera vez por la derecha o la izquierda de la
pantalla, el juego acabara™/

int fin = 0;

end

begin
set_mode(320,240,16);
load_fpg("pingpong.fpg");
bola(160,120);

palal(5,120);
pala2(315,120);
loop
/*Este if estara pendiente de si el juego ha acabado. Si es asiy se pulsa "x", se crea otra vez el proceso

222

bola (que esta muerto en este momento) y se vuelve a empezar a jugar®/

if (fin == 1 and key(x))
delete_text(0), //Elimino el texto del GameOver

bola(160,120);
fin=0;
end
frame;
end
end
process palal (x,y)
begin
graph=1;
loop
if(key(_q) and y>10)y=y-5,end
if(key(_a) and y<230)y=y+5;end
frame;
end
end
process pala2(x,y)
begin
graph=1;
loop
if(key(_up) and y>10)y=y-5,end
if(key(_down) and y<230)y=y+5,end
frame;
end
end
process bola(x,y)
private
int dx = 5,//Cantidad de pixeles que se moverd la bola cada frame en direccion horizontal
int dy = 5,//Cantidad de pixeles que se moverd la bola cada frame en direccion vertical
int dys=1; //Complemento a dy para calcular el movimiento vertical de forma mas compleja
end
begin
graph = 2;
loop
//Las dos lineas siguientes definen el movimiento de la bola en cada frame
x=x+dx;
y=y+dy;
if(collision(type palal) or collision(type pala2))
dx = -dx; //Invierto el movimiento horizontal (derecha <->
izquieda)

/*Las dos lineas siguientes establecen el valor del incremento vertical del movimiento de la bola. Lo
primero que hago es hacer que "dys" valga 1 o -1 dependiendo del valor actual de "dy" y de su valor
absoluto (ABS() es un comando de Fénix que devuelve el valor absoluto del valor numérico que se le
ponga como parametro). Si actualmente "dy" es positivo, "dys" valdra 1. Si actualmente "dy" es negativo,
"dys" valdra -1. Una vez que "dys" vale I o -1, se establece el nuevo incremento en la posicion y de la bola
a partir de un numero aleatorio entre 1 y 5 multiplicado por 1 6 -1. Tal como hemos dicho, si el anterior
"dy" era positivo, "dys" sera 1 y los valores posibles del nuevo "dy" seran 1,2,3,4 o 5, aleatoriamente. Si el
anterior "dy" era negativo, "dys" valdra -1 y los valores posibles del nuevo "dy" seran -1,-2,-3,-4 o -5,
aleatoriamente. Fijate que si la bola baja ("dy" positivo), continuia bajando ya que "dy" contintia siendo

223

positivo- aunque posiblemente con otro valor, y por tanto, a otra velocidad-, y si la bola sube ("dy"
negativo), continua subiendo.Solo se cambiara el sentido vertical cuando la bola choque contra los limites
inferior o superior de la pantalla, no contra las palas.*/
dys = dy/abs(dy);
dy = rand(1,5)*dys;
end
/%Si la bola choca contra los limites inferior o superior de la pantalla, invierto el movimiento vertical
(arriba <-> abajo)*/
if(y<3 or y>237)
dy = -dy;
end
/*Si la bola sale fuera de los limites izquierdo o derecho de la pantalla, llamo al proceso "gameover" y
hago un suicidio del proceso "bola" mediante return*/

if(x<0 or x>320)
gameover();
return,

end

frame;

end
end;

/*Proceso que simplemente escribe un texto en pantalla y asigna a "fin" el valor de 1, con lo que el if del
programa principal ya se podra ejecutar si se pulsa "X", para volver a jugar.Este proceso es muy pequeno
y se podria haber eliminado, escribiendo su codigo directamente en el mismo lugar donde se le llama™/
process gameover ()

begin
write(0,160,110,4,"GameOver");
write(0,160,120,4,"Pulsa X para volver a empezar");
fin=1;

end

A continuacion presento un nuevo codigo de un juego de ping-pong (jotro mas!) donde
podemos encontrar otra manera mucho mas facil todavia de gestionar los choques de la bola contra las
palas (con una unica féormula simple: javerigua con lapiz y papel como se llega ella!) , y ademas tenemos el
detalle interesante de que las dos palas estan controladas por el mismo proceso “pala”, en vez de con dos
procesos independientes. Como novedad, la velocidad de la bola va aumentando a medida que se juega.
Para poderlo ejecutar necesitaras el mismo FPG de los ejemplos anteriores, “pingpong.fpg”.

program tutorial;
global
int score[l]; /*El elemento score[0] es la puntuacion del jugador de la izquierda y el
elemento score[l] es la puntuacion del jugador de la derecha™/
int fpg;
end
begin
set_mode(320,240,16);
Jpg=load_fpg("pingpong.fpg");
bola();
pala(20, up, down),;
pala(300, g, a);

write(0,160,20,4,"-");
write_var(0,100,20,4,score[0]),

224

write_var(0,220,20,4,score[1]);

loop
if(key(_esc) exit(); end
frame;
end
end

Process bola()

private
int speedo, //Velocidad de la bola
/*Guarda el codigo identificador del proceso pala en caso de que colisione con él*/
int pala_id;

end

begin

graph=2;

x=160;
y=120;

angle = rand(0,360) * 1000;

speedo = 500; //Velocidad inicial. Ira aumentando progresivamente

loop
/*Si la bola esta a punto de superar el limite inferior o superior de la pantalla (si la bola tiene un radio de
5 pixeles...para que no se deje de ver entera*/

if(y<5 or y>235)

//El angulo de entrada es el angulo de salida!
angle = -angle;

end
/*Si la bola sale por la izquierda, punto para el jugador con score[0] */
if(x<0)
score[0]=score[0] +1;
//Se resetea la velocidad a la estandar
speedo = 500;
//Se resetea la posicion de la bola
y=120;
x = 220;
end
/*Lo mismo para el extremo derecho de la pantalla, solo que ahora con el marcador de la otra pala*/
if(x>320)
score[l]++;
speedo = 500;
y=120;
x = 100;
end

//8i choca contra una pala, SEA CUAL SEA

if(pala_id = collision(type pala))

/*Con esta formula tan sencilla obtenemos la nueva orientacion de la bola después del choque*/
angle = -angle + 180000;
advance(3);

end
//Se incrementa lentamente la velocidad a cada frame
speedo=speedo+3;
//Mueve la bola en la direccion actual

225

advance(speedo/100);
frame;
end //loop
end

/*Creo un unico proceso "pala" para las dos palas, pasando como pardametro las teclas que regiran el
movimiento de cada una de ellas, y su posicion horizontal (que son las unicas cosas que diferencian una
pala de la otra, porque hemos visto que con una misma formula se pueden gestionar los choques de la
bola con las dos palas.*/
Process pala(x,int keyup,int keydown)
begin
y=120;
graph=1;
loop
if(key(keyup)) y =y-12; end
if(key(keydown))y =y+12; end
/*Limito los movimientos de las raquetas a los extremos de la pantalla™/
ifly < 20) y=20; end
ifly > 220)y=220; end
frame;
end
end

Variante: el juego del “Picaladrillos”:

A partir del codigo basico del ping-pong podemos crear multiples juegos sencillos que se
basan en los mismos principios de colisiones con bolas y rebotes. Todo dependera de hasta donde llega
nuestra imaginacion. Como ejemplo, presento a continuacion un juego muy sencillo, el “rompeladrillos”.

El jugador controla una raqueta que puede mover solamente de forma horizontal con los
cursores, la cual dirigira una pelota cuya funcion es destruir (colisionando con ellos) una serie de ladrillos
colocados a lo largo del borde superior de la pantalla. Si la bola cae por el borde inferior de la pantalla se
pierde: para generar otra bola habra que apretar la tecla CTRL. El objetivo es destruir todos los ladrillos.

Para probar el juego, necesitaras un fpg llamado “breakout.fpg” compuesto por tres imagenes.
La imagen 1 sera la bola (de 25x25 esta bien, pero no es un tamaiio obligatorio), la imagen 2 sera un
ladrillo (que para este codigo de ejemplo concreto si es conveniente -por las medidas de pantalla
implicadas- que sus medidas sean 28x138) y la imagen 3 sera la pala (con un tamafio de 120x120 esta bien,
y que para hacerlo mas interesante podria tener una forma irregular, como ésta)

Program breakout;
global
int blocksleft;//Contard la cantidad de ladrillos que hay aun
end
private

226

int i,j;//Variables para los bucles
end
begin

set_mode(320,240,16),

load _fpg("breakout.fpg");

paddle(160,220); //Raqueta

ball(160,80),//Bola

/*Los dos for siguientes sirven para dibujar en pantalla los ladrillos que tendremos que
destruir. La estructura es sencilla: el primer bucle sirve para darle 10 posiciones horizontales diferentes a
los ladrillos, y el segundo sirve para dar 3 posiciones verticales. Asi que cada vez que lleguemos a la
llamada al proceso block, dibujaremos un ladrillo en una de las 10 posiciones horizontales posibles y en
una de las 3 posiciones verticales posibles, con lo que al final tendremos 30 ladrillos distribuidos en 3
filas y 10 columnas™/

for(i=0,i<10;i++)

Jor(j=0;j<3;j++)
blocksleft++;/*Como creamos un ladrillo,tenemos que aniadirlo al
contador*/
block(i*32+16,j*16+8);/*Dibujamos el ladrillo propiamente
dicho.Los numeros estan para ajustar la posicion a las medidas de la pantalla. Recuerda que para que
cuadre el grafico del ladrillo ha de tener unas dimensiones de 28x138%*/
end

end

write(0,180,230,5, "Ladrillos que faltan: ");

write_var(0,180,230,3,blocksleft);

loop
if(key(_control))/*Puedes crear una bola extra cuando quieras*/
while(key(_control))frame;end/*Esperar hasta que la tecla se suelte*/
ball(160,80);
end
frame;
end
end
process block(x,y)
begin;
graph=2;
loop
frame;
end
end
process paddle(x,y)
begin
graph=3;
loop
if(key(_left))x=x-5;end
if(key(right))x=x+5;end
if(x<l15)x=15;end
if(x>305)x=305,end
frame;
end
end
process ball(x,y)

227

private
int vx=0,//Su velocidad inicial (cambiara) en la direccion X e Y

int vy=35;

int paddle;

int block;
end
begin

graph=1;

loop

paddle=COLLISION(type paddle); //Para no tener que escribir tanto después en

los ifs

block=COLLISION(type block); //Lo mismo
//Si la bola choca contra un ladrillo
if(block!=0)
/*Comprobamos que hemos chocado contra la parte inferior o superior de un
ladrillo...*/
if(abs(block.y-y+vy)>8)
vy=-vy,//...e invertimos la velocidad vertical
end
/*Comprobamos que hemos chocado contra la parte izquierda o derecha de un
ladrillo...*/
if(abs(block.x-x+vx)>16)
vx=-vx,//...e invertimos la velocidad horizontal
end
/*La bola no nesariamente choca solo contra un ladrillo a la vez, sobretodo
cuando incide de forma horizontal sobre ladrillos superpuestos, donde choca con todos ellos a la vez.*/
while(block!=0)
blocksleft--;
signal(block,s kill);
/*Vemos si hay otro ladrillo con el que haya colisionado.(Recordad que cada vez que se llama a
"collision", se da el siguiente item con el que se ha colisionado, hasta que se haga un frame,
momento en el que se "resetea"” la lista de objetos colisionantes y se empieza otra vez*/
block=COLLISION(type block);
end
end

//Si la bola choca contra la raqueta...
if(paddle!=0)
vy=-vy,//...invertimos la velocidad vertical...
vx=vx+(x-paddle.x)/2;//...y alteramos la velocidad horizontal
dependiendo de en qué punto de la raqueta se haya colisionado..*/
end
//Si la bola choca contra los limites de la pantalla (excepto el inferior)*/
if(x<=2 or x>=318)vx=-vx,end
ifly<=2)vy=-vy;end

/*Limitamos la velocidad horizontal un poco (para que no se embale mucho)...*/
if(vx>20)vx=20;end
x=x+vx;//y la bola se mueve
y=ytvy,
if(y>260)return;end/*Si perdemos la bola, matamos el proceso*/
frame;

end

end

228

CAPITULO 8:TUTORIAL PARA UN MATAMARCIANOS

(extraido del tutorial de Drumpi,en http://drumpi.esp.st)

El matamarcianos que explicaré en este tutorial es tremendamente parecido al juego del
laberinto presentado en un capitulo anterior, con unas pocas alteraciones. Recomiendo leer pues aquel
tutorial antes para poder seguir el tutorial presente, ya que éste se puede considerar una sintesis resumida —
con algunas adaptaciones minimas pero interesantes- del juego del laberinto, y por tanto no se volverdn a
explicar conceptos que ya hayan aparecido anteriormente.

Punto de partida:

Empezaremos dibujando un fondo estrellado —de color azul oscuro con puntitos blancos- que
representard el universo, y una nave espacial, que sera el protagonista que controlaremos, de unos 70x70
pixeles, y mirando hacia arriba. Recuerda que si usamos colores de 16 bits, el color transparente sera el negro
absoluto.

Un problema que podemos tener es el no poder usar el negro absoluto como color en nuestra nave,
pero eso se soluciona usando un negro casi absoluto (por ejemplo si las componentes RGB son 0,0,1), Ia
diferencia no se apreciara.

Si el grafico (y el FPQG) fuera de 8 bits -256 colores, cosa que nosotros no usaremos-, no esta de mas
saber que el color transparente se consigue gracias a que se establece que el color 0 de la paleta (el primero
de la paleta) determina las partes que no se van a dibujar. Si deseas tener el negro absoluto entre los colores
de tu nave debes tenerlo en otra parte de la paleta. En principio, de todas maneras, no trabajaremos con
paletas de 8 bits en este manual.

Una vez que tengamos las imagenes, las afiadiremos a un FPG llamado “prueba.fpg”: el fondo con
codigo 001 y la nave con codigo 002, y comenzaremos nuestro programa escribiendo esto (se explica por si
solo):

Program ejemplo,
Global
Int Graficos;
End
Begin
set_mode(640,480,16),
set fps(60,1);
Graficos=load_fpg(‘“prueba.fpg”);
Put screen(graficos,1);
Nave();
Loop
If (key(_esc)) break; end
Frame;
End

Unload_fpg(graficos);
End

Process nave ()
Begin
Graph=2; /*No es necesario utilizar la variable FILE porque solo hemos cargado un FPG*/
X=320;
Y=435, //La nave esta a 10 pixeles del extremo inferior de la ventana
Loop

229

If (key(left)) x=x-4; end
If (key(_right)) x=x+4; end
If (x>600) x=600, end //Para que la nave no se salga por la derecha
If (x<40) x=40; end //Para que la nave no se salga por la izquierda
Frame;
End
end

Lo primero que afiadiremos al codigo es la orden let me_alone(), que la escribiremos justo antes del
end final del programa principal (después del unload fpg(graficos)), para que cuando salgamos del bucle de
éste, matemos todos los procesos que pudieran estar activos en ese momento (de momento solo tenemos el
proceso "Nave", pero en seguida pondremos otros, como "Enemigo" o "Disparo"), y podamos acabar el
programa limpiamente y sin problemas,una vez se haya acabado de ejecutar el codigo del programa
principal..

Ainadiendo los disparos de nuestra nave. La variable local predefinida Z:
Seguidamente, haremos el dibujo del disparo, de unos 10x30 pixeles. El codigo para guardarlo

en el FPG sera el 3. Los disparos son un nuevo elemento con autonomia propia dentro del juego, por lo que
tendremos que crear un nuevo proceso para ellos: el proceso "disparo".

Process disparo ()

Begin
Graph=3;
Loop
y=y-15;
frame;
end
end

Puedes ver que a cada frame, la posicion vertical decrece en 15 pixeles: en cada frame el
disparo va subiendo por la pantalla 15 pixeles, pues. La posicion vertical del disparo al inicio la conocemos,
siempre sera y=435, ya que nuestra nave nunca se va a mover hacia arriba ni hacia abajo, pero jy la
coordenada x? Depende de la posicion de la nave, por lo que usaremos el mismo truco de siempre: los
parametros. Por ahora vamos a dejar esto en suspense, vamos a decirle primero al programa cuando tiene que
crear un disparo.

El disparo se creara siempre que se pulse la tecla de disparo, pero ¢cual crees que sera el mejor
sitio para crearlo dentro del c6digo? Como el disparo depende directamente de la nave protagonista, haremos
que sea este proceso el que se encargue de crear el disparo. Usaremos para ello la tecla “x” como tecla de
disparo.

Por lo tanto, afiadiremos una linea més —el ltimo IF- al proceso nave:

Process nave ()
Begin
Graph=2;
X=320;
Y=435;
Loop
If (key(left)) x=x-4; end
If (key(right)) x=x+4; end
If (x>600) x=600; end
If (x<40) x=40; end

230

If (key(x)) disparo(), end

Frame;
end
end
De esta forma se creara un disparo antes de cada frame.
Volvamos al proceso “disparo()”. Deciamos que la posicion de origen del disparo dependia de
la nave...

Si te acuerdas de un capitulo anterior en este manual, (el del tutorial del juego del laberinto),
para hacer que las explosiones aparecieran en la misma posicion que nuestro personaje, lo que haciamos
era que el proceso personaje recibiera por parametro los valores de X e Y del personaje (en aquel tutorial se
pasaban mas variables, como ANGLE, pero ahora no importa). Recuerda que esto se hacia en dos pasos: en
la llamada al proceso "explosion()" -que recordemos que se hacia dentro del codigo de nuestro personaje-,
poniamos como valores de sus parametros no ningun nimero en concreto, sino los valores que tenian en
ese momento la X e Y del personaje: es decir, escribiamos: "explosion(x,y),;". Y luego, en la cabecera del
proceso "explosion()", haciamos que esos valores pasados fueran asignadosos precisamente ala X e Y de la
explosion: es decir, la cabecera del proceso explosion la escribiamos asi: "process explosion(x,y)".

Podriamos hacer ahora exactamente lo mismo: nuestro personaje ahora sera el proceso "nave" y
lo que en el ejemplo anterior era una explosion, ahora seria el proceso "disparo". Pero lo vamos a hacer de
otra forma para que veas otras posibilidades (aunque es bastante similar,de hecho)

Tal como tenemos escrito nuestro juego hasta aqui, ahora existe una relacion entre ambos
procesos: “nave” ha creado a “disparo”, por lo que “nave” es el Father de “disparo” y por tanto “disparo” es
Son de “nave”, y dos “disparos” son hermanos, porque tienen el mismo padre. Usaremos este hecho para
utilizar las variables locales predefinidas FATHER y SON convenientemente.

(Sabes a donde quiero ir a parar? Modifica asi el proceso disparo:

Process disparo ()

Begin
Graph=3;
Y=435;
X=father.x;
Loop
y=y-15;
frame;
end
end

Ahora le estamos diciendo que se ponga en la misma coordenada X que su padre, (es decir, la nave)
utilizando la sintaxis tipica para acceder a los valores de las variables locales de procesos:
"identificadorProceso.variableLocal".No obstante, hay que tener en cuenta que este sistema solo lo podremos
utilizar tal como estd ahora si sabemos que el proceso disparo tiene como Unico Father posible la nave. Si
quisiéramos por ejemplo reutilizar el proceso “disparo()” para que nuestros posibles enemigos pudieran
disparar también, entonces la variable FATHER valdria para cada disparo en particular uno de dos valores
posibles (proceso “nave()” o proceso “enemigo()” y entonces la X del disparo cambiaria segiin de qué padre
proviniese...

Si ejecutas ahora el juego tal como esta, veras que tu nave dispara por fin, pero quizas no te

231

guste el detalle de que los disparos aparezcan por encima de la nave y desde el centro.Modificamos pues el
proceso “disparo()” de la siguiente manera:

Process disparo ()
Begin
Graph=3;
Y=410;
X=father.x;
Z=1;
Loop
y=y-15;
frame;
end
end

Lo que hemos hecho ha sido modificar la coordenada Y del origen del disparo, poniéndola un
poco mas arriba, ya que tenemos la suerte de que la nave s6lo se movera horizontalmente, y por tanto,
podemos fijar que los disparos apareceran a partir de Y=410.

Si la nave se pudiera mover también verticalmente, ;que Y tendriamos que haber puesto?
Bueno, al igual que hemos recogido la posicion horizontal de la nave para asignarsela a la del disparo,
igualmente habriamos hecho con la posicion vertical, procurando restarle unos determinados pixeles para
que el disparo continuara saliendo mas arriba que la nave. Es decir:

y=father.y — 25;

Existiria otra posibilidad diferente y es que la nave pudiera rotar (es decir, pudiera cambiar
su ANGLE). En este caso, los disparos tendrian que salir en la misma direccion en la que la nave estuviera
encarada en cada momento. Lo primero que tendriamos que escribir en esta nueva situacion en el proceso
"disparo" (fuera del loop) es:

x=father.x;

y=father.y,
angle=father.angle;

(o bien, de forma alternativa, pasar estos tres valores como parametro, tal como se discuti6 en el tutorial del
juego del laberinto en el apartado de las explosiones) y, también muy importante, tendriamos que cambiar
la linea de dentro de su LOOP/END que decrementaba la y (y=y-15,) y poner en su lugar advance(15),;, de
tal manera que los disparos se muevan en la misma direccion a la que esta mirando la nave en ese momento
(l6gicamente).

No obstante, haciéndolo asi volvemos a tener el mismo problema de antes: el disparo aparece
por encima de la nave, y ahora no podemos hacer el truco de restar una cantidad a la coordenada vertical
porque la nave, si puede rotar, no necesariamente estara mirando "hacia arriba": quedaria fatal que la nave
estuviera mirando al noroeste por ejemplo y los disparos salieran 25 pixeles desplazados por encima de la
nave , creandose de la nada.

En este caso, el truco estaria en escribir justo antes (fuera) del bucle LOOP/END del proceso
disparo, otra linea advance(15); . Es decir, que antes de que empieze el bucle se ejecute "de serie" un
advance(15); Lo que hace esta linea es forzar a que el disparo se mueva antes de empezar el LOOP de su
proceso, con lo que cuando empiece el bucle el disparo ya no estard en el centro, sino "delante" del
personaje. De esta manera, el primer advance(15); que se ejecute de dentro del LOOP/END en la primera

232

iteracion se acumulara al advance(15); de fuera, y asi, cuando se llegue al primer frame, en realidad el
disparo avanzara de golpe 30 pixeles, con lo que habremos solucionado el problema.

La otra modificacion que he hecho ha sido afiadir la linea Z=1,.Fijate que si no se pone, los
disparos se pintaran por encima de la nave, cosa que queda feo.Z es otra variable local predefinida que indica
el nivel de profundidad de un proceso dado en relacion al resto. Esto sirve para lo que has visto: pintar unos
procesos por encima de otros, bien ordenaditos en la tercera dimension: a mayor valor de Z, mas lejano se
pintara el proceso; a menor valor de Z, mas cercano estard, siendo el rango posible de valores entre -512 y
512.

LY por qué los disparos, si no se especifica ningun valor de Z, aparecen dibujados sobre la nave?
Por una razén que has de recordar siempre a partir de ahora: en principio, el ultimo proceso en ser creado
sera el que se vea por encima de los demas. Es decir, si no se especifica lo contrario, los procesos se
ordenan en profundidad en funcion de su momento de creacion (procesos posteriores, Z mas cercana). En
nuestro codigo esta claro que cualquier proceso "disparo" se ha creado después del proceso "nave", porque
entre otras cosas, si no hay proceso nave creado previamente, los disparos no pueden existir., por lo que,
siguiendo esta regla, cualquier proceso disparo aparecera pintado sobre la nave. Para evitarlo, tendremos
que cambiar la profundidad a la que aparece el grafico del disparo,especificando para este proceso un
determinado valor de esta variable local.

(Y como sabemos que tenemos que poner un 1? Porque, otra cosa que tienes que saber, es que
todos los procesos creados en el programa, por defecto siempre tienen el valor de Z igual a 0. Asi pues, el
proceso "nave" sabemos que tiene una Z=0, pero ojo, los procesos "disparo" también, si no se le dice lo
contrario. El tema esta lo que acabo de comentar en el parrafo anterior: aiin cuando existan varios procesos
con Z iguales, el proceso de pintado es el siguiente: tendra mayor profundidad aquel proceso que haya sido
creado antes. Es decir, a medida que se van creando procesos, éstos se van "amontonando" encima de los
ya existentes (repito, atin teniendo una Z igual). Por lo tanto, si queremos que los disparos se pinten bajo el
proceso nave, tendremos que obligarles explicitamente a que que su Z sea MAYOR que 0, que es el valor
que tiene la Z de "nave" por defecto. Con 1 ya vale. Recuerda: cuanto mas negativa es la Z, més hacia el
frente se vienen los graficos, y a Z mas positivas, mas hacia el fondo se pintan.

Es conveniente saber qué valores predeterminados puede valer la Z segun el tipo de graficos que
aparezcan en pantalla. Por si te interesa, lo mas al fondo que hay son los scrolls y los graficos pintados con
las funciones de la familia “put” (como “put_screen’), que por defecto tienen una Z=512. Después estan
los planos abatidos Modo7, con una Z=256 por defecto. Le siguen los graficos de los procesos (ya lo
hemos dicho, con Z=0), luego los textos (con Z=-256) y por ultimo, lo que se pinta por encima de todo, el
grafico del cursor del raton (Z=-512). Segin avancemos veremos que estos valores se pueden modificar,
como ya hemos hecho con un grafico de un proceso.

Puedes probar un momentito este ejemplo (saliéndonos momentdneamente de nuestro
matamarcianos) para ver mejor lo que te cuento. Necesitaras un FPG llamado "cuadrados.fpg" donde hay
tres graficos con codigos 001,002,003, los cuales son cuadrados de 30x30 de diferentes colores. El
programa principal creard tres procesos, cada uno de los cuales sera visualizado mediante uno de estos
cuadrados, que se podran mover mediante diferentes teclas del cursor. También mostrara el valor por
defecto de Z para los tres procesos, que sera 0. Y ya esta. Lo que quiero que veas es que, aun teniendo la
misma Z, el cuadrado correspondiente a "procesol" estara a menor profundidad que los otros dos (lo
puedes comprobar si lo mueves y lo pasas por encima de los otros graficos); el cuadrado de "proceso2"
estara sobre el de "proceso3" pero bajo el de "procesol"; y el de "proceso3" se pintara bajo los otros dos.
Esto es debido al orden de creacion de los procesos: primero se ha creado "procesol", luego "proceso2" y
luego "proceso3". Si quieres, puedes cambiar este orden y comprobarads que las profundades cambian
también — a pesar de continuar teniendo los mismos valores de Z todos los procesos-. Ahora bien, si
definieras explicitamente un valor de Z para estos procesos, seria todo mas claro, porque controlarias
exactamente a qué profundidad respecto el resto deseas pintar cada proceso.

233

program tutorial;
global
int fpg;
end
private
int idprocl,idproc2,idproc3;
end
begin
set_mode(320,240,16);
frg=load_fpg("cuadrados.fpg");
idprocl=procesol();
idproc2=proceso2();
idproc3=proceso3();
write_var(0,100,20,4,idprocl.z);
write_var(0,100,40,4,idproc2.z);
write_var(0,100,60,4,idproc3.z);
loop
if(key(_esc)) exit(); end
frame;
end
end
Process procesol()
begin
graph=1;
x =160;
y=120;
loop
if(key(_up))y=y-5,end
iftkey(_down))y=y+5; end
if(key(_left))x=x-5; end
if(key(right))x=x+5; end
frame;
end
end
Process proceso2()
begin
graph=2;
x = 60;
y=20;
loop
if(key(_w))y=y-5:end
iftkey(_s))y=y+5; end
iftkey(_a))x=x-5; end
iftkey(_d))x=x+5; end
frame;
end
end
Process proceso3()
begin
graph=3;

234

x = 260;

y=220;

loop
if(key(_h))y=y-5;end
iftkey(_n))y=y+5; end
iftkey(_b))x=x-5; end
iftkey(_m))x=x+5; end

frame;
end
end

Una cosa importante que deberas recordar: el valor de Z no se tiene en cuenta para la deteccion
de colisiones. Es decir, las colisiones se pueden producir entre diferentes procesos aunque éstos estén en Z
diferentes. Cuando afiadamos enemigos a nuestro juego (dentro de nada) veras que los enemigos estaran a
otra Z diferente de los disparos, pero aun asi, los disparos colisionardn perfectamente con éstos, ya que,
como hemos dicho, la tercera dimension es irrelevante en la deteccion de colisiones.

Volvamos al matamarcianos. ¢ habras puesto a disparar como un loco, has soltado rafagas hasta
que te ha dolido el dedo, y habras comprobado que a medida que pasa el tiempo y disparas mas parece que el
juego se ralentiza, puede que tardes diez segundos o cinco minutos, pero llega un momento que la cosa se
vuelve injugable ;Qué estd pasando? La respuesta es bien sencilla, el disparo, aunque salga de pantalla aun
sigue activo, y sigue avanzando hasta que llegue al infinito, y claro, si el primer disparo sigue ejecutandose
tras el 100° disparo significa que el ordenador esta moviendo 100 procesos, y llega un momento en que tiene
que ejecutar demasiados procesos y no le da tiempo. Es nuestro trabajo evitarlo, tenemos que hacer que el
disparo se autodestruya al salir del area visible. Hay dos formas de hacerlo, una es usando la funcioén
“out_of region()”, de la que encontraras mas informacion en un capitulo posterior, y la otra es la que vamos
a usar, que es bastante mas sencilla, que simplemente es comprobar si estd por encima de la posicion vertical
—15 y salir del bucle, lo haremos afiadiendo un IF asi:

Process disparo ()

Begin
Graph=3;
Y=410;
X=father.x;
Z=1;
Loop
y=y-15;
if (y< -15) break; end
frame;
end
end

Haz la prueba y verds que ha mejorado notablemente, puedes tirarte horas disparando y la municién no se
acabard, y el rendimiento no se vera afectado.

Quizas podamos mejorar ligeramente el rendimiento todavia un poco mas. Esto lo haremos
usando otro tipo de bucle que ya haga la comprobacion, que sera mas apropiado dado que sabemos cuando
va a dejar de ejecutar el bucle, tan sencillo como sustituir el bucle LOOP por REPEAT/UNTIL:

Process disparo ()
Begin
Graph=3;

235

Y=410;

X=father.x;

Z=1;

Repeat
y=y-15;
frame;

until (y <-15)
end

Este bucle es mas apropiado ya que, al menos, se ejecutara una vez pero se acabara cuando supere el borde
superior de la pantalla. Quizés te preguntes por qué debe superar —15 y no 0, y eso se debe a que las
coordenadas del grafico estan en el centro, y de borrarlo en cero aun se veria la mitad del disparo.

Aifiadiendo los enemigos:

Abre tu editor de imagen preferido y disefia una nave enemiga del mismo tamafio que la
protagonista, pero mirando hacia abajo, con codigo de grafico nimero 4.

(En qué lugar del codigo crearias los enemigos? Por el momento tenemos tres procesos. En el
proceso “disparo()” no es, porque si no disparas no saldria ninguna nave enemiga. El proceso “nave()” no
tiene este problema, pero no es el mas adecuado, imaginate, el bueno creando el mal. Asi que nos quedamos
en el proceso principal.

Ahora hay que saber donde meterlo, lo logico es que esté en el bucle principal, de lo contrario
solo se crearia un enemigo, asi que vamos a afiadir la linea enemigo(), dentro del LOOP del programa
principal:

Program ejemplo;
Global
Int Graficos;
End
Begin
set_mode(640,480,16);
set fps(60,1);
Graficos=load_fpg(“prueba.fpg”);
Put screen(graficos,1);
Nave();
Loop
Enemigo();
If (key(_esc)) break; end
Frame,
End

Unload_fpg(graficos);
Let_me_alone();

End

Y a méas a mas, claro, escribiremos después de todo lo que hemos escrito hasta ahora el codigo
de este nuevo proceso:

Process enemigo ()
Begin
Graph=4;
Y=-40;

236

Repeat
Y=y+5;
Frame;
Until (y > 520)
end

Ves que lo que van a hacer nuestros enemigos sera aparecer desde fuera de la pantalla por arriba, y avanzar
hacia la parte inferior (5 pixeles) y desaparecer por abajo.

Pero también tendremos que, primero, hacer que se muevan de lado para que sea mas dificil
acertarles, y, segundo, hacer que cada enemigo aparezca por arriba en una X diferente de los demas.

Vayamos por lo segundo. Ya sabemos que cuando necesitamos crear procesos con unas
condiciones que varian segun el momento, una solucion a la que podemos recurrir es el paso de parametros,
o sea, indicarle al ordenador que cuando cree un proceso le indique de qué forma hacerlo. En nuestro caso,
vamos a crear el proceso enemigo indicandole qué posicion horizontal —fija y comun , de momento- debe
tener al ser creado, y lo haremos escribiendo lo siguiente en el proceso principal:

Program ejemplo,

Global
Int Graficos;
End
Begin
set_mode(640,480,16),
set fps(60,1);
Graficos=load_fpg(“‘prueba.fpg”);
Put screen(graficos,1);
Nave();
Loop
Enemigo(320); //Indico un valor concreto del parametro
If (key(_esc)) break; end
Frame;
End
Unload_fpg(graficos);
Let me_alone();
End

Y esto en el proceso enemigo:

Process enemigo (x) /*El valor pasado en el programa principal se asigna a la variable local X del proceso
enemigo (por lo que todos los enemigos saldran en el centro de la pantalla.*/

Begin
Graph=4;
Y=-40;
Repeat
Y=y+5;
Frame;
Until (y > 520)
end

Si compilas y ejecutas ahora, veras que aparecen un montén de naves, todas en fila, bajando por
el centro de la pantalla. La verdad es que seguramente no era lo que esperabas, tu querras que aparezcan en
distintas posiciones, pero ;como lo hacemos? Si ponemos un niimero siempre apareceran por esa posicion.

237

La solucion —una de ellas- esta en generar nimeros aleatorios, al azar. Para eso usaremos la conocida funcion
rand, que viene de la palabra inglesa “random” (aleatorio). Modifiquemos pues la llamada al proceso
enemigo dentro del programa principal asi de manera que en vez de pasarle como parametro el nimero fijo
320, sea un numero aleatorio, asi:

Enemigo(rand(0,640)),
Si haces la prueba obtendras una auténtica lluvia de enemigos, un auténtico aluvion. Quizas hay
demasiados enemigos ;jno? La pantalla estd saturada y casi no se ve el espacio. Vamos a arreglarlo de la

siguiente manera:

Program ejemplo,

Global
Int Graficos;
End
Begin
set_mode(640,480,16),
set fps(60,1);
Graficos=load fpg(“prueba.fpg”);
Put _screen(graficos, 1),
Nave();
Loop
If(rand(0,100)<20)
Enemigo(rand(0,640)),
End
If (key(_esc)) break; end
Frame;
End
Unload_fpg(graficos);
Let me_alone(),
End

Asi generamos un numero entre 0 y 100, y s6lo cada vez que este nimero sea menor que veinte
se creara una nave enemiga, es decir, que en cada frame hay un 20% de posibilidades (20 de 100) de que
aparezca un nuevo enemigo, de esta manera se creara una nave cada 5 frames como media (como son datos
aleatorios, a veces serdn mas y otras menos). Puedes ejecutar el programa y ajustar el valor a tu gusto.

Ya que le hemos pasado como parametro desde donde empieza, vamos a aprovechar para
pasarle otros parametros, por ejemplo, cuanto debe avanzar lateralmente y verticalmente (por lo que hay una
linea del proceso enemigo que hay que modificar), empecemos por modificar en el proceso principal la
llamada al proceso enemigo, pasandole en vez de uno, tres valores como parametro, asi:

enemigo(rand(0,640), rand(-5,5),rand(4,7));
Evidentemente, si llamas a un proceso con tres parametros, este debe recibir tres parametros, y
por eso en la cabecera deben figurar tres variables, y no una como tenemos ahora, asi que hagamos hay que

hacer, antes de hacer nada mas, la siguiente modificacion en el proceso enemigo:

Process enemigo (x,int inc_x,int inc_y)

Begin
Graph=4;
=-40;
Repeat
X=X+inc_x;
Y=Y+inc y;

238

Frame;
Until (y > 520)
end

Lo que hemos hecho ha sido asignar dos nimeros aleatorios a dos variables privadas creadas por nosotros

“inc_x” e “inc_y”) de manera que asi se desplacen de forma distinta. Horizontalmente, -la coordenada x-, se
podran desplazar tanto a izquierda como a derecha, y por eso el niimero aleatorio puede ser tanto positivo
como negativo. Verticalmente, -la coordenada y-, s6lo se desplazan hacia abajo, por eso son numeros
positivos mayores de cero. Explicado mas detenidamente: antes de pintar la nave la movemos hacia un lado
modificando su variable x el nimero de pixeles que valga “inc_x” (ya sea a la izquierda, por ser un valor
negativo, a la derecha, por ser un niamero positivo, o no se movera de lado al valer cero), luego la movemos
hacia abajo (lo que valga “inc_y”, que cuanto mayor sea, mas rapido se movera) y por ultimo la pintamos en
la nueva posicion, y a repetir otra vez hasta que salga de la pantalla. Si lo ejecutas ahora, la lluvia ya no se
desplaza solo hacia abajo, ya se mueven a distinta velocidad y en diversas direcciones.

Ya que estamos, podemos hacer que las naves sean distintas entre si, bien metiendo nuevas
naves al FPG y usando “rand” en la variable “graph”, o bien haciendo que sean de distinto tamafio. Una
ventaja de estos programas con respecto a otros lenguajes es que esto ultimo podemos hacerlo de manera casi
automatica, gracias a la variable local SIZE -“tamafio” en inglés-. Esta variable, como ya sabemos,por
defecto (es decir,si no la cambias), vale 100, e indica el porcentaje del tamafio de la imagen. Si le asignas el
valor 50, el grafico se vera al 50% de su tamaiio, es decir, la mitad de grande Asi que escribiremos:

Process enemigo (x,int inc_x,int inc_y)

Begin
Graph=4;
Size=rand(65,115),
=-40;
Repeat
X=X+inc_x;
Y=Y+inc y;
Frame;
Until (y > 520)
end

Eliminando procesos, matando enemigos:

La muerte de los enemigos hay dos formas de tratarla, desde los disparos y desde los propios
enemigos, ya que son los procesos que estan interactuando. Aunque se podria hacer al revés, lo mas logico es
que sea el propio enemigo el que decida si debe morir o no, porque es posible que un disparo no sea
suficiente para eliminarlo. En nuestro caso, para no complicarnos mucho, el enemigo moriréd al mas leve roce
de tu municion, asi que ya tenemos una nueva condicion para acabar con el bucle.

El problema es que como sabe la nave si esta chocando con un disparo si en pantalla hay como
unos 25. Podriamos calcular la distancia a cada uno, pero es que no sabemos los niumeros de identificacion
de todos ellos, y si los guardamos, a ver de qué manera lo hacemos porque no sabemos cudntos hay ni los
podemos almacenar en el mismo sitio. Parece que la cosa esta complicada, pero por suerte nuestros lenguajes
estan ahi para facilitarnos las cosas: la palabra clave es, como podias esperar, collision. Recuerda que esta
funcién detecta si el proceso que usa esta funcion estd chocando con el que le pasamos por parametro, es
decir, si algin pixel NO TRANSPARENTE del proceso que usa collision se superpone con otro pixel NO
TRANSPARENTE del que le decimos, pero ahora tenemos el problema de tener que preguntarle uno a uno
por todos los procesos disparo... Pues no, la cosa se soluciona igual de facilmente, usando “type”, como ya
sabras, y el nombre de un proceso ya le decimos que nos referimos a cualquier proceso de ese “tipo”, en
nuestro caso “disparo()”. Cojamos el proceso enemigo y pongamonos a escribir:

239

Process enemigo (x,int inc_x,int inc_y)

Begin
Graph=4;
Size=rand(65,115);
Y=-40;
Repeat
X=X+inc_x,
Y=Y+inc y;,
Frame;
Until (y > 520 OR collision(type disparo))
end

De esta forma, cuando choque con un disparo, se saldra del bucle y desaparecera de pantalla porque collision
devolvera un valor “true” (verdadero). Date cuenta de un detalle importante, y es que después de “disparo”
no hemos puesto los paréntesis, porque si los ponemos le estamos diciendo al ordenador que cree un proceso
disparo (y nos pedira los parametros). Al poner OR en medio de ambas posibilidades dentro del “Until”, se
debe cumplir al menos una de ellas para salir, pues recuerda el funcionamiento de la operacion OR; si
hubiéramos querido que se saliera cuando ambas fueran verdaderas hubiéramos usado AND.

Otra cosa que quizas no te guste es que los enemigos desaparecen al contacto con el disparo, sin
fuego ni sangre ni un mal jpuf! No te preocupes por ahora, eso lo solucionaremos méas adelante, pues antes
de ponernos con los detalles “decorativos” debemos preocuparnos del aspecto “funcional”, esto significa,
que si no funciona, de nada nos sirve hacer la explosion si después hay que cambiarlo todo.Pero ;qué falla?
Parece que todo va bien. Si, la cosa va bien, pero no cuadra que si un disparo choca con la nave enemiga,
éste siga como si nada.

Se podria poner una sentencia en el proceso disparo que lo finalizara al chocar con el enemigo,
pero no suele funcionar: cuando el proceso enemigo choca con el disparo ejecuta su propia sentencia
collision y por lo tanto desaparece, por lo que cuando el proceso disparo llega a su propia sentencia collision
ya no esta chocando con el enemigo y no desaparece, y viceversa. No hay manera que desaparezcan los dos a
la vez. La mejor manera que he encontrado para solucionar esto es usar codigos identificadores

Recuerda que todos los numeros de identificacion de los procesos (las ID, o los nimeros que
devuelven al ser llamados) son diferentes de 0. Asi que si estamos asignando ese valor a una variable, esta
valdra siempre “true”. Y aprovecho para decir que esto es aplicable también a los ficheros (FPG) y graficos
(PNG), de manera que sabremos en cualquier momento si se ha cargado o no (si no se carga vale 0, y si se
carga valdra otro numero, es decir, “true”).Y tras este rollo, lo que veniamos a decir, que ya lo dije en el
tutorial del juego del laberionto: collision no devuelve “verdadero” simplemente, sino la ID del proceso con
el que colisiona. Esto no es importante si el parametro que le hemos pasado es una ID que sabiamos de
antemano (el proceso “nave” u otro en concreto), pero en nuestro caso, que puede ser un proceso cualquiera,
del tipo que le hemos pedido, del que hay varios “iguales”, es utilisimo, ya que nos dice, sin margen de error,
quién es el responsable que estd chocando con él. De esta forma, podemos saber cual es el disparo que
debemos eliminar para que no siga adelante. Lo haremos asi, asignando la ID que devuelve a una variable,
comprobaremos si alguno ha colisionado, y actuaremos en consecuencia “matando” al proceso:

Process enemigo (x,int inc_x,int inc_y)
Private
Int ID_disparo_acertado;
end
Begin
Graph=4;
Size=rand(65,115),

240

Y=-40;

Repeat
X=X+inc_x;
Y=Y+inc y;
ID Disparo_acertado=collision(type disparo);
If (ID _disparo_acertado !=0)

Signal(ID disparo_acertado,s_kill);

End
Frame;

Until (y > 520 or ID_disparo_acertado)

end

Parece que hemos realizado bastantes cambios, vamos a analizarlos. Hemos creado una nueva variable,
(privada, y por tanto no se podra leer ni modificar desde otro proceso), para almacenar el ID del disparo que
choca con nuestra nave, este valor valdra cero mientras no haya una colision. Una vez almacenado el dato
comprobamos si ha habido colisién, y en caso afirmativo hacemos que desaparezca el disparo, para ello
usamos la funcion conocida funcién signal. Recuerda que esta instruccion permite mandarle “sefiales” a
otros procesos para que reaccionen de una forma u otra, para ello necesitamos dos parametros: el primero es
la ID del proceso al que le vamos a mandar la sefial, cosa que no es problema en nuestro caso, y el segundo
es la sefial que le vamos a mandar (recuerda: S KILL, S SLEEP,S FREEZE, S WAKEUP,
S KILL TREE,S SLEEP TREE,S FREEZE TREE o S WAKEUP TREE).

Por ultimo, comprobamos si se cumple cualquiera de las condiciones para que el enemigo
desaparezca, bien por salir de pantalla o por haber recibido un impacto directo gracias a tu grandiosa
punteria. Si se cumple, el enemigo se autodestruye saliendo del bucle REPEAT/UNTIL. De esta manera nos
aseguramos de que desapareceran tanto el proceso enemigo como el disparo y evitamos el problema que
teniamos antes de que los disparos continuaban después de colisionar con el enemigo.

También podriamos haber escrito, de forma alternativa, el cédigo del enemigo asi, ahorrandonos de escribir
alguna linea :
Process enemigo (x,int inc_x,int inc_y)
Private
Int ID_disparo_acertado;
end
Begin
Graph=4;
Size=rand(65,115),
Y=-40;
Repeat
X=X+inc x;
Y=Y+inc y;
If (ID_Disparo_acertado=collision(type disparo) !=0)
Signal(ID_disparo_acertado,s_kill);
End
Frame;
Until (y > 520 or ID_disparo_acertado)
end
Analicemos la condicion con cuidado. Se hace el mismo IF, pero con un cambio: el paréntesis
tiene una asignacion ademas de la comparacion. El orden de procesamiento siempre es: 1° la asignacion y
2° la comparacién Por lo tanto, primero se asigna a "ID_Disparo_acertado" el valor de retorno de la funcién
collision (que ya sabemos que sera 0 si no hay colision o el ID del disparo concreto si la hay), y

241

seguidamente, en la misma linea, se compara este valor de "ID_Disparo_acertado" para ver si es diferente
de 0. Es otra manera de escribir lo mismo, mas compacto.

Vamos a ponernos un momento en la piel de un programador. Algo muy importante a la hora de
hacer un programa es que este sea “eficiente”: esto es, que en el menor tiempo posible se haga la mayor
cantidad de trabajo posible, y esto incluye evitar repetir las operaciones o usar s6lo la memoria
imprescindible. Esto se consigue usando el menor numero de variables del tipo mas adecuado, usando
procesos sin graficos para ejecutar operaciones que se realizan a menudo (normalmente a estos procesos que
“no se ven” se les llama funciones o sub-rutinas), evitando repetir operaciones que se pueden resolver con
bucles, y siendo ya muy tiquismiquis, evitando acceder a memoria, sobre todo secundaria (disco duro,
disquetes, CD ROM) ya que es lo que consume mas tiempo. Del otro lado tenemos el orden del codigo, si
usas una variable para siete cosas distintas al final no sabras lo que esta haciendo en cada momento, por
ejemplo, usar “varl” como contador, como variable auxiliar, para ver la energia...: reduce pero con
moderacion. Por ahora tampoco debe preocuparte demasiado, pero si debes tener en cuenta que la carga de
archivos (imagenes, musica...) tarda mucho tiempo y consume memoria, por lo que deberias cargar siempre
solo las imagenes que vayas a usar en cada momento (de aqui la importancia de saber agrupar las imagenes
en los ficheros).

Bueno, supongo que mientras has estado leyendo este toston habras pensado en nuestro proceso
y te habras dado cuenta de que hay un problema de eficiencia: hacemos la comprobacion de si el enemigo ha
chocado dos veces (una en el “if” y otra en el “until”) y esto hay que remediarlo ;como? Bueno, la segunda
comprobacion sirve para salir del bucle... jno te suena de algo? claro, nuestra instruccion “break”, si la
metemos dentro de las instrucciones del “if” ya no hace falta comprobarlo de nuevo. Hemos ganado en
eficiencia evitando una comprobacién (e incluso el posterior “frame” y la comprobacion del “until” para
salir).

Process enemigo (x,int inc_x,int inc_y)

Private
Int ID_disparo_acertado;
end
Begin
Graph=4;
Size=rand(65,115),
Y=-40;
Repeat
X=X+inc_x;
Y=Y+inc y;
ID Disparo_acertado=collision(type disparo),
If (disparo_acertado)
Signal(ID_disparo_acertado,s kill),
Break;
End
Frame;
Until (y > 520)
end

Considerards conmigo que no es justo que nuestro protagonista pueda disparar a diestro y
siniestro: no deja opcion a los enemigos para que nos toquen, y a la larga hace nuestro juego
aburrido.Podemos reducir el nimero de disparos que podemos hacer usando un contador que, mientras no
sea cero, no pueda disparar. Pero para controlar el retardo ;qué valor debemos darle? ;5? ;10? En realidad
no lo sabemos y sélo podemos hacerlo a ojo, y para hacerlo vamos a crear una constante, de tal manera que

242

solo tenemos que cambiarle el valor en esa zona para controlarlo, y asi no tenemos que leer todo el codigo
buscando todas las referencias a él (y lo mas seguro es que nos equivoquemos cambiando algo). Cojamos el
programa principal y anadamos la declaraciéon de una constante llamada “Retardo”:

Program ejemplo,

Const
Int Retardo=10;
End
Global
Int Graficos;
End
Begin
set_mode(640,480,16),
set fps(60,1);
Graficos=load_fpg(‘“prueba.fpg”);
Put _screen(graficos, 1),
Nave();
Loop
If(rand(0,100)<20)
Enemigo(rand(0,640)),
End
If (key(_esc)) break; end
Frame;
End
Unload_fpg(graficos);
End

Y a continuacion vamos a hacer los cambios en el proceso nave, que es el que se encarga de
crear los disparos:

Process nave ()

Private
Int cont=0;
End
Begin
Graph=2;
X=320;
Y=435;
Loop
Cont=cont-1;
If(cont<0) cont=0; end
If (key(_left)) x=x-4; end
If (key(right)) x=x+4; end
If (x>600) x=600, end
If (x<40) x=40; end
If (key(_ x) AND cont==0)
Cont=retardo;
disparo();
end
Frame;
end
end

Como ves, hemos creado la variable “cont” y la hemos iniciado a 0, luego en el bucle la vamos

243

decrementando, y cuando es negativa la volvemos a poner a cero. De esta manera seguira a cero hasta que
pulses “x”, que sera cuando se cumplan las dos condiciones del ultimo “if” y se entre en €I, alli se generara el
disparo y se pondra “cont” al valor de “retardo”, de forma que sera necesario repetir el bucle “retardo” veces
para volver a disparar. En caso de que no quieras que retardo sea de 10, te vas a la zona de constantes y
pones el valor que te de la gana. Recuerda que para hacer una comparacion se usa “=="y no “=" ya que lo

segundo es una asignacion (cambiar el valor de una variable).

Existen muchas otras maneras de evitar que el jugador dispare de forma infinita manteniendo la tecla
pulsada y obligarle a tener que pulsar la tecla repetidas veces para disparar. Algunas ideas (trozos de
codigo insertables en un proceso "nave" o similar) que puedes probar en los juegos que puedas crear a
partir de ahora podrian ser los siguientes:

if (key(_space)) //Se supone que la tecla SPACE es la de disparar
if (blogueo==0) disparo(x,y),;bloqueo=1end

else
bloqueo=0;

end

Lo que se hace en este ejemplo es tener una variable con el estado anterior de la tecla, que vale 0 cuando no
se pulso y 1 cuando si se pulso. Si se da el caso que antes no estaba pulsada (bloqueo=0) y ahora si
(key(_space)) crea un proceso de disparo, éste se encarga de actualizar la variable a que esta pulsada y no
la pone como no pulsada hasta que desaparece el disparo.

Este otro ejemplo es similar al anterior, pero fuerza ademas a que mientras exista un disparo en la pantalla,
no se pueda generar otro:

if (lexists(type disparo)) // Este es el primero a comprobar... si este cumple nos ahorramos IFs
if (key(_space))
if (!bloqueo) disparo (x,y) ; bloqueo=1;end
else
bloqueo = 0 ;
end
end

Otra tercera manera, donde s6lo puede existir un disparo en cada momento,seria asi: hay que poner lo
siguiente en el proceso "nave':
if (bloqueo==0 and key(_space)) disparo(); end

y luego escribir el proceso "disparo" asi:

process disparo()

begin
father.bloqueo=1; //Depende como hayas declarado bloqueo, aqui estd como LOCAL
repeat
//desplazas el disparo y eso
until (y<150)
father.bloqueo=0;
end

En este ultimo ejemplo, si quisieras tener mas de un disparo en la pantalla a la vez, tendras que modificar el
proceso "nave" a algo asi:

if (bloqueo==0 and key(_space)) disparo(); bloqueo=1; end

244

if (bloqueo==1 and !key(space))bloqueo=0; end

y en el proceso "disparo" eliminar las lineas que hacer referencia al father (la primera y la ultima).

Aifadiendo explosiones:

Para crear una explosion cuando un enemigo impacte con un disparo,vamos a hacer lo mismo
que hicimos en el capitulo del juego del laberinto: una animacion, es decir, vamos a crear la ilusion de
movimiento y de cambio de imagen a través de imagenes fijas.

Por supuesto, nuestro primer problema es conseguir los graficos de una explosion para después
meterlo en el FPG. Hay varias maneras de hacerlo, la primera es la mas obvia, y es que cojas tu editor y te
dediques a pintar el fuego expandiéndose y desapareciendo, algo seguramente dificil de hacer de forma
realista. También podemos buscar una explosion en las numerosas librerias gratuitas que circulan por la red
(o “ripear” los grafico de otros juegos, cosa que, ademas de no ser legal, quita originalidad y personalidad a
tu juego). Nosotros optaremos por la primera opcion.

Crea 15 imagenes, cada una de ellas con una forma levemente diferente de lo que seria la
explosion: las primeras imagenes pueden ser puntos rojos pequefios y las ultimas pueden ser grandes
llamaradas amarillas y azules. Usa tu imaginacion, pero ten en cuenta siempre que el color transparente es el
negro. Finalmente, afiade los graficos creados al FPG en el orden cronoldgico de la explosion. En los
ejemplos su codigo ira del 005 al 019.

Bien, ya tenemos la base de la animacion, ahora es el momento de ponernos manos a la obra e
indicarle al ordenador lo que queremos hacer. Para empezar, esta animacion s6lo ocurrird cuando el enemigo
muera, por lo que serd €l el encargado de generarla ;Crearemos un proceso nuevo “explosion()” como
hicimos en el tutorial del laberinto? Pues ahora no: veremos otra soluciéon alternativa.Lo que haremos sera
cambiar el grafico de la nave por el del fuego, simplemente. Esto lo haremos dentro del proceso
“enemigo()”, después de haber comprobado que un disparo ha impactado con él. Y la idea de generar la
animacion es creando un bucle, en el que ird cambiando la imagen e ird mostrandose una a una a cada
“frame”; de esta forma tendremos la animacion.

Tenemos que hacer un bucle, y tenemos varias formas de hacerlo, pero las mejores son aquellos
bucles que tienen definido un ntimero determinado de repeticiones, pudiendo usar “from” y “for”, esto ya es
cuestion de gustos. El que quizas sea mas complejo sea el bucle “for”, pero es el que mas posibilidades da, y
se usa en muchos lenguajes, por ejemplo en C++, que es de los mas usados, y asi tendras un ejemplo practico
de cémo se usa. Crearemos una variable “cont” como contador, y afiadiremos todas las lineas que aparecen
después del bucle Repeat/Until (y justo antes del end del proceso):

Process enemigo (x,int inc_x,int inc_y)

Private
Int ID_disparo_acertado;
Int cont;
end
Begin
Graph=4;
Size=rand(65,115);
Y=-40;
Repeat
X=X+inc_x;
Y=Y+inc y;

ID Disparo_acertado=collision(type disparo),

245

If (disparo_acertado)
Signal(ID_disparo_acertado,s_kill);
Break;
End
Frame;
Until (y > 520)
Cont=5;
For(cont=5;cont<=19;cont++)
Graph=cont;
Frame;
End
end

Poco mas hay que explicar, cada frame muestra una imagen distinta, en orden, dando la impresion de
animacion. Ejectitalo y verds que efecto mas fantdstico. Haz pruebas con diversas explosiones de distintos
tamafos, colores o nimero de imagenes hasta que des con lo que buscas.

Aifiadiendo energia enemiga:

Ahora vamos a afadir algo tan interesante como es la energia para los enemigos, muy corriente
para crear distintos tipos de enemigos con armaduras potentes, incluidos los pesados de los jefes finales.
Nosotros vamos a crear algo muy basico aqui, todos los enemigos tendran la misma energia, en caso de que
quieras crear algo mas complejo ya te daré alguna orientacion.

Por lo pronto, nuestros enemigos podran resistir tres de nuestros ataques (obviamente mas si ta
lo programas). Para ello necesitaremos una variable “energia”. El tipo de esa variable viene dada por factores
externos, es decir, si otro proceso va a consultar su energia no podremos declararla como privada; tampoco
global, pues necesitamos una por enemigo y no sabemos a ciencia cierta cuantos va a haber como maximo.
Hacerla variable local serviria en caso de que otro proceso dependiera de si un enemigo concreto esta
muerto, o le queda poca energia,etc, pero recuerda que entonces la variable energia también estara presente
en otros procesos como disparo, el principal o incluso la nave protagonista, aunque no la necesiten para nada.
Como en nuestro caso la variable “energia” no va a ser consultada para nada por ninglin otro proceso, ya que
nuestros enemigos aparecen, bajan y mueren sin ningun control, usaremos una variable privada.

Tras declararla la vamos a inicializar a tres, que serd su energia. COmo lo vamos a hacer es
sencillo, una vez que impacte la bala, entraremos de nuevo en el “if” que “mataba” el disparo y salia del
bucle, pero ahora lo que vamos a escribir es que se reduce la energia una unidad, y en caso de que sea cero,
se salga del bucle y muera. Parece sencillo y lo es, s6lo hay que ponerse y escribirlo:

Process enemigo (x,int inc_x,int inc_y)

Private
Int ID disparo_acertado;
Int cont;
Int energia=3;
end
Begin
Graph=4;
Size=rand(65,115);
Y=-40;
Repeat
X=X+inc_x;
Y=Y+inc y,

ID Disparo_acertado=collision(type disparo);
If (disparo_acertado)

246

Signal(ID_disparo_acertado,s_kill),
Energia=energia-1;
If (energia==0)

Break;
End
End
Frame;
Until (y > 520)
Cont=35;
For(cont=5;cont<=19;cont++)
Graph=cont;
Frame;
End

end

Ainadiendo energia nuestra y su correspondiente barra grafica. Introduccion al uso de regiones:

No es justo que los enemigos sean mas duros que nosotros (aunque ahora mismo nuestra nave
sea fantasma y por lo tanto inmortal), asi que vamos a apafiarnos una barra de energia para nosotros, aunque
no vamos a tratar la muerte de nuestra nave. Lo primero que necesitamos es el grafico de la barra de energia,
esta tendra 200 pixeles de ancho, y el alto que te de la gana (yo propongo 20). Puedes decorarlo como te de
la gana, aunque lo suyo es que hagas un degradado de color (que pase de un color a otro de forma
progresiva), puedes usar un color vivo, que resalte sobre el escenario y los enemigos. Métela en el FPG con
codigo 006.

También necesitamos declarar la variable de la energia de nuestra nave, ’energia_jugador”, asi
que de nuevo tenemos que plantearnos el tipo que sera. Lo mas logico es que sea Unica, por lo que las
posibilidades se reducen a dos: global o privada, ahora depende de como vamos a acceder a ella. Podemos
controlarla perfectamente desde el proceso nave, o podemos crear un proceso aparte. Lo cierto es que da
igual qué método usemos, es cuestion de gustos, no hay una norma fija, aunque si es recomendable separar
procesos que controlan cosas distintas, sobre todo para mantener la claridad a la hora de corregir o mostrar el
programa a otra persona; aunque el motivo que nos hace decantar por una solucion es otro: un grafico
necesita un proceso. Por eso crearemos uno nuevo, “energia_nave()” que muestre la energia. Y por tanto, la
variable “energia jugador” ,entonces, sera global, porque va a ser utilizada por mas de un proceso: como
minimo por el proceso “energia_nave()”, el proceso “nave” y —ya lo veremos- por el proceso “enemigo()”.

Te estaras preguntando como vamos a conseguir que nuestra barra de energia se encoja y estire
a voluntad segun la energia que tenga nuestra nave. Si eres un poco avispado estards pensando en cémo
hacerlo con la variable SIZE o usando una imagen que la tape. Pero vamos a usar otro sistema, las regiones
de pantalla. Las regiones son zonas de un tamafo definido dentro de la pantalla, que pueden tener un
comportamiento diferente al resto de ella. Las regiones se estudiaran con mas profundidad en el apartado
correspondiente del capitulo siguiente, asi que si no entiendes algo de lo que se explica aqui, te remito a ese
lugar del manual.

Las regiones tienen multiples utilidades (saber si un grafico esta fuera de una region -con la
funcion OUT REGION- , definir ventanas para multijugador a pantalla partida -con la funcidén
DEFINE REGION,,etc) pero en este juego , la que mas utilidad le vamos a dar es que podemos meter un

grafico dentro de una region, de tal manera que si éste se sale de ella, desaparece como si fuera el borde de la
pantalla.

Nosotros vamos a jugar con esto ultimo, haremos una region y meteremos dentro el grafico, y
haremos que la region se estreche y se ensanche haciendo que se muestre la porcion de energia que le queda
a la nave (es decir, que muestre una parte mas o menos grande del grafico). Evidentemente, habra que
encontrar una correspondencia entre la energia y la anchura en pixels de la pantalla del grafico.

247

Empecemos pues con el codigo. Lo primero es declarar la variable para la energia de nuestra
nave. Aunque técnicamente podriamos, no es aconsejable llamarla “energia” porque ya hay una variable
privada con ese mismo nombre en el proceso “enemigo”, es la importancia de buscar nombres claros pero
bien elegidos, asi que definela como “energia_jugador” e inicializala a 100 como ya sabes.

Ahora coge nuestro proceso nave y haz una llamada al nuevo proceso justo antes del LOOP.
Sélo necesitamos un proceso, lo llamaremos “energia_nave()”. No olvides que no debes usar letras con tildes
y de poner los paréntesis tras la llamada, aunque no pongas parametros, son necesarios.

Momento de crear el nuevo proceso.

Process energia_nave ()

Begin
X=320;
Y=30;
Graph=06;
Loop
Frame;
End
end

Poco hay que decir de esto, ya sabes que lo unico que hace es mostrar un grafico en una
posicion determinada. Ahora tenemos que definir la region, y para ello la funcidn clave es define region.
Definiremos la region 1, en la posicion 320-100=220 horizontal (mitad de la pantalla menos mitad del
grafico) y 30-10=20 vertical (posicion vertical del grafico menos la mitad del alto de este), con un ancho del
tamafio “energia_jugador” y un alto de 20, o sea, el alto del grafico. Para modificarlo en cada frame, (para
actualizar su ancho a lo que valga “energia_jugador”), es necesario volver a definirla, por eso sera lo primero
que hagamos al entrar al bucle.

Process energia_nave ()

Begin
X=320;
Y=30;
Graph=6;
Loop
Define region(1,220,20,energia_jugador,20);
Frame;
End
end

Tedricamente, como “energia_jugador” vale 100, la energia que deberia verse es exactamente la
mitad (no olvidemos que el grafico mide 200 de ancho), sin embargo pasan dos cosas: ni la energia es la
mitad, ni se ve por encima de los demas procesos. Lo segundo se arregla facilmente asignando antes del
bucle el valor —1 a la variable Z, como vimos en el proceso disparo, salvo que ahora queremos que se
muestre por encima.

(Qué falla en cuanto a lo de la region? Tan sencillo como que no le hemos dicho al ordenador
que el proceso solo debe ser visible dentro de esa region que definimos. Para ello, tenemos que decir
explicitamente que tal proceso o tal otro "pertenecen" a una region, y por tanto, solo serdn visibles dentro de
ésta. Y eso lo hacemos mediante la variable local REGION del proceso en cuestion. Asignandole el nimero
de la region, el proceso solamente se vera dentro de ésta.

Process energia_nave ()

248

Begin
X=320;
Y=30;
Z=-1;
Graph=6;
Region=1;
Loop
Define region(1,220,20,energia_jugador,20),
Frame;
End
end

Ahti lo tienes, justo la mitad. Haz la prueba variando el valor de “energia_jugador”. Por supuesto
esto no lo podras hacer durante el juego, hay que controlarlo segtn los eventos que sucedan en el juego.

La energia puede bajar por los disparos enemigos o por chocar con los enemigos. Los enemigos
no van a disparar porque crear una inteligencia artificial no es algo que se haga facilmente. Podriamos hacer
que aleatoriamente generasen en cada frame un numero entre 1 y 50 y que disparen cuando saquen 25 (o un
numero dentro de un rango) y después lo hagan hacia el jugador (es sencillo si se sabe usar las funciones
“get angle” y “advance”, puedes intentarlo tras acabar con este tutorial). Nosotros nos centraremos en el
choque con nuestra nave.

Dado que los enemigos chocaran con nosotros durante varios frames, haremos que nos quiten
un poco de energia en cada uno de ellos. Si controlamos esto desde el proceso de nuestra nave, solo se nos
quitara energia como si chocasemos con una enemiga, aunque sean dos las que lo estan haciendo, por eso lo
controlaremos desde las naves enemigas, esta es una de las ventajas de haber definido “energia jugador”
como variable global. A escribir:

Process enemigo (x,int inc_x,int inc_y)

Private
Int ID disparo_acertado;
Int cont;
Int energia=3;
end
Begin
Graph=4;
Size=rand(65,115);
Y=-40;
Repeat
X=X+inc_x;
Y=Y+inc y,

ID Disparo_acertado=collision(type disparo),
If (disparo_acertado)
Signal(ID _disparo_acertado,s kill);
Energia=energia-1;
If (energia==0)
Break;
End
End
If{collision (type nave))
Energia_jugador=energia_jugador-1;
End
Frame;
Until (y > 520)

249

Cont=35;
For(cont=5;cont<=19;cont++)
Graph=cont;
Frame;
End
end

Pero jcuidado! Si lo hacemos asi llegara un momento en que “energia_jugador” podria ser
negativa, esto hay que controlarlo. El proceso que controla la energia de nuestra nave es el proceso

“energia_nave”, asi que afiadimos un IF:

Process energia_nave ()

Begin
X=320;
Y=30;
Z=-1;
Graph=06;
Region=1;
Loop
If (energia_jugador<0)
Energia_jugador=0;
End
Define region(1,220,20,energia_jugador,20);
Frame;
End
end

Fijate donde lo hemos puesto, no es casualidad, define region no admite numeros negativos, por eso lo
hemos puesto antes, asi nos aseguramos que siempre “energia_jugador” sea positivo.

Pero si siempre pierdes energia, el jugador se sentira estafado y dejara de jugar por morir tan
pronto, asi que hay que suministrarle pilas. Podemos hacer que aparezcan procesos que al chocar con el
jugador le suministre la ansiada energia. Vamos a ser un poco mas originales y haremos que la energia suba
sola al matar a un enemigo. Es tan facil como afiadir la linea energia_jugador=energia_jugador+3; en el
proceso “enemigo()” justo antes del break; que hay dentro del If{energia==0). Podrias pensar que
podriamos haberla escrito tras salir del bucle principal REPEAT/UNTIL, ya que el proceso enemigo esta a
punto de finalizar, pero piensa que también se aumentaria la energia por desaparecer por debajo de la
pantalla.

A mas a mas,acuérdate de controlar que la energia de la nave no sobrepase el valor 200, porque
ésta sigue creciendo y creciendo y la region definida puede salirse de la pantalla y dar un error que te cuelgue
el juego, ya sabes, anadimos otro IF:

Process energia_nave ()
Begin
X=320;
Y=30;
Z=-1;
Graph=6;
Region=1;
Loop
If (energia_jugador<0)
Energia_jugador=0;
End
If (energia_jugador>200)

250

Energia_jugador=200;
End
Define region(1,220,20,energia_jugador,20);
Frame;
End
end

De momento no hemos hecho nada para cuando nuestra nave llega a energia jugador=0.
Podriamos hacer que desapareciera de la pantalla y que se mostrara un bonito GAME OVER. Para hacer
esto, es facil de ver que lo que habria que modificar es el bloque iffenergia jugador<0)/end del proceso
“energia_nave()” de la manera siguiente:

If(energia_jugador<()
energia_jugador=0;
write(0,320,240,1,"GAME OVER!!!"),
signal(Type nave,s_kill); //Hacemos desaparecer la nave y por tanto ya no podemos jugar
Break;
End

Disparo mejorado y disparo mas retardado:

Ahora vamos a afadir un efecto nuevo al juego: vamos a hacer que si la nave protagonista
supera un umbral minimo de energia, la frecuencia de los disparos también disminuya. Es decir, que si tienes
poca energia, tus disparos seran mds lentos en generarse.Puede que no te guste la idea, darle desventaja al
jugador cuando mas apoyo necesita, pero es cosa de los juegos, s6lo hay recompensa si juegas bien.

La modificacion de esto se puede llevar a cabo en varios sitios: en nuestro nuevo proceso
“energia_nave”, en el proceso “nave”... pero dado que nuestra nave reaccionara mas adelante de otra forma —
ya lo veremos-, lo haremos en su proceso. Lo que haremos sera alterar el valor de “retardo”, aumentandolo,
para que tarde mas en disparar. A estas alturas es sencillo que lo hagas tl s6lo: tienes que comprobar si la
energia es menor de cierto valor y asignar el nuevo valor, y si no, restaurar el anterior. Pero vamos a usar un
nuevo método: usaremos “switch”.

Aunque hay un detalle que se te puede haber pasado por alto: “retardo” no es una variable, es
una constante, y por lo tanto no se puede modificar. Bueno, tan sencillo como cambiar esa linea a la zona de

variables globales y listo. El proceso nave queda asi (hemos afiadido el SWITCH):

Process nave ()

Private
Cont=0;

End

Begin
Graph=2;
X=320;
Y=435;
Energia_nave();
Loop

Cont--;

If (cont<0) cont=0; end

If (key(left)) x=x-4; end
If (key(right)) x=x+4; end
If (x>600) x=600; end

If (x<40) x=40; end

251

end

Switch(energia_jugador)

Case 0..30:

Retardo=10;
End
Default:

Retardo=5;
End

end
If (key(x) and (cont==0))
Cont=retardo;
disparo();
end
Frame;
end

Y el proceso principal asi:

Program ejemplo,

Global

End
Begin

End

Int Retardo=10;

Int Graficos;
Int energia_jugador=100;

set_mode(640,480,16);
set fps(60,1);

Graficos=load_fpg(‘“prueba.fpg”);
Put screen(graficos, 1),

Nave();
Loop
If(rand(0,100)<20)
Enemigo(rand(0,640)),
End
If (key(_esc)) break; end
Frame;
End
Unload_fpg(graficos);

Let me_alone();

Si quieres puedes afiadir distintos retardos en funcion de la energia. Procura no repetir valores,
de lo contrario, el primer rango que cumpla la condicion seré el que se ejecute y se ignorara el resto.

Vamos ahora a darle una alegria al jugador, cuando tenga mucha, pero mucha energia lo que
vamos a hacer es aumentar la capacidad de disparo, pero de una forma un tanto especial: los enemigos
seguiran soportando tres impactos, pero dispararemos doble: saldran dos disparos cada vez.

