


0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Tabla	de	contenido
Introducción

San	Saru:	selección	natural	de	equipos

Integración	de	prácticas	para	lanzamiento	de	proyectos	de	software

Value	Stream	Mapping

Elaboración	de	historias	de	usuario	centradas	en	comportamiento

Técnicas	de	OnBoarding	para	la	gestión	de	conocimiento

SHU-HA-RI:	Un	Modelo	de	Aprendizaje

Continuous	Discovery:	Validación	de	ideas	para	el	Backlog

Prácticas	eficaces	para	aplicar	en	Reuniones	(In)eficientes

Introducción	a	Visual	Management

Revisión	Triangular	de	Documentos

SEF:	Sesión	Exprés	de	feedback

Improvement	Kata

Guardián	de	un	equipo	con	múltiples	asignaciones

Coding	Dojo:	técnica	de	entrenamiento

Automatización	a	través	de	Git	hooks

Versionado	de	código,	configuración	y	ambientes

Referencias

Herramientas	Agiles

2



Introducción
Por	Nicolás	Paez,	@inicopaez

Sobre	este	libro
Durante	la	primera	edición	del	Agile	Open	Camp	celebrada	en	2015,	escribimos	un	libro	que
titulamos	Experiencias	Ágiles:	Relatos	de	experiencias	del	uso	de	métodos	ágiles	en
Argentina	[Libro	2015].

Cuando	se	anunció	el	Agile	Open	Camp	2016	y	se	estableció	el	sistema	de	inscripción
basado	en	postulaciones	y	propuestas	(ver	capítulo	San	Saru:	selección	natural	de
equipos),	envié	inmediatamente	mi	postulación	proponiendo	la	escritura	de	un	segundo	libro
que	continuase	la	tradición	establecida	en	el	primer	AOC.	Este	libro	es	la	materialización	de
esa	propuesta.

A	diferencia	del	primer	libro	que	reunía	experiencias,	este	segundo	libro	reúne	un	conjunto
de	técnicas.	Considero	que	esta	es	una	evolución	natural,	o	sea,	en	primera	instancia	uno
enfrenta	diversas	situaciones	las	cuales	permiten	ir	ganando	experiencia.	Luego,	a	partir	del
análisis	de	esas	experiencias	es	posible	descubrir	patrones	y	generalizarlos	en	técnicas
reutilizables	en	situaciones	similares.

Los	capítulos	han	sido	escritos	de	forma	totalmente	independiente	por	distintos	autores
siguiendo	una	mínima	estructura	dada	por	4	secciones:

Palabras	clave
Intención
Motivación
Descripción

Dentro	de	esta	estructura	de	primer	nivel,	cada	autor	tuvo	la	libertad	de	agregar	sub
secciones	acorde	a	la	técnica	presentada.

Algunas	de	las	técnicas	presentadas	son	creaciones	originales	de	los	autores	de	este	libro,
mientras	que	otras	son	creaciones	de	terceros	que	han	sido	descriptas/refinadas	por	los
autores	aquí	presentes.

El	primer	capítulo	del	libro	no	tiene	relación	directa	con	el	desarrollo	de	software,	sino	que
describe	el	método	utilizado	para	la	selección	de	participantes	del	AOC	2016.

Herramientas	Agiles

3Introducción



Orden	de	lectura
Los	capítulos	pueden	ser	leídos	en	cualquier	orden	ya	que	como	se	mencionó
anteriormente,	son	totalmente	independientes	y	su	orden	de	aparición	no	sigue	ningún
criterio	particular.	El	libro	ofrece	una	interesante	diversidad	de	técnicas,	algunas	de	índole
técnica	y	otras	más	orientadas	a	cuestiones	de	organización.

Créditos
Autores:	Thomas	Wallet,	Tomás	Christie,	Pablo	Lischinsky,	Pablo	Tortorella,	Juan	Daza
Arévalo,	Vanesa	Savino,	Omar	Fernández,	Alejandro	Faguaga,	Soledad	Pinter,	Virginia
Brassesco,	Natalia	Baeza,	Leonardo	Barrientos	Silva,	Hiroshi	Hiromoto,	Fernando	Di
Bartolo,	Nicolás	Paez

Revisión:	Natalia	Baeza,	Virginia	Brassesco	y	Nicolás	Paez

Figuras:	Juan	Daza	Arévalo

Arte	de	tapa:	Mauro	Strione

Foto	de	tapa:	Diego	Gómez

Idea	y	coordinación:	Nicolás	Paez

Agradecimientos
A	Mariano	Correa,	Rosemery	Restrepo,	y	Deiby	Ordóñez	Díaz	por	su	colaboración	en	el
proceso	de	escritura	y	revisión.

A	los	sponsors	del	Agile	Open	Camp	2016,	su	apoyo	fue	fundamental	para	la	realización	del
evento:

Agilar
FDV	Solutions
Patagonian	Tech
INVAP
Kleer
PetroVR
Micracel
Kinetica

Herramientas	Agiles

4Introducción



San	Saru:	selección	natural	de	equipos
Por	Thomas	Wallet,	@WalletThomas	y	Tomás	Christie,	@tommychristie

Palabras	clave
auto-organización,	descentralización,	propuesta	de	valor,	selección,	san	saru

Intención
En	abril	del	2015	se	realizó	el	primer	Agile	Open	Camp	(AOC),	cuyos	tres	fundadores
(Mauro	Strione,	Tomás	Christie	y	Thomas	Wallet)	no	tenían	experiencia	alguna	en
organización	de	eventos.

Si	bien	fueron	rápidamente	respaldados	por	otros	organizadores	más	experimentados,	se
pusieron	a	la	venta	50	entradas	con	poca	expectativa	de	venderlas.	A	pesar	del	período	de
fiestas	de	fin	de	año	y	vacaciones	de	verano,	a	las	3	semanas	se	habían	agotado	todas	las
entradas.	Luego,	se	habilitó	la	venta	de	25	entradas	más	al	doble	de	precio,	que	se
agotaron	en	menos	de	una	semana.	Cuando	finalmente	se	cerraron	las	inscripciones,
quedaron	más	de	30	personas	en	lista	de	espera.

Para	la	segunda	edición	del	AOC	se	amplió	la	capacidad	a	100	personas	y	desde	las
primeras	charlas	de	organización,	surgió	la	preocupación	de	evitar	una	selección	de
participantes	basada	en	una	carrera	contra-reloj	por	comprar	entradas.

Durante	otro	evento	de	la	comunidad	ágil	[Ágiles	2015],	se	formó	un	pequeño	grupo	luego
de	las	actividades	del	día,	que	debatió	apasionadamente	para	revisar	ideas	previas	y
explorar	alternativas	superadoras	al	mecanismo	anterior	de	inscripción.	Tomando	como
base	una	idea	original	de	Mauro	Strione	de	selección	distribuida	logramos	entre	todos
asentar	las	bases	del	mecanismo	de	inscripción	San	Saru,	que	se	describe	más	adelante.

Motivación
Partiendo	del	supuesto	que	la	demanda	de	entradas	para	el	AOC	iba	a	superar
ampliamente	la	cantidad	disponible,	se	diseñó	el	mecanismo	de	inscripción	llamado	San
Saru	con	el	objetivo	de	cumplir	con	las	siguientes	características:

Descentralizado,	para	que	la	selección	no	dependa	de	un	comité	restringido.

Herramientas	Agiles

5San	Saru:	selección	natural	de	equipos



Activo,	para	que	los	interesados	tengan	que	exponer	sus	motivaciones.
Abierto,	para	que	los	criterios	de	selección	no	sean	pre-definidos	ni	cerrados.
Asincrónico,	para	poder	ejecutar	en	paralelo	sus	distintas	etapas.

Descripción

Metafora	San	Saru

San	Saru	es	un	término	japonés	que	se	puede	traducir	como	“los	tres	monos	sabios”.	Entre
las	múltiples	explicaciones	existentes	del	concepto,	destacamos	la	siguiente	[Román	2006]:

Cuenta	la	leyenda	que	tres	monos	fueron	enviados	por	los	dioses	para	delatar	y	castigar	las
malas	acciones	de	los	humanos:

Kikazaru,	el	mono	sordo,	era	el	encargado	de	utilizar	el	sentido	de	la	vista	para
observar	a	quienes	realizaban	malas	acciones	y	comunicárselo	a	Mizaru,	mediante	la
voz.
Mizaru,	el	mono	ciego,	no	necesitaba	su	sentido	de	la	vista,	puesto	que	tan	sólo	se
encargaba	de	transmitir	al	tercer	mono,	Iwazaru,	los	mensajes	que	le	pasaba	Kikazaru.
Iwazaru,	el	mono	mudo,	escuchaba	los	mensajes	transmitidos	por	Mizaru	para	decidir
la	pena	de	los	dioses	que	le	caería	al	desafortunado	humano	que	lo	mereciese	y
observar	que	se	cumpliese.

Colocados	los	tres	monos	según	sus	habilidades	y	limitaciones,	obtenemos	un	mono	que
ve,	otro	que	escucha	y	otro	que	habla.	Los	monos,	juntos	y	organizados,	pueden	alcanzar
metas	que	no	lograrían	por	separado.	Si	bien	existen	varias	posibilidades	de	colocar	a	los
tres	monos,	todas	ellas	son	situaciones	de	comunicación	fallida	o	de	colaboración
imposible,	excepto	una:	Kikazaru	(sordo)	>	Mizaru	(ciego)	>	Iwazaru	(mudo).

La	metáfora	San	Saru,	con	su	fundamento	de	integración	por	afinidad	y
complementariedad,	inspiró	el	mecanismo	de	inscripción	del	AOC,	con	sus	dos	etapas:
postulación	y	selección.

La	postulación

Se	solicita	a	los	interesados	en	participar	del	AOC	postularse,	contestando	las	siguientes
preguntas:

¿Qué	puedo	aportar	yo	al	evento?	¿Por	qué	el	evento	va	a	ser	mejor	con	mi
participación?
¿Qué	espero	recibir	del	evento?	¿En	qué	creo	que	me	va	a	ayudar?
¿Quién	soy?	¿Cuál	es	mi	ocupación,	formación,	empresa/institución,	pasión,	etc.?

Herramientas	Agiles

6San	Saru:	selección	natural	de	equipos



Todas	las	postulaciones	son	públicas.

La	selección

El	San	Saru	Primario,	compuesto	por	los	tres	fundadores	del	AOC	inicia	la	selección	de	los
participantes.

Cada	uno	de	los	tres	miembros	del	San	Saru	Primario	elige	a	dos	personas	postuladas
para	formar	un	nuevo	San	Saru	Secundario,	con	las	siguientes	restricciones:

Mis	propios	criterios:	cada	persona	elige	dos	participantes	evaluando	las
postulaciones	para	que	el	evento	sea	el	mejor	posible	de	acuerdo	a	sus	propios
criterios.
Una	persona	desconocida:	se	sugiere	elegir	por	lo	menos	una	postulación	de	una
persona	que	no	sea	compañero	de	trabajo,	de	estudio,	o	cercano	por	otra	vía,	para
evitar	el	sesgo	de	pertenencia.

Se	comunica	a	las	nuevas	personas	elegidas	su	selección,	lo	cual	habilita,	por	un	lado	su
inscripción	al	evento,	y	por	otro	lado	su	responsabilidad	de	generar	un	nuevo	San	Saru
Terciario,	eligiendo	dos	personas	cada	una	dentro	de	las	postulaciones	restantes.

Figura	1.1.	Ejemplos	de	San	Saru	Primario,	Secundario	y	Terciario.

Se	repite	el	ciclo	hasta	generar	todos	los	San	Saru	necesarios	para	cubrir	las	vacantes
disponibles	con	las	personas	seleccionadas.	Si	bien	la	etapa	de	postulación	se	inicia	un
tiempo	antes	que	la	etapa	de	selección,	una	vez	iniciada	la	etapa	de	selección	las	dos	se

Herramientas	Agiles

7San	Saru:	selección	natural	de	equipos



desarrollan	en	paralelo	hasta	agotar	las	vacantes	disponibles.

Resultados

El	primer	experimento	de	inscripcion	San	Saru	para	el	Agile	Open	Camp	2016	[AOC	2016]
arrojó	los	siguientes	resultados:

Se	inició	la	etapa	de	postulación	el	1/12/2015,	recibiendo	119	postulaciones	hasta	el
25/2/2016,	de	las	todas	fueron	seleccionadas.
Se	inició	la	etapa	de	selección	el	23/12/2015,	generando	119	selecciones	hasta	el
26/2/2016,	de	las	cuales	24	personas	no	se	inscribieron	o	cancelaron	su	inscripción	por
motivos	varios.

Conclusión

(Des)control

Una	vez	armadas	las	herramientas	de	soporte,	hechas	las	explicaciones	correspondientes
[AOC	2016],	y	generadas	las	selecciones	del	San	Saru	Primario,	el	mecanismo	San	Saru
empezó	a	funcionar	por	sí	solo,	sin	necesidad	de	intervención	por	parte	de	la	organización
sobre	sus	resultados.

Se	necesitaron	algunas	comunicaciones	de	seguimiento	para	evitar	que	los	seleccionados
demoren	su	inscripción	al	evento	y/o	su	elección	de	postulantes.	También	se	centralizaron
en	un	grupo	de	6	personas	las	tareas	de	comunicación	de	los	pasos	a	seguir	para	la
inscripción	al	evento.

En	varias	oportunidades	surgió	la	tentación	de	intervenir	para	frenar	estas	comunicaciones
para	demorar	las	selecciones	posteriores	(por	ejemplo	cuando	quedaban	pocas
postulaciones	disponibles	para	elegir),	pero	al	final	no	hubo	grandes	intervenciones	por
parte	de	la	organización	y	se	dejó	fluir	solo	el	mecanismo	San	Saru.

Lo	que	aprendimos

Se	diseñó	el	experimento	de	inscripciones	San	Saru	para	el	AOC	suponiendo	que	las
entradas	habilitadas	eran	pocas	para	el	público	interesado,	lo	cual	no	se	cumplió:	todas	las
postulaciones	fueron	elegidas,	y	sobraron	5	vacantes.

Identificamos	algunas	oportunidades	de	mejora:

Dejar	más	tiempo	entre	el	inicio	de	las	postulaciones	y	el	inicio	de	las	selecciones,	para
lograr	mayor	volumen	de	postulaciones.
Evitar	los	meses	de	diciembre	y	enero,	en	los	cuales	suele	haber	mucha	carga	de

Herramientas	Agiles

8San	Saru:	selección	natural	de	equipos



actividad	laboral	y	personal,	dificultando	el	esfuerzo	requerido	para	las	postulaciones.
Facilitar	las	postulaciones	de	personas	con	poca	experiencia	en	este	tipo	de	evento	o
metodologías,	ya	que	expresar	el	valor	que	uno	puede	aportar	al	evento	puede	generar
cierta	inhibición.

El	experimento	también	permitió	refinar	sobre	la	marcha	varios	aspectos	logísticos	y	de
comunicación	del	mismo,	lo	cual	seguramente	habilitará	futuros	usos	más	fluidos.

A	pesar	de	estas	limitaciones,	el	balance	del	experimento	es	positivo.	Se	destaca	en
particular	lo	bien	que	funcionó	la	auto-organización,	la	diversidad	y	riqueza	de	los	criterios
de	selección	que	aportó	cada	uno,	y	la	sana	reflexión	de	cada	postulante	para	definir	sus
motivaciones	de	participación.

Quizás	se	pueda	extrapolar	el	mecanismo	de	selección	San	Saru	a	otros	dominios	para	los
cuales	sea	útil	tener	un	mecanismo	de	selección	descentralizado	y	auto-organizado	basado
en	propuestas	de	valor.

Herramientas	Agiles

9San	Saru:	selección	natural	de	equipos



Integración	de	prácticas	para	lanzamiento
de	proyectos	de	software
Por	Pablo	Lischinsky,	@pablolis

Palabras	clave
Acta	de	proyecto,	visión	del	producto,	empoderamiento	de	equipos,	alineamiento,	gestión
de	producto.

Intención
Para	dar	inicio	a	un	proyecto	de	desarrollo	de	software	(o	relanzar	uno	en	marcha),	existen
varias	técnicas	que	aportan	valor.	Sin	embargo,	es	conveniente	combinarlas	para	tener	una
mejor	visión	compartida	del	proyecto	y	preparar	adecuadamente	al	equipo	de	delivery
(más	que	desarrollo)	y	demás	participantes	e	interesados	en	el	desafío	a	enfrentar

Motivación
En	una	empresa	de	desarrollo	de	software	surgió	la	necesidad	de	relanzar	un	proyecto
relacionado	a	un	producto	core	en	el	área	de	gestión,	específicamente	liquidación	de
haberes.	Se	trataba	de	un	producto	legacy	con	más	de	10	años	en	el	mercado	que
evolucionó	en	distintas	direcciones	a	necesidad	de	cada	cliente.	Al	plantearse	relanzar	el
producto	con	versiones	web	más	modernas	y	una	versión	mobile,	fue	necesario	re-delinear
el	alcance	y	la	visión	del	proyecto.	No	había	un	equipo	unificado	ni	de	soporte	ni	de
desarrollo,	había	pocas	personas	con	conocimiento	profundo	del	producto	y	había	poca
documentación	del	mismo.

