

Herramientas Agiles

Tabla de contenido

Introduccion

San Saru: seleccién natural de equipos

Integracion de practicas para lanzamiento de proyectos de software

Value Stream Mapping

Elaboracion de historias de usuario centradas en comportamiento

Técnicas de OnBoarding para la gestion de conocimiento
SHU-HA-RI: Un Modelo de Aprendizaje

Continuous Discovery: Validacion de ideas para el Backlog
Practicas eficaces para aplicar en Reuniones (In)eficientes
Introduccidén a Visual Management

Revision Triangular de Documentos

SEF: Sesion Exprés de feedback

Improvement Kata

Guardian de un equipo con multiples asignaciones

Coding Dojo: técnica de entrenamiento

Automatizacién a través de Git hooks

Versionado de codigo, configuracion y ambientes

Referencias

o © 00 N o o b~ W DN

Introduccion

Por Nicolas Paez, @inicopaez

Sobre este libro

Durante la primera edicion del Agile Open Camp celebrada en 2015, escribimos un libro que
titulamos Experiencias Agiles: Relatos de experiencias del uso de métodos &giles en
Argentina [Libro 2015].

Cuando se anunci6 el Agile Open Camp 2016 y se establecié el sistema de inscripcion
basado en postulaciones y propuestas (ver capitulo San Saru: seleccion natural de
equipos), envié inmediatamente mi postulacion proponiendo la escritura de un segundo libro
que continuase la tradicion establecida en el primer AOC. Este libro es la materializacién de
esa propuesta.

A diferencia del primer libro que reunia experiencias, este segundo libro reune un conjunto
de técnicas. Considero que esta es una evolucion natural, o sea, en primera instancia uno
enfrenta diversas situaciones las cuales permiten ir ganando experiencia. Luego, a partir del
analisis de esas experiencias es posible descubrir patrones y generalizarlos en técnicas
reutilizables en situaciones similares.

Los capitulos han sido escritos de forma totalmente independiente por distintos autores
siguiendo una minima estructura dada por 4 secciones:

e Palabras clave
¢ Intencion

e Motivacion

e Descripcién

Dentro de esta estructura de primer nivel, cada autor tuvo la libertad de agregar sub
secciones acorde a la técnica presentada.

Algunas de las técnicas presentadas son creaciones originales de los autores de este libro,
mientras que otras son creaciones de terceros que han sido descriptas/refinadas por los
autores aqui presentes.

El primer capitulo del libro no tiene relacién directa con el desarrollo de software, sino que
describe el método utilizado para la seleccion de participantes del AOC 2016.

Orden de lectura

Los capitulos pueden ser leidos en cualquier orden ya que como se mencioné
anteriormente, son totalmente independientes y su orden de aparicidn no sigue ningun
criterio particular. El libro ofrece una interesante diversidad de técnicas, algunas de indole
técnica y otras mas orientadas a cuestiones de organizacion.

Créditos

Autores: Thomas Wallet, Tomas Christie, Pablo Lischinsky, Pablo Tortorella, Juan Daza
Arévalo, Vanesa Savino, Omar Fernandez, Alejandro Faguaga, Soledad Pinter, Virginia
Brassesco, Natalia Baeza, Leonardo Barrientos Silva, Hiroshi Hiromoto, Fernando Di
Bartolo, Nicolas Paez

Revision: Natalia Baeza, Virginia Brassesco y Nicolas Paez
Figuras: Juan Daza Arévalo
Arte de tapa: Mauro Strione
Foto de tapa: Diego Gémez

Idea y coordinacién: Nicolas Paez

Agradecimientos

A Mariano Correa, Rosemery Restrepo, y Deiby Ordoéfiez Diaz por su colaboracion en el
proceso de escritura y revision.

A los sponsors del Agile Open Camp 2016, su apoyo fue fundamental para la realizacion del
evento:

e Agilar

e FDV Solutions
e Patagonian Tech
e INVAP

e Kleer

e PetroVR

e Micracel

e Kinetica

San Saru: seleccién natural de equipos

Por Thomas Wallet, @WalletThomas y Tomas Christie, @tommychristie

Palabras clave

auto-organizacion, descentralizacidn, propuesta de valor, seleccion, san saru

Intencion

En abril del 2015 se realiz6 el primer Agile Open Camp (AOC), cuyos tres fundadores
(Mauro Strione, Tomas Christie y Thomas Wallet) no tenian experiencia alguna en
organizacién de eventos.

Si bien fueron rapidamente respaldados por otros organizadores mas experimentados, se
pusieron a la venta 50 entradas con poca expectativa de venderlas. A pesar del periodo de
fiestas de fin de afo y vacaciones de verano, a las 3 semanas se habian agotado todas las
entradas. Luego, se habilité la venta de 25 entradas mas al doble de precio, que se
agotaron en menos de una semana. Cuando finalmente se cerraron las inscripciones,
quedaron mas de 30 personas en lista de espera.

Para la segunda edicion del AOC se amplio la capacidad a 100 personas y desde las
primeras charlas de organizacién, surgio la preocupacion de evitar una seleccion de
participantes basada en una carrera contra-reloj por comprar entradas.

Durante otro evento de la comunidad &gil [Agiles 2015], se formé un pequefio grupo luego
de las actividades del dia, que debati6é apasionadamente para revisar ideas previas y
explorar alternativas superadoras al mecanismo anterior de inscripcién. Tomando como
base una idea original de Mauro Strione de seleccién distribuida logramos entre todos
asentar las bases del mecanismo de inscripcion San Saru, que se describe mas adelante.

Motivacion

Partiendo del supuesto que la demanda de entradas para el AOC iba a superar
ampliamente la cantidad disponible, se disefié el mecanismo de inscripcion llamado San
Saru con el objetivo de cumplir con las siguientes caracteristicas:

¢ Descentralizado, para que la seleccion no dependa de un comité restringido.

e Activo, para que los interesados tengan que exponer sus motivaciones.
e Abierto, para que los criterios de seleccidon no sean pre-definidos ni cerrados.
e Asincroénico, para poder ejecutar en paralelo sus distintas etapas.

Descripcion

Metafora San Saru

San Saru es un término japonés que se puede traducir como “los tres monos sabios”. Entre
las multiples explicaciones existentes del concepto, destacamos la siguiente [Roman 2006]:

Cuenta la leyenda que tres monos fueron enviados por los dioses para delatar y castigar las
malas acciones de los humanos:

e Kikazaru, el mono sordo, era el encargado de utilizar el sentido de la vista para
observar a quienes realizaban malas acciones y comunicarselo a Mizaru, mediante la
VOZ.

e Mizaru, el mono ciego, no necesitaba su sentido de la vista, puesto que tan sélo se
encargaba de transmitir al tercer mono, Iwazaru, los mensajes que le pasaba Kikazaru.

e |wazaru, el mono mudo, escuchaba los mensajes transmitidos por Mizaru para decidir
la pena de los dioses que le caeria al desafortunado humano que lo mereciese y
observar que se cumpliese.

Colocados los tres monos segun sus habilidades y limitaciones, obtenemos un mono que
ve, otro que escucha y otro que habla. Los monos, juntos y organizados, pueden alcanzar
metas que no lograrian por separado. Si bien existen varias posibilidades de colocar a los
tres monos, todas ellas son situaciones de comunicacion fallida o de colaboracion
imposible, excepto una: Kikazaru (sordo) > Mizaru (ciego) > Iwazaru (mudo).

La metafora San Saru, con su fundamento de integracion por afinidad y
complementariedad, inspiré el mecanismo de inscripcion del AOC, con sus dos etapas:
postulacién y seleccién.

La postulacion

Se solicita a los interesados en participar del AOC postularse, contestando las siguientes
preguntas:

¢ ;Qué puedo aportar yo al evento? ; Por qué el evento va a ser mejor con mi
participacion?

* ;Qué espero recibir del evento? ; En qué creo que me va a ayudar?

¢ ;Quién soy? ;Cual es mi ocupacion, formacion, empresalinstitucion, pasion, etc.?

Todas las postulaciones son publicas.

La seleccion

El San Saru Primario, compuesto por los tres fundadores del AOC inicia la seleccion de los
participantes.

Cada uno de los tres miembros del San Saru Primario elige a dos personas postuladas
para formar un nuevo San Saru Secundario, con las siguientes restricciones:

* Mis propios criterios: cada persona elige dos participantes evaluando las
postulaciones para que el evento sea el mejor posible de acuerdo a sus propios
criterios.

¢ Una persona desconocida: se sugiere elegir por lo menos una postulacion de una
persona que no sea compariero de trabajo, de estudio, o cercano por otra via, para
evitar el sesgo de pertenencia.

Se comunica a las nuevas personas elegidas su seleccion, lo cual habilita, por un lado su
inscripcion al evento, y por otro lado su responsabilidad de generar un nuevo San Saru
Terciario, eligiendo dos personas cada una dentro de las postulaciones restantes.

"‘,.ﬂ
ll' % f‘—"—‘
Mauro << e —————— San Saru Terciario
Florencia
Nico
Augusto
Tomas
FI’E’d .‘::'"'”
San Saru Secundario b
J—
Thomas -=I”
e
Sy
San Saru Primario

Figura 1.1. Ejemplos de San Saru Primario, Secundario y Terciario.

Se repite el ciclo hasta generar todos los San Saru necesarios para cubrir las vacantes
disponibles con las personas seleccionadas. Si bien la etapa de postulacion se inicia un
tiempo antes que la etapa de seleccion, una vez iniciada la etapa de seleccion las dos se

desarrollan en paralelo hasta agotar las vacantes disponibles.

Resultados

El primer experimento de inscripcion San Saru para el Agile Open Camp 2016 [AOC 2016]
arrojo los siguientes resultados:

e Se inici6 la etapa de postulacion el 1/12/2015, recibiendo 119 postulaciones hasta el
25/2/2016, de las todas fueron seleccionadas.

e Se inici6 la etapa de seleccion el 23/12/2015, generando 119 selecciones hasta el
26/2/2016, de las cuales 24 personas no se inscribieron o cancelaron su inscripcion por
motivos varios.

Conclusion

(Des)control

Una vez armadas las herramientas de soporte, hechas las explicaciones correspondientes
[AOC 2016], y generadas las selecciones del San Saru Primario, el mecanismo San Saru
empezo a funcionar por si solo, sin necesidad de intervencion por parte de la organizacion
sobre sus resultados.

Se necesitaron algunas comunicaciones de seguimiento para evitar que los seleccionados
demoren su inscripcion al evento y/o su eleccidon de postulantes. También se centralizaron
en un grupo de 6 personas las tareas de comunicacion de los pasos a seguir para la
inscripcion al evento.

En varias oportunidades surgio la tentacion de intervenir para frenar estas comunicaciones
para demorar las selecciones posteriores (por ejemplo cuando quedaban pocas
postulaciones disponibles para elegir), pero al final no hubo grandes intervenciones por
parte de la organizacion y se dejo fluir solo el mecanismo San Saru.

Lo que aprendimos

Se disend el experimento de inscripciones San Saru para el AOC suponiendo que las
entradas habilitadas eran pocas para el publico interesado, lo cual no se cumplié: todas las
postulaciones fueron elegidas, y sobraron 5 vacantes.

Identificamos algunas oportunidades de mejora:

e Dejar mas tiempo entre el inicio de las postulaciones y el inicio de las selecciones, para
lograr mayor volumen de postulaciones.
e Evitar los meses de diciembre y enero, en los cuales suele haber mucha carga de

actividad laboral y personal, dificultando el esfuerzo requerido para las postulaciones.
¢ Facilitar las postulaciones de personas con poca experiencia en este tipo de evento o
metodologias, ya que expresar el valor que uno puede aportar al evento puede generar
cierta inhibicion.
El experimento también permitié refinar sobre la marcha varios aspectos logisticos y de
comunicacién del mismo, lo cual seguramente habilitara futuros usos mas fluidos.

A pesar de estas limitaciones, el balance del experimento es positivo. Se destaca en
particular lo bien que funcioné la auto-organizacion, la diversidad y riqueza de los criterios
de seleccién que aporté cada uno, y la sana reflexién de cada postulante para definir sus
motivaciones de participacion.

Quizas se pueda extrapolar el mecanismo de seleccion San Saru a otros dominios para los
cuales sea util tener un mecanismo de seleccion descentralizado y auto-organizado basado
en propuestas de valor.

Integracion de practicas para lanzamiento
de proyectos de software

Por Pablo Lischinsky, @pablolis

Palabras clave

Acta de proyecto, visidn del producto, empoderamiento de equipos, alineamiento, gestidon
de producto.

Intencion

Para dar inicio a un proyecto de desarrollo de software (o relanzar uno en marcha), existen
varias técnicas que aportan valor. Sin embargo, es conveniente combinarlas para tener una
mejor vision compartida del proyecto y preparar adecuadamente al equipo de delivery
(mas que desarrollo) y demas participantes e interesados en el desafio a enfrentar

Motivacion

En una empresa de desarrollo de software surgio la necesidad de relanzar un proyecto
relacionado a un producto core en el area de gestion, especificamente liquidacion de
haberes. Se trataba de un producto legacy con mas de 10 afios en el mercado que
evoluciond en distintas direcciones a necesidad de cada cliente. Al plantearse relanzar el
producto con versiones web mas modernas y una version mobile, fue necesario re-delinear
el alcance y la visién del proyecto. No habia un equipo unificado ni de soporte ni de
desarrollo, habia pocas personas con conocimiento profundo del producto y habia poca
documentacion del mismo.

Descripcion

Cuando se inicia un proyecto es conveniente que el Product Owner o Agile Product
Manager, junto al equipo de delivery, la gerencia y otros involucrados como clientes y
responsables financieros, creen y mantengan actualizada la visidn, el propdsito, la hoja de
ruta y el alcance del producto, es decir, contextualizar el mismo. El objetivo es mantener al

equipo alineado y con foco para evitar malentendidos y retrabajo, buscando siempre la
esencia: la simplicidad inherente en cada proceso o sistema que aporta mayor valor al
negocio.

Técnicas y herramientas

Las técnicas Agile Inception Deck [Rasmusson 2010a] y [Rasmusson 2010b] y User Story
Mapping [Patton 2014] y [Buonamico 2013], fueron desarrolladas para aplicarse en este
contexto de lanzamiento de proyectos de software.

Agile Inception Deck

Consiste en diez actividades de alto nivel realizadas en forma de taller participativo para
intentar contextualizar el proyecto:

e Cinco para crear y consensuar una vision de alto nivel:
o Preguntar por qué estamos aqui.
o Crear un elevator pitch.
o Disefiar una caja de producto.
o Crear la lista de los NO.
o Conocer a los vecinos.
e Cinco para consensuar cémo llevarlo a tierra:
o Muestra la solucién.
o Qué te quita el suefio en la noche.
o Determina su tamafio.
o Lo quevaadar.
o Qué se va a tomar.

User Story Mapping

Es una herramienta que permite generar una representacion visual de un sistema completo.
Ofrece una vista general de todas las funcionalidades que lo componen. Permite identificar
y planificar Releases cortando en rebanadas (slicing) y visualizando como se distribuyen las
funcionalidades de acuerdo a las diferentes areas del sistema.

También puede verse como una forma de reorganizar el Product Backlog en dos
dimensiones, una dimensién para el tiempo y otra dimension para las funcionalidades.

Actividades a realizar:

¢ |dentificar los procesos de negocio, su desglose en actividades y secuencia.
¢ |dentificar los usuarios y las actividades que realizan.

¢ |dentificar las funcionalidades del software a construir.

e Representarlos visualmente como un mapa con notas autoadhesivas.
e Priorizar las actividades por valor de negocio,

e Agruparlas en Releases.

La idea es descubrir juntos el contexto del proyecto realizando estas actividades en
forma de taller: es una busqueda activa de todos los involucrados, para evitar cometer
errores en la toma de decisiones basadas en asunciones falsas.

Otras técnicas

Sin embargo, es conveniente combinarlas con otras técnicas, como por ejemplo, el Product
Vision Board [Pichler 2013] y [Hiromoto 2013] y otras actividades de planificacion y
preparacion, ver [Larsen 2013], para tener una mejor vision y para mejor preparar al equipo
de delivery y demas interesados.

¢, Como hacerlo?

Planificar y preparar reuniones de trabajo con todos los involucrados, incluyendo al equipo
de delivery, al promotor del proyecto, a los analistas de negocio, soporte y otros
interesados. No descuidar los detalles: espacio adecuado (amplio, luminoso, silencioso),
materiales, refrigerios, sin interrupciones, etc.

Desarrollar juntos las distintas actividades relacionadas a establecer un acta del proyecto
(agile chartering), todo esto en forma de talleres para apoyar el lanzamiento del proyecto
(liftoff). jAqui hay mucho espacio para la facilitacion, participacion con creatividad y
diversion! jLa idea es crear y compartir conocimiento mediante el ensayo y el error!

¢ Qué se logra?
Algunos logros con estas actividades de lanzamiento de proyectos son:

e Que los involucrados se conozcan y den a conocer al grupo su experiencia, destrezas y
expectativas. Si los participantes no se conocen es recomendable utilizar dinamicas
para romper el hielo y ayudar a crear un ambiente de trabajo en equipo.

¢ Que todos los involucrados participen en crear una vision compartida del producto
y una hoja de ruta del mismo, usando una o varias de las técnicas mencionadas:

o Una Agile Inception Deck.

o Un tablero de Vision del Producto.

o Un User Story Mapping que da origen a un plan de entregas y a una primera
version de alto nivel del backlog.

e Se fortalece al equipo y se crea un mayor sentido de propédsito y empoderamiento.

e Se definen los roles y las responsabilidades.

e Se establecen acuerdos de trabajo, tales como canales de comunicacion y
almacenamiento de la documentacion, frecuencia y lugar de las reuniones y
ceremonias, horario de trabajo, herramientas a utilizar, etc.

e Se aclaran los recursos requeridos y asignados al proyecto.

e Se estudian las dependencias con otros proyectos.

e Se analizan y priorizan los riesgos y se establece una estrategia para irlas despejando
en el tiempo.

e Se crea documentacion minima, preferiblemente usando técnicas de facilitacion grafica,
que estara visible para todos los interesados y que servira para el proceso de insercion
de nuevos miembros al equipo (onboarding).

e Se nivelan las destrezas de los miembros del equipo en aspectos de metodoldgicos
tales como principios y valores del agilismo y del proceso a utilizar, por ejemplo Scrum.

e Se definen y programan otros talleres para nivelar o desarrollar otras competencias
técnicas.

e Se comienza a crear un ambiente de alta colaboracion, transparencia,
compromiso y seguridad.

e Celebrar juntos el trabajo realizado!

Resumen

Algunas de las actividades propuestas pueden solaparse y en una primera impresion,
confundir a quienes las usan. Sin embargo, ayudan a reforzar el aprendizaje y el
entendimiento compartido, asi como a validar distintos aspectos del proyecto desde
diferentes puntos de vista.

Las herramientas a utilizar dependen también del contexto de negocio y de la etapa en que
se encuentra el producto dentro de su ciclo de vida.

Estas actividades de lanzamiento aportan valor también para aquellos proyectos en
ejecucion: en contextos complejos e inciertos (como lo son casi todos los proyectos de
software) de vez en cuando es necesario hacer un alto para reflexionar y responderse:
¢quiénes somos? ¢ qué hemos hecho?, ;donde estamos hoy?, hacia donde vamos?,
¢cuales son los desafios, restricciones, riesgos y oportunidades?

[Larsen 2013] nos provee una visidn mas amplia y de cierta forma integradora que la que
provee cada herramienta por separado, centrada en el equipo de delivery y demas
involucrados y que nos ayuda a responder, de forma activa, estas interrogantes.

Value Stream Mapping

Por Pablo Tortorella, @pablitux y Pablo Lischinsky, @pablolis

Palabras clave

Lean, procesos, optimizacion, visualizacion, eficiencia

Intencion

Si un equipo tiene un objetivo claro y todos sus integrantes quieren alcanzarlo, es probable
que quieran optimizar su forma de trabajar para lograr ese cometido. Si el objetivo esta
relacionado con la realizacion de tareas o actividades que se repiten, estaran frente a uno o
mas procesos. En ese contexto de optimizacion de procesos, existe una técnica que
permite visualizar, analizar y trabajar en su optimizacion. Su nombre original es en inglés:
Value Stream Mapping [Martin 2013]. Se trata de una técnica que se suele llevar adelante
en reuniones grupales (aunque también podria ser realizada individualmente) en las que se
trabaja con elementos y caracteristicas del proceso que se desea optimizar.