Lo primero que tenemos que hacer es coger el proceso “disparo” y hacer un ligero cambio, y es
que en vez de recoger el valor de su variable X a partir de la linea X=father.x; vamos a conseguir lo mismo
pero pasandole ese valor como parametro, igual que hicimos en el tutorial del laberinto:

Process disparo (x)

Begin

252

Graph=3;

Y=410;

Z=1;

Repeat
y=y-15;
frame;

until (y <-15)
end

Y ademas, modificaremos el codigo del proceso nave de la siguiente manera (hemos afiadido el bloque
IF(energia_jugador>195)/ELSE/END):

Process nave ()

Private
Int Cont=0;
End
Begin
Graph=2;
X=320;
Y=435;
Energia_nave();
Loop
Cont--;
If (cont<0) cont=0; end
If (key(left)) x=x-4; end
If (key(_right)) x=x+4; end
If (x>600) x=600, end
If (x<40) x=40, end
Switch(energia_jugador)
Case 0..30:
Retardo=10;
End
Default:
Retardo=35;
End
end
If (key(_x) and (cont==0))
Cont=retardo,
If(energia_jugador>195)
Disparo(x-10);
Disparo(x+10);
else
disparo(x);
end
end
Frame;
end
end

Lo que hemos hecho simplemente ha sido poner que si la energia del jugador es mayor de 195,
que dispare dos disparos en vez de uno, separados 20 pixeles uno del otro.

253

Disparos de los enemigos:

(Qué seria de un juego de matamarcianos si éstos no te pueden disparar? Hagdmoslo.

Los disparos de los enemigos se podrian hacer de muchas maneras: que cayeran siempre
verticalmente hacia abajo, que persiguieran a nuestro protagonista alli donde se moviera...lo que esta claro
es que los disparos de los enemigos tendran que ser otro proceso diferente del de los disparos nuestros: éstos
hemos hecho que siempre fueran para arriba, jrecuerdas? y este comportamiento precisamente no es el que
queremos para los disparos enemigos.

Haremos el caso mas simple:los disparos de los enemigos simplemente se moveran
incrementando su Y. La otra alternativa propuesta, que los disparos fueran teledirigidos hacia nuestra nave,
no es excesivamente dificil de hacer utilizando las funciones get angle y advance, por ejemplo. Puedes
intentarlo tt solo.

Asi pues, creamos un nuevo proceso que representara el disparo enemigo, llamado “edisparo()”:

Process edisparo(x,y)
Begin
graph=3; /*El grdfico puede ser otro. Aqui utilizamos el mismo grafico que el de los disparos
nuestros*/
Z=1;
Repeat
y=yt+5;
if(collision(TYPE nave))
energia_jugador=energia_jugador-1;

end
frame;
until(y>480)
FRAME;
END

Y en el proceso “enemigo()”, lo creamos. Escribe la siguiente linea en el interior del bloque
REPEAT/UNTIL de dicho proceso, justo antes de la orden frame;.

if(rand(0,100)<10) edisparo(x,y),; end

Y ya tendras enemigos temibles: te podran quitar energia al chocar contra ti y al acertar con sus
disparos. ;O sea que cuidado!

Afadiendo los puntos. Introduccion al uso de las fuentes FNT:

Lo que vamos a hacer ahora es mostrar los puntos que la nave ir4d sumando cada vez que haga
explotar un enemigo (1 punto=1 enemigo muerto), en la parte superior de la pantalla, centrado respecto al
ancho Lo primero es crear una variable “puntos” que contenga el valor de los puntos, declarala de tipo global
en el programa principal, y a continuacion vamos a poner la condicidon para que sume un punto: esto ultimo
lo haremos afiadiendo la linea puntos=puntos+1; en el proceso enemigo, como podemos ver a continuacion:

Process enemigo (x,int inc_x,int inc_y)
Private
Int Disparo_acertado;
Int Energia=3;
Int Cont;

254

End

Begin
Graph=4;
Size=rand(65,115);
Y=Y-40;
Repeat
X=X+inc_x;
Y=Y+inc y;
Disparo_acertado=collision(type disparo);
If (disparo_acertado)
Signal(disparo_acertado,s kill);
Energia=energia-1;
If(energia==0)
Energia_jugador=energia_jugador+3;
Puntos=puntos+1;
Break;
end
end
If (collision(type nave))
Energia_jugador=energia_jugador-1;
end
Frame;
Until (y > 520)
Cont=35;
For(cont=5;cont<=19;cont++)
Graph=cont;
Frame;
End
end

El escribir el texto lo vamos a hacer desde el proceso principal, aunque no es lo mas
recomendable si quisiéramos tener el codigo bien agrupado y ordenado; lo bueno seria crear un proceso
nuevo que controlara los textos, pero como s6lo vamos a escribir éste no hara falta.

Vamos a hacerlo bonito: vamos a utilizar una fuente FNT para mostrar el texto (el tema de las
fuentes FNT también se trata en el capitulo siguiente: remito el lector al apartado correspondiente para
obtener mas informacion). Antes que nada, hay que hacer lo mismo que con las imagenes, cargar la fuente,
para ello hay distintas funciones. Tenemos “load fnt”, el pardmetro que hay que pasarle es la ruta absoluta
o relativa —seguin convenga- del archivo, igual que las imagenes, y al igual que ellas también esta funcion
devuelve un numero identificador.Por ejemplo, tenemos un tipo de letra que hemos llamado "mi_letra.fnt”
y hemos declarado una variable global para almacenar su ID llamada “letra_id”, la linea para cargarlo seria
“letra_id=load_fnt(“mi_letra.fnt”);” siempre y cuando el archivo de fuente este en la misma carpeta desde
donde se ejecuta el DCB.

Fénix ademas admite también la carga del formato TTF mediante la DLL "ttf.dIl" con el
comando “load ttf”, que en el mismo ejemplo seria “letra _id=load ttf(“arial.ttf”,8);” donde el segundo
numero es el tamafo de la letra. Esta fuente por defecto tendria el color blanco, si quieres cambiarselo
deberias usar la funcion text_color(). El uso de DLLs lo veremos en capitulos posteriores.

En este momento podras entender mejor cual es el significado del primer parametro que
siempre valia 0 hasta ahora de la funciéon write. En su momento te dije que poner O ahi equivalia a utilizar
la fuente predeterminada del sistema, la cual no hay que cargar. En realidad, este primer parametro lo que
indica es el identificador de la fuente (FNT o TTF) con la que queremos escribir el texto. Asi, si hemos

255

cargado una fuente con load fut y esta funcién nos devuelve un identificador que lo guardamos en una
variable “letra id”, si escribimos por ejemplo write(letra id,100,100,1,”Hola”);, aparecera la palabra
“Hola” escrita con la fuente identificada por “letra_id”, que sera la que hemos cargado con load fnt.

En resumen, si queremos imprimir los puntos en pantalla —en este ejemplo usaremos la fuente
del sistema: si quieres utilizar otra fuente ya sabes como hacerlo-:

Program ejemplo,
Global
Int Retardo=10;
Int Graficos;
Int Puntos=0;
Int energia_jugador=100;
End
Begin
set_mode(640,480,16),;
set fps(60,1);
Graficos=load_fpg(“‘prueba.fpg”);
Put _screen(graficos,1);
Nave();
Write_var(0,320,10,1,puntos);
Loop
If(rand(0,100)<20)
Enemigo(rand(0,640)),
End
If (key(_esc)) break; end
Frame;
End
Unload_fpg(graficos);
Let me_alone();
End

Fijate que usamos write_var y no write porque queremos cada vez que la variable puntos
cambie de valor alli donde lo haga automaticamente la impresion de ese valor también cambie.

Supongo que ya te habras dado cuenta de que nuestro juego no tiene fin. Puedes estar matando
enemigos toda la vida. Estaria bien, por ejemplo, que nuestro juego acabara cuando la nave hubiera
eliminado un cierto numero de enemigos, por ejemplo 100. En ese momento, podria aparecer
sobreimpresionado alglin texto felicitando al jugador, desapareciendo ademds todo rastro de presencia
enemiga, para que nuestra nave pudiera viajar a sus anchas por todo el universo.Vamos a hacerlo.Es facil ver
que lo que tendriamos que hacer es afadir en el proceso “nave()”, justo antes de su orden FRAME, el
siguiente bloque I[F/END:

If (puntos==100)

signal(Type enemigo,s_kill),

write(0,120,240,0," i Muy bien! ;Has sorteado los asteroides con éxito!. Pulsa ESC para salir");
End

Introduccion al uso del ratén:

Lo que vamos a hacer ahora va a ser comprobar la posicion horizontal del raton y colocar la

256

nave en su posicion, y no sélo eso, sino que vamos a usar los mismos botones del raton para disparar. Otra
vez recomiendo el lector la lectura previa del apartado correspondiente del capitulo siguiente para obtener
informacion mas completa y extensa sobre el uso del raton. No obstante, para conseguir lo que queremos, es
tan sencillo como cambiar un par de lineas:

Process nave ()

Private
Int Cont=0;
End
Begin
Graph=2;
X=320;
Y=435;
Energia_nave();
Loop

Cont=cont-1;
If (cont<0) cont=0; end
X=mouse.x;
Switch(energia_jugador)
Case 0..30:
Retardo=10;
End
Default:
Retardo=5;
End
end
If (mouse.left and (cont==0))
Cont=retardo;
If(energia_jugador>195)
Disparo(x-10);
Disparo(x+10);
else
disparo(x);
end
end
Frame;
end

Fijate que hemos sustituido cuatro lineas que controlaban las teclas de desplazamiento lateral
por una sola, y ademas el manejo es mas sencillo para el jugador. Puedes intentar modificar este proceso para
que también se desplace verticalmente, pero no olvides cambiar la posicion inicial vertical del proceso
“disparo”. También controlas el disparo con el ratén, incluso sigue manteniendo el retardo y tinicamente
cambiando una comprobacion.

Los usos del ratéon son tan variados como tu imaginacion quiera, ahora es cosa tuya seguir
investigando y probando.

Introduccion al uso de scrolls de fondo:
Nuestro juego ya es muy, muy completo, no te quejaras: tu nave se mueve, dispara, tiene
energia, aparecen enemigos, usamos el raton. Pero es soso, tiene el fondo ahi, estatico, sin vida. Puede que si

le has puesto algtn planeta tenga algo de vida, y si te has atrevido a que se muevan y todo pues todavia, pero
es que permanecer sin moverse en esta pequefia parcela del espacio...Vamos a hacer que el fondo se mueva.,

257

simulando que nuestra nave esta viajando y avanzando sin descanso a través del espacio sideral.

Para ello, vamos a implementar un “scroll automatico”. Automatico quiere decir que consiste en
un scroll que se mueve solo, sin depender de ningun otro proceso (normalmente el proceso protagonista, el
cual va avanzando). Los scrolls automaticos suelen usarse para decorados de fondo con movimiento, como
es nuestro caso: nuestra nave moviéndose por el espacio. El tema de los scrolls se trata ampliamente en el
capitulo siguiente: si se desea profundizar en este tema y entender mejor los conceptos aqui tratados,
recomiendo su lectura previa.

Para mostrar un fondo de scroll, lo que tenemos que hacer es modificar el programa principal de
la siguiente manera: afladiendo las lineas de start _scroll y stop scroll y quitando put screen:

Program ejemplo;

Global
Int Graficos;
Int energia_jugador=100;
Int Retardo=5;
Int Puntos=0;
End
Begin
set_mode(640,480,16),
set fps(60,1);
Graficos=load_fpg(‘“‘prueba.fpg”);
Start_scroll(0,graficos,1,0,0,2);
Nave();
Write_var(0,320,10,1,puntos);
Loop
If (rand(0,100)<20)
Enemigo(rand(0,640),rand(-5,5),rand(4,7)),
End
If (key(_esc)) break; end
Frame;
End
Stop_scroll(0);
Unload_fpg(graficos);
Let me_alone();
End

Vemos que creamos un scroll, el nimero 0, el cual estara formado por la imagen principal 001
del FPG referenciado por la variable “graficos” (es decir, el fondo estrellado), y que no tendra imagen “de
fondo” de scroll (los scrolls pueden tener dos imagenes: una mas en primer plano y otra mas de fondo,
aunque ambas estaran por defecto a una profundidad mayor que todos los procesos, y de hecho, ambas
imagenes tienen la misma Z entre si). Como region definida tiene toda la ventana del juego, por lo que el
scroll (si la imagen es lo suficientemente grande, que lo es) se producira en toda la ventana; y como utlimo
parametro tiene el valor 2, cosa que quiere decir que si el scroll se mueve verticalmente, lo harda de forma
indefinida (ciclica).

Es evidente que el scroll ha de acabar cuando el propio proceso principal finalice: por eso se ha
escrito el stop_scroll al salir del bucle, inmediatamente antes de la terminacion del programa.

Quizas te hayas llevado una desilusion cuando hayas visto que el fondo no se ha movido, y es
que, vale, lo has iniciado,(prueba de ello es que el fondo aun esta ahi atin habiendo quitado el put screen),
pero no le has dicho que se mueva. Para conseguir ese movimiento hay que modificar la estructura de
scroll.En concreto, los campos "x0" e "y0", las cuales controlan la coordenada x e y del primer plano del

258

scroll, respectivamente.

Asi que lo que nos falta por escribir en el proceso principal es la linea Scrollf0].y0=scroll[0].y0-
2;, justo antes del frame:

Program ejemplo,

Global
Int Graficos;
Int energia_jugador=100;
Int Retardo=5;
Int Puntos=0;
End
Begin
set_mode(640,480,16),;
set_fps(60,1);
Graficos=load_fpg(‘“prueba.fpg”);
Start_scroll(0,graficos, 1,0,0,2);
Nave();
Write var(0,320,10,1,puntos);
Loop
If (rand(0,100)<20)
Enemigo(rand(0,640),rand(-5,5),rand(4,7));
End
If (key(_esc)) break; end
Scroll[0].y0=scroll[0].y0-2;
Frame;
End
Stop_scroll(0),
Unload fpg(graficos);
Let me_alone();
End

Lo que hemos hecho con esta nueva linea ha sido simplemente decirle al ordenador que en cada
frame, la coordenada y de la imagen “en primer plano” —el 3r parametro de start scroll- del scroll O
disminuya en 2 pixeles, con lo que veremos que en apariencia la imagen del cielo estrellado se va moviendo
hacia arriba. Y como hemos puesto el valor 2 en el ultimo parametro de start scroll, nos aseguramos que ese
movimiento vertical sea ciclico.

Haz una ultima prueba: cambia el grafico de fondo por el mismo que usamos para el scroll, es
decir, modifica la funcion por start scroll(0,graficos,1,1,0,2+8); (no olvides cambiar el ultimo parametro
para que el fondo también sea ciclico). Ahora salen mas estrellas porque estamos viendo dos imagenes del
cielo estrellado: la de “primer plano”, que se mueve, y la “del fondo” que acabamos de poner, que es la
misma pero no se mueve. Para lograr esto Gltimo, ya sabes: usa “scroll[0].y1=scroll[0].y1-1;” y veras que el
espacio toma profundidad.Fijate que el incremento es diferente (en la imagen de “primer plano” cada frame
la coordenada y disminuye en 2 pixeles y en la imagen “de fondo” disminuye en 1): esto es para crear un
efecto de profundidad.

Puedes jugar con el campo "ratio" de la estructura scroll (scroll[0].ratio)si quieres: en ella se
guarda la velocidad del fondo respecto al plano principal en porcentaje (asi, si vale 100, el fondo se movera a
la misma velocidad que el plano principal, si vale 50 el fondo ira a la mitad de la velocidad, si vale 200 ira al
doble de rapido y si vale 33 ird a un tercio,etc. Por lo tanto, en vez de espeficar de forma explicita los
incrementos de las coordenadas X o Y para la imagen “de fondo”, basta con hacerlo para la imagen “en
primer plano” y establecer la variable ratio.Asi siempre tendras que ambas velocidades de scroll estan

259

relacionadas una con la otra: si la del “primer plano” varia, la “del fondo” variard en consecuencia.

Introduccion al uso de bandas sonoras y efectos de sonidos:

Remito al apartado correspondiente del capitulo siguiente, donde se explica y detalla la
funcionalidad y uso de las funciones que Fénix aporta para la inclusion de musicas y efectos de sonido -para
los disparos,explosiones,etc- en nuestros juegos (la familia de funciones Load song, play song.etc y
Load wav,play wav,etc, respectivamente).

260

CAPITULO 9: FUNCIONES Y ESTRUCTURAS BASICAS DEL LENGUAJE

Trabajar con temporizadores:

Un temporizador es un crondmetro programable accesible en todo momento. Fénix dispone “de
serie” de 10 temporizadores accesibles a través de una tabla de variables globales enteras 1llamadas timers
(desde timer[0] a timer[9]).

Estos temporizadores se inicializan automaticamente al comenzar el programa al valor 0 y se
incrementan automaticamente 100 veces por segundo. En cualquier momento puede cambiarse el valor de
uno de ellos, por ejemplo inicializandolo de nuevo a 0, para controlar una cantidad de tiempo concreta.

Ya sabes que las variables globales se actualizan cada instruccion FRAME. Por tanto, es obvio
que los valores leidos a cada frame en un temporizador no seran consecutivos a menos que nuestro programa
se esté ejecutando a 100 frames por segundo.Es decir: supongamos que el programa de ejecuta a 40 fps. Eso
quiere decir que en un segundo pasaran 40 frames, por lo que el valor del temporizador cambiara 40 veces.
No obstante, en un segundo el temporizador aumenta en 100 su valor, por lo que en un segundo el
temporizador habra aumentado 100 unidades pero haciéndolo en 40 saltos.

Una cosa importante que comentar es que para realizar las comprobaciones de los valores que
tienen los temporizadores en un momento dado -un if(timer[x]==limite tiempo)- debemos utilizar siempre
con los operadores de >= 0 > y nunca con el == ya que no se puede asegurar que tras la actualizacion del
temporizador el valor sea exactamente igual al deseado.

Vamos a poner un ejemplo. Queremos que un nivel de un juego dure 5 segundos, y se quiere mostrar por
pantalla el tiempo que queda. Habra una variable global llamada “tiempo” que almacenara esos segundos,
y un proceso “controlTiempo”, que la modifica. En este ejemplo, cuando se llegue al final de la cuenta
atras, el programa termina su ejecucion, pero se podrian inventar otras reacciones.Aqui esta el codigo:

program hola;

global
int tiempo,
end
begin
controlTiempo();
loop
if(key(_esc)) exit(),; end
if(tiempo==0) exit(), end //Es por esta linea que “tiempo” ha de ser global.
frame;
end
let_ me_alone();
end

process controlTiempo()
private
//En vez de un variable, se podria haber utilizado una constante para identificar el fin de partida
int estadojuego=0;
end
begin
timer[0] = 0;
repeat
tiempo = 5 - (timer[0] / 100),
delete text(0);

261

write_var(0,100,100,4,tiempo);
if (tiempo == () estadoJuego = 1; end
frame;
until (estadoJuego == 1)
end

Fijate lo que hace el proceso “controlTiempo”. Cada vez que se ejecuta, resetea el valor de la variable
“timer[0]” (el tnico temporizador que utilizaremos). Entonces se entra en un bucle repeat/until que lo que
hace es decrementar el valor de “tiempo”, hasta que valga 0, momento cuando se sale del bucle y —se
supone- se acaba la partida. Lo interesante esta en la linea tiempo = 100 - (timer[0] / 100),. Esta linea lo
que deberia de hacer es decrementar en una unidad el valor de “tiempo” cada segundo. Para controlar que
este decremento se haga efectivamente cada segundo recurrimos al timer[0]. Cada segundo hemos dicho
que timer[0] (y cualquier timer de los diez que hay, aunque no se utilicen) se incrementa 100 unidades. Por
lo tanto, en el primer segundo “tiempo” valdra 100 —(100/100)=100-1=99; en el segundo segundo “tiempo”
valdra 100 — (200/100)=100-2=98, etc.

262

Hay que saber, por ultimo, que los timers funcionan de forma independiente de todo lo que
demads. Asi que si, por lo que sea, el juego se ralentiza, en el ejemplo anterior la partida durard los 100
segundos, pero para el juego habria pasado menos tiempo: supongamos que, en condiciones normales el
juego ejecuta 1000 frames en los 100 segundos, en caso de ralentizarse ejecutaria 950 frames en ese tiempo:
el protagonista avanza menos, los enemigos avanzan menos, hay menos disparos...Esto es lo que se llama un
problema de sincronizacion.

A partir de las versiones mas recientes de Fénix podemos utilizar un nuevo tipo de temporizador,
con precision de milésimas de segundos. Su funcionamiento es muy similar al de los timers clasicos, pero
con la diferencia (aparte de la precision), de que solo existe un timer de este tipo (en vez de los 10
anteriores) y se accede a €l no a partir de elementos de un vector predefinido sino a partir de la funcién
get_timer().

Esta funcion, la cual no tiene parametros, sirve para obtener de ella el valor que el temporizador
tenga en un instante en particular. Veamos este ejemplo, donde se puede ver el contador en plena accion

con precision de milésimas:

program hola;

private
int tiempo,
end
begin
loop
if(key(_esc)) exit(); end
tiempo=get _timer();
write_var(0,100,100,4,tiempo);
frame;
end
let_ me_alone();
end

A partir de aqui, podemos elegir segun nuestras necesidades si continuamos haciendo servir los clasicos
timers de precision de centésimas o esta nueva funcion get timer().

No obstante, hay que tener en cuenta que la funcion get timer() NO sirve para asignar un valor
concreto al temporizador: eso no lo podemos hacer, a diferencia de los timers clasicos, donde la linea
timer[0]=0; resetea a cero ese temporizador. Con get timer es incorrecto por ejemplo escribir
get_timer()=0, ya que no es posible reestablecer a mano un valor de este temporizador.

Entonces, ;como lo hacemos para tener el control sobre un periodo de tiempo dado? Pues el truco
estd en recoger al principio de ese periodo en una variable el valor que en ese instante tenga el
temporizador, y luego, al final de ese periodo, volver a recoger el nuevo valor y restarle el del principio.De
esta manera, la diferencia que obtenemos es el nimero de milisegundos que han transcurrido entre un
instante y el otro.

Por ejemplo, aqui mostramos el primer ejemplo que vimos en este apartado, pero esta vez
utilizando get_timer() en vez de timer[0]:

program hola;
global
int tiempo,
end
begin

263

controlTiempo();

loop
if(key(_esc)) exit(); end
if(tiempo==0) exit(),; end
frame;

end

let_me_alone();
end

process controlTiempo()

private
int estadojuego=0;
int comienzo;
end
begin
comienzo=get_timer(), //Instante inicial
repeat
tiempo = 5 - (get_timer()-comienzo)/1000;
delete text(0);
write_var(0,100,100,4,tiempo);
if (tiempo == 0)
estadoJuego = 1;
end
frame;
until (estadoJuego == 1)
end

Un ejemplo mas fécil, para acabar de entender el sistema (necitards un grafico cualquiera
llamado “grafproc.png”):

//Author:Coldev
program facil;
begin
set_mode(640,480,16);
write(0,10,10,0,"Pulsa (1) para esperar 1 segundo Pulsa (2) para esperar 2 segundos ");
loop
if (key(_esc)) exit(),; end
if (key(_1)) Examplelmage(1000); end
if (key(_2)) Examplelmage(2000); end
frame;
end
end

process Examplelmage(int duracion)
private
int comienzo;
end
begin
graph=Iload_png("grafproc.png”);
x=320;y=240;
comienzo= get_timer();
/*No hago nada mientras el tiempo transcurrido sea, a partir del comienzo, menor que la duracion
establecida. Cuando ya haya pasado ese tiempo, saldré del while, y al acabar el proceso, su grdfico que se

264

estaba mostrando desaparecerd. Podria haber escrito dentro de este while todo aquello que deseara que
se ejecutara solo en el periodo de tiempo dado por “duracion”*/

while (get_timer()< comienzo+duracion) frame; end
end

(Para qué sirve, en este codigo, el proceso “retraso”? (Necesitards para hacerlo funcionar un
grafico cualquiera llamado “grafproc.png”).

program pepe;
private

int idproc;
end
begin

set_mode(640,480,16);

write(0,10,10,0,"Pulsa 1 para dormir, 2 para despertar, 3 para matar");

idproc=procesol();

loop
if (key(_esc)) exit(), end;
if (key(_1)) retraso(2000,idproc,s_sleep); end
if (key(2)) retraso(2000,idproc,s wakeup), end
if (key(_3)) retraso(2000,idproc,s_kill); end
frame;

end

end

process procesol ()
begin
graph=load _png ("grafproc.png”);
x=320; y=240;
loop
frame;
end
end

process retraso(int duracion,int idproc,int senal)
PRIVATE
int time_init;
int time_end;
end
BEGIN
time_init = get_timer();
time_end = time_init + duracion;
repeat frame; until (get timer() >= time_end)
signal(idproc,senal);
END

Y otra pregunta mas: ;jqué diferencia hay entre los dos cddigos siguientes?

program hola;
Global

int min=2, //minutos
int seg=4; //segundos

265

int nFps=10; //Numero de frames a los que cambiara el valor de seg.
int contador; //contador

End

begin

write_var(0,100,100,4,min);

write(0,108,100,4,":");

write_var(0,120,100,4,seg);

loop
if(contador==nFps)
seg--; contador=0;
if(seg<0) min--; seg=59;end
end
if(min==0 And seg==0) break;end
contador+-+;
frame;
end
end
Y:

program hola;

Global

int min=2; //minutos

int seg=4, //segundos

int tiempo;

End

begin
write_var(0,100,100,4,min),
write(0,108,100,4,":");
write_var(0,120,100,4,seg);
tiempo=get timer();

loop
if(get_timer()>1000+tiempo)
seg--;
if(seg<0) min--; seg=59;end
tiempo=get timer();
end
if(min==0 And seg==0) break;end
frame;
end
end

Efectivamente, la velocidad de cambio en los “segundos” en el primer cddigo depende del FPS que lleve
ese programa (en concreto, el cambio se produce cada 10 frames), y en el segundo codigo si que va
sincronizado realmente con los segundos reales ya que utiliza un temporizador.

Uno podria pensar que si se establece una velocidad de 10 frames/segundo (con set_fps(10,0);, por
ejemplo), los dos codigos podrian ser equivalentes, pero esto no es exactamente asi, porque Fénix “trata”
de ejecutar 10 frames/segundo -en este caso- PERO NO lo garantiza, no tiene suficiente precision para
asegurar que esta velocidad sea asi ni constante. Esto depende de la maquina, depende la cantidad de
procesos activos,etc,etc. Por eso, el uso de temporizadores siempre es mas fiables ya que son
independientes de todo esto. Aunque usar timers es un arma de doble filo: se tiene precision en tiempo real
en cualquier maquina, pero si el ordenador es lento, los personajes se moveran mas despacio y serd mas
dificil que lleguen a una meta en el tiempo previsto (es como si el tiempo fuera mas rapido). Por eso es

266

recomendable usar los timers si se necesita un reloj o el juego no depende del tiempo, pero es mejor usar
variables contadoras si lo que se quiere hacer es un juego contrarreloj.

Trabajar con ficheros:

Fénix incorpora una familia de funciones -las llamadas “de Entrada/Salida”-que nos aportaran
muchos mas beneficios a la hora de gestionar el trabajo con ficheros (crearlos, escribir en ellos, leerlos...).
Estas funciones nos pueden ser ttiles, por ejemplo, a la hora de guardar datos de una partida en un fichero,
para poderlos recuperar mas adelante, y asi poder incluir en nuestro juego la funcionalidad de salvar/recargar
partidas.

FOPEN(“fichero”,modo)

Esta funcion abre un fichero en disco, operacion previa imprescindible para permitir realizar lecturas y
manipulaciones posteriores sobre el mismo, empleando otras funciones.Es decir, ésta es una funcion
imprescindible, la primera que se ha de escribir para poder trabajar con un fichero determinado.

Una vez abierto, el puntero de lectura/escritura se posiciona siempre automaticamente al comienzo del
fichero.

PARAMETROS:

STRING FICHERO : Ruta completa del fichero
INT MODO : Modo de apertura. Puede ser uno de los siguientes:
O _READ Modo de lectura
O_READWRITE Modo de lectura/escritura
O_WRITE Modo de escritura/creacion
O_ZREAD Similar a O READ pero para ficheros comprimidos escritos con O ZWRITE.
O_ZWRITE Similar a O_WRITE pero a la vez comprimiendo el fichero.

VALOR DE RETORNO: INT : Identificador del fichero abierto

Con el modo O_READ, podremos leer posteriormente el contenido de este archivo desde el principio (con
la funcion correspondiente)

Con el modo es O_ READWRITE podremos leer y escribir en ese archivo desde el principio(con la funcién
correspondiente), sobreescribiendo en el segundo caso lo que ya hubiera. Si quisiéramos preservar el
contenido del archivo y escribir nuevos contenidos al final del fichero, afadiéndose a los que ya hubiera,
también usariamos O_READWRITE, pero deberiamos mover antes(con la funcién correspondiente) el
puntero al fin de fichero y empezar a escribir desde alli.

En cambio, con el modo O WRITE, todo lo que se escriba en el fichero sobreescribird completamente el
contenido anterior principio porque éste se borra totalmente.

Un fichero abierto en modo O READ o O READWRITE debe existir previamente. En caso contrario, la
funcion devolvera 0. En cambio, un fichero sera creado si no existe previamente al ser abierto en modo
O_WRITE.

Y una cosa importante: las rutas especificadas (en este comando y en general, en todos los comandos de
Fénix donde se tengan que escribir rutas como valores de parametros) se pueden escribir utilizando los

267

separadores de directorios de Windows (\) o de Unix-Linux (/) indistintamente.No obstante, en las rutas
absolutas de Windows es necesario indicar una letra de unidad, con lo que se pierde portabilidad. Por tanto
se recomienda, en la medida de lo posible, escribir rutas relativas al propio DCB y no rutas absolutas.

FWRITE(fichero,variable)

Esta funcién guarda datos en formato binario, contenidos previamente en una variable, en un fichero
abierto con la funcion FOPEN . Esta funcion sélo puede guardar una variable a la vez. Sin embargo, esa
variable puede ser una tabla o estructura: en ese caso se guardaran secuencialmente (es decir, por orden uno
detras de otro) todos los elementos de la tabla o estructura.No es valido,en cambio, almacenar datos de tipo
POINTER.

PARAMETROS:

INT FICHERO : Identificador de fichero devuelto por FOPEN
VAR VARIABLE : Nombre de la variable a guardar

VALOR DE RETORNOQO: INT : Numero de bytes escritos, 0 en caso de error

FREAD(fichero,variable)

Esta funcion lee datos binarios de un fichero abierto con la funcion FOPEN vy los asigna a una variable para
poder asi trabajar en el codigo fuente con la informacion obtenida.

Si por ejemplo la variable es de tipo int (es decir, de 4 bytes), se leeran 4 bytes del archivo. Si es de tipo
word se leeran 2 bytes y si es de tipo byte se leera uno.

Esta funcion sélo puede leer una variable a la vez. Sin embargo, esa variable puede ser una tabla o
estructura: en ese caso se leeran cada vez todos los elementos de la tabla o estructura secuencialmente (es
decir, por orden uno detras de otro).

Una caracteristica importante de su funcionamiento es que cada vez que se le invoque, seguira leyendo a
partir de la ultima posicion donde el puntero se quedd en la dltima lectura.Es decir, que si se realiza una,

lectura y se rellena una tabla con dicha operacion, la siguiente vez que se llame a FREAD se seguird |
leyendo del archivo y se volvera a rellenar la tabla con los nuevos valores.

Como curiosidad, si se deseara procesar ficheros binarios genéricos o escritos con otra utilidad, puede
usarse esta funcion para leer un dato de tipo BYTE cada vez, y procesarlos en secuencia.

PARAMETROS:

INT FICHERO : Identificador de fichero devuelto por FOPEN
VAR VARIABLE : Nombre de la variable a leer

VALOR DE RETORNO: INT : Numero de bytes leidos, 0 en caso de error

FEOF(fichero)

Esta funcion comprueba si quedan datos por leer de un fichero.

Devuelve 1 si el puntero de lectura/escritura traspasa el final de un fichero abierto con la funcion FOPEN,
0 0 en caso contrario.

268

Puede usarse en un bucle que emplee FREAD para leer datos de un fichero, hasta que ya no queden mas en
el mismo.

PARAMETROS: INT FICHERO : Identificador de fichero devuelto por FOPEN

VALOR DE RETORNO: INT : 1 si se llego al final del fichero

FSEEK(fichero,posicion,desde)

Esta funcion cambia la posicion del puntero de lectura/escritura en un fichero abierto con la funcion
FOPEN .

La nueva posicion viene dada por la combinacion de los valores del segundo y tercer parametro.

El tercer pardmetro puede indicar tres puntos concretos, que puede ser el comienzo del fichero (valor 0 6
SEEK SET), la posicion actual del puntero —cuyo valor se puede obtener con FTELL si se desea- (valor 1
6 SEEK CUR) o el final del fichero (valor 2 6 SEEK END).

El segundo parametro es el nimero de bytes que el puntero se movera, a partir de la posicidon base indicada
en el tercer parametro, para realmente llegar al sitio deseado. Su valor sera positivo si el movimiento del
puntero es hacia adelante dentro del contenido del fichero o negativo si es para atras. Evidentemente, si
partimos de la posicion base al comienzo del fichero, el segundo parametro no podra ser negativo, y si
partimos del final de fichero, no podra ser positivo.

En todo caso se devolvera la nueva posicion real, siempre respecto al origen del fichero. FSEEK no
funciona si el archivo esta comprimido y por tanto se ha tenido que abrir con O ZREAD.

PARAMETROS:

INT FICHERO : Identificador de fichero devuelto por FOPEN
INT POSICION : Nueva posicion deseada
INT DESDE : Tipo de posicion utilizada. Puede ser:

0 6 SEEK SET:A partir del comienzo del fichero
1 6 SEEK CUR:A partir de la posicion actual
2 6 SEEK_END:A partir del final del fichero

VALOR DE RETORNO: INT : Nueva posicion de lectura/escritura, en numero de bytes
desde el comienzo del fichero (empezando en 0)

FTELL(fichero)

Esta funcion devuelve la posicion en numero de bytes del puntero de lectura/escritura de un fichero abierto
con la funciéon FOPEN , siempre respecto al origen del fichero (0 para indicar el comienzo).

Se suele utilizar junto con FSEEK, para situar el puntero en un lugar concreto a partir del lugar donde esta
actualmente.

PARAMETROS: INT FICHERO : Identificador de fichero devuelto por FOPEN

VALOR DE RETORNO: INT : Posicion de lectura/escritura, en nimero de bytes desde el
comienzo del fichero (empezando en 0)

269

Un ejemplo:

program fafafa;
private

int idfich;
end
begin

idfich=fopen("pepito.txt",0_read);
/*Muestro en qué posicion -byte- estoy. Como acabo de abrir el archivo, debo de estar al principio,o sea,
en el byte 0%/
write(0,10,10,4 ftell(idfich)),
//Desde el principio del fichero, me muevo un byte para adelante
fseek(idfich, 1,0);
/*Vuelvo a mostrar donde estoy. Como me he movido un byte desde el principio, ha de mostrar un 1*/
write(0,10,20,4, ftell(idfich)),
//Desde donde estoy -a un byte del principio-, me vuelvo a mover un byte para adelante
fseek(idfich,1,1);
/*Vuelvo a mostrar donde estoy. Como desde donde estaba -que era en el byte 1- me he movido otro byte,
ftell mostrard un 2, desde el principio.™/
write(0,10,30,4 ftell(idfich)),

fclose(idfich),
loop

frame;
end

end

FLENGTH (fichero)

Esta funcion devuelve el nimero tamafio total, en bytes, de un fichero abierto con la funcion FOPEN.
Esta funcion no es valida para archivos abiertos con O ZREAD o O ZWRITE

PARAMETROS: INT FICHERO : Identificador de fichero devuelto por FOPEN

VALOR DE RETORNO: INT : Numero de bytes que ocupa el fichero.

Un ejemplo:

program test008;
private
int fp,long;
end
begin
set_mode(250,200,16);
fp = fopen("test008.prg", O READ);
if (fp==0)
write(0,120,80,4,"ERROR al abrir archivo test008.prg");
write(0,120,90,4, "Presione ESC para salir");
while(lkey(_esc)) frame,; end
exit();
end
long = flength(fp);

270

fclose(fp),
write(0,120,80,4,"La length de test008.prg es "+ long),

while(lkey(ESC)) frame, end
delete_text(0);
end

FCLOSKE(fichero)

Esta funcion cierra un fichero abierto previamente por FOPEN. Todos los ficheros abiertos deben cerrarse
una vez acabadas las operaciones de lectura o escritura deseadas, ya que existe un limite al numero de
ficheros abiertos simultaneamente, en funcion del sistema operativo.

PARAMETROS : INT FICHERO : Identificador de fichero devuelto por FOPEN

Vamos a ver unos ejemplos de uso de las funciones que llevamos hasta ahora. Para crear un
archivo, previamente inexistente, y escribir en él el contenido de cierta estructura (por ejemplo), hariamos
lo siguiente:

program fafafa;
private
inti;
int idfich;
struct mistruct[2]
int a;
string b,
end =1,"hola",2,"que tal"”,3, "muy bien";
end
begin
idfich=fopen("pepito.txt",0_write);
fwrite(idfich,mistruct);
fclose(idfich);
end

En este ejemplo hemos utilizado una tabla de estructuras para reducir el codigo del ejemplo y
remarcar asi lo importante sin perdernos en otros detalles, pero lo normal trabajando con archivos es
utilizar estructuras simples.

Poniendo O READWRITE como valor del segundo parametro de FOPEN también hubiera
funcionado, pero si el archivo existiera previamente —con O READWRITE ha de existir- y contuviera ya
algunos datos, los del principio del fichero se sobreescribirian con los nuevos datos, pero si éstos no fueran
suficientes para sobreescribir los datos antiguos enteramente, en el fichero podrian quedar restos de los
datos antiguos.

Veras que cuando ejecutes este programa aparentemente no habra pasado nada. Pero fijate que
en la misma carpeta donde esta el DCB aparecera el archivo “pepito.txt” con los datos en binario que
almacenaba la estructura.

Otro ejemplo util seria el de anadir contenido nuevo a este archivo existente sin sobreescribir
el contenido que ya habia. Para eso debemos abrir el archivo en modo O READWRITE y lo primero,
situarnos justo al final para poder empezar a escribir desde alli. O sea,

271

program fafafa;

private
inti;
int idfich;
struct mistruct[2]
inta;
string b,
end = 1,"ah, si?",2,"pues yo",3, "también";
end
begin
idfich=fopen("pepito.txt",0_readwrite);
fseek(idfich,0,2);
Sfwrite(idfich,mistruct);
fclose(idfich),
end

Fijate que lo inico que hemos cambiado respecto el ejemplo anterior es el modo de apertura
del archivo (con O_WRITE no podremos afiadir contenido), y utilizar antes de realizar ninguna accion de
escritura, la orden fseek. En este caso, fSeek colocara el puntero en el final (3r parametro) del archivo
“pepito.txt” (1r parametro), y a partir de ahi se movera 0 bytes (2° pardmetro) —o sea, que se quedara en el
final-.

Ahora podriamos hacer un programa que leyera el contenido de este archivo que acabamos de
crear y que lo mostrara por pantalla. Pero nos surge un problema. ;Cudntas estructuras contiene
“pepito.txt”? Depende de cuantas veces se hayan escrito datos en él. En el archivo puede haberse escrito un
numero indeterminado de estructuras. Si ejecutamos una vez el primer ejemplo, y una vez el segundo
ejemplo, tendremos en “pepito.txt” seis estructuras simples. Pero nada impide volver a ejecutar el segundo
ejemplo otra vez, con lo que tendriamos 9 estructuras para leer.;Como sabremos que tenemos que leer 9
estructuras, ni mas ni menos, de ese archivo? Un manera seria asi,

program fafafa;
private
inti=10;
int idfich;
struct mistruct
inta;
string b;
end
end
begin

set_mode(320,240,16);

idfich=fopen("pepito.txt",0_read);

//Leo las estructuras que contiene el fichero una a una hasta llegar al final del mismo

loop
fread(idfich,mistruct);
if (feof(idfich)!=false) break, end
write(0,50,i,4, mistruct.a),
write(0,100,i,4,mistruct.b);
i=i+10;
frame;

end

fclose(idfich),

272

loop
frame;
end
end

Fijate que aqui ya usamos estructuras simples, que es lo habitual. Lo tinico que hacemos es ir
repitiendo la lectura del archivo estructura a estructura —y poniendo sus valores por pantalla- hasta que ya
no queden mas por leer. En cada lectura se sobreescribe el contenido de la variable “mistruct”, asi que ésta
contendra en cada momento los valores de la estructura acabada de leer del fichero. ;Y como sabemos que
ya no quedan mas estructuras por leer? Cuando llegamos al final del fichero, y esto ocurre cuando la
funcion feof devuelve 1 (true).

Aunque a lo mejor se te habia ocurrido en vez de realizar el bucle LOOP/END, hacer lo
mismo pero con un bucle WHILE/END asi:

while(feof(idfich)==false)
fread(idfich,mistruct);
write(0,50,i,4, mistruct.a),
write(0,100,i,4,mistruct.b),
i=i+10;
frame;

end

Pero este codigo tiene un pequeiio defecto: muestra los datos bien pero también muestra un
ultimo caracter extrafio que sobra. ;Por qué muestra “de mas™? Por que fijate lo que hemos cambiado. La
condicion del “traspaso” del fin de fichero se comprueba ANTES de leer la siguiente estructura, de tal
manera que cuando el programa lee la Ultima estructura, en la siguiente comprobacion feof contintia
valiendo falso porque aunque se haya llegado al final, no se ha “traspasado” todavia:se esta en el umbral.
Por eso, en esa comprobacion, al continuar feof valiendo falso, se ejecuta otra vez el interior del while (el
FREAD). Y como en ese momento ya no hay nada que leer porque ya si que se ha “traspasado” por
completo el fin de fichero, el FREAD fracasa totalmente y devuelve resultados totalmente erraticos. Por
eso, te doy un consejo: comprueba si se ha “traspasado” el fin de fichero justo DESPUES de leer con
FREAD: de esta manera, si has te has pasado del final, lo sabras de inmediato y el programa podra
reaccionar a tiempo.

Hasta ahora, los ejemplos vistos s6lo son capaces de leer o escribir una Unica estructura en un
archivo. Pero si queremos almacenar mas de una estructura, ;tendremos que crear un archivo diferente para
cada una de ellas? No. El siguiente ejemplo (original de SplinterGU) muestra como, con un poquito de
mafia, es posible almacenar en un unico archivo el numero de estructuras diferentes que se necesite (en el
ejemplo, dos), utilizando para ello gran parte de las funciones explicadas hasta ahora, como fwrite, fread,
ftell o fseek.

La idea del programa es basicamente, a partir de tener un par de estructuras rellenas de valores,
guardar éstos en un archivo, seguidamente borrarlos de las estructuras en memoria (y ver que eso es asi) y
finalmente recuperarlos del archivo donde se guardaron al principio.Los comentarios del codigo son muy
completos, 1éelos:

program test007;
type structl
string strng;
int intgr;
end
type struct2

273

intvarl;

float var2;
end
private
int fp;
inti;

structl st1[6] ="s10",10,"s5"5,"s210",210,"s3",3,"s33",33,"s12",12,"s3",3;
struct2 st2[6] = 10,10.10,5,5.5,210,210.210,3,3.3,33,33.33,12,12.12,3,3.3;

/*Estructura que nos servird para almacenar, para cada estructura a guardar en el archivo, a qué
distancia en bytes se encuentra del comienzo de éste. La idea es que cada estructura se almacenara
completa una seguida de la otra, de tal manera que luego al leer el archivo, se necesitara saber en qué
posicion dentro de él comienza la estructura que se desea recuperar. Asi pues, header.oStructl nos
indicara la posicion de comienzo de la primera estructura y header.oStruct? lo mismo con la segunda. Si
desearamos escribir mas estructuras dentro del archivo, deberiamos de incluir un campo mds por cada
una de ellas dentro de esta estructura header®/

struct header
int oStructl = 0;
int oStruct2 = 0;
end
end

begin

//Abro el fichero para escribir en él el contenido de dos estructuras
fp = fopen("test007.txt", O_WRITE),
if (!fp) //Si hay algun error...

write(0,10,180,0,"ERROR al crear archivo test007.txt");

write(0,30,190,0, "presione ESC para salir");

while(lkey(_esc)) frame; end //Hasta que no se pulse ESC no pasa nada

while(key(_esc)) frame; end //Mientras se esta pulsando, tampoco

exit();
end
/*La primera estructura que se va a escribir al comienzo del fichero siempre serd la estructura header, y
luego, se empezaran a escribir las demdas. Pero los valores de los campos de la estructura header
son la distancia en bytes de las demas estructuras respecto el origen del fichero, y esta informacion no se
sabe hasta que se hayan escrito dichas estructuras en el fichero. Por lo que la linea siguiente lo
que hace es saltar "el cabezal” dentro del fichero un numero de bytes igual al tamarnio de header para
empezar a escribir mas adelante, y asi dejar reservado ese espacio del principio para que finalmente se
pueda llenar de contenido™/
fseek(fp, sizeof(header), SEEK _SET),
/*La primera estructura se escribird justo después de que acaben los datos de la estructura header, por lo
que al haber saltado con la linea anterior hasta este punto precisamente, ya sabemos en qué posicion
comenzaran los datos de strl: simplemente tenemos que usar ftell para que nos devuelva la posicion
del cabezal, y este valor lo almacenaremos en el campo correspondiente dentro de header*/
header.oStructl = ftell(fp),
//Escribimos de un tiron el contenido de strl
Sfwrite(fp, stl);
/*Una vez acabados de escribir todos los datos de strl, hemos llegado al punto del archivo donde se tienen
que empezar a escribir los datos de str2. Pero antes, almacenamos en header la posicion inicial de str2*/
header.oStruct2 = ftell(fp);
//Escribimos de un tiron el contenido de str2
fwrite(fp, st2);
//Situamos el cabezal al principio del fichero otra vez
fseek(fp, 0, SEEK SET);

274

/*4hora que ya sabemos las posiciones iniciales de strl y str2 (header.oStructl y header.oStruct2),
podemos rellenar de valor el espacio inicial del fichero que dejamos vacio al principio. Y ;para qué
queremos almacenar aqui las posiciones iniciales de las diferentes estructuras en el fichero? Para que en
la lectura posterior del archivo, a partir de esta informacion del principio, se pueda distinguir cada dato a
qué estructura pertenece.*/

fwrite(fp, header),

fclose(fp),

//Muestro por pantalla los datos almacenados en un unico archivo de dos estructuras
write(0,0,0,0,"Datos almacenados”);
/*Para saber el numero de registros que existen en un determinado momento del TDU stl (y asi realizar
las iteraciones pertinentes) el truco esta en dividir el tamario total en bytes del TDU entero -sizeof(stl)-
entre el tamario en bytes de un registro, tipicamente el primero -sizeof(stl[0])-. Esto dara el numero de
registros que tiene esa estructura en ese momento™/
for(i=0;i<sizeof(stl)/sizeof(st1[0]),;i++)
write(0,0,10+i*10,0,st1[i] .strng+", "+stl[i].intgr);
end
for(i=0;i<sizeof(st2)/sizeof(st2[0]),;i++)
write(0,160,10+i*10,0,st2[i] .varl+", "+st2[i] var2),
end

//Borro los datos de las dos estructuras en memoria
write(0,10,190,0, "presione ESC para limpiar los datos");
while(lkey(_esc)) frame,; end
while(key(_esc)) frame; end
for(i=0;i<sizeof(stl)/sizeof(st1[0]),;i++)
stlfi].strng ="";
stlfi].intgr = 0;
end
Sfor(i=0;i<sizeof(st2)/sizeof(st2[0]);i++)
se2[i].varl = 0;
se2[i] . var2 = 0.0;
end

//Muestro por pantalla que efectivamente estos datos han sido borrados (de la memoria)
delete_text(0);
write(0,0,0,0,"Datos borrados");
Jor(i=0;i<sizeof(stl)/sizeof(st1[0]);i++)
write(0,0,10+i*10,0,st1[i] .strng+", "+stl[i].intgr);
end
Sfor(i=0;i<sizeof(st2)/sizeof(st2[0]),i++)
write(0,160,10+i*10,0,st2[i].varl+", "+st2[i] var2);
end

/*Recupero esos datos perdidos de las dos estructuras a partir de la copia guardada en fichero al
principio del programa*/
write(0,10,190,0, "presione ESC para recuperar los datos"),
while(lkey(_esc)) frame,; end
while(key(_esc)) frame; end
fp = fopen("test007.txt", O _READ);
if (!fp)
write(0,10,180,0,"ERROR al abrir archivo test007.txt");
write(0,30,190,0, "presione ESC para salir"),
while(lkey(_esc)) frame,; end

275

while(key(_esc)) frame; end
exit();
end
/*Lo primero que hago, una vez abierto el fichero, es mirar en qué posiciones dentro de él comienzan cada
una de las dos estructuras guardadas, para poderlas leer sin problemas. Strl comenzara donde marque
header.oStructl y Str2 comenzara donde marque header.oStruct2*/
fread(fp, header),
//Me sitiio al comienzo de la primera estructura y la leo toda completa
[fseek(fp, header.oStructl, SEEK SET);
fread(fp, stl);
//Me situo al comienzo de la segunda estructura y la leo toda completa
fseek(fp, header.oStruct2, SEEK _SET);
fread(fp, st2);
fclose(fp);

/*Muestro otra vez por pantalla los datos contenidos en las dos estructuras, recuperados a partir del
fichero. Se puede comprobar que son los mismos valores que los mostrados al principio del programa.*/
delete_text(0);
write(0,0,0,0,"Datos recuperados”);
Sfor(i=0;i<sizeof(stl)/sizeof(st1[0]);i++)
write(0,0,10+i*10,0,st1[i] .strng+", "+stl[i].intgr);
end
Jfor(i=0;i<sizeof(st2)/sizeof(st2[0]);i++)
write(0,160,10+i*10,0,st2[i] varl+", "+st2[i] var2);
end

write(0,0,190,0,"Presione ESC para salir");
while(lkey(_ESC)) frame; end

while(key(ESC)) frame; end

delete text(0);

end

Dos funciones también muy importantes son FPUTS y FGETS, para trabajar con archivos de texto:

FPUTS(fichero,”texto”)

Esta funcion escribe una cadena en un fichero de texto abierto en modo de escritura. Sirve para crear
ficheros de texto, al contrario que FWRITE, que puede usarse para crear ficheros binarios.

Cada cadena se guarda en el fichero en una linea aparte. Si la cadena contiene un salto de linea o mas, se
guardara el caracter \ al principio de cada uno (lo cual permite volver a leerla empleando en una sola

llamada).

PARAMETROS:

INT FICHERO : Identificador de un fichero abierto con FOPEN
STRING TEXTO : Texto a escribir

FGETS(fichero)

Esta funcion lee la siguiente linea de un fichero abierto en modo de lectura, devolviéndola en una cadena,
sin incluir el caracter o caracteres de final de linea.

276

Es decir, cada vez que se llame a esta funcion, leera (inicamente) la siguiente linea de texto del fichero, por
lo que escrita dentro de un bucle podria utilizarse para leer un archivo desde el el principio hasta el final.
La manera de detectar que se ha llegado al final del archivo es la misma que antes: con FEOF.

FGETS sirve para procesar ficheros de texto, al contrario que FREAD, que puede usarse para leer ficheros
binarios.

Una linea que acaba con el caracter \ en el fichero original serd juntada con la siguiente, sin incluir dicho
caracter, pero incluyendo un caracter de salto de linea en su posicion. Esto permite almacenar y recuperar

cadenas arbitrarias en disco, incluso aunque contengan saltos de linea.

PARAMETROS: INT FICHERO : Identificador de un fichero abierto con FOPEN

VALOR DE RETORNO: STRING : Texto de la siguiente linea

Miremos un par de ejemplos de estas dos tltimas funciones. Si quisiéramos crear un archivo
de texto y no binario (es decir, que no contenga datos numéricos ni tablas ni estructuras), podriamos hacer
algo muy parecido a esto:

program fafafa;
private

int idfich;
end
begin

idfich=fopen("pepito.txt",0_write);
fputs(idfich, "hola, ;qué tal?. Muy bien.”);
fputs(idfich,” jAh,si? Pues yo también”);
fclose(idfich),

end

De igual manera que en ejemplos anteriores, si quisiéramos anadir nuevo texto a un archivo
que ya tuviera, tendriamos que cambiar el modo de aperturaa O READWRITE vy utilizar la orden Fseek.

Para leer un archivo de texto, lo que tendriamos que hacer algo parecido a lo siguiente:

program fafafa;

private
int idfich;
string cadenatotal="";
string cadenaleida;

end
begin
idfich=fopen("pepito.txt",0_read);
loop
if(feof(idfich)!=false) break; end
cadenaleida=fgets(idfich);
cadenatotal=cadenatotal+cadenaleida;
end
fclose(idfich);
write(0,160,50,4,cadenatotal),
loop
frame;
end

277

end

Fijate como vamos concatenando en cada iteracion la cadena recientemente leida a la cadena
ya creada, actualizando de esta manera la propia cadena “total”. Este es el método tipico para ir afiadiendo
porciones de texto a una cadena que por lo tanto va aumentando de longitud.

Otro ejemplo de fputs y fgets similar al anterior es el siguiente:

program test009;
global
string linea[] = "ésta es la primer linea...",
"ésta es la segunda...”,
"ésta parece ser la tercera..."”,
"creo que ya vamos por la cuarta...”,
"esta es la ultima";
int i,fp;
end
begin
fp = fopen("test009.txt", O_WRITE),
/*Recordemos que si sizeof(linea) devuelve el tamario total de la tabla y sizeof(linea[0]) devuelve el
tamario de un elemento de esa tabla -en este caso el primero, pero puede ser cualquiera ya que todos son
iguales-, la division sizeof(linea)/sizeof(linea[0]) nos devolvera el numero de elementos llenos que tiene la
tabla en el momento actual. ™/
/*A4si pues, este bucle recorre cada elemento de la tabla "linea", que resulta ser una cadena, la cual ird
siendo guardada en un archivo de texto™*/
for(i=0;i<sizeof(linea)/sizeof(linea[0]);i++)
fputs(fp,lineafi]);
end
fclose(fp);
write(0,0,0,0, "Recuperando usando fgets");
fp = fopen("test009.txt", O_READ);
i=0;
while(!feof(fp))
//Recupero en cada iteracion una nueva linea
write(0,0,20+i*10,0,fgets(fp)),
i+t
end
felose(fp),
while(lkey(_esc)) frame; end
end

Otras funciones interesantes referentes al manejo de ficheros y directorios son las siguientes:

FILE_EXISTS(“fichero”)

Esta funcion comprueba si un fichero existe o no en la ruta especificada.

Devuelve 1 si el fichero existe y 0 si no existe. El fichero se busca en la ruta actual si no se escribe ningin
valor al pardmetro o en la ruta que se haya especificado.

PARAMETROS: STRING FILE : Ruta completa del fichero

278

FILE (“fichero”)

Esta funcion abre el fichero de la ruta especificada, devuelve su contenido en una unica cadena y cierra el
fichero. Por lo tanto, para su correcto funcionamiento es aconsejable que el fichero sea de texto.

PARAMETROS: STRING FILE: Ruta completa del fichero (ha de existir previamente)

VALOR DEVUELTO: STRING : Cadena cuyo valor sera todo el contenido del fichero.

Un ejemplo:

program fafafa;
private
inti;
string s,
end
begin
set_mode(320,240,16);
if(file_exists(“‘pepito.txt”)) s=file("pepito.txt"); end
write_var(0,259,20,4,s);
loop
frame;
end
end

No obstante, puedes encontrarte con que si el contenido del fichero incluye saltos de linea y retornos de
carro -es decir, si has pulsado ENTER mientras lo escribias-, lo que se visualizara por pantalla, en vez de
éstos, seran unos caracteres extrafos (en realidad, los caracteres correspondientes al salto de linea y retorno
de carro en la tabla ASCII -cuyos codigo numéricos son el 13 y el 10, respectivamente-). Si quieres que
por pantalla se vean los saltos de linea/retorno de carro igual que como estan en el archivo, hay que trabajar
un poco mas. El siguiente codigo soluciona este problema, pero hace uso de funciones no vistas todavia de
tratamiento de cadenas (find, chr, substr), que seran vistas -y explicadas en profundidad- en el apartado
correspondiente, mas adelante en este mismo capitulo:

program test006;

begin
set_mode(320,240,16);
readFileWithCRLF("juego.txt");
while(lkey(_esc)) frame, end

end

function readFileWithCRLF (string ruta)
private

string sVar="";

int i.fin,fila,aux,long;

end

begin
sVar = file(ruta),
fila = 0;

long = len(sVar),;

//Voy cardcter a caracter

for (i=0;i<long;i++)
//Busco el caracter de salto de linea
fin = find(sVar,chr(13),i);
//8i no lo encuentro...

279

if (fin!=-1)
write(0,0,fila*10,0,substr(sVar,i,fin-i));

/..y Si st

else
write(0,0,fila*10,0,substr(sVar,i));
break;

end

while(fin<long)
aux=asc(substr(sVar.fin,1));
if (aux==10 || aux==13) fin++; if (aux==13) fila++, end else break, end
end
i=fin;
end
end

En estos momentos es posible que te sea dificil comprender el interior de la funcion readFileWithCRLF
(“CR” quiere decir “Carriage Return” -es decir, retorno de carro, caracter ASCII 10- y “LF” quiere decir
“Line Feed” -es decir, salto de linea, caracter ASCII 13-. Lo mas interesante, de todas maneras, es poder
aprovechar el codigo tal cual de la funcion en cualquier otro proyecto que tengas entre manos, y aprovechar
asi la funcionalidad que aporta.

CD()

Esta funcion devuelve el nombre del directorio actual (el directorio donde reside el DCB). Este sera el
directorio donde actuaran por defecto todas las operaciones con ficheros como pueden ser FOPEN o SAVE
(es decir, en el caso que no se especifiquen las rutas completas de los archivos como parametro de dichas
funciones y so6lo se especifique el nombre).

VALOR DE RETORNO: STRING: Nombre del directorio actual

CHDIR(“directorio”)

Esta funcion cambia el directorio actual por defecto al que se especifica con el pardmetro “directorio”.
Devuelve 0 si ha tenido éxito y -1 en caso de no poderse efectuar el cambio al nuevo directorio, por
ejemplo, si el directorio indicado no existe.

PARAMETROS: STRING DIRECTORIO : Nuevo directorio

MKDIR(*“directorio”)

Esta funcion crea un nuevo directorio, indicado por el parametro “directorio”, en el directorio actual.

Devuelve 0 si ha tenido éxito y -1 en caso de no poderse efectuar la creacion del nuevo directorio, por
ejemplo si el directorio ya existiese.

También se puede especificar la ruta completa en el parametro y el directorio sera creado utilizando la ruta
completa en lugar de crearse a partir del directorio actual. Las rutas pueden indicarse usando el separador
de directorios / o \ indiferentemente.

Un directorio no podra crearse si existe un fichero, recurso o directorio con el mismo nombre o si la ruta
especificada es incorrecta.

280

En los sistemas que asi lo permitan, no se podran crear directorios en la ruta indicada si no se tienen los
permisos adecuados.

PARAMETROS: STRING DIRECTORIO : Nuevo directorio

RMDIR(*“directorio”)

Esta funcion borra el directorio indicado por el parametro “directorio” en el directorio actual.

Devuelve 0 si ha tenido éxito y -1 en caso de no poderse efectuar la creacion del nuevo directorio, por
ejemplo si el directorio ya existiese.

También se puede especificar la ruta completa en el parametro y el directorio sera creado utilizando la ruta
completa en lugar de crearse a partir del directorio actual. Las rutas pueden indicarse usando el separador

de directorios / o \ indiferentemente.

Un directorio no podra ser borrado si es el directorio actual, si no esta vacio o si es el directorio raiz del
sistema.

En plataformas que asi lo permitan, un directorio no se podra borrar si no se tienen los permisos adecuados
para ello.

PARAMETROS: STRING DIRECTORIO : Directorio a borrar

RM("fichero")

Esta funcion borra el fichero indicado por el parametro “fichero”.

Devuelve 0 si ha tenido €xito y -1 en caso de no poderse efectuar el borrado.

También se puede especificar la ruta completa en el parametro y el fichero sera borrado utilizando la ruta
completa en lugar de borrarse del directorio actual. Las rutas pueden indicarse usando el separador de

directorios / o \ indiferentemente.

En plataformas que asi lo permitan, un fichero no se podra borrar si no se tienen los permisos adecuados
para ello.

PARAMETROS: STRING FICHERO : Nombre (o ruta) del fichero a borrar

Un ejemplo de estas ultimas funciones podria ser:

program hola;

private
string a;

end

begin
mkdir("./midir");
chdir("./midir");
a=cd();

281

write(0,100,100,4,a);
chdir("../");
rmdir("./midir");
loop
frame;
end
end

GLOB(“patron”)

Busca cualquier fichero en el directorio actual cuyo nombre coincida con el patron indicado.

El patron es un nombre de fichero en el cual el comodin "?" indica "cualquier caracter” y el comodin "*"
indica "uno o mas caracteres cualesquiera".

El uso mas habitual es "*.*" para buscar todos los ficheros presentes. También es posible indicar un
directorio relativo (por ejemplo,"FPG/*.*") ademas del patron.

Esta funcion devuelve el nombre del primer fichero que encuentra y, en sucesivas llamadas con el mismo
patron, va devolviendo el resto de ficheros que coincidan con el patron. Cuando ya no queden mas ficheros,
o tras la primera llamada si no se encontrd ninguno, devuelve una cadena en blanco. El nombre de fichero
que va devolviendo esta funcion no contiene el directorio.

Esta funcion ademas rellena, cada vez que es llamada, la estructura global FILEINFO, que podemos
utilizar para obtener la siguiente informacion:

FILEINFO.PATH: Directorio donde se encuentra el fichero

FILEINFO.NAME: Nombre completo del fichero

FILEINFO.DIRECTORY: Contiene TRUE si el fichero es un directorio, 0 FALSE si es un fichero
corriente.

FILEINFO.HIDDEN: Contiene TRUE si el fichero esta oculto.

FILEINFO.READONLY: Contiene TRUE si el fichero no tiene activados permisos de escritura.
FILEINFO.SIZE: Tamaiio en bytes del fichero

FILEINFO.CREATED: Una cadena de texto que contiene la fecha y hora de creacion del fichero.
FILEINFO.MODIFIED: Una cadena de texto que contiene la fecha y hora del tltimo acceso al fichero.

PARAMETROS: STRING PATRON : Patrén de busqueda

VALOR DE RETORNQO: STRING : Nombre de siguiente fichero o "" si no quedan mas.

Como ejemplo de esta lltima funcion tienes el siguiente codigo:
program Test GLOB;

Private
String archivo, //cadena donde se guarda el nombre del archivo
Int cont=0;
Begin
chdir("../"); //seleccionamos una carpeta, que es la superior a la actual
archivo=glob("*.?2?"); /*buscamos un archivo cuyo nombre respete el patron indicado™/
While (archivo!="") //comprobamos que ha encontrado algun archivo
Write(0,10,cont*10,0, archivo); /*escribimos el nombre del archivo...*/
Write(0,250,cont*10,0,FILEINFO.CREATED),;/*y su fecha y hora de creacion™®/

282

cont=cont+1; //avanzamos una linea
archivo=glob("*.???"); //buscamos otro archivo

End
//y esperamos que se pulse escape para salir
Loop
If (Key(_ESC)) break; end
Frame;
End
End
Acuérdate de que tanto en Windows como en Linux, la carpeta “..” significa la carpeta inmediatamente

[T

superior a la actual, y la carpeta “.” significa la carpeta actual.

Y, evidentemente, para obtener una informaciéon mas completa y técnica sobre estas funciones y
todas las que no se han citado aqui, no olvides dirigirte a la ayuda de referencia oficial de Fénix.

Coémo grabar partidas v reproducirlas posteriormente utilizando almacenamiento de datos en archivo
(extraido del tutorial de Pescado, http://www.bertesh.tk)

Antes de empezar con este tutorial, donde se pondra en practica el uso de archivos para
almacenamiento de datos de un programa (en este caso, las diferentes posiciones sincronizadas con el fps
que tienen dos procesos cuando se mueven) y su posterior recuperacion, he de comentar que para conseguir
dicho objetivo no se utilizardn ninguna de las funciones de Entrada/Salida comentadas hasta ahora, tales
como fopen,fwrite o fread, sino dos nuevas funciones equivalentes: Save y Load.

SAVE(“fichero”, variable)

Esta funcion guarda datos en formato binario, contenidos previamente en una variable, en un fichero,
cuya ruta/nombre viene dado por su primer parametro.

Esta funcion no necesita tener abierto previamente el fichero: es ella quien lo abre transparentemente para
escribir en €l.

Esta funcioén solo puede guardar una variable a la vez. Sin embargo, esa variable puede ser una tabla o
estructura: en ese caso se guardaran secuencialmente (es decir, por orden uno detras de otro) todos los

elementos de la tabla o estructura.No es valido,en cambio, almacenar datos de tipo POINTER.

PARAMETROS:

STRING FICHERO : Ruta del fichero a escribir
VAR VARIABLE : Nombre de la variable a guardar

Un ejemplo de su posible uso:

program Test SAVE;
global
struct dat[9]
int a,b,c;
end

283

end
begin
write(0,160,100,4,"1) Salvar los valores de la estructura en archivo");
repeat
iftkey(_1))
from x=0to 9
dat[x].a=x+1;
dat[x].b=x+1;
dat[x].c=x+1;
end
save("save.dat",dat);
end
frame;
until(key(_esc))
end

LOAD(“fichero”,variable)

Esta funcidn lee datos binarios de un fichero cuya ruta/nombre viene dado por su primer parametro, y los
asigna a una variable para poder asi trabajar en el cédigo fuente con la informacion obtenida.

Si por ejemplo la variable es de tipo int (es decir, de 4 bytes), se leeran 4 bytes del archivo. Si es de tipo
word se leeran 2 bytes y si es de tipo byte se leera uno.

Esta funcion no necesita tener abierto previamente el fichero: es ella quien lo abre transparentemente para
leer de él.

Esta funcion solo puede leer una variable a la vez. Sin embargo, esa variable puede ser una tabla o
estructura: en ese caso se leerdn cada vez todos los elementos de la tabla o estructura secuencialmente (es

decir, por orden uno detras de otro).

PARAMETROS:

STRING FICHERO : Ruta del fichero a escribir
VAR VARIABLE : Nombre de la variable a leer

Un ejemplo de su posible uso:

program Test LOAD;
global
struct dat[9]
int a,b,c;
end
end
begin
from x=0to 9
write_var(0,60,x*10+85,4,dat[x].a);
write_var(0,160,x*10+85,4,dat[x].b),
write_var(0,260,x*10+85,4,dat[x].c);
end
write(0,1,40,3,"1)Leer fichero creado antes en el ejemplo de SAVE");
write(0,10,65,3,"Valores del fichero:");
repeat

if(key(_1))

284

load("save.dat",dat);
end
frame;
until(key(_esc))
end

Pronto se comprobara que su uso es muy similar a las ya conocidas, y es eleccion personal
del programador decantarse por una de las dos “familias”. Save viene a equivaler al trio de funciones fopen
-en modo escritura-/fwrite/fclose, y Load viene a equivaler al trio fopen -en modo lectura-/fread/fclose.

Vamos a empezar con el codigo inicial del juego, el cual consistira en 2 imagenes que se
mueven en la pantalla gracias al control del jugador 1 y al jugador 2. Por lo tanto, lo primero sera crear un
archivo FPG —llamado “fichero.fpg”- con dos imagenes —dos bolas de distintos color bastara- que
representaran cada uno de los jugadores; una tendra el codigo 001 y otra el 002.Empecemos escribiendo
esto:

Program mi_juego,

global
int mifichero_fpg;
end
Begin
set_mode(800,600,16); mifichero_fpg=load fpg("fichero.fpg");
write(0,400,290,4,"1=JUGAR");
write(0,400,300,4,"2=VER DEMO");
write(0,400,310,4,"3=SALIR");
loop
iftkey(_1))
delete_text(0),
empieza_partida();
break;
end
iftkey(_2))
delete_text(0);
ver_una_partida();
break;
end
iftkey(_3))
break;
exit("");
end
frame;
end
end

Process empieza_partida()
BEGIN
Jugadorl();
Jugador2();
loop
write(0,400,30,4,"PULSA ESC PARA SALIR");

if(key(_esc))

285

let_me_alone();

breakK;
exit("");
end
frame;
delete Text(0);
end
end
Process jugadorl()
BEGIN
file=mifichero_fpg;
graph=1;
loop
if(key(_up)) y=y-2; end
if(key(_down)) y=y+2; end
if(key(_left)) x=x-2; end
if(key(right)) x=x+2; end
frame;
end
end
Process jugador2()
BEGIN
file=mifichero_fpg;
graph=2;
loop
if(key(_w)) y=y-2; end
iftkey(_s)) y=y+2; end
iftkey(_a)) x=x-2; end
if(key(_d)) x=x+2; end
frame;
end
end

//Mas tarde nos encargaremos de este proceso
Process ver_una_partida()
BEGIN
loop
frame;
end
end

Ahora vamos a grabar una partida. Necesitaremos una estructura con unos campos que
contengan las variables X e Y de los jugadores (para ir guardandolas cada frame). Asi que en la seccion de
declaraciones de variables globales escribe:

struct rec
int pos_juglIx[4000];
int pos_jugly[4000];
int pos_jug2x[4000];
int pos_jug2y[4000];

286

end

Y aqui nos encontramos con la desventaja de este metodo. ;Como sabremos si tendremos que
usar 4000 o mas?. Pues eso es problema tuyo. Yo aconsejaria estimar una cantidad de acuerdo a un tiempo
limite de duracion que tenga el juego o, mejor, usar arrays dinamicos. No obstante, los arrays dinamicos es
un concepto avanzado de programacion que en este curso ni tocaremos.

Tambien vamos a necesitar una variable auxiliar que vaya recorriendo cada posicion en cada
frame (enseguida lo entenderas mejor), asi que crearemos la siguiente variable, en la seccion global:

Int var_aux=0;

Esta variable ira incrementando su valor de a 1 cada frame. Para eso, justo antes de la orden frame del
proceso “empieza_partida()” escribe:

Var _aux=var aux+I;

Y justo antes de la orden frame del proceso “jugadorl()”, escribe:

rec.pos_juglx[var aux]=x;
rec.pos_jugly[var aux]=y;,

(Qué estamos haciendo con esto? Guardar en cada frame, el valor actual de X e Y dentro de la
estructura rec, rellenando (en cada frame también) de forma secuencial cada uno de sus hasta 4000
elementos respectivos,de manera que en cada elemento se almacenen las posiciones consecutivas por las
que ha pasado el jugador 1.

Es decir, suponiendo que el jugador 1 se encuentra en la posicion x=300 y pulsa la tecla para
ir a la derecha, el valor de la variable rec.pos_juglx[var aux], cuando var aux sea igual a 0, esta sera igual
arec.pos_juglx[var aux]=300; . Cuando var aux=1 (en el siguiente frame), tendremos
rec.pos_juglx[var aux]|=302, cuando var aux valga 2 (en el siguiente frame), tendremos
rec.pos_juglx[var aux]=304; y asi, sucesivamente, iremos guardando las coordenadas de jugador 1.

Un detalle importante es ponerle un limite a la variable var aux, para que nunca sea mayor
que 4000, ya que en este caso, si el juego sigue y var_aux=4001 o superior podriamos acceder a una parte
de la memoria que esta fuera de la estructura que hemos creado y por tanto estariamos armando un gran lio.
asi que debajo de la linea var_aux=var aux+1; del proceso “empieza partida()”,agregaremos lo siguiente:

if(var_aux>=4000) var_aux=4000; end

Lo mismo que hemos hecho en el proceso “jugadorl()”, deberemos escribirlo en el proceso

287

“jugador2()”, utilizando, eso si, rec.jug2x y rec.jug2y.Es decir, justo antes de la orden frame del proceso
“jugador2()”, escribe:

rec.pos_jug2x[var_aux]=x,
rec.pos_jugly[var_aux]=y;,

Ahora, lo tnico que nos queda es hacer que todo el contenido de la estructura rec pase a
grabarse al disco duro en forma de fichero, y tenerlo asi disponible posteriormente para su visualizacion.
Haremos que se grabe pulsando la tecla ESC, y utilizaremos la funcion save (ya sabemos que también
podriamos haber utilizado —es mas flexible- el conjunto de ordenes fopen en modo
“o_write”/fwrite/fclose).