Descripción
Cuando	se	inicia	un	proyecto	es	conveniente	que	el	Product	Owner	o	Agile	Product
Manager,	junto	al	equipo	de	delivery,	la	gerencia	y	otros	involucrados	como	clientes	y
responsables	financieros,	creen	y	mantengan	actualizada	la	visión,	el	propósito,	la	hoja	de
ruta	y	el	alcance	del	producto,	es	decir,	contextualizar	el	mismo.	El	objetivo	es	mantener	al

Herramientas	Agiles

10Integración	de	prácticas	para	lanzamiento	de	proyectos	de	software



equipo	alineado	y	con	foco	para	evitar	malentendidos	y	retrabajo,	buscando	siempre	la
esencia:	la	simplicidad	inherente	en	cada	proceso	o	sistema	que	aporta	mayor	valor	al
negocio.

Técnicas	y	herramientas

Las	técnicas	Agile	Inception	Deck	[Rasmusson	2010a]	y	[Rasmusson	2010b]	y	User	Story
Mapping	[Patton	2014]	y	[Buonamico	2013],	fueron	desarrolladas	para	aplicarse	en	este
contexto	de	lanzamiento	de	proyectos	de	software.

Agile	Inception	Deck

Consiste	en	diez	actividades	de	alto	nivel	realizadas	en	forma	de	taller	participativo	para
intentar	contextualizar	el	proyecto:

Cinco	para	crear	y	consensuar	una	visión	de	alto	nivel:
Preguntar	por	qué	estamos	aquí.
Crear	un	elevator	pitch.
Diseñar	una	caja	de	producto.
Crear	la	lista	de	los	NO.
Conocer	a	los	vecinos.

Cinco	para	consensuar	cómo	llevarlo	a	tierra:
Muestra	la	solución.
Qué	te	quita	el	sueño	en	la	noche.
Determina	su	tamaño.
Lo	que	va	a	dar.
Qué	se	va	a	tomar.

User	Story	Mapping

Es	una	herramienta	que	permite	generar	una	representación	visual	de	un	sistema	completo.
Ofrece	una	vista	general	de	todas	las	funcionalidades	que	lo	componen.	Permite	identificar
y	planificar	Releases	cortando	en	rebanadas	(slicing)	y	visualizando	cómo	se	distribuyen	las
funcionalidades	de	acuerdo	a	las	diferentes	áreas	del	sistema.

También	puede	verse	como	una	forma	de	reorganizar	el	Product	Backlog	en	dos
dimensiones,	una	dimensión	para	el	tiempo	y	otra	dimensión	para	las	funcionalidades.

Actividades	a	realizar:

Identificar	los	procesos	de	negocio,	su	desglose	en	actividades	y	secuencia.
Identificar	los	usuarios	y	las	actividades	que	realizan.

Herramientas	Agiles

11Integración	de	prácticas	para	lanzamiento	de	proyectos	de	software



Identificar	las	funcionalidades	del	software	a	construir.
Representarlos	visualmente	como	un	mapa	con	notas	autoadhesivas.
Priorizar	las	actividades	por	valor	de	negocio,
Agruparlas	en	Releases.

La	idea	es	descubrir	juntos	el	contexto	del	proyecto	realizando	estas	actividades	en
forma	de	taller:	es	una	búsqueda	activa	de	todos	los	involucrados,	para	evitar	cometer
errores	en	la	toma	de	decisiones	basadas	en	asunciones	falsas.

Otras	técnicas

Sin	embargo,	es	conveniente	combinarlas	con	otras	técnicas,	como	por	ejemplo,	el	Product
Vision	Board	[Pichler	2013]	y	[Hiromoto	2013]	y	otras	actividades	de	planificación	y
preparación,	ver	[Larsen	2013],	para	tener	una	mejor	visión	y	para	mejor	preparar	al	equipo
de	delivery	y	demás	interesados.

¿Cómo	hacerlo?

Planificar	y	preparar	reuniones	de	trabajo	con	todos	los	involucrados,	incluyendo	al	equipo
de	delivery,	al	promotor	del	proyecto,	a	los	analistas	de	negocio,	soporte	y	otros
interesados.	No	descuidar	los	detalles:	espacio	adecuado	(amplio,	luminoso,	silencioso),
materiales,	refrigerios,	sin	interrupciones,	etc.

Desarrollar	juntos	las	distintas	actividades	relacionadas	a	establecer	un	acta	del	proyecto
(agile	chartering),	todo	esto	en	forma	de	talleres	para	apoyar	el	lanzamiento	del	proyecto
(liftoff).	¡Aquí	hay	mucho	espacio	para	la	facilitación,	participación	con	creatividad	y
diversión!	¡La	idea	es	crear	y	compartir	conocimiento	mediante	el	ensayo	y	el	error!

¿Qué	se	logra?

Algunos	logros	con	estas	actividades	de	lanzamiento	de	proyectos	son:

Que	los	involucrados	se	conozcan	y	den	a	conocer	al	grupo	su	experiencia,	destrezas	y
expectativas.	Si	los	participantes	no	se	conocen	es	recomendable	utilizar	dinámicas
para	romper	el	hielo	y	ayudar	a	crear	un	ambiente	de	trabajo	en	equipo.
Que	todos	los	involucrados	participen	en	crear	una	visión	compartida	del	producto
y	una	hoja	de	ruta	del	mismo,	usando	una	o	varias	de	las	técnicas	mencionadas:

Una	Agile	Inception	Deck.
Un	tablero	de	Visión	del	Producto.
Un	User	Story	Mapping	que	da	origen	a	un	plan	de	entregas	y	a	una	primera
versión	de	alto	nivel	del	backlog.

Se	fortalece	al	equipo	y	se	crea	un	mayor	sentido	de	propósito	y	empoderamiento.

Herramientas	Agiles

12Integración	de	prácticas	para	lanzamiento	de	proyectos	de	software



Se	definen	los	roles	y	las	responsabilidades.
Se	establecen	acuerdos	de	trabajo,	tales	como	canales	de	comunicación	y
almacenamiento	de	la	documentación,	frecuencia	y	lugar	de	las	reuniones	y
ceremonias,	horario	de	trabajo,	herramientas	a	utilizar,	etc.
Se	aclaran	los	recursos	requeridos	y	asignados	al	proyecto.
Se	estudian	las	dependencias	con	otros	proyectos.
Se	analizan	y	priorizan	los	riesgos	y	se	establece	una	estrategia	para	irlas	despejando
en	el	tiempo.
Se	crea	documentación	mínima,	preferiblemente	usando	técnicas	de	facilitación	gráfica,
que	estará	visible	para	todos	los	interesados	y	que	servirá	para	el	proceso	de	inserción
de	nuevos	miembros	al	equipo	(onboarding).
Se	nivelan	las	destrezas	de	los	miembros	del	equipo	en	aspectos	de	metodológicos
tales	como	principios	y	valores	del	agilismo	y	del	proceso	a	utilizar,	por	ejemplo	Scrum.
Se	definen	y	programan	otros	talleres	para	nivelar	o	desarrollar	otras	competencias
técnicas.
Se	comienza	a	crear	un	ambiente	de	alta	colaboración,	transparencia,
compromiso	y	seguridad.
¡Celebrar	juntos	el	trabajo	realizado!

Resumen

Algunas	de	las	actividades	propuestas	pueden	solaparse	y	en	una	primera	impresión,
confundir	a	quienes	las	usan.	Sin	embargo,	ayudan	a	reforzar	el	aprendizaje	y	el
entendimiento	compartido,	así	como	a	validar	distintos	aspectos	del	proyecto	desde
diferentes	puntos	de	vista.

Las	herramientas	a	utilizar	dependen	también	del	contexto	de	negocio	y	de	la	etapa	en	que
se	encuentra	el	producto	dentro	de	su	ciclo	de	vida.

Estas	actividades	de	lanzamiento	aportan	valor	también	para	aquellos	proyectos	en
ejecución:	en	contextos	complejos	e	inciertos	(como	lo	son	casi	todos	los	proyectos	de
software)	de	vez	en	cuando	es	necesario	hacer	un	alto	para	reflexionar	y	responderse:
¿quiénes	somos?	¿qué	hemos	hecho?,	¿dónde	estamos	hoy?,	¿hacia	dónde	vamos?,
¿cuáles	son	los	desafíos,	restricciones,	riesgos	y	oportunidades?

[Larsen	2013]	nos	provee	una	visión	más	amplia	y	de	cierta	forma	integradora	que	la	que
provee	cada	herramienta	por	separado,	centrada	en	el	equipo	de	delivery	y	demás
involucrados	y	que	nos	ayuda	a	responder,	de	forma	activa,	estas	interrogantes.

Herramientas	Agiles

13Integración	de	prácticas	para	lanzamiento	de	proyectos	de	software



Value	Stream	Mapping
Por	Pablo	Tortorella,	@pablitux	y	Pablo	Lischinsky,	@pablolis

Palabras	clave
Lean,	procesos,	optimización,	visualización,	eficiencia

Intención
Si	un	equipo	tiene	un	objetivo	claro	y	todos	sus	integrantes	quieren	alcanzarlo,	es	probable
que	quieran	optimizar	su	forma	de	trabajar	para	lograr	ese	cometido.	Si	el	objetivo	está
relacionado	con	la	realización	de	tareas	o	actividades	que	se	repiten,	estarán	frente	a	uno	o
más	procesos.	En	ese	contexto	de	optimización	de	procesos,	existe	una	técnica	que
permite	visualizar,	analizar	y	trabajar	en	su	optimización.	Su	nombre	original	es	en	inglés:
Value	Stream	Mapping	[Martin	2013].	Se	trata	de	una	técnica	que	se	suele	llevar	adelante
en	reuniones	grupales	(aunque	también	podría	ser	realizada	individualmente)	en	las	que	se
trabaja	con	elementos	y	características	del	proceso	que	se	desea	optimizar.

Esta	técnica	es	una	forma	de	bajar	a	tierra	los	principios	Lean,	oriundos	del	mundo	de	la
manufactura	y	muy	utilizados	también	más	tarde	en	industrias	de	diversa	índole.	En	Lean,
todo	el	esfuerzo	se	dedica	a	mejorar	los	procesos	de	forma	tal	que	se	logre	minimizar	el
tiempo	entre	que	un	cliente	realiza	una	solicitud	y	esa	solicitud	se	transforma	en	el	producto
o	servicio	requerido.	Suele	utilizarse	tanto	en	procesos	producción	como	en	servicios.

Un	ejemplo	que	puede	ilustrar	los	conceptos	que	se	mencionan,	es	el	caso	de	un
restaurante	y	una	familia	que	decide	comer	allí	el	viernes	por	la	noche.

Motivación
Dar	a	conocer	una	técnica	que	puede	potenciar	a	los	equipos	que	quieran	mejorar	sus
procesos	para	alcanzar	sus	objetivos	con	mayor	eficiencia,	focalizados	en	el	valor	que
aportan	a	sus	clientes	y	en	la	disminución	del	desperdicio	que	generan	en	el	camino.

Descripción

Herramientas	Agiles

14Value	Stream	Mapping



El	Value	Stream	Mapping	significa	mapear	(es	decir,	crear	un	mapa)	con	el	flujo	de	valor.

En	un	taller	de	Value	Stream	Mapping,	suelen	llevarse	adelante	los	siguientes	pasos:

Trabajo	sobre	el	flujo	de	valor	actual.
Elección	del	Proceso	que	se	quiere	mejorar.
Selección	del	inicio	y	el	final,	dejando	por	fuera	lo	que	ocurre	antes	del	inicio	y
después	del	final.
Identificación	y	visualización	de	las	actividades	que	forman	parte	del	proceso.
Identificación	de	los	tiempos	que	llevan	la	realización	de	dichas	actividades.
Identificación	de	los	tiempos	de	espera	que	hay	entre	las	actividades.
Cálculo	del	lead	time.
Selección	de	las	actividades	que	aportan	valor.
Cálculo	de	la	eficiencia	del	proceso.

Optimización	del	flujo	de	valor.
Diseño	de	un	experimento	para	mejorar	el	proceso.
Cálculo	de	la	hipotética	nueva	eficiencia	del	proceso.

Experimentación	y	análisis	posterior.
Llevar	adelante	el	experimento.
Realizar	un	nuevo	análisis	con	los	resultados	del	experimento.

A	continuación	se	detalla	cada	uno	de	los	pasos.

Trabajo	sobre	el	flujo	de	valor	actual

Elección	del	Proceso

Saber	qué	proceso	queremos	mejorar	es	un	buena	forma	de	comenzar.	Se	dejarán	de	lado
todos	los	demás	procesos	en	los	cuales	el	equipo	participa.	Tener	foco	posibilita	un	mejor
análisis	que	potencie	el	flujo	de	valor	(también	conocido	como	cadena	de	valor	o	cadena
crítica).

En	el	caso	del	restaurante,	se	podrían	elegir	distintos	procesos.	Se	tomará	uno	en
particular:	recibir	y	dar	de	comer	a	una	familia,	un	viernes	por	la	noche.	Se	dejarán	de	lado
en	este	análisis	la	limpieza	nocturna	del	salón	luego	de	cerrar	el	local,	la	preparación	del
salón	para	abrir	el	local,	la	compra	de	insumos	para	la	cocina,	la	difusión	y	el	marketing	que
se	hace	en	redes	sociales	y	otros	procesos	que	hacen	posible	que	el	restaurante	opere
normalmente.	El	foco	de	la	sesión	de	trabajo	será	la	cena	de	la	familia.

Selección	de	Inicio	y	Fin

Herramientas	Agiles

15Value	Stream	Mapping



Dado	que	todo	proceso	tiene	su	contexto,	es	necesario	elegir	puntos	desde	y	hasta	los
cuales	se	realiza	el	análisis.

En	el	ejemplo,	se	tomará	como	punto	de	inicio	el	momento	en	el	que	la	familia	entra	a	local
y	como	punto	de	fin	el	momento	en	el	que	sale	del	mismo.	Queda	fuera	del	análisis	la	forma
en	la	cual	la	familia	se	enteró	de	la	existencia	del	restaurante,	el	trayecto	desde	la	casa
hacia	el	restaurante	y	viceversa.

Identificación	de	Actividades

En	esta	etapa	se	desglosa	el	proceso	en	actividades.

Es	aquí	donde,	durante	el	taller	Value	Stream	Mapping,	suelen	aparecer	las	notas
adhesivas	de	colores:	cada	actividad	queda	representada	en	un	papel.	También	se	puede
dibujar	el	flujo	en	una	hoja	que	esté	visible	para	todos	los	participantes	del	taller.

Una	de	las	ventajas	de	usar	notas	adhesivas,	en	comparación	con	los	dibujos,	es	que	con
las	notas	adhesivas	se	puede	modificar	fácilmente	tanto	el	nombre	de	una	actividad
(descartando	la	nota	y	usando	una	nueva)	como	también	el	orden	relativo	entre	actividades
(despegando	las	notas	adhesivas	y	cambiándolas	de	lugar),	sin	tener	que	borrar	o	tachar	lo
que	se	ha	dibujado.

Algo	valioso	de	esta	etapa	es	la	búsqueda	de	un	lenguaje	común.	Cuando	se	van
mencionando	las	actividades	y	se	van	escribiendo	sus	nombres	en	el	mapa,	pueden
aparecer	diferentes	formas	de	nombrar	cada	actividad.	La	identificación	de	los	puntos	de
vista	da	lugar	a	una	conversación	al	respecto	que	suele	servir	para	llegar	a	acuerdos	y
unificar	el	lenguaje.

Es	habitual	que	en	este	momento	ya	empiecen	a	surgir	ideas	para	mejorar	el	flujo	de	valor.

En	el	ejemplo	del	restaurante,	las	actividades	podrían	ser:	Sentarse	en	una	mesa,	Elegir	y
ordenar	la	comida,	Llevar	el	pedido	a	la	cocina,	Cocinar,	Llevar	la	comida	a	la	mesa,	Comer,
Pedir	la	cuenta,	Pagar	e	irse.

Identificación	de	Tiempos	de	las	actividades

Luego	de	identificadas	las	actividades	del	proceso,	se	procede	a	trabajar	con	métricas.	El
llamado	Process	Time,	también	conocido	como	Cycle	time	o	Value-added	time,	es	el	tiempo
que	lleva	cada	actividad	o	una	parte	parcial	del	proceso.	Es	un	tiempo	necesario	para
agregar	valor.

Si	los	tiempos	se	han	medido,	se	utilizan	directamente	esos	datos.	Si	no	se	han	medido,	se
puede	apelar	pragmáticamente	a	la	memoria	y/o	a	la	estimación	de	los	participantes	del
taller.

Herramientas	Agiles

16Value	Stream	Mapping



En	el	ejemplo,	el	tiempo	que	lleva	cada	actividad	podría	medirse	en	minutos	o	en	minutos	y
segundos,	dependiendo	de	qué	tipo	de	análisis	o	mejora	se	quiere	llevar	adelante.	En	otros
casos	se	podrían	usar	días	o	alguna	otra	unidad	de	medida.

Sentarse	en	una	mesa	(1	minuto),	Elegir	y	ordenar	la	comida	(10	minutos),	Llevar	el	pedido
a	la	cocina	(2	minutos),	Cocinar	(18	minutos),	Llevar	la	comida	a	la	mesa	y	servirla	(4
minutos),	Comer	(25	minutos),	Pedir	la	cuenta	(2	minutos),	Pagar	(10	minutos)	e	Irse	(1
minuto).