Esta técnica es una forma de bajar a tierra los principios Lean, oriundos del mundo de la
manufactura y muy utilizados también mas tarde en industrias de diversa indole. En Lean,
todo el esfuerzo se dedica a mejorar los procesos de forma tal que se logre minimizar el
tiempo entre que un cliente realiza una solicitud y esa solicitud se transforma en el producto
o servicio requerido. Suele utilizarse tanto en procesos produccién como en servicios.

Un ejemplo que puede ilustrar los conceptos que se mencionan, es el caso de un
restaurante y una familia que decide comer alli el viernes por la noche.

Motivacion

Dar a conocer una técnica que puede potenciar a los equipos que quieran mejorar sus
procesos para alcanzar sus objetivos con mayor eficiencia, focalizados en el valor que
aportan a sus clientes y en la disminucion del desperdicio que generan en el camino.

Descripcion

El Value Stream Mapping significa mapear (es decir, crear un mapa) con el flujo de valor.
En un taller de Value Stream Mapping, suelen llevarse adelante los siguientes pasos:

e Trabajo sobre el flujo de valor actual.
o Eleccion del Proceso que se quiere mejorar.
o Seleccion del inicio y el final, dejando por fuera lo que ocurre antes del inicio y
después del final.
o |dentificacion y visualizaciéon de las actividades que forman parte del proceso.
o ldentificaciéon de los tiempos que llevan la realizacién de dichas actividades.
o |dentificacion de los tiempos de espera que hay entre las actividades.
o Calculo del lead time.
o Seleccion de las actividades que aportan valor.
o Calculo de la eficiencia del proceso.
e Optimizacion del flujo de valor.
o Diseno de un experimento para mejorar el proceso.
o Calculo de la hipotética nueva eficiencia del proceso.
e Experimentacion y analisis posterior.
o Llevar adelante el experimento.
o Realizar un nuevo analisis con los resultados del experimento.

A continuacion se detalla cada uno de los pasos.

Trabajo sobre el flujo de valor actual

Eleccion del Proceso

Saber qué proceso queremos mejorar es un buena forma de comenzar. Se dejaran de lado
todos los demas procesos en los cuales el equipo participa. Tener foco posibilita un mejor
analisis que potencie el flujo de valor (también conocido como cadena de valor o cadena
critica).

En el caso del restaurante, se podrian elegir distintos procesos. Se tomara uno en
particular: recibir y dar de comer a una familia, un viernes por la noche. Se dejaran de lado
en este analisis la limpieza nocturna del salon luego de cerrar el local, la preparacién del
salon para abrir el local, la compra de insumos para la cocina, la difusion y el marketing que
se hace en redes sociales y otros procesos que hacen posible que el restaurante opere
normalmente. El foco de la sesion de trabajo sera la cena de la familia.

Seleccién de Inicio y Fin

Dado que todo proceso tiene su contexto, es necesario elegir puntos desde y hasta los
cuales se realiza el analisis.

En el ejemplo, se tomara como punto de inicio el momento en el que la familia entra a local
y como punto de fin el momento en el que sale del mismo. Queda fuera del analisis la forma
en la cual la familia se enterd de la existencia del restaurante, el trayecto desde la casa
hacia el restaurante y viceversa.

Identificacion de Actividades

En esta etapa se desglosa el proceso en actividades.

Es aqui donde, durante el taller Value Stream Mapping, suelen aparecer las notas
adhesivas de colores: cada actividad queda representada en un papel. También se puede
dibujar el flujo en una hoja que esté visible para todos los participantes del taller.

Una de las ventajas de usar notas adhesivas, en comparacion con los dibujos, es que con
las notas adhesivas se puede modificar facilmente tanto el nombre de una actividad
(descartando la nota y usando una nueva) como también el orden relativo entre actividades
(despegando las notas adhesivas y cambiandolas de lugar), sin tener que borrar o tachar lo
que se ha dibujado.

Algo valioso de esta etapa es la busqueda de un lenguaje comun. Cuando se van
mencionando las actividades y se van escribiendo sus nombres en el mapa, pueden
aparecer diferentes formas de nombrar cada actividad. La identificacién de los puntos de
vista da lugar a una conversacion al respecto que suele servir para llegar a acuerdos y
unificar el lenguaje.

Es habitual que en este momento ya empiecen a surgir ideas para mejorar el flujo de valor.

En el ejemplo del restaurante, las actividades podrian ser: Sentarse en una mesa, Elegiry
ordenar la comida, Llevar el pedido a la cocina, Cocinar, Llevar la comida a la mesa, Comer,
Pedir la cuenta, Pagar e irse.

Identificacion de Tiempos de las actividades

Luego de identificadas las actividades del proceso, se procede a trabajar con métricas. El
llamado Process Time, también conocido como Cycle time o Value-added time, es el tiempo
que lleva cada actividad o una parte parcial del proceso. Es un tiempo necesario para
agregar valor.

Si los tiempos se han medido, se utilizan directamente esos datos. Si no se han medido, se
puede apelar pragmaticamente a la memoria y/o a la estimacion de los participantes del
taller.

En el ejemplo, el tiempo que lleva cada actividad podria medirse en minutos o en minutos y
segundos, dependiendo de qué tipo de analisis o mejora se quiere llevar adelante. En otros
casos se podrian usar dias o alguna otra unidad de medida.

Sentarse en una mesa (1 minuto), Elegir y ordenar la comida (10 minutos), Llevar el pedido
a la cocina (2 minutos), Cocinar (18 minutos), Llevar la comida a la mesa y servirla (4
minutos), Comer (25 minutos), Pedir la cuenta (2 minutos), Pagar (10 minutos) e Irse (1
minuto).

Identificacion de Tiempos de espera

También se miden tiempos entre actividades. El tiempo en espera -o Idle time-, es el tiempo
que transcurre esperando a que una actividad sea realizada o esperando a ser pasado a
una proxima etapa o actividad.

En el ejemplo: Esperar una mesa disponible (5 minutos), Esperar al camarero para pedir la
comida (5 minutos), Esperar a que los cocineros comiencen a procesar el pedido (1 minuto),
Esperar al camarero para que lleve la comida a la mesa (3 minutos), Esperar al camarero
para pedirle la cuenta (5 minutos), Esperar el vuelto (3 minutos).

Calculo del Lead Time

El Lead Time o Throughput time, es el tiempo total transcurrido entre el momento en que
se recibe una solicitud de trabajo hasta que el cliente esta satisfecho.

Lead Time = Process Time + Idle time

En el ejemplo, la sumatoria total de los tiempos de actividades y de espera da 95 minutos.
Es el tiempo que pasa entre el momento en el cual llega la familia para comer y el momento
en el que sale satisfecha del restaurante.

Seleccion de actividades que aportan Valor

De la secuencia de las actividades se determinan aquellas que le dan valor al cliente final.
El criterio para definir si una actividad aporta o no aporta valor suele estar basado en el
punto de vista del cliente y deberia validarse.

En el ejemplo, las actividades que aportan valor a esta familia son: Elegir la comida (pues
hay platos que en su casa no pueden preparar), Cocinar (pues es tiempo que la familia
dedica a compartir conversaciones en lugar de estar cocinando) y -por supuesto- Comer.

Calculo de la Eficiencia

Esta y todas las etapas previas sirven para establecer el modelo actual del flujo de valor.

El calculo de la eficiencia se mide a partir de la divisién del tiempo de actividad entre el
Lead Time en porcentaje.

En el ejemplo, el tiempo de actividades valiosas es 53 minutos y el tiempo total es 95. La
eficiencia del proceso es de 55,8%.

Optimizacion del flujo de valor

Diseio del experimento de mejora

En esta etapa se redisefa el modelo del flujo de valor a partir de un experimento, el cual
luego sera llevado adelante. El experimento cuenta con una hipétesis que se pretende
validar o refutar. La hipotesis suele estar relacionada con las mejoras resultantes de
remover algun cuello de botella especifico.

Lo primero que se hace es identificar los tipos de desperdicio presentes en el flujo. También
son llamados restricciones o cuellos de botella. Por ejemplo: esperas, retrabajos,
transportes innecesarios o trabajo en progreso y no terminado.

Una vez identificados todas las restricciones criticas, se priorizan y se disefia una mejora
concreta alrededor de las mas critica. Algunos ejemplos de mejoras concretas son: agrupar
tareas, unificar actividades, agregar recursos o capacitar personas.

Siempre se recomienda utilizar la ley de Pareto: con pocos cambios se pueden lograr
grandes impactos para disminuir el Lead time y/o aumentar la eficiencia.

En el ejemplo del restaurante, se puede pensar en varias optimizaciones posibles
analizando cual es mas factible y conveniente teniendo el cuenta las restricciones
econdmicas u otras. Una optimizacién en particular puede ser mejorar los tiempos de
espera relacionados con el pago y el vuelto. Para esto, los camareros llevaran consigo los
instrumentos necesarios para cobrar (POS, del inglés Point of Sales) y el dinero suficiente
para dar el vuelto en el momento. Se espera que ese tiempo de espera del vuelto
desaparezca y que el pago tarde solo 5 minutos. Ahora el Lead Time seria 87.

Calculo de nueva eficiencia esperada

Hacemos una estimacién de la nueva eficiencia esperada con la optimizacion del flujo de
valor, pasando por el célculo del tiempo de actividades, tiempos de espera y Lead time.

Con la mejora realizada, si el experimento tiene éxito, seria 60,9%.

Es decir, la eficiencia mejora en un 5,1% y el Lead time se redujo en un 8,42%.

Experimentacién y analisis posterior

Fuera del alcance del taller del Value Stream Mapping nos abocamos a implementar los
cambios identificados, llevando adelante un experimento y analizando los resultados.

Aqui se evalua el nuevo modelo implementado y pasamos a repetir el ciclo: siempre habra
posibilidades de mejora.

En el caso del restaurante el experimento controlado se podria realizar con alguno(s) de los
camarero(s) en determinados turnos, luego de lo cuales, se debera repetir el ciclo
contemplando los nuevos tiempos observados.

Elaboracion de historias de usuario
centradas en comportamiento

Por Juan Daza Arévalo, @juanenlasala

Palabras clave

Historias de usuario, comportamientos, valor, épicas, temas

Intencion

Esta técnica ha sido disefiada con el fin de apalancar la idea de la “oportunidad para una
conversacion” que viene de la mano de una historia de usuario. Que ese dialogo sea
poderoso al contar con un texto donde estan consignados los comportamientos que
queremos acompanar con la solucidén que se propone.

Motivacion

Las historias de usuario cuentan con un formato, una plantilla que permite un encuentro
para validar qué se espera lograr en el proximo sprint. Sin embargo, el poder no radica en la
forma en que se redacta, en cada historia reposan comportamientos que se desean
modificar o a los que se quieren apelar cuando el usuario esté al frente de la solucién. Tener
presente el comportamiento como eje permite trabajar con una 6ptica de User Centered
Design o Disefio Orientado al Usuario.

Descripcion

Las historias de usuario son la respuesta a la forma tradicional en la que los
‘requerimientos” se convertian en un listado de tareas y acciones que, casi siempre,
desembocaban en situaciones abiertas a interpretaciones, o en un listado de acciones
cerradas. Son la evolucion de una tarea redactada en forma de historia que recoge el
verdadero problema que se desea resolver.

Los primeros rastros en la historia de las historias de usuario conducen a Steinberg &
Palmer [Steinberg-Palmer 2003] y al articulo de Bill Wake [Wake 2003] en el que propone, a
partir de las siglas, INVEST y SMART la construccion de historias: independientes,
negociables, valiosas, estimables, pequefias y que se puedan testear (probar) o si se toma
el segundo acrénimo que sean: eSpecificas, medibles, alcanzables, relevantes y con tiempo
regulado.

En su articulo, Wake cita a Ron Jeffries y describe las historias de usuario en XP (Extreme
Programming) como herramientas que deben tener tres componentes: Cards (Tarjetas)
como medio fisico; Conversation (Conversacion) o la discusion que genera la propuesta de
dicha historia, y Confirmation (Confirmacién) o la manera de probar que se ha cumplido lo
esperado. Es frecuente encontrar discusiones frente a las sugerencias de redactar historias
de usuario independientes y valiosas y que a la vez sean pequeias.

Justamente ese es el punto de partida de Gojko Adzic [Adzic 2014] cuando afirma que
“software valioso es un concepto vago y esotérico en el campo de los usuarios de un
negocio, pero el tamafno de la tarea es algo que se puede tener bajo control para un equipo
de desarrollo, por eso muchos equipos terminan escogiendo tamarfio sobre valor.” El valor
se convierte en un adjetivo que genera dudas y cada quien apropia a su manera. Por eso
surgen expresiones como “una pagina dinamica” para expresar lo que se desea, frases que
aparecen como muestra de un problema importante de fondo.

En XP se sugiere que la historia de usuario sea escrita por el cliente. Desde otros marcos
de trabajo y metodologias es una herramienta a la que se llega en conjunto, como un
ejercicio colectivo perfecto para cubrir temas de experiencia de usuario (UX), prioridad, etc.
Nuevamente es una apropiacion que cada equipo va refinando a su modo de trabajo. Las
dudas posibles del uso de historia de usuario pueden resolverse en la medida que se
explica el contexto y las oportunidades asociadas a otro nivel para el proyecto, el negocio y
el usuario.

Jeremy Jarrel [Jarrel 2014] describe las diferencias entre historias de usuario, temas y
épicas, como un conjunto de textos que en distintos momentos describe las necesidades
del proyecto. La historia de usuario dice, es una “unidad auto-contenida de trabajo acordada
entre el equipo de desarrollo y el stakeholder.” Los temas, agrega, son “ideas expuestas en
historias que se pueden agrupar” en atencion a un tema, funcionalidades similares, etc.
Mientras que las épicas “comprometen un flujo completo para un usuario” a diferencia del
lugar comun de verlas como historias grandes, que necesitan refinamiento.

Lo que se quiere hacer supera el tradicional guién de: "Como un [rol] yo deseo
[caracteristicas] para que asi exista [beneficio]." porque las conversaciones deben confirmar
no lo que se desea hacer sino lo que se quiere lograr. No toda accién o desarrollo apoya un

objetivo. Estas conversaciones son momentos para confirmar una y otra vez qué es lo que
realmente se quiere hacer. De ahi que Gojko Adzic y David Evans [Evans 2014] hablen de
ver las historias de usuario como una oportunidad de “modificar comportamientos”.

¢ Realmente la funcionalidad que tiene una solucion apela a un comportamiento? ;No se
trata Unicamente de un proceso donde el codigo activa tareas y funciones? Cada
funcionalidad deberia responder a una hipoétesis o la suma de un supuesto con una
medicion, mas una alta dosis de empatia.

Wendell [Wendell 2013] describe la forma en la que trabaja en su organizacién donde
implementan “algunos elementos de agilidad” y se ve una correlacién con el Pensamiento
de Diseno o Design Thinking. En la base de todo desarrollo esta un proceso de
“‘entendimiento” que en la agilidad se ha recopilado en distintas practicas conocidas como
Inception. Un ejercicio atento de conexién con el usuario donde se identifican los problemas
y posibles usos para que la solucién propuesta confirme que esta clara la vision que se
tiene del producto o servicio.

Al apoyar procesos de desarrollo desde el disefio de la propuesta de valor, he querido darle
un alcance distinto a las épicas para encontrar en ellas los comportamientos que se van a
acompanar. Es imposible cambiar un comportamiento con sélo una historia de usuario pero
si se puede influenciar un comportamiento para que, poco a poco, se convierta en un
habito.

El flujo de trabajo descrito en una épica esta poblado de comportamientos: miedo a entregar
informacion, dudas por el uso de la informacion privada, reservas por el sentido del proceso,
molestia por tener que memorizar una nueva contrasefna, sospechas por la relacion que se
establece entre una red social y la solucién que esta usando, etc. Estos y otros
comportamientos se van asentando a medida que las rutinas asociadas al proceso se
repiten, son mas sencillas, transparentes, etc.

El poder detras de la experiencia de usuario no radica en una sensacion de gusto o
satisfaccion, el poder se consolida si hay un comportamiento que queda satisfecho. Por
eso, desde la empatia, se conversan cuales son los comportamientos que puede tener un
usuario en distintos momentos de uso de una solucion. Parte de los dialogos necesarios al
disefio de la épica.

Para esos dialogos disefé un formato, una plantilla lamada LYPS como acrénimo de Love
Your Epics. Por un lado, busca resignificar la idea de que una épica es nociva por no tener
foco o estimacion y convertirla en una oportunidad de ampliar la mirada del proyecto. Por
otro, el juego de palabras y el término “lips” o labios que resuena con conversacion,
encuentros, “besos”, etc.

LYPS se usa en el Inception o gestacion de la idea, durante el disefio de la propuesta de
valor, a medida que vamos descubriendo las posibilidades de la soluciéon que se va a
programar, etc. y propone una serie de campos para ser usados con los interesados en
cada fase del proyecto. Puede ser desde el equipo de desarrollo en pleno o en sesiones
con cliente y desarrolladores.

Los campos descritos en la imagen se utilizan con la misma libertad de apropiacion de otras
herramientas agiles. Sin embargo, el grupo debe tener en cuenta qué entiende por
“comportamiento que espera modificar” porque es sobre eso que se puede medir el impacto
de la solucién, por ejemplo "Disminuir en un 20% la cantidad de formularios rechazados".
Este camino permite oportunidades de mejora y de modificacién constante de la solucion.

Al respecto, y aunque este capitulo no se refiere al comportamiento humano es importante
tener en cuenta que las conductas humanas y los comportamientos tienen relacién y sutiles
pero importantes diferencias. Una conducta se refiere a acciones asociados a un cédigo
propuesto en grupo y con implicaciones morales. EI comportamiento habla de respuestas,
acciones y actividades de un organismo. La conducta se refiere también a una lectura
trazable en el tiempo, normalmente en una institucion mientras que el comportamiento
responde a interacciones inmediatas.

2 VL 103 Juan Daza Asdwvals (CC BY-5A 4.0}
LYPS: Love }.nur Eplci Craatlve Cormmons Attibutlon-ShaneAlike 4.0 Intermational

EPICA:
Acciones completas para un usuario gue pusden verse comao el flujo de una tarea,

Operational Awareness
TIEMPO: Momento an el que sucede: ([LOCAL: Informackin de contaxts que HUMAMNO: Rasstencls naturales,
valaracion de la accon enel sirva para que, por ol hecho de ser
ti=mpo transcurrido; importa ugader en nuestna culiura, el ususrio
porque s Santes” o daspués” da tiene uno w ot comportamlento

COMPORTAMIENTOS QUE ESPERAMOS MODIFICAR:
Indecision; duda; presion de grupo; verglenza; "Que haga dlick para ampliar articule”; "Comparta el articulo en..”
"La tasa de bounce rate no supere el N3".,

POSIBLES HISTORIAS DE USUARIO:
Primeras aproximaciones a las historias de usuarlo para proponer conversaciones,.,

KBl - Key Behavior Indicators: TEMAS: DEDOS:
Compotamientos gue se Ao iaronies oon otras historias Validackin da importancia de la épica en
wan amedir, gue s desean validar e Lusuarios o con obias épicas dindmica de mastrar Ko dedos al tiempo

Figura 4.1_. LYPS - Love your epics

LYPS ha sido usado para la identificacion de comportamientos en aplicaciones moviles y
sitios web para encontrar si las implementaciones confirman los numeros esperados. La
hemos puesto en marcha usando a la par herramientas de graficacion de trafico y donde los
usuarios hacen realmente click (por ejemplo http://www.crazyegg.com o
https://mouseflow.com) con el fin de validar los comportamientos esperados.

La idea de encontrar un mecanismo que permita modificar, con precision, un
comportamiento humano es poco menos que una fantasia. Nada puede predecir como los
individuos y los grupos de personas reaccionan frente a una senal o un impulso; podemos
entender y anticipar algunos pero estamos siempre frente a la complejidad propia de los
seres humanos. Contemplar los comportamientos es preparar los limites suficientes para
contar con metas y objetivos no sdélo alineados con el negocio sino con el uso de las
soluciones.