Asi pues, cuando pulsemos la tecla ESC, con la funcion save(); guardaremos en el disco la
estructura rec que contiene la posiciones de los jugadores.Para ello, en el proceso “empieza partida()”,
dentro del bloque if(key(esc))/end escribe lo siguiente (0jo, ha de ser la primera linea de todas, antes del
let_me_alone()):

Save(“partida.dem”’ rec);

Y ya so6lo nos queda poder visualizar la partida previamente grabada. Para ello modificaremos
el proceso “ver una partida()”, que ahora no hace nada, y crearemos 2 procesos mas que simularan al
jugador 1 y 2, y haran lo mismo que hicieron éstos en la partida que se grabo. Para ello, sus valores X ¢ Y
tendran el valor de las variables rec.pos _juglx[var aux], rec pos jugly[var aux],etc.

Llamaremos a estos procesos “rec_jugadorl()” y “rec jugador2()”, y su codigo (junto con el
codigo modificado de “ver una partida()”) es éste:

Process ver_una_partida()

BEGIN
load("PARTIDA.dem",rec), //cargamos el archivo
rec_jugadorl();
rec_jugador2();
loop
write(0,400,30,4,"PULSA ESC PARA SALIR");
iftkey(_esc))
let_ me_alone();
breakK;
exit("");
end
var_aux=var_aux+lI;
if(var_aux>=4000) var_aux=4000; end
frame;
delete_text(0),
end
end
Process rec_jugadorl ()
BEGIN

288

file=mifichero_fpg;
graph=1;
loop
//X TENDRA EL VALOR DE LA VARIABLE POS JUGIX EN LA POSICION VAR AUX
x=rec.pos_juglx[var aux];
//Y TENDRA EL VALOR DE LA VARIABLE POS JUG1Y EN LA POSICION VAR AUX
y=rec.pos_jugly[var_aux];

frame;
end
end
Process rec_jugador2()
BEGIN
file=mifichero_fpg;
graph=2;
loop
x=rec.pos_jug2x[var_aux];
y=rec.pos_jug2y[var_aux];
frame;
end
end

Trabajar con cadenas:

Fénix incorpora bastantes funciones que pueden ayudar al programador en el tratamiento de
cadenas de texto.Veamos unas cuantas:

*Nota: Las funciones CHR, ASC, y SUBSTR también son funciones “de cadena”, pero estan explicadas posteriormente
en este capitulo, en el apartado de introduccion de caracteres por teclado.

LEN(“cadena”)

Devuelve el numero de caracteres que tiene la cadena pasada como parametro (es decir, su longitud).

PARAMETROS : STRING CADENA : Cadena original

VALOR DE RETORNO : INT: Numero de caracteres de la cadena dada

LCASE(“cadena”)

Devuelve una cadena idéntica a la original, pero convirtiendo todas las letras mayusculas a mintsculas
(incluyendo letras con acentos o tildes).

PARAMETROS : STRING CADENA : Cadena original

VALOR DE RETORNO : STRING : Cadena resultante

UCASE(*“cadena”)

289

Devuelve una cadena idéntica a la original, pero convirtiendo todas las letras mintsculas a mayusculas
(incluyendo letras con acentos o tildes).

PARAMETROS : STRING CADENA : Cadena original

VALOR DE RETORNO : STRING : Cadena resultante

STRCASECMP(“cadena”,”’cadena”)

Dadas dos cadenas, realiza una comparacion entre las mismas sin distinguir las maytsculas de las
mintsculas, y devuelve un valor que indica su diferenciacion:

-0 quiere decir que las cadenas son iguales.

-Un valor negativo indica que el primer caracter diferente entre las dos cadenas por orden
alfabético va después en la primera cadena que en la segunda.

-Un valor positivo indica que el primer caracter diferente entre las dos cadenas por orden
alfabético va después en la segunda cadena que en la primera.

PARAMETROS :

STRING CADENA : Cadena
STRING CADENA?2 : Otra cadena

VALOR DE RETORNO : INT : 0 si las cadenas son equivalentes

STRREV(“cadena”)

Esta funcion devuelve una cadena creada tras dar la vuelta a la cadena que recibe como parametro. Es
decir, STRREV("ABCD") devolveria "DCBA".

PARAMETROS : STRING CADENA : Cadena original

VALOR DE RETORNO : STRING : Cadena resultante

LPAD(“cadena”,tamaiio)

Esta funcion devuelve una cadena creada tras afiadir espacios (caracter ASCII 32: " ") al comienzo a la
cadena original, hasta conseguir que alcance una longitud igual a la especificada como segundo parametro.
Si la cadena original tiene un tamafio igual o superior al especificado, esta funcion devuelve la cadena
original sin ningin cambio.

También existe la funcion RPAD, que expande una cadena afiadiendo espacios a la derecha, hasta el
tamafio dado. Funciona igual que LPAD.

PARAMETROS:

STRING CADENA : Cadena original
INT TAMANO : Tamaio deseado

VALOR DE RETORNO : STRING : Cadena resultante

290

TRIM(“cadena”)

Esta funcion devuelve una cadena idéntica a la original, pero eliminando cualquier espacio o serie de
espacios que encuentre al principio o al final de la misma. Por espacio se entiene cualquier caracter de
codigo ASCII 9 (tabulador), 10 (salto de linea), 13 (retorno de carro) 6 32 (espacio).

PARAMETROS: STRING CADENA : Cadena original

VALOR DE RETORNO: STRING : Cadena resultante

Un ejemplo de estas ultimas funciones podria ser:

program hola;

private
string a="hola ";
string b="adios";

end

begin
write(0,50,10,4, TRIM(a)),
write(0,50,20,4,LPAD(a,17));
write(0,50,30,4,RPAD(a,17));
write(0,50,40,4,UCASE(a)),
write(0,50,50,4,STRREV (a)),
write(0,50,60,4,STRCASECMP(a,b)),
write(0,50,70,4,LEN(a));
write(0,50,80,4,ASC("1")),
write(0,50,90,4, CHR(49)),
write(0,50,100,4,SUBSTR(b,2,3)); //Vista mas adelante

loop

frame;
end
end

A continuacion comento las funciones de conversion:

ATOI(“cadena”)

Convierte una cadena en numero entero. Dada una cadena que contenga una serie de digitos, devuelve el
numero entero que representan. Si la cadena contiene caracteres adicionales después de los digitos, estos
seran ignorados. Si la cadena comienza por caracteres que no corresponden a digitos, la funcién no
detectara el nimero y devolvera 0.

PARAMETROS : STRING CADENA : Cadena original

VALOR DE RETORNO: INT : Numero resultante

ITOA(valor)

Convierte un numero entero en cadena. Dado un numero entero, devuelve una cadena con su
representacion, sin separador de miles.

291

PARAMETROS: INT VALOR : Ntumero a convertir

VALOR DE RETORNO : STRING : Cadena resultante

FORMAT((valor,decimales)

Convierte un numero decimal a cadena, con separador de miles y con el nimero de decimales indicado.

Si no se especifica el segundo parametro, la funcién usara un numero adecuado de decimales para
representar el nimero (que pueden ser 0, por lo que se devolvera la cadena sin punto decimal).

PARAMETROS:

FLOAT VALOR : Valor a convertir
INT DECIMALES : (opcional) Numero de decimales

VALOR DE RETORNO: STRING : Cadena resultante

Ademas de estas funciones descritas, también existen las funciones ATOF y FTOA, que trabajan igual que
ATOI y ITOA respectivamente, pero usando numeros en coma flotante (decimales)

Veamos un pequefio ejemplo de estas funciones:

program la;
private
int entera=4;
float decimal=9.82;
string cadena="123Hola";
string cadena2="12.3Hola";
end
begin
set_mode(640,480);
loop
delete text(0),
write(0,250,50,4, "Conversion de un entero en cadena: "+ itoa(entera));
write(0,250,80,4, "Conversion de una cadena a entera: "+atoi(cadena)),
write(0,250,110,4,"Conversion de un numero decimal en cadena: "+ftoa(decimal));
write(0,250,140,4,"Conversion de un numero decimal a cadena con determinados
decimales: "+format(decimal,4));
write(0,250,170,4, "Conversion de una cadena a numero decimal: "+atof(cadenal));
frame;
end
end

Y por ultimo, comento las funciones de busqueda:

FIND(“cadena”,”buscar”,posicion)

Busca la cadena especificada como segundo parametro en el interior de la cadena especificada como

292

primer pardmetro, y devuelve la posicion de la primera coincidencia que encuentre, o -1 para indicar que
no encontré ninguna. Esta posicion es el numero de caracter desde la izquierda de la cadena: 0 para el
primer caracter, 1 para el segundo, y asi sucesivamente. El tercer parametro, opcional, indica el primer
caracter donde dara comienzo la busqueda. La parte de la cadena a la izquierda de éste, sera ignorada. Si no
se especifica el pardmetro, se empezara por el primer caracter (posicion 0).

La btisqueda se hace de izquierda a derecha. Sin embargo, es posible hacer también la busqueda de derecha
a izquierda si se especifica como tercer pardmetro un numero negativo, que indicard ademas la primera
posicion a tener en cuenta (-1 para el ultimo caracter de la cadena, -2 para el penultimo, y asi
sucesivamente).

Es importante destacar que FIND considera caracteres diferentes las mintsculas de las mayusculas

PARAMETROS:

STRING CADENA : Cadena original
STRING BUSCAR : Cadena a buscar
INT POSICION : (opcional) Posicion inicial de la busqueda

VALOR DE RETORNO: INT : Posicion del primer caracter de la primera aparicion de la
cadena buscada, o -1 si no se encontrod

Un ejemplo de su uso seria:

program Test FIND;

global
string Txt=";Hola Mundo, hola!";

begin
write(0,10,10,3,"Test FIND para Fénix...");
write(0,10,30,3, "Texto = jHola Mundo, hola!");
write(0,10,40,3,"FIND(H) = "+itoa(find(Txt,"H"))),
write(0,10,50,3,"FIND(Hola) = "+itoa(find(Txt,"Hola")));
write(0,10,60,3,"FIND(Hola a partir del 5 caracter) = "+itoa(find(Txt,"Hola",4))),
write(0,10,70,3,"FIND(M) = "+itoa(find(Txt,"M")));
write(0,10,80,3,"FIND(Mundo) = "+itoa(find(Txt,"Mundo",-2)));
write(0,10,90,3,"FIND(!) = "+itoa(find(Txt,"!")));
write(0,10,100,3,"FIND(O) = "+itoa(find(Txt,"0")));
write(0,160,190,4,"Pulsa ESC para Salir...");
repeat
frame;
until(key(_esc))

end

REGEX(*“expresion”,”cadena”)

Busca una expresion regular dentro de una cadena. Es decir, dada una expresion regular, comprueba si la
cadena dada la cumple en algin punto, y devuelve la posicion (nimero de caracter desde la izquierda,
empezando en 0) donde la encuentra por primera vez, o -1 si no se cumple.

Una expresion regular puede entenderse como una forma avanzada de busqueda. La expresion regular
puede ser una serie de caracteres corrientes como "abc", con lo que esta funcion se comportara igual que la
funcion FIND haciendo una busqueda. Pero la verdadera potencia es que la expresion regular puede

293

contener toda una serie de caracteres "comodin" (metacaracteres)que tienen significados especificos.

Los siguientes metacaracteres son reconocidos:

"".'": un punto quiere decir "cualquier caracter". Por ejemplo, "ab.de" permite encontrar "abcde" y "abJde",
pero no "abde".

"A": el exponencial quiere decir "principio de cadena" si la expresion regular empieza por *. Por ejemplo,
"Aabc" permite encontrar "abedef" pero no "fabcdef™'.

"$": el dolar quiere decir "final de cadena" si la expresion regular acaba en $. Por ejemplo, "abc$"
permite encontrar "deabc" pero no "abcde".

"[1": los corchetes quieren decir "cualquier caracter de esta lista", y en su interior puede haber una serie
de caracteres corrientes, o bien rangos de caracteres.

Por ejemplo "[abc]" permite encontrar "a", "b" 6 "c", mientras que "[a-z]" permite encontrar cualquier
letra entre la "a" y la "z", inclusives.

Los rangos pueden ser inacabados: "[-]" permite encontrar cualquier caracter hasta el espacio, mientras
"[-]" permite encontrar cualquier caracter del espacio en adelante.

Ademas, se reconocen "clases de caracteres" POSIX, que son secuencias predefinidas de caracteres que
se escriben con la sintaxis "[:clase:]" y pueden ser cualquiera de las siguientes:

[:alpha:] para cualquier letra
[:upper:] para letras mayusculas
[:lower:] para minusculas
[:alnum:] para letras o nimeros
[:digit:] para nimeros

[:space:] para espacios.

"()": los paréntesis permiten agrupar secuencias de caracteres y metacaracteres. Esto tiene varias
utilidades: por ejemplo, se pueden usar los metacaracteres de repeticion como "*" 0 "?" después del
paréntesis de cierre;o se pueden poner varias secuencias dentro de los paréntesis, separadas por el
signo "|". La expresion encontrara cualquiera de las posibilidades. Por ejemplo, "(abclefg)" encontrara
"abcde" al igual que "defgh",pero no "bcdef".

"*": Indica "0 o mas repeticiones de lo anterior", donde "lo anterior" se refiere al ultimo caracter o
metacaracter. Este metacaracter, al igual que los metacaracteres de repeticion que detallamos a
continuacién, es mas util concatenado detrds de secuencias con corchetes o paréntesis.

Por ejemplo, "[abc]*" encuentra cualquier secuencia de 0 o mas caracteres "a", "b", o "¢". Es decir,
"[abc]*" permite encontrar "aabc", "bbbcca”, "bea" o "a". De la misma forma, "(abc)*" permite encontrar

nn

"abcabcabc", "abcabc" o "abc", pero no "aabbcc".

Es importante tener en cuenta que 0 repeticiones también son validas, por lo que la expresion regular
"[abc]*" en realidad se cumple siempre, ya que cualquier cadena contiene 0 0 mas repeticiones de
cualquier secuencia.

"+": encuentra 1 0 mas repeticiones de lo anterior, del ultimo caracter o metacaracter anterior a este
simbolo. Por ejemplo, "[abc]+" "aabbec" y "beeba" "defg"
. jemplo, "[abc]+" encuentra "aabbec" y "beeba", pero no "defg".

"?": encuentra 0 ¢ 1 repeticiones de lo anterior. Es decir, permite marcar un trozo de la expresion como
opcional.

"{}":encuentra un rango de repeticiones de lo anterior. El rango son dos digitos separados por comas,

294

aunque uno de ellos puede omitirse.

Por ejemplo, "[abc]{2,}" encuentra cualquier secuencia de dos o mas caracteres "a", "b" o "c¢", mientras
"[abc]{,4}" encuentra cualquier secuencia de hasta cuatro caracteres del mismo rango.

Hay que tener en cuentra que si se omite el primer nimero, 0 también es un ntimero valido de
repeticiones. Si se especifica un nimero sélo, busca ese nimero exacto de repeticiones.

Ademas, la funcion REGEX cada vez que se ejecuta rellena automaticamente una tabla global de cadenas
llamado REGEX REG[] con cada seccion entre paréntesis en la expresion original de la cadena localizada,
empezando por el indice 1. Esta posibilidad requiere mencion aparte, ya que es muy potente, pues permite
hacer cosas como buscar una fecha y localizar sus partes. La expresion regular "(..)/(..)/(....)" buscara
expresiones del estilo "10/04/1980" y rellena en REGEX REG][1] el dia, en REGEX REG][2] el mes, y en
REGEX REGJ3] el afio.

PARAMETROS:

STRING EXPRESION : Expresion regular
STRING CADENA : Cadena original

VALOR DE RETORNO: INT : Posicion encontrada o -1 si no se encontro

Un ejemplo trivial seria éste (el mundo de las expresiones regulares es un universo en si mismo):

program hola;
private
string a="pepitoholamanolito";
end
begin
/*Busco cadenas de cuatro cardcteres de los cuales los dos ultimos han de ser "la"*/
write(0,50,10,4, "Posicion:" + regex("..la",a)),
/*Busco cadenas que SOLO se compongan de los cardcteres "ol" (es decir, que antes y después de ellos
haya espacios ™/
write(0,50,20,4,"Posicion:" + regex("ol3",a));
/*Busco cadenas de cuatro cardcteres de los cuales los tres ultimos han de ser "ola" y el primer alguna de
las letras a,s o d.*/
write(0,50,30,4, "Posicion:" + regex("[asd]ola",a)),
/*Busco cadenas que sean como "la", "hala", "hahala", "hahahala", etc*/
write(0,50,40,4, "Posicion:" + regex("(ha)*la",a));
/*Busco cadenas que sean como "hala", "hahala"”, "hahahala”, etc*/
write(0,50,50,4, "Posicion:" + regex("(ha)+la",a));
/*Busco cadenas "la" o "hala"*/
write(0,50,60,4, "Posicion." + regex("(ha)?la",a));
/*Busco cadenas "hahala” "hahahala" o "hahahahala"*/
write(0,50,70,4, "Posicion:" + regex("(ha){2,4}la",a));
/*Busco cadenas "hala" o "hola"*/
write(0,50,80,4,"Posicion:" + regex("(halho)la",a));
/*Busco cadenas integramente formadas por digitos™/
write(0,50,90,4,"Posicion:" + regex("[[:digit:]]".a)),
loop
frame,
end
end

295

REGEX REPLACE(“expresion”,”cambia”,”cadena™)

Busca una expresion regular dentro de una cadena, y sustituye cada coincidencia por el nuevo texto
indicado. Es decir, dada una expresion regular, comprueba si la cadena dada la cumple en algin punto, y
sustituye lo encontrado por el nuevo texto indicado como tercer parametro. Devuelve la cadena resultante
(no se modifica la original).

Este nuevo texto es una cadena corriente, con la salvedad de que es posible usar la secuencia "\0", "\1", etc,
hasta "\9", para sustituir por las secciones entre paréntesis de la expresion regular original, tal cual se
encontraron en cada posicion. Para ver qué es una expresion regular y qué metacaracteres son admitidos,
consulta la documentacion de la funcion REGEX

PARAMETROS:

STRING EXPRESION : Expresion regular
STRING CAMBIA : Cadena con el nuevo texto
STRING CADENA : Cadena original

VALOR DE RETORNO: STRING : Cadena resultante con todos los cambios

Pongamos un ejemplo muy simple simple de uso d¢ REGEX REPLACE:

program regex_replace_test;

global
string result;

end

begin
result=REGEX REPLACE("caca","bombon","el caca comia caca con caca y nueces");
write(0,10,10,0,result);
repeat

frame;

until(key(_enter))

end

Y otro:

program regex_replace._test;

global
string result;
end
begin
result=REGEX REPLACE("ca+","p","el caca comia caca con caca y nueces");
write(0,10,10,0,result);
repeat
frame;
until(key(_enter));
end

Y otro un poco mas complejo:

program regex_replace_test;

296

global
string result;
end
begin
result=REGEX REPLACE("(ca|co)","p","el caca comia caca con caca y nueces");
write(0,10,10,0,result);
repeat
frame;
until(key(_enter))
end

Y, evidentemente, para obtener una informacién mas completa y técnica sobre estas funciones y todas las
demas, no olvides dirigirte a la ayuda de referencia oficial de Fénix.

Finalmente, comentar la existencia de otras dos funciones de cadena, SPLIT y JOIN, cuya
finalidad es respectivamente, partir una cadena en varias cadenas utilizando una determinada expresion
regular como separador; y unir varias cadenas en una.

SPLIT(“Expresién”,”Cadena”, & ARRAY,TAMANO)

A partir de una expresion regular que actia como separador, esta funcion divide la cadena original en
partes. Estas partes se almacenaran como elementos del vector de strings indicado como tercer parametro
(precedido del simbolo &). El cuarto parametro es el nimero maximo de elementos que podra almacenar
(es decir, la longitud del array en si).

Por ejemplo, si la cadena original es "12/04/1980" y la expresion regular es "/", la funcion guarda las
cadenas "12", "04" y "1980" en las tres primeras posiciones del array y devuelve 3.

Es importante notar que el separador puede ser una expresion regular compleja. Es posible por ejemplo
poner como separador la expresion "[/-]", la cual dividiria la cadena alli donde hubiera un caracter "/", un
caracter "-", o bien un espacio. El uso de expresiones regulares es un concepto avanzado en si mismo, se
recomienda consultar la funcion REGEX para obtener mas informacion.

PARAMETROS:
STRING “Expresion” : Expresion regular
STRING “Cadena” : Cadena original
STRING POINTER ARRAY: Vector para guardar los resultados
INT TAMANO : Numero de elementos en el vector

VALOR RETORNADQ: INT: Numero de elementos

Un ejemplo, que parte una cadena en trozos utilizando como separador el simbolo de espacio:

PROGRAM lala;
private
string cadena="Esto es una cadena de prueba.";
string mivector[9];
int elementos,i;
End
BEGIN
set_mode(320,240,16);
elementos=split(" ",cadena, &mivector,9);
for(i=0;i<elementos,i++)

297

write(0,100,10+10%i,4,mivector[i]);
end
loop
frame;
if(key(_esc)) break;end
end
end

JOIN(“Separador”,&ARRAY,TAMANO)

Dado un array de cadenas, esta funcion junta todas ellas en una cadena final, intercalando la cadena
especificada como separador entre los elementos.

Esta funcion permite obtener el efecto contrario a la funciéon SPLIT .Por ejemplo, si un array contiene tres
cadenas: "12", "04" y "1980", y se utiliza la cadena "/" como separador, esta funcion devolvera la cadena
"12/04/1980".

PARAMETROS:
STRING “Separador” : Cadena a intercalar entre elementos
STRING POINTER ARRAY: Vector de donde obtener las cadenas a unir
INT TAMANO : Numero de elementos en el vector

VALOR RETORNADOQ: STRING: Cadena generada a partir de la union de los elementos.

Un ejemplo, que crea una cadena a partir de los valores de los elementos de un vector de strings,
separandolos entre ellos con el simbolo del espacio:
PROGRAM lala,
private
string cadena;
string mivector[9]="Hola","qué","tal","yo", "bien","y", "tu?";
End
BEGIN
set_mode(320,240,16);
cadena=join(" ", &mivector,9);
write(0,100,100,4,cadena);
loop
frame;
if(key(_esc)) break;end
end
end

Trabajar con fechas:

Fénix no tiene demasiada flexibilidad a la hora de permitirnos utilizar funciones predefinidas
que trabajen con fechas.De hecho, s6lo incorpora dos.

TIME()

Esta funcion devuelve la fecha actual en formato entero como el nimero de segundos transcurridos desde
el 1 de Enero de 1970.

El valor devuelto por esta funcion deberia utilizarse con la funciéon FTIME para transformarla a un formato

298

legible.

FTIME(“formato”,time)

Esta funcion nos devuelve una cadena de texto con el formato de fecha especificado en el primer
parametro, a partir de la fecha en formato entero que recibe como segundo parametro. La fecha en formato
entero corresponde al nimero de segundos transcurridos desde el dia 1 de Enero de 1970, por ejemplo
generada por la funcion TIME.

Para especificar el formato se le pasa a la funcion una cadena donde todos los cardcteres de texto se
respetaran y las siguientes secuencias de caracteres se transforman acorde al siguiente listado:

%d: Dia, dos digitos (01-31)

%m: Mes, dos digitos (01-12)

%y: Ano, dos digitos (00-99)

%Y : Afo, cuatro digitos

% H: Hora, dos digitos (00-23)

% M: Minuto, dos digitos (00-59)

%S: Segundo, dos digitos (00-59)

%e: Dia, uno o dos digitos (1-31)

%k: Hora, uno o dos digitos (0-23)

%a: Nombre abreviado del dia

%A: Nombre completo del dia

%Db: Nombre abreviado del mes

%B: Nombre completo del mes

%C: Centuria, dos digitos (19-99)

%I: Hora americana, dos digitos (01-12)

%]: Hora americana, uno o dos digitos (1-12)
%p: Coletilla americana de la hora (AM/PM)
%P: Coletilla americana de la hora (am/pm)
%u: Dia de la semana (1-7)

%U: Dia de la semana empezando por 0 (0-6)
%j: Dia del afio, tres digitos (001-366)

%U: Numero de semana del ano, dos digitos (00-53)

PARAMETROS:

STRING FORMATO : Formato en el que se presentara la fecha
INT TIME : Fecha en formato entero, obtenido normalmente a partir de la funcion TIME

Un ejemplo sencillo de uso de ambas funciones seria:

program Test Ftime;

begin
write(0,10,10,3,"Test ftime para Feénix...");
write(0,160,390,4,"Pulsa ESC para Salir...");
write(0,10,60,3,"%d - Dia, dos digitos: "+ftime("%d" time()));
write(0,10,70,3,"%e - Dia, uno o dos digitos: "+ftime("%e" time()));
write(0,10,80,3,"%m - Mes, dos digitos: "+ftime("%m",time()));
write(0,10,90,3,"%y - Afio, dos digitos: "+ftime("%y" time()));
write(0,10,100,3,"%Y - Afio, cuatro digitos: "+ftime("%Y" time()));
write(0,10,110,3,"%H - Hora, dos digitos: "+ftime("%H" time()));

299

write(0,10,120,3,"%k - Hora, unos o dos digitos: "+ftime("%k",time()));
write(0,10,130,3,"%M - Minuto, dos digitos: "+ftime("%M" time()));
write(0,10,140,3,"%S - Segundo, dos digitos: "+ftime("%S" time())),
write(0,10,150,3,"%j - Dia del ario, tres digitos: "+ftime("%j" time()));
write(0,10,160,3,"%U - Numero de semana del ario: "+ftime("%U",time()));
repeat
frame;
until(key(_esc))

end

Y, evidentemente, para obtener una informaciéon mas completa y técnica sobre estas funciones y
todas las demads, no olvides dirigirte a la ayuda de referencia oficial de Fénix.

Funciones matematicas:

Fénix aporta un conjunto (limitado) de funciones matematicas para poder realizar calculos
aritméticos basicos. Algunas son:

ABS(nimero)

Esta funcion devuelve el valor absoluto de un numero dado, es decir, convierte cualquier nlimero negativo
en positivo y deja niumeros positivos o el 0 inalterados.

PARAMETROS: FLOAT NUMERO : Ntmero en coma flotante

COS(numero)

Esta funcion devuelve el coseno de un angulo dado en milésimas de grado (la unidad estdndar para
especificar angulos en Fénix). El resultado serd un nimero en coma flotante entre -1y 1.

De igual forma exiten en Fénix las funciones SIN(numero), que calcula el seno de un angulo, y
TAN(numero), que calcula su tangente. Ambas funciones también tienen como parametro un numero
FLOAT e igualmente devuelven un nimero FLOAT.

PARAMETROS: FLOAT NUMERO : Angulo en milésimas de grado (90000 = 90°)

ACOS(niimero)

Devuelve el arcocoseno de un valor. (El valor ha de ser un nimero decimal entre -1 y 1).

Es decir, devuelve un angulo en milésimas de grado, entre 0 y 180000 cuyo coseno equivale al valor
indicado como parametro. Este resultado devuelto sera un nimero en coma flotante.

De igual forma exiten en Fénix las funciones ASIN(niimero), que calcula el arcoseno de un ntimero entre
-1.0y 1.0, y ATAN(numero), que calcula su arcotangente.

PARAMETROS: FLOAT NUMERO : Valor entre -1.0 y 1.0

300

SQRT(ntmero)

Esta funcion devuelve la raiz cuadrada, en coma flotante, de un ntimero especificado como parametro.

PARAMETROS: FLOAT NUMERO : Numero en coma flotante

POW(numero,potencia)

Esta funcion devuelve el resultado, en coma flotante, de elevar un niimero a una potencia dada. Por
ejemplo, el resultado de POW(2,3) es 8 (2*2*2). Escribir POW(49,0.5) seria lo mismo que SQRT(49).

PARAMETROS:

FLOAT NUMERO : Namero en coma flotante
FLOAT POTENCIA : Potencia a la que se desea elevar

Funcion de redondeo

Fénix, a diferencia de la mayoria de lenguajes de programacion, no posee ninguna funciéon nativa que
facilite el redondeo de numeros decimales. Este pequeiio inconveniente lo podemos suplir creando nosotros
mismos una funciéon que realice esta operacion. Como ejemplo, a continuacion presento una posible
solucion.

El programa es muy sencillo.A la variable num_a redondear se le asigna el valor que se quiere redondear,
y se muestra por pantalla dicho valor, y ademas el resultado del redondeo. Ademas, para comprobar que
realmente esto es asi, el programa ofrece la posibilidad de, mediante las teclas CTRL o ALT, subir o bajar
el nimero a redondear -en este caso una centésima cada vez, pero puede ser cualquier otra cantidad, claro-
para poder ver dinamicamente que el resultado redondeado se amolda a los nuevos nimeros.Como se
puede comprobar, el secreto del programa esta simplemente en sumar o restar 0.5 al nimero a redondear.
.Y esto por qué? Por un detalle muy importante:el numero a redondear es de tipo float, pero el nimero
redondeado lo hemos definido como de tipo entero. Asi que en realidad, quien realiza el redondeo es el
propio Fénix, cuando hace la conversion de float a int: nosotros s6lo le hemos dado el empujon.La
necesidad de sumar o restar 0.5 viene del hecho que en realidad Fénix no redondea, sino corta por abajo: un
87.6 se convierte en un 87, un 109.8 se convierte en un 109, un 54.2 se convierte en un 54...Asi que para
conseguir el efecto de redondeo que todos conocemos (es decir, si las décimas son 5 o superior, se
redondea al numero inmediatamente superior) hay que hacer este pequefio truco. Este codigo no obstante
tiene un inconveniente, y es que no podremos redondear niimeros para una posicion decimal concreta (no
podremos redondear a décimas o centésimas o decenas): s6lamente se puede redondear a nimeros enteros.

Dejo al lector el ejercicio de convertir este programa en una funcion que admita como parametro el nimero
a redondear y devuelva el numero redondeado, para poderla usar asi en cualquier otro programa donde
necesitemos esta funcionalidad.

program rounding;
global
int num_redondeado,
float num_a_redondear,
end
begin
set_mode(200,28,8);

num_a_redondear=387.9;
write(0,5,5,0, "Numero a redondear:");

301

write(0,5,15,0, "Numero redondeado:");
write_var(0,150,5,0, num_a_redondear),;
write_var(0,150,15,0, num_redondeado);
loop
if(num_a_redondear>=0)
num_redondeado=num_a_redondear+0.5;
end
if(num_a_redondear<()
num_redondeado=num_a_redondear-0.5;
end
if(key(_control))
num_a_redondear=num_a_redondear+0.01;
end
iftkey(_alt))
num_a_redondear=num_a_redondear-0.01;
end
frame;
end
end

RAND_SEED(numero)

Sabemos de un capitulo anterior que para generar numeros pseudoaleatorios disponemos de la funcion
RAND. ;Por qué se llaman niimeros pseudoaleatorios y no aleatorios? Porque tal como funciona RAND,
los ntimeros que genera no son completamente independientes unos de otros, y por tanto, no son
exactamente aleatorios. Que una serie de numeros esté formada por numeros exactamente aleatorios
implica que no se pueden hallar patrones de nimeros que se repitan periodicamente.

La funcién RAND para funcionar lo que utiliza es un nimero inicial, llamado “semilla” (seed), el cual sera
el generador de toda la ristra de nimeros pseudoaleatorios a obtener.Es decir, la funcion RAND necesita
siempre se ese numero para poder empezar a trabajar. Y lo importante del tema esta en que si se escoge
como semilla un mismo numero siempre, la ristra de nimeros jsiempre sera la misma!, porque a partir de la
semilla se genera el primer nimero; a partir del primero se genera el segundo, y asi. Claro, si la semilla es
la misma, la ristra también.

Para evitar esto, y hacer que cada vez que un programa que incluya la funcion RAND genere ristras de
numeros completamente diferentes, Fénix hace que automaticamente el valor tomado como semilla de la
funcion RAND sea la hora (en segundos) actual. Evidentemente, este nimero cada segundo cambiara, por
lo que todos los programas que ejecutemos en segundos diferentes tendran ristras de numeros diferentes.

No obstante, a veces nos puede ser de utilizar conseguir precisamente lo contrario: es decir, hacer que cada
vez que se ejecute un programa, por ejemplo, genere siempre la misma ristra de valores. Para hacer eso,
deberiamos poder fijar el valor de la semilla. Y eso es lo que hace la funcion RAND_SEED. El parametro
que tiene es un entero que sera la semilla a partir de la cual se generara la serie de nimeros
pseudoaleatorios. Y si hacemos que ese parametro siempre valga lo mismo, ya tendremos asegurada una
serie siempre igual.

Veamoslo con un ejemplo. Ejecuta el siguiente programa.

program haa;

private
int mirand;
int mifich;

302

end

begin
if(file_exists("prueba.txt")==false)
mifich=fopen("prueba.txt",0_write);
else
mifich=fopen("prueba.txt",0o_readwrite);
[fseek(mifich,0,2);
end
while(timer[0]<=500)
mirand=rand(1,9);
[fputs(mifich,itoa(mirand)),
frame;
end
fclose(mifich);
end

Este programa lo que hace es crear un fichero si no existe (o utilizar uno ya existente) y escribir en él —sin
sobreescribir nada si hubiera algo ya- una serie de valores pseudoaleatorios, durante 5 segundos.

Ejecttalo una vez y abre el fichero de texto generado. Veras que es una serie de nimeros sin ningun
sentido. Ve al final del fichero y escribe un caracter que no sea un numero. Este sera la marca que indicara
el comienzo de una serie nueva. Vuelve a ejecutar el programa, y vuelve a abrir el fichero. Veras que justo
después de la marca que habias escrito vuelve a aparecer una serie de nimeros, que no tienen nada que ver
con los de la serie anterior. Esto es porque RAND automaticamente coge la semilla de la hora del sistema,
y la hora del sistema ha cambiado entre las dos ejecuciones del programa.

Ahora modifica el cédigo anterior afiadiendo la linea siguiente justo después del begin:

Rand seed(3);

Borra el archivo de texto y vuelve a realizar los pasos anteriores: ejecutar una vez el programa, escribir una
marca al final del fichero y volver a ejecutar el programa. Veras que ahora, como hemos definido en el
programa que la semilla a utilizar cuando se ejecute RAND sea siempre la misma (en este caso, el nimero

3), las dos series de nimeros, pese a ser pseudoaleatorias, json las mismas!

Podras deducir conmigo finalmente que poner RAND SEED(TIME()) y no poner nada seria lo mismo,
pues.

Y, evidentemente, para obtener una informacion mas completa y técnica sobre estas funciones y
todas las demas, no olvides dirigirte a la ayuda de referencia oficial de Fénix.

Trabajar con graficos generados dindmicamente en memoria:

En determinadas ocasiones, no nos hara falta tener graficos creados independientemente de
nuestro juego ni usar contenedores FPG externos. Fénix es capaz de generar graficos directamente desde
codigo -es lo que se dice generacidon “dinamica” en memoria-. Aparentemente esto ya lo hemos visto en el
apartado de primitivas graficas, pero en realidad ahora es diferente: estamos hablando de cualquier tipo de
grafico/sprite, no de una primitiva. Y ademas, estos graficos que mientras el codigo se estd ejecutando
permanecen en la RAM del ordenador, podemos grabarlos en un fichero, de manera que Fénix nos puede
servir también como editor de dibujos rudimentario.

A continuacion presento las funciones mas importantes de generacion y manipulacion dindmica

303

de imagenes.

NEW_MAP (ANCHO, ALTO, PROFUNDIDAD)

Esta funcioén crea un nuevo grafico en memoria, con el tamafio y nimero de bits por pixel de color
especificados. El grafico se crea dentro de la libreria 0, y se le asigna un nimero cualquiera disponible, que
no haya sido usado por ningtn otro grafico anterior.

La profundidad de color tiene el siguiente significado:

« Un grafico de 1 bit por pixel no tiene informacién de color. Los pixels a 0 representan pixels
transparentes, y los bits a 1 seran dibujados usando el color escogido mediante la funcion
DRAWING COLOR .

« Un grafico de 8 bits por pixel tiene 256 valores disponibles para cada pixel. Cada valor representa
un indice en una tabla de colores general, la paleta de colores, que afecta a todos los graficos de 8
bits.

« Un gréfico de 16 bits contiene informacion de los componentes rojo, verde y azul de cada pixel,
por lo que es independiente de ninguna paleta de colores. La codificacion exacta de estas
componentes dentro de los 16 bits depende de la tarjeta grafica, por lo que so6lo es valido crear y
usar graficos de 16 bits si primero se establece un modo grafico de 16 bits.

El nuevo grafico se crea con todos los pixels a 0 (es decir, transparentes).

PARAMETROS:
INT ANCHO : Ancho en pixels del nuevo grafico
INT ALTO : Alto en pixels del nuevo grafico
INT PROFUNDIDAD : Profundidad de color (en bits por pixel: 1, 8 6 16)

MAP_PUT_PIXEL (LIBRERIA, GRAFICO, X, Y, COLOR)

Esta funcion permite alterar el color de un pixel determinado dentro de un grafico. Las coordenadas dadas
crecen hacia abajo y a la derecha, y el punto (0, 0) representa la esquina superior izquierda del grafico.

En el caso de graficos de 256 colores (8 bits), el valor de color debe ser un nimero de 0 a 255. En el caso
de graficos de 16 bits, el valor es una codificacion de las componentes del color que varia en funcion de la
tarjeta de video y el modo grafico. Lo normal es usar la funcion RGB para obtener la codificacion de un
color concreto, o bien usar un color obtenido por una funcion como MAP_GET PIXEL. El color 0, tanto
en 8 como en 16 bits, representa un pixel transparente.

Si se quiere realizar la misma funcion pero especificamente sobre el fondo de pantalla, o bien se hace uso
de la libreria 0 grafico 0 dentro de map put pixel -es decir, se escribe map put pixel(0,0,x,y,color)-, o
bien se puede utilizar por comodidad la funcion PUT PIXEL(X,Y,COLOR), cuyos tres parametros tienen
idéntico significado que los ultimos tres de map put pixel, y donde se sobreentiende que el grafico sobre
el que se pintara es el del fondo.

PARAMETROS:

INT LIBRERIA : Numero de libreria FPG

INT GRAFICO : Numero de grafico dentro de la libreria
INT X : Coordenada horizontal

INT Y : Coordenada vertical

INT COLOR : Color a dibujar

304

Con estas dos funciones ya podemos generar nuestro primer grafico “al vuelo” dentro de Fénix.
Un ejemplo podria ser éste:

program hola;
begin
set_mode(640,480,16);
migrafico();
loop

frame;
end
end

process migrafico()
private
int a,b;
end
begin
x=50;
y=50;
graph=new_map(30,30,16);
for (a=0;a<=30;a++)
Jor(b=0;b<=30;b++)
map_put _pixel(0,graph,a,b,rgb(234,54,87));
frame;
end
end
loop
frame;
end
end

Fijarse lo que hacemos. El proceso principal lo tnico que hace es llamar al proceso “migrafico”,
que sera el grafico que pintaremos, y mantenerse vivo con el LOOP. Al proceso “migrafico” le asignamos
una posicion inicial (x=50 e y=50) y un grafico inicial que, a diferencia de como siempre, no se obtendra
de un fichero externo, sino que lo creamos en el momento con la orden new map. Este grafico tendra 30
pixeles de alto y 30 pixeles de ancho (sera un cuadrado), y serd de 16 bits.

Pero con new_map, no veremos nada. Tenemos el grafico creado pero por defecto es transparente.
Hay que rellenarlo de color. Para ello utilizamos map_put pixel. Con esta funcion pintamos un pixel de un
grafico determinado con un color, y para indicar sobre qué grafico queremos pintar el pixel, le damos como
segundo parametro el valor que tiene en este momento la variable GRAPH, el cual no es més que el
identificador que acaba de devolvernos new map. Por tanto, los pixeles se pintaran sobre el nuevo grafico
acabado de crear.

Para recorrer todos los pixeles que forman el cuadrado, se ha de llamar a esta funcién dentro de un
par de bucles anidados: de esta manera el tercer y cuarto parametro de la funcion, que indican qué pixel hay
que colorear, valdran desde (0,0) -esquina superior izquierda del grafico- hasta (30,30) -esquina inferior
derecha-. El color es uno cualquiera dado por la funcion rgb. Lo mas interesante del asunto es el segundo
parametro, que representa el grafico donde se va a pintar, que precisamente es el grafico del proceso, el
cual estd generado en memoria y era transparente. Acordarse de que al no pertenecer a ninguna libreria
FPG, el primer parametro ha de valer 0.

305

Si ejecutas el ejemplo, veras que el cuadrado aparece poquito a poquito, pintdndose, hasta llegar a
quedar pintado completamente. ;Por qué es esto? Porque he afiadido una orden frame dentro de los dos fors
anidados para que a cada iteracion -es decir, cada vez que se pinta un pixel- se vea los resultados por
pantalla. Si quisiéramos ver el cuadrado pintado ya directamente, simplemente tendriamos que quitar esa
linia, ya que entonces el primer frame que nos encontrariamos ya seria el del interio del loop
-imprescindible, por otra parte, para que el proceso siga vivo y el cuadrado se pueda seguir viendo
indefinidamente-, con lo que ya habrian pasado todas las iteraciones de los fors anteriores,

Otro ejemplo, parecido al anterior, ofrece un efecto curioso:

program Test MAP PUT PIXEL,
begin
set_mode(640,480,16);
graph=new_map(640,480,16);
repeat
map_put_pixel(0,graph,rand(0,639),rand(0,479),rand(1,65536));
frame;
until(key(_esc))
end

Creo que viendo el resultado es facil de entender lo que hace este codigo.

Un efecto interesante para rematar este pequefio ejemplo podria ser incluir dentro del bloque
repeat/until, justo antes de la linea del map_put pixel, la linea

angle=angle%360000-5625;

Fijate lo que ocurre: estamos variando en cada iteracion la orientacion del grafico del proceso
principal; en concreto lo estamos girando en la direccion de las agujas del reloj 5625 milésimas de grado.
Con esto, nos aparece un bonito efecto de rotacion.

Recuerda que aplicamos la operacion modulo (%) al angulo simplemente para que ANGLE no
crezca indefinidamente. Ya se comentd cuando se introdujo la variable ANGLE que cuando se gira una
vuelta entera una imagen, su valor no se pone a 0 automaticamente sino que contintia creciendo mas alla de
las 360000 milésimas de grado. Si queremos que a cada vuelta, la variable ANGLE vuelva a valer 0,
tenemos que aplicarle el modulo con la cantidad limite donde se produce el “reseteo” (360000). Esto es
facil verlo si afiader un “write_var” mostrando lo que vale ANGLE, tanto si se le efectia el médulo como
si no.

Otras funciones interesantes son:

MAP_CLEAR (LIBRERIA, GRAFICO, COLOR)

Esta funcion borra el contenido de un grafico en memoria, estableciendo todos los pixels al color indicado,
sin descargarlo. Es otra manera de decir que rellena de un color el grafico completo, por lo que utilizar esta
funcion es una manera de pintar rdpidamente un grafico creado anteriormente con new_map.

El significado del parametro color depende de la profundidad de color del grafico. Para un grafico de 8 bits,
representa un nimero de color de 0 a 255. Para un grafico de 16 bits, es un nimero de 0 a 65535 con un
codigo de color que varia en funcion del modo grafico. Ya sabes que puedes utilizar la funcion RGB para
obtener la codificacion de un color determinado a partir de sus componentes. En cualquier caso, el color 0
representa un pixel transparente, tanto en 8 como en 16 bits.

306

Recuerda también que el grafico perteneciente a la libreria 0 (la del sistema) cuyo codigo identificador es 0
corresponde a la imagen de fondo de pantalla.

PARAMETROS:

INT LIBRERIA : Namero de libreria FPG
INT GRAFICO : Numero de grafico dentro de la libreria
INT COLOR : Numero de color

Un ejemplo donde se puede ver el cambio repetido de color que sufre un grafico gracias a repetidas
llamadas a map clear -con la ayuda de temporizadores para realizar el cambio de color de manera
automatica- es:

program Test MAP CLEAR;
begin
set_mode(640,480,16);
graph=new_map(300,200,16);
x=320;
y=240;
timer=0;
repeat
if(timer>200)
map_clear(0,graph,rgb(rand(0,255),rand(0,255),rand(0,255)));
timer=0;
end
frame;
until(key(_esc))
end

MAP_GET_PIXEL (LIBRERIA, GRAFICO, X, Y)

Esta funcion recupera el color de un pixel determinado dentro de un grafico. Las coordenadas dadas crecen
hacia abajo y a la derecha, y el punto (0, 0) representa la esquina superior izquierda del grafico.

En el caso de graficos de 256 colores (8 bits), el valor devuelto por esta funcion es un color de 0 a 255. En
el caso de graficos de 16 bits, el valor devuelto es una codificacion de las componentes del color que
depende de la tarjeta de video y el modo grafico. Puede usarse GET RGB para obtener los valores
aproximados de las componentes del color.

Esta funcion sera de vital importancia cuando se trate el tema de los mapas de durezas (visto en el capitulo-
tutorial de RPG). En su momento se explicara pormenorizadamente su funcionalidad y diferentes usos.

Si se quiere realizar la misma funcidn pero especificamente sobre el fondo de pantalla, o bien se hace uso
de la libreria 0 grafico 0 dentro de map_get pixel -es decir, se escribe map_get pixel(0,0,X,y)-, o bien se
puede utilizar por comodidad la funcion GET_PIXEL(X,Y), cuyos dos parametros tienen idéntico
significado que los ultimos dos de map_get pixel, y donde se sobreentiende que el grafico sobre el que se
pintard es el del fondo.

PARAMETROS:
INT LIBRERIA : Ntimero de libreria FPG
INT GRAFICO : Numero de grafico dentro de la libreria
INT X : Coordenada horizontal

307

INT Y : Coordenada vertical

Como ejemplo introductorio a la funcionalidad de este comando, aqui va el siguiente ejemplo:

/*La idea del programa es sencilla: existe un fondo de pantalla con diferentes colores, y existe un
cuadradito negro que se va moviendo intermitentemente y aleatoriamente por todo ese fondo. Cada vez
que el cuadradito se para en un punto, aparece escrito el codigo de color que devuelve map get pixel
correspondiente al color donde se ha situado el cuadradito.*/
program Test MAP GET PIXEL,;
global
int a,b;
int fondo;
int color;
end
begin
set_mode(640,480,16);
/*Las lineas siguientes no son mas que bucles para generar un fondo formado por diferentes columnas de
colores, a modo de "carta de ajuste"”. Como se puede ver, las columnas son de 100 pixeles de ancho y cada
una se pinta de un color™®/
fondo=new map(640,480,16);
for(a=0;a<100;a++)
for(b=0,b<480,;b++)
map_put_pixel(0,fondo,a,b,rgb(255,0,0));
end
end
for(a=100;a<200;a++)
for(b=0;b<480;b++)
map_put_pixel(0,fondo,a,b,rgb(0,255,0));
end
end
for(a=200;a<300;a++)
for(b=0;b<480;b++)
map_put_pixel(0,fondo,a,b,rgb(0,0,255));
end
end
for(a=300;a<400;a++)
Jor(b=0;b<480,;b++)
map_put_pixel(0,fondo,a,b,rgb(255,255,0));
end
end
for(a=400;a<500;a++)
for(b=0;b<480;b++)
map_put_pixel(0,fondo,a,b,rgb(255,0,255));
end
end
for(a=500;a<600;a++)
for(b=0;b<480;b++)
map_put_pixel(0,fondo,a,b,rgb(0,255,255));
end
end
for(a=600;a<640;a++)
for(b=0;b<480;b++)

308

map_put_pixel(0,fondo,a,b,rgb(255,255,255));
end
end
put_screen(0,fondo);

/*4hora genero el grdfico del proceso, el cual sera un cuadradito negro que se movera aleatoriamente
sobre el fondo de columnas de color™/
graph=new_map(10,10,16);
/*En vez de utilizar map_put_pixel para rellenar de color el nuevo grdfico, se puede ir mas rapido y de
una tacada utilizando map_clear para pintar de golpe todo el grdfico -de color negro en este caso-*/
map_clear(0,graph,rgb(0,0,0));
write(0,10,10,3,"Color de la pantalla: ");
write_var(0,200,10,3,color),;
/*Usamos un temporizador para situar el cuadradito en lugares distintos de la pantalla y dejarlo alli un
tiempo determinado antes de volverlo a mover otra vez.*/
timer=0;
repeat
if(timer>100)
x=rand(0,639);
y=rand(0,479);
color=map_get pixel(0,fondo,x,y);
timer=0;
end
frame;
until(key(_esc))
end

Un ejemplo curioso donde se emplean map put pixel y map get pixel es el siguiente. Primero
se visualiza como fondo de pantalla una imagen con codigo 001 perteneciente a un FPG llamado
“graficos.fpg”. A continuacién, se realiza un barrido horizontal donde se aplica un curioso efecto de
oscurecimiento. Una vez acabado éste, se realiza otro barrido horizontal donde se aplica un curioso efecto
de abrillantamiento.

Par lograr el oscurecimiento, lo inico que se hace es convertir el color de todos aquellos pixeles
de la imagen que tengan un cantidad de rojo,verde y azul menor de 15, al color negro mas absoluto. Con
esto, lo que estamos haciendo es oscurecer los pixeles que eran mas oscuros ya de entrada, dejando
inalterables los demas. Se puede jugar con el limite que queramos para incluir o excluir pixeles del
oscurecimiento: a un minimo mas elevado, abra mas zonas de la imagen que se conviertan en negro.
También se puede jugar con la condicion del if: si en vez de haber un “<” hay un “>”, estaremos logrando
el efecto contrario, también muy interesante.

Para lograr el abrillantamiento, se parte de la misma idea: se van recorriendo los pixeles de la
imagen y si el color de éstos cumple una condicion limite, su color se verd incrementado con el brillo que
queremos definir (se puede variar su valor para comprobar el efecto que causa).

program imgx;
Private
int c;
int min=15,bri=50;
int tt;
int fpg;
end
begin
set_Mode(640,480,16);

309

Jpg=Load Fpg("graficos.fpg");
Set_Fps(1000,0);
put_Screen(fpg, 1),
//Primer efecto: oscurecimiento
For (X=0,x<640,x++)
For (y=0,y<480;y++)
C=map_get pixel(0,0,x,y);
if (c<rgb(min,min,min)) c=Rgb(0,0,0); end
map_put Pixel(0,0,x,y,c);
end
//La siguiente linea es para visualizar el efecto mas velozmente
tt++if(t>5) tt=0;frame;end
end

//Segundo efecto: abrillantamiento
For (X=0,x<640,x++)
For (y=0,y<480,y++)
C=map_get Pixel(0,0,x,y);
if (C<rgb(255-bri,255-bri,255-bri)) c=c+Rgb(bri,bri,bri), end
map_put Pixel(0,0,x,y,c);
end
t++;if(tt>5) tt=0;frame;end
end
/*Si quisiéramos grabar en un fichero la imagen resultante de ambos efectos, podriamos escribir en este
lugar la linea: Save png(0,0,"Hola.png"); La orden save png se tratard mas adelante®/
loop
frame;
end
end

Otro ejemplo de oscurecimiento, similar en la filosofia al anterior, es el siguiente. Necesitaras un FPG
llamado “graficos.fpg” con un grafico de identificador 001. Si ejecutas el ejemplo,primero veras la imagen
tal cual; después de pulsar la tecla SPACE no veras nada (habras quitado esta imagen del fondo) para
entonces volver a pulsar la tecla SPACE y volver a ver la misma imagen de antes, pero con una zona
rectangular en su interior donde aparecera mas oscurecida.El tamafio de esta porcion de imagen oscurecida
lo podras cambiar (s6lo) en el codigo fuente.

program imgx,
private
int fpg;
end
begin
set Mode(640,480,16);
fpg=Load Fpg("graficos.fpg");
//Primero pongo la imagen original tal cual
put_Screen(fpg, 1),
//Mientras no se pulse la tecla espacio no se hace nada; es decir, se visualiza la imagen de fondo y ya esta
while(not key(_space)) frame; end
//Una vez que he pulsado la tecla SPACE, mientras la tenga pulsada tampoco hago nada
while(key(_space)) frame, end
//Una vez que he soltado la tecla SPACE, borro el fondo de pantalla, la cual se queda negra
clear screen(),
while(not key(_space)) frame, end

310

while(key(_space)) frame,; end

//Después de haber pulsado otra vez SPACE, aplico la funcion "oscurecer” a la misma imagen de antes
oscurecer(fpg,1,30,30,500,500);

/*Y la vuelvo a mostrar como fondo de pantalla, observando las diferencias con el fondo anterior
(bdsicamente, la presencia de un cuadrado mas oscuro)™*/

put_screen(fpg, 1),

loop

frame;

end

end

/*Esta funcion tiene 6 parametros: el primero es el fpg donde se encuentra la imagen, (dada por el
segundo pardmetro), que serd oscurecida.No obstante, no tiene porqué oscurecerse toda la imagen, sino
solo una porcion rectangular de esta indicada por los cuatro pardametros siguientes:el tercero es la
coordenada X de la esquina superior izquierda de esta zona oscura, el cuarto es la coordenada Y de ese
punto, el quinto es la coordenada X de la esquina inferior derecha de esa zona oscura y el sexto es la
coordenada Y de ese punto. Hay que tener en cuenta que estas coordenadas tienen como origen la esquina
superior izquierda de la imagen, no de la pantalla.*/

function oscurecer(int fpg,int imagen,int x1,int yl1,int x2,int y2)

private
int i,j,color;
byte r,g,b;
end
BEGIN

//Recorro la zona a oscurecer a lo largo y a lo ancho
FOR(i=x1; i<=x2; i++)
FOR(j=yl; j<=y2; j++)
//Obtengo el color original de cada pixel dentro de esta zona
color=map_get pixel(fpg,imagen,i,j);
/*Obtengo, a partir del color obtenido, sus componentes RGB individuales. La funcion get rgb no la
hemos visto todavia (se vera en profundidad mas adelante en este capitulo), pero basicamente sirve para
esto: a partir de un codigo unico de color dado por map_get pixel en este caso, obtenemos los valores
independientes de las componentes R,G y B en sendas variables (los tres ultimos parametros). Atencion
con poner el & de cada uno de los nombres de estas variables.*/
get_rgb (color, &r, &g, &b);
/*Repinto el mismo pixel del cual habia obtenido el color original con un nuevo color generado a partir de
multiplicar por 0.6 (v por tanto, reducir) cada uno de los valores de las tres componentes del color
original. Con esto se logra el efecto de oscurecimiento. Si multiplicamos por un decimal menor
(0.5,0.4,etc), obtendremos cada vez valores de las componentes mads pequefios y por tanto tenderemos
cada vez mas a 0 -es decir, mads negro-. Lo puedes probar.;Qué pasaria si este factor fuera mas grande de
1? Podriamos incluso modificar la funcion para que admitiera un nuevo pardmetro que filera
precisamente el valor de este factor, para tener una unica funcion que permitiera generar diferentes tipos
de oscurecimientos. Un detalle importante: el hecho de utilizar map_put_pixel implica que la imagen se ha
modificado en memoria, pero de momento no es visible: necesitamos otra orden que haga que esta (nueva)
imagen se vea por pantalla: por eso en el codigo principal, después de haber llamado a "oscurecer”,
volvemos a llamar a put_screen.*/
map_put_pixel(fpg,imagen,i,j, rgb(r*0.6, g*0.6, b*0.6));
END
END
END

Si no se desea usar el grafico por més tiempo, es recomendable liberar la memoria ocupada por

311

el mismo mediante la funcion unload map/unload fbm, funcion que tiene dos parametros: el identificador
del archivo FPG donde reside el grafico a descargar (o O si se utiliza write_in_map, por ejemplo) y como
segundo parametro tiene el codigo numérico (el id) del grafico a descargar.

UNLOAD_ MAP(libreria,grafico)/UNLOAD_ FBM(libreria,grafico)

Libera la memoria ocupada por un grafico que puede formar parte de una libreria FPG, haber sido creado
independientemente por new_map, o recuperado de disco por una funcién como load_png. Los posteriores
accesos al grafico liberado son considerados un error.

Es posible utilizar esta funcién para quitar graficos de un fichero FPG (lo contrario de fpg add). Los

cambios realizados por esta funcion solo afectan al FPG en memoria: para actualizar el fichero FPG con
ellos recuerda que es preciso usar la funcion save fpg .

PARAMETROS:

INT LIBRER{A : Numero de libreria FPG
INT GRAFICO : Numero de grafico dentro de la libreria

WRITE_IN_MAP (FUENTE, "TEXTO", ALINEACION)

Esta funcion crea un nuevo grafico en memoria, de la misma manera que la funcion NEW_MAP , pero a
partir de un texto.

El gréafico contendra el texto especificado como pardmetro, en el tipo de letra indicado, y tendra el tamafio
justo para contener todas las letras sin desperdiciar espacio. Formara parte de la libreria del sistema, de
codigo 0.

El parametro de alineacion indica el valor que sera tomado por el centro del nuevo grafico (punto de
control cero), y puede ser uno de los siguientes valores:

 0: el punto ocupara la esquina superior izquierda del grafico
: el punto ocuparé el centro de la primera fila

: el punto ocupara la esquina superior derecha

: el punto ocupara el centro de la primera columna

: el punto ocupara el centro exacto del grafico

: el punto ocupara el centro de la ultima columna

: el punto ocupara la esquina inferior izquierda

: el punto ocupara el centro de la fila inferior

: el punto ocupara la esquina inferior derecha

L]
01O\ LB W —

El nuevo grafico tendra la misma profundidad de color que el tipo de letra, y pixels transparentes al igual
que los propios caracteres de la fuente.

Esta funcion devuelve un identificador umico para el nuevo grafico creado, de forma similar por ejemplo a
load png, y formara parte de la libreria del sistema (FILE=0).

Si no se desea usar el grafico por mas tiempo, es recomendable liberar la memoria ocupada por el mismo
mediante la funcion UNLOAD_ MAP/UNLOAD_FBM .

La mayor utilidad de esta funcion consiste en poder dibujar textos con la misma variedad de efectos que los
graficos normales (escalado, transparencias, espejo, etc).Y también para poder asignar a la variable
GRAPH de un proceso un texto, por ejemplo, con lo que un texto podra asociarse a un proceso obteniendo
asi para ese texto todos los beneficios de la gestion de procesos (sefiales, colisiones, jerarquia,etc).

312

PARAMETROS:
INT FUENTE : Tipo de letra
STRING TEXTO : Texto a dibujar
INT ALINEACION : Tipo de alineacién
VALOR DE RETORNO: INT : Identificador del nuevo grafico

Como ejemplo de utilizacion de wrife_in_map, puedes probar de ejecutar este codigo:

Program ejemplo_write_in_map;
Begin
set_mode(640,480,16);
/* Se crea un mapa nuevo con el texto "Esto es un ejemplo...1,2,3" con el punto de control en el centro,
y se asigna como grafico del puntero del raton.™*/
graph = write_in_map(0,"Esto es un ejemplo...1,2,3",4);
x=320;
y=260;
Repeat
if(key(_a)) angle=(angle+5000)%360000; end
if(key(s)) size=size + 10; end
Frame;
Until (key(_esc));
unload_map(0,graph);
End

GRAPHIC INFO(libreria,grafico,tipo)

Esta funcion permite consultar en tiempo de ejecucion determinadas caracteristicas de un grafico,
especialmente de su animacion (si éste es un grafico animado:GIF,APNG...), aunque también resulta util
para acceder al contenido del grafico.

Las animaciones de los graficos MAP son automaticas, e independientes de los frames por segundo
establecidos por la funcion SET FPS .

PARAMETROS:

INT LIBRERIA : Numero de libreria FPG

INT GRAFICO : Numero de grafico dentro de la libreria

INT TIPO : Tipo de caracteristica a consultar. Pueden ser:
G_WIDTH :Ancho en pixels del grafico
G_HEIGHT :Alto en pixels del grafico
G_CENTER X :Coordenada horizontal del centro
G_CENTER Y :Coordenada vertical del centro
G_DEPTH :Profundidad de color (en bits por pixel)
G_FRAMES Total de "versiones" del grafico
G_ANIMATION_STEP Frame actual de la animacion
G_ANIMATION_ STEPS Total de frames de la animacion
G_ANIMATION_ SPEED Velocidad actual de la animacion
G_PITCH Diferencia en bytes, en memoria, entre 2 filas del grafico

VALOR DEVUELTO: INT : Valor consultado

313

MAP_PUT (LIBRERIA, GRAFICO, GRAFICO-ORIGEN, X, Y)

Esta funcion dibuja un grafico directamente sobre otro, utilizando unas coordenadas dentro del grafico de
destino, (como si éste fuese el fondo de pantalla), de manera que el primer grafico quedara integrado parte
constituyente del segundo

Una limitacion de esta funcion es que ambos graficos deben pertenecer a la misma libreria. Habitualmente
los gréaficos de destino suelen ser graficos temporales creados por NEW_MAP , por lo que puede usarse
como grafico de origen una copia MAP_CLONE de un grafico de cualquier libreria para paliar la
limitacion.

El punto especificado con los parametros equivaldra al lugar dentro del grafico destino donde se dibuje el
centro del grafico origen

Si se especifica como libreria el nimero 0 y como grafico el numero 0, el grafico-origen se dibujara sobre
el fondo de la pantalla.

PARAMETROS:
INT LIBRERIA : Numero de libreria FPG
INT GRAFICO : Numero de grafico de destino dentro de la libreria
INT GRAFICO-ORIGEN : Numero de gréfico a dibujar dentro de la libreria
INT X : Coordenada horizontal
INT Y : Coordenada vertical

Un ejemplo seria éste (se necesitan dos archivos png: “a.png” y “b.png”). En ¢l se “incrusta” dentro del
grafico “a.png” el grafico “b.png”, a cada frame y en distintas posiciones. Este nuevo grafico formado por
las multiples incrustaciones de “b.png” en “a.png”, si quisiéramos, lo podriamos grabar en disco, cosa que
haremos cuando sepamos como hacerlo:

program Test MAP PUT;
begin
set_mode(640,480,16);
graph=load _png("a.png");
x=320;
y=240;
repeat
map_put(0,graph,load png("b.png"),rand(0,319),rand(0,199));
frame;
until(key(_esc))
end

MAP_XPUT (LIBRERIA, GRAFICO, GRAFICO-ORIGEN, X, Y, ANGULO, TAMANO, FLAGS,
REGION)

Esta funcion dibuja un grafico directamente sobre otro, utilizando unas coordenadas dentro del grafico de
destino, como si este fuese el fondo de pantalla. A diferencia de MAP_PUT , esta funcion tiene toda la
flexibilidad del dibujo normal de procesos, incluyendo angulo,tamafio y recorte de una region.

Una limitacion de esta funcion es que ambos graficos deben perteneces a la misma libreria. Esto no suele
ser problema porque habitualmente los graficos de destino suelen ser graficos temporales creados por
NEW_MAP , por lo que puede usarse como grafico de origen una copia MAP_ CLONE de un grafico de
cualquier libreria para paliar la limitacion. No obstante, se puede utilizar map xputnp si se desean utilizar

314

dos graficos de diferentes librerias y obtener una funcionalidad similar.
El punto especificado con los parametros equivaldra al lugar donde se dibuje el centro del grafico a dibujar.
Los flags son una suma o union con el operador OR de los siguientes valores:

+ 1: Dibuja el grafico reflejado horizontalmente, como visto en un espejo.

« 2: Dibuja el grafico reflejado verticalmente.

 4: Dibuja el grafico con transparencia.

« 128: Dibuja el grafico sin tener en cuenta los pixels transparentes del mismo. Esta opcion no es
compatible con el flag 4.

La region corresponde a una limitacion de coordenadas. Hay que tener en cuenta que normalmente una
region se define respecto a la pantalla, y en el caso de esta funcion, los mismos limites se aplican a un
grafico de destino potencialmente mas pequefio. Seguramente sea preciso definir nuevas regiones para
usarlas especificamente con esta funcion.

PARAMETROS:
INT LIBRERIA : Ntimero de libreria FPG
INT GRAFICO : Ntumero de gréafico de destino dentro de la libreria
INT GRAFICO-ORIGEN : Ntimero de grafico a dibujar dentro de la libreria
INT X : Coordenada horizontal
INT Y : Coordenada vertical
INT ANGULO : Angulo del grafico a dibujar en miligrados (90000 = 90°)
INT TAMANO : Tamaiio del grafico a dibujar, en porcentaje (100 = tamafio original)
INT FLAGS : Flags para el dibujo
INT REGION : Region de corte

Un ejemplo seria el siguiente (se necesitan dos archivos png: “a.png” y “b.png”).En ¢l se “incrusta” dentro
del grafico “a.png” el grafico “b.png”, a cada frame y en distintas posiciones y con distinto dngulo, tamafo
y flags. Este nuevo grafico formado por las multiples incrustaciones de “b.png” en “a.png”, si quisiéramos,
lo podriamos grabar en disco,cosa que haremos cuando sepamos como hacerlo:

program Test MAP XPUT;
global
int f[]=0,1,2,3,4,5,6,7,128;

end
begin

set_mode(640,480,16);

graph=load _png("a.png");

x=320;

y=240;

repeat
map_xput(0,graph,load png("b.png"),rand(0,639),rand(0,239),rand(-pi*2,pi*2),rand(5,100),
rand(f[0]./18]));

frame;

until(key(_esc))

end

MAP_XPUTNP(LIBRERIA,GRAFICO,LIBRERIA-ORIGEN,GRAFICO-ORIGEN,X,Y, ANGULO,

315

ESCALA-X, ESCALA-Y,FLAGS)

Esta funcion dibuja un gréafico (grafico de origen) directamente sobre otro (grafico de destino). Si los
parametros avanzados no son necesarios, se puede usar map put o map_xput en su lugar. Si el angulo es 0
y el tamafio es 100, la velocidad serd mayor ya que el grafico no necesita rotarse o escalarse.

Una gran diferencia practica con map xput es que map xputnp permite (a diferencia de la primera)
especificar como grafico-origen y grafico-destino dos gréficos pertenecientes a DIFERENTES librerias.

PARAMETROS:
INT LIBRERIA : Ntmero de libreria FPG que contiene el grafico de destino
INT GRAFICO : Ntimero de gréafico de destino dentro de la libreria
INT LIBRERIA-ORIGEN : Ntimero de libreria FPG que contiene el grafico de origen.
INT GRAFICO-ORIGEN : Ntmero de grafico a dibujar dentro de la libreria

INT X : Coord. horizontal del grafico de destino donde se colocara el grafico de origen
INT Y : Coord. vertical del grafico de destino donde se colocara el grafico de origen
INT ANGULO : Angulo del grafico a dibujar en miligrados (90000 = 90°)

INT ESCALA-X: Escala que define en el eje horizontal el tamafio del grafico de origen
INT ESCALA-Y: Escala que define en el eje vertical el tamafio del grafico de origen
INT TAMANO : Tamafio del grafico a dibujar, en porcentaje (100 = tamafio original)
INT FLAGS : Flags para el dibujo

Un ejemplo de esta funcion podria ser:
program watskeburt;

Global
int destgraph;
int origgraph;
end
Begin
set_mode(320,200,16);
// El grafico de destino serd un cuadrado rojo
destgraph=new map(100,100,16);
map_clear(0,destgraph,rgb(255,0,0));
//El gradfico de origen sera un cuadrado azul
origgraph=new _map(100,100,16),
map_clear(0,origgraph,rgb(0,0,255));
/* Dibuja el cuadrado azul en el centro del cuadrado rojo transparentemente, en un tamario y angulo
aleatorios™/
map_xputnp(0,destgraph,0,origgraph,50,50,rand(-180000,180000),rand(50,150),rand(50,150),4);
map_xputnp(0,destgraph,0,origgraph,50,50,rand(-180000,180000),rand(50,150),rand(50,150),4);
// Muestra el resultado final
map_put(0,0,destgraph, 160,100);
Loop
frame;
End
End

316

PUT(LIBRERIA,GRAFICO,X,Y)

Esta funcion dibuja un gréafico en el fondo de pantalla, en las coordenadas especificadas como parametro.
El punto especificado equivaldra al lugar donde se dibuje el centro del grafico. Por lo tanto, afiade un poco
mas de flexibilidad que put screen, la cual siempre coloca el centro del grafico en el centro de la ventana
del juego.

La misma funcionalidad se puede obtener con map_put y sus dos primeros parametros iguales a 0.

PARAMETROS:

INT LIBRERIA : Numero de libreria FPG
INT GRAFICO : Numero de grafico a dibujar
INT X : Coordenada horizontal

INT Y : Coordenada vertical

Como ejemplo de esta funcién, en vez de poner un fondo “estandar”, vamos a ser mas originales y vamos a
poner un fondo en mosaico. Se repetira horizontal y verticalmente una imagen (de dimensiones bastante

menores que la ventana) de manera que se cubra toda la extension de éste, obteniendo ese efecto mosaico.

program hola;

begin
set_mode(640,480,16);
fill map();
loop
frame;
end
end

Sunction fill_map()

private
int idpng;
int ancho;
int alto;
int i,j;

end

begin

idpng=load_png("dibujo.png");

ancho=graphic_info(0,idpng,g_width);

alto=graphic_info(0,idpng,g height);

/*El truco esta en repetir la orden put a lo largo y ancho de la ventana,mediante dos bucles for: el primero
la ird recorriendo "columna" a "columna" y el segundo, para cada una de esas "columnas”, todas las
"filas". Como las coordenadass donde la funcion put pinta -o sea,el tercer y cuarto pardametro-
corresponden al centro del grdfico en cuestion, los valores de los dos bucles tendran que valer las
coordenadas de las diferentes posiciones del centro de ese grafico a lo largo de toda la ventana para
cubrirla entera, y sin solaparse. Por eso,el primer valor del primer bucle es "ancho/2", porque la
coordenada horizontal del centro del primer grafico a dibujar (el de la esquina superior izquierda) és esa,
y por eso el primer valor del segundo bucle es "alto/2", por la misma razon.Para buscar la coordenada del
siguiente centro es facil: si se busca el siguiente centro horizontal, es sumar el ancho del grdfico a la
posicion del centro actual, y similarmente si buscamos el siguiente centro vertical: sumando la posicion
del alto del grifico a la posicién del centro actual. Esos son los valores del paso de los dos bucles. Y el
significado del la condicion de salida de los fors se basa en detectar cuando ya no hace falta seguir
pintando grdficos tanto horizontalmente como verticalmente pose se ha llegado al final de la ventana. La
condicion viene de que si la coordenada del siguiente centro es mayor que el extremo de la ventana (mas

317

un ultimo ancho/alto para forzar a que en los limites de la ventana se pinten los grdficos aunque estén
recortados) ya no hace falta seguir pintando por alli.
Este sistema de hacer mosaicos en un tema posterior, en el ultimo capitulo, se tratara mas en profundidad,
va que es bastante importante para el uso de los llamados "tiles"*/
for(i=ancho/2;i<800+ancho;i=i+ancho)

for(j=alto/2,j<600+alto,;j=j+alto)

put(0,idpng,i,j);

end
end
end

XPUT(LIBRERIA, GRAFICO,X,Y,ANGULO,TAMANO,FLAGS,REGION):

Esta funcion dibuja un grafico en el fondo de pantalla, en las coordenadas especificadas como parametro, y
aplicando todas las posibilidades de dibujo de un proceso (angulo de rotacion,transparencias, escalado...).
El punto especificado equivaldra al lugar donde se dibuje el centro del gréfico, y a partir de cual se rotara o
cambiard de tamafio.