Identificación	de	Tiempos	de	espera

También	se	miden	tiempos	entre	actividades.	El	tiempo	en	espera	-o	Idle	time-,	es	el	tiempo
que	transcurre	esperando	a	que	una	actividad	sea	realizada	o	esperando	a	ser	pasado	a
una	próxima	etapa	o	actividad.

En	el	ejemplo:	Esperar	una	mesa	disponible	(5	minutos),	Esperar	al	camarero	para	pedir	la
comida	(5	minutos),	Esperar	a	que	los	cocineros	comiencen	a	procesar	el	pedido	(1	minuto),
Esperar	al	camarero	para	que	lleve	la	comida	a	la	mesa	(3	minutos),	Esperar	al	camarero
para	pedirle	la	cuenta	(5	minutos),	Esperar	el	vuelto	(3	minutos).

Cálculo	del	Lead	Time

El	Lead	Time	o	Throughput	time,	es	el	tiempo	total	transcurrido	entre	el	momento	en	que
se	recibe	una	solicitud	de	trabajo	hasta	que	el	cliente	está	satisfecho.

Lead	Time	=	Process	Time	+	Idle	time

En	el	ejemplo,	la	sumatoria	total	de	los	tiempos	de	actividades	y	de	espera	da	95	minutos.
Es	el	tiempo	que	pasa	entre	el	momento	en	el	cual	llega	la	familia	para	comer	y	el	momento
en	el	que	sale	satisfecha	del	restaurante.

Selección	de	actividades	que	aportan	Valor

De	la	secuencia	de	las	actividades	se	determinan	aquellas	que	le	dan	valor	al	cliente	final.
El	criterio	para	definir	si	una	actividad	aporta	o	no	aporta	valor	suele	estar	basado	en	el
punto	de	vista	del	cliente	y	debería	validarse.

En	el	ejemplo,	las	actividades	que	aportan	valor	a	esta	familia	son:	Elegir	la	comida	(pues
hay	platos	que	en	su	casa	no	pueden	preparar),	Cocinar	(pues	es	tiempo	que	la	familia
dedica	a	compartir	conversaciones	en	lugar	de	estar	cocinando)	y	-por	supuesto-	Comer.

Cálculo	de	la	Eficiencia

Herramientas	Agiles

17Value	Stream	Mapping



Esta	y	todas	las	etapas	previas	sirven	para	establecer	el	modelo	actual	del	flujo	de	valor.

El	cálculo	de	la	eficiencia	se	mide	a	partir	de	la	división	del	tiempo	de	actividad	entre	el
Lead	Time	en	porcentaje.

En	el	ejemplo,	el	tiempo	de	actividades	valiosas	es	53	minutos	y	el	tiempo	total	es	95.	La
eficiencia	del	proceso	es	de	55,8%.

Optimización	del	flujo	de	valor

Diseño	del	experimento	de	mejora

En	esta	etapa	se	rediseña	el	modelo	del	flujo	de	valor	a	partir	de	un	experimento,	el	cual
luego	será	llevado	adelante.	El	experimento	cuenta	con	una	hipótesis	que	se	pretende
validar	o	refutar.	La	hipótesis	suele	estar	relacionada	con	las	mejoras	resultantes	de
remover	algún	cuello	de	botella	específico.

Lo	primero	que	se	hace	es	identificar	los	tipos	de	desperdicio	presentes	en	el	flujo.	También
son	llamados	restricciones	o	cuellos	de	botella.	Por	ejemplo:	esperas,	retrabajos,
transportes	innecesarios	o	trabajo	en	progreso	y	no	terminado.

Una	vez	identificados	todas	las	restricciones	críticas,	se	priorizan	y	se	diseña	una	mejora
concreta	alrededor	de	las	más	crítica.	Algunos	ejemplos	de	mejoras	concretas	son:	agrupar
tareas,	unificar	actividades,	agregar	recursos	o	capacitar	personas.

Siempre	se	recomienda	utilizar	la	ley	de	Pareto:	con	pocos	cambios	se	pueden	lograr
grandes	impactos	para	disminuir	el	Lead	time	y/o	aumentar	la	eficiencia.

En	el	ejemplo	del	restaurante,	se	puede	pensar	en	varias	optimizaciones	posibles
analizando	cuál	es	más	factible	y	conveniente	teniendo	el	cuenta	las	restricciones
económicas	u	otras.	Una	optimización	en	particular	puede	ser	mejorar	los	tiempos	de
espera	relacionados	con	el	pago	y	el	vuelto.	Para	esto,	los	camareros	llevarán	consigo	los
instrumentos	necesarios	para	cobrar	(POS,	del	inglés	Point	of	Sales)	y	el	dinero	suficiente
para	dar	el	vuelto	en	el	momento.	Se	espera	que	ese	tiempo	de	espera	del	vuelto
desaparezca	y	que	el	pago	tarde	solo	5	minutos.	Ahora	el	Lead	Time	sería	87.

Cálculo	de	nueva	eficiencia	esperada

Hacemos	una	estimación	de	la	nueva	eficiencia	esperada	con	la	optimización	del	flujo	de
valor,	pasando	por	el	cálculo	del	tiempo	de	actividades,	tiempos	de	espera	y	Lead	time.

Con	la	mejora	realizada,	si	el	experimento	tiene	éxito,	sería	60,9%.

Es	decir,	la	eficiencia	mejora	en	un	5,1%	y	el	Lead	time	se	redujo	en	un	8,42%.

Herramientas	Agiles

18Value	Stream	Mapping



Experimentación	y	análisis	posterior

Fuera	del	alcance	del	taller	del	Value	Stream	Mapping	nos	abocamos	a	implementar	los
cambios	identificados,	llevando	adelante	un	experimento	y	analizando	los	resultados.

Aquí	se	evalúa	el	nuevo	modelo	implementado	y	pasamos	a	repetir	el	ciclo:	siempre	habrá
posibilidades	de	mejora.

En	el	caso	del	restaurante	el	experimento	controlado	se	podría	realizar	con	alguno(s)	de	los
camarero(s)	en	determinados	turnos,	luego	de	lo	cuales,	se	deberá	repetir	el	ciclo
contemplando	los	nuevos	tiempos	observados.

Herramientas	Agiles

19Value	Stream	Mapping



Elaboración	de	historias	de	usuario
centradas	en	comportamiento
Por	Juan	Daza	Arévalo,	@juanenlasala

Palabras	clave
Historias	de	usuario,	comportamientos,	valor,	épicas,	temas

Intención
Esta	técnica	ha	sido	diseñada	con	el	fin	de	apalancar	la	idea	de	la	“oportunidad	para	una
conversación”	que	viene	de	la	mano	de	una	historia	de	usuario.	Que	ese	diálogo	sea
poderoso	al	contar	con	un	texto	donde	están	consignados	los	comportamientos	que
queremos	acompañar	con	la	solución	que	se	propone.

Motivación
Las	historias	de	usuario	cuentan	con	un	formato,	una	plantilla	que	permite	un	encuentro
para	validar	qué	se	espera	lograr	en	el	próximo	sprint.	Sin	embargo,	el	poder	no	radica	en	la
forma	en	que	se	redacta,	en	cada	historia	reposan	comportamientos	que	se	desean
modificar	o	a	los	que	se	quieren	apelar	cuando	el	usuario	esté	al	frente	de	la	solución.	Tener
presente	el	comportamiento	como	eje	permite	trabajar	con	una	óptica	de	User	Centered
Design	o	Diseño	Orientado	al	Usuario.

Descripción
Las	historias	de	usuario	son	la	respuesta	a	la	forma	tradicional	en	la	que	los
“requerimientos”	se	convertían	en	un	listado	de	tareas	y	acciones	que,	casi	siempre,
desembocaban	en	situaciones	abiertas	a	interpretaciones,	o	en	un	listado	de	acciones
cerradas.	Son	la	evolución	de	una	tarea	redactada	en	forma	de	historia	que	recoge	el
verdadero	problema	que	se	desea	resolver.

Herramientas	Agiles

20Elaboración	de	historias	de	usuario	centradas	en	comportamiento



Los	primeros	rastros	en	la	historia	de	las	historias	de	usuario	conducen	a	Steinberg	&
Palmer	[Steinberg-Palmer	2003]	y	al	artículo	de	Bill	Wake	[Wake	2003]	en	el	que	propone,	a
partir	de	las	siglas,	INVEST	y	SMART	la	construcción	de	historias:	independientes,
negociables,	valiosas,	estimables,	pequeñas	y	que	se	puedan	testear	(probar)	o	si	se	toma
el	segundo	acrónimo	que	sean:	eSpecíficas,	medibles,	alcanzables,	relevantes	y	con	tiempo
regulado.

En	su	artículo,	Wake	cita	a	Ron	Jeffries	y	describe	las	historias	de	usuario	en	XP	(Extreme
Programming)	como	herramientas	que	deben	tener	tres	componentes:	Cards	(Tarjetas)
como	medio	físico;	Conversation	(Conversación)	o	la	discusión	que	genera	la	propuesta	de
dicha	historia,	y	Confirmation	(Confirmación)	o	la	manera	de	probar	que	se	ha	cumplido	lo
esperado.	Es	frecuente	encontrar	discusiones	frente	a	las	sugerencias	de	redactar	historias
de	usuario	independientes	y	valiosas	y	que	a	la	vez	sean	pequeñas.

Justamente	ese	es	el	punto	de	partida	de	Gojko	Adzic	[Adzic	2014]	cuando	afirma	que
“software	valioso	es	un	concepto	vago	y	esotérico	en	el	campo	de	los	usuarios	de	un
negocio,	pero	el	tamaño	de	la	tarea	es	algo	que	se	puede	tener	bajo	control	para	un	equipo
de	desarrollo,	por	eso	muchos	equipos	terminan	escogiendo	tamaño	sobre	valor.”	El	valor
se	convierte	en	un	adjetivo	que	genera	dudas	y	cada	quien	apropia	a	su	manera.	Por	eso
surgen	expresiones	como	“una	página	dinámica”	para	expresar	lo	que	se	desea,	frases	que
aparecen	como	muestra	de	un	problema	importante	de	fondo.

En	XP	se	sugiere	que	la	historia	de	usuario	sea	escrita	por	el	cliente.	Desde	otros	marcos
de	trabajo	y	metodologías	es	una	herramienta	a	la	que	se	llega	en	conjunto,	como	un
ejercicio	colectivo	perfecto	para	cubrir	temas	de	experiencia	de	usuario	(UX),	prioridad,	etc.
Nuevamente	es	una	apropiación	que	cada	equipo	va	refinando	a	su	modo	de	trabajo.	Las
dudas	posibles	del	uso	de	historia	de	usuario	pueden	resolverse	en	la	medida	que	se
explica	el	contexto	y	las	oportunidades	asociadas	a	otro	nivel	para	el	proyecto,	el	negocio	y
el	usuario.

Jeremy	Jarrel	[Jarrel	2014]	describe	las	diferencias	entre	historias	de	usuario,	temas	y
épicas,	como	un	conjunto	de	textos	que	en	distintos	momentos	describe	las	necesidades
del	proyecto.	La	historia	de	usuario	dice,	es	una	“unidad	auto-contenida	de	trabajo	acordada
entre	el	equipo	de	desarrollo	y	el	stakeholder.”	Los	temas,	agrega,	son	“ideas	expuestas	en
historias	que	se	pueden	agrupar”	en	atención	a	un	tema,	funcionalidades	similares,	etc.
Mientras	que	las	épicas	“comprometen	un	flujo	completo	para	un	usuario”	a	diferencia	del
lugar	común	de	verlas	como	historias	grandes,	que	necesitan	refinamiento.

Lo	que	se	quiere	hacer	supera	el	tradicional	guión	de:	"Como	un	[rol]	yo	deseo
[características]	para	que	así	exista	[beneficio]."	porque	las	conversaciones	deben	confirmar
no	lo	que	se	desea	hacer	sino	lo	que	se	quiere	lograr.	No	toda	acción	o	desarrollo	apoya	un

Herramientas	Agiles

21Elaboración	de	historias	de	usuario	centradas	en	comportamiento



objetivo.	Estas	conversaciones	son	momentos	para	confirmar	una	y	otra	vez	qué	es	lo	que
realmente	se	quiere	hacer.	De	ahí	que	Gojko	Adzic	y	David	Evans	[Evans	2014]	hablen	de
ver	las	historias	de	usuario	como	una	oportunidad	de	“modificar	comportamientos”.

¿Realmente	la	funcionalidad	que	tiene	una	solución	apela	a	un	comportamiento?	¿No	se
trata	únicamente	de	un	proceso	donde	el	código	activa	tareas	y	funciones?	Cada
funcionalidad	debería	responder	a	una	hipótesis	o	la	suma	de	un	supuesto	con	una
medición,	más	una	alta	dosis	de	empatía.

Wendell	[Wendell	2013]	describe	la	forma	en	la	que	trabaja	en	su	organización	donde
implementan	“algunos	elementos	de	agilidad”	y	se	ve	una	correlación	con	el	Pensamiento
de	Diseño	o	Design	Thinking.	En	la	base	de	todo	desarrollo	está	un	proceso	de
“entendimiento”	que	en	la	agilidad	se	ha	recopilado	en	distintas	prácticas	conocidas	como
Inception.	Un	ejercicio	atento	de	conexión	con	el	usuario	donde	se	identifican	los	problemas
y	posibles	usos	para	que	la	solución	propuesta	confirme	que	está	clara	la	visión	que	se
tiene	del	producto	o	servicio.

Al	apoyar	procesos	de	desarrollo	desde	el	diseño	de	la	propuesta	de	valor,	he	querido	darle
un	alcance	distinto	a	las	épicas	para	encontrar	en	ellas	los	comportamientos	que	se	van	a
acompañar.	Es	imposible	cambiar	un	comportamiento	con	sólo	una	historia	de	usuario	pero
sí	se	puede	influenciar	un	comportamiento	para	que,	poco	a	poco,	se	convierta	en	un
hábito.

El	flujo	de	trabajo	descrito	en	una	épica	está	poblado	de	comportamientos:	miedo	a	entregar
información,	dudas	por	el	uso	de	la	información	privada,	reservas	por	el	sentido	del	proceso,
molestia	por	tener	que	memorizar	una	nueva	contraseña,	sospechas	por	la	relación	que	se
establece	entre	una	red	social	y	la	solución	que	está	usando,	etc.	Estos	y	otros
comportamientos	se	van	asentando	a	medida	que	las	rutinas	asociadas	al	proceso	se
repiten,	son	más	sencillas,	transparentes,	etc.

El	poder	detrás	de	la	experiencia	de	usuario	no	radica	en	una	sensación	de	gusto	o
satisfacción,	el	poder	se	consolida	si	hay	un	comportamiento	que	queda	satisfecho.	Por
eso,	desde	la	empatía,	se	conversan	cuáles	son	los	comportamientos	que	puede	tener	un
usuario	en	distintos	momentos	de	uso	de	una	solución.	Parte	de	los	diálogos	necesarios	al
diseño	de	la	épica.

Para	esos	diálogos	diseñé	un	formato,	una	plantilla	llamada	LYPS	como	acrónimo	de	Love
Your	Epics.	Por	un	lado,	busca	resignificar	la	idea	de	que	una	épica	es	nociva	por	no	tener
foco	o	estimación	y	convertirla	en	una	oportunidad	de	ampliar	la	mirada	del	proyecto.	Por
otro,	el	juego	de	palabras	y	el	término	“lips”	o	labios	que	resuena	con	conversación,
encuentros,	“besos”,	etc.

Herramientas	Agiles

22Elaboración	de	historias	de	usuario	centradas	en	comportamiento



LYPS	se	usa	en	el	Inception	o	gestación	de	la	idea,	durante	el	diseño	de	la	propuesta	de
valor,	a	medida	que	vamos	descubriendo	las	posibilidades	de	la	solución	que	se	va	a
programar,	etc.	y	propone	una	serie	de	campos	para	ser	usados	con	los	interesados	en
cada	fase	del	proyecto.	Puede	ser	desde	el	equipo	de	desarrollo	en	pleno	o	en	sesiones
con	cliente	y	desarrolladores.

Los	campos	descritos	en	la	imagen	se	utilizan	con	la	misma	libertad	de	apropiación	de	otras
herramientas	ágiles.	Sin	embargo,	el	grupo	debe	tener	en	cuenta	qué	entiende	por
“comportamiento	que	espera	modificar”	porque	es	sobre	eso	que	se	puede	medir	el	impacto
de	la	solución,	por	ejemplo	"Disminuir	en	un	20%	la	cantidad	de	formularios	rechazados".
Este	camino	permite	oportunidades	de	mejora	y	de	modificación	constante	de	la	solución.

Al	respecto,	y	aunque	este	capítulo	no	se	refiere	al	comportamiento	humano	es	importante
tener	en	cuenta	que	las	conductas	humanas	y	los	comportamientos	tienen	relación	y	sutiles
pero	importantes	diferencias.	Una	conducta	se	refiere	a	acciones	asociados	a	un	código
propuesto	en	grupo	y	con	implicaciones	morales.	El	comportamiento	habla	de	respuestas,
acciones	y	actividades	de	un	organismo.	La	conducta	se	refiere	también	a	una	lectura
trazable	en	el	tiempo,	normalmente	en	una	institución	mientras	que	el	comportamiento
responde	a	interacciones	inmediatas.