En nuestros proyectos LYPS nos ha dado foco en tres aspectos que aborda Gojko Adzic
[Adzic 2016] y que llama operational awareness y que en la plantilla se ven como Tiempo,
Local y Humano. Los comportamientos van de la mano de esas variables que nunca
podemos controlar. La incertidumbre no es otra cosa que la realidad convertida en una
historia cruel cuyo autor definitivamente no nos hace caso. Por eso, antes de medir
resultados nos hemos propuesto a buscar cdmo confirmar comportamientos y ojala este
formato sea un aporte para una meta también dificil.

http://www.crazyegg.com
https://mouseflow.com

Técnicas de OnBoarding para la gestion
de conocimiento

Por Vanesa Savino, @VaneSavino

Palabras claves

Transferencia de conocimiento, Coaching, Roles variables.

Intencion

¢, Como trasmitir el conocimiento a los nuevos miembros de un equipo?

Motivacion

Con la llegada de un nuevo miembro a un equipo nos encontramos con el dilema de
transmitirle conocimiento relacionado con nuestro proyecto. Ademas de las pruebas
automatizadas de cédigo, en muchos casos hay que brindar informacién conocida por los
expertos del negocio.

Los métodos expuestos a continuacion intentan que los expertos puedan dividir su trabajo
entre la formacion de los nuevos integrantes y sus tareas habituales.

Descripcion

Las ocho practicas que aqui se mencionan surgieron de la necesidad de reorganizar un
equipo de desarrollo. Sélo permanecieron dos miembros del equipo original: un
desarrollador y el analista funcional/tester que llevaban trabajando tres y siete anos,
respectivamente, en el proyecto. El desarrollador fue designado como lider del equipo y al
mismo tiempo ingresaron tres nuevos desarrolladores, uno de ellos con experiencia previa y
dos mas que iniciaban su carrera en sistemas.

Al principio el caos era tal, que el lider siempre estaba atrasado con su trabajo, y justamente
era quien resolvia los temas mas urgentes o importantes.

Pasada la etapa de adaptacion, de tres meses aproximadamente, los desarrolladores
observaron que el lider continuaba sobrecargado y decidieron proponer algunos métodos
para distribuir el conocimiento, aliviar la presién del lider y al mismo tiempo, sentirse
confiados al realizar un requerimiento complejo.

La aplicacion de los métodos fue un proceso iterativo. Algunos métodos fueron creados
dentro del equipo y otros adaptados de la bibliografia.

A continuacion se muestra un listado con la organizacién de los mismos:

¢ Regla de la mano izquierda.
e Coaching.
e Mas que programacién en parejas.
e El héroe nuestro de cada semana.
¢ Resolucion que hace eco.
¢ Repositorio de conocimiento compartido.
e Capacitacion.
o Clases particulares.
o Tarde de peliculas.
e Diseno colaborativo.
o Adaptacién de Kata de arquitectura.
o Reunion de disefio mas informal.

Regla de la mano izquierda

Este método previene que el experto sea consultado todo el tiempo, escalando las dudas
por intermediarios, hasta agotar las instancias y consultarle directamente. Ademas
contribuye a que el conocimiento fluya a través del grupo y no esté centralizado en el
experto.

Cuando surge una duda, el primero a ser consultado es nuestro compafiero de la izquierda.
Si la duda se puede resolver, no se escala mas. De lo contrario nuestro compariero se la
transmite a su compafiero de la izquierda, y asi sucesivamente hasta llegar al experto. En
este caso el experto explica la solucién para todo el equipo.

Coaching

Este método tiene por objetivo que el desarrollador se sienta seguro al introducirse en un
tema complejo ya que su trabajo esta respaldado por los conocimientos brindados por el
experto.

Cuando un miembro del equipo necesita resolver una tarea que requiere del conocimiento
del especialista, solicita su asesoramiento. El especialista aporta su vision y experiencia,
discutiendo juntos la forma de aproximarse a la solucién con menos trabas y escollos en el
camino.

Mas que programacion en parejas

En programacion de a pares (pair programming) el grupo es conformado por dos
programadores, pero en esta propuesta uno de los miembros es el experto que no
necesariamente es un programador. A diferencia de coaching, el experto permanece
constantemente junto al desarrollador hasta finalizar la solucion.

Este método favorece la cooperacion entre diferentes roles, aportando visiones que ayudan
a comprender el problema o fijar conceptos.

Se arma un equipo temporal para trabajar en el cédigo. Si el especialista programa, puede
codificar las partes mas complicadas de la solucion y explicarle su funcionamiento al
companero. Cuando el especialista no sea técnico puede validar la solucién que
construyan.

Siempre que se crea conveniente, se puede solicitar la colaboracion temporaria de
miembros con otros roles, para que aporten otros enfoques del problema, formando un
equipo de tres miembros. Un ejemplo de esta colaboracién puede ser un grupo conformado
por un especialista técnico y otro desarrollador que le solicitan ayuda al analista funcional
para despejar una duda de negocio que surgié en medio de su tarea.

Este método puede aplicarse junto con la “regla de la mano izquierda” y armar un equipo
con el compainiero de la izquierda.

El héroe nuestro de cada semana

Este método tiene un doble propésito, el primero es que cada miembro del grupo se
encuentre capacitado para resolver las urgencias del sistema. El otro es que el experto
pueda continuar con sus tareas y no se encargue exclusivamente de los casos urgentes,
que provocan demoras en su trabajo si las interrupciones son muy frecuentes.

Del Agile Open Camp 2015 se tomé una idea interesante: un miembro del grupo va a tener
el rol de "Héroe" para ocuparse de los problemas urgentes del sistema.

El rol es ocupado por cada miembro durante una semana, hasta que todos lo hayan
ocupado una vez y luego se vuelve a comenzar. Para hacerlo identificable frente a los
demas miembros del equipo, cada miembro puede tener un mufieco o imagen de su héroe

favorito a la vista, sobre la que pegan una estrella de Sheriff para informar que estan de
“guardia”.

Quien desempenie este rol continua con sus tareas habituales; en caso de haber un
problema urgente, pospone su tarea y se dedica a la resolucion del problema. Dependiendo
de la complejidad de la situacion, un experto o cualquier otro miembro del equipo es
requerido para ayudar a resolver la urgencia. Asi cada miembro aprende a resolver errores
criticos sintiéndose confiado bajo la tutela de alguien con conocimiento sobre el tema.

Este método puede combinarse con “coaching” y “mas que programacion en parejas” para
facilitar un arreglo urgente.

Resolucién que hace eco

Este método pretende unificar criterios, lo que facilita el entendimiento de los temas.
También propone que se incorporen ideas generales del funcionamiento del sistema cuando
se investiga en busca de comportamiento comun dentro de la aplicacion.

Al recibir un requerimiento para cambiar una caracteristica en particular, se tiene que
investigar si hay otras funcionalidades con similar comportamiento que requieran ser
modificadas y también cambiarlas.

En una aplicacion grande y de larga data, suele ocurrir que la solucion a un problema ya
esta implementada en otro lugar, de modo que es importante asegurarse que realmente sea
necesario dedicar tiempo a construirla desde cero, cuando lo mas probable es que
lleguemos a un codigo y légica duplicados, que traera consecuencias si el dia de mafiana
uno de estos comportamientos se modifica y el otro no. A no repetir codigo!

Este método se puede combinar libremente con cualquiera de los métodos que consisten
en desarrollo, ya que no interfiere con su mision.

Repositorio de conocimiento compartido

Construir un repositorio en la nube y compartir la documentacion ha desplazado al uso de
otros sistemas mas formales. Hoy en dia existen muchas plataformas y servicios gratuitos
que brindan acceso desde diferentes dispositivos, lo que facilita la distribucion de la
documentacion.

Este método tiene por objetivo tener disponibilidad online de la documentacién con todas
las ventajas que eso representa, entre ellas: accesibilidad movil, y un mecanismo mas
simple para creacion de contenido, ya que se evita la instalacion de programas especificos.

Es muy importante mantener un orden conocido por todos, para que cada miembro sepa
donde ubicar el contenido que produce o donde buscar la informacion que necesita.
Dependiendo de la organizacion se pueden otorgar diferentes permisos de acceso y
edicion, lo que requiere una moderacion del contenido que se cree colaborativamente.

Capacitacién

Se van a explicar dos maneras de comunicar informacion. El objetivo es incorporar
conceptos a través de diferentes formatos, el mas moderno, audiovisual y el tradicional con
material escrito.

Clases particulares

Consiste en preparar clases con temas especiales y brindar material para los asistentes que
ayude a la compresion del tema tratado. Es fundamental que luego el material se suba al
repositorio para que pueda ser consultado en cualquier momento. Ademas conviene tener
un modelo de contenido para implementar las charlas, dando un marco minimo de
informacion que deben cubrir.

Tarde de peliculas

Existen muchos videos de tutoriales online que nos ensefian desde cémo hacer el nudo de
una corbata hasta como aprender a tocar la guitarra. Esta forma de ensefanza es cada vez
mas habitual, incluso se pueden encontrar clases de prestigiosas universidades disponibles
online.

¢ Por qué no aplicarlo entonces a nuestro sistema? Para partes que sufren pocas
modificaciones, como la configuracion de un entorno, es de mucha utilidad contar con
tutoriales que muestren la configuracion correcta, de esta forma se ahorra mucho tiempo de
busqueda infructuosa.

Diseno colaborativo

Como ya se sabe la visidn de grupo en sinergia supera la suma de la visién de sus
miembros.

En esta instancia se propone utilizar disefo colaborativo para llegar a la solucion 6ptima de
un problema.

Dependiendo de la estructura y la cantidad de miembros del equipo se pueden hacer
reuniones mas informales o adaptaciones de katas de arquitecturas.

El término kata proviene del karate y consiste en una serie de ejercicios establecidos que se
realizan solo. Este término se aplicé al disefio de cédigo cuando Dave Thomas creé las
“Code Kata”.

Las katas de arquitecturas se realizan en grupos, tienen reglas y roles definidos. Se
acuerda un tiempo de duracion para todo el ejercicio, los miembros se dividen en grupos de
desarrolladores y se designa un moderador, responsable de responder todas las dudas de
los equipos. Si el moderador es el lider del equipo, también se encarga de guardar las
buenas practicas de programacion.

Los equipos se separan una distancia prudencial para hablar sin interferirse mutuamente.
Después de finalizado el tiempo, un orador elegido por los miembros del grupo expone la
solucion frente al interesado. En este caso el rol del interesado puede ser ocupado por el
analista funcional.

El moderador, el interesado y los restantes participantes formulan todas las preguntas
necesarias para entender la propuesta. Al finalizar esta etapa todos votan al mismo tiempo
la solucion.

La votacion se realiza con la regla del pulgar: pulgar para arriba para indicar que me gusté
la propuesta. Horizontal para indicar que no me convencié del todo y pulgar para abajo para
indicar que no me agrado.

Luego de la votacion comienza la exposicion del siguiente equipo hasta terminar, al finalizar
se trabaja con la solucién mas votada.

Si el equipo es pequefio (3 0 4 personas) puede trabajarse mas informalmente, reuniéndose
frente a una pizarra y diagramando una solucion. Aquellos con mas conocimiento pueden
proponer una solucion tentativa y los demas pueden dar su feedback para ver en que se
puede mejorar.

Es importante a tener en cuenta el feedback en ambos métodos, pues a veces la solucidn
mas brillante la aporta el miembro menos pensado.

Este métodos propician la participacion de todos en la construccién de la solucion, pero
como la experiencia de cada miembro es diferente se pueden complementar con “coaching”
0 “mas que programacion en parejas” dependiendo de si es una solucion mas técnica o de
negocio.

Los métodos expuestos tienen como eje principal compartir conocimientos, algunos han
surgido por la necesidad de resolver un problema, otros han sido adaptados de la
bibliografia o tomados literalmente. Estos métodos pueden aplicarse en forma iterativa e
incremental; lo fundamental es lograr la comodidad del equipo y una transferencia de
conocimiento efectiva.

La intencion de exponerlos aqui es que sirvan de base para generar otros métodos que se
adapten a cada situacion particular.

El progreso que se realizd después de su implementacion ha sido muy significativo; ademas
contribuy6 a crear un equipo muy sélido, con confianza en sus miembros y auto-organizado.

SHU-HA-RI: Un Modelo de Aprendizaje

Por Omar Fernandez, @omarfl7

Palabras clave

Aprendizaje, mejora continua, shu-ha-ri

Intencion

Como enfrentar técnicas nuevas o rescatar las ya conocidas, haciendo énfasis en la
busqueda del aspecto fundamental de éstas, lo esencial, lo que hace de esta técnica
singular.

Motivacion

Si te encuentras estudiando y buscando alguna nueva técnica pero buscas ir mas alla de
so6lo aprenderla. Deseas comprender el espiritu de ésta, de forma tal que puedas
transportar dicho espiritu en diferentes contextos. Entonces reconoceras que todo proceso
de aprendizaje lleva tiempo y pasa por diferentes etapas.

Descripcion

Es posible que hayas escuchado sobre Shu-Ha-Ri como es posible que no, bien sea en el
contexto de software o para otro contexto. Podrias revisar el articulo de Martin Fowler
[Fowler 2014] para tener un primer acercamiento o el articulo de Alistair Cockburn
[Cockburn 2008] para una revisién mas extensa en el contexto de software.

Si realizamos una descripcidon breve, Shu-Ha-Ri es un concepto del arte marcial Japonés
que describe las etapas de aprendizaje de un estudiante para lograr la maestria en el arte.
Esta consta de tres etapas cuya descripcion es la siguiente:

Shu: significa mantener o proteger. En esta etapa el estudiante sigue los pasos indicados
por el maestro sin preocuparse demasiado en los aspectos subyacentes de la técnica.

Ha: significa separar. En esta etapa el estudiante empieza a aprender los principios y la
teoria subyacente detras de la técnica. El estudiante formulara muchos porqués sobre la
técnica.

Ri: significa trascender. En esta etapa el alumno ha aprendido la técnica del maestro y
empieza un aprendizaje adaptado y creado bajo su propia experiencia. La relaciéon
estudiante-alumno ya no es debido al aprendizaje de la técnica sino mucho mas cercana,
manteniendo la independencia del alumno.

De lo anterior podemos apreciar etapas bien definidas, tareas concretas por etapas y un
maestro el cual pueda guiarte. Estas etapas pasan por generar una conciencia en aquello
que se practica para en algun momento asimilarlo y mejorarlo. Sin embargo, esto nos lleva
a entender que no basta con sélo leer o practicar tempranamente, hay que asimilar su
contenido, su fundamento y esencia para poder apreciar el trasfondo de esta practica. Es
decir entenderlo para apreciarlo y mejorarlo. No basta haber leido la biblia para convertirse
en santo y en ese sentido y en ese camino, no podemos detenernos y decir que ya lo
entendemos si no hemos generado conciencia en ello.

Ciertamente al aprender una técnica no siempre tendremos la compafia de un maestro, lo
cual seria bastante importante pero, sin embargo existe un grupo de actitudes que se
manifiestan en cada etapa. Las describo a continuacion:

Shu: en esta etapa temprana es importante practicar mucho y entender lentamente los
pasos de la misma forma como si aprendiéramos a caminar. Seguramente no tendremos
conciencia clara del porqué de cada paso pero podremos ver coherencia entre paso y paso.
En este punto es importante medir y reflexionar, porque nos llevara a la siguiente etapa. El
hecho de medir nos ayuda a comparar que tanto hemos avanzado nosotros mismos o con
respecto a aquello que queremos lograr con esta practica.

Ha: si ya hemos entendido la técnica, ciertamente podemos desenvolvernos con facilidad,
pero se sentird como quien sigue una receta, y es en este punto donde debemos cuestionar
si lo aceptamos o no tal como lo hemos aprendido y entonces nos percatamos que solo
aprender la técnica no basta, la sucesion de pasos uno tras otro tiene un porqué que es
importante encontrar y ello nos lleva a buscar e investigar. Si mantenemos dicho espiritu de
no simple aceptacion y de considerar el aprendizaje como algo no terminado, entonces nos
llevara a la siguiente etapa.

Ri: aunque parezca extrano es importante olvidar lo aprendido porque estos fueron sélo una
secuencia de pasos légicos pero que no develan el espiritu del mismo. Nos sirvio para
aprender la técnica pero en este punto es el velo que no deja ver mas alla. El olvidar
permite desapegarse de los pasos aprendidos para que poco a poco podamos apreciar que
los pasos fueron una forma de mostrar la practica pero que oculto por debajo se encuentra
el espiritu de la misma. El desapego se manifiesta también al retirar los pensamientos que

llevan a considerar como unica la interpretacién de la técnica que hemos aprendido y de
esta forma, empezar a aceptar nuevas interpretaciones de la misma como un vaso que
puede verse de distintas posiciones. Posiblemente volveras a recorrer los pasos iniciales
pero esta vez sera como una danza natural, sin esfuerzo, pero que en si misma muestra el
espiritu de la practica. En este punto se percibira que se debe seguir aprendiendo, y es
entonces cuando estamos comprendiendo el espiritu de la técnica. Ahora es cuando
empezaremos a extenderla y visualizarla en multiples y nuevos contextos

De forma breve podemos identificar en qué etapa nos encontramos apoyandonos en
algunas actitudes que mostramos:

1. Si sigues estrictamente los pasos como una secuencia, bien sea porque recién inicias
con la técnica o porque asi aprecias que debe ser, estas en Shu.

2. Si necesitas saber el porqué de dicha secuencia de pasos, y buscas el porqué de los
enlaces de los mismos en dicho orden y no en otro, y ensayas o experimentas una y
otra vez, estas en Ha.

3. Si te percatas que empiezas a describir la técnica pero en distintas formas como quien
describe un vaso en distintos angulos pero sin apegarte a esa descripcion y comienzas
visualizar la misma en otros entornos, entonces estas en Ri.

Otro aspecto importante a tener en cuenta es que cada etapa no es una secuencia lineal
sino mas bien éstas se auto contienen como se puede ver en la figura siguiente. Pero
también en ese sentido vamos incrementando las actitudes que manifestamos y, que en un
principio te pareceran contradictorias pero con la practica te percataras que éstas se
refuerzan entre una y otra.

Puedes considerar encontrarte en alguna etapa, pero las actitudes que manifiestes son las
que realmente describiran en qué etapa te encuentras. Esto es un trabajo de autoconciencia
que te indicara a ti mismo con qué actitud enfrentas el aprendizaje.

Es usual mantenerse en la etapa Shu y Ha y sentirse conforme, pero es importante llegar a
la etapa Ri, en la cual no sélo se aprecia el sentido de una técnica o practica, sino que
también se develan aspectos de ella que la hacen singular, encontraras patrones y nuevas
formas de mejorarla. Apreciaras que el aprendizaje de algo no es un tema terminado sino
mas bien un camino que se debe seguir recorriendo.

Figura 6.1. Relacion entre Shu, Ha y Ri

Ademas, una misma persona puede estar en distintos estados en cada una de sus
destrezas en un instante de tiempo, y, en un equipo, cada integrante puede estar en
distintos estados con respecto a una destreza. Por otro lado podriamos hablar del estado de
todo el equipo en una destreza o técnica en particular.

Conclusion

Las tres etapas nos ayudan a reconocer la esencia de una técnica, y, como consecuencia
de esto habilitarnos a poder transportar dicho conocimiento a diferentes contextos.
Podemos, si, mantenernos en las dos primeras etapas, pero esto sélo nos mantendra como
conocedores. Pero si deseamos trascender la técnica, deberemos llegar a la tercera.

Algo que también podemos percatarnos es que cada etapa no es un empezar y terminar,
sino en la repeticién de las etapas anteriores impulsa sutilmente a llegar a la siguiente etapa
siempre que no descuidemos las actitudes que manifestamos.

Te invito entonces a que selecciones alguna técnica que tal vez consideres ya aprendida o
alguna que desees aprender, revises las actitudes que manifiestas y realices éste recorrido
sin fin del Shu-Ha-Ri.

Finalmente quisiera dejar una cita tomada de Shunryu Suzuki [Suzuki 1987], la cual he
adecuado para este contexto de aprender:

“Nuestra comprension de una técnica, no es meramente una comprension intelectual. La
verdadera comprension es la practica misma”

Continuous Discovery: Validacion de ideas
para el Backlog

Por Alejandro Faguaga, @afaguaga

Palabras clave

Dual track scrum, inception, discovery, productos con impacto, business value, UX

Intencion

En general en los proyectos agiles, la figura del Product Owner es la que trae nuevos
requerimientos o necesidades del negocio. A veces como simples ideas o requerimientos de
alto nivel, y otras -con suerte- en forma de User Stories. Sobre ésto le pide al equipo técnico
que analice y estime el esfuerzo de desarrollo de dicha funcionalidad.