La misma funcionalidad se puede obtener con map xput y sus dos primeros parametros iguales a 0

PARAMETROS:

INT LIBRERIA : Ntumero de libreria FPG

INT GRAFICO : Numero de grafico a dibujar

INT X : Coordenada horizontal

INT Y : Coordenada vertical

INT ANGULO : Angulo en miligrados (90000 = 90°)

INT TAMANO : Tamafio en porcentaje (100 = tamafio original)
INT FLAGS : Flags para el dibujo

INT REGION : Region de recorte (0 = ninguna)

Un ejemplo trivial para ver su utilidad (necesitaras un grafico llamado “cosa.png”):

program lala;
private
int idpng;

end

begin
set_mode(640,480,16);
idpng=load_png("cosa.png");
xput(0,idpng, 120,240,0,50,1,0);
xput(0,idpng, 520,240,90000,200,4,0),
xput(0,idpng, 60,400,180000,100,0,1);

loop
if(key(_esc)) exit(); end
frame;
end
end

MAP_CLONE (LIBRERIA, GRAFICO)

Esta funcion crea una copia en memoria de un grafico cualquiera. El nuevo grafico se crea como
perteneciente a la libreria 0, y Fénix asigna un niumero nuevo disponible para el mismo. El valor de retorno
de esta funcién corresponde al niimero del nuevo grafico, y debe recogerse para poder utilizarse en

318

cualquier operacion graficas.
Si lo que se desea es crear un grafico nuevo dentro de una libreria FPG distinta de la del sistema, entonces
es preferible usar la funcion FPG_ADD .
PARAMETROS:
INT LIBRERIA : Ntumero de libreria FPG
INT GRAFICO : Numero de grafico dentro de la libreria

Un ejemplo:

program Test MAP CLONE;

global
int orimap,clonemap,clonemap?2;

end

begin
set_mode(640,480,16);
write(0,80,50,4,"Original ");
orimap=new_map(32,20,16);
map_clear(0,orimap,rgb(127,127,127));
map_put(0,0,orimap,80,100);
write(0,240,50,4,"Clon 1");
clonemap=map_clone(0,orimap);
map_put(0,0,clonemap,240,100),
write(0,400,50,4,"Clon 2");
clonemap2=map_clone(0,clonemap);
map_put(0,0,clonemap2,400,100),

repeat
frame;
until(key(_esc))
end

Una utilidad practica de esta funcion es partir de un grafico inicial, el cual se clona, y modificar el grafico
clonado como se desee (por ejemplo con las funciones de la familia map put...), de tal forma que
obtengamos un nuevo grafico, levemente diferente al original en tiempo real sin tener la necesidad de
dibujarlo explicitamente y guardarlo en un FPG como un elemento mas,por ejemplo. El siguiente codigo
muestra esto:

program Test MAP CLONE;

global
int grancuad,pequecuad,cloncuad,cloncuad?2;

end

begin
set_mode(640,480,16);
//Genero el cuadrado grande amarillo (pero no lo muestro todavia)
grancuad=new_map(50,50,16);
map_clear(0,grancuad,rgb(255,255,0));
//Genero el cuadrado pequerio rojo (pero no lo muestro todavia)
pequecuad=new_map(10,10,16),;
map_clear(0,pequecuad,rgb(255,0,0));
//Dibujo en pantalla el cuadrado amarillo original
map_put(0,0,grancuad,80,100);

319

//Genero una copia en memoria del cuadrado amarillo...
cloncuad=map_clone(0,grancuad);

//...y sobre él pinto el cuadrado rojo...
map_put(0,cloncuad,pequecuad,20,20);

/...y muestro el resultado en pantalla
map_put(0,0,cloncuad, 180,100);

//Repito el proceso a partir del primer clon, para crear un segundo
cloncuad2=map _clone(0,cloncuad);
map_put(0,cloncuad?2,pequecuad,40,40);
map_put(0,0,cloncuad?,280,100);

repeat
frame;
until(key(_esc))
end

Incluso podemos utilizar esta misma idea con procesos, El siguiente codigo es una ligera modificacion del
anterior:

program Test MAP CLONE;

global
int grancuad,pequecuad,cloncuad,cloncuad?2;

end

begin
set_mode(640,480,16);
//Genero el cuadrado grande amarillo (pero no lo muestro todavia)
grancuad=new_map(50,50,16);
map_clear(0,grancuad,rgb(255,255,0));
//Genero el cuadrado pequerio rojo (pero no lo muestro todavia)
pequecuad=new_map(10,10,16);
map_clear(0,pequecuad,rgh(255,0,0));

//Este proceso tendra un grdfico asociado compuesto por incrustacion del cuadrado rojo en el amarillo
miproceso(0,grancuad,pequecuad);

/*Podemos comprobar como el grdfico "grancuad" permanece inalterado, porque el map put del
proceso anterior lo hemos hecho sobre un clon suyo*/
put_screen(0,grancuad);
repeat
frame;
until(key(_esc))
end

Process miproceso(int fpg, int grafgrand, int grafpeque)
private

int grafclonado;
end
Begin
grafclonado = map_clone(fpg,graferand);
map_put(fpg,grafclonado,grafpeque,20,20);
graph=grafclonado;
y=320,x=240;
Loop

320

if(key(left)) x=x-10; end
if(key(_right)) x=x+10; end
frame;
End
End

Finalmente, como ejercicio, intenta entender lo que ocurre cuando ejecutamos el siguiente codigo
(necesitaras una imagen llamada “dibujo.png”):

program mapacome;

private
int graforig,grafdest;

end

begin

set_mode(640,480,16);

graforig=load_png("dibujo.png");

grafdest=paintit(graforig);

x=320,y=240;

graph=graforig;

loop
iftkey(_o)) graph=graforig; end
if(key(_d)) graph=grafdest; end
frame;

end

end

function Paintit(int grafico)
private
int map,map2;
end
begin
map=Map _clone(0,grafico);
map2=New _map(graphic_info(0,grafico,g width),graphic_info(0,grafico,g height),16);
map_xput(0,map2,map,0,0,0,200,0),
unload_map(0,map);
return(map2);
end

MAP_BLOCK_COPY (LIBRERIA, GRAFICO, X-DESTINO, Y-DESTINO, GRAFICO-ORIGEN,
X-ORIGEN, Y-ORIGEN, ANCHO, ALTO, FLAGS)

Esta funcion copia una seccion de un grafico delimitada por unas coordenadas de origen (para la esquina
superior izquierda de la zona), un ancho y un alto, a un grafico de destino, posiblemente en otras
coordenadas.

Gracias al valor de flags indicado es posible determinar si los pixels transparentes en el grafico de origen se
ignoran (flags 0) o se copian también (flags 128).

La tnica limitacion es que ambos graficos deben formar parte de la misma libreria. Si se desea realizar la

operacion con graficos en librerias diferentes, la alternativa es crear una copia de uno de los dos graficos
mediante FPG_ADD o MAP_CLONE

PARAMETROS:

321

INT LIBRERIA : Ntmero de libreria FPG

INT GRAFICO : Numero de grafico de destino dentro de la libreria

INT X-DESTINO : Coordenada horizontal de destino

INT Y-DESTINO : Coordenada vertical de destino

INT GRAFICO-ORIGEN : Numero de grafico de origen dentro de la libreria
INT X-ORIGEN : Coordenada horizontal dentro del grafico de origen

INT Y-ORIGEN : Coordenada vertical dentro del grafico de origen

INT ANCHO : Ancho en pixels del bloque a copiar

INT ALTO : Alto en pixels del bloque a copiar

INT FLAGS : Valor de flags

Un ejemplo autoexplicativo:

program prioridades;
const
//Ancho de la imagen sobre la cual se copiarad -parte de- otra imagen diferente ("fuente”)
anchoDestino=50;
//Alto de la imagen sobre la cual se copiarad -parte de- otra imagen diferente ("fuente")
altoDestino=50;
anchoFuente=25; //Ancho de la imagen que sera copiada sobre otra imagen ("destino")
altoFuente=25; //Alto de la imagen que sera copiada sobre otra imagen ("destino")
end
process main()
begin
set_mode(640,480,16);
procesol();
loop if(key(_esc)) exit();end frame; end
end

process procesol ()
private

int grafl;
end
begin
//Imagen "destino": cuadrado de color rojo de 50x50
graph = new_map(anchoDestino,altoDestino, 16); map_clear(0,graph,rgb(255,0,0));x=320,y=240;
//Imagen "fuente" que se copiard -al menos, parte- sobre “destino”’: cuadrado de color amarillo de 25x25
grafl= new_map(anchoFuente,altoFuente,16);map_clear(0,grafl,rgb(255,255,0));
frame(500);
/*Pongo "fuente" en "destino" de manera que la coordenada (0,0) de "fuente" coincida con la coordenada
(0,0) de "destino",y copio todo el grdfico de "fuente", sin ningun flag*/
map_block_copy(0,graph,0,0,graf1,0,0,anchoFuente,altoFuente,0);
frame(500);
/*Pongo "fuente" en "destino" de manera que la coordenada (0,0) de "fuente" coincida con la coordenada
(anchoDestino/2,altoDestino/2) de "destino",y copio todo el grafico de "fuente", sin ningun flag*/
map_block copy(0,graph,anchoDestino/2,altoDestino/2,graf1,0,0,anchoFuente,altoFuente,(),
frame(500);
/*Pongo "fuente" en "destino" de manera que la coordenada (0,0) de "fuente" coincida con la coordenada
(anchoDestino/2,0) de "destino" pero copio solamente una parte del grafico de "fuente" (en concreto, un

322

cuarto de la imagen original ya que el bloque esta definido por (anchoFuente/2,altoFuente/2)), sin ningun
flag®/

map_block_copy(0,graph,anchoDestino/2,0,graf1,0,0,anchoFuente/2,altoFuente/2,0);

frame(500);

/*Pongo "fuente" en "destino" de manera que la coordenada (0,0) de "fuente" coincida con la coordenada
(0,altoDestino/2) de "destino",pero copio solamente una parte del grdfico de "fuente" (en concreto, un
noveno de la imagen original ya que el bloque esta definido por (anchoFuente/3,altoFuente/3)), con un
flag de transparencia™/
map_block_copy(0,graph,0,altoDestino/2,graf1,0,0,anchoFuente/3,altoFuente/3,4),

loop frame; end

end

A continuacién pongo otro codigo de ejemplo similar al anterior, pero en donde las copias de los
bloques de la imagen “fuente” se realizan de forma aleatoria, tanto en posicion como en tamaiio,
consiguiendo un efecto curioso, al menos. Para poderlo ejecutar se necesitaran dos imagenes PNG de
nombre “a.png” y “b.png”, de un tamafio de 640x480 o mas:

Program ejemplo_map_block_copy;
const
//Tamarios de las imagenes
XMAX=640;
YMAX=480;
end

Private
int x_destino, y_destino;
int x_origen, y_origen;
int ancho, alto,
int pngl, png2;

end

Begin

set_mode(640,480,16);

pngl=load png("a.png");

png2=Iload _png("b.png");
/Visualizamos al fondo, de forma centrada, la primera imagen.

graph=pngl;

x=XMAX/2;

y=YMAX/2;
Loop
/*Definimos el punto de la segunda imagen a partir del cual,estableciendo su alto y ancho, crearemos el
bloque que posteriormente copiaremos sobre la primera imagen. Evidentemente, esta posicion ha de
pertenecer a la segunda imagen,por lo que su valor ha de estar dentro del tamario de ésta (en este caso,
640x480)*/

x_origen=rand(0,XMAX),

y_origen=rand(0,YMAX);
/*Definimos el tamario del bloque de imagen. Con el ancho, el alto, y el punto de origen definido en las
dos lineas anteriores,ya tenemos establecido la porcion de la segunda imagen que se colocara sobre la
primera. Ahora solo falta decidir donde*/

ancho=rand(1, 64);

alto=rand(1, 64);
/*Definimos la posicion dentro de la primera imagen a parte de la cual se colocard el bloque establecido
en las lineas anteriores. Evidentemente, esta posicion ha de pertenecer a la primera imagen, por lo que su

323

valor ha de estar dentro del tamario de ésta (en este caso, 640x480)*/
x_destino=rand(0, XMAX),
y_destino=rand(0, YMAX),
/*Esta es la orden que realiza todo el proceso explicado hasta ahora.De hecho, lo tinico que habiamos
hecho hasta aqui era declarar variables,que son las que se utilizan en este comando™/
map_block _copy(0,pngl, x_destino, y_destino, png2, x_origen, y_origen, ancho, alto,0);
Frame;
/angle=angle+1000;
If(key(_esc)) Break; End
End
End

Con la misma imagen “a.png” del ejemplo anterior podemos probar también este otro ejemplo (original de
Carles)de uso de la funcion map_block copy, (un poco més complejo), con el que se obtiene un logrado
efecto de ondulacion.:

program ondular,
begin
set_mode(640,480,16);
write_var(0,0,0,0,fps);
ondular(320,240,0,alpha,load_png("a.png"),20,5000,5000);
end

process ondular(x,y,z,alpha,grafico,radio,omega,delta)
private
int angulo,altura,desfase;
end
begin
graph=new_map(radio*2+graphic_info(0,grafico,g width),graphic_info(0,grafico,g_height),16);
loop
angulo=desfase;
from altura=0 to graphic_info(0,grafico,g_height)
map_block _copy(0,graph,radio+get_distx(angulo,radio),altura,grafico,0,altura,graphic_info(0,gr
afico,g width),1,128);
angulo=angulo+omega,
end
desfase=desfase+delta;
if(angulo>360000) angulo=0; end
if(desfase>360000) desfase=0; end
frame;
end
end

Con las funciones vistas hasta ahora se pueden lograr efectos visuales muy interesantes, como por
ejemplo realizar transiciones de diferentes tipos entre imagenes.

El siguiente codigo de ejemplo (original de Pixel) consiste en pasar de una imagen a otra mediante
una cortina horizontal. Para probarlo has de utilizar las dos imagenes PNG de los ejemplos anteriores:
“a.png” y “b.png”.Una vez probado el ejemplo, si te gusta, para poderlo utilizar en tu juego o programa,
deberas copiar a tu codigo los 2 procesos : “transicion()” y “pixel()”. Y cuando quieras utilizar el efecto,
tendras que escribir: transicion(int graficol,int grafico2,int velocidad); jNo te olvides de hacer pruebas!

324

Program transition;

Private
int ancho_mapa;
int alto_mapa;
end
Begin

set_mode(640,480,16),;

set_fps(60,0);

/finiciamos la transicion

transicion(load _png("a.png"),load_png("b.png"),10);
/* descomentar lo de abajo si en vez de otro grdfico queremos que se vuelva negra la pantalla™/
/7 transicion(load _png("./1.png"),0,10);
End

/*Estos dos procesos son los que tienes que copiar a tu juego o programa si quieres usar este efecto */
Process transicion(fixerol, fixero2,velocidad)

Private
int ancho_mapa,
int alto_mapa;
int tipo=0;
end
Begin
ancho_mapa=graphic_info(0,fixerol,g width),
alto_mapa=graphic_info(0,fixerol,g_height);
While(y<alto_mapa/2+1)
If(tipo==1) tipo=0; Else tipo=1; End
pixel(fixerol,y,ancho_mapa,velocidad,tipo);
pixel(fixerol,alto_mapa-y,ancho_mapa,velocidad,tipo),
yt++;
Frame(velocidad*3),
End
timer[0]=0;
While(timer[0] <300)
Frame;
End
y=0; x=0;
If(fixero2==0) fixero2=new map(640,480,8); End
While(y<alto_mapa/2+1)
If(tipo==1) tipo=0; Else tipo=1,; End
pixel(fixero2,y,ancho_mapa,velocidad, tipo);
pixel(fixero2,alto_mapa-y,ancho_mapa,velocidad, tipo);
yt++;
Frame(velocidad*3);
End
While(NOT(key(_esc)))
Frame;
End
End

/*este proceso que no se te olvide, van juntos™/
Process pixel(fixero,y,ancho_mapa,velocidad, tipo),
Private

color;

325

Begin
graph=new _map(1,1,8);
drawing map(0,graph); //Las funciones draw_* las veremos en el siguiente apartado
drawing color(254);
draw_fcircle(0,0,1);
If{tipo==0)
While(x<ancho_mapa-1)
x++;
color=map_get pixel(0 fixero,x,y);
map_put_pixel(0 father.graph,x,y,color);
x++;
color=map_get pixel(0 fixero,x,y);
map_put_pixel(0,father.graph,x,y,color);
xX++;
color=map_get pixel(0 fixero,x,y);
map_put pixel(0, father.graph,x,y,color);
xX++;
color=map_get pixel(0 fixero,x,y);
map_put_pixel(0 father.graph,x,y,color);
x++;
color=map_get pixel(0 fixero,x,y);
map_put_pixel(0 father.graph,x,y,color);
Frame(velocidad);
End
End
Ifttipo==1)
x=ancho_mapa;
While(x>1)
Xemr
color=map_get pixel(0 fixero,x,y);
map_put pixel(0 father.graph,x,y,color);
e
color=map_get pixel(0 fixero,x,y);
map_put_pixel(0 father.graph,x,y,color);
Xemr
color=map_get pixel(0 fixero,x,y);
map_put_pixel(0 father.graph,x,y,color);
X
color=map_get pixel(0 fixero,x,y);
map_put pixel(0, father.graph,x,y,color);
Jans
color=map_get pixel(0 fixero,x,y);
map_put_pixel(0 father.graph,x,y,color);
Frame(velocidad);
End
End
End

Otra transicion que se puede conseguir es la “cascada”. Un ejemplo (original de “La momia que fuma”):

Program efectillo;

Const

tam=35;

//cambiar para modificar el tamario de los "fideos", cuanto mas grandes mejor rendimiento

326

end
Global
Byte empieza;
int fondol;
int fondo2;
end
Private
int xf=tam;
end
Begin
/- full screen=1I;
set_mode(640,480,16),
fondol=load png("a.png");
fondo2=load png("b.png");
set_center(0,fondo2,0,0),
put_screen(0,fondol);
graph=fondo2;//se puede comentar esta linea para ver como se van generando los "fideos"
z=100;
flags=128,//en teoria al usar este flag (prescindir de transparencia) el grdfico se dibuja mas rapido
While(xf>-690)
Xf=xf-tam;
fideo(xf);
Frame;
End
empieza=1;
End

Process fideo(cual)
Private int vy, end

Begin
flags=128;
y=240;x=-cual+(tam/2);
z=-100;
vy=rand(0,10);
graph=new_map(tam,480,16);
map_put(0,graph,fondo2,cual,();
Repeat
Frame;
Until(empieza)
Repeat
y=ytvy:
vy++;
Frame;
Until(out region(id,0)) //Hasta que el grdfico salga fuera de la pantalla. Consultar funcion out region
unload_map(0,graph);
End

Finalmente, aqui transcribo un codigo fuente que muestra el funcionamiento de cinco efectos: espiral,
persiana horizontal, persiana vertical, cortina horizontal y cortina vertical. La idea del cédigo es que los
procesos que corresponden a cada uno de estos efectos sean inmediatamente transportables a otros codigos
fuente que podamos hacer, de manera que tengamos esta funcionalidad ya lista para funcionar.

Si te fijas, para conseguir estos efectos las unicas funciones que hemos necesitado han sido

327

map_get pixel() y put_pixel() (y graphic_info()).

Para poderlos visualizar necesitaras tener un FPG llamado “graficos.fpg” con dos graficos en su interior, de
codigos 001 y 002 (es aconsejable que el grafico 002 sea de dimensiones bastante menores que 001, para
una mayor comodidad en la visualizacion del efecto):

/* Autor: Pedro Tomas Matilla (!Deemo)

sp_put ESPIRAL (fpg, grafico, x, y, modo);

sp_put PERSIANA HORIZ (fpg, grafico, x, y, modo),

sp_put PERSIANA VERT (fpg, grafico, x, y, modo),

sp_put CORTINA_HORIZ (fpg, grafico, x, y, modo, velocidad);

sp_put CORTINA_VERT (fpg, grafico, x, y, modo, velocidad); &4
Program sp_put;

begin
set_fps(25, 0);
set_mode(800,600,16);
load_fpg("graficos.fpg");
loop
//El while posibilita la visualizacion de los efectos
sp_put ESPIRAL (0, 1, 50, 20, 0); timer=0; while(timer<200) frame,; end
sp_put ESPIRAL (0, 2, 60, 40, 1); timer=0; while(timer<200) frame,; end
sp_put PERSIANA HORIZ (0, 1, 50, 20, 0); timer=0; while(timer<200) frame; end
sp_put PERSIANA HORIZ (0, 2, 60, 40, 1); timer=0; while(timer<200) frame; end
sp_put PERSIANA VERT (0, 1, 50, 20, 0); timer=0; while(timer<200) frame, end
sp_put PERSIANA VERT (0, 2, 60, 40, 1); timer=0; while(timer<200) frame, end
sp_put CORTINA HORIZ (0, 1, 50, 20, 0, 10), timer=0; while(timer<200) frame; end
sp_put CORTINA_HORIZ (0, 2, 60, 40, 1, 10); timer=0; while(timer<200) frame, end
sp_put CORTINA_VERT (0, 1, 50, 20, 0, 10); timer=0, while(timer<200) frame, end
sp_put CORTINA_VERT (0, 2, 60, 40, 1, 10); timer=0; while(timer<200) frame, end
end
end

//-- Efecto 1: - Fundido en espiral ----------—==000==----------—- by !Deemo -<

process sp_put_ESPIRAL(fpg, grafico, x, y, modo)
private
int alto, ancho, gx, gy, ¢, pixel, ini, fin, inc;
int Espiral[49]= 0,0, 1,0, 2,0, 3,0, 4,0, 4,1, 4,2, 4,3,4,4, 3,4, 2,4, 1,4, 04, 0,3, 0,2, 0,1,1,1, 2,1, 3,1, 3,2,
33,23 1,3, 1,2 22;
end
begin
alto= graphic_info(fpg, grafico, g _height);
ancho= graphic_info(fpg, grafico, g width),;

if(modo==0)

ini=0; fin=50; inc=2;
else

ini=48; fin=-2; inc=-2;
end

Jfor(c=ini; c<>fin;, c=c+inc)
for(gy=0; gy<alto; gy=gy+5)
for(gx=0; gx<ancho; gx=gx+5)

328

pixel= map_get pixel(fpg, grafico, gx+Espiral[c], gy+Espiral[c+1]);
if(pixel<>0) put_pixel(x+gx+Espiral[c], y+gy+Espiral[c+1], pixel); end
end
end
frame;
end
end

//-- Efecto 2: - Persiana horizontal ----------—==000==----------- by !Deemo -<

process sp_put_ PERSIANA HORIZ(fpg, grafico, x, y, modo)
private
int alto, ancho, gx, gy, ¢, pixel, ini, fin, inc;
end
begin
alto= graphic_info(fpg, grafico, g _height);
ancho= graphic_info(fpg, grafico, g width),;

if(modo==0)

ini=0; fin=35; inc=1;
else

ini=35; fin=0; inc=-1;
end

for(c=ini; c<>fin; c=c+inc)
for(gy=0; gy<alto,; gy++)
for(gx=0; gx<ancho; gx=gx+5)
pixel= map_get pixel(fpg, grafico, gx+c, gy);
if(pixel<>0) put pixel(x+gx+c, y+gy, pixel); end
end
end
frame;
end
end

//-- Efecto 3: - Persiana vertical ----------- ==000==----------—- by !Deemo -<

process sp_put PERSIANA VERT(fpg, grafico, x, y, modo)
private
int alto, ancho, gx, gy, ¢, pixel, ini, fin, inc;
end
begin
alto= graphic_info(fpg, grafico, g _height);
ancho= graphic_info(fpg, grafico, g width);

if(modo==0)

ini=0; fin=35; inc=1;
else

ini=5; fin=0; inc=-1;
end

for(c=ini; c<>fin, c=c+inc)

329

for(gy=0; gy<alto; gy=gy+5)
for(gx=0; gx<ancho,; gx++)
pixel= map_get pixel(fpg, grafico, gx, gy+c);
if{pixel<>0) put_pixel(x+gx, y+gy+c, pixel); end
end
end
frame;
end
end

//-- Efecto 4: - Cortina horizontal -----------==000==----------- by !Deemo -<

process sp_put CORTINA HORIZ(fpg, grafico, x, y, modo, velocidad)
private
int alto, ancho, gx, gy, ¢, pixel, ini, fin, inc;
end
begin
alto= graphic_info(fpg, grafico, g _height);
ancho= graphic_info(fpg, grafico, g width),;

if(modo==0)

ini=0; fin=ancho+1; inc=1;
else

ini=ancho-1; fin=0; inc=-1;
end

for(gx=ini; gx<>fin, gx=gx+inc)
for(gy=0; gy<alto, gy=gy+2)
pixel= map_get pixel(fpg, grafico, gx, gy);
if(pixel<>0) put pixel(x+gx, y+gy, pixel); end
pixel= map_get pixel(fpg, grafico, ancho-gx, gy+1);
if(pixel<>0) put_pixel(x+ancho-gx, y+gy+1, pixel); end

end
frame(velocidad);
end
end
//-- Efecto 5: - Cortina vertical ----------- ==000==----------—- by !Deemo -<

process sp_put_ CORTINA_VERT(fpg, grafico, x, y, modo, velocidad)

private
int alto, ancho, gx, gy, ¢, pixel, ini, fin, inc;
end
begin
alto= graphic_info(fpg, grafico, g _height);
ancho= graphic_info(fpg, grafico, g width),;

if(modo==0)

ini=0; fin=alto+1; inc=1;
else

ini=alto-1; fin=0; inc=-1;
end

330

for(gy=ini; gy<>fin, gy=gy~+inc)
for(gx=0; gx<ancho,; gx=gx+2)
pixel= map _get pixel(fpg, grafico, gx, gy);
if(pixel<>0) put _pixel(x+gx, y+gy, pixel); end
pixel= map_get pixel(fpg, grafico, gx+1, alto-gy);
if(pixel<>0) put pixel(x+gx+1, y+alto-gy, pixel), end
end
frame(velocidad);
end
end

Como ejemplo de lo que se puede llegar a conseguir graficamente sélamente con el uso de las
funciones que acabamos de ver, y sin la ayuda de ninguna imagen externa, a continuacion pongo el codigo
de un ping-pong (original de Pixel). Su logica todavia no estd acabada (la pelota no hace mas que rebotar
horizontalmente) pero lo interesante no es el juego en si sino el acabado grafico resultante, obtenido en
tiempo real de ejecucion del juego. Como valor anadido ademas, el codigo esta escrito de tal manera que es
totalmente escalable, ya que todos los graficos son proporcionales a la resolucion sefialada en cada
momento: asi, si se indica una resolucion mas pequefia, de forma automadtica las palas, la bola, los
marcadores, etc amoldardn su nueva posicion acordemente, y si la resolucion es mayor, igual. Merece
mucho la pena echarle una ojeada.

Program burrada;

Const
blanco=15;
azul=55;
rojo=24;
gris=6;
grisoscuro=3;
res_x=800;
res_y=640;
End
Global
int altura_marcadores;
int filas;
int columnas;
int tamanocelda; //20 en 800x600
int efepeese=60;
int turno; //1: jugador izquierda, 2: jugador derecha
int graf]5];
int velocidad=3; //Velocidad de la bola
End
Begin
if(res x>400) set_mode(res_x,res_y,16); else set mode(res_x,res_y,16,mode 2xscale); end
set_fps(efepeese,9);

tamanocelda=res x*0.025; //800 = 20
altura_marcadores=res _y/6;
filas=(res_y-altura_marcadores)/tamanocelda;
columnas=res_x/tamanocelda;
mouse.graph=graf[3];

hazgraficos();

pintafondo();

bola(),

331

palol(res_x/10,res_y/2, graf[0]);
palo2(9*res x/10,res_y/2, graf[1]);
senalaturno();

End

Process hazgraficos()

Begin

//palol
graf[0]=new_map(tamanocelda,tamanocelda*4,8),
drawing map(0,graf]0]);

drawing color(rojo);
draw_box(0,0,tamanocelda,tamanocelda*4);
drawing color(rojo-2);
draw_rect(0,0,tamanocelda,tamanocelda*4);

/palo?2
graff1]=new_map(tamanocelda,tamanocelda*4,8),
drawing map(0,graf[1]);

drawing color(azul);
draw_box(0,0,tamanocelda,tamanocelda™4);
drawing color(azul-2);
draw_rect(0,0,tamanocelda,tamanocelda*4);

//bola
graf[2]=new_map(tamanocelda*1.5,tamanocelda*1.5,8);
drawing map(0,graf]2]);

drawing color(blanco),;
draw_fcircle(tamanocelda/l.5,tamanocelda/l1.5,tamanocelda/1.5);
drawing color(gris);
draw_circle(tamanocelda/l.5,tamanocelda/1.5,tamanocelda/1.5);
//raton
graf[3]=new_map(tamanocelda/2,tamanocelda/2,8);
drawing map(0,graf]3]);

drawing color(blanco),;

draw_box(0,0,1,1);
draw_box(0,0,tamanocelda/2,tamanocelda/6),
draw_box(0,0,tamanocelda/6,tamanocelda/2);
draw_box(0,0,tamanocelda/4,tamanocelda/4);

End

Process pintafondo()
Private

inti;
End
Begin
graph=new_map(res_x,res_y,8);
drawing map(0,graph);
drawing color(gris);
// caja marcadores
draw_box(0,0,res_x,altura_marcadores);
drawing color(grisoscuro);
draw_rect(0,0,res_x,altura_marcadores),
// celda fondo
drawing color(grisoscuro);
write(0,res_x/4,altura_marcadores - 10,4, "Marcador 1");

332

write(0,3 *res_x/4,altura_marcadores - 10,4, "Marcador 2");
/filas
from i=0 to filas

draw _line(0,altura_marcadores+(i*tamanocelda),res_x,altura_marcadores+(i*tamanocelda)),

end

//columnas

from i=0 to columnas
draw_line(tamanocelda*i,altura_marcadores+1,tamanocelda*ires y);

end

//linea vertical del centro

drawing color(gris);

draw_box((res_x/2)-2,altura_marcadores,(res_x/2)+2,res_y);

/linea roja vertical

drawing color(rojo);

draw_box(0,altura_marcadores,res_x,altura_marcadores+1);

/linea azul vertical

drawing color(azul);

draw _box(0,res_y-2,res_x,res y);

//y lo ponemos de fondo
put_screen(0,graph);
End
Process bola()
private
int ancho,
int alto;
end
Begin
graph=graf|2];
x=res_x/2;

y=((res_y-altura_marcadores)/2)+altura_marcadores;
ancho=graphic_info(file,graph,g width);
alto=graphic_info(file,graph,g_height);
loop
if(x<res_x/2) turno=1,end
if(x>res_x/2) turno=2;end
if(collision(type palol) or collision (type palo2))
angle=(angle+180000)%360000;
advance(velocidad),
end
advance(velocidad),
sombra();
frame;
end
End

Process palol(x,y,graph)

private
int ancho,
int alto;
end
Begin

ancho=graphic_info(file,graph,g width);

333

alto=graphic_info(file,graph,g_height);

loop
if(key(_down)) y=y+2; end
iftkey(_up)) y=y-2;end
sombra(),
frame;
end

End

Process palo2(x,y,graph)

private
int ancho,
int alto;
end
Begin
ancho=graphic_info(file,graph,g width);
alto=graphic_info(file,graph,g_height);
loop
iftkey(_a)) y=y+2; end
iftkey(_q)) y=y-2;end
sombra();
frame;
end
End

Process sombra()

Begin
if(exists(father))
file=father.file;
graph=father.graph;
size=father.size;
x=father.x;
y=father.y;,
z=father.z+1;
from alpha=128 to 0 step -8
frame;
end
else
return;
end
End

Process senalaturno()

Private
int colorl=rojo;
int color2=azul;
int mapal;
int mapa2;

End

Begin

mapal=new _map(res_x/2,res_y-altura marcadores,8),;
mapal=new_map(res_x/2,res_y-altura_marcadores,8);
y=((res_y-altura_marcadores)/2)+altura_marcadores;
z=2;

334

// mapal

drawing map(0,mapal);

drawing color(colorl);
draw_box(0,0,res_x/2,res_y-altura_marcadores);
// mapa?

drawing map(0,mapa’),;

drawing color(color2);
draw_box(0,0,res_x/2,res_y-altura_marcadores),

loop

if(turno==1)
x=res_x/4;
graph=mapal;
from alpha=0 to 64 step 4

frame;
end
while(turno==1) frame, end
from alpha=64 to 0 step -6;
frame;

end

end

if(turno==2)
x=(res_x/4)*3;
graph=mapa2;
from alpha=0 to 64 step 4

frame;
end
while(turno==2) frame, end
from alpha=64 to 0 step -6;
frame;

end

end

frame;

end

End

FPG_EXISTS(libreria)

Esta funcion devuelve 1 si una libreria FPG existe con el codigo indicado. Puede haber hasta 1000 librerias
FPG en el programa, con codigos de 0 a 999. Es posible usar esta funcion dentro de un bucle para enumerar
todos los graficos que existan en memoria, con la ayuda de map_exists.

PARAMETROS: INT LIBRERIA : Numero de libreria FPG

MAP_EXISTS(libreria, grafico)

Esta funcion devuelve 1 si un grafico dado existe dentro de la libreria indicada. Dado que s6lo puede haber
1000 graficos en una libreria, con codigos de 0 a 999, es posible usar esta funcion dentro de un bucle para
enumerar todos los graficos que existan dentro de una libreria FPG.

PARAMETROS:

INT LIBRERIA : Namero de libreria FPG

335

INT GRAFICO : Numero de grafico dentro de la libreria

GET_SCREEN()

Esta funcién crea un nuevo grafico con el estado de pantalla actual. Es decir, realiza una captura de
pantalla.

Mas concretamente, crea un nuevo grafico con el tamafio y nimero de bits por pixel equivalentes a la
pantalla actual, y seguidamente dibuja sobre €l el fondo de pantalla y todos los procesos, textos y objetos,
en el mismo orden que existan. El resultado es que el nuevo grafico contendra una representacion fiel de la
ultima pantalla que fue mostrada al usuario.

La imagen de la captura queda almacenada en memoria, y lo que devuelve get screen es su codigo
identificador (igual que como lo hace load png, por ejemplo) el cual es creado en ese momento con un
valor aleatorio mayor de 999. Para poder usar a partir de entonces en nuestro cédigo esta imagen capturada,
se tendrd que usar una variable INT -llamémosle “varcaptura” a la cual asignaremos el valor que
get_screen() devuelve (varcaptura=get screen()), para luego, por ejemplo, poder utilizarla como imagen de
un proceso asignando su graph a dicha varcaptura (graph=varcaptura), y haciendo también file=0.

VALOR DE RETORNO: INT : Coédigo del nuevo grafico

El nuevo grafico utiliza el estado actual de todos los procesos y objetos, lo cual significa que cualquier
proceso que se ejecute antes que el proceso que haga GET SCREEN() puede mostrar un aspecto
ligeramente diferente al de la pantalla dibujada el frame anterior. Esto puede resultar util, ya que por
ejemplo es posible obtener una copia de la pantalla sin el cursor del raton simplemente eliminando su
grafico antes de llamar a GET SCREEN y volviéndolo a restaurar inmediatamente después (para que se
vea normalmente en el proximo frame, sin apreciarse ningun "parpadeo").

Si se piensa realizar varias capturas de pantalla, se ha de tener en cuenta el descargar de la memoria la
captura (unload map(0,captura)) ya que cada get screen no sobreescribe el anterior sino que lo guarda en
otro sitio de la memoria con otro codigo aleatorio, por lo que si se realizan muchas capturas sin descargar,
el programa rapidamente empezard a ir cada vez mas lento ya que se estard consumiendo los recursos -la
memoria- del ordenador de forma incontrolada.

Para grabar las capturas en el disco duro, no funciona hacer un save fpg (funcion que veremos
posteriormente) del fpg 0, ya que los graficos de indice mayor de 999 no se graban: se tendria que cambiar
el codigo del grafico de la captura por otro que fuera menor de 999 y no estuviera ocupado, con lo que el
trabajo del programador aumenta. Donde no hay problema es utilizando la funcion save png.

SAVE_PNG(LIBRERIA,GRAFICO,”fichero”)

Esta funcion guarda en disco una imagen en formato PNG, a partir de otra imagen cargada previamente
en memoria .

PARAMETROS:

INT LIBRERIA : Cédigo de la libreria FPG a partir de la cual se obtiene el grafico
origen — o bien O si se trabaja con la libreria del sistema-.

INT GRAFICO : Numero del grafico dentro de ese FPG, o bien el cddigo obtenido
mediante new_map, load png o similares.

STRING “fichero” : Ruta completa del grafico PNG a guardar.

336

En combinacién con otros comandos, como map_xput 0 map xputnp, save _png nos ayudara a guardar en
disco imagenes generadas y manipuladas en nuestros programas que pueden mostrar efectos visuales
interesantes. He aqui, por ejemplo, un cédigo artistico. Este guarda (después de haber cargado un grafico
desde un FPG llamado “test.fpg” y haberlo puesto como fondo) en un fichero temporal en memoria una
captura del fondo hecha a cada frame con save png,y con map xput, pega este PNG creado encima de
la imagen de fondo, girado 0.1 grados sobre su centro y un 1% mas pequefio. Se consigue un efecto
bonito.

PROGRAM TP SAVE PNG;

global
int ficherol,;
int a=0;
end
begin

ficherol = load fpg("test.fpg");
set_mode(320,240,16);
set_fps(150,0);
put_screen(ficherol, 1),
loop
//Se guarda en disco el grdfico actual visible en el fondo
save_png(0,0,"tp_save _png.png");
a=a+100;
/*Se obtiene un “clon” del PNG actualmente grabado, se reescala un -1% y se gira una cantidad “a” y
seguidamente se vuelve a incrustar en el fondo™/
map_xput(0,0,load_png("tp_save png.png"),160,120,a,99,7);
frame;
end
end

El fichero PNG creado no se borra cuando se cierra el programa. Aviso: no dejes funcionando mucho rato
el ejemplo que ralentiza la maquina.

Un ejemplo de esto ultimo seria el siguiente codigo, donde grabamos en un fichero la captura de pantalla
realizada:

program aa;
global
int captura,
end
begin
set_mode(320,240,16);
write(0,10,120,14,"PRUEBA DE CAPTURA");
loop
iftkey(_c))
captura=get_screen();
save_png(0,captura,"captura.png");
end
if(key(_esc)), break;end
frame;
end
end

Incluso podriamos utilizar funciones como map xput o map_xputnp para grabar capturas de pantallas
redimensionadas, movidas de orientacion, semitransparentes,etc. Por ejemplo, podriamos modificar el

337

codigo anterior para obtener una fichero que guarde una captura de la mitad de tamafio que la captura
original.

PROGRAM TP SAVE PNG2;

const
RESX=320;
RESY=240;,
end
private
int original;
int captura;
int nuevo,
end
begin

set_mode(RESX,RESY, 16);
original = load png("a.png");
put_screen(0,original);
loop
if(key(_c))
//Se obtiene la captura de pantalla
captura=get_screen();
/*Se genera una nueva imagen vacia de la mitad de tamario que la pantalla original,
donde se alojara un "clon" (reescalado a la mitad de la captura)*/
nuevo=new _map(RESX/2,RESY/2,16),
/*Se incrusta (centrada) la captura reescalada a la mitad en la imagen vacia creada
en la linea anterior™/
map_xput(0,nuevo,captura, RESX/4,RESY/4,0,50,0);
//Y se graba esta nueva imagen en un fichero
save_png(0,nuevo, "nuevo.png”);
end
frame;
end
end

Un cédigo curioso es el siguiente, que consigue dotar de un efecto “temblor” a la imagen de un proceso. Se
necesita un png llamado “proceso.png’:

program aa;
global

int idpng;
end
begin
set_mode(320,240,16);
idpng=load_png("proceso.png");
miproceso(),
while(lkey(_esc))

frame;

end
end

process miproceso()
begin
graph=idpng;

338

x=160;

y=120;
loop
if(key(_e))efecto_temblor(15,x,y);end
frame;
end
end

Process efecto_temblor(int magnitud,a,b)
private
int mapatemblor,

end

begin

/alpha=150;

Mflags=128;

while(!key(f))
x=a+rand(-magnitud,magnitud);
y=b+rand(-magnitud, magnitud),
mapatemblor=get screen();
graph=mapatemblor;
frame;
unload_map(0,mapatemblor);

end

end

La idea del codigo anterior es sencilla. Se muestra un proceso, y cuando se apreta la tecla “e”, aparece el
efecto temblor. Para que desaparezca éste, se ha de apretar la tecla “f”. El proceso “efecto_temblor” es el
mas interesante: recoge los valores de la x e y del proceso “miproceso” y también recibe como pardmetro
un namero que sera la magnitud del temblor.A partir de aqui, lo Ginico que se hace para simular ese temblor
es variar la x e y aleatoriamente de este nuevo proceso, a partir de la x e y originales y dependiendo de la
magnitud fijada. Pero todavia no se ve nada en pantalla. Lo interesante del asunto estd en que a cada
movimiento del grafico, se hace una captura de pantalla y ésta es la que se asignard al grafico del proceso
“efecto_temblor”, por lo que en realidad en el programa estaremos viendo dos graficos cada vez, el del
“miproceso”, inamovible, y el de “efecto_temblor”, el cual en cada iteracion cambiara.

Importante recalcar que después de haber visionado por pantalla el grafico correspondiente a una iteracion
del temblor, se descarga de memoria para proseguir con la siguiente captura, ya que si no el programa a los
pocos segundos se ralentizaria hasta el extremo.

Lo dejo como ejercicio:,como se podria hacer para que mientras durase el efecto temblor, el grafico del
proceso “miproceso” se dejara de ver, y retornara a ser visible s6lo cuando el temblor hubiera concluido?

GRAPHIC_ SET(libreria, grafico,tipo,valor)

Esta funcion permite cambiar en tiempo de ejecucion determinadas caracteristicas de un gréfico,
especialmente si éste es un grafico animado (GIF,APNG...).

Puede usarse para escoger un frame concreto en los graficos animados, o cambiar la velocidad de su
animacion, en milisegundos. Por ejemplo, una velocidad de 0 detiene la animacion del grafico.Las
animaciones de los graficos son automaticas, e independientes de los frames por segundo establecidos por
la funcion SET FPS .

PARAMETROS:

339

INT LIBRERIA : Numero de libreria FPG

INT GRAFICO : Numero de grafico dentro de la libreria

INT TIPO : Tipo de caracteristica a cambiar. Pueden ser:
G_CENTER X :Coordenada horizontal del centro
G_CENTER Y Coordenada vertical del centro
G_ANIMATION_ STEP Frame actual de la animacion
G_ANIMATION_ SPEED Velocidad actual de la animacién

INT VALOR : Nuevo valor a asignar a la caracteristica

No quisiera dejar de comentar al final de este apartado dedicado a los graficos una posibilidad curiosa que
tenemos disponible a la hora de cargar ficheros FPG. Todo el mundo sabe a estas alturas que para cargar
estos contenedores hemos de escribir en nuestro c6digo una linea semejante a

idfpg=load fpg(*ficherofpg.fpg”);

Pero existe una alternativa para hacer lo mismo, que es escribiendo esto:

load_fpg(“ficherofpg.fpg”, &idfpg);

donde como vemos, el identificador cargado del FPG se le pasara a un puntero que apunta a la variable
“idfpg”. Pero, ;hay alguna diferencia entre esta nueva forma de hacer la carga y la que ya sabiamos?

Pues si, hay una diferencia sutil: esta segunda forma tiene su utilidad basicamente cuando se cargan
ficheros FPG muy grandes (con muchisimos graficos en su interior o con graficos de dimensiones muy
elevadas). Algunos ficheros FPG pueden ser tan grandes que pueden tardar demasiado tiempo en acabar de
cargarse todo completo, y como hasta que no se acaba ese proceso el programa se queda detenido en ese
linea y no continua, el juego se quedaria “congelado” durante unos instantes.

Con esta segunda manera de cargar FPGs se evita este efecto, porque los diferentes graficos del interior del
contenedor se iran cargando “en segundo plano”, continuando la ejecucion del programa mientras tanto.
Esto es muy util, ya hemos dicho, si el archivo es tan grande que se corre el riesgo de parecer que el
programa se haya bloqueado, o si quieres ir haciendo una animaciéon mientras se acaba de cargar entero.

Por ultimo comentar la existencia de la variable global WINDOW STATUS. Esta variable se
pone automaticamente a 0 cuando la ventana del programa estd minimizada, y a 1 cuando esta visible
(incluso aunque esté en segundo plano, tapada por otras ventanas). En juegos que se ejecutan a ventana
completa, esta variable se pone a 1 cuando la aplicacion esté visible, y a 0 si el usuario pasa al escritorio (por
ejemplo, pulsando ALT+TAB en Windows, o el equivalente en otro sistema operativo).

Trabajar con graficos FGC:

En este apartado voy a intentar explicaros el funcionamiento de un puiiado de funciones de
Fénix que nos permitiran, entre otras cosas, poder programar un rudimentario “FPGEdit” que lo Gnico que
haga de momento sea crear un archivo FGC, afiadir en ¢l imagenes y grabarlo en disco.

Este ejercicio nos sera muy util porque de momento no hay ninguna aplicacion disponible que
sea capaz de trabajar con el nuevo formato FGC, sustituto del FPG. Ya se ha comentado que ni el “FPGEdit”
ni el comando de consola “fpg.exe” son capaces de abrir, editar o guardar ficheros en este nuevo formato,por
lo que si queremos empezar a trabajar con ellos, tendremos que recurrir a las funciones que a continuacion se
detallan.

340

FPG_NEW()

Esta funcion crea en memoria una nueva libreria FGC (el nombre de la funciéon puede prestarse a
confusion) y devuelve su codigo numeérico de libreria. A partir de entonces, es posible afiadir nuevos
graficos a esta libreria mediante la funcion FPG_ADD , y grabarla posteriormente a disco con SAVE FGC

NOTAS Todos los graficos afiadidos a una misma libreria deben tener la misma profundidad de color (1, 8
o 16 bits). Afadir un grafico a una libreria cuando ya hay en la misma algin grafico de otro tipo se
considera una condicion de error.

VALOR DE RETORNO: INT : Codigo de la nueva libreria FGC

FPG_ADD (LIBRERIA, GRAFICO, LIBRERIA-ORIGEN, GRAFICO-ORIGEN)

Esta funcién permite modificar una libreria FGC (el nombre de la funcion puede prestarse a confusion) en
memoria, afiadiendo un nuevo grafico a partir de otro grafico ya en memoria.

La libreria de destino debe ser el codigo de una libreria FGC obtenido mediante las funciones LOAD FGC
o FPG_NEW . La libreria de origen debe ser el codigo de otra libreria en memoria, aunque también puede
identificar la propia libreria de destino (para hacer copias de graficos dentro de la misma) o bien la libreria
0, para poder especificar graficos obtenidos con funciones como NEW_MAP .

FPG_ADD crea una copia del grafico original, que sigue siendo valido y accesible. Si ya hubiese un
grafico con el mismo codigo en la libreria de destino, éste sera eliminado de memoria y sustituido por el
nuevo.

La mayor utilidad de esta funcién es crear nuevas librerias de graficos para guardarlas luego con
SAVE FGC . Otras funciones permiten modificar los pardmetros en memoria de los graficos afiadidos a la
libreria, como MAP_SET NAME .

Todos los graficos afiadidos a una misma libreria deben tener la misma profundidad de color (1, 8 o 16
bits). Anadir un grafico a una libreria cuando ya hay en la misma algin grafico de otro tipo se considera
una condicion de error.

PARAMETROS:
INT LIBRERIA : Cédigo de la libreria a modificar
INT GRAFICO : Cédigo deseado para el nuevo grafico, de 0 a 999
INT LIBRERIA-ORIGEN : Codigo de la libreria origen
INTGRAFICO-ORIGEN : Cédigo del grafico original

SAVE_FGC (LIBRERIA, "FICHERO")

Esta funcion crea o sobreescribe un fichero en disco con el contenido de una libreria FGC en memoria que
puede haberse creado con la funcion FPG_NEW , o recuperado de disco mediante LOAD FGC . Los
cambios realizados en memoria con funciones como FPG_ADD o UNLOAD MAP/UNLOAD _ FBM no
afectan al fichero original en disco, asi que es preciso utilizar esta funcién para sobreescribirlo si asi se
desea.

PARAMETROS:
INT LIBRERIA : Cédigo de la libreria a guardar

341

STRING FICHERO : Nombre del fichero

MAP_SET_NAME (LIBRERIA, GRAFICO, "NOMBRE")

Esta funcion cambia el nombre de un grafico en memoria.Todo grafico tiene un nombre de hasta 32
caracteres, que puede cambiarse mediante esta funcion, o recuperarse mediante MAP NAME . Este
nombre es especialmente util cuando el grafico forma parte de una libreria FGC, ya que de otra manera no
habria otro sistema aparte del numero del grafico para distinguir uno de otro.
PARAMETROS:

INT LIBRERIA : Ntimero de libreria FGC

INT GRAFICO : Numero de grafico dentro de la libreria

STRING NOMBRE : Nuevo nombre del grafico

MAP_NAME (LIBRERIA, GRAFICO)

Devuelve el nombre de un grafico.Todo grafico tiene un nombre de hasta 32 caracteres, que puede
recuperarse mediante esta funciéon, o cambiarse mediante MAP SET NAME . Este nombre es
especialmente util cuando el grafico forma parte de una libreria FGC, ya que de otra manera no habria otro
sistema aparte del nimero del grafico para distinguir uno de otro.

PARAMETROS:

INT LIBRERIA: Numero de libreria FGC
INT GRAFICO: Numero de grafico dentro de la libreria

VALOR DEVUELTO: STRING : Nombre del grafico

Vamos a hacer un ejemplo de una aplicacion que cargara un archivo FPG previamente
existente (llamado “antiguo.fpg”) con dos imagenes de cddigos 001 y 002, y guardara las mismas imagenes
en un nuevo archivo FGC llamado “nuevo.fgc”. Es decir, crearemos un conversor FPG->FGC. Esto seria

asi:

program aver;

private
int idfpgl;
int idfpg2;
end
begin

idfpgl=load fpg("antiguo.fpg");
idfpg2=fpg_new();
/*Los graficos se introducen en el nuevo archivo FGC en el mismo orden que estaban en el antiguo FPG*/
Jfpg _add(idfpg2, 1,idfpgl, 1),
fpg_add(idfpg2,2,idfpgl,2),
save_fgc(idfpg2, "nuevo.fgc");
end

Prueba ahora de abrir el archivo “nuevo.fge” con el FPGEdit o el fpg.exe. Veras que devuelven un error
porque no reconocen el formato. ;Y como podemos saber si este archivo “nuevo.fgc” es correcto? Pues
escribiendo un programa que sea capaz de cargar y leer este tipo de archivos.

program aver;

342

global
int idfgcl;
end
begin
idfgcl=load_fgc("nuevo.fgc");
put_screen(idfgel, 1);
proceso();
loop
if(key(_esc)) break; end
frame;
end
unload_fgc(idfgcl);
let_ me_alone();
end

process proceso()
begin
file=idfgcl;
graph=2;
x=100;
y=100;
loop

frame;
end
end

Si deseas tener a mano una herramienta practica que te sirva de conversor de archivos FPG
completos en FGC, no es demasiado dificil programarsela uno mismo en Fénix. Como muestra, a
continuacion presento el codigo de un conversor FPG->FGC (original de Izubiaurre) llamado “fpg2fgc”,
el cual es una aplicacion que se ejecuta desde la linea de comandos de la siguiente manera:

fxi fpg2fge.dcb archivo.fpg

Es decir, nuestro programa ha de recibir un parametro desde la propia consola cmd.exe, el cual serd el
nombre del archivo FPG (incluyendo su extension) a convertir. El archivo FPG ha de estar en la misma
carpeta desde donde se ejecuta “fpg2fgc”, y el nuevo archivo FGC se grabara en ese mismo directorio.

program fpg2fec;
global

int f fpg:

string filename;
end

begin

/*Este if recoge el nombre del archivo FPG especificado como primer parametro en la linea de
comandos de Windows. La recogida de parametros por parte de nuestros programas de Fénix desde la
consola cmd.exe esun tema que no se ha tratado todavia, pero se estudiara posteriormente. (consultar
ultimo capitulo). Baste sabe que para ello se utilizan dos variables predefinidas: argc y argv */
if (argc > 0) //Si se han pasado parametros a nuestro programa desde la consola...

filename = argv[1]; //...El primero de ellos sera el nombre del archivo FPG
else

exit();
end

343

f fpg = load fpg(filename),; //Cargo el archivo FPG

filename = substr(filename,0,len(filename)-4); /*Extraigo la extension de su nombre.La funcion substr se
explica mas adelante en este mismo capitulo™/

save fec(f fpg, filename + "fgc"); /*Linea clave: guardo el archivo identificado por [fpg en formato
FGC, y su nombre serd el mismo que tenia anteriormente mas la extension ".FGC"*/

end

A partir de aqui podriamos programarnos nosotros mismos pequeiias aplicaciones que suplan en parte la
carencia de no tener un programa estilo “FPGEdit” para poder trabajar con ficheros FGC. Por ejemplo, a
continuacioén se muestra un codigo (original de Pixel) que sirve para dos cosas:

1.-Introduce multiples imagenes PNG (han de estar situadas en el directorio actual) dentro de un FGC,
creado en ese mismo momento. Los archivos PNG deberan de tener obligatoriamente como nombre el
namero que se desea tengan dentro del FGC (es decir: 1.png, 2.png,etc hasta 999.png)

2.-Extrae de un FGC multiples imégenes PNG en una carpeta dentro del directorio actual llamada igual que
el archivo FGC, y les pone de nombre en el fichero el nimero que tenian dentro del FGC (es decir: 1.png,
2.png,etc hasta 999.png)

Program hazme el _fgc;

Global
inti=1;
String default text="";
String prompt="_";
int inputtext;
String entry;
int el_fec;
int next=1;
String txt_numi;
int porcentaje;
int linux=-1;
int bites;
end

Begin
set_fps(0,9);
write(0,0,8,0,"1.Mete imdgenes en un nuevo FGC");
write(0,0,16,0,"2.Saca imdgenes de un FGC existente");
Loop
If(key(1)) While(key(_1)) Frame; End png2fgc(); Break; End
If(key(2)) While(key(2)) Frame; End fgc2png(); Break,; End
Frame;
End
End

Process png2fgc()

Begin
delete text(all text);
write(0,0,0,0,"Una pequeria nota:");
write(0,0,8,0,"Suele provocar problemas en sistemas linux");
write(0,0,16,0,"(u otros que no sean windows) que la");
write(0,0,24,0, "extension no coincida mayusculas y minusculas.");
write(0,0,32,0,"Debes pasar todas las extensiones a minusculas.");
write(0,0,40,0,"Cuando estes preparado pulsa Intro.");

344

While(!key(_enter)) Frame; End
delete text(all text);
write(0,0,0,0,"N° de colores");
write(0,0,8,0,"(1) 8bit - 256");
write(0,0,16,0,"(2) 16bit - 65536");
While(bites==0)
If(key(1)) bites=8,; End
If(key(2)) bites=16, End

Frame;
End
set_mode(320,240,bites);
y=10;

delete_text(all text);
entry = default_text ;
write(0,0,0,0,"Nombre del FGC a crear (sin la extension)");
Loop
/*En las lineas siguiente utilizaremos una variable global predefinida todavia no explicada:
SCAN _CODE. No te preocupes ahora de ella, no es importante. Solo has de saber que actia de forma
similar -aunque no idéntica- a la funcion key(): es decir, sirve para detectar qué tecla se ha pulsado. Sus
valores pueden ser las mismas constantes que se usan en la funcion key()*/
If(scan_code == backspace) entry = substr (entry, 0, -2); End
If(scan_code == _enter) Break ; End
scan_code = 0 ; //Esta linea hace que el programa crea que no hay pulsada ninguna tecla
/*La linea siguiente es un poco complicada de entender en estos momentos, sin haber estudiado primero
las funciones de cadena y de uso del teclado, pero basicamente sirve para recoger el texto introducido a
traves del mismo: recoge lo que el usuario escriba y lo almacena en la variable de tipo cadena “entry”.*/
If (ascii >= 32) entry = entry +chr(ascii) ; ascii = 0; End
inputText = write (0,x,y,0,entry + prompt),
Frame ;
delete text (inputText) ;
End
delete_text(all text);
write(0,0,0,0,"Espera...");
el fec=fpg new();
delete_text(all text);
write(0,0,0,0,"Cargando...");
delete_text(all text);
write(0,0,0,0,"Metiendo imdgenes al fgc...");
write_var(0,208,0,0,porcentaje);
While(i<999)
porcentaje=i*100/999;
If(next==1) next=0; convierte_png2fgc(i); End
Frame;
End
delete_text(all text);
write(0,0,0,0,"; Guardando!");
save_fac(el fgc,entry + "fac");
delete_text(all text);
write(0,0,0,0,";Se ha finalizado la introduccion!");
While(!key(_enter)) Frame, End
exit();
End

Process convierte png2fgc(num)

345

Begin

If(file_exists(itoa(num)+".png"))
graph=load_png(itoa(num)+".png");
fpg _add(el fgc,num,0,graph);

End
i++;
next=1;
End
Process fgc2png()
Begin

delete_text(all text);
set_mode(320,240,16),
set_fps(0,0);
y=10;
delete text(all text);
write(0,0,0,0,"; En que sistema operativo estds?");
write(0,0,8,0,"(1) Windows");
write(0,0,16,0,"(2) Linux");
While(linux==-1)
If(key(1)) linux=0; End
Ifkey(2)) linux=1; End
Frame;
End
delete_text(all text);
write(0,0,0,0, "Necesitas crear una carpeta que se llame como");
write(0,0,8,0,"el fgc y darle derechos de acceso para");
write(0,0,16,0,"que el programa pueda guardar las imdgenes.");
write(0,0,24,0,"En caso contrario, las imdgenes se guardaran”);
write(0,0,32,0,"en la misma carpeta en la que esta el programa.”);
write(0,0,40,0,"Cuando estes preparado pulsa Intro.");
While(!key(_enter)) Frame; End
While(el _fgc<=0)
delete_text(all text);
entry = default_text ;
write(0,0,0,0,"Nombre del FGC a tratar (sin la extension)");
Loop
If(scan_code == backspace) entry = substr (entry, 0, -2); End
If(scan_code == _enter) Break ; End
scan_code = 0 ;
If (ascii >= 32) entry = entry + chr(ascii);ascii = 0 ; End
inputText = write (0,x,y,0,entry + prompt);
Frame ;
delete_text (inputText) ;
End
delete_text(all text);
write(0,0,0,0,"Espera...");
el _fgc=file exists(entry + " fac");
frame;
End
x=160; y=120;
delete_text(all text);
write(0,0,0,0,"Cargando...");
el fgc=load fgc("./" + entry + "fgc");

346

delete_text(all text);
If(linux==0) mkdir(entry); End
If(linux==1) chdir(entry); End
file=el fgc;
delete text(all text);
write(0,0,0,0, "Extrayendo...");
write_var(0,118,0,0, porcentaje);
While(i<999)
porcentaje=i*100/999;
If(next==1) next=0; graph=i, convierte fgc2png(i); End
Frame;
End
delete_text(all text);
write(0,0,0,0,";Se ha finalizado la extraccion!");
While(!key(enter)) Frame,; End
exit();
End

Process convierte_fgc2png(num)

Begin
If(graphic_info(el fgc,num,g width)!=0 AND graphic_info(el_fgc,num,g height)!=0)
If(linux==0)
save_png(el fgc,num,entry+"/"+itoa(num)~+".png");
Else
save_png(el fgc,num,itoa(num)+".png");
End
End
i++;
next=1;
End

Con el c6digo anterior obtenemos una parte pequefia de la funcionalidad que nos ofrece el “FPGEdit” para
archivos FPG, porque, no obstante, falta bastante todavia. Por ejemplo, para lograr tener mas flexibilidad
en el tratamiento de contenedores FGC, se necesitaria incorporar a Fénix alguna funcion que nos permitiera
eliminar imagenes del FGC y seguramente también otra que las listara, entre otras ideas.

Dibujar primitivas graficas:

Por primitiva grafica se entiende una figura simple de dibujar, como una linea, un circulo o un
rectangulo. Estas formas sencillas se llaman primitivas porque a partir de ellas se pueden crear la mayoria de
dibujos posibles: cualquier grafico de hecho no es mas que un conjunto mas o menos complejo de circulos (y
elipses) y poligonos (rectangulos, triangulos...)

Para dibujar primitivas graficas, Fénix dispone de unas cuantas funciones especificas. Esta claro
que podriamos utilizar como hasta ahora cualquier editor de imagenes para dibujar los circulos y rectangulos
y luego utilizar el FPG correspondiente, pero en el caso de estas figuras tan sencillas de dibujar, Fénix ofrece
la posibilidad de crearlas mediante codigo, mejorando asi la velocidad de ejecucion del programa, y también
la comodidad del programador, que no tiene que recurrir a dibujos externos creados previamente.

La primera funciéon que tendremos que escribir siempre cuando queramos pintar primitivas
graficas, sea cual sea su tipo, es DRAWING MAP.

347

DRAWING MAP(libreria, grafico)

Esta funcion escoge el grafico destino donde se pintaran las primitivas graficas (DRAW_RECT,
DRAW_LINE, DRAW_CIRCLE,etc) que vayamos a dibujar, ya que en Fénix cualquier primitiva grafica
siempre se ha de pintar sobre un grafico determinado, definido mediante esta funcién. Es decir, no es
valido llamar a ninguna de estas funciones si no se escoge antes un fondo como destino.

El grafico (0, 0) representa el fondo de pantalla.

PARAMETROS:

INT LIBRERTA : Numero de libreria FPG
INT GRAFICO : Numero de grafico a dibujar

DRAWING_COLOR(color)

Esta funcion permite escoger el color con el que se dibujaran las primitivas graficas (DRAW_RECT,
DRAW_BOX, DRAW_LINE, DRAW_CIRCLE,DRAW_FCIRCLE,etc) hasta nuevo cambio..

Como siempre, en el caso de modos graficos de 256 colores (8 bits), el valor de color debe ser un numero
de 0 a 255. En el caso de modos graficos de 16 bits, el valor es una codificacion de las componentes del
color que varia en funcion de la tarjeta de video y el modo grafico. Lo normal es usar la funcion RGB para
obtener la codificacion de un color concreto, o bien usar un color obtenido por una funciéon como
MAP_GET PIXEL

PARAMETROS: INT COLOR : Namero de color

DRAWING_ALPHA (alpha)

Esta funcion permite escoger el valor de transparencia a utilizar con todas las primitivas graficas (funciones
que empiezan por DRAW), hasta nuevo cambio. Un valor de 255 indica opacidad completa (sin
transparencia), mientras con un valor de 0 la primitiva grafica seria invisible. Es valido usar cualquier valor
intermedio (por ejemplo, 128 para especificar una transparencia del 50%). Por defecto el valor de
transparencia es de 255 y las primitivas sedibujan sin transparencia.

PARAMETROS: INT ALPHA : Valor de opacidad, entre 0 y 255

DRAW_RECT(X1,Y1,X2,Y2)

Un rectangulo consta de cuatro lineas (dos verticales y dos horizontales) y no esta relleno. Esta funcion
dibuja un rectangulo entre dos puntos sobre el grafico escogido por la ultima llamada a DRAWING MAP,
empleando el color elegido con la funcion DRAWING COLOR.

El primer punto representa el vértice superior izquierdo de la figura, y el segundo punto el vértice inferior
derecho.

El origen de coordenadas vienen referidas siempre a la esquina superior izquierda del grafico sobre el que
se pintard el rectangulo (el escogido por la ultima llamada a DRAWING MAP). Es valido especificar
coordenadas fuera de los limites del grafico, pero el dibujo resultante se recortara sobre éstos.

348

Ademas, se utiliza el ltimo valor especificado con DRAWING ALPHA como nivel de transparencia para
el dibujo, de manera que es posible dibujar un rectangulo parcialmente transparente.

PARAMETROS:

INT X1 : Coordenada horizontal del primer punto
INT Y1 : Coordenada vertical del primer punto
INT X2 : Coordenada horizontal del segundo punto
INT Y2 : Coordenada vertical del segundo punto

Vamos a escribir un pequeiio ejemplo que nos pinte en pantalla varios rectangulos de dimensiones,colores
y transparencias diferentes:

program Test DRAW RECT;
begin
set_mode(640,480,16);
drawing map(0,0);
repeat
drawing color(rand(0,65535));
drawing_alpha(rand(0,255)),
draw_rect(rand(0,639),rand(0,479),rand(0,639),rand(0,479));
frame;
until(key(_esc))
end

En este ejemplo lo que hemos hecho ha sido pintar rectangulos en el grafico de fondo de pantalla —y como
no hay ninguno definido, en realidad se pintan sobre el fondo negro-.

Pero con DRAWING MAP hemos dicho que se puede definir un grafico cualquiera sobre el cual, y s6lo
sobre éste, se pintaran las primitivas. Para verlo, ejecuta el siguiente ejemplo, donde se ha definido un
grafico sobre el cual se pintaran unas primitivas (y que por tanto, no podran pintarse fuera de él), de
manera que éstas no se veran por todo el fondo de la pantalla sino que apareceran visibles solamente los
trozos que se pinten sobre ese grafico determinado. Para comparar y ver la diferencia, en el mismo ejemplo
también se pintan primitivas en toda la pantalla

program Test DRAWING MAP;
global
int Map;
end
begin
set_mode(640,480,16);
/*Genero el grdfico donde se van a pintar las primitivas. Fuera de él no se pintardan. Este grdfico es un
cuadrado de 200x200 de color blanco*/
map=new_map(200,200,8);
map_clear(0,Map,rgb(255,255,255));
/Visualizo el grdfico, y lo doy una posicion dentro de la pantalla
graph=Map;
x=320; y=240;
//Proceso que pinta una serie de primitivas graficas dentro de el cuadrado blanco
Draw_Grafico();
/*Para comparar con el proceso anterior, también ejecutamos este proceso, el cual pinta las primitivas
grdficas en todo el fondo (grafico 0,0)*/

349

Draw_Pantalla();
timer=0;
repeat
//Cada 2 segundos pinto una nueva primitiva tanto dentro del cuadrado blanco como fuera
if(timer>200)
Draw_Grafico();
Draw_Pantalla(),
timer=0;
end
frame;
until(key(_esc))
end

process Draw_Grafico()
begin
/*La linea clave: estamos diciendo que todas las primitivas que se generen a partir de ahora (hasta nuevo
aviso)solo se pintaran sobre el grafico especificado por "Map"*/
drawing map(0,Map);
drawing color(rand(0,255));
draw_rect(rand(0,639),rand(0,419),rand(0,639),rand(0,419));
end

process Draw_Pantalla()
begin
/*Todas las primitivas que se generen a partir de ahora (hasta nuevo aviso) se podran pintar en toda la
pantalla*/
drawing map(0,0);
drawing color(rand(0,255)),
draw_rect(rand(0,639),rand(0,419),rand(0,639),rand(0,419));
end

Creo que es fécil de entender.

A parte de rectangulos, también podemos dibujar mas cosas:

DRAW_CIRCLE(X,Y,RADIO)

Dibuja un circulo (sin relleno) alrededor de un punto, sobre el grafico escogido por la ultima llamada a
DRAWING MAP, empleando el color elegido con DRAWING COLOR, y el nivel de transparencia
especificado en la Gltima llamada a DRAWING_ALPHA.

El origen de coordenadas vienen referidas siempre a la esquina superior izquierda del grafico sobre el que
se pintara el circulo (el escogido por la ultima llamada a DRAWING MAP). Es valido especificar
coordenadas fuera de los limites del grafico, pero el dibujo resultante se recortara sobre éstos.

PARAMETROS:

INT X : Coordenada horizontal del centro
INT Y : Coordenada vertical del centro
INT RADIO : Radio en pixels

DRAW_LINE(X1,Y1,X2,Y2)

350

Dibuja una linea entre dos puntos en el grafico escogido por la tltima llamada a DRAWING MAP,
empleando el color elegido con DRAWING COLOR Yy el nivel de transparencia especificado en la tltima
llamada a DRAWING ALPHA.

El origen de coordenadas vienen referidas siempre a la esquina superior izquierda del grafico sobre el que
se pintara la linea (el escogido por la ultima llamada a DRAWING MAP). Es valido especificar
coordenadas fuera de los limites del grafico, pero el dibujo resultante se recortara sobre éstos.

PARAMETROS:

INT X1 : Coordenada horizontal del primer punto
INT Y1 : Coordenada vertical del primer punto
INT X2 : Coordenada horizontal del segundo punto
INT Y2 : Coordenada vertical del segundo punto

Un codigo curioso que se puede probar para ilustrar el funcionamiento de esta funcion es éste.

program line;
begin
set_mode(320,240,16),
x=10; y=10;
loop
if(key(_up))y=y-1 ;end
iftkey(_down))y=y+1 ;end
if(key(_left))x=x-1;end
if(key(_right))x=x+1 end

delete_draw(0);
drawing color(rgb(0,255,0));
draw_line(0,0,x,y);
frame;
end
end

DRAWING_STIPPLE(valor)

DRAW_CURVE(X1,Y1,X2,Y2,X3,Y3,X4,Y4,nivel)

Dibuja una curva Bézier entre dos puntos (puntos 1 y 4), usando otros dos puntos (puntos 2 y 3) como
puntos de control de la curva. El nivel de calidad es un valor entero entre 1 y 16. A mayor nivel de calidad,

351

mas precisa serd la curva, pero mas costoso sera dibujarla. Se recomienda un nivel de calidad entre 6 y 9.

Usa el color escogido por elegido con DRAWING COLOR, en el grafico escogido por la ultima llamada a
DRAWING MAP. Ademas, se utiliza el ultimo valor especificado con DRAWING ALPHA como nivel
de transparencia para el dibujo, de manera que es posible dibujar una curva parcialmente transparente.

El origen de coordenadas vienen referidas siempre a la esquina superior izquierda del grafico sobre el que

se pintara la curva (el escogido por la ultima llamada a DRAWING MAP). Es valido especificar
coordenadas fuera de los limites del grafico, pero el dibujo resultante se recortara sobre éstos.

PARAMETROS:

INT X1 : Coordenada horizontal del primer punto
INT Y1 : Coordenada vertical del primer punto
INT X2 : Coordenada horizontal del segundo punto
INT Y2 : Coordenada vertical del segundo punto
INT X3 : Coordenada horizontal del tercer punto
INT Y3 : Coordenada vertical del tercer punto

INT X4 : Coordenada horizontal del cuarto punto
INT Y4 : Coordenada vertical del cuarto punto
INT NIVEL : Nivel de calidad de la curva

DRAW_BOX(X1,Y1,X2,Y2)

Dibuja un rectangulo con relleno de color entre dos puntos sobre el grafico escogido por la tltima llamada
a DRAWING_MAP, empleando el color elegido con DRAWING COLOR vy el nivel de transparencia
especificado en la Gltima llamada a DRAWING_ALPHA. Todos los puntos delimitados por

esas cuatro coordenadas seran cambiados al color escogido.

El origen de coordenadas vienen referidas siempre a la esquina superior izquierda del grafico sobre el que
se pintara el rectangulo (el escogido por la ultima llamada a DRAWING MAP). Es valido especificar
coordenadas fuera de los limites del grafico, pero el dibujo resultante se recortard sobre €stos.