Figura	4.1_.	LYPS	-	Love	your	epics

Herramientas	Agiles

23Elaboración	de	historias	de	usuario	centradas	en	comportamiento



LYPS	ha	sido	usado	para	la	identificación	de	comportamientos	en	aplicaciones	móviles	y
sitios	web	para	encontrar	si	las	implementaciones	confirman	los	números	esperados.	La
hemos	puesto	en	marcha	usando	a	la	par	herramientas	de	graficación	de	tráfico	y	donde	los
usuarios	hacen	realmente	click	(por	ejemplo	http://www.crazyegg.com	o
https://mouseflow.com)	con	el	fin	de	validar	los	comportamientos	esperados.

La	idea	de	encontrar	un	mecanismo	que	permita	modificar,	con	precisión,	un
comportamiento	humano	es	poco	menos	que	una	fantasía.	Nada	puede	predecir	cómo	los
individuos	y	los	grupos	de	personas	reaccionan	frente	a	una	señal	o	un	impulso;	podemos
entender	y	anticipar	algunos	pero	estamos	siempre	frente	a	la	complejidad	propia	de	los
seres	humanos.	Contemplar	los	comportamientos	es	preparar	los	límites	suficientes	para
contar	con	metas	y	objetivos	no	sólo	alineados	con	el	negocio	sino	con	el	uso	de	las
soluciones.

En	nuestros	proyectos	LYPS	nos	ha	dado	foco	en	tres	aspectos	que	aborda	Gojko	Adzic
[Adzic	2016]	y	que	llama	operational	awareness	y	que	en	la	plantilla	se	ven	como	Tiempo,
Local	y	Humano.	Los	comportamientos	van	de	la	mano	de	esas	variables	que	nunca
podemos	controlar.	La	incertidumbre	no	es	otra	cosa	que	la	realidad	convertida	en	una
historia	cruel	cuyo	autor	definitivamente	no	nos	hace	caso.	Por	eso,	antes	de	medir
resultados	nos	hemos	propuesto	a	buscar	cómo	confirmar	comportamientos	y	ojalá	este
formato	sea	un	aporte	para	una	meta	también	difícil.

Herramientas	Agiles

24Elaboración	de	historias	de	usuario	centradas	en	comportamiento

http://www.crazyegg.com
https://mouseflow.com


Técnicas	de	OnBoarding	para	la	gestión
de	conocimiento
Por	Vanesa	Savino,	@VaneSavino

Palabras	claves
Transferencia	de	conocimiento,	Coaching,	Roles	variables.

Intención
¿Cómo	trasmitir	el	conocimiento	a	los	nuevos	miembros	de	un	equipo?

Motivación
Con	la	llegada	de	un	nuevo	miembro	a	un	equipo	nos	encontramos	con	el	dilema	de
transmitirle	conocimiento	relacionado	con	nuestro	proyecto.	Además	de	las	pruebas
automatizadas	de	código,	en	muchos	casos	hay	que	brindar	información	conocida	por	los
expertos	del	negocio.

Los	métodos	expuestos	a	continuación	intentan	que	los	expertos	puedan	dividir	su	trabajo
entre	la	formación	de	los	nuevos	integrantes	y	sus	tareas	habituales.

Descripción
Las	ocho	prácticas	que	aquí	se	mencionan	surgieron	de	la	necesidad	de	reorganizar	un
equipo	de	desarrollo.	Sólo	permanecieron	dos	miembros	del	equipo	original:	un
desarrollador	y	el	analista	funcional/tester	que	llevaban	trabajando	tres	y	siete	años,
respectivamente,	en	el	proyecto.	El	desarrollador	fue	designado	como	líder	del	equipo	y	al
mismo	tiempo	ingresaron	tres	nuevos	desarrolladores,	uno	de	ellos	con	experiencia	previa	y
dos	más	que	iniciaban	su	carrera	en	sistemas.

Al	principio	el	caos	era	tal,	que	el	líder	siempre	estaba	atrasado	con	su	trabajo,	y	justamente
era	quien	resolvía	los	temas	más	urgentes	o	importantes.

Herramientas	Agiles

25Técnicas	de	OnBoarding	para	la	gestión	de	conocimiento



Pasada	la	etapa	de	adaptación,	de	tres	meses	aproximadamente,	los	desarrolladores
observaron	que	el	líder	continuaba	sobrecargado	y	decidieron	proponer	algunos	métodos
para	distribuir	el	conocimiento,	aliviar	la	presión	del	líder	y	al	mismo	tiempo,	sentirse
confiados	al	realizar	un	requerimiento	complejo.

La	aplicación	de	los	métodos	fue	un	proceso	iterativo.	Algunos	métodos	fueron	creados
dentro	del	equipo	y	otros	adaptados	de	la	bibliografía.

A	continuación	se	muestra	un	listado	con	la	organización	de	los	mismos:

Regla	de	la	mano	izquierda.
Coaching.
Más	que	programación	en	parejas.
El	héroe	nuestro	de	cada	semana.
Resolución	que	hace	eco.
Repositorio	de	conocimiento	compartido.
Capacitación.

Clases	particulares.
Tarde	de	películas.

Diseño	colaborativo.
Adaptación	de	Kata	de	arquitectura.
Reunión	de	diseño	más	informal.

Regla	de	la	mano	izquierda

Este	método	previene	que	el	experto	sea	consultado	todo	el	tiempo,	escalando	las	dudas
por	intermediarios,	hasta	agotar	las	instancias	y	consultarle	directamente.	Además
contribuye	a	que	el	conocimiento	fluya	a	través	del	grupo	y	no	esté	centralizado	en	el
experto.

Cuando	surge	una	duda,	el	primero	a	ser	consultado	es	nuestro	compañero	de	la	izquierda.
Si	la	duda	se	puede	resolver,	no	se	escala	más.	De	lo	contrario	nuestro	compañero	se	la
transmite	a	su	compañero	de	la	izquierda,	y	así	sucesivamente	hasta	llegar	al	experto.	En
este	caso	el	experto	explica	la	solución	para	todo	el	equipo.

Coaching

Este	método	tiene	por	objetivo	que	el	desarrollador	se	sienta	seguro	al	introducirse	en	un
tema	complejo	ya	que	su	trabajo	está	respaldado	por	los	conocimientos	brindados	por	el
experto.

Herramientas	Agiles

26Técnicas	de	OnBoarding	para	la	gestión	de	conocimiento



Cuando	un	miembro	del	equipo	necesita	resolver	una	tarea	que	requiere	del	conocimiento
del	especialista,	solicita	su	asesoramiento.	El	especialista	aporta	su	visión	y	experiencia,
discutiendo	juntos	la	forma	de	aproximarse	a	la	solución	con	menos	trabas	y	escollos	en	el
camino.

Más	que	programación	en	parejas

En	programación	de	a	pares	(pair	programming)	el	grupo	es	conformado	por	dos
programadores,	pero	en	esta	propuesta	uno	de	los	miembros	es	el	experto	que	no
necesariamente	es	un	programador.	A	diferencia	de	coaching,	el	experto	permanece
constantemente	junto	al	desarrollador	hasta	finalizar	la	solución.

Este	método	favorece	la	cooperación	entre	diferentes	roles,	aportando	visiones	que	ayudan
a	comprender	el	problema	o	fijar	conceptos.

Se	arma	un	equipo	temporal	para	trabajar	en	el	código.	Si	el	especialista	programa,	puede
codificar	las	partes	más	complicadas	de	la	solución	y	explicarle	su	funcionamiento	al
compañero.	Cuando	el	especialista	no	sea	técnico	puede	validar	la	solución	que
construyan.

Siempre	que	se	crea	conveniente,	se	puede	solicitar	la	colaboración	temporaria	de
miembros	con	otros	roles,	para	que	aporten	otros	enfoques	del	problema,	formando	un
equipo	de	tres	miembros.	Un	ejemplo	de	esta	colaboración	puede	ser	un	grupo	conformado
por	un	especialista	técnico	y	otro	desarrollador	que	le	solicitan	ayuda	al	analista	funcional
para	despejar	una	duda	de	negocio	que	surgió	en	medio	de	su	tarea.

Este	método	puede	aplicarse	junto	con	la	“regla	de	la	mano	izquierda”	y	armar	un	equipo
con	el	compañero	de	la	izquierda.

El	héroe	nuestro	de	cada	semana

Este	método	tiene	un	doble	propósito,	el	primero	es	que	cada	miembro	del	grupo	se
encuentre	capacitado	para	resolver	las	urgencias	del	sistema.	El	otro	es	que	el	experto
pueda	continuar	con	sus	tareas	y	no	se	encargue	exclusivamente	de	los	casos	urgentes,
que	provocan	demoras	en	su	trabajo	si	las	interrupciones	son	muy	frecuentes.

Del	Agile	Open	Camp	2015	se	tomó	una	idea	interesante:	un	miembro	del	grupo	va	a	tener
el	rol	de	"Héroe"	para	ocuparse	de	los	problemas	urgentes	del	sistema.

El	rol	es	ocupado	por	cada	miembro	durante	una	semana,	hasta	que	todos	lo	hayan
ocupado	una	vez	y	luego	se	vuelve	a	comenzar.	Para	hacerlo	identificable	frente	a	los
demás	miembros	del	equipo,	cada	miembro	puede	tener	un	muñeco	o	imagen	de	su	héroe

Herramientas	Agiles

27Técnicas	de	OnBoarding	para	la	gestión	de	conocimiento



favorito	a	la	vista,	sobre	la	que	pegan	una	estrella	de	Sheriff	para	informar	que	están	de
“guardia”.

Quien	desempeñe	este	rol	continúa	con	sus	tareas	habituales;	en	caso	de	haber	un
problema	urgente,	pospone	su	tarea	y	se	dedica	a	la	resolución	del	problema.	Dependiendo
de	la	complejidad	de	la	situación,	un	experto	o	cualquier	otro	miembro	del	equipo	es
requerido	para	ayudar	a	resolver	la	urgencia.	Así	cada	miembro	aprende	a	resolver	errores
críticos	sintiéndose	confiado	bajo	la	tutela	de	alguien	con	conocimiento	sobre	el	tema.

Este	método	puede	combinarse	con	“coaching”	y	“más	que	programación	en	parejas”	para
facilitar	un	arreglo	urgente.

Resolución	que	hace	eco

Este	método	pretende	unificar	criterios,	lo	que	facilita	el	entendimiento	de	los	temas.
También	propone	que	se	incorporen	ideas	generales	del	funcionamiento	del	sistema	cuando
se	investiga	en	busca	de	comportamiento	común	dentro	de	la	aplicación.

Al	recibir	un	requerimiento	para	cambiar	una	característica	en	particular,	se	tiene	que
investigar	si	hay	otras	funcionalidades	con	similar	comportamiento	que	requieran	ser
modificadas	y	también	cambiarlas.

En	una	aplicación	grande	y	de	larga	data,	suele	ocurrir	que	la	solución	a	un	problema	ya
está	implementada	en	otro	lugar,	de	modo	que	es	importante	asegurarse	que	realmente	sea
necesario	dedicar	tiempo	a	construirla	desde	cero,	cuando	lo	más	probable	es	que
lleguemos	a	un	código	y	lógica	duplicados,	que	traerá	consecuencias	si	el	día	de	mañana
uno	de	estos	comportamientos	se	modifica	y	el	otro	no.	A	no	repetir	código!

Este	método	se	puede	combinar	libremente	con	cualquiera	de	los	métodos	que	consisten
en	desarrollo,	ya	que	no	interfiere	con	su	misión.

Repositorio	de	conocimiento	compartido

Construir	un	repositorio	en	la	nube	y	compartir	la	documentación	ha	desplazado	al	uso	de
otros	sistemas	más	formales.	Hoy	en	día	existen	muchas	plataformas	y	servicios	gratuitos
que	brindan	acceso	desde	diferentes	dispositivos,	lo	que	facilita	la	distribución	de	la
documentación.

Este	método	tiene	por	objetivo	tener	disponibilidad	online	de	la	documentación	con	todas
las	ventajas	que	eso	representa,	entre	ellas:	accesibilidad	móvil,	y	un	mecanismo	más
simple	para	creación	de	contenido,	ya	que	se	evita	la	instalación	de	programas	específicos.

Herramientas	Agiles

28Técnicas	de	OnBoarding	para	la	gestión	de	conocimiento



Es	muy	importante	mantener	un	orden	conocido	por	todos,	para	que	cada	miembro	sepa
dónde	ubicar	el	contenido	que	produce	o	donde	buscar	la	información	que	necesita.
Dependiendo	de	la	organización	se	pueden	otorgar	diferentes	permisos	de	acceso	y
edición,	lo	que	requiere	una	moderación	del	contenido	que	se	cree	colaborativamente.

Capacitación

Se	van	a	explicar	dos	maneras	de	comunicar	información.	El	objetivo	es	incorporar
conceptos	a	través	de	diferentes	formatos,	el	más	moderno,	audiovisual	y	el	tradicional	con
material	escrito.

Clases	particulares

Consiste	en	preparar	clases	con	temas	especiales	y	brindar	material	para	los	asistentes	que
ayude	a	la	compresión	del	tema	tratado.	Es	fundamental	que	luego	el	material	se	suba	al
repositorio	para	que	pueda	ser	consultado	en	cualquier	momento.	Además	conviene	tener
un	modelo	de	contenido	para	implementar	las	charlas,	dando	un	marco	mínimo	de
información	que	deben	cubrir.

Tarde	de	películas

Existen	muchos	videos	de	tutoriales	online	que	nos	enseñan	desde	cómo	hacer	el	nudo	de
una	corbata	hasta	como	aprender	a	tocar	la	guitarra.	Esta	forma	de	enseñanza	es	cada	vez
más	habitual,	incluso	se	pueden	encontrar	clases	de	prestigiosas	universidades	disponibles
online.

¿Por	qué	no	aplicarlo	entonces	a	nuestro	sistema?	Para	partes	que	sufren	pocas
modificaciones,	como	la	configuración	de	un	entorno,	es	de	mucha	utilidad	contar	con
tutoriales	que	muestren	la	configuración	correcta,	de	esta	forma	se	ahorra	mucho	tiempo	de
búsqueda	infructuosa.

Diseño	colaborativo

Como	ya	se	sabe	la	visión	de	grupo	en	sinergía	supera	la	suma	de	la	visión	de	sus
miembros.

En	esta	instancia	se	propone	utilizar	diseño	colaborativo	para	llegar	a	la	solución	óptima	de
un	problema.

Dependiendo	de	la	estructura	y	la	cantidad	de	miembros	del	equipo	se	pueden	hacer
reuniones	más	informales	o	adaptaciones	de	katas	de	arquitecturas.

Herramientas	Agiles

29Técnicas	de	OnBoarding	para	la	gestión	de	conocimiento



El	término	kata	proviene	del	karate	y	consiste	en	una	serie	de	ejercicios	establecidos	que	se
realizan	sólo.	Este	término	se	aplicó	al	diseño	de	código	cuando	Dave	Thomas	creó	las
“Code	Kata”.

Las	katas	de	arquitecturas	se	realizan	en	grupos,	tienen	reglas	y	roles	definidos.	Se
acuerda	un	tiempo	de	duración	para	todo	el	ejercicio,	los	miembros	se	dividen	en	grupos	de
desarrolladores	y	se	designa	un	moderador,	responsable	de	responder	todas	las	dudas	de
los	equipos.	Si	el	moderador	es	el	líder	del	equipo,	también	se	encarga	de	guardar	las
buenas	prácticas	de	programación.

Los	equipos	se	separan	una	distancia	prudencial	para	hablar	sin	interferirse	mutuamente.
Después	de	finalizado	el	tiempo,	un	orador	elegido	por	los	miembros	del	grupo	expone	la
solución	frente	al	interesado.	En	este	caso	el	rol	del	interesado	puede	ser	ocupado	por	el
analista	funcional.

El	moderador,	el	interesado	y	los	restantes	participantes	formulan	todas	las	preguntas
necesarias	para	entender	la	propuesta.	Al	finalizar	esta	etapa	todos	votan	al	mismo	tiempo
la	solución.

La	votación	se	realiza	con	la	regla	del	pulgar:	pulgar	para	arriba	para	indicar	que	me	gustó
la	propuesta.	Horizontal	para	indicar	que	no	me	convenció	del	todo	y	pulgar	para	abajo	para
indicar	que	no	me	agradó.

Luego	de	la	votación	comienza	la	exposición	del	siguiente	equipo	hasta	terminar,	al	finalizar
se	trabaja	con	la	solución	más	votada.

Si	el	equipo	es	pequeño	(3	o	4	personas)	puede	trabajarse	más	informalmente,	reuniéndose
frente	a	una	pizarra	y	diagramando	una	solución.	Aquellos	con	más	conocimiento	pueden
proponer	una	solución	tentativa	y	los	demás	pueden	dar	su	feedback	para	ver	en	que	se
puede	mejorar.

Es	importante	a	tener	en	cuenta	el	feedback	en	ambos	métodos,	pues	a	veces	la	solución
más	brillante	la	aporta	el	miembro	menos	pensado.

Este	métodos	propician	la	participación	de	todos	en	la	construcción	de	la	solución,	pero
como	la	experiencia	de	cada	miembro	es	diferente	se	pueden	complementar	con	“coaching”
o	“más	que	programación	en	parejas”	dependiendo	de	si	es	una	solución	más	técnica	o	de
negocio.