En este contexto, no s6lo dependemos en primera instancia del conocimiento y buen criterio
del Product Owner para detectar las necesidades reales de los usuarios, sino también, de
su capacidad para explicitar y clarificar correctamente esas ideas al equipo de desarrollo, y
luego ademas dependemos del buen entendimiento e interpretacion del equipo sobre las
ideas que el Product Owner pone sobre la mesa.

Esto comunmente puede generar items del Product Backlog definidos de manera pobre o
poco claros que pueden atentar contra las reuniones de planificacion de los Sprints,
haciéndolas tediosas o muy extensas. Incluso puede afectar la velocidad del equipo, que
termina analizando, refinando y entendiendo las funcionalidades en paralelo con el
desarrollo del Sprint.

El resultado de esta situacion por lo general es la pérdida de tiempo y el re trabajo debido a
que estos items no han sido completamente validados a tiempo. A priori pareciera que hay
demasiadas variables en juego en esta cadena de gestacidén y concepcion de nuevas
funcionalidades a ser desarrolladas, y que dicha cadena estd compuesta por eslabones
endebles que pueden romperse en cualquier momento.

Todo lo anterior nos da la percepcion de que en muchos proyectos la precisién y la
correctitud del Backlog dependera en gran parte de la fortuna.

Motivacion

Si partimos del supuesto que la suerte esta de nuestro lado, o que las capacidades del
Product Owner hacen que sus pedidos coincidan con los requerimientos del usuario, en
verdad aun quedaria mucho camino por recorrer. Cuando el equipo de desarrollo empiece a
analizar lo que hay que hacer y el esfuerzo necesario para llevarlo a cabo, en reiteradas
oportunidades podriamos caer en cuenta que lo que pide el negocio es inviable desde el
punto de vista técnico, o que demandaria un esfuerzo prohibitivo para sus expectativas y/o
posibilidades.

Y podria haber una variable mas... Aun cuando la solucion se pueda implementar desde el
punto de vista técnico, el equipo de desarrollo y el Product Owner puede que no tengan en
cuenta la usabilidad o la experiencia del usuario respecto de esa solucion (ya sea por falta
de tiempo o de conocimientos en el area de UX).

Constantemente, requerimientos validos, e implementados con soluciones técnicamente
apropiadas y correctas, podrian no alcanzar el objetivo final de satisfacer la necesidad del
usuario, ya que este mismo podria no encontrar dicha solucion como “usable” o ventajosa
respecto de su situacion actual.

Descripcion

Hay que romper con la idea que el Product Owner trae los requerimientos y el equipo de
desarrollo es un ente que ejecuta en funcién de ese input funcional una solucion técnica,
que la gente de UX validara desde el punto de vista del usuario final. En definitiva hay que
romper esa cadena o secuencialidad en la interaccion de los equipos o perfiles. Y una
buena forma de cambiar esto es hacer que el Product Owner, algun representante del
Equipo de Desarrollo y un representante de UX trabajen de forma colaborativa y conjunta
desde la concepcidon misma de los requerimientos o User Stories.

Se forma asi un equipo con las 3 “patas” que trabajara sobre ideas, validando de manera
conjunta que: las funcionalidades que conformen el Product Backlog cubran la necesidad
funcional del negocio (Product Owner); la solucion planteada sea factible técnicamente
(Desarrollo) y la experiencia de usuario en dicha funcionalidad sea tenida en cuenta (UX).
Este proceso se realiza de manera continua y en paralelo con el desarrollo de los Sprints y
se denomina Continuous Discovery [Cagan 2012a] o como lo llama Jeff Patton, Dual Track
Scrum [Cagan 2012b]. Justamente porque plantea un frack o thread de “Descubrimiento”
(Discovery) de items del Backlog en paralelo con el Delivery de funcionalidad que se va
desarrollando en los Sprints. Personalmente, prefiero el término Continuous Discovery,
porque eso nos abstrae de Scrum, ya que este tipo de técnicas funcionan muy bien con
practicas como Kanban y otras también.

UX, Desarrollo y Producto se complementan para pensar como cubrir las necesidades del
negocio juntos, aportando cada uno su experiencia y asegurando que la funcionalidad
planteada sera la mejor posible teniendo en cuenta los 3 puntos de vista. Si se detecta que
la solucidn planteada originalmente no es factible técnicamente o no es usable, se ahorra
mucho tiempo y ademas permite plantear alternativas de manera temprana.

Asi el track de Discovery se preocupa exclusivamente de generar PBls (Product Backlog
Items) validados y el track de Delivery se enfoca en generar software funcionando basado
en ese Backlog validado, e implementarlo lo antes posible en produccion.

Adicionalmente, no solo queremos obtener soluciones validadas y realizables, sino que
ademas queremos asegurarnos lo antes posible que realmente estamos cubriendo la
necesidad del usuario final, y la mejor manera de lograr esto es obteniendo su feedback de
manera rapida y ajustando en funcién de la retroalimentacion recibida.

Continuous Discovery se basa en que en general, aproximadamente el 50% de las ideas
propuestas para ser desarrolladas en un proyecto de desarrollo son erréneas o no cubren
las necesidades reales de los usuarios.

Para esto la técnica lleva al extremo el concepto de Fail Fast, generando prototipos
ejecutables para permitir probar la funcionalidad rapidamente y detectar si estamos en el
camino correcto o no.

Hay muchas maneras de implementar esto. Puede ser a través de A/B Testing, prototipos
operativos, funcionalidades que puedan ser activadas o desactivadas mediante un “switch”,
Mock Objects, entre otros.

Independientemente de la forma, lo importante aqui es permitirle al usuario probar la
funcionalidad y obtener su feedback lo antes posible.

Hace unos afos tuve la oportunidad de trabajar en un equipo Scrum desarrollando una
aplicacion web de viajes, y aplicabamos varias técnicas. Por un lado se armaba un prototipo
ejecutable, con objetos mock que simulaban la Iégica de negocios y el acceso a datos y una
pantalla de Ul con validaciones y el aspecto visual que queriamos que tenga la pagina. Esto
se instalaba en tablets o teléfonos moviles y luego saliamos y pediamos a la gente en la
calle que use la aplicacion y nos diera feedback directo, en ese mismo instante.

También armabamos laboratorios de pruebas, donde traiamos a usuarios especificos, les
dabamos instrucciones para que ejecuten una funcionalidad, mientras observabamos y
tomabamos nota de los problemas que surgian al momento de usar la aplicacién.

En otras oportunidades nos sentabamos al lado y los guidbamos para que usen la
funcionalidad desde una computadora y les ibamos pidiendo feedback al respecto.

Hay muchas formas, pero lo importante mas alla de cdmo se obtiene el feedback, es lo que
uno hace luego con ello.

¢, Como se relaciona el track de Continuous Discovery con las conocidas sesiones de
refinamiento (backlog refinement sessions)[Cohn 2015]? La realidad es que se
complementan. El Continuous Discovery generalmente es previo, ya que tiene que ver con
la creacion y validacion de ideas que luego se podran o no transformar en PBls. Y una vez
que empieza el Discovery no termina nunca, con lo cual en algun momento, cuando
empezamos a hacer refinamiento, vamos a tener las dos actividades en paralelo.

Lo interesante del Discovery es que de alguna manera "filtra" y valida los PBls que luego
seran refinados como parte del track de Delivery, es decir, si hacemos bien el Discovery,
deberiamos tener PBIs a refinar pre-validados y de "mejor calidad" en cuanto a valor
agregado para el producto, y adicionalmente no deberiamos tener PBIs que al refinarlos nos
demos cuenta que son técnicamente inviables, o que aportan poco valor.

Ahora bien, la pregunta es, ;toda "idea" debe pasar por una fase de Discovery antes de ser
refinado en las refinement sessions? Eso depende del proyecto, del equipo, del contexto. A
veces el equipo que lleva adelante el Discovery es cuello de botella, entonces hay que
elegir. Lo ideal seria que, en la medida de lo posible, todo requerimiento o caracteristica
critica de nuestro producto pasara por una instancia de Discovery previo a ingresar al
Product Backlog y ser refinada, y las features menos relevantes quizas puedan ir directo a
las sesiones regulares de refinamiento.

La dedicacién del equipo de Discovery también dependera del contexto y las posibilidades,
teniendo en cuenta siempre que el tiempo y esfuerzo dedicado a esta tarea ayudara a evitar
que ideas o funcionalidades que no son utiles sean analizadas en detalle o incluso
desarrolladas mas adelante (en el frack de Delivery), con lo cual es tiempo bien invertido.

Conclusion

Un efecto colateral y muy positivo de la practica de Continuous Discovery tiene que ver con
la situacion que se presenta continuamente en equipos agiles, que terminan haciendo una
especie de “mini cascada” dentro del marco de Scrum. El Product Owner trabaja en los
‘requerimientos”, que son pasados a los disenadores, quienes generan los artefactos
visuales que finalmente son pasados al equipo de desarrollo para construir y testear la
funcionalidad. Continuous Discovery no se basa en cada rol entregando artefactos a los
demas roles sino que se enfoca en tener al Product Owner, un desarrollador y un disefiador
trabajando juntos, hombro a hombro en la validacion de los PBls.

Las ideas que no son bienvenidas por el usuario, se descartan automaticamente y las que
son bien recibidas se ajustan en base al feedback obtenido y se convertiran en User Stories
que pasaran a formar parte del Backlog. Desde este punto el Product Owner no tendra mas

que priorizar dicha funcionalidad, pero ya con el pleno convencimiento que tiene entre
manos una funcionalidad que sera util para el usuario, usable y factible desde el punto de
vista técnico, con una Ul pre probada y validada y con el simple costo de haber tenidos un
par de reuniones e invertido algo de tiempo en un prototipo.

Pero es muy importante no “casarse” con ninguna idea por mas buena que pueda parecer a
priori y si vemos que no funciona como esperabamos, descartarla automaticamente.

Practicas eficaces para aplicar en
Reuniones (In)eficientes

Por Alejandro Faguaga, @afaguaga

Palabras clave

Proyectos agiles, comunicacion efectiva, colaboracion, ceremonias, reuniones eficientes

Intencion

En muchas organizaciones la palabra reunion es practicamente mala palabra, sinénimo de
pérdida de tiempo, debido a que las reuniones son ineficientes y poco eficaces.

Esto mal predispone a la gente y genera mucha pérdida de tiempo de las personas.

Presentamos aqui una serie de técnicas o practicas muy simples pero eficaces que
permiten conducir reuniones mas eficientes y productivas con un minimo esfuerzo y
organizacioén previa.

Motivacion

La previa

Supongamos que estamos empezando a acompanar a un equipo en su primer proyecto
agil, dentro de una gran organizacion tradicional, un gigante que se mueve muy lento.

Todavia no conocemos bien a los participantes del proyecto, pero como esto de “Agile”
viene muy “sponsoreado” e impulsado desde arriba, nos empiezan a llegar mails e
invitaciones a reuniones compulsivamente.

Una de esas invitaciones dice en el asunto “Revisién de Nuevo Proyecto”. Somos 12
personas invitadas a compartir 2 horas de nuestro tiempo, de las cuales no conozco a casi
nadie.

En el cuerpo de la invitacién no hay una agenda definida tampoco. La reunioén es a la tarde
y no sabemos porque nos invitaron, ni para qué, ni quienes van a participar, o mejor dicho
qué roles van a desempenar en el proyecto.

De la extensa lista de nombres nos parece reconocer a una persona y vamos a su escritorio
a consultarle cual es el objetivo de la reunién. Nos responde que no tiene idea, pero que
debe ser importante porque en la lista de invitados esta su jefe y varios lideres de equipos
gue mantienen sistemas core de la organizacion. Ademas que hay varios “pesos pesados”
de producto.

Volvemos a nuestro escritorio un tanto desilusionados.

La reunion

Entramos a la sala, hay 10 personas que no conozco. Sigue llegando gente hasta que
claramente hay mas personas en la sala de las que habia en la invitacién.

Llega una mujer que saluda y agradece porque estamos ahi, aun sin saber por qué y para
qué. Claramente es la persona que envié la invitacion.

Como el objetivo de la reunién y la agenda no estan para nada claros, hay varios lideres
que “por las dudas” llevaron a un analista y a un desarrollador de su equipo, por si se tratan
temas funcionales o técnicos respectivamente. Esto hace que la cantidad de gente crezca
desmesuradamente.

Empieza la reunién con todos hacinados en la sala y ocurre el caos, nadie sabia para qué
era la reunion especificamente, pero como hay mucha gente invitada, varios aprovecharon
para llevar una lista de sus problemas o inquietudes, que mejor que plantearlas en un
ambito donde estan varios lideres juntos. Se empiezan a plantear entonces muchos
problemas distintos, de forma desorganizada, muchos de ellos no relacionados con nada,
ante el estupor del “organizador” que ve como su reunion se va por cauces inesperados.

Luego de varias discusiones sin un hilo conductor, el organizador logra encauzar la reunién
hacia un tema que si tiene que ver con el proyecto. Para eso ya pasaron 40’ y ya hay varias
personas que se dan cuenta que estan de mas, que no pueden aportar nada y que la
reunion tampoco les esta dejando gran cosa.

Adicionalmente, nos damos cuenta que para terminar de definir algunas cuestiones, esta
faltando gente fundamental que no fue invitada.

Pero claro, como la agenda no era explicita, nadie pudo detectar previamente que esas
personas iban a ser necesarias.

Ya pasada la hora de reunion empieza la catarsis, producto de la frustracién de la mayoria
de los asistentes porque en “esa organizacién siempre pasa lo mismo”, que las “reuniones
no sirven para nada”, que “son una pérdida de tiempo”, etc. Hasta que finalmente se cumple
el horario y nos piden que entreguemos la sala.

Esto es un claro ejemplo de una extensa reunion de mas de dos horas donde se hizo
mucha catarsis pero nada productivo, y se plantearon diversos problemas pero ninguna
solucion. Dos horas de mas de 20 personas totalmente estériles.

Descripcion

Para intentar evitar todo lo anterior se pueden implementar una serie de practicas que nos
permitieron optimizar el tiempo de los asistentes, que no les quite las ganas de volver a
tener una reunién y que por sobre todo sean simples, eficaces y sencillas de realizar, es
decir implementables.

Practicas

Enviar Agenda Visual: basicamente lo que se propone aqui es definir agendas digitales de
manera grafica para incluir en las invitaciones de las distintas reuniones o ceremonias, ya
sean de Scrum o no.

Se muestra en la Figura 7.1 un ejemplo de agenda digital que se podria utilizar para la
invitacién a una reunién de planificacion de Sprint.

Esta practica permite clarificar varios temas, a saber:

e Tener un objetivo claro a cumplir en la reunion: explicitar el proposito de la misma.

e Definir la agenda y el tiempo necesario (Formato de la reunion): que todos sepan
exactamente qué vamos a hacer en la reunién y también lo que NO vamos a hacer
(una especie de DOs & DONTS).

e Ajustar y precisar la audiencia (participantes): describirla de antemano en forma clara,
para que no sobre gente pero también para dar la posibilidad de que si falta alguien los
convocados lo puedan plantear de antemano basandose en el objetivo y la agenda de
la reunién.

¢ |mpulsar “el hacer”: describir en la seccion final de la agenda digital, lo que no podemos
dejar de realizar inmediatamente después de abandonar la reunién (acciones
concretas). En nuestro ejemplo de la Figura 7.1 esta seccion se denomina llamada “Al
finalizar...”

Esta practica ademas de brindar mucha informacién util previa a la reunién, es mucho mas
efectiva que poner el texto en la agenda de la invitacion, ya que por lo general la gente no
se detiene a leer el texto (sobre todo si ve que es muy extenso).

1 SPRINT PLANNING

ﬂhjﬂti'u’o: Lopem ipauny dedor Sit amet, consectetur adiplscing &t

Formato:
- Loremigasurm codor sil amet, consecletur acipiscing ot

- Loeem igrsum dodor sit amie, consecietur aclipiscing et

LaTi-
Como..,

Loeam ipsum dodor sit amet, consectatur acdipiscing i
Lovem ipsum dolor sit amet, consectatur adipiscing <t

bohehe)e

Participantas
Loaem ipsum deolor - Lorem ipsum dador
L orem ipsam dolar Lomem ipsum dolar == |
Ly ipsum dodor - Liremy ipsiam aiodon
Ly igesuim dadar - Loy iprs oy bl
OO and DONTS

.ﬂI 'ﬁnﬂlimr: - Lororm igsum cedor s smel, conses telur acdipiscing ofit
- Eorem ipsurm codor Sit amel, consecbetur acipiscing it
- Loren ipsurm dodor 5i amet, consectatun adipiscing it
- Lorenm ipsuns dobor Sit amet, consechatur adipiscing &it

Figura 7.1. Plantilla para reuniones de planificacién de Sprint

Cronomertar las reuniones: comunmente en las reuniones dedicamos excesiva cantidad
de tiempo a ciertas tareas o discusiones que no llevan a nada productivo por el simple
hecho de que las personas pierden la nocion del tiempo. Cuando definimos de antemano y
de manera conjunta (por ejemplo por votacién) el tiempo que le vamos a dedicar a cada
actividad de la reunién y ademas hacemos explicito y visual el paso del tiempo es increible
como la situacion cambia. Por ejemplo, en algunas reuniones de Inception hemos definido
como equipo que no le dedicariamos mas de 15’ a cada requerimiento para generar las
User Stories iniciales. Esto hizo que las personas tomaran conciencia y optimizaran ese
tiempo por el simple hecho de ver en un cronédmetro el tiempo restante. Esto no significa
que pasados los 15 minutos tengamos que terminar si o si la actividad, quizas solo puede
servir para tomar conciencia de que estamos excediendo el limite y eso nos quitaria tiempo
para analizar el siguiente requerimiento. Otro ejemplo es cronometrar las reuniones diarias
de Scrum. Una vez excedido el limite de tiempo establecido, se puede dar por terminada la
reunién o simplemente hacer saber que nos estamos excediendo. Eso dependera de cada
equipo. Lo importante es tener la nocién del tiempo, tanto el destinado a cada actividad
(time-boxing), como el registro del tiempo transcurrido, siempre presente.

Distribucion de roles y auto-organizacion de tareas: es importante repartir las tareas
simples de forma tal de distribuir los esfuerzos y organizar rapidamente las reuniones. Por
ejemplo, designar quién va a escribir o actualizar las User Stories, quien va a cronometrar

las actividades, quien va a registrar los impedimentos y las acciones a realizar, quien va a
tomar notas para la minuta en caso de ser necesaria o requerida, quien va a facilitar la
reunion, etc. Los roles y asignaciones pueden variar de persona de una reunién a otra y lo
ideal es que las personas se auto organicen para distribuir la carga.

Creacion de posters visuales: siguiendo con la idea que lo visual tiene un gran impacto,
especialmente en organizaciones tradicionales y mas conservadoras, una buena practica es
tener posters visuales que guien la reunion y permitan tener el foco todo el tiempo en lo
importante. En la figura 7.2 y 7.3 vemos ejemplos de posters que fueron creados para una
reunién de revision de Sprint (Sprint Review):

SPRINT REVIEW#\

Loweerm ipesvirm choder sit armet, consocietur
adipiscing =it In gravida ultrices uma Proin NDI’TI th"E"
convallis blandit feuglat. Etiarm ut ipsum
Imperciat, venanatis s e, lobortls mi
Praesant witricies bibardum felis a congue
Integer cpuis lorerm elementum, impesdiat leo

ultricies, dictum rnassa. Integes of sapian IE.FCI'SE'
saplan, Mam cenara lorem au feoglat semper,

Imegen / ':'u_.'-cl sempel scekarlsgue varlus vastibulum)

[090 wiverra pulvinar keem, e tempor metus lacini
ut, Curabdtwr buctus bellis sit amet lacus —

makesuada euBmad tristique.