PARAMETROS:

INT X1 : Coordenada horizontal del primer punto
INT Y1 : Coordenada vertical del primer punto
INT X2 : Coordenada horizontal del segundo punto
INT Y2 : Coordenada vertical del segundo punto

DRAW_FCIRCLE(X,Y,RADIO)

Dibuja un circulo (con relleno de color) alrededor de un punto sobre el grafico escogido en la tltima
llamada a DRAWING MAP, empleando el color elegido con DRAWING COLOR vy el nivel de
transparencia especificado en la ultima llamada a DRAWING ALPHA.

El origen de coordenadas vienen referidas siempre a la esquina superior izquierda del grafico sobre el que
se pintard el circulo (el escogido por la ultima llamada a DRAWING MAP). Es valido especificar
coordenadas fuera de los limites del grafico, pero el dibujo resultante se recortara sobre éstos.

PARAMETROS:

352

Loop
delete_draw(0);
drawing color(color);
draw_box(320,180,380,220),

// Cogemos el color del punto del fondo de la pantalla
color = map_get pixel(0,0,mouse.x, mouse.y);
Frame;
If(key(_esc)) Break, End

End

End

Con las funciones descritas hasta ahora, lo tnico que podemos hacer es dibujar una primitiva
asociandolo a un grafico (aunque sea el fondo). Si este grafico dejara de visualizarse en pantalla, todas las
primitivas pintadas en ¢l desaparecerian con ¢él. Para hacer que una primitiva tenga una entidad propia y no
necesite de ningun grafico extra para poder ser mostrada, lo primero que hay que hacer es “activar este modo
de trabajo”, con el cual lograremos tener un mayor control sobre una primitiva determinada (en concreto,
podremos borrarla o moverla de forma independiente), ya que cada una de ellas dispondra de un
identificador propio y tnico, obtenido en la llamada a la funcion grafica que la haya creado.

Para “activar este modo de trabajo”, lo primero que hay que hacer es prescindir de
DRAWING MAP, y en su lugar utilizar la funcion DRAWING Z. Esta funcion, ademas, tiene un parametro
que indica la Z a la que se veran las primitivas que se pinten a partir de entonces.

LY qué ganamos con esta manera de trabajar? Pues poder utilizar dos nuevas funciones:
DELETE DRAW y MOVE DRAW, las cuales no podriamos usar si trabajaramos con DRAWING MAP, y
que sirven, respectivamente, para borrar y mover en la pantalla una primitiva concreta.

DRAWING Z(Z)

Activa el “modo persistente” (independiente de los demds graficos) en las funciones de dibujo de
primitivas y escoge el nivel de profundidad a utilizar.

Tal como he dicho, por defecto, las funciones de dibujo actian sobre el fondo de pantalla o el grafico
especificado en la tltima llamada a la funcion DRAWING MAP.Sin embargo, una llamada a esta funcion
activara un modo de funcionamiento alternativo, en el cual las primitivas graficas (dibujadas con las
funciones que empiezan por DRAW) persisten en pantalla como un grafico independiente mas, y podran
tener un identificador Unico.

Al igual que un proceso, estas primitivas graficas se dibujan con una coordenada Z determinada, que
permite que hayan procesos dibujados por encima o debajo de ellas. Esta funcion, ademas de activar este
modo, permite escoger la coordenada Z que se aplicara a las primitivas graficas dibujadas después de
llamarla.

Para poder dibujar objetos con distinta coordenada Z, cada primitiva recuerda la coordenada Z elegida en el
momento en que fue creada. Es posible, por lo tanto, hacer varias llamadas a DRAWING Z entre llamadas
a funciones de dibujo para poder cambiar el valor decoordenada Z con la que ir creando nuevas primitivas.

Las primitivas graficas dibujadas de esta manera, tal como he dicho, podran manipularse mediante las
funciones MOVE DRAW y DELETE DRAW.

355

Para desactivar este modo y volver a hacer dibujos directamente sobre el fondo de pantalla u otro grafico,
es preciso llamar a la funcion DRAWING MAP cuando se necesite.

PARAMETROS : INT Z : Valor de profundidad, indicativo del orden de dibujo

DELETE DRAW(primitiva)

Destruye (borra) una primitiva creada con una de las funciones de primitivas (utilizan todas el prefijo
DRAW), si ésta se ha creado después de una llamada a DRAWING Z.

El parametro que identifica a la primitiva es el valor devuelto por la funcion llamada para crearla.

Alternativamente, puede especificarse 0 como objeto, con lo que esta funcion destruira todos los objetos
creados con funciones de primitivas graficas.

PARAMETROS: INT OBJETO : Identificador de la primitiva a eliminar

MOVE_DRAW (primitiva,X,Y)

Mueve una primitiva grafica creada con una de las funciones de primitivas (utilizantodas el prefijo
DRAW), si ésta se ha creado después de una llamada a DRAWING Z, a una coordenada concreta de la
pantalla.

Las coordenadas especificadas hacen referencia al primero de los puntos utilizados para dibujar una linea o
curva, o bien al centro del circulo.

La grafica no sera deformada, sélo desplazada: en una linea, el segundo punto sera desplazado en la misma
magnitud que el primero.

PARAMETROS:

INT OBJETO : Identificador del objeto a mover
INT X : Nueva coordenada horizontal
INT Y : Nueva coordenada vertical

Para ver esto mejor, estudiemos unos ejemplos. Prueba de escribir esto:

program Test DRAW;

global
int idcire;

end

begin
set_mode(640,480,16);
set_fps(1,1);
drawing map(0,0);
repeat

drawing color(rand(0,65535));
drawing_alpha(rand(0,255));
idcirc=draw_circle(rand(0,639),rand(0,479),rand(0,320));
frame;

356

Trabajar con el teclado (aceptar cadenas de caracteres) :

Supongo que a estas alturas te habras preguntado si existe algin comando de Fénix que permita
la introduccion de cadenas de caracteres desde el teclado por parte del jugador. Un ejemplo tipico seria
cuando en un juego se pregunta el nombre al jugador para inscribirlo en la lista de récords de puntos. O para
darle un nombre al protagonista de un RPG, o incluso, en ese RPG, para poder escribir la respuesta a alguna
pregunta que se le haga al personaje.

Pues bien. No existe ningiin comando que haga eso. Y para poder conseguir una funcionalidad
parecida, tendremos que recurrir a ciertas artimafas.

Lo que si tiene Fenix es una variable global entera llamada ASCII que guarda en cada momento
un numero. Y ese numero es el valor ASCII de la tecla pulsada en el ultimo frame o un 0 si no se pulso6
ninguna. (Si se han pulsado varias teclas durante el frame las pulsaciones quedan almacenadas en un
pequefio buffer que evita la pérdida de pulsaciones).;Pero qué es eso de los valores ASCII?;Qué tiene que
ver con lo que yo escribo con el teclado?Lo explico.

Todos los PC incorporan grabada nivel de circuiteria hardware una tabla, la tabla ASCII. Por
ser PC, ya tienen esa tabla incrustada en los chips. Y esa tabla simplemente es una correspondencia entre
los caracteres mas usuales (letras minusculas, letras mayusculas, digitos, signos de puntuacion, espacios en
blanco,etc) y un nimero, el llamado coédigo ASCII para un caracter determinado. La tabla tiene 256
codigos, desde el 0 hasta el 255, por lo que no caben muchos caracteres, s6lo los mas usuales en el idioma
inglés. Por ejemplo, el codigo ASCII del caracter ‘A’ (letra a mayuscula) seria el nimero 65, del codigo de
‘B’ seria el 66, el del digito ‘0’ el 48, el del digito ‘1° el 49, el del caracter ‘a’ (letra a minuscula) el 97, el
de la ‘b’ el 98, el del espacio en blanco el 32,etc. Si quieres saber cual es el codigo ASCII de cualquier
caracter es muy facil: o haces un programa que te saque toda la lista, o bien visitas
http://www.asciitable.com, o bien en cualquier editor de textos o barra de direcciones del explorador
tecleas el codigo que quieras con el teclado numeérico del teclado mientras mantienes pulsada la tecla ALT.
Y ya veras que se escribe el caracter correspondiente. Por ejemplo, algunas direcciones de paginas web
tienen el caracter ~. Este caracter no aparece en ninguna tecla del teclado; por lo que el truco esta en
imprimirlo utilizando su cédigo ASCII, que es el 126.

Venga, va. Porque soy bueno, aqui tienes un posible codigo para obtener la lista de caracteres ASCII.
PROGRAM ascii_table;

PRIVATE

INT cx = 0;
INT cy = 0;
INT g_char = 0;
END

BEGIN
graph = new_map(320, 320, 8);
set_center (0, graph, 0, 0);
set_mode(640, 480, 8);
FROMcy =070 15
FROM cx=0T0O 15
g char = write_in_map(0, chr((cy*16)+cx), 0);
map_put(0, graph, g _char, cx*20, cy*20);
unload map(0, g _char);
END
END
WHILE (NOT key(_esc)) FRAME; END

358

http://www.asciitable.com/

END

.Y por qué este lio de asignar un nimero con un caracter? ;Para qué sirve? Bueno, pues porque para las
maquinas les es muchisimo mas facil trabajar con nimeros que con letras.Muchisimo. Y por tanto, se
pensé que se podria trabajar con las letras como si fueran niimeros, y continuar trabajando con ellos
igualmente. Teniendo la tabla ASCII ya se tiene todo lo necesario.

Bien, volvamos a donde estabamos. Fenix tiene una variable global entera, la variable ASCII,
que almacena el codigo ASCII del caracter pulsado en el teclado en el frame actual.Si en este ultimo frame
no se ha pulsado ninguna tecla, devuelve 0. Por tanto, la variable ASCII se actualiza en cada Frame a 0 si no
se ha pulsado nada o a la tecla que se haya pulsado en ese frame concreto. Si se han pulsado varias teclas
durante el frame, (que es lo normal porque dependiendo de la velocidad que hayamos configurado con
set_fps tendremos tiempo de sobra para pulsar mas teclas),las pulsaciones quedan almacenadas en un
pequetio buffer (almacén temporal de memoria)que evita la pérdida de pulsaciones.

Por lo tanto, si se quiere recoger la entrada por teclado de un conjunto de caracteres, el truco
mas evidente sera hacer la lectura de los caracteres de uno en uno en un bucle, donde en cada iteracion el
valor de la variable ASCII se imprimiria por pantalla. Y el bucle finalizaria cuando se pulsara una tecla
concreta, como puede ser la tecla ENTER. Por cierto, no confundir la tecla ENTER con el caracter ENTER
(que también existe): el caracter ENTER es un caracter mds como otro cualquiera que se “imprime” cuando
se pulsa la tecla ENTER, pero no es lo mismo una tecla que un caracter (en la tecla “A” se pueden imprimir
dos caracteres diferentes: la a mayuscula y la a minuscula.Por si lo quieres saber, el caracter ENTER viene
representado por el nimero 13 (retorno de carro).

Por ejemplo, podriamos utilizar el siguiente codigo.

program hola;

private
string cadena;
end
begin
repeat
if(ascii!=0)
cadena=cadena~+chr(ascii);
write_var(0,100,100,4,cadena);
end
frame;
until(key(_enter))
loop
frame;
end
end

Este programa hace lo siguiente: consiste en un bucle REPEAT/UNTIL que va a acabar cuando se pulse la
tecla ENTER. Mientras no ocurra esto, se van a ir recogiendo los caracteres tecleados y se iran
imprimiendo a la vez en tiempo real por pantalla. Para lograr esto, la linea fundamental es
cadena=cadena+chr(ascii). Lo que hacemos aqui es actualizar el valor de “cadena” (la variable donde
almacenamos lo que tecleamos y que mostraremos por pantalla) a partir del valor que tenia antes
concatenandole (acordarse de que para concatenar —“juntar” cadenas se utiliza el simbolo +) el nuevo
caracter pulsado en el frame actual.

Este ultimo caracter pulsado viene dado por la expresion chr(ascii). Esta expresion no es mas que la

359

funcion Chr de Fenix, la cual lo tinico que hace es convertir el codigo numérico ASCII que se le ponga
como parametro (en este caso el valor de la variable ASCII) en su caracter correspondiente, que es lo que

(3PS L)

queremos concatenar a la cadena. Por ejemplo, Chr(97) devolveria “a”.

Y seguidamente, una vez actualizada la cadena, se imprime por pantalla. Fijate en el detalle de utilizar
write var; se podria haber utilizado el binomio delete text/write, pero con write var es mucho mas
elegante.

No dejar de mencionar la existencia de la linea frame;, imprescindible entre otras cosas para que la variable
ASCII pueda actualizarse. Y por ultimo, comento el por qué del if. Si no lo pusiéramos, el programa
funcionaria igualmente, pero lo que haria es que en cada frame que no se pulsara tecla alguna, concatenaria
a la cadena el caracter que tiene el codigo ASCII 0 —es un caracter especial que no se imprime-, porque la
variable ASCII en esos frames siempre vale 0. Por tanto, estariamos alargando inecesariamente “cadena”
con caracteres inutiles hasta el infinito, y a la larga el programa petaria porque no podria manejar una
cadena tan larga. Por tanto, el if sirve para detectar que si no hay tecla pulsada en ese frame, que no hace
falta afadir ninguin carécter a la cadena.

Por cierto, existe una funcidén en Fénix, la funciéon Asc, que hace exactamente lo contrario que Chr.
Recibe un parametro que ha de ser un carécter, y lo que devuelve es el codigo numérico ASCII que le
corresponde. Asi, Asc(“a”) devolveria 97.

No obstante, veras que si ejecutas este programa tiene varios problemas. Primero, que cuando se pulsa
ENTER aparece un simbolo raro. Segundo, si pulsamos la tecla de retroceso no hace retroceso ninguno y
ademas aparece otro simbolo raro. Y tercero y mas importante, que cuando pulsamos una tecla, aparecen
tres o cuatro veces repetido el mismo caracter. Esto es porque mantenemos sin querer la tecla pulsada mas
de un frame, y por tanto, en cada frame se realiza mas de una iteracion del bucle. Entonces, ;qué podemos
hacer? Mejoraremos el cddigo de la siguiente manera:

program hola;

private
int letra_ant;
string cadena;
end
begin

loop
if (ascii!=letra_ant)
switch (ascii)
//para que no haga nada si no se pulsa una letra
case 0: end

//para que no se imprima el cardacter ENTER
case 13: break; end

//para que la tecla de retroceso haga su tarea
case 8 :

cadena=substr(cadena,0,len(cadena)-1);
end

/aqui podriamos escribir el codigo adecuado para el caracter TAB (tabulador)
case 9: end

/aqui podriamos escribir el codigo adecuado al caracter ESC (el de la tecla ESC)

360

case 27: end

/aqui, el codigo adecuado al caracter “inicio de linea” (el de la tecla Inicio)
case 18: end

/aqui, el codigo adecuado al cardacter “final de linea” (el de la tecla Fin)
case 19: end

//Si no se ha pulsado ninguno de los caracteres especiales anteriores, es un cardcter “normal” y por lo
tanto, se imprime por pantalla

default:
cadena=cadena+chr(ascii);
write_var(0,100,100,4,cadena);
end
end
end
letra_ant=ascii;
frame;

end
end

Este codigo esta bastante mejor.Lo que se hace es tener un bucle infinito del cual s6lo podremos salir si
apretamos el caracter 13 (ENTER). Si no apretamos nada en un frame, fijate que el case correspondiente
(Case 0) no hace nada de nada. También he incluido el esqueleto para dar la posibilidad mas adelante de
que el programa haga diferentes cosas para los caracteres tabulador,ESC,inicio y fin de linea, ya que si te
fijas, éstos continuan mostrando signos raros en pantalla cuando se pulsan y no hacen lo que
presumiblemente deberian hacer (tabular y salir, por ejemplo).

Si se pulsa la tecla de retroceso, que tiene el codigo 8, fijate lo que hacemos para que realice su funcion. Le
damos un nuevo valor a la variable “cadena”, que presumiblemente sera el que tenia menos el ultimo
caracter. Y para hacer eso utilizamos el comando Substr, ya visto anteriormente en alguna ocasion, pero
que ahora vamos a comentar en profundidad.

Este comando precisamente sirve para devolver un trocito de cadena (una subcadena) a partir de una
cadena mas grande.Ves que este comando tiene tres parametros:la cadena original, un nimero que es la
posicion del primer caracter que se quiere “extraer” de la cadena original por el cual comenzara la
subcadena (empezando por el 0), y otro nimero que es el numero de caracteres que se quiere que tenga la
subcadena, cogiendo los caracteres a partir del primero extraido.

Es mas facil verlo con un ejemplo. Si tenemos la linea substring(“Hola qué tal”,2,3), lo que devuelve
esta linea sera la cadena “la ““. Porque lo que se ha hecho es, a partir de la cadena original, ir al caracter
que ocupa la posicion 2, y a partir de él, coger los tres caracteres siguientes. Como el primer caracter es el
numero 0, el caracter 2 es la ele. Y como hemos dicho que se quieren coger 3 caracteres, se coge la ele,
la a 'y el espacio en blanco. Y ésta es la subcadena obtenida.

La posicion de inicio (el segundo parametro)puede ser mayor o igual a 0 para indicar un caracter desde la
izquierda de la cadena (0 para el primero, 1 para el segundo, y asi sucesivamente, como hemos visto), o
bien un nimero negativo para especificar una posicion desde el final. -1 se refiere al ultimo caracter de la
cadena, -2 al anterior, y asi sucesivamente. El nimero de caracteres (el tercer pardmetro) puede omitirse,
con lo cual la funcion tomara todos los caracteres que haya desde la posicion especificada hasta el final
de la cadena.

Por lo tanto, ;qué hace la linea cadena=substr(cadena,0,len(cadena)-1),;? Parte de la cadena existente
que se ha ido imprimiendo, y, a partir del primer caracter de esta cadena, se obtiene una subcadena con un

361

determinado niimero de caracteres.;Cuantos? Lo que nos dé la expresion len(cadena)-1. Recuerda que
len lo que hace es devolver el numero de caracteres que tiene una cadena pasada como parametro.

Asi que ya lo tenemos. Si ponemos como tercer parametro de substr esto: len(cadena)-1, 1o que estamos
diciendo es que “extraecremos” para la subcadena que queremos crear un nimero de caracteres tal que sea
el mismo que el de la cadena original menos uno.Si empezamos a “extraerlos” desde el principio
(segundo parametro igual a 0), lo que tendremos es pues, una subcadena igual a la cadena original pero
con un caracter menos (el del final).

Nota: si como tercer parametro de substr escribimos un nimero negativo quiere decir lo siguiente: -1
significa el ultimo cardcter (seria lo equivalente a len(cadena)), -2 el pentltimo caracter, -3 el
antepenultimo caracter, y asi. Por tanto, en vez de len(cadena)-1 podriamos haber puesto -2 con el mismo
resultado.

Un ejemplo practico donde puedes observar los efectos de este comando, si lo ejecutas, seria éste:

program Test SUBSTR;

private
string Txt="Hola Mundo!";

end

begin
set_mode(640,480,16),
write(0,10,30,3, "Texto = Hola Mundo!");
write(0,10,40,3,"SUBSTR(0, 3) = "+substr(Txt,0,3));
write(0,10,50,3,"SUBSTR(3, 0) = "+substr(Txt,3,0));
write(0,10,60,3,"SUBSTR(-1, 5) = "+substr(Txt,-1,5));
write(0,10,70,3,"SUBSTR(5, -1) = "+substr(Txt,5,-1));
write(0,10,80,3,"SUBSTR(-3, -1) = "+substr(Txt,-3,-1));
write(0,10,90,3,"SUBSTR(-1, -3) = "+substr(Txt,-1,-3));
write(0,10,100,3,"SUBSTR(9, -1) = "+substr(Txt,9,-1));
write(0,10,110,3,"SUBSTR(-1, 9) = "+substr(Txt,-1,9));
write(0,10,120,3,"SUBSTR(-9, -1) = "+substr(Txt,-9,-1));
write(0,10,130,3,"SUBSTR(-1, -9) = "+substr(Txt,-1,-9));
repeat
frame;
until(key(_esc))

end

Y volviendo al cédigo, ves que si no se pulsa ninguna de estos caracteres especiales, es entonces cuando
ejecutamos el default, y por tanto, imprimimos por pantalla el caracter adecuado.

Por ultimo, he de comentar el if(ascii/=letra_ant). Este if es el responsable de que no aparezcan los
caracteres repetidas veces cuando pulsamos una tecla.Fijate que en cada fotograma (antes de la linea
frame;) esta la linea Jefra_ant=ascii; Con esta linea lo que hacemos es utilizar una variable de refuerzo
para almacenar el codigo ASCII del caracter pulsado en el frame actual —justo antes de pasar al siguiente-.
De tal manera, que cuando se vuelve a comprobar la condicion del switch, como estamos ya en el siguiente
fotograma (la linea frame; se ha acabado de ejecutar), la variable ASCII ya valdra otro valor. Y lo que
comprueba el if es si este nuevo valor de ASCII coincide con el valor del frame anterior, guardado en
“letra_ant”. Si es igual, no hace nada de nada y se va directamente a la siguiente iteracion del Loop, y asi
hasta que por fin se detecte que el valor de la variable ASCII ha cambiado (porque ya no se pulsa ninguna
tecla o porque se pulsa otra). El pequefio inconveniente de este codigo es que no detectara palabras que
tengan dos caracteres iguales seguidos (“lluvia” la tomara por “luvia”, “llaves” como “laves”, etc.

362

Otro detalle (que es facil modificar: lo dejo como ejercicio) es evitar dejar que el usuario pueda escribir
cadenas infinitas de caracteres, como hasta ahora permite el programa. Simplemente habria que comprobar
que la longitud de la cadena introducida hasta el momento fuera menor que un limite maximo fijado por
nosotros.

Finalmente, seria muy interesante hacer de este codigo, (con las modificaciones que ti creas oportunas)
una funcion, con los parametros que ti consideres, de manera que cada vez que se necesite pedir al jugador
que escriba algtin texto no se tenga que escribir siempre la parrafada anterior sino que pudieras invocar en
una sola linea a una funcion que contuviera este codigo listo para ejecutar. .

Esto tltimo es lo que se ha pretendido con el codigo siguiente. La finalidad es la misma que el anterior,
recoger la entrada por teclado, pero este ejemplo es mas sofisticado, ya que también detecta el tiempo de
pulsacion de las teclas para cerciorarse de que es una pulsacion "valida", no accidental (por ejemplo, para
detectar que efectivamente queremos pulsar la tecla varias veces seguidas).

Program texts;

Declare Function
String textinput();
End

Begin
set_fps(60,0);
say("Escribiste: " + textinput() + "'");
Repeat
frame;
Until(key(_esc));
End

Function String textinput()
Private

String str;

intt;

int t2;

byte last_ascii;

int txtid,;
Begin

//Muestra lo que escribes en la esquina superior izquierda

txtid = write_var(0,0,0,0,str);

//Limpia la cadena

str="";

//Recoge la entrada del usuario. Pulsando Enter el loop termina.

Loop

//Chequea si una tecla es presionada y si la misma tecla fue presionada en el ultimo frame
if(ascii!=0&&last_ascii==ascii)
//Chequea si la tecla fue presionada levemente o si ha sido presionada mds de 0.25 segundos
if(t==0||r>fps/4)
//Chequea si la tecla fue presionada levemente o si ha estado presionada en los ultimos 0.03 segundos
if(t==0||t2>fps/30)
t2=0;
switch(ascii) // Gestionar entrada
case 8. //Tecla retroceso (backspace)
str = substr(str,0,len(str)-1);
end

363

case 13: //Tecla enter
break;
end
default: //Afiade la tecla
str=str+chr(ascii);
end
end
end
2++;
end
t++;
else
t =12 =0, // Reset
end
last_ascii = ascii;
frame;
End
//Borrar el texto utilizado
delete text(txtid);
//Retorna la cadena tecleada
return str;
End

Trabajar con el teclado (cémo redefinirlo):

(extraido del tutorial de Wakroo, en http://divnet.divsite.net)

Una de las caracteristicas que mas a menudo se suele olvidar pero que mas necesaria considero
es la opcion de redefinir el teclado. Muchos juegos traen una serie de teclas por defecto que son las que todos
tienen que usar para jugar. A menudo estan elegidas de una manera adecuada, pero puede ser que a alguien
no le guste o le resulte incomodo. La solucion es dar al jugador la opcion de escoger sus propias teclas para
jugar. Ademas, resulta muy facil de hacer.

Lo primero que hay que tener saber para redefinir el teclado es como funciona. Cada tecla tiene
asignado por Fénix un valor numérico determinado. Ojo, no estamos hablando de la tabla ASCII, la cual es
estandar para todos los PC y afecta a los caracteres (por lo que “a” y “A” tienen codigos ASCII diferentes),
sino que estamos hablando de que Fénix asocia un nimero a cada tecla del teclado (por lo cual “a” y “A”, al
estar en la misma tecla, tendran el mismo c6digo).

El programa lo tnico que hace es detectar el codigo que le viene y reacciona en consecuencia.
Por ejemplo, el codigo de la tecla "a" es el 30, por lo que seria lo mismo poner key(_a) o key(30) —de hecho,
“ a” no es més que una constante predefinida por Fénix para ayudarnos a no tener que acordarnos de cual era
el codigo de la tecla “a”/”A”. Y aqui esta la clave de todo el misterio.

Una vez que conocemos la naturaleza numérica de las teclas la solucidon al problema es usar
variables a la hora de detectar si el jugador ha pulsado las teclas adecuadas. Si creamos una variable llamada
“arriba” y le damos a esa variable el valor numérico que corresponda a la tecla que queremos, luego
comprobamos si ha sido pulsada con key(arriba). Si en cualquier momento variamos el valor de “arriba” se
cambiara la tecla que responde a esa accion.

Ahora el problema se presenta en qué valores guardar en la variable. Se pueden poner los
valores desde programacion, pero eso implicaria tener que recompilar el juego cada vez que se cambie la
configuracion del teclado, ademas de que tendriamos que pasar el codigo a la gente. La gente que no se
dedique a programar muchas veces ni se molestara en investigar como hacer para cambiar las cosas, por muy
bueno que sea el juego. Por lo tanto, no es una buena opcion. Por lo tanto, habra que darle la opcion al

364

usuario desde el propio programa para que haga los cambios que desee. Bueno, pues montamos el tipico
menu desde donde hacerlo. Pero, ;como nos las arreglamos para detectar qué tecla ha elegido?

La solucion mas directa seria poner un IF (key(...)) variable=...; END para cada tecla que
podamos elegir. En principio eso significaria muuuuchas lineas de codigo y seria bastante engorroso. Hay
otra soluciéon mas elegante: SCAN CODE. Esta es una variable global entera predefinida que guarda el
codigo numérica de la ultima tecla que ha sido pulsada por el jugador (con buffer para cuando hay muchas y
evitar su pérdida), Por lo tanto, comprobando su valor podriamos saber qué tecla ha elegido el jugador y
asignarla a la variable. De esta manera, con poco codigo tendremos la posibilidad de elegir cualquier
tecla.No confundir el uso de SCAN_CODE con el de la funcion key: esta funcion nos indica simplemente si
la tecla con el codigo X estd o no pulsada en el frame actual (devuelve “true” o “false”). En cambio,
SCAN_CODE ¢

Y ;jojo!, no confundir el significado de la variable SCAN_CODE con el de la variable ASCII: la
primera admite valores que representan teclas del teclado,la segunda admite valores que representan
caracteres dentro de la tabla ASCII: la letra “a” y “A” se escriben con la misma tecla, por lo que
SCAN_CODE valdra lo mismo en ambos casos, pero ASCII no, porque “a” tiene un codigo ASCII y “A”
tiene otro. Cuidado.

Naturalmente, se pueden usar truquillos como usar arrays o structs en vez de variables sueltas
para guardar los codigos de las teclas, pero eso ya es una cuestion a parte. El método de todas formas tiene
una pega: el uso de SCAN CODE es mas lento que usar la funcion key(). Por lo tanto, no es adecuado para
usarlo en tiempo real. En el menu no importa mucho si hay que darle un par de veces para que se entere de la
tecla, pero si intentas dar ese salto que te va a llevar a la salvacion y el ordenador se niega a responder a
nuestra 6rdenes con presteza... Creo que me entendéis.

365

// Se pone el grdfico en pantalla
x=160; y=120;
graph=load_png("raton.png");

Loop
// Se mueve el grdfico
If (key(derecha)) x++; End
If (key(izquierda)) x--; End

If (key(_esc)) exit(); End
Frame;
End
End

Existe otra variable global predefinida relacionada con el teclado interesante, aparte de
SCAN_CODE, llamada SHIFT STATUS. Esta variable almacena el estado de las teclas de control; es decir:
contiene el estado de las diferentes teclas de control (CTRL, SHIFT, ALT). Segun su valor, sabremos si se
esta pulsando las siguientes teclas (ademas de cualquier otra tecla adicional recogida por SCAN_CODE o la
funcién key(). Sus valores pueden ser los siguientes (y la suma de éstos para detectar pulsaciones
simultaneas de varias teclas de control)

« 1: Se mantiene pulsada la tecla SHIFT (MAYUS) izquierda

- 2: Se mantiene pulsada la tecla SHIFT (MAYUS) derecha

» 4: Se mantiene pulsada la tecla CONTROL (cualquiera de ellas)
« 8: Se mantiene pulsada la tecla ALT (cualquiera de ellas)

Trabajar con el ratén:

El raton no se programa como un proceso normal, su funcionamiento se basa en una estructura,
la estructura “mouse”: se consultan y asignan sus valores y no necesita ningin proceso.

Para consultar y asignar la posicion del cursor del raton tenemos las variables “mouse.x” y
“mouse.y”. Estas coordenadas son respecto a la ventana y sus valores maximos dependen del modo de
pantalla (800x600, 640x480,...).

También puedes ponerle al cursor del raton el dibujo del puntero que quieras: solo tienes que
asignarle los valores adecuados a la variable “mouse.file” y “mouse.graph”. También puedes cambiarle el
tamafio, como si del grafico de un proceso se tratara, con “mouse.size”. Y sus flags, al igual que cualquier
otro grafico, con “mouse.flags” (con los mismo valores posibles). Y su orientacion con “mouse.angle”. Y
su profundidad con “mouse.z”. También podemos especificar la region de la pantalla donde queremos que
solo alli sea visible el puntero, con “mouse.region” -¢l tema de las regiones se tratara en este capitulo mas
adelante-.

Para comprobar la pulsacion de los botones puedes comprobar, como si fueran teclas del
teclado, las variables “mouse.left”, “mouse.right” y “mouse.center” para ver si se ha pulsado el boton
izquierdo, derecho o central respectivamente.

Puedes hacer uso también de la funcién collision de la forma “collision (type mouse);” para
comprobar si el grafico de un proceso ha hecho contacto con el “punto caliente” del cursor (el punto que
normalmente es la punta de la flecha, la que selecciona el objeto), algo muy util para hacer que cambie éste
con el contacto.

366

Como ves, tienes un control completo sobre el ratéon y con un manejo sencillisimo.Un ejemplo:

program tutorial;
begin
set_mode(320,240,16);
proceso();
mouse.file=0;
mouse.graph=new_map(20,20,16);map_clear(0,mouse.graph,rgb(205,24,46));
write_var(0,100,20,4,mouse.x);
write_var(0,100,40,4,mouse.y);
write_var(0,100,60,4,mouse.angle);
write_var(0,100,80,4,mouse.size);
write_var(0,100,100,4,mouse.flags);
write_var(0,100,120,4,mouse.z);
write_var(0,100,140,4,mouse.region);
loop
//Por si se quiere mover el raton con el teclado
if(key(x)) mouse.x=mouse.x+5;end
iftkey(y)) mouse.y=mouse.y+5;end
//Gira la orientacion del grdfico del puntero
iftkey(_a)) mouse.angle=(mouse.angle+5000)%360000;end
//Aumenta el tamaiio del grdfico del puntero
if(key(_s)) mouse.size=mouse.size+10; end
/*El while esta puesto para que mientras se tenga pulsada la tecla no se haga nada, y solo se cambie el
flag una vez se ha soltado. Esto es para evitar que, si se mantiene pulsada mas de la cuenta la tecla, el flag
varie demasiados valores de golpe*/
iftkey() while(key(f))frame;end mouse.flags=(mouse.flags+2)%16,end
//Aun teniendo Z>0, no se pinta por debajo del proceso (!!!?)
if(key(z)) mouse.z++; end
//8i la region deja de ser la n‘0, que representa la pantalla completa, el puntero deja de ser visible
if(key(_r)) mouse.region++;end
if(mouse.left==true) write(0,100,160,4,"Boton izquierdo pulsado”);end
if(mouse.right==true) write(0,100,180,4,"Boton derecho pulsado”);end
if(key(_esc)) exit(),; end

frame;
end
end
Process proceso()
private
inta;
end
begin
graph=new_map(50,50,16);map _clear(0,graph,rgb(255,255,0));
x=160;
y=120;
loop
if(key(_up))y=y-5,end
iftkey(_down))y=y+5, end
if(key(left))x=x-5; end
if(key(right))x=x+5; end
if(collision(type mouse)) write(0,100,200,4,";Colision!"),;end
frame;
end

367

end

No obstante, suele ser habitual que en vez de utilizar la estructura MOUSE “a pelo”, se
utilicepara controlar el puntero del ratdnun proceso normal y corriente que lo tinico que haga sea actualizar
permanentemente la posicion de su grafico a la del puntero (invisible en este caso). Con esta manera de

hacer, se gana flexibilidad y versatilidad (sobretodo en la deteccidon de colisiones) como veremos en los
ejemplos siguientes.

Cabe destacar también que de este modo, los unicos campos que se utilizaran de la estructura
MOUSE son “mouse.x” y “mouse.y”, para asignar su valor en cada iteracion a la X e Y del proceso en
cuestion, pero ni “mouse.file”, ni “mouse.graph”, ni “mouse.size”, ni “mouse.angle” ni “mouse.flags” ni
“mouse.z” ni “mouse.region’tendran utilidad, ya que en su lugar usaremos las correspondientes variables
locales para ese proceso en cuestion (FILE,GRAPH,etc). Como muestra,a continuacion pongo el mismo
ejemplo anterior pero haciendo que el puntero del raton sea un proceso “estandar”.

program tutorial;

begin
set_mode(320,240,16),
proceso();
raton();

/*Podemos ver que si modificamos el ANGLE,SIZE,etc del proceso "raton" -y observamos su efecto en el

grdfico del puntero- los valores de la estructura mouse (cuyo grdfico de puntero es invisible) no se ven
modificados para nada™/

write_var(0,100,60,4,mouse.angle);

write_var(0,100,80,4,mouse.size),

write_var(0,100,100,4,mouse.flags);

write_var(0,100,120,4,mouse.z);

write_var(0,100,140,4,mouse.region),

loop
if(mouse.left==true) write(0,100,160,4,"Boton izquierdo pulsado");end
if(mouse.right==true) write(0,100,180,4,"Boton derecho pulsado”);end

if(key(_esc)) exit(); end

frame;
end
end
process raton()
begin
file=0;
graph=new_map(20,20,16);map_clear(0,graph,rgb(205,24,46));

loop

/*Estas dos lineas siguientes simulardan que este proceso es el puntero de raton. IMPORTANTE ponerlas
dentro de un bucle, para ir actualizando las coordenadas a cada frame.*/
X=mouse.x;
y=mouse.y;
if(key(_x)) x=x+5,;end
if(key(_y)) y=y+5;end
if(key(_a)) angle=(angle+5000)%360000;end
if(key(s)) size=size+10; end
iftkey(_f)) while(key(_f))frame;end flags=(flags+2)%16,end
if(key(z)) z++; end
if(key(r)) region++,end
frame;
end

368

end

Process proceso()
private
inta;
end
begin
graph=new_map(50,50,16);map_clear(0,graph,rgb(255,255,0)),
x =160;
y=120;
loop

if(key(_up))y=y-5,end
if(key(_down))y=y+5; end
if(key(left))x=x-5; end
if(key(_right))x=x+5; end

//Ahora detecto la colision con el proceso "raton”, no con la estructura MOUSE
if(collision(type raton)) write(0,100,200,4,";Colision!");end

frame;
end
end

A partir de aqui, se nos pueden ocurrir muchas aplicaciones del cursor del raton en nuestros juegos. Por
ejemplo:

369

Una alternativa a la ya escrita hubiera sido sustituir la linea angle=get angle(get id(type destino)); por
ésta otra: angle=fget angle(x,y,mouse.x,mouse.y);. Aqui hacemos uso de una funciéon hasta ahora
desconocida: fget angle, cuya referencia la encontrardas mas adelante dentro de este mismo capitulo.
Basicamente, lo que hace esta funcion es calcular el angulo (en milésimas de grado) formado por una
linea determinada y la linea horizontal (el eje X). Los cuatro pardmetros que tiene son respectivamente la
coordenada X del primer punto de la linea, la coordenada Y del primer punto de esa linea, la coordenada
X del segundo punto de esa linea y la coordenada Y del segundo punto de esa linea (una linea se forma
por la union de dos puntos, claro).

Otro truco muy util es hacer que el grafico de un proceso se dirija alli donde se haya hecho
clic con el ratén. ;Como se podria hacer esto? Imaginemos que tenemos un proceso “personaje()”. Lo que
necesitaremos hacer es, primero, crear dos variables globales, por ejemplo “posx” y “posy”, y
seguidamente, escribir en el bucle Loop principal del proceso “personaje()” algo asi:

Loop
if(mouse.left==true)
posx=mouse.x;
posy=mouse.y;,
mouse.left=false;
end
if(x>posx),; x=x-1, end
if(x<posx); x=x+1, end
if(y>posy); y=y-1, end
if(y<posy); y=y+1; end
frame;
end

También esta claro, ;no?

370

A continuacién pongo un c6digo muy curioso, que nos permite dibujar en la pantalla con el puntero del
raton igual que si utilizaramos alguna herramienta de dibujo a mano alzada, tipo lapiz. (Para que el
programa funcione, deberas crear un archivo FPG llamado “bola.fpg”, que contendra una nica imagen con
codigo 100 y que sera precisamente, una bola).

Ademas, este ejemplo también muestra como sustituir el cursor del raton por cualquier dibujo que
queramos. En concreto, esto se realiza simplemente asignando a la variable x e y del proceso cuyo dibujo
sustituird el cursor los valores mouse.x y mouse.y, respectivamente. Es decir, en realidad estamos
superponiendo el grafico que nosotros queremos sobre el cursor, y haciendo que aquél vaya siguiendo en
todo momento los movimientos de éste.

Program prueba;

Private
Int ficherol;
end
Begin
set_mode(640,480,16);
ficherol=load fpg("bola.fpg");
write(0,10,20,0,"DIBUJA CON EL MOUSE");
definemouse();
While (NOT key(_esc))
Frame;
End
fade_off(),
exit("");
End
/-
Process dibuja(x,y)
Begin
flags=4;
graph=100;
Loop
Frame;
End
End
1/
Process definemouse()
Begin
mouse.x=270;
mouse.y=240;
Loop
graph=100;
If (mouse.x>640) mouse.x=640; End
If (mouse.x<0) mouse.x=0; End
If (mouse.y>480) mouse.y=480; End
If (mouse.y<0) mouse.y=0; End
If (mouse.left) dibuja(mouse.x,mouse.y); End
x=mouse.x;
y=mouse.y;
Frame;
End
End

371

El siguiente ejemplo es un mero efecto estético, similar al que visto anteriormente que simulaba
un pincel, pero con un comportamiento diferente, mas sofisticado y espectacular. Este efecto es ideal para
simular gases de propulsion, lanzallamas,etc. Necesitaras una imagen de unos 10x10 pixeles llamada
“a.png” para poderlo ejecutar:

program lanzallamas,
global

int idpng;
end
begin
idpng=load _png("a.png");
mouse.graph=idpng;

loop
if (mouse.right) llama(mouse.x,mouse.y), end
if (key(_esc)) exit(); end
frame;

end

end

process llama(x,y)
private

byte i;
end
begin
graph=idpng;
size=rand(5,20);
angle=rand(0,360)*1000;

flags=4;

repeat
x=x+5;
z++;
angle=(angle+5000)%360000;
i=it+5;
frame;
size=size+7;

until(i>110)

end

Otro codigo interesante: lo que hace es alterar la sensibilidad del ratén con un par de sencillos
procesos que podemos trasladar a cualquiera de nuestros programas. De esta manera, podremos hacer que
el cursor del raton vaya mas ligero o que le cueste moverse (como si pesara toneladas), ofreciendo asi un
efecto muy resulton:

//AUTHOR: Tristan

program sensibilitymouse;

const
SENSIBILITY FAST=1;
SENSIBILITY SLOW=35;

end

global

//Es float por si queremos hacer sensibilidades decimales,0 menores de I para hacer el cursor ultrarapido
float sensibility;

end

372

process main()
begin
set_mode(640,480,16);
sensibility= SENSIBILITY FAST; //Sensibilidad inicial
write(0,10,10,0,"Pulsa (R)apido (L)ento");
mouse_test();
loop
if (key(_R)) sensibility= SENSIBILITY FAST; end
if (key(_L)) sensibility= SENSIBILITY SLOW, end
frame;
end
end

process mouse_test()

begin

//Este proceso representa el puntero del raton

X = mouse.x;

y = mouse.y;

graph = create_mouse_pointer();

loop

/*Lo importante del ejemplo: la nueva posicion del grafico del proceso vendrda dada por el valor de
"sensibility". Se puede ver que si ésta vale 1 (vapida), x=x+(mouse.x-x)/1 -> x=mouse.x; pero si la
sensibilidad vale 5 (lenta), x=x+(mouse.x-x)/5 -> x=5*mouse.x + 4*x/5. Se pueden buscar otras formulas
para simular el mismo efecto.™/

x = x +(mouse.x-x)/(sensibility);

y =y +(mouse.y-y)/(sensibility);

frame;

end

end

function create_mouse_pointer()
private
int copo;
end
begin
copo=new _map(3,3,8);
/*Todas las primitivas graficas que se utilicen a partir de ahora,si no se dice lo contrario, se van a pintar
sobre la imagen acabadade generar -inicialmente vacia de contenido grdfico-. Esto es una manera de
decir que se rellenard de contenido grdfico esta imagen con las primitivas graficas que usemos a partir de
ahora.*/
drawing map(0,copo);
//Dibujamos un "copo de nieve" sobre la imagen "copo”
drawing color(RGB(250,250,250)),
draw line(1,1,3,3);
draw line(2,1,2,3);
drawing color(RGB(255,255,255));
draw line(1,2,3,2);
draw line(3,1,1,3);
/*Devolvemos el identificador de la imagen creada con new _map, (v rellenada de contenido grdfico con
las primitivas sucesivas). Este identificador devuelto puede ser utilizado para cualquier cosa que
necesite asignarse a un codigo de imagen, como por ejemplo, en este caso, la variable global GRAPH. De
esta manera, la imagen del proceso mouse_test sera la correspondiente al identificador devuelto, que es
el "copo de nieve". ¥/

373

return copo,
end

El siguiente ejemplo es una implementacion para detectar un doble click. El c6digo muestra un
cuadrado en el centro de la pantalla, sobre el cual se podra hacer click con el cursor del raton (y fuera del
cuadrado también,claro), pero solamente cuando se haga doble click dentro del cuadrado, se notificara con
un mensaje. Si se hace doble click fuera de él, o clicks simples tanto dentro como fuera, no pasara nada.

//DESARROLLADOR: DIEGO KUNZEVICH (DIVNETICO)
PROGRAM doble_clic;

BEGIN

set_title("Test doble clic");

set_mode(640,480,16,MODE 2XSCALE);

process_mouse();

caja_comprobacion();

END

PROCESS process_mouse()

BEGIN

mouse.graph = new_map(20,20,16);map_clear(0,mouse.graph,rgb(100,100,200)),
mouse.x=320;mouse.y=240;

LOOP

if (key(_esc)) exit(), end

FRAME;

END

END

PROCESS caja_comprobacion()
private
//Vale 0 si no se ha hecho ningun click, 1 si se acaba de hacer uno y 2 si se acaba de hacer dos
int clickeo;
//Tiempo entre un primer click y el segundo
int stop;
//Tiempo después del segundo click
int time;
end
BEGIN
graph = new_map(50,50,16);map_clear(0,graph,rgb(255,0,255));
x =300y = 240,
LOOP
//8i es la primera vez que se clica sobre el proceso...
if ((collision(type mouse) AND (mouse.left) AND (clickeo==0))) clickeo = 1, end
/*A partir de hacer un click, se aumenta a cada frame "stop". Si "stop" supera el valor 8 (es decir, si pasan
ocho frames -esto se puede regular-), se resetea al estado inicial™/
if (clickeo==1) stop++, end
if (stop>=8) stop=0; clickeo = 0; time=0; end
/*Si es la segunda vez que se clica sobre el proceso...(y ese segundo click se ha hecho relativamente
separado del primero -porque "stop" ha de valer mas de 4 y no valdrda nunca mas de 8...-) */
if ((collision(type mouse) AND (mouse.left) AND (clickeo==1) AND (clickeo==1) AND (stop>=4)))
clickeo = 2; end
/*Si se ha hecho doble click, se nofifica y se aumenta a cada frame "time". Si "time" supera el valor 14
(es decir, si pasan 14 frames -esto se puede regular-), se borra la notificacion y se resetea al estado
inicial*/
if ((clickeo==2)) write(0,400,240,4, "Segundo clickeo"); time++, end

374

if (time>=14) delete_text(0); clickeo=0; time=0;, stop=0, end
frame;

END

END

Finalmente, no estd de mas comentar la existencia de la variable global MOUSE_STATUS, la
cual vale 1 cuando el puntero del raton estd dentro de los limites de la ventana (si la aplicacion se ejecuta en
modo ventana) y 0 cuando sale de ella. Este valor no tiene utilidad si la aplicacion se ejecuta en modo de
ventana modal (usando el parametro MODE_MODAL en la llamada a SET MODE).

En este apartado veremos como implementar la funcionalidad Drag&Drop en nuestros juegos.
Drag&Drop (literalmente, “Arrastrar y Soltar”) es el efecto, por todo usuario de Windows conocido, de
hacer clic con algin boton del ratéon sobre una imagen o icono, de arrastrar esa imagen a lo largo y ancho
de la pantalla (manteniendo pulsado el boton del raton), y finalmente de soltar el botéon cuando deseemos,
instante en el que la imagen permanecera fija en esa posicion donde hayamos soltado el boton. Drag&Drop
es una caracteristica que puede dotar a nuestro programa de una gran vistosidad: es muy util sobretodo por
ejemplo para juegos de rompecabezas y puzzles.

Voy a poner ahora de golpe todo el codigo fuente que utilizaremos en este apartado, para
posteriormente irlo comentando linea a linea. Si ejecutas el ejemplo veras que es sencillo: sobre un fondo
apareceran unas cuantas “fichas” que tienen cada una de ellas una letra impresa. También tendremos un
icono para el raton, el cual podremos situar encima de una ficha cualquiera y arrastrarla y soltarla alli
donde nos plazca dentro de la ventana. En el c6digo no hay implementado la opcion de detectar colisiones
entre fichas, pero no seria muy dificil anadirlo, y con un poco mas de programacion se podria conseguir un
pequefio juego de puzzle. Animo fervientemente al lector a que intente llevar a cabo este proyecto tan
Interesante.

Bien. El codigo fuente a estudiar es éste:

/* Autor: Moogle or Roelf Leenders */
program demonstracion_dragdrop,

global
/*Declaramos una tabla conteniendo todos los caracteres que necesitaremos para irlos arrastrando™/
String example text[8] = 'D"'r,'a"'g"'&",'D" " 'o",'p";
//Algunas variables de ayuda
int graphicl;
int graphic2;
/*Estas variables contendran coordenadas relativas y el ID del proceso que estemos arrastrando en ese
momento.*/
int relativeX;
int relativeY;
int draglD;
end

begin
set_title("Ejemplo de Drag&Drop");
set_mode(320,240,16),
/*Cambio el color de texto para que sea mas bonito que no blanco*/
set_text_color(rgb(150,150,150));
/*El fondo siempre puede ser accesible como el grdfico numero 0 de la libreria del sistema (el FPG
numero 0)*/

375

map_clear(0,0,rgb(10,10,200));
write_var(0,0,0,0,draglD),

/*A continuacion vienen las rutinas de generacion dindmica de los grdficos y procesos que los contienen.
No es lo mas importante del programa, se usa este sistema principalmente porque asi es mas fdacil enviar
el codigo a otra persona: solo hay que enviarle el .prg sin necesidad de utilizar otros molestos archivos
como los FPG.

El codigo de generacion puede parecer bastante complicado a primera vista y realmente no incumbe a
aquellos que quieran aprender exclusivamente como funciona las bases del Drag&Drop, asi que no estard
muy documentado.

La idea principal para crear el puntero del raton dinamicamente con forma de flecha es definir unos
criterios para que los puntos pertenezcan al grdfico flecha, y si no los cumplen, éstos seran de color negro.
Chequea este funcionamiento si quieres, alterando el codigo como consideres oportuno para ver los
posibles cambios en el dibujo.*/

//Dibujaremos una flecha que serd el puntero del raton:
mouse.graph = new_map(30,30,16);
set_center(0,mouse.graph,0,0);
for(x=0,x<30,x++)
Jor(y=0;y<30;y++)
if((x+ty =< 30 and abs(fget_angle(0,0,x,y)-fget_angle(0,0,30,30)) < 25000)
or (abs(x-y) < 4 and x+y > 20))
map_put pixel(0,mouse.graph,x,y,rgb(254,254,254));
end
end
end

/*Ya que 30x30 es bastante grande para un puntero de raton en esta resolucion (320x240), muéstralo al
50% de su tamario™/
mouse.size = 50;

/*El codigo siguiente crea un grafico de IxI pixel para servir como puntero efectivo del raton. En casos
donde utilices un puntero de raton y planees utilizar comandos de colision con él, a menudo es mejor
utilizar dos graficos: uno para el puntero del raton (tipicamente una flecha) y bajo éste, un grafico de Ix1
para chequear las colisiones. Haciendo esto evitards errores como que puedas arrastrar cosas con la cola
de la flecha, por ejemplo: el puntero efectivo del raton serd una porcion mucho mds pequeria y precisa de
lo que en realidad de ve por pantalla. En este ejemplo uso una flecha como grdfico del puntero del raton
(en la estructura mouse) pero el programa tiene un proceso representado por pequernio grafico que serd el
puntero efectivo. Dicho grafico esta coloreado blanco porque pixeles transparentes recuerda que no
colisionan™/
puntero();

/*Aqui es donde los graficos con las letras se generan y los procesos “letter()” son creados también. Uso
un FOR para generar 9 procesos “letter()” —x va de 0 a 8-. Como texto uso la tabla declarada al
principio en la seccion global y rellenada con letras.*/
Jor(x=0,x<9;x++)
//Creo un nuevo grdfico
graphicl = new_map(25,25,16);
/*Lo pinto de gris oscuro (no negro,porque seria transparente)*/
map_clear(0,graphicl,rgb(20,20,20,));
/*Creo otro grdfico, negro con la letra actual (posicionada dentro de la tabla como elemento x)*/
graphic2 = write_in_map(0,example_text[x],4);
/*Superpongo el grdfico negro sobre el gris oscuro, obteniendo asi un dibujo que serd un cuadrado gris
con una letra encima*/

376

map_put(0,graphicl,graphic2,12,12);

/*Creo un nuevo proceso con este grdfico, en una posicion calculada de la pantalla™/
letter(160+(x-4)*30,120,graphicl);

end

loop
if(key(_esc))exit();end
frame;
end
end

/* Proceso que contiene un grdfico especifico en una posicion especifica. No mucho que comentar*/
process letter(x,y,graph)
begin
loop
frame;
end
end

/*Proceso REALMENTE importante para entender el funcionamiento del Drag&Drop.*/
process puntero()
begin

graph = new_map(1,1,16);

map_clear(0,graph,rgb(254,254,254));

/*Copio las coordenadas del raton (ya que alli es donde queremos que esté el puntero “efectivo”)*/
loop
X = mouse.x;
y = mouse.y;
//Si se clica con el boton izquierdo del raton, adelante
if(mouse.left)
//Gestiona la colision de la letra (o no si no hay ninguna)
dragID = collision(type letter);
/*Pero si se chequea y si existe alguna colision, guardo las coordenadas de la posicion
relativa entre el centro de la ficha y el centro del puntero efectivo™/

if(exists(dragID))
relativeX = mouse.x - draglD.x;
relativeY = mouse.y - draglD.y;
end
/*Ahora necesitamos arrastrarlo mientras el jugador mantenga pulsado el boton izquierdo del raton*/
while(mouse.left)

/*Y mientras eso ocurre, necesitamos no olvidar mantener sincronizadas las coordenadas del puntero del
raton con las de nuestro proceso, el puntero “efectivo”, porque si no va a aparecer un punto blanco fijo
mientras hagamos el Drag&Drop™/
X = mouse.x;
y = mouse.y;
/*Aqui esta el punto crucial. Si un proceso se detecta que colisiona a la vez que el clic, necesita ser movido
cada fotograma mientras el boton del raton permanezca pulsado. Esto quiere decir que las coordenadas
del proceso deberian moverse con exactamente las mismas cantidades de pixeles que el ratén.Este es el
punto crucial del programa.*/
if(exists(draglD))
draglD.x = mouse.x - relativeX;
draglD.y = mouse.y - relativeY;

377

end
if(key(_esc))exit(),;end
frame;

end //While(mouse.left)
frame;
end //Loop
end

La linea map clear(0,0,rgb(10,10,200)); lo que hace simplemente es pintar el grafico de
fondo de pantalla de un color azul eléctrico. Si hubiéramos puesto otro grafico en vez del (0,0), habriamos
visto que ese grafico era el que se pintaba entero de azul.

Después de esta linea vemos que aparece un write var donde se imprime el valor de la
variable “dragID”, la cual, como de momento no la hemos usado para nada, valdra 0.

La linea mouse.graph = new_map(30,30,16), lo que hace es asignar a el campo graph de la
estructura mouse (es decir, establecer el icono del puntero del raton) a una imagen de 30x30 pixeles,
todavia transparente.

Por lo tanto, el siguiente paso es hacer que esta nueva imagen que se correspondera al icono
del raton deje de ser transparente y pase a ser, por ejemplo, una flecha blanca. Es decir, ahora se trataria de
“dibujar” por codigo la flecha. Y es lo que el programa hace a continuaciéon, mediante la funcion
map_put_pixel dentro de los bucles FOR.

No obstante, antes de llegar alli nos encontramos con una linea que dice
set_center(0,mouse.graph,0,0);. La linea set_center(0,mouse.graph,0,0),; 1o que hace es establecer el centro
del grafico perteneciente al puntero del ratéon —el cual como lo hemos creado con new_map, pertenece a la
libreria del sistema- en su coordenada (0,0), es decir, su esquina superior izquierda.Esto simplemente se
hace para lograr tener un origen “de coordenadas” bueno para empezar los bucles FOR siguientes de forma
que, tal como estan disefiados, funcionen bien. La funcion set center la comentaremos mas adelante.

Y llegamos a los bucles FOR que contienen la funcion map_put pixel. Esta funcion lo que nos
hara, tal como esta puesta en el codigo, es dibujarnos la imagen que se visualizara en la imagen —
transparente en principio-, generada por new_map.

Fijate donde esta map put_pixel. Dentro de dos bucles FOR y un IF. No nos pararemos a ver
qué es lo que hacen exactamente todos estos bloques porque nos apartariamos bastante del objetivo
principal: lo basico que tienes que saber es que, tal como estan implementados, estos bloques logran pintar
pixeles blancos de tal manera que hagan una figura de flecha apuntando hacia arriba a la izquierda (donde
esta el “punto caliente”). Es decir, lo que hacen estos FOR e IF es realizar calculos mas o menos complejos
e ingeniosos para determinar si cada uno de los pixeles que forman parte del grafico 30x30 que
representara al puntero del raton sera blanco o sera transparente. Fijate que los dos FOR no son mas que
dos bucles anidados para ir coordenada por coordenada, por todas las Y de cada una de las X, y en cada
coordenada se comprueba la condicion que determinara qué pintar. La gracia esta en que al final resulta el
dibujo de la flecha. La condicion del If es bastante ingeniosa: puedes cambiar algin valor de éste, a ver qué
ocurre.

Ya tenemos el puntero del raton dibujado, el cual se movera alli donde lo mandemos. Pero
todavia no hace nada mas. De momento, fijate que la linea siguiente lo que hace es disminuir a la mitad el
tamafio visible del puntero del raton con su propiedad size, para que sea un tamafio mas normal:15x15.

Y ahora llegamos a un punto crucial: la creacion del proceso “puntero()”. Este proceso va a
representar el “punto caliente” del ratdn: es decir, la zona del puntero del raton que serd la que detecte
colisiones con las diferentes cartas. Esta zona haremos que sea pequeifia, y situada en la punta de la flecha,

378

para que las colisiones solamente se detecten en ese punto y no en todo el grafico de la flecha, cosa que
quedaria feo.

Posiblemente te estés preguntando si es necesario crear un proceso como este. Tenemos una
estructura mouse donde hemos definido el cursor, el tamafio, la posicion dentro de la ventana,etc. ;Por qué
no podemos utilizar esta estructura para detectar colisiones? Pues precisamente, porque mouse no es
ningun proceso, aunque se parezca. Es decir, en anteriores capitulos hemos visto ejemplos que podriamos
aplicar aqui, del estilo:

Process letter()

Private
Intidl;

End
If(ld1=collision(type mouse))
end

end

donde, efectivamente, el raton detecta colisiones. Pero esto no es lo que nos interesa ahora. En el codigo
anterior, “id1” siempre valdra el identificador del proceso que esté entre paréntesis tras el fype. Y este
“proceso” es el raton, asi que si el puntero —o mas concretamente,su punto central- choca contra el proceso
“letter()” determinado cualquiera,lo inico que obtendremos es que “id1” pasa a valer siempre 1, porque
s6lo hay un puntero. Nosotros lo que queremos es al revés: obtener el identificador concreto de la carta con
la que choca el puntero. ;Para qué? Para arrastrar s6lo y exclusivamente esa carta y no las demas cuando
haya Drag&Drop. Es decir, nosotros necesitariamos algo parecido a esto:

Process mouse()

Private
Intidl;

End
If(ld1=collision(type letter))
end

end

Pero esto no puede ser porque el proceso mouse NO EXISTE: es una estructura. Por lo tanto, nos lo
tenemos que inventar. Es decir, tendremos que crear un proceso, que asuma el papel del puntero.

Este nuevo proceso tendra asociado un grafico, tal como he dicho, que sera un cuadrado de
1x1 pixel situado en la punta de la flecha, que sera precisamente la {inica zona que podra detectar las
colisiones, asi que matamos dos pajaros de un tiro: hacemos que el puntero del raton detecte colisiones y
ademas que no las detecte en todo su grafico sino s6lo en su punta.

Este proceso “puntero()” es el que realmente tiene todo el peso del programa.lLo
comentaremos al final, una vez acabemos con el programa principal.

El FOR que viene a continuacion, en el programa principal, es sencillo de entender:
simplemente realiza 9 iteraciones, donde en cada una de ellas crea un grafico 25x25 en memoria de color
oscuro, que representara una ficha .Seguidamente, con write in_map se logra convertir -en cada iteracion-
cada una de las letras de la tabla en un grafico mas. Luego aparece la funcion map put para fusionar el

379

dibujo de la carta con su letra correspondiente en un sélo dibujo.

Finalmente, la ultima linea interna de este FOR es una llamada —repetida 9 veces- al proceso
“letter()”, por lo que apareceran 9 fichas con su letra correspondiente situadas una al lado de la otra, (ya
que su variable X local cambia en cada llamada).

Fijate que el proceso “letter()” no tiene nada, y ya nuestro proceso principal tampoco. Ahora
falta ver el cddigo de nuestro proceso “puntero()”, que es que realmente va a efectuar el Drag&Drop.

El cédigo de este proceso empieza creando el grafico del proceso, un cuadrado 1x1 blanco,
para meterse en un bucle infinito. En este bucle lo primero que se hace es obligar a que este cuadrado
pequefio viaje siempre con el raton, de manera que pase desapercibido y logre realizar su cometido de
detector de colisiones. Y eso lo hara siempre hasta que se aprete el boton izquierdo del raton. En ese
momento,es cuando se detectard o no si hay colision. Esta linea almacenara en dragID un 0 si no hay
colision (se ha pulsado el raton en una zona sin fichas) o bien, si la hubiera, el identificador concreto de la
ficha con la que se estd colisionando. Seguidamente comprobamos si efectivamente draglD tiene el valor
de algun identificador de un proceso existente (con la hasta ahora inédita funcion exists: también habriamos
podido poner como haciamos hasta ahora la linea del collision dentro del if y no usar, pues, esta funcion).

Si no hubiera colision, realmente el c6digo no hace nada: el proceso contintia siguiendo al
puntero y ya esta. Pero si hubiera colision, lo primero que se hace es fijar unas cantidades (“relativeX” y
“relativeY”’) que representaran la distancia entre el puntero del raton y el centro de la ficha colisionada, en
el momento de apretar el boton izquierdo. Este valor constante simplemente sirve para que cuando
arrastremos alguna ficha, el centro de su grafico no se acople con la punta de la flecha —es el
comportamiento normal, pero queda feo- sino que la posicion relativa de su centro respecto la punta de la
flecha se mantenga igual al principio del Drag&Drop correspondiente.

A continuacion entramos en el while que ejecuta de hecho el Drag&Drop: mientras se
mantenga pulsado el boton izquierdo, las coordenadas del centro de la ficha colisionada —identificada por
dragID- seran las mismas que las de la punta de la flecha, pero corregidas por la distancia relativa que
acabamos de comentar.Y ya estd. Basta procurar escribir la orden Frame; en aquellos sitios que puedan
hacer colgar el programa (bucles), y en principio tendria que funcionar.

Trabajar con sonido:

Antes de poder usar los maravillosos efectos especiales de sonido que hemos preparado
(explosiones, disparos, choques,etc) tenemos que decirle al programa que los cargue en memoria. ;,Coémo se
hace eso? Con la instruccion load wav.

Load wav se encarga, como su nombre indica, de cargar en memoria un fichero de audio con
formato wav (que no de reproducir nada: sdlo carga). Recordaras que en la introduccion de este curso
comentamos que este formato contiene una grabacion digital de audio sin comprimir, y que por tanto
ocupaba mucho espacio en disco —y en memoria, claro-.Por lo tanto, los archivos wav son recomendables
solo cuando se quieren utilizar sonidos realistas pero relativamente cortos de duracion, como puede ser una
explosion, un choque...pero no para poner una cancion, por ejemplo.

De hecho, para poner musica en un juego —que no sonidos concretos- existe una manera distinta
de trabajar, de la cual hablaremos dentro de nada.

También hay otro uso de los ficheros wav, y es el de poner un sonido que se repita
constantemente a lo largo de un periodo de tiempo, ya que la carga del wav en memoria solo se realiza la
primera vez, y a partir de ésta se puede ir repitiendo la emision de ese sonido sin problemas. Ahora lo
veremos.

Una vez cargado el sonido, entonces se procedera a reproducirlo, con la funcidon play wav.
Podremos parar la reproduccion con stop_wav, pausarla con pause wav y reemprenderla con resume wav'y

380

varias cosas mas como cambiar el volumen o el balance del sonido con las funciones que veremos a
continuacion.

LOAD_WAV((“fichero”)

Esta funcion carga un fichero en formato WAV de disco y lo almacena en memoria para reproducirlo en el
futuro mediante la funcion PLAY WAV . El valor que devuelve la funcion es un niimero entero que
representa el recurso en memoria, o -1 si no fue posible cargar el fichero o no estaba en un formato
correcto.

Si no se desea utilizar por mas tiempo, puede descargarse de memoria el efecto de sonido empleando la
funcion UNLOAD WAV.

PARAMETROS: STRING FICHERO : Nombre del fichero Wav
VALOR RETORNADO: INT: Identificador del sonido

PLAY_WAV(WAYV, REPETICIONES)

Reproduce un efecto de sonido recuperado previamente de disco mediante la funcion LOAD WAV.

Es posible reproducir varias veces un mismo efecto de forma simultanea. Esta funcion devuelve un
identificador del canal de sonido empleado para reproducir el efecto de sonido. Existen 16 canales de
sonido disponibles para efectos, y esta funcion puede elegir cualquiera de ellos que esté libre. En caso de
reproducir una gran cantidad de efectos de sonido simultaneamente, es posible que en un momento dado
hayan ya 16 sonidos activos, en cuyo caso el nuevo sonido no sera reproducido y esta funcion devolvera -1.
El identificador de canal devuelto por esta funcién puede usarse con IS PLAYING WAV,

SET WAV _VOLUMNE , y demas funciones de sonido.

El efecto de sonido puede reproducirse una sola vez, si se pasa como parametro de repeticiones 0 6 1, el
numero concreto de repeticiones indicado, o bien indefinidamente si este pardmetro es -1. Hay que tener en
cuenta que si el sonido se reproduce indefinidamente, el canal quedara ocupado hasta que el sonido se
detenga con STOP_ WAV .

PARAMETROS:

INT WAV : Identificador del sonido devuelto por LOAD WAV
INT REPETICIONES : Numero de repeticiones (0 6 1=1 vez; -1= infinitas veces)

VALOR RETORNADOQO: INT: Numero de canal

STOP_WAV(CANAL)

Detiene la reproduccion de cualquier sonido que esté activo a través de un canal determinado. Para saber
qué canal corresponde a un efecto de sonido concreto, debes guardar el valor devuelto por PLAY WAV

PARAMETROS:

INT CANAL : Numero de canal devuelto por PLAY WAV

PAUSE_WAV(CANAL)

Detiene temporalmente la reproduccion de cualquier sonido que esté activo a través de un canal

381

determinado, hasta que vuelva a reanudarse la reproduccion empleando RESUME WAV . Para saber qué
canal corresponde a un efecto de sonido concreto, debes guardar el valor devuelto por PLAY WAV .

PARAMETROS:

INT CANAL : Numero de canal devuelto por PLAY WAV

RESUME_WAV(CANAL)

Reanuda la reproduccion del sonido que estaba activo a través de un canal determinado en el momento que
se detuvo la reproduccion empleando PAUSE WAV. Para saber qué canal corresponde a un efecto de
sonido concreto, debes guardar el valor devuelto por PLAY WAV

PARAMETROS:
INT CANAL : Numero de canal devuelto por PLAY WAV

IS_PLAYING_WAV(CANAL)

Esta funcion comprueba si cualquier efecto de sonido reproducido anteriormente mediante PLAY WAV _
todavia esta sonando, devolviendo en este caso 1. En caso contrario esta funcion devolvera 0.

Hay que tener en cuenta que el canal puede ser reutilizado mas tarde por otros efectos de sonido, por lo que
es conveniente no seguir haciendo la comprobacion una vez esta funcion ha devuelto 0.

PARAMETROS:

INT CANAL : Numero de canal devuelto por PLAY WAV

SET_CHANNEL_VOLUME(CANAL,VOLUMEN)

Especifica el volumen general del canal de sonido, entre 0 (silencio) y 128 (volumen maximo).
Si el canal especificado es -1, afecta al volumen de todos los canales.

A parte de este nivel de volumen por cada canal, el volumen de cada efecto de sonido que se reproduzca
podra ser regulado independientemente por SET WAV _VOLUME. De tal manera, el volumen final de un
efecto de sonido vendra dado por estas dos funciones: SET CHANNEL VOLUME establece el volumen
base del canal y SET WAV_VOLUME, a partir de ese volumen base, lo modifica para un efecto de sonido
en concreto.

PARAMETROS :
INT CANAL : Numero de canal devuelto por PLAY WAV
INT VOLUMEN : Volumen deseado (0-128)

SET_WAV_VOLUME(CANAL,VOLUMEN)

Cambia el volumen de un efecto de sonido cargado anteriormente mediante LOAD WAV , entre 0
(silencio) y 128 (volumen original del efecto).

El volumen final de reproduccion del efecto sera este modificado por el valor de volumen de reproduccion
asignado al canal por el que est¢ con SET CHANNEL VOLUME..

382

http://jlceb.cir.es/fenix/func.php?func=PLAY_WAV

PARAMETROS :

INT WAV : Identificador del efecto devuelto por LOAD WAV
INT VOLUMEN : Volumen deseado (0-128)

Un ejemplo trivial del uso de esta funcidn es poder crear un mando con los cursores del teclado que
controle en tiempo real el volumen de un sonido que se esta reproduciendo en este momento:

program Test SET WAV VOLUME;,
global
int wav;
int vol=64;
end
begin
set_mode(320,240,16);
write(0,10,90,3,"-> = UP Volumen...");
write(0,10,100,3,"<- = DOWN Volumen...");
write(0,10,110,3,"Volumen Actual... ");
write_var(0,124,110,3,vol);
wav=Iload _wav("wav.wav");
play wav(wav,-1);
repeat
if(key(_left) && vol>0) vol=vol-8; end
if(key(right) && vol<I28) vol=vol+8; end
set_wav_volume(wav,vol);
frame;
until(key(_esc))
end

SET_DISTANCE(CANAL, DISTANCIA)

Esta funcién permite alterar el sonido de un canal determinado simulando un alejamiento del mismo, a
partir de una distancia al jugador. La distancia 0 deja el sonido como estaba al principio, mientras una
distancia de 255 hace el sonido inaudible.

Esta funcion filtra el sonido de un canal de sin hacer uso de las caracteristicas avanzadas de algunas tarjetas
de audio. Si se desea una emulacion algo mas sofisticada, es mejor usar SET POSITION .
PARAMETROS :

INT CANAL : Numero de canal devuelto por PLAY WAV
INT VOLUMEN : Distancia del jugador (0-255)

SET_PANNING(CANAL,IZQUIERDO,DERECHO)

Cambia el balance de un canal. Es decir, esta funcion permite cambiar el posicionamiento
izquierdo/derecho en stereo de un sonido, simplemente ajustando el volumen de cada uno de los dos
subcanales. Si se desea dejar el sonido tal cual estaba en un principio, basta con hacer un

SET PANNING(255,255).

PARAMETROS :
INT CANAL : Numero de canal devuelto por PLAY WAV
INT IZQUIERDO : Volumen izquierdo (0-255)
INT DERECHO: Volumen derecho (0-255)

383

SET_POSITION(CANAL,ANGULO,DISTANCIA)

Esta funcion permite alterar el sonido de un canal determinado simulando un posicionamiento en 3D del
mismo, a partir de un angulo de posicion y una distancia al jugador. Los parametros (0,0) dejan el sonido
como estaba al principio, mientras una distancia de 255 hace el sonido inaudible.

Esta funcion filtra el sonido de un canal de una forma algo lenta, sin hacer uso de las caracteristicas
avanzadas de algunas tarjetas de audio. Si s6lo se desea una emulacion mas simple, es mas rapido llamar a
SET DISTANCE.

PARAMETROS :
INT CANAL : Numero de canal devuelto por PLAY WAV
INT ANGULO : Angulo respecto al jugador, en grado (0-360)
INT DISTANCIA: Distancia del jugador (0-255)

UNLOAD_WAV(WAYV)

Elimina un efecto de sonido de memoria. Es importante que el efecto no se esté reproduciendo en el
momento de descargarlo de memoria, por lo que debes asegurarte de ello mediante la funcion
IS PLAYING _WAV.

Normalmente so6lo es preciso descargar de memoria efectos de sonido continuos, que ocupan mas espacio,
como el motor de un coche o una lluvia de fondo.