Los	métodos	expuestos	tienen	como	eje	principal	compartir	conocimientos,	algunos	han
surgido	por	la	necesidad	de	resolver	un	problema,	otros	han	sido	adaptados	de	la
bibliografía	o	tomados	literalmente.	Estos	métodos	pueden	aplicarse	en	forma	iterativa	e
incremental;	lo	fundamental	es	lograr	la	comodidad	del	equipo	y	una	transferencia	de
conocimiento	efectiva.

Herramientas	Agiles

30Técnicas	de	OnBoarding	para	la	gestión	de	conocimiento



La	intención	de	exponerlos	aquí	es	que	sirvan	de	base	para	generar	otros	métodos	que	se
adapten	a	cada	situación	particular.

El	progreso	que	se	realizó	después	de	su	implementación	ha	sido	muy	significativo;	además
contribuyó	a	crear	un	equipo	muy	sólido,	con	confianza	en	sus	miembros	y	auto-organizado.

Herramientas	Agiles

31Técnicas	de	OnBoarding	para	la	gestión	de	conocimiento



SHU-HA-RI:	Un	Modelo	de	Aprendizaje
Por	Omar	Fernández,	@omarfl7

Palabras	clave
Aprendizaje,	mejora	continua,	shu-ha-ri

Intención
Cómo	enfrentar	técnicas	nuevas	o	rescatar	las	ya	conocidas,	haciendo	énfasis	en	la
búsqueda	del	aspecto	fundamental	de	éstas,	lo	esencial,	lo	que	hace	de	esta	técnica
singular.

Motivación
Si	te	encuentras	estudiando	y	buscando	alguna	nueva	técnica	pero	buscas	ir	más	allá	de
sólo	aprenderla.	Deseas	comprender	el	espíritu	de	ésta,	de	forma	tal	que	puedas
transportar	dicho	espíritu	en	diferentes	contextos.	Entonces	reconocerás	que	todo	proceso
de	aprendizaje	lleva	tiempo	y	pasa	por	diferentes	etapas.

Descripción
Es	posible	que	hayas	escuchado	sobre	Shu-Ha-Ri	como	es	posible	que	no,	bien	sea	en	el
contexto	de	software	o	para	otro	contexto.	Podrías	revisar	el	artículo	de	Martin	Fowler
[Fowler	2014]	para	tener	un	primer	acercamiento	o	el	artículo	de	Alistair	Cockburn
[Cockburn	2008]	para	una	revisión	más	extensa	en	el	contexto	de	software.

Si	realizamos	una	descripción	breve,	Shu-Ha-Ri	es	un	concepto	del	arte	marcial	Japonés
que	describe	las	etapas	de	aprendizaje	de	un	estudiante	para	lograr	la	maestría	en	el	arte.
Ésta	consta	de	tres	etapas	cuya	descripción	es	la	siguiente:

Shu:	significa	mantener	o	proteger.	En	esta	etapa	el	estudiante	sigue	los	pasos	indicados
por	el	maestro	sin	preocuparse	demasiado	en	los	aspectos	subyacentes	de	la	técnica.

Herramientas	Agiles

32SHU-HA-RI:	Un	Modelo	de	Aprendizaje



Ha:	significa	separar.	En	esta	etapa	el	estudiante	empieza	a	aprender	los	principios	y	la
teoría	subyacente	detrás	de	la	técnica.	El	estudiante	formulará	muchos	porqués	sobre	la
técnica.

Ri:	significa	trascender.	En	esta	etapa	el	alumno	ha	aprendido	la	técnica	del	maestro	y
empieza	un	aprendizaje	adaptado	y	creado	bajo	su	propia	experiencia.	La	relación
estudiante-alumno	ya	no	es	debido	al	aprendizaje	de	la	técnica	sino	mucho	más	cercana,
manteniendo	la	independencia	del	alumno.

De	lo	anterior	podemos	apreciar	etapas	bien	definidas,	tareas	concretas	por	etapas	y	un
maestro	el	cual	pueda	guiarte.	Estas	etapas	pasan	por	generar	una	conciencia	en	aquello
que	se	practica	para	en	algún	momento	asimilarlo	y	mejorarlo.	Sin	embargo,	esto	nos	lleva
a	entender	que	no	basta	con	sólo	leer	o	practicar	tempranamente,	hay	que	asimilar	su
contenido,	su	fundamento	y	esencia	para	poder	apreciar	el	trasfondo	de	esta	práctica.	Es
decir	entenderlo	para	apreciarlo	y	mejorarlo.	No	basta	haber	leído	la	biblia	para	convertirse
en	santo	y	en	ese	sentido	y	en	ese	camino,	no	podemos	detenernos	y	decir	que	ya	lo
entendemos	si	no	hemos	generado	conciencia	en	ello.

Ciertamente	al	aprender	una	técnica	no	siempre	tendremos	la	compañía	de	un	maestro,	lo
cual	sería	bastante	importante	pero,	sin	embargo	existe	un	grupo	de	actitudes	que	se
manifiestan	en	cada	etapa.	Las	describo	a	continuación:

Shu:	en	esta	etapa	temprana	es	importante	practicar	mucho	y	entender	lentamente	los
pasos	de	la	misma	forma	como	si	aprendiéramos	a	caminar.	Seguramente	no	tendremos
conciencia	clara	del	porqué	de	cada	paso	pero	podremos	ver	coherencia	entre	paso	y	paso.
En	este	punto	es	importante	medir	y	reflexionar,	porque	nos	llevará	a	la	siguiente	etapa.	El
hecho	de	medir	nos	ayuda	a	comparar	que	tanto	hemos	avanzado	nosotros	mismos	o	con
respecto	a	aquello	que	queremos	lograr	con	esta	práctica.

Ha:	si	ya	hemos	entendido	la	técnica,	ciertamente	podemos	desenvolvernos	con	facilidad,
pero	se	sentirá	como	quien	sigue	una	receta,	y	es	en	este	punto	donde	debemos	cuestionar
si	lo	aceptamos	o	no	tal	como	lo	hemos	aprendido	y	entonces	nos	percatamos	que	sólo
aprender	la	técnica	no	basta,	la	sucesión	de	pasos	uno	tras	otro	tiene	un	porqué	que	es
importante	encontrar	y	ello	nos	lleva	a	buscar	e	investigar.	Si	mantenemos	dicho	espíritu	de
no	simple	aceptación	y	de	considerar	el	aprendizaje	como	algo	no	terminado,	entonces	nos
llevará	a	la	siguiente	etapa.

Ri:	aunque	parezca	extraño	es	importante	olvidar	lo	aprendido	porque	estos	fueron	sólo	una
secuencia	de	pasos	lógicos	pero	que	no	develan	el	espíritu	del	mismo.	Nos	sirvió	para
aprender	la	técnica	pero	en	este	punto	es	el	velo	que	no	deja	ver	más	allá.	El	olvidar
permite	desapegarse	de	los	pasos	aprendidos	para	que	poco	a	poco	podamos	apreciar	que
los	pasos	fueron	una	forma	de	mostrar	la	práctica	pero	que	oculto	por	debajo	se	encuentra
el	espíritu	de	la	misma.	El	desapego	se	manifiesta	también	al	retirar	los	pensamientos	que

Herramientas	Agiles

33SHU-HA-RI:	Un	Modelo	de	Aprendizaje



llevan	a	considerar	como	única	la	interpretación	de	la	técnica	que	hemos	aprendido	y	de
esta	forma,	empezar	a	aceptar	nuevas	interpretaciones	de	la	misma	como	un	vaso	que
puede	verse	de	distintas	posiciones.	Posiblemente	volverás	a	recorrer	los	pasos	iniciales
pero	esta	vez	será	como	una	danza	natural,	sin	esfuerzo,	pero	que	en	sí	misma	muestra	el
espíritu	de	la	práctica.	En	este	punto	se	percibirá	que	se	debe	seguir	aprendiendo,	y	es
entonces	cuando	estamos	comprendiendo	el	espíritu	de	la	técnica.	Ahora	es	cuando
empezaremos	a	extenderla	y	visualizarla	en	múltiples	y	nuevos	contextos

De	forma	breve	podemos	identificar	en	qué	etapa	nos	encontramos	apoyándonos	en
algunas	actitudes	que	mostramos:

1.	 Si	sigues	estrictamente	los	pasos	como	una	secuencia,	bien	sea	porque	recién	inicias
con	la	técnica	o	porque	así	aprecias	que	debe	ser,	estás	en	Shu.

2.	 Si	necesitas	saber	el	porqué	de	dicha	secuencia	de	pasos,	y	buscas	el	porqué	de	los
enlaces	de	los	mismos	en	dicho	orden	y	no	en	otro,	y	ensayas	o	experimentas	una	y
otra	vez,	estás	en	Ha.

3.	 Si	te	percatas	que	empiezas	a	describir	la	técnica	pero	en	distintas	formas	como	quien
describe	un	vaso	en	distintos	ángulos	pero	sin	apegarte	a	esa	descripción	y	comienzas
visualizar	la	misma	en	otros	entornos,	entonces	estás	en	Ri.

Otro	aspecto	importante	a	tener	en	cuenta	es	que	cada	etapa	no	es	una	secuencia	lineal
sino	más	bien	éstas	se	auto	contienen	como	se	puede	ver	en	la	figura	siguiente.	Pero
también	en	ese	sentido	vamos	incrementando	las	actitudes	que	manifestamos	y,	que	en	un
principio	te	parecerán	contradictorias	pero	con	la	práctica	te	percatarás	que	éstas	se
refuerzan	entre	una	y	otra.

Puedes	considerar	encontrarte	en	alguna	etapa,	pero	las	actitudes	que	manifiestes	son	las
que	realmente	describirán	en	qué	etapa	te	encuentras.	Esto	es	un	trabajo	de	autoconciencia
que	te	indicará	a	tí	mismo	con	qué	actitud	enfrentas	el	aprendizaje.

Es	usual	mantenerse	en	la	etapa	Shu	y	Ha	y	sentirse	conforme,	pero	es	importante	llegar	a
la	etapa	Ri,	en	la	cual	no	sólo	se	aprecia	el	sentido	de	una	técnica	o	práctica,	sino	que
también	se	develan	aspectos	de	ella	que	la	hacen	singular,	encontrarás	patrones	y	nuevas
formas	de	mejorarla.	Apreciarás	que	el	aprendizaje	de	algo	no	es	un	tema	terminado	sino
más	bien	un	camino	que	se	debe	seguir	recorriendo.

Herramientas	Agiles

34SHU-HA-RI:	Un	Modelo	de	Aprendizaje



Figura	6.1.	Relación	entre	Shu,	Ha	y	Ri

Además,	una	misma	persona	puede	estar	en	distintos	estados	en	cada	una	de	sus
destrezas	en	un	instante	de	tiempo,	y,	en	un	equipo,	cada	integrante	puede	estar	en
distintos	estados	con	respecto	a	una	destreza.	Por	otro	lado	podríamos	hablar	del	estado	de
todo	el	equipo	en	una	destreza	o	técnica	en	particular.

Conclusión

Las	tres	etapas	nos	ayudan	a	reconocer	la	esencia	de	una	técnica,	y,	como	consecuencia
de	esto	habilitarnos	a	poder	transportar	dicho	conocimiento	a	diferentes	contextos.
Podemos,	sí,	mantenernos	en	las	dos	primeras	etapas,	pero	esto	sólo	nos	mantendrá	como
conocedores.	Pero	si	deseamos	trascender	la	técnica,	deberemos	llegar	a	la	tercera.

Algo	que	también	podemos	percatarnos	es	que	cada	etapa	no	es	un	empezar	y	terminar,
sino	en	la	repetición	de	las	etapas	anteriores	impulsa	sutilmente	a	llegar	a	la	siguiente	etapa
siempre	que	no	descuidemos	las	actitudes	que	manifestamos.

Te	invito	entonces	a	que	selecciones	alguna	técnica	que	tal	vez	consideres	ya	aprendida	o
alguna	que	desees	aprender,	revises	las	actitudes	que	manifiestas	y	realices	éste	recorrido
sin	fin	del	Shu-Ha-Ri.

Finalmente	quisiera	dejar	una	cita	tomada	de	Shunryu	Suzuki	[Suzuki	1987],	la	cual	he
adecuado	para	este	contexto	de	aprender:

Herramientas	Agiles

35SHU-HA-RI:	Un	Modelo	de	Aprendizaje



“Nuestra	comprensión	de	una	técnica,	no	es	meramente	una	comprensión	intelectual.	La
verdadera	comprensión	es	la	práctica	misma”

Herramientas	Agiles

36SHU-HA-RI:	Un	Modelo	de	Aprendizaje



Continuous	Discovery:	Validación	de	ideas
para	el	Backlog
Por	Alejandro	Faguaga,	@afaguaga

Palabras	clave
Dual	track	scrum,	inception,	discovery,	productos	con	impacto,	business	value,	UX

Intención
En	general	en	los	proyectos	ágiles,	la	figura	del	Product	Owner	es	la	que	trae	nuevos
requerimientos	o	necesidades	del	negocio.	A	veces	como	simples	ideas	o	requerimientos	de
alto	nivel,	y	otras	-con	suerte-	en	forma	de	User	Stories.	Sobre	ésto	le	pide	al	equipo	técnico
que	analice	y	estime	el	esfuerzo	de	desarrollo	de	dicha	funcionalidad.

En	este	contexto,	no	sólo	dependemos	en	primera	instancia	del	conocimiento	y	buen	criterio
del	Product	Owner	para	detectar	las	necesidades	reales	de	los	usuarios,	sino	también,	de
su	capacidad	para	explicitar	y	clarificar	correctamente	esas	ideas	al	equipo	de	desarrollo,	y
luego	además	dependemos	del	buen	entendimiento	e	interpretación	del	equipo	sobre	las
ideas	que	el	Product	Owner	pone	sobre	la	mesa.

Esto	comúnmente	puede	generar	ítems	del	Product	Backlog	definidos	de	manera	pobre	o
poco	claros	que	pueden	atentar	contra	las	reuniones	de	planificación	de	los	Sprints,
haciéndolas	tediosas	o	muy	extensas.	Incluso	puede	afectar	la	velocidad	del	equipo,	que
termina	analizando,	refinando	y	entendiendo	las	funcionalidades	en	paralelo	con	el
desarrollo	del	Sprint.

El	resultado	de	esta	situación	por	lo	general	es	la	pérdida	de	tiempo	y	el	re	trabajo	debido	a
que	estos	ítems	no	han	sido	completamente	validados	a	tiempo.	A	priori	pareciera	que	hay
demasiadas	variables	en	juego	en	esta	cadena	de	gestación	y	concepción	de	nuevas
funcionalidades	a	ser	desarrolladas,	y	que	dicha	cadena	está	compuesta	por	eslabones
endebles	que	pueden	romperse	en	cualquier	momento.

Todo	lo	anterior	nos	da	la	percepción	de	que	en	muchos	proyectos	la	precisión	y	la
correctitud	del	Backlog	dependerá	en	gran	parte	de	la	fortuna.

Herramientas	Agiles

37Continuous	Discovery:	Validación	de	ideas	para	el	Backlog



Motivación
Si	partimos	del	supuesto	que	la	suerte	está	de	nuestro	lado,	o	que	las	capacidades	del
Product	Owner	hacen	que	sus	pedidos	coincidan	con	los	requerimientos	del	usuario,	en
verdad	aún	quedaría	mucho	camino	por	recorrer.	Cuando	el	equipo	de	desarrollo	empiece	a
analizar	lo	que	hay	que	hacer	y	el	esfuerzo	necesario	para	llevarlo	a	cabo,	en	reiteradas
oportunidades	podríamos	caer	en	cuenta	que	lo	que	pide	el	negocio	es	inviable	desde	el
punto	de	vista	técnico,	o	que	demandaría	un	esfuerzo	prohibitivo	para	sus	expectativas	y/o
posibilidades.

Y	podría	haber	una	variable	más…	Aún	cuando	la	solución	se	pueda	implementar	desde	el
punto	de	vista	técnico,	el	equipo	de	desarrollo	y	el	Product	Owner	puede	que	no	tengan	en
cuenta	la	usabilidad	o	la	experiencia	del	usuario	respecto	de	esa	solución	(ya	sea	por	falta
de	tiempo	o	de	conocimientos	en	el	área	de	UX).

Constantemente,	requerimientos	válidos,	e	implementados	con	soluciones	técnicamente
apropiadas	y	correctas,	podrían	no	alcanzar	el	objetivo	final	de	satisfacer	la	necesidad	del
usuario,	ya	que	este	mismo	podría	no	encontrar	dicha	solución	como	“usable”	o	ventajosa
respecto	de	su	situación	actual.

Descripción
Hay	que	romper	con	la	idea	que	el	Product	Owner	trae	los	requerimientos	y	el	equipo	de
desarrollo	es	un	ente	que	ejecuta	en	función	de	ese	input	funcional	una	solución	técnica,
que	la	gente	de	UX	validará	desde	el	punto	de	vista	del	usuario	final.	En	definitiva	hay	que
romper	esa	cadena	o	secuencialidad	en	la	interacción	de	los	equipos	o	perfiles.	Y	una
buena	forma	de	cambiar	esto	es	hacer	que	el	Product	Owner,	algún	representante	del
Equipo	de	Desarrollo	y	un	representante	de	UX	trabajen	de	forma	colaborativa	y	conjunta
desde	la	concepción	misma	de	los	requerimientos	o	User	Stories.