Figura 7.2. Poster digital para la ceremonia de revision del Sprint

Estos pdsters se pueden imprimir a color en el tamafo que nos parezca util y pegarse en la
sala de reuniones para que todos los vean.

v 4

REVISAR SOFTWARE ‘ i

FUNCIONANDO TEMAS AJENOS REFINAR
AL PROYECTO HISTORIAS

ABIERTOS A i

CAMEBIOS . .
EEEDBACK CATARSIS SOLUCIONAR
DEL PROBLEMAS

NEGOCIO

Figura 7.3. Posters de “DOs & DONTSs” para una reunion de revision de Sprint

Facilitacion Grafica: luego de empezar a usar posters digitales nos fuimos dando cuenta
que en muchas ocasiones realizar afiches graficos o incluso facilitar las reuniones
graficamente “en vivo” tenia aun mas impacto y captaba mucho mas la atencion de la
audiencia. Con lo cual fuimos incorporando esta técnica para transmitir mensajes
importantes o resaltar temas que queriamos que los asistentes se lleven incorporados.

En la Figura 7.4 podemos ver un ejemplo de afiche utilizado para describir a través de la
facilitacion grafica los conceptos basicos de Scrum durante una reunion. Esta lamina fue
creada “en vivo” y de forma colaborativa por los asistentes.

SCRUM
® Historias E!p;inr:.mg — ST
— 1= deusuario Badklog \
F':l L L
—1 | Dl
—— = om
: /
Increment
_r de pracuctn
Epi{aﬁ br.lril'lf /
© | o == e

Figura 7.4. Afiche descriptivo del proceso de Scrum

Mini kick-off: en muchas actividades que involucran varias reuniones o tiempos mas
extensos, como puede ser la Sprint 0 o Inception de un proyecto agil, optamos por realizar
una reunion de kick-off de la actividad, en la cual no se habla de los requerimientos ni nada
especifico del proyecto, sino que se describe que es lo que va a suceder en dicha fase o
actividad en las préximas reuniones, semanas o incluso meses. Esto sirve para bajar la
ansiedad de los asistentes, alinear expectativas, pulir la audiencia que va a participar y
alinear la vision de lo que viene, como asi también para que los asistentes entiendan el
porqué de lo que estaremos haciendo, la importancia de hacerlo, los beneficios aparejados,
las desventajas de no hacerlo y que sientan que las préximas reuniones seran una inversion
y no un pérdida de tiempo.

Conclusion

Existen muchas practicas simples que podemos realizar para optimizar el tiempo y realizar
reuniones o ceremonias mas efectivas. Y adicionalmente a la eficiencia y las practicas
eficaces, siempre es bueno tratar de generar un clima calido y agradable en las reuniones.
Si logramos tener reuniones eficientes y transitar las actividades inmersos en un clima de
buen humor, lograremos que las personas sientan que se llevaron algo, invirtieron su tiempo
y se divirtieron, con lo cual estaremos dando un paso firme en el afan de lograr que esas

personas vuelvan a participar con buena predisposicion cuando sean convocadas. En
definitiva un poco de eso se trata todo esto, lograr buenos resultados y a la vez compartir un
buen momento en equipo.

Introduccidén a Visual Management

Por Soledad Pinter, @solepinter

Palabras clave

Visual management, kanban, tableros.

Intencion

¢, Coémo visualizar el estado de las tareas en curso? ;Qué informacion es importante
compartir con el equipo? ;Cédmo la compartimos?

Motivacion

Cuando trabajamos en equipo, necesitamos conocer los diferentes estados de las tareas en
las que esta trabajando cada integrante. También necesitamos visualizar informacion
valiosa e importante para todo el equipo y muchas veces no sabemos como, ni cual.

Descripcion

El visual management es un conjunto de técnicas de visualizacién para administrar
informacion, en particular en este capitulo sera en contexto del seguimiento de un proyecto.

Aqui encontraras una lista de ideas que se pueden realizar para que los equipos cuenten
con la informacion que necesitan visible cerca de su area de trabajo. Se trata principalmente
del uso de laminas con diagramas UML, frases clave del proyecto en el que trabajan y
laminas con graficas acerca de temas importantes,como por ejemplo: decisiones de disefio,
arquitectura, infraestructura. Todo eso, en las paredes visibles a todo el equipo. Y con
colores que permitan visualizar rapidamente lo que es relevante.

Radiadores de Informacion

El término Radiadores de Informacion (Information Radiators) fue usado por primera vez en
contextos Agiles por Alistair Cockburn. El se referia en particular a los Taskboards, Charts
and Continuous Integration Build Health Indicator.

Todo tipo de recurso que puede ayudar al equipo a mejorar su colaboracion y su
comunicacion los llamamos “Radiadores de Informacion”; en adelante “RI”. Son aquellos
artefactos capaces de transmitir toda la informacion con solo pasar y mirarlos rapidamente.
¢ Qué informacion irradian? Aquella especifica que nosotros queremos que transmita.

La informacion sera leida y tenida en cuenta por aquellos miembros del equipo cuando la
necesiten. Lo importante es tenerla a mano y todo el tiempo disponible.

Ademas, tener informacion disponible y visible a todos, facilita la transparencia y la
autoorganizacion.

Algunos consejos para lograr buenos RI. Estos deben ser:

Accesibles. Deben estar ubicados en un lugar cercano al equipo, para que pueda ser
visible por todos. Si lo ubicamos lejos o dificil de visualizar, pronto dejara de ser Uutil.

Simples. La informacion debe ser precisa, facil de entender y sobre todo facil de mantener
actualizada.

Personalizados. Es importante que el equipo le encuentre sentido al RI, sino no lo van a
cuidar, utilizar y con el tiempo lo van a dejar de usar.

A continuacion enumeramos algunos RI que son faciles de implementar rapidamente y
ayudan a una mejor organizacién, coordinacion y colaboracion del equipo.

Tableros Kanban

Este es el tablero mas famoso y utilizado en los equipos. Con el podemos visualizar el flujo
del proceso y el estado de cada una de las tareas dentro del mismo.

Para identificar las tareas en el tablero utilizamos tarjetas, una por cada tarea. Por ejemplo
se podrian utilizar notas autoadhesivas para cada tarea. Lo importante es que las tareas se
iran moviendo entre las columnas.

La versién mas simple para comenzar, es un tablero de tres columnas de izquierda a
derecha: Para hacer, En Curso y Terminado. En la primera columna: “Para Hacer”,
colocamos todas aquellas tareas que identificamos y aun no comenzamos. Las ubicamos
priorizadas dentro de esta columna: las primeras o mas importantes arriba, y hacia abajo las
de menor prioridad.

En la columna ‘en curso’, ubicamos las tareas que actualmente se estan trabajando. Y en la
tercer columna ‘Terminado’ se ubican aquellas tareas que ya han sido finalizadas.

Kanban apunta a reflejar todo tu proceso sobre el tablero, para ello necesitamos conocer
todos los pasos para concretar una tarea. De esta manera, entendiendo de manera holistica
el flujo de trabajo, podemos aventurarnos a superar la version basica de 3 columnas y

organizar el tablero en nuevas columnas, reflejando en ellas cada etapa que genera valor
dentro del proceso completo.

De esta manera podremos detectar facilmente:

¢ Los cuellos de botella: aquellos pasos del proceso donde las tareas se retrasan o
bloquean mas a menudo.

e Limitacion del trabajo en curso: no comenzar una nueva tarea hasta no terminar la
actual. Disminuyendo asi el tiempo basura entre cambios de multiples tareas.

PARA EN
HACER CURSO TERMINADO

Tardt 5

Taren 3
Tarea 4

Tarea 1

Tewnea 2

Figura 9.1. Tablero Kanban

Una vez ya implementados, y luego de las primeras experiencias, se pueden aplicar estas
sugerencias en el Tablero Kanban Avanzado:

e Tareas de un dia.

e Carril de emergencia: la primera fila del tablero la usamos para colocar aquellas tareas
que entrar de emergencia al backlog, por ejemplo los errores en produccion.

e Tags con nombres: utilizar notas autoadhesivas o algun identificador mas pequeno para
sefalar los nombres de los responsables en la nota autoadhesiva de cada tarea.

e Fotos con los miembros del equipo.

e Métricas como el Leap Time y el Cycle Time permiten conocer, ajustar y mejorar los
tiempos de desarrollo y entrega de una tarea, asi como tambien ayudan a identificar los

cuellos de botella en el proceso.

Calendario del Equipo

Si el equipo se autoorganiza para coordinar y organizar las vacaciones y ausencias
planificadas (turnos médicos, preparacion de examenes, vacaciones), alcanza con imprimir
o dibujar un calendario mensual en blanco en una hoja de papel. Luego, los miembros del
equipo escriben su nombre en los dias que estara fuera de la oficina, Pueden acordar un
simbolo o color distinto para cada tipo de ausencia planificada por estudio, vacaciones, etc.
También se pueden variar los colores 0 simbolos para cada integrante del equipo. Y en
ocasiones, para evitar colapso de informacion podemos tener un calendario en la misma

pared por cada integrante del equipo.

Este calendario debe estar visible junto al tablero de tareas o area de trabajo del equipo

para que todos puedan verlo facilmente.

LUNES

MARTES

MIERCOLES

JUEVES

VIERNES

&
4:.:1- Juan
r

" "'!
4!.‘- Juan

¥, *"l'
-$- Juan

why
@+ Juan
b

£l
4:.:- Jduan
r

5 6 7 8 9
*!- Juan ":!l" Juan "I!:" Jduan ":!l'"!' '.".!:"":!:“
12 13 14) Juan/lucas 15| Juan/lucas 16
‘:!:" Lucas ‘:!:‘ Lucas
19 20 21 22 23
7 leo 7 Leo © Laura
26 27 28 29 30
@ Thomas
3 4 5 6 7

r
“®; Vacaciones 4’ Examen (@ Personal

Figura 9.2.Calendario de Equipo

Criterio de Terminado (Definition of Done)

Cuando el equipo trabaja con historias de usuario, necesita acordar los Criterios de
Terminado, mas alla de los Criterios de Aceptacion de cada Historia de Usuario o Item del
Backlog.

Para ello, se suele colgar una lamina con estos criterios listados, para que todos puedan
tenerlos presentes siempre que necesiten recordarlos.

CRITERIOS
DE
TERMINADO

La historia de usuario cumple los
criterios de aceptacion del PO.

Pasan todas sus pruebas unitarias;

Mo tienen advertencias de
integracién continua;

Porcentaje de cobertura = 60%;

L < < 8«

Cumple estandar UX (Manual de
Estilo):

Figura 9.3. Criterio de Terminado

Matriz de Programacién de a Pares

Cuando un equipo realiza programacion de a pares, es una buena practica llevar registro de
cémo lo hacemos para no repetir u olvidar alguna combinacién. Para eso, dibujamos una
matriz de doble entrada donde en las filas y columnas ponemos los nombres de los
programadores del equipo, con esto logramos una cuadricula de pares. Cada vez que dos
miembros del equipo programaron juntos, colocan una cruz en la celda que intersecta sus
nombres en fila y columna. De esta manera sabremos quiénes restan aun trabajar juntos.

DESARROLLADOR | DESARROLLADOR | DESARROLLADOR § DESARROLLADOR § DESARROLLADOR

1 2 3 4 5
QENRR;LMJDR J

DESARROLLADOR

2

DESARROLLADOR

w
<

DESARROLLADOR

£

DESARROLLADOR

W
<

Figura 9.4. Matriz de Pair Programming

Arana de Dependencias

Es una lamina donde dibujamos todas las dependencias que identificamos como aquellas
que pueden condicionar la entrega de nuestro trabajo.

En la lamina ubicamos al equipo en el centro. Alrededor de éste, simulando las patas de la
arafia, todas aquellas fuentes de dependencias que pueden bloquear o pueden hacer
peligrar la entrega a tiempo de las tareas del equipo.

A un costado de la arafia replicamos estas fuentes en forma de lista bajo el titulo de
“‘Resueltas”. Luego a medida que fuimos atacando cada dependencia acomodamos junto a
cada fuente las tareas que se fueron desbloqueando. Esta métrica sirve para entender qué
tipo de dependencias tiene el equipo y asi poder pensar en acciones para poder
removerlas.

Sprint Information

Cuando trabajamos con metodologia Scrum, siempre es muy util tener junto al tablero de
tareas del equipo los datos importantes correspondientes al Sprint en curso. Sirve a modo
de recordatorio a los miembros actuales y también para ayudar a nuevos integrantes.

En una hoja A4 escribimos aquellos datos que pensamos son complementarios y
necesarios a la hora de transitar un sprint: Numero de Sprint en curso, fecha de inicio y
fecha de fin, Objetivo del Sprint.

ESTAMOS
EN EL
SPRINT

13

“Sprints on steroids”

Er"l’IpEZD al 250216

Terminael 09.03.16

Figura 9.5. Sprint Information

Acuerdos de Trabajo

Cada equipo tiene su dinamica de trabajo. Siempre es bueno al comenzar, establecer entre
todos los miembros del equipo, aquellas reglas o acuerdos que pueden ayudar a la
convivencia y el desempefio del equipo. Por ejemplo: horario laboral, hora de la Daily
meeting , como rotan la facilitacion de las reuniones, a qué temperatura es aceptable el aire
acondicionado y todas aquellas cosas que entre todos accedan a incorporar como "Acuerdo
de trabajo".

ACUERDOS
DE
TRABAJO

@ iMos gusta la musical Y usamos
auriculares para escuchar musica.
G) Daily (que es diaria) inicia a
las 10:30 am.
n 6‘ Muestro dia laboral comienza
i alas@30am,

Cuien falta mas de 4 veces a una daily
durante un sprint: trae torta para todos.

Figura 9.6. Acuerdos de Trabajo

Revision Triangular de Documentos

Por Natalia Baeza, @Naty3Baeza y Virginia Brassesco, @virbrassesco

Palabras clave

Revision por pares, aprendizaje colaborativo, feedback, edicion, documentacion

Intencion

Se presenta un patrén de revision de documentos para tratar de evitar:

e Ambiguedades.

¢ Uso de vocabulario inapropiado.

¢ Redundancias.

e Textos innecesariamente extensos.

e Errores ortograficos.

e Estética general inadecuada para el contexto del documento bajo revision.
¢ Uso de documentacion obsoleta.

Este patron facilita:

¢ E| aprendizaje y maduracion del tema a tratar.

e La comunicacién entre las personas involucradas en la elaboracion de documentos.
e Lla transmision de conocimiento.

e La elaboracion misma del documento.

¢ El mantenimiento de base de conocimientos documental.

Motivacion

Este patron resulta atil cuando un documento, publico o privado, debe ser elaborado y se
requiera feedback para mejorar la calidad del contenido, la redaccion y la presentacion del
mismo.

También puede usarse cuando se desee evaluar y/o ampliar el conocimiento de una
persona sobre un tema dado.

Descripcion

Bajo el paradigma Agil, el cédigo funcionando tiene mas valor que la documentacién como
se puede leer en el [manifiesto agil]. En general hacemos documentos que refieren a algun
producto de software. Sin embargo suele emerger la idea de que éste quedara obsoleto
ante algun cambio en el producto, o que escribirlo nos haria perder tiempo productivo, y por
eso la documentacidn no es prioritaria. Pero, ¢ qué ocurre cuando el documento es el
objetivo de nuestro trabajo, el producto final?

Muchas veces ciertos documentos deben poseer una estructura especifica que podria
introducir ruido al que intenta comprender una idea. Podria ocurrir que el autor principal no
sea experto del dominio o su lenguaje nativo no sea el usado en el documento y, por ende,
le podria faltar vocabulario especifico.

Algo que solemos olvidar es que los textos deben ser comprensibles no sélo para su
redactor, sino para el publico al que estan orientados.

Recordemos ademas que no a todos les gusta escribir y no siempre todos los que
contamos con el conocimiento vamos a tener voluntad de trasladarlo a un texto publicable.
Para que esta tarea no resulte tediosa, trabajar colaborativamente y tener una metodologia
que nos guie puede ser el puntapié inicial.

Partiendo de la bien conocida idea de revision de pares [Crespo-Villena 2005], aplicada a la
elaboracion de textos, se propone un patrén de revision triangular como estrategia de
aprendizaje y asi lograr mejores documentos que faciliten la tarea de compartir
conocimiento.

Aspectos que matizan al patron:

® Roles y tareas: Identificar las funciones de los actores participantes con su tipo de
revision asociada; separar revisiones conceptuales de las ortograficas y gramaticales.

e Expertise: Acceder a “diversidad” de personas que estén calificadas para hacer tu
revision.

e Workflow: Contar con un método practico para seguir el estado del documento.

e Soporte a la comunicacion: Herramientas que faciliten la visualizacion de cambios y el
estado de la revision.

Roles

Son tres (asi naciendo la idea de triangulo), el autor, el revisory el editor.

El autor es quien sabe del tema y quiere exponerlo al mundo, entiende bien de qué se trata
y cual es el alcance del documento. Identificd la necesidad de escribir sobre ello y tiene la
voluntad de hacerlo.

El revisor es el experto, sabe mas o igual del tema que el autor y es capaz de decidir si el
autor se esta expresando bien sobre aquello que quiere contar. Conoce sobre el vocabulario
del dominio y los detalles de qué es bueno decir y qué no, para cada caso.

La pregunta es, ¢por qué no lo escribié él al documento?

Todo documento surge por una necesidad, pues si no hay necesidad no hay motivos para
hacerlo ya que no le aporta valor a nadie. Esa necesidad fue identificada por el autor, quien
es el que conoce la intencidén de plasmar el tema en un documento.

El editor es quien se encarga de darle formato y revisar ortografica y gramaticalmente el
texto. Esto es tan importante como el contenido. Nadie quiere leer un documento con
errores de ortografia, mal redactado o donde los colores cansan la vista. Por otro lado,
puede ser interesante y hasta necesario en ciertas ocasiones, saber a quién pertenece el
documento, introduciendo en él algun simbolo que lo identifique: el autor, la compania o el
nombre del producto (sea comercial o no). El editor debe revisar también que el documento
tenga la informacién necesaria para la publicacién, sea agradable a la vista, y “que cuente
bien la historia”.

Tareas, ¢ Quién se ocupa de qué?

El autor y el revisor evaluan basicamente contenido, definen el estilo de la escritura y
parcialmente formato a sélo efecto de no agregar confusién en el documento por ejemplo
identificando jerarquias de titulos o definiendo colores que no pueden ser de otro modo.
Ademas, el editor debe saber exactamente a qué le esta dando formato, por ende el autor
debe entregar un documento con ideas claras al editor.

El rol del editor es muy distinto al del revisor. El estara concentrado en los aspectos
gramaticales, formato y estilo visual del documento. Sera el encargado de dejar la versién
final publicable. Si es un experto en el idioma de redaccién del documento, puede aportar
en mejoras del estilo de escritura.

Expertise

Escribir sobre un tema implica entenderlo en plenitud. Solo puedes explicarlo bien si puedes
entenderlo muy bien. La revision de un experto en etapas tempranas ayuda al aprendizaje y
balance de conocimiento entre el autor y el revisor. Asi el texto es finalmente construido con
el conocimiento de las partes involucradas, consensuando los alcances del documento
actual y decidiendo qué documentacion elaborar en un siguiente ciclo de revision.

Cuando el revisor cuenta con mayor conocimiento especifico de ese dominio que el autor,
se debe asegurar de que el texto final sea comprensible para el publico al que esta
destinado.

Si en tu equipo diario no encuentras a alguien cercano que cuente con el expertise
para hacer tu revisién, debes buscarlo en otro lugar, si no deberas hacerlo tit mismo
y el resultado sera carente de objetividad y no tendras feedback.

Pero..., ¢ qué pasa si el revisor tiene menor expertise que el autor? 4 Es factible?

La revision que se pretende incorporar en este patron tiene intencion de ser vista como un
meétodo de aprendizaje para todos los que escriben en él, no sdélo para el autor.

Alguien que no domine el tema en plenitud puede aportar valor. Es importante que pueda
tener lugar para formular todas las preguntas necesarias y asi comprender lo que esta
leyendo. A través de estas preguntas el autor puede detectar qué informacion es faltante o
poco clara en el documento.

En este caso, el experto es el autor, y el revisor se introduce en un workflow de revisién
sobre algo pre-elaborado. Notemos que en este caso la confianza del revisor al autor para
poder realizar preguntas y del autor al revisor para dar lugar a edicion es fundamental.
Motivemos al revisor a preguntar, pero también a reformular textos para hacerlos mas
comprensibles.

Este tipo de revision conviene hacerla en etapas avanzadas del documento, cuando éste ya
fue revisado en al menos una iteracién por un revisor experto y el editor. Esa persona debe

estar preparada para modificar un documento que trata de un tema en el que no es experta,
por lo cual no debe ser elegida al azar.