PARAMETROS :

INT WAV : Identificador del efecto devuelto por LOAD WAV

Un ejemplo muy simple de estas funciones de sonido lo podemos ver aqui. En este codigo se
crea un proceso, el cual mientras esté vivo mostrara por pantalla un rectangulo de color amarillo. Y este
proceso estara vivo el tiempo que dure en sonar un archivo wav (llamado “a.wav’). El usuario podra pausar

[P [IP%4)

y reemprender la ejecucion del sonido con la tecla “s” y “r” respectivamente.

Notar que todas las funciones excepto play wav, set wav_volume y unload_wayv tienen como
parametro el identificador de canal, y no el identificador del archivo wav.

program aa;
global

int idwav;
end
begin
set_mode(320,240,16);
//La carga de los sonidos se puede hacer al principio del programa, al igual que se hace con los fpgs.
idwav=Iload_wav("a.wav");
miproceso();
while(!key(_esc))

frame;

end
end

process miproceso()

384

private
int idcanal;
end
begin
graph=new_map(200,100,16);
map_clear(0,graph,rgb(255,255,0));
x=200;
y=150;
idcanal=play wav(idwav,0);
/*Las cinco lineas siguientes lo unico que hacen es alterar el sonido emitido por play wav de manera que
suene mas alejado, con menor volumen y balanceado hacia la izquierda. Serian opcionales, en todo caso™/
set_wav_volume(idwav,100);
set_channel volume(idcanal, 100);
set_panning(idcanal,100,0),
set_distance(idcanal, 100);
set_position(idcanal, 100,100),
while(is_playing wav(idcanal))
iftkey(s)) pause_wav(idcanal); end
if(key(r)) resume_wav(idcanal), end

frame;
end
unload _wav(idwav);
end

Al volumen del canal en vez de un valor concreto se le podria poner una variable, de manera que
si todos los sonidos tienen esa variable se podra controlar el volumen general del juego alterando el valor
de esa variable.Recuerda que también existe la funcion set wav_volume -no confundir con la anterior- que
establece el volumen de ese sonido en si de forma permanente, no so6lo cuando se reproduce. Hay que tener
cuidado con la suma de los efectos de las funciones set channel volume y set wav_volume: a la hora de
mezclar primero afecta el valor del sample y luego el del canal.

Trabajar con musica:

Los wavs estan muy bien para efectos especiales cortos, como disparos, puertas, saltos y otro
tipo de sonidos que no se reproducen durante mucho tiempo. Pero para temas de fondo o bandas sonoras no
son adecuados, ya que ocupan mucho espacio. Para eso estan las funciones /load song,
play song,stop song,pause song,resume_song o unload _song que permiten usar o bien archivos MIDI o
bien archivos OGG (y también archivos WAV otra vez).

Recordaras de la introduccion de este curso que los archivos MIDI (.mid) ocupan muy poco
espacio porque so6lo contienen una representacion de las notas que componen la musica, y es la tarjeta de
sonido la que se encarga (con menor o mayor fidelidad seglin su calidad) de reproducir los instrumentos. Por
lo tanto, es el formato ideal si quieres crear juegos que ocupen lo minimo posible. Los archivos OGG en
cambio, contiene una grabacion digital de sonido comprimida al maximo, y estdn recomendados por su
excelente calidad; si quieres usar musica grabada en tu juego, es el formato adecuado.

Quisiera comentar la existencia de un formato de archivo de sonido del cual no hemos hablado
hasta ahora, y que tampoco utilizaremos en este curso, pero que creo que como minimo has de conocer, y
que las funciones que estamos tratando son capaces también de reproducir. Se trata de los mddulos.Son
archivos con extension .xm, o .it, 0 .s3m, o .mod, los cuales contienen una representacion de las notas que
componen la musica (como los .mid) y, ademas, una digitalizacion de cada uno de los instrumentos usados
(sonido digitalizado), asi que es un formato intermedio a los midi y a los wav, tanto en calidad como en
tamafio: suenan mas realista que los .mid, pero ocupan mas.

385

LOAD_SONG(“fichero”)

Recupera de disco un fichero de musica, para reproducir posteriormente con PLAY SONG . Actualmente
se soportan los siguientes formatos: OGG Vorbis (.ogg) , MIDI (.mid), modulos (.xm,.it, .s3m, .mod) y
WAV (.wav)

Esta funcion devuelve un ntimero entero que identifica la musica, o -1 si el fichero no esta en un formato
reconocido. Puedes usar el nimero devuelto para reproducir la musica mediante la funcion PLAY SONG .

PARAMETROS: STRING FICHERO : Nombre del fichero

VALOR RETORNADQO: INT : Identificador de la musica

PLAY_SONG (MUSICA, REPETICIONES)

Inicia la reproduccion de un fichero de musica recuperado con la funcion LOAD SONG . Dependiendo del
tipo de fichero, solo es posible reproducir un fichero de musica a la vez, por lo que cualquier musica que se
estuviese reproduciendo debe detenerse primero con STOP_SONG,, ya que a diferencia de play wav,

play song no trabaja con canales, por lo que so6lo se puede reproducir una musica a la vez

El segundo parametro indica el numero de veces que debe repetirse la reproduccion. Puede usarse 0 para no
repetirla, o -1 para repetirla continuamente hasta que se detenga con STOP_SONG

PARAMETROS:

INT MUSICA : Identificador de la musica
INT REPETICIONES : Numero de repeticiones

STOP_SONG()

Detiene la reproduccion de cualquier fichero de musica en curso inmediatamente..

Para un mejor efecto, prueba a usar la funcion FADE _MUSIC OFF

UNLOAD_SONG (MUSICA)

Libera la memoria ocupada por una musica cargada en memoria con LOAD SONG . Antes es necesario, si
se esta reproduciendo, detener la reproduccion de la musica con STOP._SONG

PARAMETROS:

INT MUSICA : Identificador de la musica

FADE_MUSIC_IN (MUSICA, REPETICIONES, MILISEGUNDOS)

Esta funcién equivale a PLAY SONG , excepto que la musica no empieza a reproducirse a maximo
volumen sino desde el silencio, y va subiendo de volumen gradualmente hasta que, pasado el tiempo

386

indicado en el pardmetro milisegundos , el volumen es completo.

El segundo parametro indica el numero de veces que debe repetirse la reproduccion. Puede usarse 0 para no
repetirla, o -1 para repetirla continuamente hasta que se detenga con STOP_ SONG

Esta funcion es especialmente util para reproducir efectos de sonido continuos de este tipo (como por
ejemplo, sonidos ambientales) en lugar de musica.

PARAMETROS:

INT MUSICA : Identificador de la musica
INT REPETICIONES : Numero de repeticiones
INT MILISEGUNDOS : Tiempo para llegar al volumen completo en milisegundos

FADE_MUSIC_OFF (MILISEGUNDOS)

Esta funcion detiene la miisica que esté ejecutdndose actualmente (que haya sido iniciada mediante la
funcion PLAY SONG) bajando gradualmente el volumen hasta que se apague. El pardmetro milisegundos
indica el tiempo aproximado en el que se desea que la musica haya terminado.

Obviamente justo después de llamar a esta funcion, la misica no ha acabado inmediatamente. Para saber
cuando es seguro usar UNLOAD SONG o reproducir otra musica, es preciso utilizar
IS PLAYING_SONG para comprobar si la musica ya ha terminado de apagarse.

PARAMETROS:

INT MILISEGUNDOS : Tiempo para llegar al final de la reproduccion en milisegundos.

IS PLAYING_SONG()

Esta funcion comprueba si cualquier musica reproducida anteriormente mediante PLAY SONG todavia
esta sonando, en cuyo caso devolvera 1. En caso contrario (la musica ya ha terminado y no se reproduce en
modo de repeticion, o bien se ha detenido con funciones como STOP_SONG o FADE MUSIC OFF),
esta funcion devolvera 0.

VALOR RETORNADO: INT : Indicador de si la cancion se esta reproduciendo (1) o no (0)

PAUSE_SONG()

Detiene temporalmente la reproduccion de cualquier fichero de musica en curso, hasta que se contintic mas
tarde mediante la funcion RESUME SONG.

Esta funcion detiene la reproduccion de musica inmediatamente. Para un mejor efecto, prueba a usar la
funcion FADE_MUSIC_OFF

RESUME_SONG()

Continta la reproduccion de musica desde el punto donde se detuvo anteriormente mediante la funcion
PAUSE _SONG

387

SET_SONG_VOLUME(VOLUMEN)

Esta funcion establece el nivel general de volumen para la misica entre un nivel de 0 (silencio total) y 128
(volumen original del fichero).

PARAMETROS : INT VOLUMEN : Volumen deseado (0-128)

Un ejemplo de estas funciones de musica podria ser éste.
En este codigo si se pulsa la tecla “a” se crea un proceso, el cual mientras esté vivo mostrara por
pantalla un rectangulo de color amarillo. Y este proceso estara vivo el tiempo que dure en sonar un archivo

(1Pl

wav (llamado “a.wav”). El usuario podra pausar y reemprender la ejecucion del sonido con la tecla “s” y
“r” respectivamente.

En cambio, si se pulsa la tecla “b”, se creara otro proceso -proceso2”, el cual mientras esté vivo
mostrara por pantalla un rectangulo de color rosa.Y este proceso estard vivo el tiempo que dura en sonar

-mediante un fade in- el mismo archivo wav. El usuario podra realizar un fade out si pulsa la tecla “f”.

program aa;
global
int idsong;
end
begin
set_mode(320,240,16);
idsong=load_song("a.wav");
while(lkey(_esc))
if (key(_a))miproceso(); end
if (key(_b))miproceso2(),;end
frame;
end
unload_song(idsong);
end

process miproceso()

begin

graph=new_map(200,100,16);

map_clear(0,graph,rgb(255,255,0)),

x=200;

y=150;

play song(idsong,0);

set_song_volume(100);

while(is_playing song())
if(tkey(_s)) pause_song(); end
if(tkey(_r)) resume_song(); end
frame;

end

end

process miproceso?()

begin
graph=new_map(200,100,16);
map_clear(0,graph,rgb(255,0,255));
x=300;

y=40;

fade music_in(idsong,0,3);

388

while(is_playing song())
iftkey(_f)) fade_music_off(3),; end
frame;
end
end

(Has probado de ejecutar los dos procesos a la vez -apretando “a” y “b”? Veras, como era de esperar,
que los dos procesos se ponen en marcha mostrandose los dos rectangulos, pero en cambio, la musica no
suena doblada, sino que cada vez que se ejecuta uno de los procesos, se para la musica que estaba sonando
en aquel momento y empieza la musica del nuevo proceso, asi que solo se escucha esa musica una sola vez
cada vez, sin ningln tipo de superposicion. Esto es asi porque, a diferencia de las funciones de la familia
“load_wav”, “play_wav”, etc, las funciones de la familia “load _song”, “play_song”, etc no funcionan con
canales, por lo que s6lamente se puede escuchar a la vez un sonido cargado con load song. Si quieres, haz
la prueba de ejecutar el mismo ejemplo anterior pero utilizando las funciones de la familia “load_wav™: si
utilizar los canales de forma adecuada (un canal diferente para cada proceso), veras que si que sonaran las
diferentes musicas a la vez cuando los procesos estén en marcha.

Trabajar con dngulos y distancias:

Una de los conceptos mas elementales que hay que dominar para lograr realizar videojuegos
que sean minimamente atractivos es el dominio de la medida de los angulos y de las distancias existentes
entre los diferentes procesos que en un momento determinado se visualicen en pantalla. Echando mano de las
funciones que Fénix dispone en este campo, lograremos efectos tan basicos como conseguir que un proceso
esté encarado siempre hacia otro, 0 que un proceso persiga constantemente a otro proceso, etc,etc

FGET_ANGLE(X1, Y1, X2,Y2)

Esta funcion devuelve, en milésimas de grado, el &ngulo formado por la linea entre los dos puntos
especificados, y el eje X (horizontal) de coordenadas.

Con esta funcion puede, facilmente, orientar el angulo de un proceso para que éste siempre esté "mirando"
hacia un lugar concreto (como puede ser otro proceso). La aplicaciéon més sencilla puede ser un proceso
que "persiga" a otro simplemente utilizando FGET ANGLE seguida de ADVANCE.

PARAMETROS:

INT X1: Coordenada X del primer punto.
INT Y1: Coordenada Y del primer punto
INT X2: Coordenada X del segundo punto
INT Y2: Coordenada Y del segundo punto.

GET_ANGLE(ID)

Esta funcion devuelve el angulo formado por la linea que parte del centro del proceso actual y pasa por el
centro del proceso cuyo identificador se especifica como parametro.

El uso habitual de esta funcion consiste en hacer que un proceso "apunte” en direccion a otro: es el caso
tipico de monstruos y otros objetos que buscan siempre atrapar al jugador.

Para que esta funcidén devuelva un resultado util, asegurate de que no has asignado valores diferentes de la

389

variable RESOLUTION y de que las coordenadas de ambos representan la misma zona (por ejemplo, que
no estén cada uno en un area de scroll diferente).

PARAMETROS:
INT ID: Identificador de un proceso

FGET DIST(X1, Y1, X2, Y2)

Esta funcion devuelve la distancia entre dos puntos, en las mismas unidades que vengan dados éstos.Es una
funcion relativamente lenta, que devuelve un resultado exacto empleando una raiz cuadrada.

PARAMETROS:

INT X1: Coordenada X del primer punto.
INT Y1: Coordenada Y del primer punto
INT X2: Coordenada X del segundo punto
INT Y2: Coordenada Y del segundo punto.

GET _DIST(ID)

Esta funcion devuelve la distancia en linea recta entre el centro del proceso actual y el centro del proceso
cuyo identificador se especifica como parametro.

PARAMETROS:
INT ID: Identificador de un proceso

GET DISTX(ANGULO, DISTANCIA)

Esta funcion devuelve, en las misma unidad que se use para la distancia, el ancho del rectangulo formado
por la linea que recorre esa distancia. Usando esta funcion junto con GET DISTY se puede saber qué
cantidades sumar a las coordenadas X e Y de un objeto para desplazarlo en la direccion que se desee.

PARAMETROS:

INT ANGULO: Angulo en milésimas de grado (90000= 90°)
INT DISTANCIA : Magnitud de distancia

Y

X

Grdfico que ilustra, dada una distancia y un angulo, el valor “x” que devuelve la funcion get distx (lo
marcado en rojo)

390

GET DISTY(ANGULO, DISTANCIA)

Esta funcion devuelve, en las misma unidad que uses para la distancia, la altura del rectangulo formado por
la linea que recorre esa distancia. Usando esta funcion junto con GET DISTX se puede saber qué
cantidades sumar a las coordenadas X e Y de un objeto para desplazarlo en la direccion que se desee.

PARAMETROS:

INT ANGULO: Angulo en milésimas de grado (90000= 90°)
INT DISTANCIA : Magnitud de distancia

Y

X

Gradfico que ilustra, dada una distancia y un dngulo, el valor “y”" que devuelve la funcion get disty (lo

marcado en rojo)

A continuacion vamos a ver unos cuantos ejemplos basicos que ilustran el funcionamiento de las
funciones anteriores. Por ejemplo, el siguiente codigo va mostrando a cada segundo una linea diferente
cuyos dos extremos son puntos de coordenadas aleatorias. Para cada linea que aparezca el programa nos
dird el angulo que forma ésta respecto el eje X (con fget angle) y su longitud -es decir, la distancia entre

sus extremos- (con fget dist).

program hola;
global
int xorigen,yorigen,xfinal,yfinal;
int distancia,angulo;
end
begin
set_mode(640,480,16);
set_fps(1,0);
drawing z(0);
loop
delete_text(all text);
xorigen=rand(10,300),
yorigen=rand(10,300);
xfinal=rand(10,300);
yfinal=rand(10,300);

delete_draw(0);
draw_line(xorigen,yorigen,xfinal,yfinal),
//Las cajitas hacen un poco mas visibles los dos extremos de la linea

391

draw_box(xorigen-3,yorigen-3,xorigen+3,yorigen+3);
draw_box(xfinal-3,yfinal-3,xfinal+3,yfinal+3);

distancia=fget_dist(xorigen,yorigen,xfinal,yfinal),
write(0,450,100,4,"Distancia entre los puntos: " + distancia);
angulo=fget angle(xorigen,yorigen,xfinal,yfinal);
write(0,450,150,4, "Angulo formado por la linea y el eje X: "+ (float)angulo/1000);
frame;
end

end

Para mostrar la utilidad de las funciones get dist y get angle es interesante estudiar el ejemplo
siguiente. En €l aparecen dos procesos: un cuadrado verde inmovil y un cuadrado rojo que podremos
mover con los cursores. En todo momento apareceran por pantalla dos datos, que seran los devueltos por
get dist y get angle, respectivamente. Es decir, la distancia a la que se encuentra en cada momento el
cuadrado rojo que dominamos respecto el cuadrado verde, y el angulo que forma la linea que une ambos
cuadrados respecto la horizontal -ambas lineas también aparecen pintadas de blanco para facilitar la
interpretacion de dicho numero-

program hola;
global
int idverde,
end
begin
set_mode(640,480,16);
//El identificador idverde lo necesitaremos para las funciones get dist y get_angle, ejecutadas desde rojo()
idverde=verde();
rojo();
while(!key(esc))
frame;
end
let_me_alone();
end

process rojo()
private
int angulo,distancia;
end
begin
graph=new_map(30,30,16);
map_clear(0,graph,rgb(255,0,0)),
x=400;
y=100;
drawing z(0);
loop
if(key(_left)) x=x-10; end
if(key(right)) x=x+10; end
if(key(_up)) y=y-10; end
if(key(_down)) y=y+10; end

/*Dibujo la horizontal y la linea que une los dos procesos, para mostrar visualmente el significado del
valor devuelto por get angle. Fijarse como aqui utilizo ya el identificador idverde para acceder a las
coordenadas de posicion de un proceso diferente al actual.*/

delete _draw(0);

392

draw_line(x,y,x+100,y);
draw_line(x,y,idverde.x,idverde.y),

delete_text(0);
distancia=get dist(idverde);
write(0,200,200,4,"La distancia al cuadrado verde es de " + distancia);
angulo=get angle(idverde);
/*Es curioso comprobar que los valores que devuelve get angle van de 0°a 270°, y a partir de alli de -90°
a 0° otra vez*/
write(0,200,250,4,"El angulo que formo respecto el cuadrado verde es " + (float)angulo/1000);
frame;
end
end

process verde()
begin
graph=new_map(30,30,16);
map_clear(0,graph,rgb(0,255,0));
x=500;
y=100;
loop
frame;
end
end

Si queremos ver la utilidad de las funciones get disty e get distx, podemos aprovechar el ejemplo
anterior y simplemente afadir, justo antes de la orden frame del loop/end del proceso rojo() las siguientes
lineas:

distx=get distx(angulo,distancia);

disty=get disty(angulo,distancia);

write(0,200,300,4,"La distancia horizontal al cuadrado verde es de " + distx);
write(0,200,350,4,"La distancia vertical al cuadrado verde es de " + disty);

teniendo la preocupacion ademas de declarar como variables privadas del proceso rojo() las variables
“distx” y “disty”.

Si pruebas ahora el codigo, veras que obtienes dos datos mas: los dos datos devueltos por las
funciones get distx y get disty respectivamente, a partir de un angulo y una distancia dados, los cuales
hemos puesto que sean para redondear el ejemplo precisamente el angulo y la distancia existentes entre los
dos procesos del ejemplo. Fijate que, evidentemente, si movemos el cuadrado rojo en horizontal, el valor
devuelto por get disty no se altera, y al revés: si movemos el cuadrado rojo en vertical, el valor devuelto
por get_distx tampoco cambia, como ha de ser.

Otro ejemplo ilustrativo del uso de get angle, get disx y get disty es el siguiente. En ¢l tenemos
un proceso “cuadamar” visualizado por un cuadrado amarillo el cual podremos mover con el cursor y que
es perseguido incansablemente por otro proceso, “cuadroj” (visualizado por un cuadrado rojo). La idea es
que cuando “cuadroj”’se sale de la pantalla se vuelve a colocar en una nueva posicion aleatoria dentro de la
pantalla para continuar la persecucion. Esta persecucion, no obstante, es sui generis, porque “cuadroj”
solamente tiene en cuenta la posicion que tiene “cuadamar” en el momento de su creacion -o su puesta de
nuevo dentro de la pantalla-, por lo que si “cuadamar” se mueve, “cuadroj” no lo sabrd y seguira
imperturbable en la direccion que “cuadamar” tenia originalmente.

393

Program ejemplo_get distx_get angle;
Global
int idcuadamar;
End
Begin
set_mode(640,480,16);
write(0,0,20,0,"TECLAS RIGHT,LEFT,UP y DOWN para mover cuadrado amarillo"),
idcuadamar=cuadamar();
/*El cuarto pardametro de cuadroj hace que a la hora de crear dicho proceso, se obtenga el angulo que en
ese instante tiene cuadamar respecto el nuevo proceso cuadroj. Este angulo se utilizara para dirigir
cuadroj a la posicion que ocupa cuadamar, pero como esta medicion solo se hace en este instante -cuando
se crea cuadroj-, si posteriormente cuadamar se mueve, cuadroj no se enterara y continuard estando
dirigido en la direccion que ocupaba cuadamar originalmente.*/
cuadroj(x,y,get_angle(idcuadamar));
End

Process cuadroj(x,y, int angulo)
Begin
graph=new_map(30,30,16);map_clear(0,graph,rgb(255,0,0));
Loop
/*A partir del angulo que hay entre cuadamar y cuadroj, se calcula las nuevas coordenadas de cuadroj*/
x=x+get_distx(angulo,16);
y=y+tget disty(angulo,16);
/*Si cuadroj sale de los limites de la pantalla, se vuelve a colocar en unas coordenadas aleatorias otra vez
dentro, y se vuelve a obtener la nueva orientacion (el nuevo angulo) de cuadroj respecto cuadamar (el
cual también puede haber cambiado de posicion mientras tanto) como si “cuadroj” hubiera sido creado
de nuevo, para volver a empezar la persecucion™/
If(x>640 OR y>480 OR x<0 OR y<0)
x=rand(0,600),y=rand(0,450),

angulo=get _angle(idcuadamar);

End
If(key(esc)) exit();End
Frame;

End

End

Process cuadamar()

Begin
graph=new_map(30,30,16);map_clear(0,graph,rgb(255,255,0));
x=160,y=100;

Loop
If(key(right)) x=x+16,End
If(key(left)) x=x-16,End
Iftkey(_up)) y=y-16;End
If(key(_down)) y=y+16,End
//No se puede salir de los extremos de la pantalla
If(x>620) x=620,End
If(x< 20) x=20;End
If(y>460) y=460,End
If(y< 20) y=20;End
Frame;

End

End

394

Otro ejemplo, a lo mejor mas sencillo, de estas mismas funciones es el siguiente codigo, donde se
puede ver un cuadrado rojo que hace de “escudo vigilante” a un cuadrado amarillo.

Program ejemplo_get distx;

Private
int distancia=100; //Distancia del cuadrado rojo al amarillo
int idcuadamar;

end

Begin
set_mode(640,480,16);

//El programa principal representa el proceso del cuadrado rojo
graph=new_map(30,30,16);map_clear(0,graph,rgb(255,0,0));
idcuadamar=cuadamar();

Loop

/*Cambiamos las coordenadas del cuadrado rojo (v su orientacion). Si coges lapiz y papel verds que es

facil deducir las formulas que se emplean para simular el movimiento circulatorio™/

angle=angle+2000;
x=idcuadamar.x+get distx(angle,distancia);
y=idcuadamar.y+get disty(angle,distancia);
If(key(esc)) exit();End
Frame;

End

End

Process cuadamar()
Begin
x=250,y=240;
graph=new_map(30,30,16);map_clear(0,graph,rgb(255,255,0));
loop
//Aunque me mueva, el cuadrado rojo va a continuar rodeandome
if(key(_left))x=x-10;end
if(key(right))x=x+10;end
if(key(_up))y=y-10;end
if(key(_down))y=y+10;end
Frame;
end
End

XADVANCE(ANGULO,NUMERO)

Esta funcion desplaza el proceso actual en la direccion especificada por el angulo indicado como primer
parametro, el nimero de unidades indicado como segundo parametro.

Hay que tener en cuenta que el desplazamiento se hace en unidades enteras, y por lo tanto tiene
limitaciones de precision. Un desplazamiento de 1 6 2 unidades no puede reflejar las diferencias entre
angulos, por lo que no sera efectivo. Si se desea desplazar un proceso en angulos arbitrarios y s6lo unos
pocos pixels, sera preciso utilizar la variable RESOLUTION para que las coordenadas del grafico vengan
expresadas en unidades mas pequenas que un pixel, como ocurre por defecto.

PARAMETROS:
INT ANGULO: Angulo en milésimas de grado (90000= 90°)
INT NUMERO : Numero entero

395

Esta funcion se utiliza bastante para conseguir que un proceso se dirija hacia la posicidon que ocupa otro
proceso en particular. Sabemos que Xadvance necesita un angulo para dirigir el proceso actual; pues bien,
en este caso, el angulo que necesitamos seria el devuelto por la funcién get angle, poniendo como
parametro de dicha funcion el identificador del proceso “perseguido”, ya que recordemos que esta funcion
devuelve el angulo que forma la linea que atraviesa ambos procesos respecto la horizontal: precisamente el
angulo que queremos .Un ejemplo de esta aplicacion seria el siguiente. En €l tenemos dos procesos: un
cuadrado rojo que persigue a otro, un cuadrado verde inmoévil que cuando es alcanzado cambia de posicion
aleatoriamente para continuar siendo perseguido sin descanso por el cuadrado rojo.

program hola;
global
int idverde;
end
begin
set_mode(640,480,16);
idverde=verde(),
rojo();
loop
frame;
end
end

process rojo()
private
int angulo;
end
begin
graph=new_map(30,30,16);
map_clear(0,graph,rgb(255,0,0)),
x=100;
y=400;
loop
//8i yo, cuadrado rojo, colisiono con el cuadrado verde, hago que éste cambie de posicion
if(collision(idverde))
idverde.x=rand(0,599);
idverde.y=rand(0,399);
end
//Las dos lineas importantes que realizan la persecucion
angulo=fget angle(x,y,idverde.x,idverde.y),
xadvance(angulo,10),;
frame;
end
end

process verde()
begin
graph=new_map(30,30,16);
map_clear(0,graph,rgb(0,255,0)),
x=500;
y=100;
loop
frame;
end

396

end

Fijate, no obstante, que a diferencia de la explicacion inicial, en el codigo no hemos utilizado la funcion
get_angle para averiguar el angulo que forman los dos procesos entre ellos respecto la horizontal, sino que
hemos hecho servir la funcion fget angle, especificando “a mano” los centros de ambos procesos. Las dos
son funciones diferentes con propdsitos diferentes, pero en este ejemplo podriamos usar una u otra segin
nos interese, y haciéndolo bien obtendriamos el mismo resultado. ;Como se podria modificar el codigo
anterior para poder utilizar en vez de fget angle, el comando get angle?

Existen otras posibilidades (como no podia ser de otra manera) a la hora de implementar
mecanismos de persecucion de procesos, a parte del mas tipico comentado en el apartado anterior cuando
se hablaba de la funcion Xadvance.

En ocasiones nos puede interesar, por ejemplo, que un proceso, a partir de colisionar con otro,
vaya siguiendo los pasos de éste. ;Como podriamos lograr este efecto? A continuacion se presenta un
ejemplo que de hecho no hace ninglin uso de las funciones acabadas de comentar, sino que utiliza métodos
“mas manuales”, pero igualmente efectivos.

La idea es simple: tenemos dos procesos: un cuadrado amarillo que sera el proceso perseguido
y el cual podremos mover con los cursores y un cuadrado blanco que permanecerd inmovil hasta que el
cuadrado amarillo colisione con él, momento en el cual el cuadrado blanco comenzara a perseguir al
amarillo pisandole los talones para siempre.

Lo primero que hemos tenido que preguntarnos es en qué proceso escribimos el comando collision.
(El cuadrado amarillo colisiona con el blanco, o viceversa? En realidad, si s6lo vamos a incluir estos dos
procesos, la respuesta es irrelevante porque tanto da, pero si pensamos en una posible ampliacion del
programa donde haya mas de un proceso potencialmente a perseguir por parte del cuadrado blanco, la
respuesta so6lo tiene una posibilidad. Si queremos centralizar todas las colisiones que ocurran dentro de
nuestro programa entre el tnico cuadrado blanco y los multiples procesos a perseguir, el comando collision
lo deberemos de escribir en el proceso correspondiente al cuadrado blanco, porque asi podremos gestionar
las colisiones que sufre éste con cualquiera de los otros procesos; si hiciéramos al revés, deberiamos de
poner un comando collision en cada uno de los procesos perseguidos comprobando su respectiva colision
con el cuadrado blanco, cosa que no es nada optimo. De momento, sin enbargo, sélo incluiremos en
nuestro ejemplo un proceso perseguido (el cuadrado amarillo), y posteriormente veremos como introducir
mas procesos de este tipo, accion que si lo hemos hecho bien desde el principio, sera trivial.

Una vez resuelto donde colocamos el comando collision, fijémosnos en el codigo.

program hola;

begin
set_mode(640,480,16);
perseguidol();
perseguidor();
loop

frame;

end

end

process perseguidol ()

begin
graph=new_map(30,30,16);map_clear(0,graph,rgb(255,255,0));
x=300,y=300;
loop

397

if(key(_left)) x=x-10;end
if(key(right))x=x+10,end
iftkey(_up)) y=y-10;end
if(key(_down)) y=y+10;end
frame;
end
end

process perseguidor()
private
int idprota;
int flagseguir=0;
end
begin
graph=new _map(30,30,16);map _clear(0,graph,rgb(255,255,255));
x=200,y=200;
loop
if(idprota=collision(type perseguidol))flagseguir=idprota; end
/*Los +20 y -20 son para que el perseguidor no se coloque encima del perseguido, sino que se quede al
lado.Estos ifs lo que hacen es comprobar si el perseguido esti a la derecha/izquierda/arriba/abajo
respecto el perseguido, para moverse en consecuencia. Fijarse que el perseguidor va un poco mas lento
que el perseguido, para causar un efecto chulo.*/
if (flagseguir!=0)
if (x+20<flagseguir.x)x=x~+7,;end
if (x-20>flagseguir.x)x=x-7,end
if (y+20<flagseguir.y)y=y+7,end
if (v-20>flagseguir.y)y=y-7,end
end
frame;
end
end

Lo tnico digno de mencion es el proceso perseguidor. Su punto interesante esta en el uso de la
variable global “flagseguir”: mientras el cuadrado amarillo no colisione con el blanco, esta variable valdra
0 y mientras valga este valor, no ocurrira nada. En el momento de la colision, “flagseguir” pasa a valer el
identificador del proceso con el el que se ha colisionado -en este caso, el identificador del cuadrado
amarillo-, y es entonces cuando el codigo que hay en el interior del if (ya que flagseguir ya no vale 0) se
ejecuta, posibilitando asi la persecucion, puesto que flagseguir repito que vale el identificador del proceso
que acaba de colisionar (es decir, el proceso a perseguir).

Un detalle importante: ;por qué NO se ha programado el loop del proceso perseguidor asi?

loop
if(idprota=collision(type perseguidol))flagseguir=1, end
if (flagseguir!=0)
if (x+20<idprota.x)x=x+7,;end
if (x-20>idprota.x)x=x-7;end
if (y+20<idprota.y)y=y+7;end
if (v-20>idprota.y)y=y-7;end
end
frame;
end

Si pruebas el cambio veras que el programa deja de funcionar justo en el momento que se

398

produce una colision. Y esto ocurre por lo siguiente: justo en ese momento activamos “flagseguir” para
senalar que ha habido colision y ademas el comando collision devuelve el identificador del cuadrado
amarillo y , tal como hemos hecho, lo guardamos en la variable “idprota”. Pero esto ultimo sélo ocurre
mientras haya colision entre los dos procesos: en el momento en que el proceso perseguido se distancie un
poco del cuadrado blanco de manera que deje de haber colision, el comando collision volvera a devolver 0,
y flagseguir mantendra su valor a 1 igual -se supone que esto nos interesa para seguir manifestando que ha
habido colision y por tanto ha de comenzar la persecucion-. El problema viene cuando se quieren evaluar
las condiciones if(x+20<idprota.x) y similares: cuando se deja de colisionar y por tanto ha de empezar la
persecucion, acabamos de decir que collision retorna otra vez 0, con lo que “idprota” es 0, con lo que al
intentar evaluar estos cuatro ifs problematicos -ya que “flagseguir” recordemos que vale 1- nos
encontramos con que no tenemos proceso a perseguir: el identificador del mismo es 0, o lo que es igual,
ningun proceso. Asi que no se puede perseguir a nadie y se produce el error.

Imaginémosnos por ultimo que en pantalla hay mas procesos susceptibles de colisionar con el
cuadrado blanco y ser perseguidos por éste (un cuadrado verde, otro azul,etc). Si tenemos el codigo
anterior, modificarlo para que se adapte a estas nuevas circunstancias es un juego de nifos.

program hola;

begin
set_mode(640,480,16);
perseguidol();
perseguido2();
perseguidor();
loop

frame;

end

end

process perseguidol ()
begin
graph=new_map(30,30,16);map_clear(0,graph,rgb(255,255,0));
x=300,y=300;
loop
if(key(_left)) x=x-10;end
if(key(right))x=x+10;end
ifikev(_up)) y=y-10;end
if(key(_down)) y=y+10;end
frame;
end
end

process perseguido?2()
begin
graph=new_map(30,30,16);map_clear(0,graph,rgb(255,0,255));
x=100,y=100;
loop
iftkey(_a)) x=x-10;end
if(key(_d)) x=x+10;end
iftkey(w) y=y-10;end
iftkey(_s)) y=y+10;end
frame;
end
end

399

process perseguidor ()
private
int idprota;
int flagseguir=>0;
end
begin
graph=new_map(30,30,16);map_clear(0,graph,rgb(255,255,255));
x=200,y=200;
loop
if(idprota=collision(type perseguidol) or collision(type perseguido?2))flagseguir=idprota; end
/*Los +20 y -20 son para que el perseguidor no se coloque encima del perseguido, sino que se quede al
lado.Estos ifs lo que hacen es comprobar si el perseguido estd a la derecha/izquierda/arriba/abajo
respecto el perseguido, para moverse en consecuencia. Fijarse que el perseguidor va un poco mas lento
que el perseguido, para causar un efecto chulo.*/
if (flagseguir!=0)
if (x+20<flagseguir.x)x=x+7,end
if (x-20>flagseguir.x)x=x-7;end
if (v+20<flagseguir.y)y=y+7;end
if (v-20>flagseguir.y)y=y-7,end
end
frame;
end
end

Lo tnico que se ha hecho (aparte de incluir un nuevo proceso perseguido: un cuadrado rosa) es
incluir la posibilidad, dentro del cédigo del proceso perseguidor, de colisionar o bien con un proceso de
tipo “perseguidol” o bien “perseguido2”. Y ya esta: todo lo demas permanece igual.

Comentar finalmente que, si pruebas este ultimo codigo, veras que el cuadrado blanco es muy
“promiscuo”. Si estd persiguiendo un determinado proceso y en un momento dado colisiona con otro
proceso diferente, el perseguidor abandona a su antiguo perseguido para comenzar a perseguir al que acaba
de colisionar con él. ;Se te ocurre alguna manera evitar esto, es decir, para hacer que una vez el proceso
perseguidor haya empezado a perseguir a otro proceso, ya no se cambie el proceso perseguido por ningin
otro mas?

Otro ejemplo més sofisticado de persecucion de procesos (donde si utilizamos funciones como
get_angle,get dist,get distx o get disty) es el siguiente. Si lo ejecutas veras que tienes un cuadrado verde
(el “protagonista’) que lo podras mover con los cursores, y tres cuadrados rojos (los “enemigos”) que haran
dos cosas: por un lado siempre estaran encarados al protagonista: es decir, su angulo sera tal que en cada
movimiento que haga el protagonista, los enemigos irdn actualizando su orientacion para “vigilarlo”
permanentemente. Este efecto, aunque no lo parezca, en realidad no es necesario para lo siguiente. Y lo
siguiente es que, si el protagonista se acerca demasiado a un enemigo (ya que éste tiene definida una zona
de “sensibilidad”), el enemigo se “enterara” de la presencia del protagonista y éste sera perseguido con
insistencia hasta que se aleje lo suficiente para salir de esa zona de “sensibilidad”, momento en el que el
enemigo dejara de “notar” que hay alguien cerca y se volvera a quedar quieto. Una aplicacion directa de
este codigo la veremos en el capitulo-tutorial sobre RPG.

PROGRAM Persec;
BEGIN
set_mode(640,480,16);
protagonista(320,240);

400

enemigo(100,200),
enemigo(50,100),
enemigo(500,300),
loop

frame;

if(key(_esc)) exit(),end
end

END

PROCESS protagonista(x,y)
BEGIN
graph=new_map(30,30,16);map_clear(0,graph,rgb(0,255,0));
loop
iftkey(left)) x=x-4;end
if(key(right))x=x+4;end
if(key(_up)) y=y-4;end
if(key(_down)) y=y+4,;end
frame;
end
END

Process enemigo(x,y)

private

int idprota;

int angleprota;

int move_x,move_y,
end
Begin
graph=new_map(30,30,16);map_clear(0,graph,rgb(255,0,0));
Loop

//Obtengo el identificador del proceso protagonista (solo hay uno)
idprota=get_id(type protagonista);
//Obtengo el dngulo entre el proceso enemigo actual y el protagonista, para...
angleprota=get_angle(idprota);
/*...hacer que el enemigo esté siempre “mirando” al protagonista. Esta es la linea que lo hace posible:
con un poco de geometria en un papel podras ver de donde sale la formula: solo hay que tener claro qué
angulo representa "angleprota" y qué angulo es "angle". */
angle=angleprota-90000;

/*2 parte: Si el protagonista se acerca demasiado al enemigo, el cual siempre lo estard vigilando, quiero
que éste sea perseguido. Para ello podria utilizar la funcion get_dist, pero se va a hacer de otra manera,
por componentes. Primero obtengo las componentes X e Y de la distancia al protagonista, para...*/

move _x=get distx(angleprota,distprota);

move_y=get disty(angleprota,distprota);

/*..comprobar unas condiciones determinadascon estos cuatro ifs. Estas condiciones provocan que, si las
componentes X e Y de la distancia estan dentro de un rango determinado, (es decir, si el protagonista esta
demasiado cerca del enemigo), éste se mueva en una determinada direccion,que es la direccion donde se
supone esta el protagonista. Las condiciones de los ifs se pueden ver de donde salen si coges un papel y
un lapiz y dibujas estas cuatro condiciones posibles. El rango -los numeros de las condiciones del if- se
puede cambiar para hacer que el enemigo sea mds o menos sensible a la presencia del protagonista. */

/*Esta condicion ocurrird cuando el protagonista esta a la izquierda del enemigo (entre 20 y 100 pixeles
horizontalmente) y a su misma coordenada vertical mas/menos 100 pixeles*/

401

if ((move_x<-20 and move x>-100) and (move_y>-100 and move_y<100))
/*Notar que el desplazamiento del enemigo no lo hago en funcion de su angulo, sino
en base a movimientos horizontales o verticales. Lo de las lineas anteriores que
hacian que el enemigo estuviera encarando al protagonista si éste se acercaba
demasiado es un efecto puramente estético™/
x=x-1;
end
/*Esta condicion ocurrird cuando el protagonista estd a la derecha del enemigo (entre 20 y 100 pixeles
horizontalmente) y a su misma coordenada vertical mas/menos 100 pixeles.*/
if ((move_x>20 and move x<100) and (move_y>-100 and move _y<l100)) x=x+1,; end
/*Esta condicion ocurrira cuando el protagonista estd por arriba del enemigo (entre 20 y 100 pixeles
verticalmente) y a su misma coordenada horizontal mas/menos 100 pixeles.™*/
if ((move_y<-20 and move y>-100) and (move_x>-100 and move x<100)) y=y-1; end
/*Esta condicion ocurrira cuando el protagonista esta por debajo del enemigo (entre 20 y 100 pixeles
verticalmente) y a su misma coordenada horizontal mas/menos 100 pixeles.*/
if ((move_y>20 and move_y<lI00) and (move_x>-100 and move_x<100)) y=y+I1; end
Frame;
end //loop
END

En el ejemplo anterior hemos visto, entre otras cosas, cOmo hacer para que un proceso encare a
otro permanentemente (es decir, que un proceso varie su angulo segin se mueva otro proceso, apuntandolo
permenentemente, como por ejemplo cuando un enemigo vigila sin descanso al protagonista).

De todas maneras, tal como lo hemos hecho, es posible que no nos venga bien en determinadas
circunstancias. Imaginate que en vez de cuadrados estamos trabajando con graficos de personajes: el
cuadrado verde es nuestro héroe valeroso y los cuadrados rojos en realidad son feroces orcos, con un
grafico asociado tal como éste:

Para que veas lo que pretendo decirte, cambia el codigo anterior para que en vez de tener
cuadrados rojos, tengas el grafico anterior o cualquier otro. Yo a este grafico lo he llamado “orco.png”.Te
vuelvo a poner el c6digo haciendo este cambio (quitando las lineas que no nos interesan: ahora no
queremos perseguir al protagonista):

PROGRAM Orient;
Global

int idorco,idorco2,idorco3;
End
BEGIN
set_mode(640,480,16);
idorco=load _png(‘“orco.png”);
idorco2=load_png(“orco2.png”);
idorco3=load_png(“orco3.png”);
protagonista(320,240);

402

/*Piensa que "pepe" tiene el siguiente rango de valores: vale desde 0 en los puntos que estan alineados
Jjusto en la linea vertical centrada en el enemigo pero por encima de éste, hasta 180 en los puntos de la
misma linea pero por debajo del enemigo siempre que el proceso protagonista esté a la izquierda del
enemigo. Si el protagonista estd a la derecha del enemigo, pepe valdra desde 0 hasta -179 yendo desde la
perpendicular de encima del enemigo hasta la de debajo suyo.. Esto lo puedes ver si solo tienes un proceso
enemigo funcionando e incluyes fuera de este loop la linea write_var(0,100,100,4,pepe),; para ver los
valores de pepe segun la posicion del protagonista, y tener asi una guia para construir las condiciones de
los ifs siguientes. ™/

if(pepe>45000 and pepe<135000)flags=0;graph=idorco3; end //izquierda

if(pepe>-135000 and pepe<-45000)flags=0;graph=idorco2;end //derecha

if((pepe>0 and pepe<45000) or (pepe<-1 and pepe>-45000)) flags=2; graph=idorco; end //arriba

if((pepe>135000 and pepe< 180000) or (pepe<-135000 and pepe>-179000)) flags=0;graph=idorco;
end //abajo

frame;
end
end

Lo que hemos hecho ha sido cambiar la antigua linea que alteraba la orientacion de los enemigos
(ya que cambiaba su ANGLE) por otra muy similar donde el angulo corregido que nos da la posicion
relativa del protagonista respecto el enemigo lo almacenamos en una variable privada que la hemos
llamado “pepe”. Asi, para empezar,los enemigos no cambiardn la orientacion de su grafico, pero
continuaran sabiendo donde esta el protagonista en cada momento, gracias a “pepe”.

La idea es, que segin en qué zona respecto el enemigo se sitie el protagonista (zona superior,
derecha,izquierda,inferior), el enemigo cambiard su grafico por uno acorde, dando la sensacion de ojo
avizor permanente, ya que los enemigos estaran permanentemente mirando al protagonista, esté donde
esté..

Esta claro que nos podriamos haber ahorrado el grafico “orco3.png” jugando con los flags (al igual
que hemos hecho cuando el protagonista esta arriba o abajo del enemigo).

En ejemplos anteriores ya hemos podido ver que uno de los problemas tipicos que tendremos que
solventar a menudo en nuestros juegos es averiguar la distancia minima entre diferentes procesos. Para
resolver esta necesidad ya sabes que contamos con la funcion get dist y sus “parientes” get distx y
get disty..

Un caso tipico es el de los juegos de estrategias, donde los escuadrones tienen que decidir a qué
enemigo atacar y deciden atacar al mas cercano. Por eso se va a presentar a continuacion algonos ejemplos
de codigo donde hay un proceso que detecta al mas cercano de todos sus “enemigos”.

Para empezar, pondremos un co6digo que muestra por pantalla un cuadrado blanco en la esquina
inferior derecha de la pantalla (nuestro proceso “prota”) y 400 cuadrados azules repartidos aleatoriamente
por toda la pantalla (procesos “enemigos™). El programa lo primero que hard sera obtener todas las
distancias de cada enemigo con el proceso “prota” e seguidamente ird matando uno a uno todos los
procesos enemigos, por orden de cercania al “prota”. Es decir, primero morira (y por tanto desaparecera de
la pantalla) el enemigo mas cercano al cuadrado blanco,después el segundo més cercano,etc hasta llegar al
ultimo enemigo, el mas lejano. El efecto resultante es como si hubiera una onda expansiva en forma de
circulo que se engrandece y que arrasa los cuadrados azules.

program hola;
global

int idenemigo[399];

405

http://divnet.divsite.net/prgs.htm
http://divnet.divsite.net/prgs.htm

end

private
inti;
end
begin
set_mode(640,480,16);
prota();

for(i=0,i<400;i++)
idenemigo[i] =enemigo(rand(10,600),rand(10,400)),

end
while(lkey(_esc)) frame; end
end
process prota()
private
inti;
int objetivo,
int distaux, distminima,
end
begin
graph=new_map(5,5,16);map_clear(0,graph,rgb(255,255,255));
x=600,y=450;
loop

/*Tipico algoritmo para encontrar el valor minimo de una lista de valores: se va recorriendo los valores
del vector y si se encuentra un valor menor al que hasta ahora era el minimo, este valor pasa a
ser el nuevo minimo.Se empieza por un valor minimo muy alto para que el primer elemento sea siempre el
minimo y se puedan hacer las comparaciones.*/
distminima=10000;
for(i=0,i<400;i++)
distaux=get dist(idenemigo[i]);
/*La condicion de "distaux>0" es MUY importante.Ya que cada vez que se mate un enemigo, se volverd a
realizar este algoritmo otra vez para encontrar al siguiente enemigo mas cercano, el vector idenemigo/i]
tendra cada vez mas elementos que corresponderan a identificadores de procesos ya muertos. Si
realizamos un get dist con un identificador no existente, get dist nos desvuelve 0, con lo que siempre
tendriamos como distancia minima la calculada con procesos inexistentes. Evidentemente, esto esta
fatal ¥/
if(distaux<=distminima and distaux>0)
distminima=distaux;
objetivo=idenemigo[i];
end
end
write_var(0,100,100,3,0bjetivo); //Vemos el identificador del enemigo a destruir
signal(objetivo,s_kill),
frame;
end //loop
end

process enemigo(x,y)

begin
graph=new_map(3,5,16);map _clear(0,graph,rgb(0,0,255)),
loop
frame;
end
end

406

Vamos a jugar con este codigo un rato. Escribe la siguiente linea: signal(objetivo,s kill); al
final del if del proceso “prota”. ;Qué pasa si ejecutas el programa ahora? Que los enemigos son asesinados
a un ritmo mucho mas vertiginoso. ¢ Podrias explicar el por qué? Porque estamos eliminando todos aquellos
procesos que MIENTRAS se estd recorriendo el bucle sean designados “objetivo”, pero el objetivo
correcto solo se puede saber DESPUES de haber recorrido todo el bucle, que es cuando se sabra el proceso
a la menor distancia de entre todos: si se mata mientras se va recorriendo el bucle, se iran encontrando
varios objetivos, uno por cada proceso que tenga una distancia menor que los anteriores, pero que no
necesariamente sea la minima total, porque no se ha acabado de recorrer el bucle entero.

Importante recalcar que las ordenes signal se ejecutaran inmediatamente, sin esperar a ninguna
linea Frame;. Esto quiere decir que si mientras estamos dentro del bucle se ejecutan varias o6rdenes signal,
una para cada objetivo encontrado diferente, todas estas ordenes s kill diferentes se ejecutaran
inmediatamente, sin esperar a llegar a ningun fotograma. Es por eso que la eliminacion es mucho mas
rapida:porque cuando por fin se llega a un fotograma, ya se han encontrado antes varios objetivos que han
sido eliminados.

Ahora vamos a hacer otra cosa. Vamos a hacer que nuestro cuadradito blanco se desplace a la
posicion del enemigo mas cercano, €ste se muera y el cuadradito blanco se vuelva a desplazar al siguiente
enemigo mas cercano, éste se muera, y asi. Para ello, lo unico que tenemos que hacer es afiadir las lineas en
negrita al ejemplo anterior:

program hola;
global
int idenemigo[399];
end
private
inti;
end
begin
set_mode(640,480,16);
prota();
for(i=0,i<400;i++)
idenemigo[i] =enemigo(rand(10,600),rand(10,400));

end
while(!key(_esc))frame; end
end
process prota()
private
inti;
int objetivo;
int distaux, distminima;
end
begin
graph=new_map(5,5,16);map_clear(0,graph,rgb(255,255,255));
x=600,y=450;
loop

distminima=10000;
for(i=0,i<400;i++)
distaux=get dist(idenemigo[i]);
if(distaux<distminima and distaux> ()
distminima=distaux;

407

objetivo=idenemigo[i];

end
end
write_var(0,100,100,3,0bjetivo),
if(exists(objetivo)==true) x=objetivo.x;end
if(exists(objetivo)==true) y=objetivo.y;end
signal(objetivo,s_kill);
frame;

end //loop
end

process enemigo(x,y)

begin
graph=new_map(5,5,16);map_clear(0,graph,rgb(0,0,255));
loop frame; end

end

Si ejecutas este proceso veras que ahora ya no aparece el efecto de onda expansiva, sino que como
las distancias minimas se recalculan en cada iteracion del LOOP principal, y precisamente en cada una de
éstas cambiamos las coordenadas X e Y del “protagonista” por las que en ese momento tiene el objetivo
actual -si existe-, lo que obtenemos es nuevas medidas de las distancias en cada nueva posicion del
cuadradito blanco, con lo que los enemigos que mueren son los que estdn mas cerca del protagonisa en un
momento dado.

Otro codigo muy interesante donde se puede ver la utilidad de la deteccion de las distancias
minimas entre procesos, y sus orientaciones reciprocas es el siguiente.

Este ejemplo representa el combate de dos ejércitos: uno azul y otro rojo. El usuario puede
generar soldados azules con el boton derecho del raton, y los soldados rojos se generaran en posiciones
aleatorias cada x tiempo. La gracia del asunto radica en que cada soldado de ambos bandos se ira
aproximando a aquel soldado del otro bando (y solo del otro bando) que tenga mas cerca. En el momento
que llegue a una distancia minima, ese soldado se parara para comenzar a dirigir a su enemigo disparos de
flechas sin parar. Cuando un soldado recibe un nimero determinado de éstas, muere y desaparece de
pantalla. Ademas, existe el modo “formacion de combate”, invocado con la tecla SPACE, el cual consiste
en lo mismo pero donde los soldados de ambos bandos se sitian ordenadamente a cada lado de la ventana
en forma de escuadron listo para la batalla.

Lo interesante del ejemplo es sobretodo el sistema de deteccion del enemigo mas cercano
(similar al de los ejemplos anteriormente vistos), la aproximacion a éste y el direccionamiento hacia éste de
las flechas.

/*Este tutorial explica como se puede detectar la distancia mas corta entre todos
los soldados enemigos (cuadrados rojos -bando 2-) y nuestros personajes (cuadrados azules -bando 1-)*/
PROGRAM tutorts;
global

int idsold;

int idobjetivo;

int grafflecha;
end
local

int bando;

int energia;

408

end
private
int ij;
int grafsoldl;
int grafsold2;
int modonormal=1; /*Variable que vale 1 si el juego estd en modo "normal” y 0 si esta en modo
"Combate en formacion" (al pulsar la tecla SPACE)*/
end
BEGIN
set_mode(640,480,16);
set_fps(30,0);
write(0,10,10,3,"Utilizar el raton para poner tus personajes y testear las distancias");
grafsoldI=new map(10,10,16);map_clear(0,grafsold1,rgb(0,0,255)); //Grdfico de tus personajes
grafsold2=new _map(10,10,16);map_clear(0,grafsold2,rgb(255,0,0)); //Grdfico de tus enemigos
grafflecha=new _map(5,5,16);drawing map(0,grafflecha);draw box(0,0,5,2),;//Grafico de la flecha
mouse.graph=grafsoldi;mouse.flags=4,
/*Aparicion de 5 soldados enemigos y 5 propios no importa donde*/
FROM i=0TO 5
soldado(rand(20,620),rand(20,380),grafsold1, 1); //Soldado bando 1 (nuestros personajes)
soldado(rand(20,620),rand(20,380),grafsold2,2); //Soldado bando 2 (nuestros enemigos)
END
LOOP
//8i se clica el boton derecho del raton, aparecera un soldado del bando 1 (nuestros personajes)
IF (mouse.right)soldado(mouse.x,mouse.y,grafsold1,1); END
/*Modo combate en formacion. Se eliminan los soldados que estuvieran en este momento y se generan
nuevos soldados colocados en formacion™/
1F (key(_space))
1IF (modonormal==1) //Para no hacer un modo formacion si ya hay uno funcionando
signal(TYPE soldado,s_kill);
FROM i=10 TO 80 STEP 10
FROM j=10 TO 390 STEP 20
soldado(i,j,grafsoldl, 1),
soldado(640-i,j,grafsold2,2),
END
END
modonormal=0; //Después de haber creado la formacion, vuelvo al estado "normal", donde los
enemigos se crean en posiciones aleatorias
END
ELSE
modonormal=1;
//Aparicion de los soldados del bando 2 aleatoriamente
1F (rand(0,100)<5)soldado(rand(20,620),rand(20,380),grafsold2,2); END
END
FRAME;
END //Loop
END

/*Proceso de los soldados de los dos campos*/
PROCESS soldado(x,y,graph,int bando)
private

int tiro;

int dist;
end
BEGIN

409

energia=50;
LOOP
//Deteccion del soldado enemigo (entre si) mas cercano (el algoritmo ya es conocido)
idobjetivo=0;
dist=1000;
WHILE(idsold=get id(TYPE soldado)) //Mira todos los procesos soldados
IF(idsold.bando<>bando) //Si el bando del proceso soldado es diferente de este soldado...
//...detecta si la distancia entre el soldado es inferior a la distancia guardada anteriormente
IF (get_dist(idsold)<dist)
dist=get dist(idsold); //Si es inferior, guarda la distancia actual
idobjetivo=idsold; //El objetivo a aniquilar serd ese soldado
END
END
END

//Si hay un objetivo fijado, después de haber pasado por el bucle anterior...
IF(idobjetivo<>(0)
/1.y si la distancia entre el soldado y el objetivo es inferior a 100, le lanzo una flecha

IF(get dist(idobjetivo)<200)

tiro=tiro+1;

/*Este if es simplemente para reducir la frecuencia con el que se lanzaran las flechas, ya que si no
se pusiera se estarian generando flechas a cada frame. La restriccion por un lado es hacer que un numero
aleatorio sea menor que una cantidad dada (sistema visto en el capitulo anterior del tutorial del
matamarcianos), pero ademas se ha de cumplir una condicion mas que es que la variable tiro (la cual va
aumentando su valor a cada frame en la linea anterior) ha de ser mayor de 15%/

IF(rand(0,100)<10 AND tiro>15)
tiro=0; //Se vuelve a resetear "tiro"
flecha(x*10,y*10,get_angle(idobjetivo),grafflecha); /*La flecha sale dirigida en
direccion al objetivo. El 10 que se multiplica es el valor de la "resolution" del proceso flecha.*/
END
/%Si la distancia es mayor, en vez de lanzar una flecha, me muevo hacia él, de tal manera que llegard
un momento en que la distancia ya si sea menor y pueda entonces pararme y proceder al disparo®/
ELSE
x=x+get_distx(get_angle(idobjetivo),3);
y=y+tget disty(get _angle(idobjetivo),3);

END

END

IF (energia<=0) signal(id,s_kill); END //Si no tengo energia, muero
FRAME;
END
END

/*Las flechas*/

PROCESS flecha(x,y,angle,graph)

Private

int vidaflecha;

end

BEGIN

bando=father.bando; //La flecha sera del bando de su padre

resolution=10; //Para que las flechas salgan dirigidas hacia el objetivo de forma mas precisa

LOOP
//A cada frame, la flecha avanza y aumenta su tiempo de vida
advance(5 *resolution), vidaflecha=vidaflecha+1;

410

//Si la flecha choca contra un soldado...
IF (idsold=collision(TYPE soldado))
/1y si el soldado es diferente de su bando...
IF (idsold.bando<>bando)
//...este soldado pierde 10 puntos de energia
idsold.energia=idsold.energia-10,signal(id,s_kill);
END
END
//8i la flecha sale de la pantalla o ya ha volado demasiado, muere
1F (out_region(id,0)OR vidaflecha>50) signal(id,s_kill); END
FRAME;
END
END

NEAR_ANGLE(ANGULO1,ANGULO2,MAX_INC)

Esta funcion suma a ANGULO1 un nimero de grados dado por MAX INC y devuelve el nuevo angulo,
siempre y cuando el resultado no sea un angulo mayor a ANGULO?2, en cuyo caso el angulo devuelto sera
exactamente ANGULO2.

411

Es decir, dicho de otro modo, si la distancia entre los dos angulos es mas pequefia que MAX INC,
entonces el angulo resultante devuelto sera exactamente ANGULO?2.

El valor de MAX INC ha de ser positivo, para que el proceso de aproximacion se realice por el lado de la
circunferencia donde la distancia entre los dos angulos sea mas pequeiia.

Esta funcion sirve de ayuda para hacer que procesos puedan perseguir a otros pero con una capacidad
limitada de giro en cada frame.

PARAMETROS:
INT ANGULO1: Angulo original en milésimas de grado (90000= 90°)
INT ANGULO2 : Angulo de destino
INT MAX INC: Numero maximo de milésimas de grado de incremento del angulo original

Un ejemplo trivial para probar esta funcion seria algo como éste:

program Test NEAR ANGLE;
global
int ang=10000,ang2=20000,ang3;
end
begin
set_mode(640,480,16);
repeat
delete text(0);
ang3=near_angle(ang,ang?2,9999);
write(0,100,100,4,ang),
write(0,100,110,4,ang2);
write(0,100,120,4,ang3),
frame;
until(key(_esc))
end

donde se puede ir cambiando el valor del tercer parametro de near angle para probar los efectos.
Otro ejemplo maés util es el siguiente:

program Test NEAR ANGLE;
global
int ang;
end
begin
set_mode(640,480,16);
graph=new _map(10,10,16);
map_clear(0,graph,rgb(0,0,255)),
mouse.graph=new _map(10,10,16);
map_clear(0,mouse.graph,rgb(255,255,0));
repeat
ang=fget _angle(x,y,mouse.x,mouse.y);
angle=near angle(angle,ang, 10000);
advance(5);
frame;
until(key(_esc))
end

412

(No ves lo que pasa? Sustituye la linea donde aparece near angle por ésta otra: angle=ang . Comprueba
qué pasa. /Podrias explicar por qué?

Y otro:

program homing missiles;
local
int count=0; //Cada proceso target tiene su contador de impactos
end
private
int graphic, //Para el grafico del cursor del raton
end
begin
set_mode(400,600,16);
set_fps(30,0);
target(50,50); //4 objetivos inmoviles que recibiran el impacto de los misiles
target(250,70);
target(70,200),
target(280,180);
graphic=draw_circle(x,y,2), //El cursor del raton es una primitiva
loop
move_draw(graphic,mouse.x,mouse.y);
if(mouse.left)missile(mouse.x,mouse.y);end //Los misiles partiran del cursor
frame;
end
end

process target(x,y)
private
int dist; //Distancia de cada objetivo al cursor del raton
end
begin
write_var(0,x,y-3,4,count); //Muestro el numero de impactos que lleva recibidos
write_var(0,x,y+7,4,dist); //Muestro la distancia al cursor del raton en tiempo real
//Los objetivos son simples pixels blancos
put_pixel(x,y,65535);
put_pixel(x+1,y,65535);
put_pixel(x,y+1,65535);
put_pixel(x+1,y+1,65535);
loop
dist=fget_dist(mouse.x,mouse.y,x,y); //Distancia al cursor del raton
frame;
end
end

process missile(x,y)
private
int mindist;
int idmascercano;
int tempdist;
int tempid;
end
begin
angle=1000*rand(70,110); //Angulo inicial del misil es aleatorio

413

loop
/*Borro el rastro actual del misil en el fotograma anterior (de hecho, lo que hago
es pintarlo de negro -o sea, transparente-), antes de que avance una nueva posicion */
put_pixel(x,y,rgb(0,0,0)),
put_pixel(x+1,y,rgb(0,0,0)),
put_pixel(x,y+1,rgb(0,0,0)),
put_pixel(x+1,y+1,rgb(0,0,0));

/*Vuelvo a usar el mismo algoritmo de siempre para detectar el objetivo mas cercano -distancia
minima- en cada frame respecto el misil actual. Al final obtengo "idmascercano" (que representa el id de
uno de los cuatro objetivos) y "mindist", (que es la distancia de éste respecto el misil)*/

mindist=10000;

idmascercano=0;

while(tempid=get id(type target))

if((tempdist=fget dist(x,y,tempid.x,tempid.y))<mindist)
idmascercano=tempid;
mindist=tempdist;
end
end

//Si se encuentra un objetivo cercano...
if(exists(idmascercano))
/*...y la distancia de éste respecto el misil es menor que una dada, aumento el contador de ese objetivo, y
mato el misil correspondiente™/
if(mindist<8)idmascercano.count++return; end
//El misil varia su orientacion para teledirigirse de forma espiral sobre algun objetivo
angle=near _angle(angle,fget angle(x,y,idmascercano.x,idmascercano.y),7500);
end
advance(9);

//El misil no es mds que simples pixels
put_pixel(x,y,rgb(255,0,0)),
put _pixel(x+1,y,rgb(255,0,0));
put _pixel(x,y+1,rgb(255,0,0));
put_pixel(x+1,y+1,rgh(255,0,0));
frame;
end //loop

end

Trabajar con fades y efectos de color:

FADE(R,G,B,Velocidad)

Esta funcidn activa una transicion de colores automatica, que puede usarse para oscurecer la pantalla, hacer
un fundido, o colorear su contenido.

Llamar a la funcién simplemente activa ciertas variables internas y pone a 1 la variable global FADING. A
partir de entonces, el motor grafico se encargara automaticamente de colorear la pantalla cada frame.

Los valores de componentes R, G y B recibidos por esta funcion se dan en porcentaje. Un porcentaje de
100% dejara un color sin modificar, mientras un porcentaje de 0% eliminara por completo la componente.
También es posible especificar un valor por encima de 100. Se considera que un valor de 200 en una
componente, debe poner al maximo la intensidad de la misma.

Estos valores permiten hacer combinaciones flexibles, como por ejemplo un fundido al blanco

414

(200,200,200) o bien aumentar la intensidad de color de una o varias componentes (150,150,100). Tal vez

el valor mas habitual sea el fundido al negro (0,0,0) o restaurar el estado normal de los colores
(100,100,100).

El valor de velocidad es un valor entero entre 1 y 64. Un valor de 64 activaria los porcentajes de color
indicados de forma inmediata en el proximo frame, mientras un valor de 1 iria modificando las
componentes de forma sucesiva, de forma que alcanzarian los valores especificados como parametro en
aproximadamente unos 60 frames. Un valor intermedio permite realizar la transicion mas rapidamente.

La variable global FADING estara a 1 inmediatamente después de llamar a esta funcion. El motor gréfico
la pondra a 0 cuando la transicion alcance los colores especificados como parametro.

En modo de 16 bits esta funcion modifica efectivamente los valores de todos los pixels en pantalla,
realizando una costosa operacion por cada uno de ellos. Esta operacion es muy lenta y representa un coste
considerable en la tasa de frames por segundo. Si se desea hacer un juego con efectos de colorizacion
globales, se recomienda usar los efectos localmente en una zona reducida de la pantalla mediante blendops.
Si ello no fuera posible, entonces es preferible escoger una resolucion de pantalla limitada para aumentar el
rendimiento. Hay que tener en cuenta que, incluso una vez acabada la transicion, si las componentes finales
de los colores no son 100 para las tres, el motor grafico seguira modificando los pixels de pantalla cada
frame, por lo que el perjuicio al rendimiento no se limitara al periodo que dure la transicion y seguira
presente una vez acabada esta.

PARAMETROS:
INT R: Cantidad de componente Rojo
INT G: Cantidad de componente Verde
INT B: Cantidad de componente Azul
INT Velocidad: Velocidad

Un ejemplo de esta funcion podria ser éste (necesitaras un grafico “d.png” para ponerlo de fondo):

program Test FADE;

global
int idpng;
int r=100,g=100,b=100,s=3;

end

begin
set_mode(640,480,16);
idpng=load _png("d.png");
put_screen(0,idpng);
write(0,10,60,3,"1: Fundido en blanco (fade 200,200,200):");
write(0,10,70,3,"2: Fundido en negro (fade 0,0,0):");
write(0,10,80,3,"3: Fundido personalizado (fade %R, %G, %B):");
write(0,20,90,3,"R.: Nuevo valor de R (en porcentaje): "),
write_var(0,250,90,3,r);
write(0,20,100,3,"G: Nuevo valor de G (en porcentaje): ");
write_var(0,250,100,3,2);
write(0,20,110,3,"B: Nuevo valor de B (en porcentaje): "),
write_var(0,250,110,3,b);
write(0,10,140,3,"S: Nuevo valor de Velocidad: ");
write_var(0,190,140,3,s);

repeat
iftkey(_1))
fade(255,255,255,s);
while(fading==1)

frame;

415

if(key(_esc)) exit(), end
end
end
ifikev(_2)
fade(0,0,0,s);
while(fading==1)
frame;
if(key(_esc)) exit(),; end
end
end
iftkey(_3))
fade(r,g,b,s);
while(fading==1)
frame;
if(key(_esc)) exit(),; end
end
end
iftkey(_r)) r++; if(r>200) r=0; end end
iftkey(_g)) g++ if(g>200) g=0; end end
iftkey(_b)) b++; if(b>200) b=0; end end
iftkey(_s)) s++; if(s>63) s=1; end end
frame;
until(key(_esc))
end

El funcionamiento del ejemplo es el siguiente: si se apreta la tecla 1, se realiza un fundido en blanco; si se
pulsa la tecla 2, se realiza un fundido en negro; si se apreta la tecla 3, se realiza un fundido partiendo de los
valores en porcentaje actuales de las tres componentes, los cuales se pueden modificar con las teclas

r”,°g” y “b” respectivamente. Para cualquiera de los tres fades posibles, se aplicara la velocidad actual de
fundido, la cual se puede modificar con la tecla “s”.

Fijarse que es muy importante el bucle while(fading==1) frame; end, porque es el que posibilita que
mientras esté durando el fundido éste se pueda visualizar en pantalla, puesto que obliga a pasar fotogramas
sin hacer otra cosa hasta que el fundido se acabe. Si no se hiciera asi, el fundido se estaria realizando pero
hasta que no se encontrara una orden frame no podria mostrarse su estado en ese momento.

Fijate también que se ha hecho que se pueda salir del programa incluso en mitad de un fundido, apretando
la tecla ESC.

FADE_ON()

Esta funcion equivale exactamente a ejecutar un FADE(100,100,100,16).

Se usa para restaurar la pantalla después de una transicion de color como bien puede ser un fundido al
negro. La pantalla se restaurard, tras llamar a esta funcion, en unos 4 frames.

FADE_OFF()

Esta funcion es parecida a ejecutar una orden FADE(0,0,0,16). Sin embargo, a diferencia de la orden
FADE, que vuelve inmediatamente, esta funcion espera a que el fundido al negro termine antes de volver.

Mientras dure este fundido al negro especial, todos los procesos estaran detenidos asi como cualquier tipo
de proceso interno, incluyendo la actualizacion de variables globales. La funcion tardara aproximadamente

416

unos cuatro frames en terminar.
Un ejemplo de esta funcion y la anterior podria ser éste (necesitaras un grafico “d.png” de fondo):

program Test FADE ON;
global
int idpng;
int fades=1;
end
begin
set_mode(640,480,16);
idpng=load png("d.png");
write(0,10,90,3,"1: Fade on:");
write(0,10,110,3,"2: Fade off:");
put_screen(0,idpng);
repeat
iftkey(_1) and fades==2) fade on(); fades=I,; end
iftkey(_2) and fades==1) fade off{(); fades=2; end
frame;
until(key(_esc))
end

GET_RGB(COLOR, &R,&G,&B)

Esta funcion permite obtener las componentes de un color de 16 bits, obtenido mediante la funcion RGB o
bien leido de los pixels de un grafico mediante una funcion como MAP_GET_ PIXEL .

Las componentes contendran valores entre 0 y 255. Sin embargo, debido a la diferencia de precision entre
modos graficos y tarjetas graficas, no es posible determinar de antemano cual es el valor exacto que se
obtendra. Por ejemplo, incluso un color blanco puro seguramente obtendra valores como 242 o 248 en sus
componentes, en lugar de 255 como seria de esperar. Hay que tener en cuenta que para almacenar los 256
valores posibles serian necesarios 8 bits de precision. Sin embargo, en un modo de 15 6 16 bits s6lo habran
5 6 6 bits de precision disponibles por cada componente.

El mismo pixel del mismo grafico puede devolver valores de componentes diferentes en ordenadores
distintos. Es importante no comparar los valores devueltos por GET _RGB con ningtin valor constante. Sin
embargo, se consideran validos los siguientes usos con los valores devueltos por GET _RGB:

« Comprobar que una componente esta a cero (== 0). Este valor se considera seguro. Es posible
comprobar que un color sea el negro puro observando si sus tres componentes valen cero.

« Comparar componentes de dos valores obtenidos mediante RGB, MAP_GET PIXEL, u otra
funcién que trabaje con colores de 16 bits, durante la misma ejecucion del programa.

« Comparar valores de forma aproximada (por ejemplo, comparar si una componente tiene un valor
mayor a 128) cuando no sea importante obtener un resultado exacto ni el mismo en todos los
ordenadores.

PARAMETROS:
INT Color: Un color de 16 bits
POINTER R: Variable de tipo INT que contendra la componente roja
POINTER G: Variable de tipo INT que contendra la componente verde
POINTER B: Variable de tipo INT que contendra la componente azul

Un ejemplo de esta funcion podria ser:

program Test GET RGB;

417

global
int Color;
int r,g,b;
end
begin
set_mode(320,240,16);
write(0,10,85,3, "Numero de color: ");
write_var(0,125,85,3,Color);
write(0,10,95,3,"Valor R: "),
write var(0,125,95,3,r);
write(0,10,105,3,"Valor G: ");
write_var(0,125,105,3,2);
write(0,10,115,3,"Valor B: "),
write_var(0,125,115,3,b);
timer[0]=200;
repeat
if(timer[0]>200)
/*Aqui se genera automadticamente, pero lo mas normal es obtener
el valor de color a partir de la funcion map_get pixel(), o rgb()*/
Color=rand(1,65535),
get_rgb(Color, &r, &g, &b);

timer[0]=0;
end
frame;
until(key(_esc))
end

BLUR(LIBRERIA,GRAFICO, MODO)

Difumina un grafico segiin un modo determinado.
El modo puede ser uno de los siguientes:

» 0: Solo se tienen en cuenta los pixels situados a la izquierda y arriba de cada pixel.
« 1:3x3. Se tienen en cuenta todos los pixels colindantes (8).

« 2:5x5. Se tienen en cuenta los 24 pixels que rodean cada pixel.

 3: 5x5 con mapa adicional. Igual que el anterior pero usando un mapa temporal.

El modo define la calidad y la velocidad del difuminado. Un niimero mayor de modo tiene mas calidad,
pero requiere mayor tiempo de proceso.