Se	forma	así	un	equipo	con	las	3	“patas”	que	trabajará	sobre	ideas,	validando	de	manera
conjunta	que:	las	funcionalidades	que	conformen	el	Product	Backlog	cubran	la	necesidad
funcional	del	negocio	(Product	Owner);	la	solución	planteada	sea	factible	técnicamente
(Desarrollo)	y	la	experiencia	de	usuario	en	dicha	funcionalidad	sea	tenida	en	cuenta	(UX).
Este	proceso	se	realiza	de	manera	continua	y	en	paralelo	con	el	desarrollo	de	los	Sprints	y
se	denomina	Continuous	Discovery	[Cagan	2012a]	o	como	lo	llama	Jeff	Patton,	Dual	Track
Scrum	[Cagan	2012b].	Justamente	porque	plantea	un	track	o	thread	de	“Descubrimiento”
(Discovery)	de	ítems	del	Backlog	en	paralelo	con	el	Delivery	de	funcionalidad	que	se	va
desarrollando	en	los	Sprints.	Personalmente,	prefiero	el	término	Continuous	Discovery,
porque	eso	nos	abstrae	de	Scrum,	ya	que	este	tipo	de	técnicas	funcionan	muy	bien	con
prácticas	como	Kanban	y	otras	también.

Herramientas	Agiles

38Continuous	Discovery:	Validación	de	ideas	para	el	Backlog



UX,	Desarrollo	y	Producto	se	complementan	para	pensar	cómo	cubrir	las	necesidades	del
negocio	juntos,	aportando	cada	uno	su	experiencia	y	asegurando	que	la	funcionalidad
planteada	será	la	mejor	posible	teniendo	en	cuenta	los	3	puntos	de	vista.	Si	se	detecta	que
la	solución	planteada	originalmente	no	es	factible	técnicamente	o	no	es	usable,	se	ahorra
mucho	tiempo	y	además	permite	plantear	alternativas	de	manera	temprana.

Así	el	track	de	Discovery	se	preocupa	exclusivamente	de	generar	PBIs	(Product	Backlog
Items)	validados	y	el	track	de	Delivery	se	enfoca	en	generar	software	funcionando	basado
en	ese	Backlog	validado,	e	implementarlo	lo	antes	posible	en	producción.

Adicionalmente,	no	solo	queremos	obtener	soluciones	validadas	y	realizables,	sino	que
además	queremos	asegurarnos	lo	antes	posible	que	realmente	estamos	cubriendo	la
necesidad	del	usuario	final,	y	la	mejor	manera	de	lograr	esto	es	obteniendo	su	feedback	de
manera	rápida	y	ajustando	en	función	de	la	retroalimentación	recibida.

Continuous	Discovery	se	basa	en	que	en	general,	aproximadamente	el	50%	de	las	ideas
propuestas	para	ser	desarrolladas	en	un	proyecto	de	desarrollo	son	erróneas	o	no	cubren
las	necesidades	reales	de	los	usuarios.

Para	esto	la	técnica	lleva	al	extremo	el	concepto	de	Fail	Fast,	generando	prototipos
ejecutables	para	permitir	probar	la	funcionalidad	rápidamente	y	detectar	si	estamos	en	el
camino	correcto	o	no.

Hay	muchas	maneras	de	implementar	esto.	Puede	ser	a	través	de	A/B	Testing,	prototipos
operativos,	funcionalidades	que	puedan	ser	activadas	o	desactivadas	mediante	un	“switch”,
Mock	Objects,	entre	otros.

Independientemente	de	la	forma,	lo	importante	aquí	es	permitirle	al	usuario	probar	la
funcionalidad	y	obtener	su	feedback	lo	antes	posible.

Hace	unos	años	tuve	la	oportunidad	de	trabajar	en	un	equipo	Scrum	desarrollando	una
aplicación	web	de	viajes,	y	aplicábamos	varias	técnicas.	Por	un	lado	se	armaba	un	prototipo
ejecutable,	con	objetos	mock	que	simulaban	la	lógica	de	negocios	y	el	acceso	a	datos	y	una
pantalla	de	UI	con	validaciones	y	el	aspecto	visual	que	queríamos	que	tenga	la	página.	Esto
se	instalaba	en	tablets	o	teléfonos	móviles	y	luego	salíamos	y	pedíamos	a	la	gente	en	la
calle	que	use	la	aplicación	y	nos	diera	feedback	directo,	en	ese	mismo	instante.

También	armábamos	laboratorios	de	pruebas,	donde	traíamos	a	usuarios	específicos,	les
dábamos	instrucciones	para	que	ejecuten	una	funcionalidad,	mientras	observábamos	y
tomábamos	nota	de	los	problemas	que	surgían	al	momento	de	usar	la	aplicación.

En	otras	oportunidades	nos	sentábamos	al	lado	y	los	guiábamos	para	que	usen	la
funcionalidad	desde	una	computadora	y	les	íbamos	pidiendo	feedback	al	respecto.

Herramientas	Agiles

39Continuous	Discovery:	Validación	de	ideas	para	el	Backlog



Hay	muchas	formas,	pero	lo	importante	más	allá	de	cómo	se	obtiene	el	feedback,	es	lo	que
uno	hace	luego	con	ello.

¿Cómo	se	relaciona	el	track	de	Continuous	Discovery	con	las	conocidas	sesiones	de
refinamiento	(backlog	refinement	sessions)[Cohn	2015]?	La	realidad	es	que	se
complementan.	El	Continuous	Discovery	generalmente	es	previo,	ya	que	tiene	que	ver	con
la	creación	y	validación	de	ideas	que	luego	se	podrán	o	no	transformar	en	PBIs.	Y	una	vez
que	empieza	el	Discovery	no	termina	nunca,	con	lo	cual	en	algún	momento,	cuando
empezamos	a	hacer	refinamiento,	vamos	a	tener	las	dos	actividades	en	paralelo.

Lo	interesante	del	Discovery	es	que	de	alguna	manera	"filtra"	y	valida	los	PBIs	que	luego
serán	refinados	como	parte	del	track	de	Delivery,	es	decir,	si	hacemos	bien	el	Discovery,
deberíamos	tener	PBIs	a	refinar	pre-validados	y	de	"mejor	calidad"	en	cuanto	a	valor
agregado	para	el	producto,	y	adicionalmente	no	deberíamos	tener	PBIs	que	al	refinarlos	nos
demos	cuenta	que	son	técnicamente	inviables,	o	que	aportan	poco	valor.

Ahora	bien,	la	pregunta	es,	¿toda	"idea"	debe	pasar	por	una	fase	de	Discovery	antes	de	ser
refinado	en	las	refinement	sessions?	Eso	depende	del	proyecto,	del	equipo,	del	contexto.	A
veces	el	equipo	que	lleva	adelante	el	Discovery	es	cuello	de	botella,	entonces	hay	que
elegir.	Lo	ideal	sería	que,	en	la	medida	de	lo	posible,	todo	requerimiento	o	característica
crítica	de	nuestro	producto	pasará	por	una	instancia	de	Discovery	previo	a	ingresar	al
Product	Backlog	y	ser	refinada,	y	las	features	menos	relevantes	quizás	puedan	ir	directo	a
las	sesiones	regulares	de	refinamiento.

La	dedicación	del	equipo	de	Discovery	también	dependerá	del	contexto	y	las	posibilidades,
teniendo	en	cuenta	siempre	que	el	tiempo	y	esfuerzo	dedicado	a	esta	tarea	ayudará	a	evitar
que	ideas	o	funcionalidades	que	no	son	útiles	sean	analizadas	en	detalle	o	incluso
desarrolladas	más	adelante	(en	el	track	de	Delivery),	con	lo	cual	es	tiempo	bien	invertido.

Conclusión

Un	efecto	colateral	y	muy	positivo	de	la	práctica	de	Continuous	Discovery	tiene	que	ver	con
la	situación	que	se	presenta	continuamente	en	equipos	ágiles,	que	terminan	haciendo	una
especie	de	“mini	cascada”	dentro	del	marco	de	Scrum.	El	Product	Owner	trabaja	en	los
“requerimientos”,	que	son	pasados	a	los	diseñadores,	quienes	generan	los	artefactos
visuales	que	finalmente	son	pasados	al	equipo	de	desarrollo	para	construir	y	testear	la
funcionalidad.	Continuous	Discovery	no	se	basa	en	cada	rol	entregando	artefactos	a	los
demás	roles	sino	que	se	enfoca	en	tener	al	Product	Owner,	un	desarrollador	y	un	diseñador
trabajando	juntos,	hombro	a	hombro	en	la	validación	de	los	PBIs.

Las	ideas	que	no	son	bienvenidas	por	el	usuario,	se	descartan	automáticamente	y	las	que
son	bien	recibidas	se	ajustan	en	base	al	feedback	obtenido	y	se	convertirán	en	User	Stories
que	pasarán	a	formar	parte	del	Backlog.	Desde	este	punto	el	Product	Owner	no	tendrá	más

Herramientas	Agiles

40Continuous	Discovery:	Validación	de	ideas	para	el	Backlog



que	priorizar	dicha	funcionalidad,	pero	ya	con	el	pleno	convencimiento	que	tiene	entre
manos	una	funcionalidad	que	será	útil	para	el	usuario,	usable	y	factible	desde	el	punto	de
vista	técnico,	con	una	UI	pre	probada	y	validada	y	con	el	simple	costo	de	haber	tenidos	un
par	de	reuniones	e	invertido	algo	de	tiempo	en	un	prototipo.

Pero	es	muy	importante	no	“casarse”	con	ninguna	idea	por	más	buena	que	pueda	parecer	a
priori	y	si	vemos	que	no	funciona	como	esperábamos,	descartarla	automáticamente.

Herramientas	Agiles

41Continuous	Discovery:	Validación	de	ideas	para	el	Backlog



Prácticas	eficaces	para	aplicar	en
Reuniones	(In)eficientes
Por	Alejandro	Faguaga,	@afaguaga

Palabras	clave
Proyectos	ágiles,	comunicación	efectiva,	colaboración,	ceremonias,	reuniones	eficientes

Intención
En	muchas	organizaciones	la	palabra	reunión	es	prácticamente	mala	palabra,	sinónimo	de
pérdida	de	tiempo,	debido	a	que	las	reuniones	son	ineficientes	y	poco	eficaces.

Esto	mal	predispone	a	la	gente	y	genera	mucha	pérdida	de	tiempo	de	las	personas.

Presentamos	aquí	una	serie	de	técnicas	o	prácticas	muy	simples	pero	eficaces	que
permiten	conducir	reuniones	más	eficientes	y	productivas	con	un	mínimo	esfuerzo	y
organización	previa.

Motivación

La	previa

Supongamos	que	estamos	empezando	a	acompañar	a	un	equipo	en	su	primer	proyecto
ágil,	dentro	de	una	gran	organización	tradicional,	un	gigante	que	se	mueve	muy	lento.

Todavía	no	conocemos	bien	a	los	participantes	del	proyecto,	pero	como	esto	de	“Agile”
viene	muy	“sponsoreado”	e	impulsado	desde	arriba,	nos	empiezan	a	llegar	mails	e
invitaciones	a	reuniones	compulsivamente.

Una	de	esas	invitaciones	dice	en	el	asunto	“Revisión	de	Nuevo	Proyecto”.	Somos	12
personas	invitadas	a	compartir	2	horas	de	nuestro	tiempo,	de	las	cuales	no	conozco	a	casi
nadie.

En	el	cuerpo	de	la	invitación	no	hay	una	agenda	definida	tampoco.	La	reunión	es	a	la	tarde
y	no	sabemos	porque	nos	invitaron,	ni	para	qué,	ni	quienes	van	a	participar,	o	mejor	dicho
qué	roles	van	a	desempeñar	en	el	proyecto.

Herramientas	Agiles

42Prácticas	eficaces	para	aplicar	en	Reuniones	(In)eficientes



De	la	extensa	lista	de	nombres	nos	parece	reconocer	a	una	persona	y	vamos	a	su	escritorio
a	consultarle	cual	es	el	objetivo	de	la	reunión.	Nos	responde	que	no	tiene	idea,	pero	que
debe	ser	importante	porque	en	la	lista	de	invitados	está	su	jefe	y	varios	líderes	de	equipos
que	mantienen	sistemas	core	de	la	organización.	Además	que	hay	varios	“pesos	pesados”
de	producto.

Volvemos	a	nuestro	escritorio	un	tanto	desilusionados.

La	reunión

Entramos	a	la	sala,	hay	10	personas	que	no	conozco.	Sigue	llegando	gente	hasta	que
claramente	hay	más	personas	en	la	sala	de	las	que	había	en	la	invitación.

Llega	una	mujer	que	saluda	y	agradece	porque	estamos	ahí,	aún	sin	saber	por	qué	y	para
qué.	Claramente	es	la	persona	que	envió	la	invitación.

Como	el	objetivo	de	la	reunión	y	la	agenda	no	están	para	nada	claros,	hay	varios	líderes
que	“por	las	dudas”	llevaron	a	un	analista	y	a	un	desarrollador	de	su	equipo,	por	si	se	tratan
temas	funcionales	o	técnicos	respectivamente.	Esto	hace	que	la	cantidad	de	gente	crezca
desmesuradamente.

Empieza	la	reunión	con	todos	hacinados	en	la	sala	y	ocurre	el	caos,	nadie	sabía	para	qué
era	la	reunión	específicamente,	pero	como	hay	mucha	gente	invitada,	varios	aprovecharon
para	llevar	una	lista	de	sus	problemas	o	inquietudes,	que	mejor	que	plantearlas	en	un
ámbito	donde	están	varios	líderes	juntos.	Se	empiezan	a	plantear	entonces	muchos
problemas	distintos,	de	forma	desorganizada,	muchos	de	ellos	no	relacionados	con	nada,
ante	el	estupor	del	“organizador”	que	ve	cómo	su	reunión	se	va	por	cauces	inesperados.

Luego	de	varias	discusiones	sin	un	hilo	conductor,	el	organizador	logra	encauzar	la	reunión
hacia	un	tema	que	si	tiene	que	ver	con	el	proyecto.	Para	eso	ya	pasaron	40’	y	ya	hay	varias
personas	que	se	dan	cuenta	que	están	de	más,	que	no	pueden	aportar	nada	y	que	la
reunión	tampoco	les	está	dejando	gran	cosa.

Adicionalmente,	nos	damos	cuenta	que	para	terminar	de	definir	algunas	cuestiones,	está
faltando	gente	fundamental	que	no	fue	invitada.

Pero	claro,	como	la	agenda	no	era	explícita,	nadie	pudo	detectar	previamente	que	esas
personas	iban	a	ser	necesarias.

Ya	pasada	la	hora	de	reunión	empieza	la	catarsis,	producto	de	la	frustración	de	la	mayoría
de	los	asistentes	porque	en	“esa	organización	siempre	pasa	lo	mismo”,	que	las	“reuniones
no	sirven	para	nada”,	que	“son	una	pérdida	de	tiempo”,	etc.	Hasta	que	finalmente	se	cumple
el	horario	y	nos	piden	que	entreguemos	la	sala.

Herramientas	Agiles

43Prácticas	eficaces	para	aplicar	en	Reuniones	(In)eficientes



Esto	es	un	claro	ejemplo	de	una	extensa	reunión	de	más	de	dos	horas	donde	se	hizo
mucha	catarsis	pero	nada	productivo,	y	se	plantearon	diversos	problemas	pero	ninguna
solución.	Dos	horas	de	más	de	20	personas	totalmente	estériles.

Descripción
Para	intentar	evitar	todo	lo	anterior	se	pueden	implementar	una	serie	de	prácticas	que	nos
permitieron	optimizar	el	tiempo	de	los	asistentes,	que	no	les	quite	las	ganas	de	volver	a
tener	una	reunión	y	que	por	sobre	todo	sean	simples,	eficaces	y	sencillas	de	realizar,	es
decir	implementables.

Prácticas

Enviar	Agenda	Visual:	básicamente	lo	que	se	propone	aquí	es	definir	agendas	digitales	de
manera	gráfica	para	incluir	en	las	invitaciones	de	las	distintas	reuniones	o	ceremonias,	ya
sean	de	Scrum	o	no.

Se	muestra	en	la	Figura	7.1	un	ejemplo	de	agenda	digital	que	se	podría	utilizar	para	la
invitación	a	una	reunión	de	planificación	de	Sprint.

Esta	práctica	permite	clarificar	varios	temas,	a	saber:

Tener	un	objetivo	claro	a	cumplir	en	la	reunión:	explicitar	el	propósito	de	la	misma.
Definir	la	agenda	y	el	tiempo	necesario	(Formato	de	la	reunión):	que	todos	sepan
exactamente	qué	vamos	a	hacer	en	la	reunión	y	también	lo	que	NO	vamos	a	hacer
(una	especie	de	DOs	&	DONTs).
Ajustar	y	precisar	la	audiencia	(participantes):	describirla	de	antemano	en	forma	clara,
para	que	no	sobre	gente	pero	también	para	dar	la	posibilidad	de	que	si	falta	alguien	los
convocados	lo	puedan	plantear	de	antemano	basándose	en	el	objetivo	y	la	agenda	de
la	reunión.
Impulsar	“el	hacer”:	describir	en	la	sección	final	de	la	agenda	digital,	lo	que	no	podemos
dejar	de	realizar	inmediatamente	después	de	abandonar	la	reunión	(acciones
concretas).	En	nuestro	ejemplo	de	la	Figura	7.1	esta	sección	se	denomina	llamada	“Al
finalizar…”

Esta	práctica	además	de	brindar	mucha	información	útil	previa	a	la	reunión,	es	mucho	más
efectiva	que	poner	el	texto	en	la	agenda	de	la	invitación,	ya	que	por	lo	general	la	gente	no
se	detiene	a	leer	el	texto	(sobre	todo	si	ve	que	es	muy	extenso).