Por supuesto, se puede contar con varias personas para el mismo rol: puede haber mas de
un autor, mas de un revisor y mas de un editor.

Con respecto al expertise del editor, debe conocer bien las reglas del lenguaje en el que se
escribe el documento. En el caso que el documento deba publicarse en un idioma diferente
al usado por el autor, el editor debe contar con conocimientos expertos en ambos lenguajes,
y hasta podria realizar una traduccion del mismo, o crear las versiones necesarias del
documento en diferentes idiomas.

Por otra parte, si el disefio del documento es muy complejo, se podria recurrir a algun
disefiador que colabore agregando estilos graficos, corrigiendo imagenes, y dando el marco
acorde que identifica al documento como parte de una base de conocimiento especifica.

Comunicacion fluida

La interaccion entre las personas que redactan y editan el documento es clave, debe ser
fluida. Esto no implica tener reuniones constantemente para poder redactar cada linea; aqui
prima la confianza en nuestros pares, donde el grupo de revision esta enfocado a lograr un
producto de calidad, construyendo y aprendiendo en el camino.

Antes de comenzar la elaboracion del documento hay que elegir las herramientas que
soporten esta comunicacion.

Un ejemplo muy practico es la plataforma de Google, Google Docs. Lo valioso de esto es
que permite volver atras cualquier cambio realizado e identificar el momento y el autor del
cambio. Por supuesto esto no es para identificar culpables, sino para acudir a esa persona y
entender el cambio si es que no esta claro.

Aqui es necesario comunicarse en tiempo real. Pueden ser utiles herramientas de chat, o
llamados telefonicos. El objetivo es visualizar la traza del cambio, aclarar las dudas de
inmediato y decidir y resolver en funcion de ello.

Y4 -

Workflow: Revision iterativa en ciclos cortos

Para no caer en el cansancio o creencias de que se “pierde tiempo” en un documento, la
redaccién de documentos debe ser de manera iterativa, con el cubrimiento de todos los
roles aportando cambios incrementales pequenos, con lo cual se requiere menos tiempo
para tomar una decision sobre ellos, y por ende son mas simples de incorporar (descartar)
en el documento, o bien crear nuevos documentos a partir de ellos. Ademas asi se
mantienen actualizados a lo que realmente ocurre en ese momento.

Es comun que al elaborar un documento hagamos referencias a otros existentes ya
publicados. Si se descubre un documento obsoleto, es necesario actualizarlo de inmediato
resolviendo lo que esté desactualizado. Si el documento es completamente obsoleto es
recomendable hacer “borron y cuenta nueva”.

Para poder hacer un seguimiento de documentos publicados se recomienda que cada
documento tenga una fecha o version de publicacion que coloque el editor final.

Aun asi, ¢ quién empieza?

El autor es el que da el paso inicial. Manifiesta ideas lo mas claramente posible y en un muy
corto plazo, por ejemplo 1 dia o 2, el revisor ya se hace parte del documento.

Alinea los tépicos, pide explicaciones verbales sobre los mismos (esto puede implicar una
reunion inicial) y da lugar al autor con indicaciones, ideas, ayudas fuertes de como seguir. El
resultado es un acuerdo entre ambas partes.

Si al escribir cualquier cosa del documento hay un “impedimento” se debe acudir de
inmediato al revisor o viceversa (revisor a autor).

Y aqui hemos trazado un canal de ida y vuelta en la comunicacién dando forma a un lado
de nuestro triangulo, Figura 10.1.

=15 g

Muevos textos / Documentos
AUTOR

/7

lterativo

@ “

E
=

REVISOR

Figura 10.1.Interaccion autor-revisor

En esta etapa de la revisidn pueden surgir documentos anexos, secciones no previstas o
nuevos documentos a generar a posteriori. Hasta aqui es claramente una revision de pares.

En estas dos instancias, el editor cumple un rol pasivo. Se le pueden preguntar cuestiones
puntuales pero aun no edita el documento.

Cuando ya hay una version lo suficientemente madura del documento que contenga las
ideas principales del mismo y que estén explicadas de forma clara para autor y revisor, se
hace parte activa del workflow el Editor.

Es posible que el editor no requiera ayuda del autor o revisor para realizar su tarea, pero si
hay algo de fondo que se deba cambiar o alguna idea no esta clara, el editor debe consultar
al autor.

Aqui ya tenemos dos aristas del triangulo

Documento
reuisadc

é AUTOR —
VO AN

Estamos de
acuerdo ITERATIVO
E EDITOR
REVISOR

Figura 10.2. Interaccion autor-editor

Si el autor no es capaz de responder a la pregunta o no esta disponible en ese momento, el
editor debe acudir al revisor.

La tercer arista es mas liviana (editor al revisor y viceversa) ya que quien intermedia cada
revision en el workflow, es el autor.

D
PN

AUTOR
NO DISPONIBLE

Sélo sl el autor ne esta disponible
para dar feedback habilita |a arista EDITOR

bagme, EDITOR - REVISOR
a =% <

REVISOR

Figura 10.3. Interaccion editor-revisor
Este ciclo de 3 etapas, debe repetirse cuantas veces sea necesario.

Durante la generaciéon del documento la revisidn se realiza de manera cruzada e iterativa
hasta tener la version final que también es revisada por el autor previa a su publicacion.

Otros detalles

Cada equipo de revision debe generar su propio mecanismo para saber cuando le toca a
quién (siguiendo el workflow anterior) y no pisarse en los cambios. No es recomendable que
revisor, editor y/o autor hagan cambios en simultaneo sobre la misma parte del documento.
Cada uno debe decir explicitamente si el documento completo o qué parte del él esta lista
desde su perspectiva.

Otro punto inflexible es que aquel que decide que algo debe escribirse de otro modo,
borra lo escrito y escribe su idea. No pide permiso. Esto puede sonar agresivo pero no
lo es y el resultado es favorablemente bueno, ya que quien escribe, lee y elabora su idea
sin pensar en una frase o concepto que ya decidié que debia reformularse. La revisiéon y
elaboracion de la revision es un proceso de aprendizaje. Tomo mi mejor decisién, aprendo y
mejoro mi decision en la siguiente iteracion.

Por esta razén es fundamental que la herramienta de soporte de la edicion, guarde las
versiones y los cambios con autor y timestamp. De ese modo es posible tener y visualizar la
traza a versiones anteriores y resolver dudas aclarando ideas nuevas.

Conclusiones

Este patron se propone como un mecanismo de aprendizaje extendiendo la idea de revision
de pares. Se definen 3 roles principales, cada uno con su expertise aportando valor en un
proceso iterativo de revision.

A la hora de implementarlo seamos concientes que los participantes van a ser enriquecidos
en conocimiento y nos ayudara a mantener la informacion actualizada no solo escrita, sino
también en las mentes de todos los participantes.

De este modo, se facilita la elaboracion de documentos que soporten la gestion del
conocimiento a partir de un documento de calidad, dividiendo y distribuyendo la revision en
pequefas tareas y actuando de forma colaborativa. Aplicado el patron, el producto debe
lograrse en cortos periodos de tiempo dando valor y resolviendo una necesidad actual de
aprendizaje y divulgacion, e incrementando una base de conocimiento que intenta
mantenerse actualizada.

Agradecimientos

Este capitulo se ha realizado utilizando este patron de revisidn triangular a través de 2
iteraciones. Agradecemos a Pablo Tortorella y Nicolas Paez, como revisor y editor
respectivamente, por su colaboracion en la primer iteracién de revision triangular que dio
forma a este documento.

SEF: Sesion Exprés de feedback

Por Leonardo Barrientos Silva, @leobarrientos

Palabras clave

retrospectiva dual, personas, feedback, 5 minutos, retroalimentacion.

Motivacion

Los procesos de maduracién de equipo son, bajo mi punto de vista, muy distintos y pueden
o bien encontrar su 6ptimo al cabo de un par de Sprints o requerir un tiempo no menor de
conocerse y generar confianza. Recordemos que todo es cuestion de relaciones humanas y
comunicacion.

Valores como el compromiso, coraje, foco, respeto y apertura no emergen de forma
espontanea de un equipo sin conocerse. Si bien cada integrate del equipo puede valorar
mas uno que otro y actuar como quiera, claramente no esta asegurado que el equipo tenga
el compromiso de entregar valor al cliente de forma temprana, iterativa e incremental.

Lo que queremos es llegar a un ritmo que permita transmitir tranquilidad a nuestros clientes
para bajar la ansiedad de que el equipo agil esté en su desempefio 6ptimo lo antes posible,
ademas de ser flexibles, y por sobre todo desarrollar de forma incremental con calidad,
Time to Market y con un presupuesto controlado.

Fomentar el sano vinculo dado por relaciones humanas sélidas permitira llevar un proceso
de maduracion mas tranquilo, sostenible y por sobre todo defendible ante el cliente.

Descripcion

Se presenta una actividad que permitird de forma clara entregar feedback a los miembros
del equipo en forma objetiva, respetuosa, certera, oportuna, rapida y concisa para corregir
un comportamiento o accién que provoque un declive en el desemperio del equipo, por
ejemplo alguna mala practica de desarrollo, uso de algun patrén, antipatron de disefio. Es
necesario potenciar el proceso creativo de desarrollo de software.

Comunmente los miembros del equipo no saben como comunicar a sus pares los defectos
que han encontrado en sus desarrollos o cémo enfrentar las situaciones post crisis esto es,
la correccidn de un incidente en produccion producto de un mal patrén de disefo por
ejemplo.

La transparencia y la confianza son claves al momento de construir lazos en los equipos.

La actividad se denomina Sesion Exprés de feedback (SEF) y esta enfocada a que dos
miembros del equipo se comuniquen de tal forma en que uno de ellos da el feedback y el
otro escuche, analice y se propongan acciones de mejora.

La actividad se divide en cuatro fases:

e La primera fase la inicia la persona que quiere dar feedback y consiste en determinar a
quién se le dara, cual es la problematica a comunicar y los hechos concretos.

o Para mostrar claramente la problematica y hacer que la reunién sea expres y no
desviarnos en la conversacioén con cualquier cosa, nos apoyaremos con notas
autoadhesivas para anotar e individualizar los hechos y objetivos.

o Luego se deben priorizar y elegir un solo una nota autoadhesiva. El cual sera el
foco de la reunion.

e Comunicar y Agendar. Es basicamente concertar e invitar a la persona a una SER.

o Se puede enviar una cita electronicamente o directamente se solicita cara a cara.
Se debe privilegiar e incentivar la solicitud verbal cara a cara para favorecer los
lazos humanos.

e Ejecutar la SEF: es la reunion en donde daremos el feedback.

o Los primeros minutos deben destinarse a contextualizar el tipo de feedback.

o Mostrar las notas autoadhesivas a conversar

o Hablar siempre calmado y concentrado.

o Exponer los hechos e interpretaciones para demostrar que te importa el hecho a
discutir. Hablar desde las emociones.

o Pedir que és lo que se quiere.

e Cierre y Compromiso, etapa que busca:

o Conocer la opinién del otro.

o Formular acciones que conduzcan a mantener y mejorar los hechos.

o Formular acciones que generen un compromiso de cambio.

Improvement Kata

Por Hiroshi Hiromoto, @hhiroshi

Palabras clave

mejora continua, generacion de valor, auto-organizacion, kaizen, lean

Intencion

En muchas organizaciones algo recurrente es el deseo por ser mejores en algun aspecto,
ya sea en reconocimiento, en ganancias, en la calidad de su producto o felicidad de sus
colaboradores. Algo igual de recurrente, independientemente de sus desafios, es que existe
una gran dificultad para convertir esos deseos en mejoras concretas y una mayor dificultad
aun, para sostenerlas en el tiempo.

Improvement Kata es un patrén que nos ayuda a lograr convertir esos deseos en mejoras
concretas.

Motivacion

Si bien Improvement Kata puede ser utilizado a diferentes niveles de una organizacion (C-
Level, middle management, areas, equipos, etc), este capitulo estara enfocado en su uso a
nivel de equipo; en particular en equipos que se desenvuelven en el trabajo del
conocimiento.

En estos equipos, independientemente de si estan desarrollando software, definiendo
estrategias, creando campafas de marketing, transformando una organizacion o disefiando
un servicio, existe un alto grado de incertidumbre en como superar los desafios a los que se
enfrentan. Esta caracteristica en particular hace que la posibilidad de crear una planificacién
prescriptiva para afrontar sus desafios sea poco realista, y que aparezca la necesidad de
utilizar un marco que pueda ser adaptativo.

Por ejemplo en el Agile Manifesto [Manifesto 2001], la necesidad de poder generar mejoras
a la forma de trabajo de forma adaptativa se ve reflejada en el siguiente principio agil:

“A intervalos regulares el equipo reflexiona sobre como ser mas efectivo para a
continuacion ajustar y perfeccionar su comportamiento en consecuencia.”

Donde el uso de intervalos de tiempo, permite hacer ajustes y reflexionar sobre los cambios
que se vienen adoptando.

Asimismo, si revisamos la definicion [Scrum Guide 2016] de la reunién de retrospectiva en
Scrum (una practica que se basa en el principio que acabamos de revisar), nos
encontramos con:

“La Sprint Retrospective es una oportunidad para el Scrum Team para inspeccionarse y
crear un plan de mejoras a ser ejecutadas durante el siguiente Sprint.”

Donde los intervalos regulares han sido reemplazados por el Sprint y se hace mas foco en
la inspeccidn que en la reflexion. Ademas, al ser una reunion, la incorporacion de las
mejoras queda fuera del alcance de la misma (dado que se realiza durante el Sprint).

Si tenemos en cuenta que la retrospectiva es la practica mas utilizada [ScrumAlliance 2015]
por los practicantes de Scrum (80%), siendo este el framework mas utilizado en el mundo
agil, uno podria pensar que muchos de los equipos agiles estan constantemente
moviéndose hacia el logro de sus desafios.

Lamentablemente, en mi experiencia, pocos son los equipos que estan logrando mejorar
continuamente con cadencia y resultados tangibles. Muchos podran argumentar que la
mayoria de retrospectivas estan llenas de anti-patrones que las hacen inefectivas (con lo
que estoy de acuerdo), pero creo que no es la unica razon por la que no se ven resultados.

Mi hipotesis (que he ido validando con equipos a los que acompafo) es que hay tres
elementos que hacen falta en la mayoria de sesiones de mejora para que estas sean
efectivas.

e E| primer elemento es la ausencia de un desafio claro y preciso, que vaya mucho mas
alla de “ser mas efectivos” (como dice el principio agil), y que permita generar foco en
las iniciativas de mejora que nos lleven de la pregunta “qué podemos mejorar” a la
pregunta “qué debemos mejorar”.

e El segundo elemento es un mecanismo que nos ayude a recorrer el camino hacia ese
desafio. Que evite que tengamos sesiones Whack-a-Mole (como el juego de arcade),
en donde simplemente estemos reaccionando de forma instintiva ante lo que aparece
al frente de nuestros 0jos, sin tener en cuenta todo el panorama ni las causas raices de
los problemas.

e El| tercery ultimo elemento es la experimentacion sobre los planes de accion como
indica Hiromoto [Hiromoto 2014], que permite hacer foco en los impactos que
queremos generar y amplifique el aprendizaje cuando no logramos esos impactos con
nuestras hipotesis.

Si bien es cierto que he visto equipos aplicar estos tres elementos en una retrospectiva, me
parece mas natural utilizar un patréon que ya las contenga por diseno, y es ahi donde entra
Improvement Kata.

Descripcion

Antes de profundizar en Improvement Kata, quisiera comentar brevemente sobre el
concepto de la kata, ya que da las bases para entender la importancia del patron.

Kata

La kata es un concepto que viene de las artes marciales. De forma general es un patron
que repites continuamente de forma deliberada para generar memoria muscular y luego

realizarlo casi sin pensar. Por ejemplo en la pelicula Karate Kid [Karate Kid 1984], Daniel
repetia el movimiento de encerar y pulir para tenerlo interiorizado y poder utilizarlo en la

pelea de karate de forma natural, casi automatica.

En el caso de Improvement Kata, este es un patron que repetimos para generar una
memoria muscular de mejora, de forma que se vuelva un habito.

Improvement Kata

Improvement Kata [Rother 2009] esta enfocado en ayudarnos a dar pasos que nos permitan
ir acercandonos al desafio mejorando continuamente. A grandes rasgos tiene dos etapas:
una de planificacion y otra de experimentacion, que se repiten ciclicamente.

Etapa de planificacion

En esta etapa se genera la parte estratégica de Improvement Kata, asi como el seteo inicial
que nos permitira experimentar. Existen cuatro elementos a tomar en cuenta:

El desafio

El desafio es aquel reto, alineado con una vision, que tiene el equipo y es el motivo por el
cual se esta usando Improvement Kata. Uno puede decir que ese desafio es relevante
cuando cumple las siguientes tres caracteristicas:

e Direccién: Brinda una direccién al equipo, que les permite avanzar.

e Tensioén positiva: Genera una tension positiva hacia el desafio, parecida a la fuerza de
la gravedad. Ya que la forma en como hacemos las cosas (status quo) genera una
tension que evita cambios, la tensién del desafio debe ser superior para permitir que el
equipo se mueva.

¢ Significado de ganar: Tener un desafio claro nos permite entender qué significa ganar
en nuestro contexto, dentro de la definicion de ganar de Kofman [Kofman 2006].

Situacion Actual

La situacidn actual son los hechos y datos que te dicen dénde esta el equipo hoy en dia en
funcion del desafio. La situacién actual usualmente tiene varios componentes como:

e Diagrama de bloque del proceso: Una representacion de como se hacen las cosas hoy
en dia.

e Meétricas de proceso: Indicadores claves de performance que nos permitan evaluar
cémo funciona el proceso.

e Métricas de resultado: Indicadores claves de performance que nos permitan evaluar el
resultado generado.

e Caracteristicas del proceso: Datos adicionales contextuales que nos ayuden a entender
mejor la situacion.

Siguiente Condicion Objetivo

La siguiente condicion objetivo es la descripcion de donde quiere estar el equipo en un
determinado periodo de tiempo. Funciona como punto intermedio entre la situacion actual y
el desafio. Ademas nos permite enfocarnos entre lo que podemos hacer y lo que tenemos
que hacer.

La siguiente condicion objetivo usualmente tiene varios componentes como:

¢ Fecha limite: Momento en el tiempo en donde el equipo espera estar en la situacién
descrita.

e Diagrama de bloque del proceso: Una representacion de cdmo se harian las cosas.

e Meétricas de proceso: Numeros que deberian alcanzar los indicadores claves de
performance que miden el proceso.

e Meétricas de resultado: Numeros que deberian alcanzar los indicadores claves de
performance que miden el resultado generado.

e Caracteristicas del proceso: Datos adicionales contextuales que deberian ser diferentes
en la situacién descrita.

Algo a tener en cuenta es que una siguiente condicidén objetivo no requiere cambios en cada
uno de los componentes descritos. Esto significa que un equipo puede plantearse una
siguiente condicion objetivo modificando unicamente el valor de un indicador y dejando el
resto tal como esta.

Obstaculos

Los obstaculos son una lista de elementos que te impiden estar en la siguiente condicidon
objetivo. Estos pueden tomar forma de problemas, impedimentos o contextos.

Etapa de Experimentacién

En esta etapa es donde ocurre toda la magia y es el momento en déonde se ponen a prueba
las hipotesis y se genera el aprendizaje.

Ciclos PHVA

Una vez que estan identificados los obstaculos se procede a elegir uno y tratar de
removerlo a través de experimentos. La ejecucion se realiza siguiendo ciclos de PHVA
(Planear, Hacer, Verificar y Actuar), en donde primero se define un experimento que incluye
la generacion de una hipotesis y su resultado esperado. Luego de la definicion del
experimento, se procede a ejecutarlo, para luego revisar los resultados y capitalizar el
aprendizaje.

Algo importante a notar es que Improvement Kata promueve el uso de los experimentos de
factor unico (single-factor experiments), que implican hacer un solo cambio a la vez, lo que
permite capitalizar el aprendizaje de forma mas efectiva.

®

60

TARGET
CONDITION

Entenderla Comprenderla Establecerla PDCA haciala
D|REC{:|GN SITUACION MNEXT TARGET TARGET
ACTUAL CONDITION CONDITION

) A,
© s

Figura 12.1. Improvement Kata

Ejemplo de aplicacion de Improvement Kata

Para hacer mas didactica la explicacion usaré un ejemplo simplificado de aplicacién en un
equipo de desarrollo de software.