PARAMETROS:
INT LIBRERIA: Identificador de la libreria cargada con load fpg()
INT GRAFICO: Numero de grafico dentro de esa libreria
BYTE MODO: Modo de difuminacion

Un ejemplo de esta funcidn (se necesita una imagen “d.png”), que creo que no necesita explicacion, es el
siguiente:

program Test BLUR;
global
int png;
end
begin

418

set_mode(640,480,16);
png=load png("d.png");
bola(40,110,"T -1",-1),//No se produce difuminado
bola(160,110,"T 0",0);
bola(280,110,"T 1",1);
bola(400,110,"T 2",2);
bola(520,110,"T 3",3);
repeat
frame;

until(key(_esc))
let_ me_alone();

end

process bola(x,y,string txt,int difum)
begin
write(0,x,y-20,4,txt);
graph=map_clone(0,png);
blur(0,graph,difum);
loop
frame;
end
end

FILTER(LIBRERIA,GRAFICO,&VECTOR)

Aplica un filtro personalizado a un grafico.
PARAMETROS:

INT LIBRERIA: Identificador de la libreria cargada con load fpg()

INT GRAFICO: Numero de grafico dentro de esa libreria

POINTER INT VECTOR: Vector de 10 enteros: los 9 primeros definen una matriz de
convolucion 3x3 y el décimo el factor de escala (normalmente la suma de las 9 casillas anteriores)

Un ejemplo de esta funcion (se necesita una imagen “d.png”), que creo que no necesita explicacion, es el
siguiente:

program Test FILTER;
global
int png;
int filter[]=8,20,3,4,5,6,7,8,9,70;
end
begin
set_mode(640,480,16);
png=load png("d.png");
bola(100,100,"Normal",0),
bola(400,100,"Filtrado" 1),
repeat
frame;
until(key(_esc))
let_ me_alone();
end

process bola(x,y,string txt,int f)
begin

419

write(0,x,y-40,4,txt);
size=200, graph=map_clone(0,png);
if(f==1) filter(0,graph, &filter), end
loop
frame;
end

end

Se pueden probar diferentes valores para la vector y observar los resultados.
Esta funcion, junto con BLUR(), se pueden utilizar para lograr un efecto de antialiasing en gréficos,
fuentes, primitivas.... “Antialiasing” es el nombre que se le da al difuminado de los bordes de una figura,

usado para evitar la visualizacion de feos “escalones”. En el dibujo siguiente, al rombo de la derecha se le
ha aplicado algun tipo de antialiasing y al de la izquierda no.

0 ¢

GRAYSCALE(LIBRERIA,GRAFICO,MODO)

Cambia un grafico a una escala de colores especificada por el tercer parametro, el modo.
El modo puede ser uno de los siguientes:

: RGB -escala de grises-
: R -escala de rojos-

: G -escala de verdes-

: B -escala de azules-
RG

:RB

:BG

L]

Sélo funciona con graficos de 16 bits.

PARAMETROS:
INT LIBRERIA: Identificador de la libreria cargada con load fpg()
INT GRAFICO: Numero de grafico dentro de esa libreria
BYTE MODO: Modo que define la escala de colores a usar

Un ejemplo de esta funcion (se necesita una imagen “d.png”), que creo que no necesita explicacion, es el
siguiente:

program Test GRAYSCALE;

global
int png;

end

begin
set_mode(640,480,16);
png=load png("d.png");
bola(10,50,"T 0",0);
bola(110,100,"T 1",1);

420

bola(210,150,"T 2",2);
bola(310,200,"T 3",3);
bola(410,250,"T 4",5);
bola(510,300,"T 5",6);
bola(610,350,"T 6",7);
repeat
frame;

until(key(_esc))

let_ me_alone();

end

process bola(x,y,string txt,int modo)
begin
write(0,x,y-20,4,txt);
graph=map_clone(0,png);
grayscale(0,graph,modo);
loop
frame;
end
end

RGBSCALE(LIBRERIA,GRAFICO,R,G,B)

Cambia un grafico a una escala de colores especificada en forma de componentes RGB. El valor de R,G y
B debe estar comprendido entre 0y 1.

PARAMETROS:
INT LIBRERIA: Identificador de la libreria cargada con load fpg()
INT GRAFICO: Numero de grafico dentro de esa libreria
FLOAT R: Cantidad de rojo
FLOAT G: Cantidad de verde
FLOAT B: Cantidad de azul

Un ejemplo de uso de esta funcion podria ser el siguiente (se necesita un grafico “d.png”):

program Test RGBSCALE;
global
float r,g,b;
int rr,rg,rb;
float rgb[]=0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0;
int idpng;
end
begin
set_mode(640,480,16);
idpng=load _png("d.png");
x=160; y=120; graph=map_clone(0,idpng); size=200;
write(0,160,70,4,"Valores R G B:");
write_var(0,110,80,4,r);
write_var(0,160,80,4,g);
write_var(0,210,80,4,b);
timer[0]=0;
repeat
if(timer[0]>100)
unload_map(0,graph);

421

graph=map_clone(0,idpng),
rr=rand(0,10);
rg=rand(0,10);
rb=rand(0,10);
r=rgb[rr];
g=rgb[rg];
b=rgb[rb];
rgbscale(0,graph,r,g,b);
timer[0]=0;
end
frame;
until(key(_esc))
end

En este ejemplo se muestra una imagen a la que cada segundo (mas o menos) se le cambia su escala de
colores de forma aleatoria. Para ello se utiliza un vector con diez valores posibles de las componentes R,G
y B. Los que se aplican a la imagen de forma efectiva son seleccionados a partir estos valores utilizando
aleatoriamente una posicion del vector diferente cada segundo.

La utilidad mas evidente de los fades estd en implementarlos en los menus iniciales y las
introducciones de los juegos, o para mostrar una pantalla de cambio de nivel,etc.

A continuacion se presenta un ejemplo donde primeramente aparece un grafico de fondo (junto
con mas cosas: un proceso, un texto,etc); al cabo de dos segundos se realiza un fadeoff a negro, eliminando
a la vez todo lo demas (los procesos, los textos, el fondo definido); y al cabo de dos segundos se vuelve a
hacer un fadein mostrando un grafico de fondo diferente al original, y sin rastro de procesos,textos,etc.

Necesitaras son graficos: “a.png” y “b.png”:

program fades,
global
int idpngl,idpng?2;
int hora;
int espera=200;
end
begin
set_mode(640,480,16);
idpngl=load png("a.png");
idpng2=load png("b.png");
put_screen(0,idpngl),; //Mostramos el primer fondo
proceso(); //Ponemos un proceso pululando por ahi para meter mds cosas
write(0,100,100,4,"HOLAHOLAHOLAHOLAHOLA");//Ademas escribimos un texto cualquiera

//Permanecemos un tiempo de espera -2 segundos- viendo todo esto

hora = timer[0]; //Hora guarda la hora actual

while(timer[0] < hora+espera) frame; end /*Espera es el tiempo (en centésimas de segundo) que
queremos que el juego se quede parado mostrando el fondo, el proceso y el texto*/

fade(0,0,0,1); while(fading==1) frame; end //Visualizamos en fadeoff completo
let_me_alone(), //Solo si queremos matar al resto de procesos

delete_text(all text); //Borramos todos los textos de pantalla

clear screen(); //Borramos todos los fondos que hayamos puesto

422

//Permanecemos un tiempo de espera con la pantalla en negro
hora = timer[0];
while(timer[0] < hora+tespera) frame, end

fade(100,100,100,1); put screen(0,idpng2); while (fading==1) frame,; end /*Visualizamos el fadein
completo con un nuevo fondo definido justo después™/

repeat
frame;
until(key(_esc))
let_me_alone();
end

process proceso()
begin
graph=new_map(40,40,16);map _clear(0,graph,rgb(200,100,40));
x=300,y=200;
loop
frame;
end
end

Volver a insistir en la importancia de introducir el bucle while(fading==1)frame, end para lograr visualizar
el difuminado mientras éste esté activo.

Trabajar con puntos de control:

Los puntos de control son posiciones que puedes definir dentro de un grafico (puedes definir
hasta 999).

Uno de ellos es especial: el punto 0, que define el "centro virtual" de la imagen. Si no defines el
punto 0, el centro virtual pasa a ser automaticamente el centro real de la imagen. En ocasiones viene bien
redefinir ese punto 0 y ponerlo en otro sitio (por ejemplo entre los pies del personaje si haces un juego de
plataformas) ya que la imagen se dibujard poniendo ese punto 0 en la posicion dada por las variables locales
XY del proceso.

Otra cosa a tener en cuenta es que se escala y se rota usando de centro ese punto 0.

La ventaja de estos puntos (aparte del 0 y lo comentado) es que usar puntos de control es un
modo de definir, por ejemplo, donde quieres situar un arma en un personaje en todos sus movimientos.
Luego soélo tienes que buscar el punto de control desde el co6digo y situar el arma sin tener que meter ti las
posiciones en el codigo a pelo.

Fénix dispone de una serie de funciones que nos facilitan por un lado la creacién de puntos de
control en los graficos de nuestro juego, y por otro, nos permite la obtencion de las coordenadas de un punto
de control concreto de un grafico en particular, para su posible uso en nuestro codigo. Estas funciones
basicamente son cuatro: SET _CENTER(),SET POINT(),GET_POINT() y GET REAL POINT().

SET_CENTER (LIBRERIA, GRAFICO, X, Y)

Esta funcién permite cambiar el centro de un grafico.

El centro es un punto dentro de los pixels del grafico que se utiliza para:

423

*Especificar el significado de la coordenada (x, y) cuando el gréafico se visualiza en pantalla.
Es decir: si un grafico se visualiza en la coordenada (10, 15) significa que se dibujara de tal manera que su
centro ocupara dicho punto.

*Especificar el punto a partir de cual se rota el grafico -por ejemplo, variando el valor de la
variable ANGLE del posible proceso asociado a ese grafico-. El centro no se desplaza, y el resto del grafico
gira a su alrededor.

*Especifica el punto a partir del cual se realizan las operaciones de espejo horizontal y vertical,
por ejemplo mediante variable FLAGS .

Cuando un grafico se utiliza como puntero del raton, usando la variable MOUSE.GRAPH, indica el punto
"caliente" del mismo, que se usa para comprobar donde estd marcando el raton. En el ejemplo de
Drag&Drop mostrado en el apartado sobre el raton, en el capitulo 9, se utilizo este hecho.

Cuando un grafico no tiene centro asignado (por ejemplo, porque se ha recuperado a partir de un fichero
estandar como puede ser un PNG), se utiliza como tal su centro geométrico.

Esta funcion permite cambiar dicho centro, especificando unas nuevas coordenadas para el mismo. Estas
coordenadas se dan siempre en pixels dentro del grafico, donde el pixel (0, 0) representa la esquina
superior izquierda del grafico y las coordenadas crecen abajo y a la derecha.

PARAMETROS:

INT LIBRERIA : Ntiimero de libreria FPG

INT GRAFICO : Ntumero de grafico dentro de la libreria
INT X : Nuevo valor para la coordenada horizontal del centro
INT Y : Nuevo valor para la coordenada vertical del centro

En el siguiente ejemplo se muestra un posible uso de establecer el punto central en otro lugar diferente del
centro geométrico de la figura. En este caso, pintamos un cuadrado azul y situamos su centro cerca de uno
de sus vértices. El programa consiste en irlo rotando ininterrumpidamente. Se podra apreciar entonces que
el eje de giro no es el centro geométrico sino el punto marcado en blanco, que representa precisamente el
punto central (punto de control 0). De similar manera podriamos haber demostrado que ese punto es el eje
de espejado cuando se cambia el valor de la variable FLAGS a 1 6 2.

program Test SET CENTER;
private
//Coords del punto central (punto de control 0). Se pueden cambiar sus valores para comprobar el efecto
int pmx=10,pmy=10;
end
begin
set_mode(640,480,16);
x=160;
y=100;
graph=new_map(50,50,16);
map_clear(0,graph,rgb(0,0,255));
map_put pixel(0,graph,pmx,pmy,rgh(255,255,255)); //Pinto el punto central para que se vea
//8i queremos que el punto central se vea un poco mas grande
/drawing map(0,graph),;draw_box(pmx-2,pmy-2,pmx+2,pmy+2);
set_center(0,graph,pmx,pmy);
repeat
angle=(angle+7000)%360000;
frame;
until(key(_esc))

424

end

SET_POINT (LIBRERIA, GRAFICO, NUMERO, X, Y)

Un grafico cualquiera puede contener hasta 999 puntos de control de los cuales el punto de control O
representa el centro del gréafico, y el resto estdn disponibles para el usuario.

Mediante esta funcion puede asignarse un punto de control cualquiera del grafico. Las coordenadas de este
punto se dan siempre en pixels dentro del grafico, donde el pixel (0, 0) representa la esquina superior
izquierda del grafico y las coordenadas crecen abajo y a la derecha.

Si el grafico no contenia puntos de control, o no contenia puntos de control suficientes, se anadiran los
necesarios. Por ejemplo, si un grafico no dispone de puntos de control y mediante esta funcion se afiade el
punto de control 20, los puntos de control 0 a 19 seran rellenados con el valor indefinido (-1, -1).

PARAMETROS:

INT LIBRERIA : Ntumero de libreria FPG

INT GRAFICO : Namero de grafico dentro de la libreria
INT NUMERO : Numero de punto de control (0 a 999)

INT X : Nuevo valor para la coordenada horizontal del punto
INT Y : Nuevo valor para la coordenada vertical del punto

A continuacion se presenta un ejemplo en donde aparece visualizado en pantalla un cuadrado azul, en el
cual podremos establecer los puntos de control que deseemos, donde deseemos. Con los cursores podemos
cambiar el nimero de punto de control que queramos introducir (teclas “1” y “2”), y sus coordenadas
dentro del cuadrado (cursores del teclado). Aparecerd un punto blanco indicando en todo momento la
posicion que tendria en cada instante el punto de control. Y éste se crea de forma efectiva pulsando
ENTER.

program Test SET POINT;

global
int pmx,pmy, //Coordenadas de un punto de control
int pdc, //Numero de punto de control

end

begin
set_mode(320,240,16);
graph=new_map(100,100,16);
x=220;
y=100;
map_clear(0,graph,rgb(0,0,255)),
write(0,10,30,3,"Punto N°:");
write_var(0,85,30,3,pdc);
write(0,10,40,3,"Coord. X:");
write_var(0,85,40,3,pmx);
write(0,10,50,3,"Coord. Y:");
write_var(0,85,50,3,pmy);
write(0,10,70,3,"1 > N° Punto");
write(0,10,80,3,"2 < N° Punto");
write(0,10,90,3,"UP > Coord. Y");
write(0,10,100,3,"DOWN < Coord. Y");
write(0,10,110,3,"LEFT > Coord. X");
write(0,10,120,3,"RIGHT < Coord. X");
write(0,10,170,3,"ENTER = Set Point");

425

repeat
if(key(_1) && pdc<999) pdc++; end
iftkey(2) && pdc>0) pdc--; end
iffkey(_up) && pmy>0) pmy--; end
iftkey(_down) && pmy<99) pmy++; end
if(key(_left) && pmx>0) pmx--; end
iftkey(_right) && pmx<99) pmx+-+; end
if(key(_enter)) set_point(0,graph,pdc,pmx,pmy); end

map_clear(0,graph,rgb(0,0,255)); //Para que no salga pintada una linea marcando el recorrido del
cursor, y solamente aparezca el punto blanco marcando la posicion actual
map_put_pixel(0,graph,pmx,pmy,rgb(255,255,255));
frame;
until(key(_esc))
end

(,Qué pasa si pulsamos ENTER cuando el nimero del punto de control esta establecido en 0?; Tienes una
explicacion?

GET_POINT (LIBRERIA, GRAFICO, NUMERO, &X, &Y)

Un grafico cualquiera puede contener un nimero indeterminado de puntos de control de los cuales el punto
de control 0 representa el centro del gréafico, y el resto estan disponibles para el usuario.

Mediante esta funcion puede consultarse un punto de control del grafico. Las coordenadas obtenidas se dan
siempre en pixels dentro del grafico, donde el pixel (0, 0) representa la esquina superior izquierda del
grafico y las coordenadas crecen abajo y a la derecha.

Si el nimero de punto de control especificado queda fuera de rango o no esta definido, la funcion devuelve
0 y las variables x e y no seran modificadas. En el resto de casos, x e y pasardn a contener las coordenadas
del punto de control, de manera que (0, 0) representa el pixel ubicado en la esquina superior izquierda del
grafico, y las coordenadas crecen hacia abajo y a la derecha.

PARAMETROS:

INT LIBRERIA : Ntimero de libreria FPG

INT GRAFICO : Numero de grafico dentro de la libreria

INT NUMERO : Numero de punto de control (0 es el centro)

POINTER INT X : Direccion de memoria de una variable de tipo entero que pasara a
contener la coordenada horizontal del punto respecto la esquina superior izquierda del propio grafico.

POINTER INT Y : Direccion de memoria de una variable de tipo entero que pasara a
contener la coordenada vertical del punto respecto la esquina superior izquierda del propio grafico.

VALOR RETORNADQ: INT : 1 si el punto esta definido, 0 en caso contrario

Un ejemplo bastante sencillo de entender:

program Test GET POINT;
global
int gpx,gpy;, //Coordenadas de un punto de control
int pdc; //Numero de un punto de control
int p;
end
begin
set_mode(320,240,16);

426

graph=new_map(100,100,16);
map_clear(0,graph,rgb(0,0,255)),
x=160;
y=120;
write(0,10,30,3,"Get Point:");
write_var(0,85,30,3,pdc);
write(0,10,40,3,"Coord. X:");
write_var(0,85,40,3,gpx);
write(0,10,50,3,"Coord. Y:");
write_var(0,85,50,3,gpy);
set_point(0,graph,0,0,0); //Establezco las coordenadas (0,0) del grdfico como las del punto de control 0
/*Establezco de forma aleatoria (pero dentro de las dimensiones del grdfico mostrado) las coordenadas
del resto de 999 puntos de control posibles. Estas coordenadas tienen su origen en la esquina superior
izquierda del propio grdfico. */
from p=1 to 999
set_point(0,graph,p,rand(0,99),rand(0,99)),
end
//Cada décima de segundo obtendré las coordenadas de un punto de control seleccionado al azar.
//Ademas, visualizaré mediante un punto blanco su situacion dentro del grafico
timer[0]=0;
repeat
if(timer[0]>100)
pdc=rand(0,999);
get_point(0,graph,pdc, &gpx, &gpy),
map_clear(0,graph,rgb(0,0,255)),
map_put_pixel(0,graph,gpx,gpy,rgb(255,255,255));

timer[0]=0;
end
frame;
until(key(_esc))
end

GET_REAL_POINT (NUMERO, &X, &Y)

Esta funcion permite obtener la posicion respecto la pantalla de un punto de control del grafico contenido
por el proceso actual, (teniendo en cuenta las variables que indican el aspecto o posicion del grafico, como
X,Y o ANGLE) .

El valor de las variables locales X e Y contienen las coordenadas horizontal y vertical respectivamente del
punto de control 0 del grafico del proceso actual. Por tanto, la orden GET REAL POINT(0,&X,&Y) seria
equivalente a consultar directamente el valor de dichas variables.

El segundo y tercer pardmetro de esta funcion pasaran a contener las coordenadas del punto de control del
proceso actual, respecto la pantalla.

PARAMETROS:

INT NUMERO : Numero de punto de control (0 es el centro)

POINTER INT X : Direccion de memoria de una variable de tipo entero que pasara a
contener la coordenada horizontal del punto respecto la esquina superior izquierda de la pantalla.

POINTER INT Y : Direcciéon de memoria de una variable de tipo entero que pasara a
contener la coordenada vertical del punto respecto la esquina superior izquierda de la pantalla.

427

VALOR RETORNADO: INT : 1 si el punto esta definido, 0 en caso contrario

El ejemplo siguiente es el mismo que utilizamos para mostrar el uso de get point(), pero anadiéndole (y
por tanto, pudiendo comparar los datos devueltos) una linea que ejecuta get real point() -y otra mostrando
por pantalla lo que esta funcion devuelve-, pudiendo observar asi la diferencia de resultado entre ambas
funciones. Basicamente, la diferencia estd en que a pesar de devolver datos sobre el mismo punto la
primera toma el origen de coordenadas del grafico que se indica, y la segunda toma el origen de
coordenadas de la pantalla, haciendo referencia al grafico que esté asociado al proceso actual

program Test GET REAL POINT;
global
int rgpx,rgpy, //Coordenadas de un punto de control respecto la pantalla (get_real point)
int gpx,gpy;, //Coordenadas de un punto de control respecto el grafico (get_point)
int pdc; //Numero de un punto de control
int p;
end
begin
set_mode(320,240,16);
graph=new_map(100,100,16);
map_clear(0,graph,rgb(0,0,255)),
x=160;
y=120;
write(0,10,30,3,"Get Point:");
write_var(0,100,30,3,pdc);
write(0,10,40,3,"Coord. Real X:");
write_var(0,100,40,3,rgpx);
write(0,10,50,3,"Coord. Real Y:");
write_var(0,100,50,3,rgpy);
write(0,10,60,3,"Coord. X:");
write_var(0,100,60,3,gpx),;
write(0,10,70,3,"Coord. Y:");
write_var(0,100,70,3,gpy);
set_point(0,graph,0,0,0); //Establezco las coordenadas (0,0) del grdfico como las del punto de control 0
/*Establezco de forma aleatoria (pero dentro de las dimensiones del grafico mostrado) las coordenadas
del resto de 999 puntos de control posibles. Estas coordenadas tienen su origen en la esquina superior
izquierda del propio grafico. */
from p=1 to 999
set_point(0,graph,p,rand(0,99),rand(0,99)),
end
//Cada décima de segundo obtendré las coordenadas de un punto de control seleccionado al azar.
//Ademas, visualizaré mediante un punto blanco su situacion dentro del grdfico
timer[0]=0;
repeat
if(timer[0]>100)
pdc=rand(0,999);
get_point(0,graph,pdc, &gpx, &gpy);
get_real_point(pdc, &rgpx, &rgpy);
map_clear(0,graph,rgb(0,0,255)),
map_put pixel(0,graph,gpx,gpy,rgb(255,255,255));
timer[0]=0;
end
frame;
until(key(_esc))
end

428

Seguramente estaras deseando encontrar alguna aplicacion grafica, sencilla y comoda que nos
permita crear, manipular y consultar puntos de control de un grafico sin tener que recurrir a programar “a
pelo” en Fénix. Pues estas de suerte, porque el FPGEdit permite todo esto y bastante mas.

Si abres un archivo FPG cualquiera y seleccionas alguna de las imagenes que estan contenidas en
¢l, pulsa en el boton “Edit” de la barra de herramientas de la zona inferior. Verds que aparece un cuadro ya
conocido, donde podemos ver cierta informacion sobre la imagen (las dimensiones, el identificador del
grafico dentro del FPG,etc). Pero no sé si te habias fijado que también hay un botén en ese cuadro, arriba a
la izquierda, que pone “Puntos de control”. Si clicas alli verds como el contenido del cuadro cambia y
aparecen un monton de opciones referentes a la manipulacion de puntos de control.

Lo mas basico que podemos hacer es afiadir las coordenadas dentro de la imagen del nuevo punto
de control que queremos (con las cajas de texto correspondientes, o si quieres, con la ayuda del cuadradito
formado por los botones radio) y crearlo pulsando sobre el botéon con el icono de la flecha apuntando a la
izquierda. Como consecuencia, ese punto aparecera en la lista de la izquierda. Para eliminar un punto,
simplemente hay que seleccionarlo de alli y pulsar sobre el boton con el icono de la flecha apuntando a la
derecha. En principio el numero del punto de control se asigna automaticamente de forma consecutiva
dependiendo de los puntos que ya haya definidos.

Puedes investigar por tu cuenta las otras opciones que aporta el programa: todas son interesantes,
y sobre todo, bastante mas rapidas que hacerlo uno mismo con codigo.

Como ejemplo practico de utilizacion de los puntos de control, vamos a considerar el caso de una
tipica barra de energia. Imaginate que estamos programando un juego donde nuestro personaje se enfrenta
a enemigos terribles que le atacan constantemente y hacen que su energia disminuya en cada envestida. Un
caso similar ya nos lo encontramos en el capitulo-tutorial anterior, en el del juego del matamarcianos. En
aquel momento se hizo uso de las regiones. Ahora vamos a utilizar otra técnica para obtener un resultado
idéntico, con un ejemplo simple.

Dibuja un bonito grafico rectangular de unos 100x30 pixeles que nos permita visualizar la energia
que tiene en cada momento nuestro personaje. La idea es que a medida que la energia disminuya, esta barra
se ha de hacer mas y mas corta.

A continuacion presento un codigo simple, donde se puede observar que tenemos un proceso
“personaje” (que resulta ser un cuadrado inmévil) y un proceso “barra” que es el responsible de mostrar la
barra de energia de este personaje. En vez de complicar el ejemplo con procesos enemigos, se ha optado
por hacer que nuestro personaje decremente su vida en una unidad cada vez que se pulse la tecla “e”. Asi
pues, el enemigo de nuestro personaje sera esta tecla. Aqui esta el programa:

Program Energia;
Global
int vidapersonaje=100;
End
Begin
set_mode(640,480,16);
personaje();
barra();
Loop
if(key(_esc)) exit(),;end
Frame;
End
End

429

Process personaje()
Begin
graph=new_map(50,50,16);map_clear(0,graph,rgb(0,255,255));
x=320,y=240;
Loop
If(key(e)) vidapersonaje--; end
Frame;
End
End

process barra()
Begin
graph=new_map(100,30,16);map_clear(0,graph,rgb(0,255,0));
x=320,y=50;
Loop
IF (vidapersonaje<size x) size_x--; END
Frame;
End
End

La linea clave estd en IF (vidapersonaje<size x) size_x--; END. Recuerda que la variable local
predefinida SIZE X establece el tanto por ciento del tamafio del grafico en su coordenada horizontal, y por
defecto vale 100. Bien. Para que esta linea sea util hemos utilizado dos premisas: 1°) en cada ataque
enemigo (cada pulsacion de “e”) la energia disminuye una unidad; 2°) la energia inicial es 100. La primera
premisa es importante porque en la linea del if también disminuimos SIZE X en una unidad: para que el
efecto del decrecimiento de la barra esté acorde con la energia real que tiene nuestro personaje, ambas
cosas (energia y barra) han de decrecer al mismo ritmo. Y esto tiene mucho que ver también con la segunda
premisa: los valores iniciales de la energia y de SIZE X son iguales, para hacer asi que cuando se tenga la
mitad de energia (50), la barra tenga la mitad del tamafio original (SIZE X=50) y asi. Es evidente ambas
cosas que podrian tener valores iniciales diferentes (y decrementos diferentes también), pero entonces se
complicaria la cosa: para empezar, la condicion del if se tendria que cambiar, porque si te fijas, tal como
estd lo que hace es precisamente suponer que “vidapersonaje” y SIZE X tienen valores que van a la par, y
cuando “vidapersonaje” decrece una unidad y se queda por debajo de SIZE X, entonces esta variable es la
que decrece una unidad inmediatamente después.

Bien, si has probado de ejecutar este codigo, veras que la barra decrece,si, pero no como te
gustaria seguramente. Decrece por los dos lados por igual (derecho e izquierdo), y lo que seria mas
razonable es que de un lado permaneciera fija y solo decreciera del otro -normalmente el lado derecho-.
(,Como solucionamos esto? Con los puntos de control.

Mas exactamente, lo que haremos serd modificar la posicion del punto de control 0 -es decir,
el centro virtual- para que deje de estar en el centro real de la imagen y pase a estar en el extremo izquierdo
de la barra (y centrado verticalmente, eso si). Haciendo esto, conseguiremos que la barra solo disminuya
por el lado contrario, ya que la posicion de su centro permanecera inalterable. ;Qué tenemos que hacer,
pues? Escribe la siguiente linea dentro del proceso “barra”, justo después del LOOP/END:
set_center(0,graph,0,15);

Fijate que hemos situado el punto de control 0 del grafico dado por GRAPH en la coordenada horizontal 0
y la coordinada vertical 15 (30/2, donde 30 es el alto de la imagen). Si ahora pruebas el programa, veras
que la barra ya disminuye su valor tal como queriamos (aunque veras que aparece un poco desplazada
hacia la derecha, precisamente porque hemos alterado su centro virtual que ha dejado de ser su centro real)

430

Las fuentes FNT. La aplicacion “FNTEdit”:

Algo muy basico en cualquier juego que se precie es mostrar textos: ments, el titulo, los puntos,
el jugador al que le toca, y asi un largo etcétera.Y mostrarlos con tipos de letra (las fuentes) atractivos y
vistosos.

Fénix no incorpora ningin editor de fuentes, por lo que tendremos que recurrir, si queremos
escribir textos espectaculares, a alguna aplicacion externa. El problema es que el formato de las fuentes que
utiliza Fénix, el formato FNT, es exclusivo de DIV/Fénix y ningun otro programa lo utiliza. Este hecho
proviene de la herencia que tiene Fénix de DIV. Por tanto, ya que este formato es tan especifico y peculiar,
ningun editor de fuentes “normal” que encontremos en el mercado podra crear las fuentes con el formato
usado por Fénix. Asi que, ;como creamos las fuentes FNT? Pues los usuarios de Windows tenemos la suerte
de disponer de una aplicacion, “FNT Edit”, programada por la misma persona que ha creado el “FPG Edit”,
que nos soluciona el problema. “FNT Edit” es un fenomenal editor de fuentes FNT, y se puede descargar
desde http://cdiv.sourceforge.net/html/down/down.htm, o también desde FenixWorld; el enlace actual
concretamente es http://fenixworld.se32.com/download.php?view.20 . Recuerda que también esta utilidad
viene incluida dentro del Fénix Pack (http://fenixpack.blogspot.com)

El funcionamiento de esta aplicacion es muy simple. A la hora de crear o modificar una fuente
deberemos cargar de entrada alguna de las fuentes TTF,TTC o FON que tengamos preinstaladas en el
sistema (éstos son los formatos de las fuentes que usamos por ejemplo en el Word y aplicaciones mas
comunes ya que son formatos “estandar”, no como FNT), y a partir de ahi podremos definir su tamafio, el
estilo, su color, su sombreado (y su color, y su orientacion...), su borde (y su color), incluir imagenes,etc.
Cuando ya hayamos acabado, crearemos la fuente dandole al boton “Generar” (saldra un cuadrado donde
dejaremos la opcion sefialada por defecto: “Calcular paleta optimizada a los colores de la fuente”) y entonces
podremos ver en la parte inferior de la ventana una muestra de lo que seria un texto escrito con dicha fuente.
Si estamos contentos, guardaremos el estilo de fuente en un archivo *.FNT. Recuerda que lo que grabamos
es la fuente de letra en “abstracto”, no es ningln texto concreto ni nada.

El formato estandar TTF es el formato llamado True Type, y es el mas extendido en sistemas
Windows y Macintosh, usado en toda clase de aplicaciones. De hecho, este formato fue desarrollado
conjuntamente por Microsoft y Apple, y es por eso que esta soportado de forma nativa por los sistemas
operativos de ambas compaifiias, haciendo que cualquiera pueda crear documentos utilizando fuentes con
dicho formato.

Otro formato de fuentes es el formato TTC, desarrollado por Microsoft y que es un TTF
comprimido, y el formato FON, antiguo formato de fuentes usado en las primeras versiones de Windows.
Para ver qué fuentes tienes instaladas en tu ordenador simplemente tienes que dirigirte a la carpeta “Fonts”
que esta dentro de la carpeta “Windows”,la cual estard colgando directamente de la letra de la particién
donde hayas instalado Windows (normalmente, C:).

Una clasificacion general que veras frecuentemente si profundizas en el mundo de la
tipografia es distingir entre fuentes “Serif” y fuentes “Sans serif”, independientemente del formato del
archivo que tengan. Las fuentes “Sans serif” son las fuentes que no usan serifs, es decir, pequeias lineas
decorativas al final de los caracteres que embellecen su forma basica. Fuentes sans-serif populares
son:Helvetica, Arial,Geneva,...Las fuentes sans-serif son mas dificiles de leer, y por eso son usadas
frecuentemente en textos cortos como encabezados de linea, titulos o maytsculas. Las fuentes “Serif” son
las fuentes que incorporan serifs,y las mas populares son: Times Roman, Courier, New Century,etc.

Fuente Serif Fuente Sans Serif

431

http://fenixpack.blogspot.com/
http://fenixworld.se32.com/download.php?view.20
http://cdiv.sourceforge.net/html/down/down.htm
http://cdiv.sourceforge.net/html/down/down.htm

Si quieres conseguir fuentes directamente descargables de Internet,hay muchas web que las
ofrecen gratuitamente. A continuacion presento una lista, ni mucho menos exhaustiva de sitios donde
podremos conseguir gran cantidad de fuentes estandares (pero no FNT, aunque eso no importa porque
sabemos que a partir de una estandar podemos crear una fuente FNT con FNTEdit).

http://fonts.tom7.com
http://www.free-fonts.com
http://www.goodfonts.org
http://thefreesite.com/Free Fonts

Desde ésta ultima se puede acceder, entre otras, a:

http://www.1001 freefonts.com
http://www.freetype.org

Y evidentemente, el mejor sitio para encontrar fuentes siempre sera

http://www.google.com

Y si quieres saber mas sobre las fuentes TTF (historia, aplicaciones, documentacion,etc), consulta:
http://www.truetype.demon.co.uk/

También puedes instalar y utilizar editores de fuentes “estandares” que te ofrezcan mas
posibilidades de disefio, para posteriormente utilizar el FNTEdit para pasarlas a formato FNT. Algunos
programas editores de fuentes que puedes utilizar podrian ser (la lista no es ni mucho menos completa):

Program FontMagic (http://www.mattcawley.com/fontmagic)
FontLab (http://www.fontlab.com)

FontCreator Program (http://www.high-logic.com)
Fontographer (http://www.macromedia.com)
Fontforge (http://fontforge.sourceforge.net). Esta aplicacion es libre.

Bien, una vez que ya tenemos las fuentes creadas y listas, ;como las utilizamos dentro de
nuestro videojuego? Como no podia ser menos, Fénix incorpora una serie de funciones que posibilitan el uso
en nuestros programas de fuentes para los textos que aparecen en la pantalla. Las fundamentales serian:

LOAD_FNT(“fichero”)

Esta funcion carga en memoria un tipo de letra desde disco.

E1 FNT es un formato propio de Fénix que permite almacenar tipos de letra de formato "bitmap" (cada
caracter dentro de la fuente es un grafico compuesto de pixels), de 1, 8 o 16 bits por pixel en formato
comprimido, con pixels transparentes.

Los tipos de letra tradicionales (TTF, BDF, FON) son a menudo tipos de letra escalables (es decir, en el

432

http://fontforge.sourceforge.net/
http://www.macromedia.com/
http://www.high-logic.com/
http://www.fontlab.com/
http://www.mattcawley.com/fontmagic
http://www.truetype.demon.co.uk/
http://www.google.com/
http://www.freetype.org/
http://www.1001freefonts.com/
http://thefreesite.com/Free_Fonts
http://www.goodfonts.org/
http://www.free-fonts.com/
http://fonts.tom7.com/

mismo fichero se incluye informacion para dibujar textos a cualquier resolucion y tamafio) y en blanco y
negro, mientras los tipos de letra en Fenix no son escalables (no es posible dibujar un texto a varios
tamafios diferentes) pero a todo color.

LOAD_FNT devuelve un nimero entero que identifica al nuevo tipo de letra. Es posible utilizar a partir de
entonces este valor con cualquier funcion que admita un tipo de letra como parametro, como por ejemplo
WRITE

Importante:El formato FNT de 8 bits incluye también una paleta de colores, pero s6lo puede haber una
paleta de colores activa en todo momento, por lo que todo gréafico de 8 bits existente debe compartir la
misma paleta de colores. Fenix usara automaticamente la paleta de colores del primer grafico en recuperar
de disco e ignorara la paleta de los demas. Esto quiere decir que si se cargan varios ficheros FNT de 8 bits
con la funcion LOAD FNT uno detras de otro, a pesar de que cada fuente tenga su paleta propia, solo se
utilizard la paleta del primer fichero FNT, con lo que los colores de los siguientes tipos de fuente no seran
los mismos que los originales (asociados a cada paleta particular). Es por eso que se recomienda, si se van
a usar fuentes de 8 bits, utilizar una paleta comun para todas ellas para evitar sorpresas. Otro truco seria
crear las fuentes de 1 bit y utilizar luego la funcién set_text color().

PARAMETROS: STRING FICHERO: Nombe del fichero

VALOR RETORNADO: INT : Identificador del nuevo tipo de letra

UNLOAD _FNT(FUENTE)

Libera la memoria ocupada por un tipo de letra recuperado de disco por la funcion LOAD FNT.

Se considera un error utilizar a partir de ese momento ese identificador de fuente en cualquier llamada a
funcion, asi como mantener en pantalla textos de esta fuente escritos con la funcion WRTE u otra
equivalente.

PARAMETROS: INT FUENTE : Identificador del tipo de letra

Es decir, con sdlo utilizar LOAD_FNT, ya dispondremos de un identificador de fuente, al igual
que con LOAD PNG disponiamos de un identificador de Png. Y este identificador de fuente lo podremos
utilizar como valor del primer parametro de las funciones write o write_var, las cuales hasta ahora habiamos
usado poniendo en dicho parametro el valor de 0 -la fuente del sistema-. Y ya esta: asi de sencillo. Es decir,
que si se supone que tenemos creada una fuente llamada “a.fnt”, para utilizarla en un texto de nuestro
programa, tendriamos que hacer lo siguiente:

PROGRAM fonte;
private
int idfuente;

end
begin
set_mode(640,480,16);
idfuente=load_funt("a.fnt");
write(idfuente,320,240,4,"Hola!");
loop

frame;

if(key(_esc)) break;end
end
unload_fut(idfuente);
end

433

Fijate que gracias a los tipos de fuentes, ahora podremos escribir textos en cualquier tamafio, por ejemplo.
Una cosa que hasta ahora no podiamos hacer.

A parte de las funciones de carga y descarga de fuentes, Fénix también dispone de unas cuantas
funciones mas relacionadas con la tipografia, que aunque no son tan comunes, al menos son interesantes de
conocer, sobre todo porque ofrecen la posibilidad de crear nuestras propias fuentes FNT sin la necesidad de
utilizar el FNTEdit. Estas funciones son cuatro:

FNT_NEW(PROFUNDIDAD)

Esta funcion crea un tipo de letra FNT.

El nuevo tipo de letra estara preparado para contener caracteres de la profundidad de color deseada, pero en
un principio estara vacio. Sera necesario utilizar la funcion SET GLYPH para afiadir graficos de caracteres
al tipo de letra.

PARAMETROS: INT PROFUNDIDAD : Profundidad de color (1,8 6 16)

VALOR RETORNADO: INT : Identificador del nuevo tipo de letra

GET_GLYPH(FUENTE,CARACTER)

Dado un tipo de letra, esta funcion crea un grafico que contiene uno de sus caracteres.

Esta funcion ha sido disefiada para poder modificar este grafico en memoria segun las necesidades de cada
uno y guardar luego los cambios en la propia fuente, empleando la funcion SET GLYPH .

El grafico creado pertenecera a la libreria O y serd una copia de la informacion contenida en la fuente. Esto
significa que las modificaciones realizadas sobre €l no afectaran directamente a la fuente: sera necesario
llamar a la funcion SET GLYPH para que los cambios sean realmente efectivos.

El grafico creado es una copia fiel del contenido en el tipo de letra, y se incluyen dos puntos de control (el 1 y el 2)
para almacenar informacion adicional del cardcter:

» El punto I contendra el desplazamiento a efectuar sobre el punto de escritura en el momento de escribir el
caracter. Normalmente ocuparda la esquina superior izquierda (0, 0) indicando que no hay ningun
desplazamiento.

» El punto 2 contendra el avance efectivo de posicion, horizontal y vertical, que se realizara al escribir el
cardcter. El avance vertical no se emplea actualmente.

PARAMETROS:

INT FUENTE : Identificador del tipo de letra
INT CARACTER: Numero de caracter de la tabla ASCII (de 0 a 255)

VALOR RETORNADO: INT: Numero de grafico generado a partir del caracter de la fuente
especificado

Un ejemplo de uso:

434

program prueba;

begin

set_mode(320,240,16);

graph=get glyph(0,asc("Z")),
size=1000;x=160,;y=120;flags=35;angle=90000;

while(lkey(_esc)) frame; end
end

SET_GLYPH(FUENTE,CARACTER,LIBRERIA,GRAFICO)

Dado un tipo de letra, esta funcion permite cambiar cualquiera de sus caracteres por el grafico especificado
entre sus tercer y cuarto parametros(que puede ser un grafico obtenido previamente con GET GLYPH y
modificado posteriormente).

Esto cambia efectivamente el aspecto de la fuente en memoria, y el nuevo caracter sera reflejado en
posteriores usos de la fuente, incluyendo cualquier texto escrito por la funcion WRITE u otra equivalente,
que pudiera estar en pantalla en ese momento.

Es posible incluir dos puntos de control con informacion adicional sobre el cardcter:

» El punto I contendra el desplazamiento a efectuar sobre el punto de escritura en el momento de escribir el
caracter. Normalmente ocupard la esquina superior izquierda (0, 0) indicando que no hay ningun
desplazamiento.

» El punto 2 contendra el avance efectivo de posicion, horizontal y vertical, que se realizara al escribir el
caracter. El avance vertical no se emplea actualmente.

Si estos puntos de control no se incluyen, la informacion del caracter existente no sera modificada. Normalmente esto
no es deseable, asi que se recomienda anadir siempre los puntos de control al grafico mediante la funcion
SET POINT

PARAMETROS:

INT FUENTE : Identificador del tipo de letra

INT CARACTER: Numero de caracter de la tabla ASCII (de 0 a 255)
INT LIBRERIA: Identificador de libreria FPG

INT GRAFICO: Numero de grafico dentro de la libreria FPG

SAVE_FNT(FUENTE,”fichero”)

Crea o sobreescribe un fichero en disco, con el nombre especificado, que contenga un tipo de letra FNT
actualmente ubicado en memoria.

Este tipo de letra habra sido recuperado de disco previamente por la funcion LOAD FNT u otra
equivalente.

Se guardara cualquier cambio efectuado en memoria al tipo de letra con funciones como SET GLYPH .
Ademas, el fichero se guardara en formato comprimido.

PARAMETROS:

INT FUENTE : Identificador del tipo de letra
STRING FICHERO : Nombre del fichero

435

Vamos a utilizar los comandos acabados de ver para hacer un primer ejercicio de creacion de
fuentes FNT propias a través de codigo Fénix (original de SplinterGU), sin utilizar el FNTEdit u otras
aplicaciones externas. Para empezar a hacer alguna prueba, lo que haremos sera crearnos una fuente que
contenga so6lo dos simbolos, correspondientes a lo que serian los caracteres “A” y “B”, pero que ambos
seran pintados como un cuadrado gris. Es decir, haremos una fuente con la que s6lo se puedan escribir la
“A”y la “B”, pero que ademas, en vez de escribir estos caracteres, se pintaran sendos cuadrados grises.

program GeneradorFuenteFNT;
private
int font,map;
end
begin
set_mode(800,600,16);
map=new_map(10,10,16);
font=new_funt(16),
//Dibujo un grdfico (un cuadrado gris)
drawing map(0,map),drawing color(rgb(100,100,100));draw _box(0,0,9,9);
/*Este grafico correspondera al cardacter 65 de la nueva fuente (El caracter 65 de la tabla ASCII
corresponde a la "A"). Como solo se asigna este cardcter, el resto de letras y simbolos no seran visibles
ya que no estaran definidos para esta fuente: habria que hacer 255 set_glyph, una por cada cardacter de la
nueva fuente creada™/
set_glyph(font,65,0,map),
/*Solo imprimird un cuadrado gris correspondiente a "A". "B" no se escribird porque no tiene asociado
ningun simbolo de la fuente.™/
write(font,400,300,0, "AB");
//Ahora hago que "B" también se escriba como el mismo cuadrado gris
set_glyph(font,66,0,map);
//Ahora se imprimen dos cuadrados grises
write(font,450,300,0, "AB");
/*Guardo la fuente creada (que esta en memoria), en el disco, para poderla utilizar posteriormente en
otros programas como cualquier otra fuente. Ojo, el formato que utiliza save _fut no es compatible con
FNTEdit, asi que no podrds manipularla dentro de esta aplicacion™/
save_fnt(font, "mifuente.fut");
while(lkey(_esc))frame; end
end

Supongo que pensaras que el ejemplo de arriba no es de mucha utilidad practica. Vamos ahora a
crearnos una fuente un poco mas usable, siguiendo la misma filosofia. Se escribird primero un caracter
utilizando la fuente del sistema; seguidamente, se modificara éste con write in_map() y efectos propios de
graficos; finalmente, este caracter modificado se guardard en una nueva fuente y ésta se utilizara para
volver a escribir el mismo caracter, comprobando asi su nuevo aspecto.

program prueba;
private
int font,graf;
end
begin

set_mode(320,240,16);
write(0,150,50,4,"Letra 'a’ con la fuente del sistema : a");

/*Transformo el cardcter pasado por pardmetro a una imagen de tamario dado por el segundo pardmetro

436

y con un flag dado por el tercer parametro (ademds, le aplico difuminado). El valor devuelto es el codigo
identificador de esta imagen*/
graf=char2grafchar("a",300,1);

font=new _fut(16);

/*Hago que el caracter correspondiente al simbolo "a" de la fuente "font" sea representado por la imagen
acabada de generar en la linea anterior*/

set_glyph(font,asc("a"),0,graf);

//Muestro el resultado

write(0,150,100,4, "Letra 'a’ con la fuente acabada de generar : ");

write(font,300,100,4, "a");

/*Y creo otro archivo en disco con esta nueva fuente (que consta unicamente de un caracter por ahora),
para poderla utilizar posteriormente en otros programas de forma normal™/

save_fnt(font, "mifuente2.fnt");

while(lkey(esc))
frame;

end

END

/*Funcion que transforma un cardcter pasado por parametro en una imagen, de un tamario y flags dados,
y con difuminado™/

function char2grafchar(string letra,int nuevotam, int nuevoflag)

private
int blend, graf,graf2;
int alto,ancho;

end

begin

//Convierto el cardcter pasado por parametro en una imagen tal cual.
graf=write_in_map(0,letra,4);

/*Las lineas siguientes sirven para cambiar el aspecto de la imagen generada por write_in_map. No
puedo utilizar variables como SIZE,FLAGS,etc porque estoy dentro de una funcion y ahi éstas variables no
tienen sentido (y estoy en una funcion y no un proceso porque necesito devolver el identificador del grafico
modificado con return). Tampoco existe una funcion especifica que cambie las propiedades de un grdfico
como su tamario o su flags si éste no pertenece a un proceso. Pero lo que si puedo utilizar para modificar
el tamario, flags,etc de un grdfico es funcion map xput. Esta funcion "pega" en un grafico destino una
copia de un grdfico origen, opcionalmente modificado en su tamaro y flags, entre otras cosas. Asi que lo
que haremos sera crear un grafico destino vacio (llamado graf2), donde "pegaremos" el grdfico graf 'y lo
haremos cambiando su tamario y su flag. De esta manera, obtendremos en graf2 el grdfico modificado del
cardcter, y éste grdfico sera el que la funcion retornard™/

ancho=graphic_info(0,graf,g width);

alto=graphic_info(0,graf,g_height);
/*Creamos el grdfico vacio cuyo tamario serd el que tiene el grafico original (graf) variando su tamario
seguin el que se ha indicado como segundo pardmetro. Este pardmetro estd escrito en las mismas unidades
que la variable SIZE (es decir, en tanto por ciento), por lo que si se quiere modificar el tamariio en pixeles,
habra que dividir por 100. Es decir, en este caso, si el 2° parametro vale 300, el tamario de graf2 sera el
triple, por lo que tendremos que multiplicar el alto y el ancho del grdfico original por 3 (300/100).*/

graf2=new_map(ancho*nuevotam/100,alto *nuevotam/100,16);
/*La linea clave: copiamos graf en graf2 en la coordenada central de éste (que se calcula simplemente
dividiendo por dos el ancho y alto de graf2 (ancho*nuevotam/100 y alto*nuevotam/100 respectivamente),
y ADEMAS, lo copiamos con un nuevo tamaiio y con un nuevo flag. También podriamos haberlo copiado

437

con un nuevo angle, pero no lo hemos hecho...Después de esta linea ya tenemos en graf? el grdfico
modificado del caracter original que queriamo™/
map_xput(0,graf2,graf,ancho *nuevotam/200,alto *nuevotam/200,0,nuevotam,nuevoflag);

//Aplico también un difuminado al grafico
blur(0,graf2,3);

/*Las siguiente lineas comentadas sirven para aplicar a graf2 un efecto de tintado en verde y de
transparencia.Para ello utilizan las llamadas tablas blendop, tema que requiere un poco mas de estudio y
que se explicara detalladamente en el ultimo capitulo de este manual. No obstante,si se desea observar el
efecto que producen estas lineas, se pueden descomentar y volver a ejecutarel programa™/

/*blend=blendop new();
blendop_tint(blend,1.0,145,245,45);
blendop_translucency(blend,0.4),
blendop assign(0,graf2,blend), */

//Devuelvo el codigo del grdfico transformado
return graf2;
end

No obstante, lo més normal no es hacer lo que hemos hecho en el ejemplo anterior (crear los nuevos
caracteres de la fuente “al vuelo” con wrife in_map) sino que normalmente los caracteres se disefian con
un programa especifico: un editor de fuentes o incluso un editor de bitmaps o vectoriales. Y lo unico que
hacemos para generar la fuente FNT con nuestro programa escrito en Fénix es invocar a set_glyph con cada
uno de los disefios de esos caracteres previamente dibujados en el programa externo.

Como tultimo ejercicio: ;qué hace este codigo?

PROGRAM Orient;
private
int idmifuente;
int graf;
inti;
End
BEGIN
set_mode(640,480,16);
idmifuente=fut_new(16);
for(i=1;i<256;i++)
graf=get glyph(0,i);
//...Modifico graf como quiera
set_glyph(idmifuente,i,0,graf);
end
write(idmifuente, 320,240,4, "Hola!");
loop
frame;
if(key(_esc)) break;end
end
save_fnt(idmifuente, "lala.fnt"); //Da un error de "gr font save: fuente corrupta” (?)
unload_fut(idmifuente);
end

438

Trabajar con regiones:

Una “region de pantalla” no es mas que una “ventana” invisible dentro de la ventana del juego,
una zona invisible de la pantalla que puede contener una serie de graficos, o no.

De hecho, de forma predefinida, toda la ventana del juego es ya una region, la denominada
region cero. Fenix mnos permite definir hasta 31 regiones, de la 1 a la 31, del tamafio que nos de la gana,
siempre que no se salgan de la zona de pantalla; la region cero no se puede definir por razones obvias: ya
estd definida.

Sus utilidades son muchas, por ejemplo, para saber si un grafico esta fuera o dentro de una zona
de la pantalla, para mover el fondo, para definir ventanas para multijugador a pantalla partida,etc,pero la que
mas utilidad le vamos a dar es que podemos meter un grafico dentro de una region, de tal manera que si éste
se sale de ella, desaparece como si fuera el borde de la pantalla.

Sus utilidades son muchas, especialmente en juegos en los que no toda la zona visible
corresponde al area de juego (como por ejemplo se usan zonas de pantalla destinadas al uso de marcadores).
Ademas, las regiones también se pueden usar para:

» Definir el area ocupada por una regién de scroll (en seguida veremos qué son y como funcionan).

+ Definir un area de "clipping", de manera que los procesos que estén marcados como pertenecientes a
la misma sean recortados por sus limites. Y en relacion a esto, definir que si un grafico sale de una
region, desaparezca como si fuera el borde de pantalla, o viceversa

 Definir una zona de pantalla donde nos interesara saber facilmente cudndo un proceso entra o sale.

+ Definir ventanas multijugador a pantalla partida.

« Etc

Para poder trabajar con zonas que no sean la 0, necesitaremos crearlas antes. Y para ello
utilizaremos la funcién DEFINE REGION.

DEFINE_REGION(REGION,X,Y,ANCHO,ALTO)

Esta funcion permite definir los limites de una region. Existen 32 regiones disponibles, de las cuales la
region 0 corresponde siempre a la pantalla completa y no puede cambiarse.

Las coordenadas se dan siempre en pixels, donde (0, 0) corresponde a la esquina superior izquierda de
pantalla. Sin embargo, por si mismo definir una region no tiene ningun efecto hasta que la region se utiliza.

Para ello, pronto veremos que puedes asignar el nimero de region a la variable REGION de un proceso,
usarla con la funcion START SCROLL, o emplear también la funcion OUT _REGION con la nueva region
definida.

PARAMETROS:
INT REGION: Numero de region, de 1 a 31

INT X : Coordenada horizontal de la esquina superior izquierda de la region
INT Y : Coordenada vertical de la esquina superior izquierda de la region
INT ANCHO : Ancho en pixeles de la region

INT ALTO : Alto en pixeles de la region

Tal como acabamos de decir en el cuadro anterior, definir una region no tiene ningtin efecto

439

aparente sobre nuestro juego. Falta un paso mas: utilizarla. Y hay varias maneras para eso. En el siguiente
apartado ya hablaremos de los scrolls y de la aplicacion que tienen las regiones a éstos, pero si no trabajamos
con scrolls, el uso de las regiones suele ser el siguiente: normalmente se usan para establecer que uno o mas
procesos determinados s6lo seran visibles dentro de una region en concreto. Y para lograr esto, lo que hay
que hacer es asignar a la variable local REGION de ese/esos proceso/s el numero de region definido
previamente con DEFINE REGION donde queremos que el proceso sea visible.Las partes del grafico del
proceso que queden fuera de la zona definida por la region se recortaran y no seran mostradas. El valor por
defecto de REGION para todos los procesos es 0, que equivale a la pantalla completa.

A continuacion veremos un ejemplo donde se puede comprobar el efecto del uso de la variable
REGION. El cédigo consiste en la modificacion mediante los cursores del teclado tanto del origen de la
esquina superior izquierda como de la altura y anchura de una determinada region numerada como 1.

La manera de visualizar este cambio es asociar dicha region 1 en este caso al codigo principal
del programa -podria haber sido un proceso cualquiera-. Como acabamos de decir que al asociar un
proceso a una region, estamos haciendo que el grafico de ese proceso solo sea visible dentro de esa region,
si modificamos la posicion y tamafio de la region, modificaremos la porcion de grafico visible en cada
momento, que es lo que tendria que ocurrir si lo pruebas (necesitaras un grafico llamado “a.png”).

program Test DEFINE REGION;
global
int xr=0,yr=0; //Esquina superior izquierda de la region
int wr,hr, // Anchura y altura de la region
end
begin
set_mode(640,480,16);
graph=load png("a.png");
x=320;
y=240;
region=1, //Solo se vera el grafico del codigo dentro de la region 1
write(0,10,50,3,"LEFT : Disminuye anchura region");
write(0,10,60,3,"RIGHT: Aumenta anchura region");
write(0,10,70,3,"UP : Disminuye altura region"),
write(0,10,80,3,"RIGHT: Aumenta altura region");
write(0,10,100,3,"Anchura region: ");
write_var(0,120,100,3,wr);
write(0,10,110,3,"Altura region: "),
write_var(0,120,110,3,hr);
write(0,10,120,3,"X region: ");
write_var(0,120,120,3,xr);
write(0,10,130,3,"Y region: ");
write_var(0,120,130,3,yr);
repeat
iftkey(left) && xr>0) xr=xr-5; end
if(tkey(right) && xr<320) xr=xr+35, end
iftkey(_ up) && yr>0) yr=yr-5; end
if(key(_down) && yr<240) yr=yr+5; end
/*Modifico la anchura y altura de la region acorde a la posicion de su esquina superior izquierda. Esta
formula se podria cambiar por otra */
wr=640-(xr*2);
hr=480-(yr*2);
define_region(1,xr,yr,wr,hr); //Defino la region 1
frame;
until(key(_esc))

440

end

Finalmente, otra funcion importante respecto el tema de las regiones es OUT REGION.

OUT_REGION(ID,REGION)

Esta funcion devuelve 1 si un proceso cuyo identificador es su primer pardmetro esta fuera de la region
indicada como segundo parametro. En otras palabras, permite comprobar si un proceso ha sido dibujado
dentro o fuera de una region en pantalla.

La funcion devuelve 1 si el proceso se encuentra completamente fuera de los limites de la region, y O si
alguna parte o todo el proceso toca dentro de la misma.

Antes de llamar a esta funcion, es preciso haber establecido los limites de la region mediante
DEFINE REGION , a no ser que se utilice la region 0, que corresponde siempre a toda la pantalla y ofrece
una forma sencilla de comprobar si un proceso ha salido fuera de pantalla.

Si quieres comprobar si el proceso actual ha salido fuera de una region, recuerda que se puede utilizar la
variable local ID para obtener su identificador.

PARAMETROS:

INT ID: Identificador de un proceso
INT REGION : Numero de region, de 0 a 31.

Un ejemplo de la funcion anterior podria ser el siguiente. En él tenemos cuatro procesos, cuyos
identificadores se guardan cada uno en un elemento de la matriz idb[]. Ademas, tenemos definida una
region (region 1), visualizada gracias a un cuadrado de diferente color. Los graficos de dos de los procesos
estaran entrando y saliendo continuamente de dicha region, y los graficos de los otros dos procesos estaran
entrando y saliendo continuamente de la pantalla (regién 0).

El programa muestra cuatro textos que se actualizan constantemente y muestran el estado de
cada uno de los cuatro procesos respecto si estan fuera o dentro de la region 1 (dos procesos) o de la region
0 (los otros dos). Y esto se sabe gracias a lo que devuelve OUT REGION. El estado -dentro o fuera- de
cada elemento de idb[] se almacena en un elemento de la matriz out[].

program Test OUT REGION;
global
int idb[3];
int out[3];
end
begin
set_mode(320,240,16);
/*Pinto un rectangulo visible con las mismas dimensiones y posicion que la region 1 que creo a
continuacion, para hacer ésta visualizable. */
graph=new_map(120,100,16);map_clear(0,graph,rgb(80,20,20));
x=220,y=75,z=1;
/*Creo la region de forma real. Notar que el ancho y alto es igual al del rectiangulo pintado en la linea
anterior, y la posicion de su esquina superior izquierda (160,25) viene dada por un simple calculo a partir
del centro del rectangulo pintado (220,75) y su tamario (120,100).%*/
define region(1,160,25,120,100),

write(0,10,60,3,"Out Region 0 Bola 1:");
write_var(0,147,60,3,0ut[0]);
write(0,10,70,3,"Out Region 0 Bola 2: ");

441

write_var(0,147,70,3,0out[1]);
write(0,10,80,3,"Out Region I Bola 3:");
write_var(0,147,80,3,0ut[2]);
write(0,10,90,3,"Out Region I Bola 4: "),
write_var(0,147,90,3,0ut[3]);

idb[0]=bola(300,160,100,0,1,1);
idb[1]=bola(300,160,100,0,2,1);
idb[2]=bola(270,105,50,1,3,1);
idb[3]=bola(270,105,50,1,4,1);

/*Out[0] valdra 1 si el proceso idb[0] sale fuera de la pantalla.
Out[1] valdra 1 si el proceso idb[1] sale fuera de la pantalla.
Out[2] valdra 1 si el proceso idb[2] sale fuera de la region 1.
Out([3] valdra 1 si el proceso idb[3] sale fuera de la region 1.%*/
repeat
out[0]=out region(idb[0],0),
out[1]=out region(idb[1],0);
out[2]=out _region(idb[2],1);
out[3]=out region(idb[3],1);
frame;
until(key(_esc))
let_ me_alone();
end

/*Al pasar por parametro la variable local region, estamos indicando a la hora de crear el proceso, en
qué region queremos que éste sea visible™/
process Bola(x,y,size,region,t,m)
begin
graph=new_map(8,8,16);map_clear(0,graph,rgb(100,100,100));
loop
/*Las variables "t" y "m" simplemente son para controlar el movimiento de los diferentes procesos. No
tienen mayor importancia.*/
switch(t)
case 1:
if(x>-50 && m==1) x=x-5; else m=2; end
if(x<370 && m==2) x=x+5; else m=1; end
end
case 2:
if(y>-50 && m==1) y=y-5; else m=2; end
if(y<250 && m==2) y=y+35; else m=1; end
end
case 3:
if(x>130 && m==1) x=x-2; else m=2; end
if(x<310 && m==2) x=x+2; else m=1; end
end
case 4:
ify>0 && m==1)y=y-2; else m=2; end
if(y<i150 && m==2) y=y+2; else m=1; end
end
end
frame;
end
end

442

Trabajar con scrolls y Modo7:

Un scroll es un fondo mas grande que la pantalla, y que se mueve. Los scrolls permiten mostrar
en pantalla una zona de juego mas grande que ésta, de manera que s6lo es posible ver una parte del total.

Podemos usar los “scrolls” para muchas cosas: para dibujar por ejemplo un paisaje de fondo que
sigue a nuestro héroe en un juego de plataformas, para hacer un mundo que se mueve bajo los pies de nuestro
protagonista en un juego de rol, para hacer planetas y nieblas que van apareciendo en el universo cuando
nuestra nave lo va surcando de punta a punta....

Fénix nos permite usar hasta 10 scrolls a la vez. Esto puede ser ttil para mostrar dos zonas de
scroll distintas, pero el uso mas comun es mostrar dos ventanas de movimiento dentro de la misma zona (por
ejemplo para partidas a dos jugadores).

Cada uno de estos scrolls dispone ademas de no uno, sino dos fondos a distinta profundidad que
podremos mover a distintas velocidades. El fondo de segundo plano se vera a través de los pixels
transparentes del grafico del fondo de primer plano.

Podemos clasificar los scrolls en dos tipos basicos: los scrolls automaticos, y los scrolls que
persiguen a un proceso. Antes de comenzar a codificar debemos tener claro qué tipo de scroll queremos
implementar.

Un scroll automatico es aquél que, independientemente de los movimientos o posiciones de
los procesos en pantalla, va a ir desplazando el fondo de manera automatica en una o unas direcciones
determinadas, a modo de fondo siempre animado. Este movimiento de scroll lo tendremos que programar
“a mano” para hacer que se mueva de esta forma “mecanica” tal como queramos.

El otro tipo de scroll, el que persigue a un proceso, consiste basicamente en hacer que el fondo
se desplace junto con el movimiento de un determinado proceso: asi, si el proceso esta quieto, el fondo esta
quieto, y cuando el proceso se mueve en una direccion, el scroll se movera en dicha direccion. Este es el
tipico efecto que se utiliza en los juegos de rol a vista de péjaro (también llamados RPG, veremos un
tutorial enseguida) cuando se quiere mostrar el desplazamiento de nuestro protagonista a través de un
territorio.

Para iniciar un scroll (del tipo que sea) hay que usar la funcidn start scroll, en sustitucion de
put_screen, (si es que estabamos usandola hasta ahora). Es decir, start scroll hace basicamente lo mismo
que put screen : pinta una imagen de fondo (bueno, en realidad dos imagenes para dos fondos a distinta
profundidad, ahora lo veremos), con la gran diferencia que esta/s imagen/es de fondo son capaces de
moverse. Put_screen pinta un fondo fijo, Start_scroll pinta un fondo movil.

START_SCROLL(NUMERO,FICHERO,GRAFICO,FONDO,REGION,FLAGS)

PARAMETROS:
INT NUMERO : Numero identificador de scroll (0 a 9)

INT FICHERO : Numero de fichero FPG que contiene los graficos GRAFICO y FONDO
(0 0 si los graficos de scroll se han cargado individualmente, por ejemplo con load png)

INT GRAFICO : Numero de grafico para el primer plano del scroll.Es obligatorio
especificar un grafico valido.

443

INT FONDO : Numero de grafico para el fondo del scroll, 0 para ninguno.

INT REGION : Numero de region donde el scroll funcionara. Esto es util si divides la

pantalla y quieres que cada parte sea un scroll para un jugador distinto, o para hacer un pequefio mapa
scrollable a modo de zona pequefia dentro de la ventana principal,por ejemplo. Si vas a usar toda la
pantalla, ya sabes que el nimero que tienes que indicar es el cero.

INT FLAGS : Si este parametro vale 0, el scroll se movera hasta que el margen del grafico
del primer plano del fondo —el 2° parametro- coincida con uno de los limites de la region/pantalla,
momento en el que el scroll se parard, ya que se ha llegado al final de la imagen. Hay que tener en cuenta
que este valor de 0 en este parametro solo tiene sentido en el caso de los scrolls “perseguidores” de

procesos, porque con los scrolls automaticos precisamente lo que interesa es evitar esto, es decir, lo que
interesa es conseguir que el scroll se repita a modo de mosaico indefinidamente de forma ciclica. Para ello,
este pardmetro puede valer cualquiera de los siguientes valores:

1 El grafico de primer plano se repite horizontalmente.

2 El grafico de primer plano se repite verticalmente.

3 (2+1) El grafico de primer plano se repite tanto horizontal como verticalmente.

4 El grafico de fondo se repite horizontalmente.

5(4+1) El grafico de fondo se repite horizontalmente y el de primer plano también.

6 (4+2) El grafico de fondo se repite horizontalmente y el de primer plano verticalmente

7 (4+2+1) El grafico de fondo se repite horizontalmente y el de primer plano en ambas direcciones
8 El grafico de fondo se repite verticalmente.

9 (8+1) El grafico de fondo se repite verticalmente y el de primer plano horizontalmente

10 (8+2) El gréafico de fondo se repite verticalmente y el de primer plano también.

11 (8+2+1) El grafico de fondo se repite verticalmente y el de primer plano en ambas direcciones
12 (8+4) El grafico de fondo se repite tanto horizontal como verticalmente.

13 (8+4+1) El grafico de fondo se repite en ambas direcciones y el de primer plano horizontalmente.
14 (8+4+2) El grafico de fondo se repite en ambas direcciones y el de primer plano verticalmente.

15 (8+4+2+1) El grafico de fondo se repite en ambas direcciones y el de primer plano también.

Una vez iniciado el scroll, no hay que olvidarse de cerrarlo antes de acabar la ejecucion del
programa para que ésta se realice limpiamente, usando stop scroll pasandole el identificador de scroll que
queremos parar.

STOP_SCROLL (NUMERO)

Detiene un scroll activado previamente mediante la funcion START SCROLL . Debe indicarse el mismo
identificador de scroll especificado al inicializarla. Ese scroll no serd visible a partir del proximo frame
(como si hubiéramos hecho un clear screen paraun put screen).

PARAMETROS:
INT NUMERO : Numero identificador de scroll (0 a 9)

Vamos a ir conociendo como funciona el mecanismo de scroll a partir de un ejemplo que iremos
ampliando a medida que vayamos aprendiendo mas aspectos del mismo.

444

Para este ejemplo y todos los demas de este apartado, necesitaras tener dos imagenes que seran
el fondo de primer plano y de segundo plano de nuestro scroll. Como el ejemplo lo haremos en una
resolucion de 640x480, estas imagenes han de ser mas grandes que estas dimensiones para que se note
algo; por ejemplo, de 1000x1000. Ademas, dichas iméagenes tendran que ser algo variadas en su dibujo
para que se note mas el scroll, e importante, la imagen que serd la de primer plano ha de tener bastantes
zonas transparentes (es decir, pintada de negro real -RGB=0,0,0-) para que se puedan ver en esas zonas las
porciones de la imagen de segundo plano que coincidan. Estas dos imagenes las incluiremos en un FPG
llamado “scroll.fpg”: el primer plano con codigo 001 y el segundo con 002.

Ademas, en nuestro ejemplo crearemos un proceso que se podra mover en las cuatro direcciones
mediante el cursor. Su grafico puede ser cualquiera, por ejemplo de unos 40x40 pixeles, y lo llamaremos
“grafproc.png”.

Empezamos con el siguiente c6digo inicial:

program hola;
private
int idfpg;
end
begin
set_mode(640,480,16);
idfpg=load_fpg("scrolll.fpg");
start_scroll(0,idfpg,1,2,0,0),
procesol();
loop
iftkey(_q)) stop_scroll(0),; end
if(key(_esc)) exit();end

frame;
end
end
process procesol ()
begin
graph=Iload_png("grafproc.png");
x=320,y=240;
loop
if(key(_up)) y=y-5;end
if(key(_down))y=y+5;end
if(key(left))x=x-5,;end
if(key(_right))x=x+5 end
frame;
end
end

Lo que hacemos aqui es poner un fondo de scroll mediante start_scroll, y el proceso que se movera encima
de él. Fijate que en las zonas transparentes del fondo de primer plano se tiene que ver lo que asoma del
fondo de segundo plano.

Los valores de start scroll son claro: creamos el scroll n° 0, a partir de ningtin FPG; el grafico de primer
plano sera “scrolll.png” y el de segundo “scroll2.png”; la region donde sera visible el scroll es la region 0
(toda la pantalla) y no habra mosaico de scroll (es decir, cuando los procesos se desplacen hasta el extremo
de la imagen que forma el scroll no podréan ir mas alld).

445

Fijate también que si apretamos la tecla “q”, desaparece el scroll, gracias a stop_scroll. (Normalmente, esta
orden se escribe justo antes de acabar el programa, pero la hemos puesto aqui para demostrar su accion).A
lo mejor no lo notas al instante, pero intentas mover el proceso veras que no puedes, porque el scroll por
donde deberia de moverse ya no existe, y se queda bloquead.

No obstante, tenemos un problema: de entrada el fondo no se mueve, ni siquiera cuando movemos el
proceso fuera de los limites de la pantalla. El fondo est4 tan quieto como lo estaba con put screen. ;Qué
nos falta? Decidir si vamos a hacer un scroll automatico o “perseguidor” de un proceso.

Un pequefio inciso. Fijate que las imagenes de primer plano y segundo plano del scroll las
hemos cargado dentro de un archivo FPG. Podrias pensar que seria lo mismo haberlas cargado
individualmente con load png, y luego haber escrito algo asi como start scroll(0,0,idpngl,idpng2,0,0)
para poner el scroll. Si lo haces de esta manera, veras con disgusto que las zonas que en teoria tenian que
ser transparentes del grafico de primer plano no lo son: son negras. Esto es porque al cargar Fénix los PNG
de forma independiente, toma el color negro tal como es: negro, y para que las imagenes tengan zonas
transparentes, ha de ser la propia imagen PNG la que incorpore las zonas transparentes tal cual -dicho
técnicamente: ha de llevar declarado el canal alpha en su creacion-.En cambio, al incluir un PNG en una
libreria FPG el PNG se transforma al formato interno de Fénix (FBM) y como consecuencia el color
transparente de Fénix si es tomado en cuenta.

Para empezar, en nuestro ejemplo vamos a implementar el scroll de tipo automatico (luego ya
veremos el otro). Para ello, has de saber lo siguiente:

Al igual que pasaba con el dispositivo raton, una vez creado el scroll mediante start _scroll, es
posible ajustar diversos aspectos del mismo, incluso a cada frame, modificando una estructura global
predefinida: en este caso la estructura llamada SCROLL. De esta manera,no es necesario usar un proceso
para trabajar con scrolls, aunque si recomendable por el orden.

Mas exactamente, como podemos definir 10 zonas de scroll, en realidad, de lo que disponemos
es de una tabla de estructuras, donde SCROLL][0] serd la estructura que contenga los datos de
configuracion para el scroll de n° 0, SCROLL[1] sera la estructura correspondiente al scroll n°1, etc.