Herramientas	Agiles

44Prácticas	eficaces	para	aplicar	en	Reuniones	(In)eficientes



_Figura	7.1.	Plantilla	para	reuniones	de	planificación	de	Sprint_

Cronomertar	las	reuniones:	comúnmente	en	las	reuniones	dedicamos	excesiva	cantidad
de	tiempo	a	ciertas	tareas	o	discusiones	que	no	llevan	a	nada	productivo	por	el	simple
hecho	de	que	las	personas	pierden	la	noción	del	tiempo.	Cuando	definimos	de	antemano	y
de	manera	conjunta	(por	ejemplo	por	votación)	el	tiempo	que	le	vamos	a	dedicar	a	cada
actividad	de	la	reunión	y	además	hacemos	explícito	y	visual	el	paso	del	tiempo	es	increíble
como	la	situación	cambia.	Por	ejemplo,	en	algunas	reuniones	de	Inception	hemos	definido
como	equipo	que	no	le	dedicaríamos	más	de	15’	a	cada	requerimiento	para	generar	las
User	Stories	iniciales.	Esto	hizo	que	las	personas	tomaran	conciencia	y	optimizaran	ese
tiempo	por	el	simple	hecho	de	ver	en	un	cronómetro	el	tiempo	restante.	Esto	no	significa
que	pasados	los	15	minutos	tengamos	que	terminar	si	o	si	la	actividad,	quizás	solo	puede
servir	para	tomar	conciencia	de	que	estamos	excediendo	el	límite	y	eso	nos	quitaría	tiempo
para	analizar	el	siguiente	requerimiento.	Otro	ejemplo	es	cronometrar	las	reuniones	diarias
de	Scrum.	Una	vez	excedido	el	límite	de	tiempo	establecido,	se	puede	dar	por	terminada	la
reunión	o	simplemente	hacer	saber	que	nos	estamos	excediendo.	Eso	dependerá	de	cada
equipo.	Lo	importante	es	tener	la	noción	del	tiempo,	tanto	el	destinado	a	cada	actividad
(time-boxing),	como	el	registro	del	tiempo	transcurrido,	siempre	presente.

Distribución	de	roles	y	auto-organización	de	tareas:	es	importante	repartir	las	tareas
simples	de	forma	tal	de	distribuir	los	esfuerzos	y	organizar	rápidamente	las	reuniones.	Por
ejemplo,	designar	quién	va	a	escribir	o	actualizar	las	User	Stories,	quien	va	a	cronometrar

Herramientas	Agiles

45Prácticas	eficaces	para	aplicar	en	Reuniones	(In)eficientes



las	actividades,	quien	va	a	registrar	los	impedimentos	y	las	acciones	a	realizar,	quien	va	a
tomar	notas	para	la	minuta	en	caso	de	ser	necesaria	o	requerida,	quien	va	a	facilitar	la
reunión,	etc.	Los	roles	y	asignaciones	pueden	variar	de	persona	de	una	reunión	a	otra	y	lo
ideal	es	que	las	personas	se	auto	organicen	para	distribuir	la	carga.

Creación	de	posters	visuales:	siguiendo	con	la	idea	que	lo	visual	tiene	un	gran	impacto,
especialmente	en	organizaciones	tradicionales	y	más	conservadoras,	una	buena	práctica	es
tener	posters	visuales	que	guíen	la	reunión	y	permitan	tener	el	foco	todo	el	tiempo	en	lo
importante.	En	la	figura	7.2	y	7.3	vemos	ejemplos	de	posters	que	fueron	creados	para	una
reunión	de	revisión	de	Sprint	(Sprint	Review):

_Figura	7.2.	Poster	digital	para	la	ceremonia	de	revisión	del	Sprint_

Estos	pósters	se	pueden	imprimir	a	color	en	el	tamaño	que	nos	parezca	útil	y	pegarse	en	la
sala	de	reuniones	para	que	todos	los	vean.

Herramientas	Agiles

46Prácticas	eficaces	para	aplicar	en	Reuniones	(In)eficientes



Figura	7.3.	Posters	de	“DOs	&	DONTs”	para	una	reunión	de	revisión	de	Sprint

Facilitación	Gráfica:	luego	de	empezar	a	usar	pósters	digitales	nos	fuimos	dando	cuenta
que	en	muchas	ocasiones	realizar	afiches	gráficos	o	incluso	facilitar	las	reuniones
gráficamente	“en	vivo”	tenía	aún	más	impacto	y	captaba	mucho	más	la	atención	de	la
audiencia.	Con	lo	cual	fuimos	incorporando	esta	técnica	para	transmitir	mensajes
importantes	o	resaltar	temas	que	queríamos	que	los	asistentes	se	lleven	incorporados.

En	la	Figura	7.4	podemos	ver	un	ejemplo	de	afiche	utilizado	para	describir	a	través	de	la
facilitación	gráfica	los	conceptos	básicos	de	Scrum	durante	una	reunión.	Esta	lámina	fue
creada	“en	vivo”	y	de	forma	colaborativa	por	los	asistentes.

Herramientas	Agiles

47Prácticas	eficaces	para	aplicar	en	Reuniones	(In)eficientes



Figura	7.4.	Afiche	descriptivo	del	proceso	de	Scrum

Mini	kick-off:	en	muchas	actividades	que	involucran	varias	reuniones	o	tiempos	más
extensos,	como	puede	ser	la	Sprint	0	o	Inception	de	un	proyecto	ágil,	optamos	por	realizar
una	reunión	de	kick-off	de	la	actividad,	en	la	cual	no	se	habla	de	los	requerimientos	ni	nada
especifico	del	proyecto,	sino	que	se	describe	que	es	lo	que	va	a	suceder	en	dicha	fase	o
actividad	en	las	próximas	reuniones,	semanas	o	incluso	meses.	Esto	sirve	para	bajar	la
ansiedad	de	los	asistentes,	alinear	expectativas,	pulir	la	audiencia	que	va	a	participar	y
alinear	la	visión	de	lo	que	viene,	como	así	también	para	que	los	asistentes	entiendan	el
porqué	de	lo	que	estaremos	haciendo,	la	importancia	de	hacerlo,	los	beneficios	aparejados,
las	desventajas	de	no	hacerlo	y	que	sientan	que	las	próximas	reuniones	serán	una	inversión
y	no	un	pérdida	de	tiempo.

Conclusión

Existen	muchas	prácticas	simples	que	podemos	realizar	para	optimizar	el	tiempo	y	realizar
reuniones	o	ceremonias	más	efectivas.	Y	adicionalmente	a	la	eficiencia	y	las	prácticas
eficaces,	siempre	es	bueno	tratar	de	generar	un	clima	cálido	y	agradable	en	las	reuniones.
Si	logramos	tener	reuniones	eficientes	y	transitar	las	actividades	inmersos	en	un	clima	de
buen	humor,	lograremos	que	las	personas	sientan	que	se	llevaron	algo,	invirtieron	su	tiempo
y	se	divirtieron,	con	lo	cual	estaremos	dando	un	paso	firme	en	el	afán	de	lograr	que	esas

Herramientas	Agiles

48Prácticas	eficaces	para	aplicar	en	Reuniones	(In)eficientes



personas	vuelvan	a	participar	con	buena	predisposición	cuando	sean	convocadas.	En
definitiva	un	poco	de	eso	se	trata	todo	esto,	lograr	buenos	resultados	y	a	la	vez	compartir	un
buen	momento	en	equipo.

Herramientas	Agiles

49Prácticas	eficaces	para	aplicar	en	Reuniones	(In)eficientes



Introducción	a	Visual	Management
Por	Soledad	Pinter,	@solepinter

Palabras	clave
Visual	management,	kanban,	tableros.

Intención
¿Cómo	visualizar	el	estado	de	las	tareas	en	curso?	¿Qué	información	es	importante
compartir	con	el	equipo?	¿Cómo	la	compartimos?

Motivación
Cuando	trabajamos	en	equipo,	necesitamos	conocer	los	diferentes	estados	de	las	tareas	en
las	que	está	trabajando	cada	integrante.	También	necesitamos	visualizar	información
valiosa	e	importante	para	todo	el	equipo	y	muchas	veces	no	sabemos	cómo,	ni	cuál.

Descripción
El	visual	management	es	un	conjunto	de	técnicas	de	visualización	para	administrar
información,	en	particular	en	este	capítulo	será	en	contexto	del	seguimiento	de	un	proyecto.

Aquí	encontrarás	una	lista	de	ideas	que	se	pueden	realizar	para	que	los	equipos	cuenten
con	la	información	que	necesitan	visible	cerca	de	su	área	de	trabajo.	Se	trata	principalmente
del	uso	de	láminas	con	diagramas	UML,	frases	clave	del	proyecto	en	el	que	trabajan	y
láminas	con	gráficas	acerca	de	temas	importantes,como	por	ejemplo:	decisiones	de	diseño,
arquitectura,	infraestructura.	Todo	eso,	en	las	paredes	visibles	a	todo	el	equipo.	Y	con
colores	que	permitan	visualizar	rápidamente	lo	que	es	relevante.

Radiadores	de	Información

El	término	Radiadores	de	Información	(Information	Radiators)	fue	usado	por	primera	vez	en
contextos	Ágiles	por	Alistair	Cockburn.	Él	se	refería	en	particular	a	los	Taskboards,	Charts
and	Continuous	Integration	Build	Health	Indicator.

Herramientas	Agiles

50Introducción	a	Visual	Management



Todo	tipo	de	recurso	que	puede	ayudar	al	equipo	a	mejorar	su	colaboración	y	su
comunicación	los	llamamos	“Radiadores	de	Información”;	en	adelante	“RI”.	Son	aquellos
artefactos	capaces	de	transmitir	toda	la	información	con	solo	pasar	y	mirarlos	rápidamente.
¿Qué	información	irradian?	Aquella	específica	que	nosotros	queremos	que	transmita.

La	información	será	leída	y	tenida	en	cuenta	por	aquellos	miembros	del	equipo	cuando	la
necesiten.	Lo	importante	es	tenerla	a	mano	y	todo	el	tiempo	disponible.

Además,	tener	información	disponible	y	visible	a	todos,	facilita	la	transparencia	y	la
autoorganización.

Algunos	consejos	para	lograr	buenos	RI.	Éstos	deben	ser:

Accesibles.	Deben	estar	ubicados	en	un	lugar	cercano	al	equipo,	para	que	pueda	ser
visible	por	todos.	Si	lo	ubicamos	lejos	o	difícil	de	visualizar,	pronto	dejará	de	ser	útil.

Simples.	La	información	debe	ser	precisa,	fácil	de	entender	y	sobre	todo	fácil	de	mantener
actualizada.

Personalizados.	Es	importante	que	el	equipo	le	encuentre	sentido	al	RI,	sino	no	lo	van	a
cuidar,	utilizar	y	con	el	tiempo	lo	van	a	dejar	de	usar.

A	continuación	enumeramos	algunos	RI	que	son	fáciles	de	implementar	rápidamente	y
ayudan	a	una	mejor	organización,	coordinación	y	colaboración	del	equipo.

Tableros	Kanban

Este	es	el	tablero	más	famoso	y	utilizado	en	los	equipos.	Con	el	podemos	visualizar	el	flujo
del	proceso	y	el	estado	de	cada	una	de	las	tareas	dentro	del	mismo.

Para	identificar	las	tareas	en	el	tablero	utilizamos	tarjetas,	una	por	cada	tarea.	Por	ejemplo
se	podrían	utilizar	notas	autoadhesivas	para	cada	tarea.	Lo	importante	es	que	las	tareas	se
irán	moviendo	entre	las	columnas.

La	versión	más	simple	para	comenzar,	es	un	tablero	de	tres	columnas	de	izquierda	a
derecha:	Para	hacer,	En	Curso	y	Terminado.	En	la	primera	columna:	“Para	Hacer”,
colocamos	todas	aquellas	tareas	que	identificamos	y	aún	no	comenzamos.	Las	ubicamos
priorizadas	dentro	de	esta	columna:	las	primeras	o	más	importantes	arriba,	y	hacia	abajo	las
de	menor	prioridad.

En	la	columna	‘en	curso’,	ubicamos	las	tareas	que	actualmente	se	están	trabajando.	Y	en	la
tercer	columna	‘Terminado’	se	ubican	aquellas	tareas	que	ya	han	sido	finalizadas.

Kanban	apunta	a	reflejar	todo	tu	proceso	sobre	el	tablero,	para	ello	necesitamos	conocer
todos	los	pasos	para	concretar	una	tarea.	De	esta	manera,	entendiendo	de	manera	holística
el	flujo	de	trabajo,	podemos	aventurarnos	a	superar	la	versión	básica	de	3	columnas	y

Herramientas	Agiles

51Introducción	a	Visual	Management



organizar	el	tablero	en	nuevas	columnas,	reflejando	en	ellas	cada	etapa	que	genera	valor
dentro	del	proceso	completo.

De	esta	manera	podremos	detectar	fácilmente:

Los	cuellos	de	botella:	aquellos	pasos	del	proceso	donde	las	tareas	se	retrasan	o
bloquean	más	a	menudo.
Limitación	del	trabajo	en	curso:	no	comenzar	una	nueva	tarea	hasta	no	terminar	la
actual.	Disminuyendo	así	el	tiempo	basura	entre	cambios	de	múltiples	tareas.

Figura	9.1.Tablero	Kanban

Una	vez	ya	implementados,	y	luego	de	las	primeras	experiencias,	se	pueden	aplicar	estas
sugerencias	en	el	Tablero	Kanban	Avanzado:

Tareas	de	un	dia.
Carril	de	emergencia:	la	primera	fila	del	tablero	la	usamos	para	colocar	aquellas	tareas
que	entrar	de	emergencia	al	backlog,	por	ejemplo	los	errores	en	producción.
Tags	con	nombres:	utilizar	notas	autoadhesivas	o	algún	identificador	más	pequeño	para
señalar	los	nombres	de	los	responsables	en	la	nota	autoadhesiva	de	cada	tarea.
Fotos	con	los	miembros	del	equipo.
Métricas	como	el	Leap	Time	y	el	Cycle	Time	permiten	conocer,	ajustar	y	mejorar	los
tiempos	de	desarrollo	y	entrega	de	una	tarea,	asi	como	tambien	ayudan	a	identificar	los

Herramientas	Agiles

52Introducción	a	Visual	Management



cuellos	de	botella	en	el	proceso.

Calendario	del	Equipo

Si	el	equipo	se	autoorganiza	para	coordinar	y	organizar	las	vacaciones	y	ausencias
planificadas	(turnos	médicos,	preparación	de	exámenes,	vacaciones),	alcanza	con	imprimir
o	dibujar	un	calendario	mensual	en	blanco	en	una	hoja	de	papel.	Luego,	los	miembros	del
equipo	escriben	su	nombre	en	los	días	que	estará	fuera	de	la	oficina,	Pueden	acordar	un
símbolo	o	color	distinto	para	cada	tipo	de	ausencia	planificada	por	estudio,	vacaciones,	etc.
También	se	pueden	variar	los	colores	o	símbolos	para	cada	integrante	del	equipo.	Y	en
ocasiones,	para	evitar	colapso	de	información	podemos	tener	un	calendario	en	la	misma
pared	por	cada	integrante	del	equipo.

Este	calendario	debe	estar	visible	junto	al	tablero	de	tareas	o	área	de	trabajo	del	equipo
para	que	todos	puedan	verlo	fácilmente.

Figura	9.2.Calendario	de	Equipo

Criterio	de	Terminado	(Definition	of	Done)

Herramientas	Agiles

53Introducción	a	Visual	Management



Cuando	el	equipo	trabaja	con	historias	de	usuario,	necesita	acordar	los	Criterios	de
Terminado,	más	allá	de	los	Criterios	de	Aceptación	de	cada	Historia	de	Usuario	o	Item	del
Backlog.

Para	ello,	se	suele	colgar	una	lámina	con	estos	criterios	listados,	para	que	todos	puedan
tenerlos	presentes	siempre	que	necesiten	recordarlos.

Figura	9.3.	Criterio	de	Terminado

Matriz	de	Programación	de	a	Pares

Cuando	un	equipo	realiza	programación	de	a	pares,	es	una	buena	práctica	llevar	registro	de
cómo	lo	hacemos	para	no	repetir	u	olvidar	alguna	combinación.	Para	eso,	dibujamos	una
matriz	de	doble	entrada	donde	en	las	filas	y	columnas	ponemos	los	nombres	de	los
programadores	del	equipo,	con	esto	logramos	una	cuadrícula	de	pares.	Cada	vez	que	dos
miembros	del	equipo	programaron	juntos,	colocan	una	cruz	en	la	celda	que	intersecta	sus
nombres	en	fila	y	columna.	De	esta	manera	sabremos	quiénes	restan	aún	trabajar	juntos.

Herramientas	Agiles

54Introducción	a	Visual	Management



Figura	9.4.	Matriz	de	Pair	Programming

Araña	de	Dependencias

Es	una	lámina	donde	dibujamos	todas	las	dependencias	que	identificamos	como	aquellas
que	pueden	condicionar	la	entrega	de	nuestro	trabajo.