Les presento a Juan, Karl, Martin, Carlos y Lisbeth (Team Leader). Ellos son un equipo de
desarrollo que trabaja desarrollando y dando soporte a la aplicacién de ventas de su

organizacion.

EL EQUIPO

428

Juan Martin Kar Carlos Lisbeth

Figura 12.2. El equipo

En la empresa donde trabaja el equipo, el area de tecnologia tiene una visibn comun que
es:

“Ser un brazo estratégico del desarrollo del negocio a través de tecnologia.”

El desafio

Con la vision en mente tanto Lisbeth como el director de IT llegaron a un consenso sobre el
desafio que tienen tomando en cuenta la visién del area:

“Entregar software de valor continuamente con menos del 5% de funcionalidades con bugs
en produccion por release.”

“Entregar software de valor
continuamente con menos del
5% de features con bugs en
produccion por release”

4202

Figura 12.3. El desafio

Entender la
DIRECCION

®

Situacion Actual

Con el desafio claro, Lisbeth se reune con su equipo en el lugar del trabajo, para que juntos
determinen la situacion actual.

Ellos actualmente utilizan un tablero kanban y tienen algunas métricas tanto del proceso
como del resultado. Basado en eso la condicion actual es:

%hele features con bugs en produccidn por release

50
75

o

o o o Achwol
o
A e T Tt
12,5
o Liekno
R20 RZ1 R2: Riz h24 .H'l'llt\ﬂ:'-ﬁ

SITUACION
ACTUAL

60

Figura 12.4. La situacion actual

Nota: La definicion de la situacion actual esta simplificada para el ejemplo.

Siguiente Condicion Objetivo

Una vez conscientes de la situacion actual, Lisbeth junto con el equipo se proponen una
siguiente condicion objetivo que deberia ser cumplida en dos meses. Consiste en reducir el
porcentaje de bugs:

“156% de features con bugs en produccioén por release”

Deadlina
Terode mayo de 2015

“15% de features con bugs en
produccion por release”

MNEXT TARGET

CONDITION

TARGET
COMDITIC

Figura 12.5. La siguiente condicion objetivo

Obstaculos

Ahora que Lisbeth y el equipo tienen una meta clara a cumplir en los dos siguientes meses,
pueden comenzar a pensar en los obstaculos que actualmente estan evitando que estén en
esa situacidon deseada. Luego de un poco de brainstorm, analisis y discusion, llegaron a la
siguiente lista:

Obstéaculos:

- Parte del codigo legado acoplado.

- Solo el 40% del codigo del core esta
cubierto por pruebas unitarias.

- Etc...

4202

Figura 12.6. Los obstaculos

N

OBSTACULOS

De todos estos obstaculo, ellos han decidido atacar el obstaculo en naranja primero.

Con esto el equipo ha terminado la etapa de planificacion de Improvement Kata y estan
listos para iniciar la etapa de ejecucion, es decir, estan listos para experimentar.

Ciclos PDCA

Luego de una conversacion sobre cual deberia ser su primer experimento para buscar
remover el obstaculo seleccionado, Lisbeth y el equipo determinan que probaran lo
siguiente:

e Experimento: Hacer pairing con el tester antes de iniciar el desarrollo de una nueva
funcionalidad.

¢ Resultado esperado: Que el tester tenga contexto del feature y pueda preparar con
tiempo el set de pruebas. Con esto aumentar, en al menos 1 dia, el tiempo de ejecucion
efectiva de pruebas, incluyendo las exploratorias.

EXPERIMENTO | ;QUE ESPERAS? }QUE PASO? APRENDIZAJE

Logem ipsum ool Logam ipsurn chodior
sil armet, comsectetun sil armet, comsectotu
adipiscing elit adipiscing efit

Leram ipsum diolos Lesam ipsum diolor
=it armel, consectelur sit armet, consectetur
adipiscing ehit adipiscing elit

4202

Figura 12.7. Experimentos

CICLO DE COACHING
CONDUCE EL EXPERIMENTO

POCA hacia la
TARGET
CONINTION

®
@Mmﬁ

Finalmente ahora que entendemos como funciona Improvement Kata solo queda resaltar
que dado que las katas estan disehadas para ayudar a la persona a recorrer un camino, es
relevante entender que el uso del patrén tal como esta presentado solo es el inicio. Asi que
hago la invitacién a jcomenzar a recorrerlo!

Guardian de un equipo con multiples
asignaciones

Por Tomas Christie, @tommychristie

Palabras clave

Scrum, mantenimiento, desarrollo, multi-proyecto

Intencion

La intencion de esta técnica es aislar al equipo de las interrupciones, permitiéndoles
desarrollar tranquilos.

Motivacion

En equipos pequefios que atienden multiples proyectos en forma simultanea, los integrantes
suelen sufrir interrupciones permanentemente. Se pierde el foco, existe un costo altisimo de
cambio de contexto y puede traer desmotivacién. En general estas interrupciones son por
fallas en los sistemas, que requieren de atencién inmediata por parte de alguno de los
integrantes del equipo, 0 mas de uno.

Descripcion

Se presenta tipicamente en los casos de equipos pequefios que tienen una gran cantidad
de proyectos, en todas las etapas del ciclo de vida. En estos casos suele suceder que las
tareas de mantenimiento correctivo entran facilmente en conflicto con los nuevos
desarrollos, al punto que en algunos casos se vuelve muy dificil planificar.

Este conflicto tipicamente lleva a que se le dedique poco tiempo a realizar las tareas de
mantenimiento y a que los problemas se solucionan con “parches”, sin resolver realmente el
problema de fondo. Irremediablemente, los parches se empiezan a acumular, parche sobre
parche.

Esta situacion hace que la calidad del software se vuelva progresivamente peor, llevando a
qgue se generen cada vez mas incidencias de mantenimiento correctivo, mas interrupciones,
menos foco por parte del equipo y mas insatisfaccion (tanto del cliente como del equipo).

Se propone tener a alguien que sea el guardian del equipo y que se encargue de que el
resto del equipo no sufra interrupciones (o la menor cantidad posible). En una primera etapa
a este guardian lo podriamos llamar “Bombero”, ya que mayormente atendera urgencias,
estara “apagando incendios”.

Como suele ser una tarea estresante, el equipo de desarrollo establece algun orden ciclico
que incluya a todos. Luego, por sorteo (0 alguna otra manera que el equipo decida), se
selecciona al primer Bombero. Cada desarrollador tiene este rol por una semana, o el
tiempo que el equipo considere conveniente. Personalmente, creo que es importante que
sea un tiempo balanceado. Es decir, lo suficientemente corto como para que no
sobrecargue al Bombero de turno (ya que es una tarea demandante) y lo suficientemente
larga como para que los demas logren descansar del rol.

Cualquier pedido de accién que esté por fuera de la planificacion, debe ser atendido por el
Bombero. Esto en general deberia responder a la resolucién de bugs “urgentes”, del tipo
“necesitamos facturar y no funciona tal o cual cosa”.

Algunas ventajas que vienen por afiadidura:

¢ Distribucion del conocimiento. EI Bombero, al tener que resolver problemas de
cualquier sistema, a la fuerza debe interiorizarse con cada sistema a medida que
requiera atencion.

e Proporciona tiempos de respuesta mas rapidos ante bugs de los sistemas.

e Durante un periodo breve de tiempo, solo uno sufre el constante cambio de contexto y
luego tiene tranquilidad por un periodo proporcionalmente largo.

En general este estado de “bombardeo de bugs al equipo” es inicialmente fuerte y hace que
el Bombero esté constantemente apagando incendios. Después de algun tiempo, esta
situacion tiende a mejorar, gracias a que la figura del Bombero tiene dedicacién absoluta a
estos temas y su tiempo no entra en conflicto con la planificacion.

Cuando esto pasa, la figura del Bombero puede transformarse en la de un “Guardia”. De la
misma manera que antes, el Guardia va rotando semana a semana. Hay dos variantes
posibles para la figura del Guardia:

e Dedicar su tiempo a tareas preventivas o de saneamiento. Por ejemplo, implementar
mas tests, hacer refactoring de cédigo con optimizaciones, etc. Muy probablemente,
esta variante pueda aplicarse primero, a modo de transicién entre el Bombero y la
segunda variante del Guardia.

¢ Al Guardia se lo incluye dentro de la planificacion. Realiza tareas de desarrollo al igual

que el resto, con la salvedad de que es el interrumpible. Es para equipos bastante
evolucionados, con software de alta calidad, donde la incidencia del mantenimiento es
baja. De esta manera, el Guardia colabora con el desarrollo siendo el unico que
“padece” las interrupciones.

Conclusion

La técnica funciona muy bien. Los resultados se ven en el corto plazo. El equipo en general
adquiere un estado mas relajado de trabajo, sabiendo que puede poner todo su foco en el
desarrollo que tiene entre manos, sin tener interrupciones constantes.

En general, las tareas de apagar incendios merma y comienzan las tareas de prevencion y
Guardia. Vemos que al poder dedicarle tiempo a tareas de prevencion, la calidad del
software tiende a subir y las incidencias de bugs caen. jSe ingresa en un circulo virtuoso!

Coding Dojo: técnica de entrenamiento

Por Pablo Tortorella, @pablitux

Palabras clave

Coding dojo, conocimientos, experiencia, practica, entrenamiento

Intencion

Muchas empresas y profesionales creen que el aprendizaje continuo trae grandes
beneficios. Por otro lado, los desafios del mundo globalizado, competitivo y cambiante
muchas veces llevan a los equipos de trabajo a focalizarse exclusivamente en resolver sus
problemas, dejando asi poco espacio para la reflexion, la mejora y la transferencia de
conocimientos.

En este capitulo quiero dar a conocer las ventajas y contar cuales son las caracteristicas de
un método de capacitacion e integracion que considero eficaz, eficiente, divertido y serio al
mismo tiempo. Se trata del Coding Dojo.

Motivacion

Messi entrena a diario. Corre, hace ejercicio fisico y practica jugadas con pelota. Hace
practicas de tiros libres de todo tipo: con barrera, sin barrera, con arquero/portero, sin él,
desde lejos y desde mas cerca. Fue elegido como el mejor jugador de futbol del planeta
tierra, cinco veces. Cinco. Y aun asi, el tipo sigue entrenando. A diario. Y lo mismo hacen
todos los deportistas profesionales y de alto rendimiento. ¢ Por qué lo hacen? Para mejorar
su nivel, para perfeccionarse.

Asi como Messi y los demas deportistas, también los musicos entrenan: ensayan. Aun
siendo autores de las canciones. Aun conociendo cada una de las notas y de los ritmos con
los cuales quieren interpretarlos en un concierto. Aun asi, ensayan una y otra vez los temas,
sus introducciones, sus estribillos y sus finales. Ensayan solos con sus instrumentos y
también ensayan con los demas integrantes de las bandas u orquestas de las cuales
forman parte.

Todas estas personas ejercitan sus habilidades y las potencian mediante practica y mas
practica. Saben que son capaces de mejorar y seguir mejorando. Refinando tanto detalles
gruesos como finos. Mejoras que tal vez para otros sean imperceptibles. Mejoras que se
identifican luego de miles de horas de entrenamiento.

¢ Por qué nosotros, los profesionales del conocimiento, no practicamos, no entrenamos y
no ensayamos? ;Sera nuestro ego? ;Sera un tema cultural? ; Qué tan ciegos nos estan
dejando nuestras urgencias laborales? Creo que debemos cambiar esto: Aun los mejores
en nuestras disciplinas, deberian seguir practicando, practicando y practicando para mejorar
de forma permanente.

Es por eso, porque no practicamos -excepto algunos en los cursos y las carreras
académicas que realizan por fuera del horario laboral- que considero que el Coding Dojo
puede ser de gran utilidad para todos nosotros.

Dojo es una palabra japonesa. Significa "el lugar del camino", que hace alusion al camino
de la perfeccion espiritual, fisica y mental. No es un camino con un destino, sino que es un
camino en el que se ingresa para -ojala- mantenerse toda la vida.

El Dojo, en Japon, es concretamente el lugar fisico en el que se practica, donde se
entrena. Existen dojos para variadas disciplinas, por ejemplo, para artes marciales. En este
caso particular, en el Coding Dojo, se trata de la busqueda de la perfeccion en el uso de las
técnicas agiles de desarrollo de software

Descripcion

Roles

En un Coding Dojo la practica suele hacerse en grupos. Especificamente suelen ser
grupos de 3 participantes. Dentro de cada grupo hay roles y cada rol tiene sus
responsabilidades. Los roles dentro de un grupo son Coder, Co-piloto y Asistente. El Coder
también es llamado Driver, haciendo referencia al conductor de autos de Rally. Es quien
puede tocar el teclado para escribir codigo fuente, con foco en lo que se esta haciendo en
ese mismo momento. El Co-piloto es llamado asi haciendo referencia al acomparnante del
conductor de un auto de carrera; es quien se encarga de pensar estrategias de mas
mediano plazo, poniendo foco en los detalles a mejorar y en los escenarios que se iran
resolviendo a continuacién. El Asistente es como el Co-piloto, con la salvedad de que tiene
una responsabilidad adicional, relacionada con un tablero del cual se habla mas adelante en
este mismo capitulo.

Estos tres roles suelen rotar a medida que se desarrolla la practica, de forma tal que cada
participante pueda practicar todos los roles. Ahondaremos mas adelante al respecto de esta
rotacion.

En todo Dojo, también participa un Sensei. Es quien tiene la responsabilidad de guiar a los
participantes, llamados también aprendices, en el camino de la mejora. También suele
conocer en detalle las técnicas que se practicaran en su Dojo. Debe tener la tolerancia y la
capacidad didactica para lograr compartir sus conocimientos y su experiencia con los
aprendices. También es recomendable que tenga la habilidad de transmitir esos saberes a
diferentes asistentes, por ejemplo, de distintos niveles de experiencia.

Etapas

Un Coding Dojo es un evento que puede realizarse de muy variadas formas. Personalmente
he facilitado mas de 100 dojos en estos ultimos afios a lo largo y ancho del continente
americano y tengo una agenda tentativa bastante refinada que casi siempre consta de las
etapas que describo a continuacion.

Invitacion

Si querés que alguien participe de tu Coding Dojo, deberas -como minimo- avisarle.
Aprovechando el aviso, podés comentarle que se necesitaran computadoras (notebooks,
netbooks, ultrabooks o las maquinas que se puedan conseguir). ;Cuantas se requieren?
Aproximadamente una computadora por cada dos a cinco participantes. Sera provechoso si
ya llevan instalado y configurado, antes de comenzar el evento, algun entorno de desarrollo
(del inglés, IDE: Integrated Development Environment) con algun framework de pruebas
unitarias, como es el caso de JUnit para Java, por mencionar un ejemplo.

En la invitacion también es relevante que asistan con la intenciéon de aprender cosas
nuevas, dado que muchas personas participan de reuniones solo para "difundir todo eso
que ya saben a las personas ignorantes que las rodean" y se pierden grandes
oportunidades de incorporar novedades a sus vidas. También les pido que traigan buena
onda, pues es algo que nunca esta de mas y aporta grandes beneficios.

Preparacion

En todos los casos que facilité un Coding Dojo permiti, exceptuando un solo evento en una
pequena ciudad de la selva en el interior de Peru, que cada participante tuviera su silla o
banqueta para sentarse. En aquel evento académico fueron 60 alumnos y docentes al
Coding Dojo en el que -directivos y quien escribe- calculamos que irian sélo 15. A pesar de
las condiciones, fue un hermoso Dojo en el que, algo incomodos, alcanzamos los objetivos.

Entonces, al preparar tu Coding Dojo deberas tener en cuenta lo siguiente:

1. Calcula cuanta gente entra comoda, y evitaras asi que te pase lo que a mi en el evento
mencionado anteriormente.

Un Coding Dojo que tiene algo ligero para comer y tomar, es un mejor Coding Dojo.

Un Coding Dojo con comida y sin servilletas, sera un desastre para los teclados.

Estos eventos duran entre una y dos horas, aproximadamente.

o k~ 0N

El foco suele tenerlo la practica de desarrollo agil de software, con lo cual vendra bien

que haya interés de los organizadores en practicas tales como Pair Programming

(Programacion de a Pares), TDD (Test Driven Development) y Refactoring, asi como

también conocimiento en principios SOLID de disefio, por mencionar algunos temas

agiles relacionados con el desarrollo de software.

6. Los invitados pueden no saber qué es TDD, Refactoring ni SOLID. Lo aprenderan en el
Dojo. Tampoco necesitan saber como escribir pruebas unitarias.

7. Sibien se espera que los participantes sepan programar, hubo excepciones en las
cuales participaron exitosamente abogados, vendedores y otros perfiles no técnicos.

8. Deberas tener una agenda para presentarles a los que asistan. Posiblemente se

parezca a un listado con los titulos que vienen a continuacion.

Llegada y Presentacion

La llegada al Dojo puede marcar el estado de animo del encuentro. Un ambiente de
recepcion con musica y comida predispone bien a muchas personas. Luego, llegado el
momento de iniciar, se hace una ronda para dar lugar a una breve presentacion de cada
uno de los participantes y de sus intenciones en el Coding Dojo. La disposicion en ronda es
intencional. Su objetivo es la participacion activa, la horizontalidad y la posibilidad de que
todo el que hable pueda ser escuchado y mirado por los demas.

Explicacion de temas

Luego de la presentacién, se da lugar a la explicacion de varios conceptos, siempre y
cuando esto se necesite. Es habitual describir qué es un Coding Dojo, cudles son sus
objetivos, como sera el mecanismo de trabajo y cuales son los roles que se practicaran.
También se suele describir -en mayor o menor detalle- qué es TDD y técnicas de desarrollo
agil, como puede ser Refactoring. En general es util ilustrar estos conceptos con ejemplos
simples y concretos, llevados adelante en vivo, ahi mismo.

A partir de la explicacion de TDD, suelo pedir a los participantes que esquematicen en una
hoja de papel las etapas del ciclo de trabajo que esa técnica propone, llamado RGR (del
inglés Red, Green, Refactor). Con la hoja del ciclo RGR, el Asistente guiara y controlara a

su grupo en el seguimiento del ciclo RGR. El uso que se da a esta hoja se asemeja al que
tiene el tablero en un juego de mesa.

Esta etapa de explicacidon podria durar entre 15 y 45 minutos, dependiendo del grado de
conocimiento que existe al respecto entre los participantes. Y, dado que el objetivo del Dojo
es aprender y mejorar mediante la practica, es importante que la explicacion no dure
demasiado, aun si quedan dudas. Durante la practica y en las conclusiones finales,
muchas de esas dudas suelen resolverse.

El desafio o la Kata

El Coding Dojo fomenta la practica a través de ejercicios concretos y finitos que representen
un desafio y resulten motivadores. Estos desafios no son problemas que los equipos
deban resolver para sus trabajos. Al tratarse de un entrenamiento, se proponen desafios
que les sirvan a los participantes para aprender y mejorar. Los desafios se llevan adelante
mediante la realizacion de una actividad. Esa actividad suele ser una Kata, palabra que en
japonés significa “forma”. Las katas en las artes marciales son ejercicios que se realizan
repetidamente, con el objetivo de incorporar movimientos de forma evolutiva. Asi, en un
combate, luego de muchas repeticiones, esos movimientos se podran realizar naturalmente
sin siquiera pensarlos.

Por ejemplo, una Kata que suelo proponer para aprender TDD es crear un componente de
software que convierta niumeros naturales a niumeros romanos. Si el componente recibe un

“Iu

1 debera devolver “I”, si recibe un 2 debera devolver “II”, si recibe 5 debera devolver “V” y
asi para todos los numeros romanos hasta 3999. El objetivo de la Kata no es resolver el
desafio por completo ni disefiar desde el inicio la solucién final, sino practicar paso a paso,

resolviendo cada una de las partes, tal como propone TDD.

Desarrollo de la Kata

Una vez que los conceptos han quedado claros y se ha elegido una Kata, comienza la
practica. Se invita a los participantes a que se organicen en grupos de 3 integrantes. Si
son pares, que se armen todos los grupos de 3 que sean posibles y finalmente quedara
algun grupo de 4 o de 2. Todo el grupo trabajara en una misma computadora.

Se trabajara en ciclos cortos, también llamados iteraciones. Son periodos de tiempo que
pueden ir entre 5 y 10 minutos. En los Dojos en los cuales hay mayoria de grupos con 3
integrantes, la duracién que he encontrado mas conveniente es de 7 minutos.