En concreto, para mover el scroll, ;qué hay que hacer, pues?. La estructura SCROLL[n] tiene
muchos campos, pero para mover el scroll vamos a usar los campos “x0”, “y0”, “x1” e “y1”. “x0”
controla la coordenada x del primer plano del scroll y “x1” controla la coordenada x del segundo plano; de
igual manera, “y0” controla la coordenada y del primer plano del scroll y “y1” la coordenada y del segundo
plano, respecto la pantalla. S6lamente hay que establecer el valor que queremos a estos campos para
desplazar el scroll a ese nuevo valor, igual que hariamos con las variables X e Y de cualquier grafico de
proceso.

Hay otro campo de la estructura SCROLL que puede que te interese, y es la variable “ratio” (usada
asi, por ejemplo: scroll[0].ratio). En ella se guarda la velocidad del segundo plano del fondo respecto al
primer plano en porcentaje; asi, si vale 100, el fondo se moverd a la misma velocidad que el plano
principal, si vale 50, el fondo ird a la mitad de la velocidad y si vale 200 ira el doble de rapido (y si vale 33
ira a un tercio, etc.).

Vamos a implementar este tipo de scroll en el ejemplo anterior. Para ello, modificaremos el codigo
afiadiendo la siguiente linea dentro del bucle Loop/End del programa principal, justo antes de la orden
frame;:

scroll[0].y0=scroll[0].y0 — 10;

Lo que hace esta linea, en teoria, es modificar la posicion del grafico del primer plano del scroll de manera

446

que en cada frame se mueva 10 pixeles para arriba automaticamente. Pero si lo volvemos a probar, no pasa
nada de nada...

Esto ocurre porque se nos ha olvidado cambiar el valor del ultimo parametro de start scroll, el
parametro de flags. Recordemos que si vale 0 no se va a poder ver ningiin mosaico de imagenes de scroll,
que es lo que necesitamos para crear un scroll de tipo automatico, asi que tendremos que cambiar ese valor.
(Por cual? Ya que con la linea que acabamos de afiadir lo que estamos haciendo es mover el grafico de
primer plano del fondo verticalmente (de abajo a arriba), nos interesard generar un mosaico vertical para
ese grafico, asi que valores apropiados podrian ser el 2,3,6,7,10,11,14 o 15.Si probamos con el 2 mismo,
veremos que, efectivamente, ahora el grafico de primer plano se mueve (y el de segundo plano se queda
quieto).

Y de hecho, ocurrira el mismo efecto pongamos el nimero que pongamos de la lista anterior como
ultimo parametro del start _scroll, ya que, si por ejemplo pones ahora alli un 10, puedes comprobar que el
grafico de segundo plano no se movera, ya que este numero solo indica que ese grafico “puede” crear un
mosaico vertical, pero para ello se ha de mover en esa direccion, y eso lo tenemos que decir explicitamente
afadiendo una linea mas dentro del bucle Loop/End del programa principal, justo antes de la orden frame.
Por ejemplo:

scroll[0].yl=scroll[0] yI — 5;

Veras que haciendo esto, ahora los dos graficos se mueven de abajo a arriba, aunque el de mas al
fondo lo hace la mitad de rapido.

Podrias haber obtenido exactamente el mismo efecto que el que acabamos de conseguir si en vez
de escribir la linea anterior, escribes esto:

scroll[0].ratio=200;

Esta linea lo que hace es mover el grafico de segundo plano en la misma direccion en que lo haga el de
primer plano, (sea cual sea), a una velocidad relativa a éste dada por el porcentaje escrito: en este caso,
“200” quiere decir el doble de lento,(50 querria decir el doble de rapido, y asi). Compruébalo.

Finalmente, y si pruebas ahora de poner un 3 como ultimo parametro de start scroll, ;qué pasa?.
Primero: volvemos a dejar sin movimiento el grafico de segundo plano porque aunque ahora tengamos
escrita una linea que mueve dicho grafico -bien usando “y1”, bien usando “ratio”- , éste no tiene ya la
posibilidad de hacer mosaico (es como si hubiéramos escrito un “0” de valor para ese fondo en
start scroll). Y ademas, con el valor “3”, estamos concediendo la posibilidad de que se produzca un
mosaico horizontal, pero para verlo necesitaremos mover horizontalmente el grafico de primer plano,
afladiendo esta linea:

scroll[0] . x0= scroll[0] .x0 — 20;
Si escribimos esta nueva linea, veras que el scroll se mueve en diagonal hacia arriba a la izquierda: esto es
evidentemente porque estamos moviéndolo arriba con “y0” y a la izquierda con “x0”, y los efectos se

suman.

Te recomendaria que probaras diferentes valores para el Gltimo parametro de start scroll y
comprobaras su efecto en el movimiento del fondo: es la mejor manera de aprender.

Un dato curioso respecto al valor de este ultimo parametro de start scroll: si escribes un valor
que posibilite el mosaico horizontal y/o vertical de alguno de sus dos graficos, y ese grafico tiene unas
dimensiones menores que el ancho y alto de la pantalla, lo que observards es que con solo escribir
start_scroll, se produce un efecto de mosaico de forma automatica en el fondo de nuestro juego, sin tener

447

que programarlo “a mano” ,como cuando escribimos el ejemplo expuesto en la explicacion de la funcion
put.

Ya tenemos creado nuestro scroll “automatico”. Ahora vamos a por el otro tipo, el scroll
“perseguidor”. Volvemos a partir del cddigo inicial que teniamos:

program hola;
private

int idfpg;
end
begin
set_mode(640,480,16);
idfpg=load_fpg("scrolll.fpg");
start_scroll(0,idfpg, 1,2,0,0),
procesol();
loop

iftkey(_q)) stop_scroll(0),; end
if(key(_esc)) exit(),;end

frame;
end
end
process procesol ()
begin
graph=load_png("grafproc.png");
x=320,y=240;
loop
ifkey(_up)) y=y-5;end
if(key(_down))y=y+5,;end
if(key(left))x=x-5;end
if(key(right))x=x+5;end
frame;
end
end

y afiadiremos otro proceso mas -aqui lo dibujaremos con el mismo grafico que el otro, es igual-, para notar
mejor los efectos de este scroll (acuérdate de llamarlo desde el programa principal):

process proceso2()

begin
graph=load _png("grafproc.png");
x=220,y=200;
loop

iftkey(_a)) angle=angle+5000,end
iftkey(_d)) angle=angle-5000;end
if(key(_s))advance(5),end
frame;
end
end

Lo primero que hay que hacer es decir cual va a ser el proceso que sera perseguido por el scroll. Es decir,
cudl sera el proceso “camara”. Para ello, hay que asignar al campo “camera” del scroll correspondiente el
identificador del proceso que queremos que persiga. Esto se puede hacer desde el codigo principal, pero lo

448

mas habitual es hacerlo al principio del codigo del propio proceso, asi:
scroll[0].camera=id;

donde ID ya sabemos que es una variable predefinida local que devuelve el identificador de proceso del
proceso actual. Prueba de afadir esta linea justo después del BEGIN de “procesol”, por ejemplo, y prueba
de mover este proceso con los cursores.

Parece que va, pero no del todo bien. Por ejemplo, si el proceso sale de los limites de la pantalla,
desaparece, y lo chulo seria que se fuera viendo como éste se va desplazando por el scroll sin salirse nunca
de la pantalla. Otra cosa que no queda bien es que “proceso2” no participa del movimiento del scroll: se
queda fijo, con lo que no es realista que nos desplacemos: los procesos también deberian de moverse al
igual que el scroll para dar una sensacion de distancia y posicionamiento fijo real dentro de un mapa
scrolleable. ;Como solucionamos estos dos problemas?

Bueno, en realidad estos dos efectos son consecuencia de un sé6lo problema. Por defecto, los
procesos no son dibujados en ningtn scroll,por lo que por defecto no responden a la logica de éstos; es
como si el scroll fuera por un lado, y los procesos por otro, sin enterarse de la existencia de los primeros.
Hay que decir explicitamente que tal proceso o tal otro queremos que forme parte del scroll y asi se
comportara como esperamos. Y esto se hace con la variable local predefinida CTYPE.

Si queremos que un proceso forme parte de un scroll y se mueva acorde con €1, es preciso que
la variable local del proceso CTYPE sea igual a la constante predefinida C_ SCROLL (con valor real 1).

Importante: hecho este cambio, las variables de posicion X e Y del proceso se consideraran
relativas a la esquina superior izquierda del grafico de primer plano del scroll y no a la de la pantalla.

Si queremos que un proceso deje de formar parte de un scroll (su valor por defecto), esta
variable ha de ser igual a la constante predefinida C_SCREEN (con valor real 0).

Otra cosa: por defecto, los procesos con CTYPE=1 seran visibles en todos los scrolls
existentes en nuestro juego. Para escoger un scroll concreto (o mas) en los que un proceso es visible, hay
que asignar a su variable local predefinida CNUMBER la suma de una o mas de las constantes
predefinidas C 0, C 1... hasta C 9, para indicar qué ntimeros de scrolls son aquellos en los que el proceso
sera visible. Asi, con CNUMBER = C 0 + C 2 se hace que un proceso sea visible en las zonas de scroll 0
y 2, pero no en la 1 ni en ninguna otra (si existe). Los valores reales de estas constantes predefinidas, por si
interesa, son:

- 1:C0

- 2:C 1

- 4:C2

- 8:C3

- 16:C 4
- 32:C5
- 64:C 6
- 128:C 7
- 256:C 8
- 512:C09

El valor por defecto de CNUMBER es 0, que indica, como hemos dicho, que los procesos son visibles en
todos los scrolls existentes.

449

Esta variable solo tiene sentido si se inicializa también la variable local CTYPE.

Una vez que ya conocemos la existencia de estas dos nuevas variables predefinidas, vamos a
usarlas.

Si queremos que un proceso sea visible y pertenezca a nuestro scroll, lo que tendremos que
escribir, al principio del codigo de cada uno de estos procesos, las lineas:

ctype=c_scroll;
cnumber=0;

aunque ésta ultima no es necesaria porque su valor por defecto ya es el hemos puesto: si sélo quisiéramos
que los procesos se vieran en el scroll 0 (que de hecho, es el Gnico que hay), también podriamos haber
puesto cnumber=c_0;. Puedes probar otros valores para ver lo que pasa.

Asi pues, si has escrito ambas lineas en “procesol” y “proceso2”, ya tendremos nuestro scroll
“perseguidor” perfectamente funcional. Y ya esta.

Si has seguido los pasos que se han ido marcando, al final tendras que tener un c6digo como éste:

program hola;
private

int idfpg;,
end
begin
set_mode(640,480,16);
idfpg=load fpg("scroll fpg");
start_scroll(0,idfpg,1,2,0,3),
procesol();
proceso2();
loop

iftkey(_q)) stop_scroll(0),; end
if(key(_esc)) exit(),end
frame;
end
end

process procesol ()
begin
graph=load _png("grafproc.png”);
x=320,y=240;
ctype=c_scroll;
cnumber=c_0;
scroll[0].camera=id;
/*Estas dos lineas muestran que las coordenadas X e Y del proceso son relativas a la esquina superior
izquierda del grdfico del primer plano del scroll (y no de la pantalla como hasta ahora) porque este
proceso pertenece al scroll gracias a la linea ctype=c_scroll. Si se observan valores negativos, es porque
se ha salido fuera de los limites del grdfico a causa de la repeticion de éste en mosaico.™*/
write_var(0,20,10,4,x);
write_var(0,20,20,4,y);
loop
iftkey(_up)) y=y-5;end
if(key(_down))y=y+5,;end

450

if(key(_left))x=x-5;end
if(key(_right))x=x+5;end
frame;
end
end

process proceso2()

begin

graph=Iload_png("grafproc.png”);

x=220,y=200;

ctype=c_scroll;

cnumber=c_0;
/*Estas dos lineas muestran que las coordenadas X e Y del proceso son relativas a la esquina superior
izquierda del grdfico del primer plano del scroll (v no de la pantalla como hasta ahora) porque este
proceso pertenece al scroll gracias a la linea ctype=c_scroll. Si se observan valores negativos, es porque
se ha salido fuera de los limites del grdfico a causa de la repeticion de éste en mosaico. ™/

write_var(0,20,30,4,x);

write_var(0,20,40,4,y);

loop
iftkey(_a)) angle=angle+5000,end
iftkey(_d)) angle=angle-5000;end
iftkey(_s))advance(5),;end
frame;
end
end

A partir del codigo anterior, podemos irlo ampliando y modificarlo segin nuestros intereses. Por
ejemplo, un ejercicio: intenta hacer que cuando “procesol” colisione con “proceso2”, éste ultimo cambie
su posicion a otras coordenadas (x,y) aleatorias. Es muy sencillo.

Ahora vamos a ver un par mas de ejemplos de diferentes scrolls, para tener mas seguridad en este
tema:

El siguiente ejemplo muestra un scroll con so6lo un grafico (el de primer plano), el cual se ira
moviendo auténomamente e ird cambiando su direccion de movimiento automaticamente cada cinco
segundos de tal manera: direccidn noroeste,norte,noreste,este,sureste,sur,suroeste,oeste. Ademas, si se

apreta la tecla Enter, el scroll se parara durante tres segundos, para reanudarse automaticamente en acabar
éstos.

program Test STOP SCROLL;
global
int ixS,iyS; //Cantidad horizontal y vertical que se movera el scroll en cada frame, respectivamente
int DirS=1; /*Segun el valor que tenga, el valor de ixS e iyS serd diferente, y por tanto el movimiento del
scroll sera en una direccion u otra™/
int fpg;
end
begin
set_mode(640,480,16);
fpg=load_fpg("scroll.fpg"),
write(0,160,100,4,"ENTER = Detiene Scroll durante 3 segundos:");
start_scroll(fpg,0,1,0,0,3),; //Comienza el programa con el scroll iniciado

451

repeat

/*Si pulso ENTER y el scroll esta funcionando, lo paro, y pongo en marcha el temporizador que a los tres
segundos lo reemprendera*/
if(key(_enter))
stop_scroll(0),
timer[0]=0;
/*Durante tres segundos justo después de haber parado el scroll, no pasa nada, con lo que el scroll
continua parado. Pasado este tiempo, lo volvemos a iniciar.*/
while(timer[0]<=300) frame, end
start_scroll(fpg,0,1,0,0,3);
end

/*Sumo 1 al valor de esta variable, hasta un maximo de 8, que son las combinaciones que se han definido

en este ejemplo para mostrar el movimiento del scroll en las 8 direcciones principales de las dos
dimensiones™/

DirS=(DirS+1)%S8;

switch(DirS)
case 1: ixS=3; iyS=0; end
case 2: ixS=3; iyS=3; end
case 3: ixS=0; iyS=3; end
case 4: ixS=-3; iyS=3; end
case 5: ixS=-3; iyS=0; end
case 6. ixS=-3; iyS=-3; end
case 7: ixS=0; iyS§S=-3; end
case 8: ixS=3; iyS=-3; end

end

/*Ponemos en marcha otro temporizador que hard moverse en una determinada direccion, determinada
por ixS y iyS (determinados a su vez por DirS), al scroll durante 5 segundos.Al cabo de los cuales, durante
otros 5 segundos se movera en otra direccion, y asi*/
timer[1]=0;
while(timer[1]<=500)
scroll. x0=scroll. x0+ixS; scroll.y0=scroll.y0+iyS;
if(key(_esc)) exit(),; end
if(key(_enter)) break; end
frame;
end
until(key(_esc))
end

Otro ejemplo muy interesante es el que viene a continuacion. En él se puede observar el uso de un
scroll delimitado dentro de una region definida, de tamafio menor que la pantalla. Con este ejemplo se
puede ver como se podria implementar un scroll s6lo en una zona concreta de la pantalla en vez de en toda
ella, algo muy util para multitud de juegos (carreras, mapas en miniatura,etc).

Para poderlo ejecutar, necesitaras crear un grafico mayor que el tamafio de la pantalla y tendras
que guardarlo dentro del FPG que estamos usando en estos ejemplos, “scroll.fpg” con el codigo 003. La
idea es que esta nueva imagen sea el fondo fijo puesto con put screen visible en toda la pantalla excepto en
una zona de ésta, que corresponderd a una region definida con DEFINE REGION -con el ntimero 1-
dentro de la cual se habra implementado un scroll con movimiento automatico vertical del grafico de
primer plano (codigo 001) y con el grafico de segundo plano quieto (c6digo 002).

PROGRAM prueba?2;

452

CONST
ANCHOPANT = 640;
ALTOPANT = 480;
ANCHOSCROLL = 300;
ALTOSCROLL = 300;
END
GLOBAL

int fpgld;
END
BEGIN
fpgld = load_fpg("scroll.fpg");
set_ mode(ANCHOPANT,ALTOPANT, 16);
put_screen(fpgld,3);
define_region(1,(ANCHOPANT-ANCHOSCROLL)/2,(ALTOPANT-ALTOSCROLL)/2,
ANCHOSCROLL,ALTOSCROLL);
scroller();
loop

frame;

end
END

PROCESS scroller()

BEGIN

x =ANCHOSCROLL/2;

y =ALTOSCROLL/2;
start_scroll(0, fpgld, 1, 2, 1, 2);
scroll[0].camera = ID;

loop
y=ytJ3
frame;
end
END

Este codigo tiene varias cosas interesantes. Lo primero es que definimos una region con el codigo 1, cuya
esquina superior izquierda es un punto tal que el centro de la region coincide con el centro de la pantalla (es
facil verlo si haces un pequefio diagrama). Seguidamente, después de definir la region, llamamos a un
proceso “scroller”, que se encargara de poner en marcha el scroll. Y esto lo hace de una manera peculiar:
fijarse primero que el quinto parametro de start _scroll es “1”, lo cual indica que le scroll solo sera visible
en esa region, pero lo mas interesante estd en la linea siguiente: scroll[0].camera=ID . Lo que hacemos
aqui, ya lo debes saber, es hacer que el scroll se mueva siempre que se mueva el proceso actual: si éste no
se mueve, el scroll no se moverd (es lo que llamabamos un scroll “perseguidor’). Pues aprovechamos
precisamente este hecho para escribir dentro del LOOP/END un incremento perpetuo en la posicion
vertical del proceso actual. Como dicho proceso no parara de moverse de forma indefinida, el scroll lo
seguira de forma indefinida, con lo que observaremos el efecto del movimiento continuo del scroll. Fijate
que no hemos definido ningun graph para este proceso, por lo que el proceso es invisible, pero a pesar de
€s0, su posicion vertical varia de igual manera, que es lo que nos interesa para lo que pretendemos.

A parte de los campos que ya hemos visto de la estructura SCROLL (x0,y1,ratio,camera...),
existen unos cuantos campos mas que merece la pena conocer porque son muy interesantes y nos pueden
ayudar a conseguir efectos realmente logrados en nuestros juegos.

Uno de estos campos es el campo “z”, que como puedes intuir, indica la profundidad del scroll.

Por defecto su valor es 512. Piensa que aunque los scrolls tengan grafico de primer plano y de segundo, su Z
es unica, por lo que el nombre de “primer plano” y “segundo plano” no corresponde a la realidad estricta:

453

ambos graficos poseen a efectos practicos la misma profundidad.

Si hacemos que la Z de un proceso sea mayor que la del scroll, éste tapara al grafico del proceso,
ya que estaremos dibujando el fondo movible encima. Aplicacion: si los graficos del scroll poseen amplias
areas transparentes (por ejemplo, representan el cielo salpicado de nubes), con una Z de scroll pequefia se
lograra que éste pase por encima de los graficos de los procesos con Z mayor. Ademas, aparte de poder jugar
entre las profundidades del scroll y la de los procesos también se puede jugar con las profundidades de
diferentes scrolls (SCROLL[0], SCROLLJ1]...) entre ellos, logrando efectos realmente muy conseguidos.

Un ejemplo muy sencillo:

program hola;
private
int idfpg;

end

begin
set_mode(640,480,16);
idfpg=load_fpg("scroll.fpg");
start_scroll(0,idfpg, 1,0,0,2),
scroll[0] z=-1;

procesol();
loop
scroll[0].y0=scroll[0] y0 + I,
frame;
end
end
process procesol ()
begin
graph=load _png("grafproc.png");
x=320,y=240;
loop
frame;
end
end

Ya que la Z de los procesos por defecto es 0, sdlo hemos tenido que modificar la Z del scroll poniéndola a
-1 para que el scroll se pinte por encima del grafico del proceso. Si el grafico del scroll tuviera muchas
zonas transparentes, se podria comprobar el efecto comentado de las “nubes del cielo”: si no, el proceso no
se vera porque quedara oculto bajo el scroll.

Jugando con distintas profundidades para multiples scrolls y/o personajes, se pueden obtener
efectos curiosos. Por ejemplo, en el siguiente cddigo tenemos dos scrolls automaticos independientes, de
un solo grafico cada uno (o sea, no tienen grafico de segundo plano), los cuales estan situados a distintas
profundidades y van a velocidades diferentes. Al usar dos scrolls pero sélo de un plano, el rendimiento es
mas o menos el mismo que si fuese uno solo de dos planos.

Ademas, tenemos tres procesos cuyas profundidades se pueden observar que son: por encima
de ambos scrolls, en medio de ellos y por debajo de ambos scrolls.Dependiendo de las zonas transparentes
que tengas en los graficos de los dos scrolls, veras o no segin qué procesos en cada momento.

Program scrolll;
private

int idfpg;

454

end

Begin

set_mode (800,600,16);
idfpg=load fpg("scroll.fpg"),
start_scroll(0, idfpg, 1, 0, 0, 1);
scroll[0].z= 10;

start_scroll(1, idfpg, 2, 0, 0, 1),
scrollf1].z= 20;

proceso(120,140,1);
proceso(360,240,15);
proceso(620,340,25);
loop
scroll[0] x0=scroll[0] x0 +5;
scroll[1] . x0=scroll[0] x0 * 2; //El scroll I va el doble de rapido que scroll 0

frame;
iftkey(_esc)) exit(),;end
end
end
process proceso(x,y,z)
begin
graph=load _png("grafproc.png”);
loop
frame;
end
end

Podemos hacer el mismo ejemplo pero haciendo que un scroll sea “perseguidor” de un proceso y el otro de
otro proceso, por ejemplo. En el codigo siguiente, al igual que el anterior, hay dos scrolls de un sé6lo fondo,
a diferentes z, y tres procesos cuya z es: encima de los dos scrolls, entre uno y otro y debajo de los dos. La
novedad esta en que uno de esos procesos es la camara de uno de los scrolls, y otro proceso es la camara
del otro. Pruébalo.

Program scrolll;
private

int idfpg;
end
Begin
set_mode (800,600,16);
idfpg=load fpg("scroll fpg"),
start_scroll(0, idfpg, 1, 0, 0, 1),
scroll[0].z= 10;
start_scroll(1, idfpg, 2, 0, 0, 1),
scrollf1].z= 20;

scroll[0].camera=procesol(120,140,1);
scroll[1].camera=proceso2(360,240,15);

proceso3(620,340,25);
loop
frame;
if(tkey(_esc)) exit(),;end
end
end

455

process procesol (x,y,z)

begin
ctype=c_scroll;
graph=load_png("grafproc.png”);

loop

if(key(_up))advance(5),;end
if(key(_left)) angle=angle+5000;end
if(key(right)) angle=angle-5000,end
frame;
end

end

process proceso2(x,y,z)

begin

ctype=c_scroll;
graph=load _png("grafproc.png”);

loop

iftkey(_s))advance(5),;end
iftkey(_a)) angle=angle+5000;end
iftkey(_d)) angle=angle-5000;end
frame;
end

end

process proceso3(x,y,z)

begin

ctype=c_scroll;
graph=load_png("grafproc.png");
loop
frame;
end
end

Pero,jojo!, si pruebas el cddigo anterior, veras que ocurre una cosa muy rara: jlos procesos se ven
duplicados! Parece muy extrafio pero es logico: si te fijas, no le hemos dicho a ningin proceso en qué scroll
queremos que sea visible (con CNUMBER), con lo que por defecto los procesos seran visibles en todos los
scrolls que haya. Asi que, lo que tienes que hacer es lo siguiente: en “procesol” tienes que afadir al
principio la linea cnumber=c_0,; en “proceso2” tienes que anadir la linea cnumber=c_1,; y en “proceso3”
cnumber=c_0; 6 cnumber=c_1, tanto da. Lo que hacemos con esto es decir que “procesol” sélo se vera en
el scroll 0, del cual es camara -y como tiene una Z menor, estard por encima y se podra ver-, que
“proceso2” solo se verd en el scroll 1 de la misma manera, y que “proceso3” se ha de ver o en el scroll 0 o
en el 1 pero que esto es indiferente porque como su Z es mayor, no se va a ver en ninguno. Pruébalo ahora
y veras que obtienes el efecto deseado.

Existen mas campos interesantes de la estructura SCROLL. Uno de ellos es “follow”. Este
campo es recomendable usarlo con scrolls que sélo tengan el grafico de primer plano, (ninguno de segundo
plano, para evitar posibles inconsistencias). Para explicar su significado, partamos de este codigo, ya visto
antes:

Program scrolll;
private

int idfpg;
end

456

Begin
set_mode (800,600,16);
idfpg=load _fpg("scroll.fpg");
start_scroll(0, idfpg, 1, 0, 0, 1),
scroll[0].z= 10;
start_scroll(1, idfpg, 2, 0, 0, 1);
scrollf1].z= 20;
loop
scroll[0] x0=scroll[0] x0 +5;
scroll[1] . x0=scroll[0] x0 * 2, //El scroll 1 va el doble de rapido que scroll 0
frame;
if(key(_esc)) exit(),;end
end
end

Aqui tenemos dos scrolls a distintas profundidades, que se mueven de manera que uno esta
siguiendo al otro a distinta velocidad. Pues bien, el campo “follow” sirve precisamente para esto de forma
no “tan manual”: es decir,sirve para hacer que un scroll determinado siga automaticamente -“follow”
quiere decir “seguir” en inglés- a otro scroll “maestro”, cuyo niimero sera el valor que asignaremos a este
campo. Es decir, que si escribimos scrollf1].follow=0; , lo que estaremos diciendo es que el scroll n° 1
seguira el movimiento que haga el scroll 0, sea en la direccion que sea.

Asi pues, podriamos sustituir la linea del codigo anterior scroll[1].x0=scroll[0].x0 * 2; por esta
nueva que acabamos de descubrir: scroll[1].follow=0, Pero, ;y la velocidad relativa?En la linea antigua
deciamos que el scroll n°1 fuera el doble de rapido que el scroll n° 0. ;Cémo se especifica ahora eso?

Pues con el mismo campo “ratio” que ya conocemos. Si te acuerdas cuando explicamos este
campo, dijimos que lo que significaba era el tanto por ciento de velocidad relativa que el segundo plano de
un scroll tenia respecto el primer plano. Pues bien, en el momento que un scroll persiga a otro, su campo
“ratio” deja de significar eso para significar el tanto porc ciento de velocidad relativa que tiene el scroll
perseguidor del scroll perseguido. Haz una prueba:anade antes de la orden frame; del ejemplo anterior esta
linea:

scrollf[1].ratio=200;

Veras que el scroll 1 va el doble de rapido que el 0. Si en cambio, escribiéras scroll[1].ratio=10, verias que
va diez veces mas lento.

Otro ejemplo ilustrativo donde se puede apreciar el uso de “follow” mas el uso de regiones lo
podemos encontrar en este codigo. En €l tenemos definidas dos regiones (mas la pantalla), y en cada una de
ellas definimos un scroll diferente, que ademas se moveran a diferentes velocidades relativas.

Este efecto es muy interesante si se quiere implementar por ejemplo un paisaje donde a primer
plano (en la parte inferior de la pantalla) se puedan ver los elementos mas cercanos moviéndose con
rapidez, a medio plano (en la parte media de la pantalla, en otra region) se puedan ver los elementos un
poco mas alejados moviéndose mas lentamente y en el plano de fondo (en una parte mas superior de la
pantalla, en otra region) se visualicen los elementos mas alejados y mas lentos. Como remate en este
supuesto, se podria incluir en la parte mas superior de la pantalla un fondo quieto con put screen. El
resultado es muy convincente.

program prueba;
private

int idfpg;
end

457

begin
set_mode(640,480,16);
idfpg=load_fpg("scroll fpg");

//La region 1 estara en la parte superior de la pantalla, y la 2 en la inferior
define _region(1,0,0,640,224);
define _region(2,0,300,640,180);

//Dibujo dos rectangulos delimitando visualmente las dos regiones
draw_rect(0,300,640,480);
draw_rect(0,0,640,224);

//Prueba a cambiar los valores del ultimo parametro de start_scroll por 1, a ver qué pasa
start_scroll(1,idfpg,1,3,1,0);

/*El scroll 0 solo se verd fuera de las dos regiones, en medio de la pantalla. Si se quiere
que se vea en las otras regiones, se tendra que disminuir su Z (p.ej: scroll[0].z=-1;)*/
start_scroll(0,idfpg, 1,0,0,0);

start_scroll(2,idfpg,1,2,2,0);

//Situo en distintas coordenadas iniciales el grafico de scroll
scroll[0] x0=250;
scroll[2] . x0=420;
scroll[1].x0=550;

scroll[2] follow=0;
scroll[1] follow=0;
scroll[2].ratio=50;
scroll[1].ratio=250;

mariposo();

repeat

iftkey(_left))scroll[0] x0=scroll[0].x0+4,;end
if(key(_right))scroll[0] x0=scroll[0] x0-4,;end
frame;

until(key(_esc))

exit();

end

process mariposo()

begin

x=320,y=250;

graph=load _png("grafproc.png”);

/*Con esta linea, las coordenadas X e Y se referiran al scroll y no a la pantalla. Se ha de tener en cuenta
que si el scroll también se mueve (ya que usamos la misma tecla para el movimiento de las dos cosas), esto
hara que el proceso vaya a una velocidad bastante elevada, logicamente, porque hay que sumar los 5
pixeles de rigor a la nueva posicion del scroll, la cual también esta cambiando a cada momento™/
ctype=c_scroll;

//Hacemos que el proceso solo sea visible en la franja del medio de la pantalla (el scroll (),

cnumber=c_0;

loop

if(key(_left)) x=x-5;end

if(key(_right)) x=x+5;end

iftkey(_up)) y=y-5;end

458

if(key(_down)) y=y+5;end
frame;

end

end

Otros campos muy interesantes de la estructura SCROLL son “flags1” y “flags2”. Su
significado y sus posibles valores son los mismos que la variable local predefinida FLAGS, pero referidos
al grafico de primer plano y al de segundo plano de un scroll, respectivamente. Con estos campos puedes
obtener efectos muy logrados de transparencias o efecto espejo, por ejemplo.

La estructura SCROLL también dispone de los campos “regionl” y “region2”, que
representan la llamada “region de bloqueo™ (el primero para el grafico de primer plano y el segundo para el
grafico de segundo plano del scroll). Es decir,que si hacemos por ejemplo scroll[0].regionl=2, lo que
estaremos haciendo es asignar la region nimero 2 como region de bloqueo del grafico de primer plano del
scroll 0. Y una region de bloqueo es simplemente una zona donde el scroll no se movera mientras el
proceso camara permanezca dentro de ella. Por defecto, el campo regionl vale -1, que quiere decir que no
hay ninguna region de bloqueo.

En el uso de scrolls también disponemos de una funcién mas (relativamente avanzada) que no
hemos comentado hasta ahora:

MOVE_SCROLL(NUMERO)

La funcién requiere como parametro el nimero de scroll de 0 a 9 que se indicd en la funcion
START_SCROLL como primer pardmetro cuando se inicid el scroll.

Esta funcion se utiliza cuando el scroll se controla automaticamente, por haber definido el campo camera
de la estructura scroll correspondiente con el identificador de un proceso.

El proposito es forzar a que se actualicen los valores (x0, y0, x1 y y1) de dicha estructura; si no se utiliza
esta funcion estos valores no se actualizaran hasta la proxima imagen del juego. Es decir, cuando un
proceso necesita conocer antes de la préxima imagen el valor de las coordenadas de un scroll (normalmente
para colocarse ¢l en una posicioén acorde al movimiento del fondo) se debe hacer esto:

1. Se inicia el scroll con START SCROLL.

2. Se crea el proceso que se utilizard como cdmara y se pone su codigo identificador en el campo
camera de la estructura scroll.

3. A este proceso se le debe poner una prioridad muy alta, para que se ejecute antes que el resto de los
procesos (poniendo en su variable local priority un valor entero positivo como, por ejemplo, 100).

4. Justo antes de la sentencia FRAME del bucle del proceso usado como camara se llamara a la
funcion MOVE SCROLL.

De esta forma se garantizara que este proceso se ejecute el primero y, justo al finalizar, actualice los
valores (x0, y0, x1 y y1) de la estructura scroll, de forma que el resto de los procesos puedan utilizar estas
variables ya actualizadas.

El uso mas generalizado de esta funcion es cuando en una ventana de scroll se quieren tener mas de dos
planos de fondo y, para ello, se crean una serie de procesos que simulen un tercer o cuarto plano, situando
sus coordenadas en funcion de la posicion exacta del scroll en cada imagen.

PARAMETROS:
INT NUMERO : Numero identificador de scroll (0 a 9)

Un ejemplo:

program Test MOVE SCROLL;

459

http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION

global
int DirS;
int fpg;
int ixS,iyS;
end
begin
set_mode(640,480,16);
fpg=load_fpg("scroll.fpg"),
start_scroll(0,fpg, 1,0,0,3),
/*La camara del scroll sera el programa principal, el cual variara su X e Y mas adelante y forzara asi a
mover el scroll mediante move_scroll para seguirlo.™*/
scroll[0].camera=id;
DirS=7;
repeat
switch(DirS)
case 1: ixS=3; iyS=0; end
case 2: ixS=3; iyS=3; end
case 3: ixS=0; iyS=3; end
case 4. ixS=-3; iyS=3; end
case 5: ixS=-3; iyS=0; end
case 6: ixS=-3; iyS=-3; end
case 7: ixS=0; iyS=-3; end
case 8: ixS=3; iyS§S=-3; end
end
timer[1]=0;
while(timer[1]<=50)
x=x+ixS; y=y+iyS;
move_scroll(0);
frame;
if(key(_esc)) exit(),; end
if(key(_enter)) break; end
end
DirS=(DirS§+1)%S8;
until(key(_esc))
end

Finalmente, no hemos hablado de la utilizacion del raton con los scrolls. En concreto, en los
ejemplos anteriores siempre hemos usado el teclado para mover nuestro personaje, pero, /qué pasa si a éste
lo queremos dirigir mediante el raton? Pues que tenemos que tener cuidado con las coordenadas.

Para empezar, prueba este ejemplo (necesitaras un nuevo grafico de unos 10x10 llamado
“raton.png” que representara el cursor del raton):

Program scrolll;
private

int idfpg;
end
Begin
set_mode (800,600,16),
idfpg=load_fpg("scroll.fpg");
start_scroll(0, idfpg, 1, 0, 0, 3);
scroll[0].camera=procesol(160,300) ;

460

http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION
http://jlceb.cir.es/fenix/func.php?func=DEFINE_REGION

grafrat();
loop
frame;
if(key(_esc)) exit();end
end
end

process procesol(x,y)
begin
ctype=c_scroll;
cnumber=c_0;
graph=load_png("grafproc.png");
write_var(0,100,100,4,x);
write_var(0,100,120,4,y);
write_var(0,100,140,4,mouse.x),
write_var(0,100,160,4,mouse.y),
loop
if(key(_left)) x=x-5; end
if(key(_right)) x=x+5; end
if(key(_up)) y=y-5; end
if(key(_down)) y=y+35; end
frame;
end
end

process grafrat()
begin
graph=load_png("raton.png");
loop

X=mouse.x,

y=mouse.y;

frame;
end
end

Es facil ver que las coordenadas del proceso y las del raton van completamente a su aire y no coinciden en
nada. A estas alturas ya deberias saber por qué: porque el proceso que representa el cursor del raton no
pertenece a ningun scroll y por tanto sus coordenadas son relativas a la pantalla. Asi que lo unico que
tenemos que hacer es afadir, antes del loop de “grafrat”, las lineas ctype=c scroll; y cnumber=c 0;.

Si vuelves a probar el codigo, ahora veras que las coordenadas coinciden, por lo que parece que estamos
cerca de la solucion: ahora s6lo tenemos que cambiar la manera en que se mueva “procesol” para que cada
vez que se clique con el boton derecho, ese proceso se dirija al punto donde se ha hecho el click. Es decir,
tener algo como esto:

Program scrolll;
private

int idfpg;
end
Begin
set_mode (800,600,16);
idfpg=load_fpg("scroll fpg");
start_scroll(0, idfpg, 1, 0, 0, 3);
scroll[0].camera=procesol(160,300) ;

461

grafrat();
loop
frame;
if(key(_esc)) exit(),;end
end
end

process procesol(x,y)
begin
ctype=c_scroll;
cnumber=c_0;
graph=load_png("grafproc.png");
write_var(0,100,100,4,x);
write_var(0,100,120,4,y);
write_var(0,100,140,4,mouse.x),
write_var(0,100,160,4,mouse.y),
loop
if(mouse.left)
X=mouse.x;
y=mouse.y;
end
frame;
end
end

process grafrat()
begin
graph=load_png("raton.png");
ctype=c_scroll;
cnumber=c_0;
loop
xX=mouse.x;
y=mouse.y;
frame;
end
end

Aparentemente va bien, pero jojo!, si el cursor se mueve mas alla de las coordenadas de la resolucion de la
pantalla (en este caso, 800x600), éste deja de responder: jno podemos mover nuestro personaje mas alla de
las dimensiones de la pantalla, aunque el grafico de scroll sea més grande! ;Como solucionamos esto? Asi
(las modificaciones estan en negrita):

Program scrolll;

global

int idgrafrat;
end
private

int idfpg;
end
Begin

set_mode (800,600,16);
idfpg=load_fpg("scroll fpg");
start_scroll(0, idfpg, 1, 0, 0, 3);
idgrafrat=grafrat();

462

scroll[0].camera=procesol(160,300) ;
loop
frame;
if(key(_esc)) exit();end
end
end

process procesol(x,y)
begin
ctype=c_scroll;
cnumber=c_0;
graph=load_png("grafproc.png");
write_var(0,100,100,4,x);
write_var(0,100,120,4,y);
write_var(0,100,140,4,mouse.x),
write_var(0,100,160,4,mouse.y),
write_var(0,100,180,4,idgrafrat.x);
write_var(0,100,200,4,idgrafrat.y);
loop
if(mouse.left)
x=idgrafrat.x;
y=idgrafrat.y;
end
frame;
end
end

process grafiat()

begin

graph=load_png("raton.png"),

ctype=c_scroll;

cnumber=c_0;

loop
x=scroll[0].x1+mouse.x;
y=scroll[0].yl+mouse.y;
frame;

end

end

Hemos hecho que “procesol” siga no al ratdn en si sino al proceso que representa graficamente su cursor, y
dicho proceso tendra unas coordenadas relativas al scroll dadas, en todo momento, por la suma de la
posicion del cursor del raton respecto la pantalla mas la posicion en ese momento del scroll respecto la
pantalla (es una simple traslaciéon de coordenadas).

Otro ejemplo similar al anterior seria el que viene: aqui tenemos un proceso que esta
permanentemente orientado con su ANGLE mirando al cursor del raton, y si apretamos las teclas de los
cursores, si ira moviendo lentamente hacia la posicion que ocupe en ese momento dicho cursor. No
necesitas ningin grafico externo.

PROGRAM test;
CONST
screenx = 1024,
screeny = 768;
END

463

GLOBAL
int vizierid,
int mapscroll;
END
BEGIN
SET MODE(screenx,screeny,16);
mapscroll=new_map(200,200,16);map_clear(0,mapscroll,rgb(155,30,234));
START SCROLL(0,0,mapscroll,0,0,3);
character();
vizierid = vizier(),
LOOP
IF (key(_esc)) exit(), fade off(); END
FRAME;
END
END

PROCESS vizier()

BEGIN
graph=new_map(20,20,16);map_clear(0,graph,rgb(55,55,34));
ctype=c_scroll;

LOOP
x=scroll[0] xI+mouse.x;
y=scroll[0].yl+mouse.y;
FRAME;

END

END

PROCESS character()

BEGIN

x=screenx/2;

y=screeny/2;
graph=new_map(50,50,16);map_clear(0,graph,rgb(155,155,134));
ctype=c_scroll;

scroll.camera=id;

LOOP
angle = get_angle(vizierid);
IF (key(_up)) xadvance(angle,4); END
IF (key(_down)) xadvance(angle,-4); END
IF (key(left)) xadvance(angle+90000,4); END
IF (key(_right))xadvance(angle-90000,4); END
FRAME;

END

END

Ya para acabar, podriamos haber modificado el codigo anterior para hacer que el proceso “character”
cambie su orientacion siguiendo la posicion del cursor del raton de otra manera diferente (es cuestion de
gustos). En vez de escribir la linea angle = get _angle(vizierid); podriamos haber puesto:

difmouse = mouse.x-bmousex;
angle=angle+difmouse*1000;

bmousex = mouse.x;

donde difmouse y bmousex son variables privadas del proceso “character”. Pruébalo.

464

.Y qué pasa si en cambio pones...?

difmouse = screenx/2-mouse.x;
angle =angle+ difmouse*1000;

El Modo?7

El Modo7 es un tipo muy particular de scroll en el cual el plano de éste no es paralelo a la
pantalla sino que esta abatido, dando una sensacién de profundidad que puede simular un efecto 3D.

Una limitacion importante que sufre es que todos los graficos relacionados con el Modo7
(tantos los graficos de fondo scrolleables como los graficos que se moveran sobre éstos) han de ser de 8
bits -y si se utiliza un contenedor FPG, éste ha de ser también de tipo 8 bits (en el FPGEdit se puede decidir
eso en el momento de su creacion). Recuérdalo.

Pero lo mejor es que veas un ejemplo para entenderlo. Para ello, nos tendremos que crear unos
nuevos graficos de 8 bits y meterlos en un fpg de 8 bits también llamado “m7.fpg”.En concreto,dos
graficos: uno con codigo 001 de 640x480 que representara el fondo de scroll, y otro de codigo 002 y 30x30
que representara un objeto (una nave) colocada en un lugar concreto dentro de este scroll.

La idea es que aparecera un scroll abatido, en el cual nos podremos mover como si tuviéramos
una camara en primera persona. También aparecera un proceso inmovil en un sitio concreto dentro de ese
scroll.

program FenixEjemplo7;

global
int id_nave;
int id_camara;
int idfpg;

end

begin

set_mode(640,480,8);
idfpg=load_fpg("m7.fpg");

//Definimos la region (centrada y mds pequeria que la pantalla) sobre la que haremos el m7
define region(1,0,0,640,480),

//Este proceso lo situaremos dentro del scroll como un elemento mas del paisaje
id_nave=nave();

//Este proceso es el que moveremos por el modo 7 y usaremos como vision
id_camara=camara();

/*Creamos el modo 7, con los parametros:

nimero . 0 en nuestro caso. Puede haber hasta 10 scrolls Modo7 (de 0 a 9)

frg : libreria de la que cogemos el grdfico del scroll m7

grdfico_interior . numero del grdfico para el fondo del scroll m7

grdfico_exterior . este grafico bordeard al anterior, 0 para ninguno

region : region de pantalla donde se visualizara el m7, en nuestro caso la
1, que hemos definido antes, un poco mas pequeiia que la pantalla

horizonte : altura del horizonte (en pixels)*/

start_mode7(0,idfpg,1,0,1,100);
//La camara del scroll Modo7 sera el proceso "camara()"
m7[0].camera=id_camara;

465

loop
frame;
if(key(_esc)) break; end
end
let_ me_alone();
end

process nave()
begin

/*La variable local ctype indica el sistema de coordenadas del proceso.En este caso, esta
"dentro del scroll" de ahi que le pongamos c_scroll para indicarlo®/

ctype=c_m7;
file=idfpg;
graph=2;
x=300; y=275;

loop
frame;

end

end

process camara()
begin

/*La variable local ctype indica el sistema de coordenadas del proceso.En este caso, estd
"dentro del MODQO?7" de ahi que le pongamos c_m?7 para indicarlo™/

ctype=c_m7;
x=150; y=100;
loop

if(key(_left)) angle=angle+5000; end
if(key(_right)) angle=angle-5000, end
if(key(_up)) advance(5); end
if(key(_down))advance(-3),; end
frame;
end
end

Podemos enumerar las diferencias que encontramos entre los scrolls ya conocidos y éste:

La funcion que inicializa el scroll pasa de ser START _SCROLL a START_MODE?7.
El significado de los pardmetros de ésta tltima son los mismos que el de la primera, excepto el 4° y el 6°.

*En START MODEY7, el cuarto parametro también es un codigo de grafico, pero a diferencia de
START SCROLL, este grafico no sirve para dibujar un segundo plano del fondo sino que sirve para
dibujar un borde exterior infinito al grafico principal (dado por el tercer parametro).Es decir, el 4°
parametro sirve para extender el scroll de forma indefinida en todas direcciones, en forma de mosaico
infinito. Prueba, en el ejemplo anterior, de asignar un 1 o un 2 a este parametro y mira lo que pasa.

*En START MODE?Y7, el sexto parametro sirve para definir la altura del horizonte, en pixeles.Es decir,
indicara a cuantos puntos desde la parte superior de la ventana se quiere situar la linea del horizonte. Si la
camara se sitiia por encima del plano abatido, entonces no se mostrara nada por encima de la linea del
horizonte (ese hueco se suele rellenar con otra ventana de scroll o de modo 7); en cambio si la cdmara se
situa por debajo del plano, entonces no se mostrara nada por debajo de la linea del horizonte. Seglin esté
mas o menos elevada esta linea, dara la sensacion de que la camara esta mirando mas “hacia el cielo” o

466

mas “hacia el suelo”.
Las 10 estructuras posibles que almacenan la informacion de los 10 scrolls posibles, en vez de llamarse
SCROLL][] se llaman M7[].

En el ejemplo se puede ver que esta estructura M7 también tiene un campo “camera”, cuyo significado es
idéntico al que ya conociamos, pero que en el caso del Modo7 es imprescindible establecer.

Para hacer que un proceso determinado pertenezca a un scroll Modo7, utilizamos también la variable
CTYPE al igual que los scrolls ya conocidos , pero en el caso le asignamos el valor ¢_m7.

La variable CNUMBER tiene el mismo significado y valores posibles que siempre.

Campos especificos de la estructura M7[] -que no hemos visto en el ejemplo anterior- que no estan
presentes en la estructura SCROLL ya vista son:

*”height”: Establece la altura vertical (en pixeles) del proceso que hace de camara del scroll respecto el
grafico de fondo.

*”distance”: Establece la distancia horizontal en pixeles de la camara visual respecto el proceso que hace
de camara. Este proceso se situara siempre delante de la camara real (a la distancia especificada), y sera
¢ésta la que serd manejada por el usuario y seguird los movimientos de ésta. Si so6lo se quiere una camara
sin visualizar un proceso delante, ya que es obligatorio tener un proceso cdmara, se puede hacer que su
GRAPH valga 0 para que sea invisible.

*“camera.X”: Coordenada X del proceso camara dentro del grafico de fondo del scroll

*»camera.Y”: Coordenada Y del proceso camara dentro del grafico de fondo del scroll

*”focus”: Focal de la vision

*”color”: Numero de color dentro de la paleta que sera el color de fondo del Modo7 si no se define
ningun grafico como mosaico en el 5° parametro de START MODE7.

*”horizon”: Su significado es el mismo que el 6° parametro de START MODE?7, pero este campo nos
permitird, una vez generado el scroll, modificar la altura de la linea del horizonte alli donde nos convenga,
dando una sensacion de movimiento de camara vertical.

Asi mismo, campos que conocemos de SCROLL[] pero que no estan presentes en M7[] son:
“XO”’”X1”,”y0”’”y1 ”’”ratio””’follow””’ﬂags 1 ””’ﬂagsz””’regionl”’S,regionz’,.

El campo “z”, en cambio, estd en los dos tipos de scroll con el mismo significado.

Veamos otro ejemplo similar al anterior, pero donde tendremos nuestra nave enfrente de la
camara siguiendo todos nuestros movimientos, y donde repetiremos hasta el infinito nuestro grafico de
fondo.

PROGRAM Carses;
GLOBAL
int idy;
int idx;
int fpg;
inti;
end
BEGIN
Jpg=LOAD_FPG("m7.fpg");
set_fps(30,2);
set_mode(640,480);
start_ mode7(0,fpg,1,1,0,0);
M7[0].CAMERA=id, //El programa principal hard de camara
M7[0]. HEIGHT=25; //A cierta altura del fondo
M7[0].DISTANCE=150; //A cierta distancia del fondo original

467

M7[0].CAMERA.X=50; //En una coordenada X concreta dentro del fondo original
M7[0].COLOR=166;
navecamara(320,240);
//Pongo otras 60 naves inmoviles en coordenadas al azar, incluyendo en el fondo repetido en mosaico
while (i<60)

navenormal(rand(0,1000), rand(0,1000)),

i+t
end

LOOP
IF (KEY(esc)) exit(); end
IF (KEY(left)) angle=angle+5000;end //Muevo la camara a la izquierda
IF (KEY(right)) angle=angle-5000;end
IF (KEY(up)) ADVANCE(10);end
IF (KEY(down)) ADVANCE(-4),;end

//Si llego a una determinada coordenada Y o X, la cdmara no puede avanzar mds.
If(Y=>1000) Y=999; END
If(Y=<20) Y=21; END
If(X=>1000) X=999; END
If(X=<20) X=21;, END

/*Estas dos lineas sirven para pasar la coordenada de la camara a variables globales que luego usaremos
para establecer a su vez esas coordenadas a los procesos que queremos que la sigan™/
idx=x;
idy=y;
frame;
END
END

PROCESS navenormal(x,y)
BEGIN
ctype=C M7;
graph=2;
size=200;
LOOP
frame;
END
END

Process navecamara(x,y)

Begin

ctype=C M7;

graph=2;

Loop

//La posicion de nuestra nave serd la misma que la de la camara.
x=idx;
y=idy;
Frame;

END

END

A partir del ejemplo anterior, por ejemplo, podriamos implementar un sistema que detectara colisiones

468

entre los ejemplos “navecamara” y “navenormal’...

Piensa que si quieres poner un grafico de fondo en la parte superior de la pantalla, a modo de
“cielo”, lo puedes hacer con un simple put screen o un start scroll estindar. También podrias poner el
grafico de un proceso, pero entonces tienes que hacer es procurar que el proceso que muestre ese grafico no
pertenezca al scroll Modo7 (es decir, que no tenga la linea ctype=c_m?7) y que tenga una Z superior a la del
scroll Modo7, el valor de la cual es de 256..

Como tultimo ejemplo, aqui presento un c6digo que intenta simular la implementacion de un scroll
Modo7 “a pico y pala”, sin utilizar las START MODE7, unicamente utilizando funciones basicas de
distancias y dibujo de Fénix:

Program Modo7 en_fenix _para_fenix;
global

int fpg;
end
begin

Set Mode(800,600,8);
Jpg=load_fpg("m7.fpg");
AmosPaYa();

loop

if (key(_esc)) exit();end
frame;

end
end

Process AmosPaYa()
private
int dist,dx,dy;
intx7,y7,z7=50,a7;
inti;
end
begin
loop
if (key(_up)) y7=y7+3; end
if (key(_down))y7=y7-3;end
if (key(_a)) z7=z7+1; end
if (key(z)) z7=z7-1;end
if (key(left))a7=a7+3000;end
if (key(_right))a7=a7-3000;end
dist=fget dist(0,0,x7,y7),
dx=get distx(a7,dist);
dy=get disty(a7,dist);
/faqui se pinta el grafico usando rotacion + zoom
for (i=200,i<590;i=i+2);
define_region(10,0,i,800,2);
/*La linea clave esta aqui: pinto el grafico de codigo 001 del Fpg segun los valores de las coordenadas
x7,y7,27 y a7 en aquél momento™/
xput(fpg, 1,400+dx,500+dy,a7,(((i-100)*2) *z7)/100,0,10);
end
frame;
end
end

469

CAPITULO 10: TUTORIAL PARA UN RPG BASICO

(extraido del tutorial de Michael Sexton,en http://www.div-arena.co.uk)

Un RPG (Rol Playing Game) es un tipo de juego que parte de una localizacion concreta (un
mundo mas o menos fantastico) y de uno o varios personajes principales, -cada uno de ellos con cualidades
concretas y diferentes (mas fuerte, mas agil,etc),- que se encargaran de realizar diferentes misiones para
lograr al fin encadenar una historia en la que se obtiene una recompensa final. Durante el camino se
enfrentaran a enemigos y conoceran amigos, podran incrementar sus cualidades o decrementarlas,utilizaran
objetos que hayan recogido antes para realizar diferentes acciones, viajaran por el escenario explorando
mundos nuevos,etc. Su nombre viene de que cada personaje en realidad es un Rol, un papel, diferenciado de
los demas personajes, con sus propias caracteristicas.

En este sencillo tutorial, lo que haremos sera construir un personaje que se mueva por un
escenario (un campo verde) en las cuatro direcciones cardinales. Dentro de él, situaremos dos casas, en las
cuales el personaje podra entrar y donde encontrard en una de ellas un personaje con el que podra conversar,
y en otra un objeto, una llave, que podra recoger. También se incluirdn enemigos que puedan acabar con la
vida de nuestro amigo. Y ya esta.

La pantalla de inicio:

La pantalla de inicio del juego consistirda en un menu donde el jugador podra elegir entre
diferentes opciones: comenzar un juego nuevo y salir del juego, basicamente.

La resolucion que escogeremos para la ventana de nuestro juego va a ser 320x200 pixeles; la
puedes cambiar como quieras, pero ten en cuenta que las dimensiones de algunas imagenes también las
tendras que cambiar en consecuencia.

Crea los siguientes graficos: un cursor (para el raton) apuntando hacia la derecha de 40x40, y un
fondo para la pantalla de inicio de 320x200. Mételos en un grafico FPG llamado “rpg.fpg”, con el codigo
005 y el 605 respectivamente.

Crea ademaés dos tipos de fuente, con el FNTEdit. Una fuente para el titulo del juego llamada
“titlescr.fnt” y otra para las palabras del ment inicial “Jugar” y “Salir” llamada “select.fnt”.

El cuerpo esquelético de nuestro programa sera algo asi:

Program RPG;

Global
Int filel;
Int select_fut;
Int title_fnt;
Int level=1;

End

Begin

set_mode(320,200,16);

set fps(60,1);

filel=load_fpg(“1pg.fpg”);
select_fut=load_fnt(“select.fnt”);

title_fnt=load_fnt(“titlescr.fut”);
Loop
Switch(level)
Case I:

470

Loop

frame;
End
End
Case 2:
Loop
frame;
End
End
Case 3:
Loop
frame;
End
End
Case 4:
Loop
frame;
End
End
Case 5:
Loop
frame;
End
End
End
frame;

End
End

Este programa no visualiza nada pero carga los graficos. Seguidamente chequea (reiteradamente
porque hay un bucle infinito) el valor de la variable “level” mediante un switch para ver si se tiene que
cambiar de nivel de juego, ya que esta variable especifica a qué nivel de ha de ir en cada momento —en
seguida se explica qué es eso de los niveles-. Veras que por defecto, (al principio del juego), la variable
“level” vale 1 y por tanto, al iniciar el juego entraremos en el nivel 1 del juego siempre. De momento, en ese
nivel lo tnico que hay es un LOOP con sélo un Frame, y por tanto no se muestra nada.

En este tutorial, el nivel 1 serd la pantalla inicial de selecciéon de opciones, el nivel 2 sera el
mundo scrollable por donde se movera nuestro protagonista, el nivel 3 y el 4 representaran el interior de
sendas casas dentro de ese mundo y el nivel 5 serd una pantalla de seleccion de objetos (items del juego). Es
decir, los niveles se pueden entender como las diferentes pantallas que podemos visualizar en nuestro
programa, entre las cuales deberemos poder irnos moviendo: si estamos en el exterior del mundo estaremos
en el nivel 2 pero si entramos en una casa estaremos en el nivel 3, y al salir de ella volveremos al nivel 2;
cuando queramos coger un item de nuestro mundo entraremos en el nivel 5 y cuando queramos salir
volveremos al nivel 1 donde estara el menu con la opcidon de acabar el juego. Piensa que hasta ahora no
hemos hablado de niveles porque los juegos que hemos hecho sélamente constaban de una pantalla. Por
ejemplo, si hubiéramos hecho un mata-marcianos donde después de acabar con x enemigos pasdramos por
ejemploa otra fase mds dificil con otros enemigos y escenarios, necesitariamos utilizar este sistema de
niveles aqui descrito (aunque no es la tnica solucion). Fijate que a pesar de que en cada nivel existe un
LOORP infinito (y por tanto, a priori nunca se cambiaria de nivel), veras que pondremos diversos break; que
haran que ya no sean infinitos.

Bien. Ahora, en el nivel 1 (la pantalla de seleccion inicial) pondremos el fondo, el titulo del
juego y las palabras “Jugar” y “Salir”’. Modifica el Case 1 asi:

Case 1:

471

put _screen(filel,605),;
write(title_fnt,150,50,4, "Pon el titulo de tu juego aqui");
write(select_fnt, 150,140,4,"Jugar”),
write(select _fnt,150,170,4,"Salir");
Loop
frame;
End
End

Fijate que las 6rdenes write no las he puesto dentro del LOOP, porque si no nos habria saltado
el famoso error de “Hay demasiados textos en pantalla”.

Ok, ahora vamos a hacer el cursor de seleccion de las opciones del menu. Como es un grafico,
que ademas tendra que controlar el jugador, crearemos un proceso para él. Lo primero serda modificar el
programa principal para que llame al proceso “cursor()”. Tendremos que hacer dos modificaciones: crear una
nueva variable global llamada “selection”, con lo que la lista de variables globales hasta ahora seria:

Global
Int filel;
Int select_fnt;
Int title fnt;
Int level=1;
Int selection;
End

y modificar de la siguiente manera el Case 1:

Case I:
put _screen(filel,605),;
write(title_funt,150,50,4, "Pon el titulo de tu juego aqui");
write(select_fnt, 150,140,4,"Jugar");
write(select _funt, 150,170,4,"Salir");

cursor();

Loop
if(selection==1) level=2; break; end;
if(selection==2) fade_off{(), exit(*‘Gracias por jugar”);end
frame;

End

fade off();

delete text(0),; /*Si no borramos los textos, saldran en los otros niveles*/
clear screen(); /*Si no borramos antes el fondo, cuando queramos poner otra
imagen de fondo —en el nivel 2- nos va a dar error*/
let_me_alone();
fade_on();
End

Lo que hemos hecho aqui es crear el cursor y meternos en el LOOP a la espera de si el valor de
la variable global “selection” llega a modificarse —de hecho, lo modifica el propio proceso cursor- a 1 o a 2.
Esta variable representa la seleccion que hemos hecho con el cursor: 1 si queremos jugar y 2 si queremos
salir, pero eso lo veremos ahora mejor en el codigo del proceso “cursor()”.

472

Fijate de momento que si elegimos jugar, ponemos el valor 2 a la variable “level” y salimos del
Switch. Es decir, salimos del switch diciéndole que cuando volvamos a entrar en €l —porque el Switch esta
dentro de un LOOP- queremos ir al Case 2 (variable “level”).

Si elegimos salir, hacemos con fade off{) un borrado progresivo de la pantalla: es un efecto
estético muy eficaz; y luego acabamos la ejecucion del juego mostrando un texto. Las lineas que hay después
del LOOP/END, evidentemente sélo se ejecutaran si hemos elegido Jugar, porque con Salir directamente ya
se acaba todo. Estas lineas lo que hacen es hacer un fade off también, como transicion al segundo nivel,
borrar todos los textos que hubiera en pantalla, quitar la imagen de fondo puesta con put screen mediante la
funciéon nueva clear screen, matar todos los procesos que hubiera corriendo excepto el actual (es decir, en
este caso matar el proceso “cursor()” solamente porque no hemos creado ningun mas todavia) y poner un
fade on con la funcidon nueva fade on() para acabar la transicion hacie el segundo nivel.

Seguidamente, escribiremos el codigo del proceso “cursor()” al final del programa principal:

PROCESS cursor()
PRIVATE
Int c;
END
BEGIN
file=filel,;
graph=>5;
x=70;
y=140;
c=3; //Necesaria para el efecto de tembleque

selection=0; //Ponemos un valor inicial neutral para “selection”

WHILE (NOT key(_enter) AND selection==0)
IF (key(_up)) y=140;, END
IF (key(_down)) y=170; END
IF (key(_esc)) selection=2; END /*Sale fuera del bucle como si se hubiera escogido la opcion de
salir del juego */
//Efecto tembleque horizontal
x=x+c;
IF (x>=80) c=-3; END
IF (x<=70) ¢c=3; END

FRAME;
END

//Una vez que se ha apretado el enter,se comprueba donde estaba el cursor
SWITCH (),
CASE 140: //Coord Y donde hemos escrito la palabra “Jugar” con el write
selection=1;
END
CASE 170: //Coord Y donde hemos escrito la palabra “Salir” con el write
selection=2;
END
END
END

La verdad es que no deberias molestarte mucho en entender este cédigo.Lo unico que hace es
que podamos mover el cursor arriba y abajo para sefialar las dos opciones disponibles jugando con las

473

coordenadas de las variables locales X e Y, y que éste tenga un efecto de que parezca que tiembla
horizontalmente. Cuando apretemos ENTER se parard y asignara el valor correspondiente de la opcion
elegida (1 o 2)a la variable global “selection”, que, como hemos visto, serd usada en el Case 1 para saber, en
el momento que cambie de valor, a qué nivel se va.

Ahora mismo tu programa deberia ir al nivel 2 (nuestro mundo) cuando apretemos ENTER
estando el cursor en la opcion de Jugar, o deberia de acabarse con un bonito fade off si se apreta ESC o se
elige la opcion Salir. Antes de testear tu programa, sin embargo, modifiquemos rapidamente el Case 2 para
que cuando estés en el mundo puedas regresar a la pantalla de inicio apretando la tecla ESC:

Case 2:
Loop
if(key(_esc))
//Generar retardo
while(key(_esc)) frame; end
//Salir
level=1;
break;
end
frame;
End
fade off();
delete_text(0);
clear _screen();
let_me_alone();
fade_on();
End

Asi, ahora, cuando estés en el mundo, si apretas ESC la computadora esperard un momento y
entonces volvera a la pantalla de seleccion inicial. Pero, ¢por qué se pone ese WHILE dentro del IF que no
hace nada? Pues para que mientras tengas pulsada la tecla ESC vayan pasando fotogramas (idénticos entre
ellos) indefinidamente, creando asi un estado de “pausa” hasta que dejes de pulsar la tecla ESC. Este es un
truco que se hace para que tengas la oportunidad de dejar de apretar la tecla ESC antes de poder hacer
cualquier otra cosa como moverte a otro nivel: la computadora espera a que dejes de pulsar para continuar
trabajando. Si no, lo que pasaria es que la computadora volveria enseguida a la pantalla inicial y
posiblemente continuarias teniendo apretada la tecla ESC (el ordenador es mas rapido que tu dedo), con lo
que como en el nivel 1 si apretas ESC sales del juego, de golpe habrias acabado la ejecucion del programa
sin poder siquiera pararte en la pantalla inicial de seleccion.

El mismo codigo que hay en el Case 2 escribelo en el Case 3 y el Case 4, el interior de las dos
casas, para volver a la pantalla inicial. Deja el Case 5 sin tocar, ya que es la ventana de seleccion de items del

juego.

Y la pantalla de seleccion ya esta lista.

Creando el mundo v nuestro protagonista moviéndose en él:

Primero haremos los gréficos:
-Haz un grafico de 3000x3000 pixeles que sea un gran cuadrado verde, con algunas

manchas marrones que representen montafias, o0 manchas verde oscuro que sean bosque, o lo que se te
ocurra. Se pretende que sea el campo por el que nuestro personaje caminard. Guarda este grafico en el

474

fichero FPG con codigo 300.

-Dibuja el protagonista, el chico/a que caminard por nuestro mundo. Este juego
tendra lo que se llama vista isométrica, asi vamos a dibujar el personaje mirando hacia el norte, el sur y el
este. No es necesario dibujarlo mirando al oeste porque haremos que el grafico del este cambie de
orientacion, como en un espejo.Asi que necesitaras tres graficos para el chico. Asegurate de que todos sean
de 20x20 pixeles. Guarda los graficos en el FPG asi: el que mira al sur —hacia ti- con cédigo 1, el que mira al
norte con codigo 6 y el que mira al este —hacia la derecha- con codigo 10.

-Por cada direccion a la que mira nuestro personaje, necesitaremos crear tres
dibujos similares para animar la caminata del protagonista en esa direccion cuando se mueva. Asi que crea
tres dibujos mas por cada direccion ligeramente diferentes entre ellos, y guardalos de tal manera que tengas
cuatro imagenes mirando al sur con los codigos 1,2,3 y 4, cuatro imagenes mirando al norte con los codigos
6,7,8 y 9 y cuatro mirando al este con los codigos 10,11,12 y 13.

Ya tenemos los graficos necesarios para este apartado.
Primero afiadiremos dos variables mas a la lista de variables globales del proceso principal,

“MyChar_Position X" y “MyChar Position Y”, y ya puestos las inicializaremos. Estas dos variables
representaran la coordenada X e Y del personaje principal dentro del escenario:

Global
Int filel;
Int select_fut;
Int title_fut;
int level=1;
int selection;
int MyChar Position X=1516;
int MyChar_Position Y=1549;
End
Y modificaremos el Case 2 del proceso principal, afiadiendo las lineas que aparecen en negrita:
Case 2:
MyCharacter(MyChar_Position_X,MyChar_Position_Y);
start_scroll(0,file1,300,0,0,0);
Loop
iftkey(_esc))
while(key(esc)) frame; end
level=1;
break;
end
frame;
End
fade off();
delete text(0),
clear screen();
let_me_alone();
fade on();
End

Fijate lo que hemos hecho. Hemos creado un proceso MyCharacter, que sera nuestro
protagonista, con dos parametros, que son su X e Y inicial. Ademds, hemos iniciado un scroll, (aunque

475

recuerda que al utilizar start scroll 1o Ginico que haces es decir que unas imagenes determinadas se usaran
posteriormente para que hagan scroll, pero si no se hace nada mas y solo se escribe start_scroll, no se
movera nada. De hecho, start_scroll se puede usar como sustituto de la funcién put screen porque hasta que
al scroll no se le dé ninguna consigna posteriormente, start_scroll lo unico que hara sera poner la imagen que
se le diga como parametro de imagen de fondo).

Segun los valores de los parametros que hemos escrito en start_scroll, éste sera el scroll nimero
0; los graficos del scroll se cogeran del archivo referenciado por “filel”;el grafico en concreto del primer
plano sera el grafico 300 (el mapa verde);como grafico de segundo plano no habra ninguno; el scroll existira
en una region que es la nimero 0 (es decir, la pantalla completa); y el nimero 0 como valor del Gltimo
parametro indica que el scroll no estara formado por ningiin mosaico: es decir, que cuando se llegue a los
limites del cuadrado verde no existird nada mas. Recuerda que si ese parametro valiera 1, por ejemplo,
indicaria que el scroll estaria formado por un mosaico horizontal de fondo: es decir, que cuando por la
izquierda o la derecha el personaje llegara al limite de la imagen del cuadrado verde, éste se repetiria otra vez
como en un mosaico. Puedes consultar el significado de los otros valores posibles en el apartado
correspondiente del capitulo 9 de este manual.

LY por qué queremos crear un scroll? Porque la idea es que nuestro personaje se vaya moviendo
por el escenario de tal manera que el mundo se mueva bajo sus pies segun la direccion del movimiento del
personaje. De hecho, la idea es que nuestro protagonista nunca deje de estar en el centro de la pantalla, y lo
que se mueva es el escenario, dando el efecto de que viaje a través del mundo. O sea, queremos crear un
scroll donde la camara (a la que éste seguird) serd nuestro personaje.

Asi pues,creamos el siguiente proceso para nuestro personaje:

Process MyCharacter (x,y)
BEGIN
ctype=c_scroll;
scroll[0] .camera=id;
graph=1;
angle=0;

Loop
if (key(_right) and not key(_up) and not key(_down))
x=x+2;
if (graph<=10 or graph>=13) graph=10; end;
graph=graph+1;
flags=0;
end

if (key(left) and not key(_up) and not key(_down))
x=x-2;
if (graph<=10 or graph>=13) graph=10; end;
graph=graph+1;
flags=1;
end

if (key(_up) and not key(_left) and not key(right))
y=y-2;
if (graph<=6 or graph>=9) graph=06, end;
graph=graph+1;

end

if (key(_down) and not key(left) and not key(right))
y=y+2;
if (graph>=3); graph=1; end

476

graph=graph+1;
end

frame;
End //Loop
End

Aqui hay muchas cosas que no hemos visto todavia, y hay que explicarlas con calma. Lo
primero que vemos es la linea:

ctype=c_scroll;

que como sabes, indica como se tendran que interpretar los valores de las coordenadas X e Y del grafico del
proceso en cuestion: si su valor es “c_scroll”, en vez de ser la esquina superior izquierda de la ventana el
origen de coordenadas a partir del cual se mide la X e Y del proceso , lo que se esta diciendo al proceso
MyCharacter es que los valores de sus variables X e Y se van a tomar respecto la esquina superior izquierda
del primer grafico del scroll (el cuadrado verde). En otras palabras: los movimientos de MyCharacter seran
relativos respecto el scroll, no respecto la pantalla.

Y eso, (por qué? Porque serd mucho mas comodo para nosotros programar teniendo en cuenta
la posicion de nuestro personaje respecto el mapa que no respecto a la pantalla. Por tanto, es mucho mas
inteligente tomar como referencia un origen de coordenadas del propio mapa para saber en qué sitio esta
nuestro personaje en cada momento, ya que todos los objetos que pongamos en el mapa (casas,etc) estaran
colocados en unas coordenadas concretas dentro de él, asi que si tomamos las coordenadas de nuestro
personaje referenciadas al mapa, sera mucho mas facil comparar coordenadas entre esos objetos y el
protagonista y ver si éste choca contra una casa o no, por ejemplo.

Una puntualizacion que conviene recordar: CTYPE no es una variable de cadena, sino entera: el
hecho de que pueda valer “c_screen” (su valor por defecto) o “c_scroll” viene de que en realidad estos dos
valores son constantes enteras, tambien predefinidas:”’c_screen” es igual a 0 y “c_scroll” es igual a 1.

Hay que decir que esta linea NO es opcional, porque es necesaria ponerla para que la linea que
viene a continuacion pueda funcionar bien. Y la linea que viene a continuacion es muy importante:

scroll[0].camera=id;

Esta es la linea que hace moverse al scroll, recuerda. Lo que hace es relacionar el movimiento
del scroll con el movimiento de nuestro personaje, tal como nosotros queriamos. El efecto que veremos sera
que nuestro personaje va a quedarse inmovil en el centro de nuestro juego y lo que ira moviéndose es el
suelo, persiguiendo al personaje como una lapa.

El valor “id” es el cédigo identificador del proceso MyCharacter.;Por qué? Porque recordad que
ID es una variable local que contiene eso precisamente, el codigo identificador generado automaticamente
por Fenix en la creacion de ese proceso concreto.Asi que lo que se esta diciendo en el proceso MyCharacter
es que el scroll coja como proceso a “perseguir” a ese mismo, al proceso MyCharacter.

Posteriormente a estas dos lineas, lo mas digno a comentar son los diferentes ifs del movimiento
del personaje. Hay cuatro ifs para las cuatro teclas del cursor. En cada uno se cambia las coordenadas X o Y
del personaje (recordemos que respecto el mapa), y ademas, a cada pulsacion del cursor se establece un
nuevo grafico dentro del rango adecuado par