Al cabo de los 7 minutos, pedir a los participantes que roten de rol. Entonces el Coder
pasara a ser Co-piloto, el Co-piloto pasara a ser Asistente y el Asistente pasara a ser
Coder. Eso sera asi durante los siguientes 7 minutos. Y asi se repetira durante 4 a 8

iteraciones, aproximadamente. Esta cantidad depende del tiempo que se quiere invertir en
el Coding Dojo.

El Sensei debera estar atento a las necesidades que los grupos puedan tener durante en el
desarrollo de la Kata, compartiendo oportunamente su conocimiento y experiencia. También
podra realizar aclaraciones y comentarios entre ciclos, para compartir con todos los grupos

algun conocimiento o hallazgo que haya ocurrido en algun grupo en particular.

Una posibilidad opcional es fomentar, cada 3 o 4 iteraciones, la rotacion de los grupos para
que los participantes trabajen también con el codigo fuente que fue desarrollado por otros.
El objetivo de esta otra rotacidon es generar mayor conciencia al respecto de la
mantenibilidad, un atributo de calidad esencial en el desarrollo agil de software. Este tipo de
rotacién implica que todo el grupo (o parte del mismo) se mueva a otra computadora y
trabaje alli durante algunas iteraciones. Si alguien del grupo se queda trabajando en la
computadora original, es deseable que comience la iteracion como Co-piloto o Asistente,
para permitir, a sus nuevos comparieros de grupo, que conozcan la solucién que se ha
estado desarrollando antes de su llegada.

Conclusiones y cierre del Dojo

Un rato antes de terminar el encuentro, se suele realizar una nueva ronda. En esta ronda
de cierre, se invita a los participantes a que compartan sus conclusiones, a partir de lo que
han aprendido, de los desafios que se han encontrado, de las emociones y sensaciones
que han sentido. También se los invita a compartir como han pasado en general. Esto ultimo
apunta a que no solamente compartan cuestiones técnicas, sino que también puedan
también conversar sobre lo que les haya resultado relevante a lo largo del Coding Dojo. No
es raro escuchar reflexiones acerca del trabajo en equipo, la distribucién de teclados
ajenos, la tolerancia frente a diferentes formas de pensar soluciones para la Kata y las
inquietudes mas profundas relacionadas con las técnicas que se han estado utilizando
durante la practica.

Para poder mejorar entre un Coding Dojo y el siguiente, es habitual pedir retroalimentacion
a los participantes, para que compartan qué les parecio util, qué les gusto, qué no les gusté
y qué ideas tienen para mejorar de cara al siguiente encuentro.

Conclusion

Habiendo facilitado mas de cien Coding Dojos en estos ultimos cinco afios, tanto en ambitos
comunitarios como académicos y corporativos, puedo asegurar que siempre ocurrio la
magia: gente que aprendioé cosas nuevas relevantes para su dia a dia y que paso a ser mas

consciente. A partir de participar activamente de un Coding Dojo, miles de personas

empezaron a ver cosas a su alrededor que antes no habian visto: Temas técnicos,

metodoldgicos, humanos y tecnoldgicos.

Gracias a esa experiencia, puedo garantizar que organizar eventos del tipo Coding Dojo en

el marco de un equipo, comparfia o comunidad de practica, sirve para:

Difundir y compartir conocimientos de todo tipo.

Fomentar la posterior auto-capacitacion.

Mejorar el uso de técnicas y herramientas.

Ampliar capacidades.

Refinar habilidades.

Establecer bases de un lenguaje comun que mejora la comunicacion.

Crear y mejorar relaciones entre los participantes.

Mejorar potencialmente la calidad del codigo fuente y por ende del producto.
Establecer un ambiente en el cual la mejora continua sea posible y real.

¢ Qué hacés ahi, leyendo? ;Qué esperas para organizar y facilitar tu propio Coding Dojo?

Automatizacion a través de Git hooks

Por Fernando Di Bartolo, @fdibartolo

Palabras clave

desarrollo de software, git, automatizacion, entrega continua

Intencion

Minimizar el error humano a través de la automatizacion de ciertas rutinarias tareas de un
desarrollador de software.

Motivacion

Somos humanos, y por ello, cometemos errores. Por otra parte, en la ingenieria de
software, se menciona el hecho de que cuanto mas tarde se descubre un defecto, mayor es
el esfuerzo necesario para solucionarlo. Dicho esto, desde la perspectiva del desarrollador
de software, si damos por sentado que vamos a introducir errores, defectos, y/o violacion de
estandares, ¢ qué podemos hacer para detectarlos lo suficientemente temprano como para
que corregirlos sea trivial?

A esta altura y por los aios que corren, la respuesta a la pregunta de arriba podria ser:
“escribe tus pruebas unitarias, escribe tus pruebas de integracion, escribe tus pruebas de
interfaz grafica, bla bla bla”. Claramente yo apoyo esta mocion (sujeto al contexto del
proyecto en cuestion), pero aun asi, y lo he visto, no todos los miembros de un equipo de
desarrollo tienen la misma disciplina de correr dichas pruebas antes de enviar sus cambios
al repositorio, o bien, solo corren aquellas que “teéricamente” estan asociadas a su cambio
en el codigo. Entonces, nuevamente, 4 qué podemos hacer?

Descripcion

La idea planteada aqui no es bala de plata para cualquier implementacion, ni tampoco la
Unica. Sin ir mas lejos, existen herramientas que incluso facilitan lo que estoy a punto de
describir, pero la intencién es plantear las bases, mas aun cuando nuestro contexto nos

limita a poder hacer uso de aquellas herramientas (por ejemplo, si trabajamos con un cliente
que ya tiene su set de herramientas predefinido; o bien que por politicas internas, las
herramientas que podriamos usar no estan permitidas).

Los git hooks (ganchos) son pequefos scripts que nos permiten ejecutar acciones en
ciertos puntos del flujo de trabajo. Estas acciones podrian ser por ejemplo:

e Generar un nuevo objeto commit.
e Sincronizar codigo propio con un repositorio remoto.
e Hacer un merge de dos ramas del repositorio.

En pos de mantener la simpleza, aqui mencionaremos solo 3 hooks, aunque la lista es larga
como indica Scott Chacon en su libro “Pro Git”, [Chacon 2009].

Entonces, en lineas generales, un desarrollador debe:

Cumplir con estandares de codificacion.

2. Ejecutar la(s) suite(s) de pruebas localmente, contemos o no con un servidor de
integracion continua.

3. Desplegar codigo a un servidor/entorno de prueba.

Veamos cuales git hooks nos ayudan a lograr que estas tareas rutinarias se ejecuten en el
momento adecuado y de manera automatica, sin riesgo de error humano (errores tales
como olvido o mala lectura del resultado por falta de atencion).

Nos encontramos escribiendo cddigo y guardando los cambios a través del comando git
add. Estamos listos para hacer un commit. Deberiamos ahora ejecutar manualmente la
herramienta para asegurar que nuestros cambios no violan ningun estandar, pero
frecuentemente, es algo que olvidamos y que terminamos chequeando post-mortem. He
aqui un git hook al rescate: pre-commit. Creamos un archivo con ese mismo nombre
dentro de [repo]/.git/hooks, con su correspondiente permiso de ejecucién. Dentro del mismo,
programamos aquello mismo que veniamos corriendo a mano, que dependiendo del
lenguaje de programacion en cuestion, sera usando librerias tales como Rubocop, JsLint o
CodeAnalysis. Una particularidad con este hook es que, llegado el caso que algun estandar
no se cumpla y quisiéramos por ello rechazar el commit, solo tenemos que hacer que el
script retorne un valor distinto de cero.

Tenemos ahora un conjunto de commits listos para empujarlos a un repositorio remoto. Si
no lo hicimos antes, deberiamos ejecutar manualmente nuestro conjunto de pruebas, y
nuevamente, solo lo hacemos cuando nos acordamos. El hook que ahora nos puede ayudar
es el pre-push. Asi como hicimos antes, creamos un archivo con el mismo nombre del hook
(pre-push) y en el mismo lugar fisico ([repo]/.git/hooks). Escribimos dentro de él aquel o
aquellos comandos que corren nuestras pruebas. Ante una prueba fallida, haremos
nuevamente que el script retorne un valor distinto de cero, y el push sera rechazado. Como

habran notado, todos aquellos hooks cuyo nombre comience con pre-, se ejecutan un
instante antes de la accién en cuestion, con lo cual, haciendo que el script retorne un valor
distinto de cero, impedimos que la accion se lleve a cabo.

Por ultimo, necesitamos desplegar codigo a un entorno de pruebas, y esto puede requerir
varios pasos: actualizar esquema de base de datos, minimizar javascripts y/o hojas de
estilo, etc. Tareas rutinarias, algunas facil de saltear, por lo cual, jautomaticemos!
Suponiendo que desplegar implica empujar cédigo a un repositorio remoto (por ejemplo, de
la forma que funciona Heroku), podemos hacer uso del hook post-receive. En este caso, a
diferencia de los 2 primeros, debemos crear el archivo en el repositorio remoto, no en el que
tenemos localmente. Una vez que empujemos cddigo via git push desde nuestro repositorio
local hacia el remoto, el script correra en el servidor, aunque tendremos la posibilidad de ver
el log de ejecucidon desde nuestra maquina, en tiempo real.

En resumen

No todos los pasos o procesos que automatizamos en el contexto de un proyecto, funcionan
tal cual en otro. De la misma manera, la automatizacion esta limitada por la creatividad del
desarrollador; lo importante es hacer una buena lectura del contexto y aplicarla con criterio.

Versionado de codigo, configuracidny
ambientes

Por Nicolas Paez, @inicopaez

Palabras clave

Devops, versionado, entrega continua

Intencion

¢, Coémo organizar el versionado de artefactos de software en un contexto de entrega
continua?

Motivacion

Desde una perspectiva de entrega continua toda aplicacion es cédigo ejecutandose en un
determinado ambiente con una determinada configuracion. Algunos fanaticos podrian
insistir en que los datos son también parte de la aplicacion, pero este es un punto que
puede resultar muy polémico y por ello se dejara de lado en esta ocasién. Entonces
tenemos:

cédigo + configuracion + ambiente

Por ambiente entendemos como minimo una maquina (fisica o virtual) con un cierto sistema
operativo con determinado software de base, por ejemplo: un servidor de aplicaciones o un
servidor web. En la actualidad existen diversas herramientas que permiten especificar los
ambientes en forma de cédigo (Chef, Puppet, Ansible, etc). Entonces con una vuelta de
rosca mas tenemos:

cédigo de la aplicacion + configuracion de la aplicacién + cédigo que describe el ambiente
de la aplicacion.

Finalmente como nuestra aplicacion debera evolucionar a lo largo del tiempo, agregaremos
a nuestra lista un paquete de cédigo adicional que describa cémo instalar/desplegar nuestra
aplicacion, con su correspondiente configuracion, en su correspondiente ambiente. Pasando
en limpio, podemos decir que toda aplicacion se compone entonces de 3 artefactos:

e El cddigo fuente.
e La configuracion.
¢ Los scripts de despliegue.

En un contexto de entrega continua es necesario gestionar y versionar cada uno de estos 3
artefactos. La pregunta es entonces como hacerlo.

Descripcion

Estos tres artefactos tienen un frecuencia de cambio distinta: el codigo fuente suele estar en
constante modificacién, mientras que los scripts de despliegue suelen ser mucho mas
estables y en algunos casos no recibir cambios por semanas o0 meses. La frecuencia de
cambio de la configuracion de la aplicacion se encuentra en un punto intermedio, no esta en
constante cambio pero tampoco es tan estable como los scripts de despliegue.

Por otro lado, dependiendo del contexto organizacional, pueden definirse distintas politicas
de acceso a estos artefactos. En algunas organizaciones es muy comun que el equipo de
desarrolladores no tenga permisos para acceder a los parametros de configuracion del
ambiente productivo. También suele ocurrir que los scripts de despliegue de la aplicacion
sean administrados por personas ajenas al equipo de desarrolladores (usualmente
personas del area de operaciones).

Estas dos cuestiones, frecuencia de cambio y permisos de acceso, son las que nos motivan
a separar estos tres artefactos del proyecto en diferentes repositorios.

El primer repositorio es el que almacena el codigo fuente de la aplicacion. Dependiendo de
la complejidad del proyecto, puede haber mas de un repositorio para el cédigo fuente. Un
caso tipico de esto son las arquitecturas basadas en microservicios, donde cada
microservicio suele tener su propio repositorio.

El segundo repositorio es el que almacena la configuracion de la aplicacién. Este repositorio
tiene tipicamente un branch por ambiente (por ejemplo: desarrollo, testing, produccion) ya
que la configuracion de la aplicacion suele variar de un ambiente a otro. Hay que destacar
que estos branches nunca se mezclan, sino que evolucionan a la par. Cuando la aplicacion
requiere de un nuevo parametro de configuracién, el mismo debe ser agregado
simultaneamente a cada uno de los branches con el valor correspondiente al ambiente
asociado.

Finalmente el tercer repositorio es el que contiene los scripts de despliegue. Dependiendo
de la infraestructura del proyecto pueden ser simplemente scripts de Bash o de alguna
herramientas especifica como Ansible, Puppet o similar.

Referencias

[Agiles 2015] Agiles 2015, VIII Jornadas Latinoamericanas de Metodologias Agiles,
Montevideo, Uruguay - agiles2015.agiles.org

[Adzic 2014a] Adzic, Gojko. (2014). User stories should be about behaviour changes.
gojko.net Recuperado de: https://gojko.net/2014/02/12/user-stories-should-be-about-
behaviour-changes/

[Adzic 2014b] Adzic, Gojko. (2016) ABE15 (Agile By Example) Make Impact Not Software
YouTube: https://youtu.be/-HpOMEENIil

[Adzic-Evans 2014] Adzic, Gojko & Evans, David. (2014) Fifty Quick Ideas to Improve your
User Stories. Neuri Consulting LLP.

[AOC 2016] Sitio del Agile Open Camp 2016, Descripcion del Mecanismo San Saru -
www.agileopencamp.com.ar/index.php/sansaru

[Buonamico 2013] Buonamico, Damian , Visual Story Mapping Aplicado, disponible en linea:
http://www.caminoagil.com/2013/02/visual-story-mapping-aplicado.html, como estaba en
Febrero de 2016.

[Cagan 2012a] Cagan, Marty, Continuous Discovery, disponible en linea:
http://www.svpg.com/continuous-discovery/

[Cagan 2012b] Cagan, Marty, Dual Track Scrum, disponible en linea: http://svpg.com/dual-
track-scrum/

[Chacon 2009] Chacon, Scott, Pro Git, Apress, 2009

[Cockburn 2008], Cockburn, Alistair, Shu Ha Ri, disponible en linea:
http://alistair.cockburn.us/Shu+Ha+Ri, como estaba en febrero del 2016

[Crespo-Villena 2005] Raquel M. Crespo Garcia, Julio Villena Roman, Revisién entre pares
como instrumento de aprendizaje. Una experiencia practica, Universidad Carlos Il de
Madrid Serie de innovacion docente, Marzo 2005.

[Fowler 2014] Fowler, Martin, ShuHaRi, disponible en linea:
http://martinfowler.com/bliki/ShuHaRi.html, como estaba en febrero del 2016

[Garzas 2015] Garzas, Javier, Inception en contextos agiles: dejemos las ideas claras desde
el primer momento, disponible en linea: http://www.javiergarzas.com/2015/09/inception-en-
contextos-agiles.html, como estaba en Febrero de 2016.

https://gojko.net/2014/02/12/user-stories-should-be-about-behaviour-changes/
https://youtu.be/-Hp9MEENliI
http://www.caminoagil.com/2013/02/visual-story-mapping-aplicado.html
http://www.svpg.com/continuous-discovery/
http://svpg.com/dual-track-scrum/
http://alistair.cockburn.us/Shu+Ha+Ri
http://martinfowler.com/bliki/ShuHaRi.html
http://www.javiergarzas.com/2015/09/inception-en-contextos-agiles.html

[Hiromoto 2013] Hiromoto, Hiroshi, Visién - Bonus Track: Product Vision Board, disponible
en linea: http://scrumorganico.com/blog/visi%C3%B3n-bonus-track-product-vision-board,
como estaba en Febrero de 2016.

[Jared 2014] Jared, Jeremy. (2014). Stories versus Themes versus Epics. Navigating the
Waters en Scrum Alliance Member Articles Recuperado de:
https://www.scrumalliance.org/community/articles/2014/march/stories-versus-themes-
versus-epics#sthash.aqJoq80Z.dpuf

[Karen 2013] Karen, Martin, Value Stream Mapping: How to Visualize Work and Align
Leadership for Organizational Transformation, McGraw-Hill Education, 2013.

[Larsen y Nies 2011] Larsen, Diana y Nies, Ainsley, Liftoff: launching agile projects and
teams, Onyx Neon Press, 2011.

[Libro 2015] Disponible en linea en:
https://www.gitbook.com/book/nicopaez/libroagileaoc2015/

[Manifiesto agil] Disponible en linea en: http://www.agilemanifesto.org/iso/es/, como estaba
en Febrero de 2015

[Cohn 2015] Product Backlog Refinement (Grooming), disponible en linea:
https://www.mountaingoatsoftware.com/blog/product-backlog-refinement-grooming

[Mock Objects] Mock Objetcs, disponible en linea: http://www.mockobjects.com/
[Patton 2014] Patton, Jeff, User Story Mapping, O’Reilly, 2014.

[Pichler 2013] Pichler, Roman, Product Vision Board, disponible en linea:
http://www.romanpichler.com/tools/vision-board/, como estaba en Febrero de 2016.

[Rasmusson 2010a] Rasmusson, Jonathan, The Agile Samurai: How Agile Masters Deliver
Great Software, The Pragmatic Bookshelf, 2010.

[Rasmusson 2010b] Rasmusson, Jonathan, The Agile Inception Deck, disponible en linea:
https://agilewarrior.wordpress.com/2010/11/06/the-agile-inception-deck/, como estaba en
Febrero de 2016.

[Roman 2006] Roman José, Los 3 monos misticos, 2006 -
http://www.emezeta.com/articulos/los-tres-monos-misticos

[Steinberg-Palmer 2003] Steinberg, Daniel H. & Palmer, Daniel W. (2003). Extreme Software
Engineering A Hands-On Approach. Upper Saddle River, NJ, EE. UU. : Prentice-Hall, Inc.

[Suzuki 1987] Suzuki, Shunryu, Mente Zen, mente de principiante, Estaciones, 1987

http://scrumorganico.com/blog/visi%C3%B3n-bonus-track-product-vision-board
https://www.scrumalliance.org/community/articles/2014/march/stories-versus-themes-versus-epics#sthash.aqJoq80Z.dpuf
https://www.gitbook.com/book/nicopaez/libroagileaoc2015/
http://www.agilemanifesto.org/iso/es/
https://www.mountaingoatsoftware.com/blog/product-backlog-refinement-grooming
http://www.mockobjects.com/
http://www.romanpichler.com/tools/vision-board/
https://agilewarrior.wordpress.com/2010/11/06/the-agile-inception-deck/
http://www.emezeta.com/articulos/los-tres-monos-misticos

[Wake 2003] Wake, Bill. (2003). INVEST in Good Stories, and SMART Tasks XP123 -
Xplorations Recuperado de: http://xp123.com/xplor/xp0308/index.shtml

[Wendel 2013] Wendel, Stephen. (2013). Designing for Behavior Change: Applying
Psychology and Behavioral Economics. Boston, MS, EE. UU. : O'Reilly Media.

http://xp123.com/xplor/xp0308/index.shtml

	Introducción
	San Saru: selección natural de equipos
	Integración de prácticas para lanzamiento de proyectos de software
	Value Stream Mapping
	Elaboración de historias de usuario centradas en comportamiento
	Técnicas de OnBoarding para la gestión de conocimiento
	SHU-HA-RI: Un Modelo de Aprendizaje
	Continuous Discovery: Validación de ideas para el Backlog
	Prácticas eficaces para aplicar en Reuniones (In)eficientes
	Introducción a Visual Management
	Revisión Triangular de Documentos
	SEF: Sesión Exprés de feedback
	Improvement Kata
	Guardián de un equipo con múltiples asignaciones
	Coding Dojo: técnica de entrenamiento
	Automatización a través de Git hooks
	Versionado de código, configuración y ambientes
	Referencias