En	la	lámina	ubicamos	al	equipo	en	el	centro.	Alrededor	de	éste,	simulando	las	patas	de	la
araña,	todas	aquellas	fuentes	de	dependencias	que	pueden	bloquear	o	pueden	hacer
peligrar	la	entrega	a	tiempo	de	las	tareas	del	equipo.

A	un	costado	de	la	araña	replicamos	estas	fuentes	en	forma	de	lista	bajo	el	título	de
“Resueltas”.	Luego	a	medida	que	fuimos	atacando	cada	dependencia	acomodamos	junto	a
cada	fuente	las	tareas	que	se	fueron	desbloqueando.	Esta	métrica	sirve	para	entender	qué
tipo	de	dependencias	tiene	el	equipo	y	así	poder	pensar	en	acciones	para	poder
removerlas.

Sprint	Information

Cuando	trabajamos	con	metodología	Scrum,	siempre	es	muy	útil	tener	junto	al	tablero	de
tareas	del	equipo	los	datos	importantes	correspondientes	al	Sprint	en	curso.	Sirve	a	modo
de	recordatorio	a	los	miembros	actuales	y	también	para	ayudar	a	nuevos	integrantes.

Herramientas	Agiles

55Introducción	a	Visual	Management



En	una	hoja	A4	escribimos	aquellos	datos	que	pensamos	son	complementarios	y
necesarios	a	la	hora	de	transitar	un	sprint:	Número	de	Sprint	en	curso,	fecha	de	inicio	y
fecha	de	fin,	Objetivo	del	Sprint.

Figura	9.5.	Sprint	Information

Acuerdos	de	Trabajo

Cada	equipo	tiene	su	dinámica	de	trabajo.	Siempre	es	bueno	al	comenzar,	establecer	entre
todos	los	miembros	del	equipo,	aquellas	reglas	o	acuerdos	que	pueden	ayudar	a	la
convivencia	y	el	desempeño	del	equipo.	Por	ejemplo:	horario	laboral,	hora	de	la	Daily
meeting	,	cómo	rotan	la	facilitación	de	las	reuniones,	a	qué	temperatura	es	aceptable	el	aire
acondicionado	y	todas	aquellas	cosas	que	entre	todos	accedan	a	incorporar	como	"Acuerdo
de	trabajo".

Herramientas	Agiles

56Introducción	a	Visual	Management



Figura	9.6.	Acuerdos	de	Trabajo

Herramientas	Agiles

57Introducción	a	Visual	Management



Revisión	Triangular	de	Documentos
Por	Natalia	Baeza,	@Naty3Baeza	y	Virginia	Brassesco,	@virbrassesco

Palabras	clave
Revisión	por	pares,	aprendizaje	colaborativo,	feedback,	edición,	documentación

Intención
Se	presenta	un	patrón	de	revisión	de	documentos	para	tratar	de	evitar:

Ambigüedades.
Uso	de	vocabulario	inapropiado.
Redundancias.
Textos	innecesariamente	extensos.
Errores	ortográficos.
Estética	general	inadecuada	para	el	contexto	del	documento	bajo	revisión.
Uso	de	documentación	obsoleta.

Este	patrón	facilita:

El	aprendizaje	y	maduración	del	tema	a	tratar.
La	comunicación	entre	las	personas	involucradas	en	la	elaboración	de	documentos.
Lla	transmisión	de	conocimiento.
La	elaboración	misma	del	documento.
El	mantenimiento	de	base	de	conocimientos	documental.

Motivación
Este	patrón	resulta	útil	cuando	un	documento,	público	o	privado,	debe	ser	elaborado	y	se
requiera	feedback	para	mejorar	la	calidad	del	contenido,	la	redacción	y	la	presentación	del
mismo.

También	puede	usarse	cuando	se	desee	evaluar	y/o	ampliar	el	conocimiento	de	una
persona	sobre	un	tema	dado.

Herramientas	Agiles

58Revisión	Triangular	de	Documentos



Descripción
Bajo	el	paradigma	Ágil,	el	código	funcionando	tiene	más	valor	que	la	documentación	como
se	puede	leer	en	el	[manifiesto	ágil].	En	general	hacemos	documentos	que	refieren	a	algún
producto	de	software.	Sin	embargo	suele	emerger	la	idea	de	que	éste	quedará	obsoleto
ante	algún	cambio	en	el	producto,	o	que	escribirlo	nos	haría	perder	tiempo	productivo,	y	por
eso	la	documentación	no	es	prioritaria.	Pero,	¿qué	ocurre	cuando	el	documento	es	el
objetivo	de	nuestro	trabajo,	el	producto	final?

Muchas	veces	ciertos	documentos	deben	poseer	una	estructura	específica	que	podría
introducir	ruido	al	que	intenta	comprender	una	idea.	Podría	ocurrir	que	el	autor	principal	no
sea	experto	del	dominio	o	su	lenguaje	nativo	no	sea	el	usado	en	el	documento	y,	por	ende,
le	podría	faltar	vocabulario	específico.

Algo	que	solemos	olvidar	es	que	los	textos	deben	ser	comprensibles	no	sólo	para	su
redactor,	sino	para	el	público	al	que	están	orientados.

Recordemos	además	que	no	a	todos	les	gusta	escribir	y	no	siempre	todos	los	que
contamos	con	el	conocimiento	vamos	a	tener	voluntad	de	trasladarlo	a	un	texto	publicable.
Para	que	esta	tarea	no	resulte	tediosa,	trabajar	colaborativamente	y	tener	una	metodología
que	nos	guíe	puede	ser	el	puntapié	inicial.

Partiendo	de	la	bien	conocida	idea	de	revisión	de	pares	[Crespo-Villena	2005],	aplicada	a	la
elaboración	de	textos,	se	propone	un	patrón	de	revisión	triangular	como	estrategia	de
aprendizaje	y	así	lograr	mejores	documentos	que	faciliten	la	tarea	de	compartir
conocimiento.

Aspectos	que	matizan	al	patrón:

Roles	y	tareas:	Identificar	las	funciones	de	los	actores	participantes	con	su	tipo	de
revisión	asociada;	separar	revisiones	conceptuales	de	las	ortográficas	y	gramaticales.
Expertise:	Acceder	a	“diversidad”	de	personas	que	estén	calificadas	para	hacer	tu
revisión.
Workflow:	Contar	con	un	método	práctico	para	seguir	el	estado	del	documento.
Soporte	a	la	comunicación:	Herramientas	que	faciliten	la	visualización	de	cambios	y	el
estado	de	la	revisión.

Roles

Son	tres	(así	naciendo	la	idea	de	triángulo),	el	autor,	el	revisor	y	el	editor.

Herramientas	Agiles

59Revisión	Triangular	de	Documentos



El	autor	es	quien	sabe	del	tema	y	quiere	exponerlo	al	mundo,	entiende	bien	de	qué	se	trata
y	cuál	es	el	alcance	del	documento.	Identificó	la	necesidad	de	escribir	sobre	ello	y	tiene	la
voluntad	de	hacerlo.

El	revisor	es	el	experto,	sabe	más	o	igual	del	tema	que	el	autor	y	es	capaz	de	decidir	si	el
autor	se	está	expresando	bien	sobre	aquello	que	quiere	contar.	Conoce	sobre	el	vocabulario
del	dominio	y	los	detalles	de	qué	es	bueno	decir	y	qué	no,	para	cada	caso.

La	pregunta	es,	¿por	qué	no	lo	escribió	él	al	documento?

Todo	documento	surge	por	una	necesidad,	pues	si	no	hay	necesidad	no	hay	motivos	para
hacerlo	ya	que	no	le	aporta	valor	a	nadie.	Esa	necesidad	fue	identificada	por	el	autor,	quien
es	el	que	conoce	la	intención	de	plasmar	el	tema	en	un	documento.

El	editor	es	quien	se	encarga	de	darle	formato	y	revisar	ortográfica	y	gramaticalmente	el
texto.	Esto	es	tan	importante	como	el	contenido.	Nadie	quiere	leer	un	documento	con
errores	de	ortografía,	mal	redactado	o	donde	los	colores	cansan	la	vista.	Por	otro	lado,
puede	ser	interesante	y	hasta	necesario	en	ciertas	ocasiones,	saber	a	quién	pertenece	el
documento,	introduciendo	en	él	algún	símbolo	que	lo	identifique:	el	autor,	la	compañía	o	el
nombre	del	producto	(sea	comercial	o	no).	El	editor	debe	revisar	también	que	el	documento
tenga	la	información	necesaria	para	la	publicación,	sea	agradable	a	la	vista,	y	“que	cuente
bien	la	historia”.

Tareas,	¿Quién	se	ocupa	de	qué?

El	autor	y	el	revisor	evalúan	básicamente	contenido,	definen	el	estilo	de	la	escritura	y
parcialmente	formato	a	sólo	efecto	de	no	agregar	confusión	en	el	documento	por	ejemplo
identificando	jerarquías	de	títulos	o	definiendo	colores	que	no	pueden	ser	de	otro	modo.
Además,	el	editor	debe	saber	exactamente	a	qué	le	está	dando	formato,	por	ende	el	autor
debe	entregar	un	documento	con	ideas	claras	al	editor.

El	rol	del	editor	es	muy	distinto	al	del	revisor.	Él	estará	concentrado	en	los	aspectos
gramaticales,	formato	y	estilo	visual	del	documento.	Será	el	encargado	de	dejar	la	versión
final	publicable.	Si	es	un	experto	en	el	idioma	de	redacción	del	documento,	puede	aportar
en	mejoras	del	estilo	de	escritura.

Expertise

Escribir	sobre	un	tema	implica	entenderlo	en	plenitud.	Solo	puedes	explicarlo	bien	si	puedes
entenderlo	muy	bien.	La	revisión	de	un	experto	en	etapas	tempranas	ayuda	al	aprendizaje	y
balance	de	conocimiento	entre	el	autor	y	el	revisor.	Así	el	texto	es	finalmente	construido	con
el	conocimiento	de	las	partes	involucradas,	consensuando	los	alcances	del	documento
actual	y	decidiendo	qué	documentación	elaborar	en	un	siguiente	ciclo	de	revisión.

Herramientas	Agiles

60Revisión	Triangular	de	Documentos



Cuando	el	revisor	cuenta	con	mayor	conocimiento	específico	de	ese	dominio	que	el	autor,
se	debe	asegurar	de	que	el	texto	final	sea	comprensible	para	el	público	al	que	está
destinado.

Si	en	tu	equipo	diario	no	encuentras	a	alguien	cercano	que	cuente	con	el	expertise
para	hacer	tu	revisión,	debes	buscarlo	en	otro	lugar,	si	no	deberás	hacerlo	tú	mismo
y	el	resultado	será	carente	de	objetividad	y	no	tendrás	feedback.

Pero…,	¿qué	pasa	si	el	revisor	tiene	menor	expertise	que	el	autor?	¿Es	factible?

La	revisión	que	se	pretende	incorporar	en	este	patrón	tiene	intención	de	ser	vista	como	un
método	de	aprendizaje	para	todos	los	que	escriben	en	él,	no	sólo	para	el	autor.

Alguien	que	no	domine	el	tema	en	plenitud	puede	aportar	valor.	Es	importante	que	pueda
tener	lugar	para	formular	todas	las	preguntas	necesarias	y	así	comprender	lo	que	está
leyendo.	A	través	de	estas	preguntas	el	autor	puede	detectar	qué	información	es	faltante	o
poco	clara	en	el	documento.

En	este	caso,	el	experto	es	el	autor,	y	el	revisor	se	introduce	en	un	workflow	de	revisión
sobre	algo	pre-elaborado.	Notemos	que	en	este	caso	la	confianza	del	revisor	al	autor	para
poder	realizar	preguntas	y	del	autor	al	revisor	para	dar	lugar	a	edición	es	fundamental.
Motivemos	al	revisor	a	preguntar,	pero	también	a	reformular	textos	para	hacerlos	más
comprensibles.

Este	tipo	de	revisión	conviene	hacerla	en	etapas	avanzadas	del	documento,	cuando	éste	ya
fue	revisado	en	al	menos	una	iteración	por	un	revisor	experto	y	el	editor.	Esa	persona	debe
estar	preparada	para	modificar	un	documento	que	trata	de	un	tema	en	el	que	no	es	experta,
por	lo	cual	no	debe	ser	elegida	al	azar.

Por	supuesto,	se	puede	contar	con	varias	personas	para	el	mismo	rol:	puede	haber	más	de
un	autor,	más	de	un	revisor	y	más	de	un	editor.

Con	respecto	al	expertise	del	editor,	debe	conocer	bien	las	reglas	del	lenguaje	en	el	que	se
escribe	el	documento.	En	el	caso	que	el	documento	deba	publicarse	en	un	idioma	diferente
al	usado	por	el	autor,	el	editor	debe	contar	con	conocimientos	expertos	en	ambos	lenguajes,
y	hasta	podría	realizar	una	traducción	del	mismo,	o	crear	las	versiones	necesarias	del
documento	en	diferentes	idiomas.

Por	otra	parte,	si	el	diseño	del	documento	es	muy	complejo,	se	podría	recurrir	a	algún
diseñador	que	colabore	agregando	estilos	gráficos,	corrigiendo	imágenes,	y	dando	el	marco
acorde	que	identifica	al	documento	como	parte	de	una	base	de	conocimiento	específica.

Comunicación	fluida

Herramientas	Agiles

61Revisión	Triangular	de	Documentos



La	interacción	entre	las	personas	que	redactan	y	editan	el	documento	es	clave,	debe	ser
fluida.	Esto	no	implica	tener	reuniones	constantemente	para	poder	redactar	cada	línea;	aquí
prima	la	confianza	en	nuestros	pares,	donde	el	grupo	de	revisión	está	enfocado	a	lograr	un
producto	de	calidad,	construyendo	y	aprendiendo	en	el	camino.

Antes	de	comenzar	la	elaboración	del	documento	hay	que	elegir	las	herramientas	que
soporten	esta	comunicación.

Un	ejemplo	muy	práctico	es	la	plataforma	de	Google,	Google	Docs.	Lo	valioso	de	esto	es
que	permite	volver	atrás	cualquier	cambio	realizado	e	identificar	el	momento	y	el	autor	del
cambio.	Por	supuesto	esto	no	es	para	identificar	culpables,	sino	para	acudir	a	esa	persona	y
entender	el	cambio	si	es	que	no	está	claro.

Aquí	es	necesario	comunicarse	en	tiempo	real.	Pueden	ser	útiles	herramientas	de	chat,	o
llamados	telefónicos.	El	objetivo	es	visualizar	la	traza	del	cambio,	aclarar	las	dudas	de
inmediato	y	decidir	y	resolver	en	función	de	ello.

Workflow:	Revisión	iterativa	en	ciclos	cortos

Para	no	caer	en	el	cansancio	o	creencias	de	que	se	“pierde	tiempo”	en	un	documento,	la
redacción	de	documentos	debe	ser	de	manera	iterativa,	con	el	cubrimiento	de	todos	los
roles	aportando	cambios	incrementales	pequeños,	con	lo	cual	se	requiere	menos	tiempo
para	tomar	una	decisión	sobre	ellos,	y	por	ende	son	más	simples	de	incorporar	(descartar)
en	el	documento,	o	bien	crear	nuevos	documentos	a	partir	de	ellos.	Además	así	se
mantienen	actualizados	a	lo	que	realmente	ocurre	en	ese	momento.

Es	común	que	al	elaborar	un	documento	hagamos	referencias	a	otros	existentes	ya
publicados.	Si	se	descubre	un	documento	obsoleto,	es	necesario	actualizarlo	de	inmediato
resolviendo	lo	que	esté	desactualizado.	Si	el	documento	es	completamente	obsoleto	es
recomendable	hacer	“borrón	y	cuenta	nueva”.

Para	poder	hacer	un	seguimiento	de	documentos	publicados	se	recomienda	que	cada
documento	tenga	una	fecha	o	versión	de	publicación	que	coloque	el	editor	final.

Aún	así,	¿quién	empieza?

El	autor	es	el	que	da	el	paso	inicial.	Manifiesta	ideas	lo	más	claramente	posible	y	en	un	muy
corto	plazo,	por	ejemplo	1	día	o	2,	el	revisor	ya	se	hace	parte	del	documento.

Alinea	los	tópicos,	pide	explicaciones	verbales	sobre	los	mismos	(esto	puede	implicar	una
reunión	inicial)	y	da	lugar	al	autor	con	indicaciones,	ideas,	ayudas	fuertes	de	cómo	seguir.	El
resultado	es	un	acuerdo	entre	ambas	partes.

Herramientas	Agiles

62Revisión	Triangular	de	Documentos



Si	al	escribir	cualquier	cosa	del	documento	hay	un	“impedimento”	se	debe	acudir	de
inmediato	al	revisor	o	viceversa	(revisor	a	autor).

Y	aquí	hemos	trazado	un	canal	de	ida	y	vuelta	en	la	comunicación	dando	forma	a	un	lado
de	nuestro	triángulo,	Figura	10.1.

_Figura	10.1.Interacción	autor-revisor_

En	esta	etapa	de	la	revisión	pueden	surgir	documentos	anexos,	secciones	no	previstas	o
nuevos	documentos	a	generar	a	posteriori.	Hasta	aquí	es	claramente	una	revisión	de	pares.

En	estas	dos	instancias,	el	editor	cumple	un	rol	pasivo.	Se	le	pueden	preguntar	cuestiones
puntuales	pero	aún	no	edita	el	documento.

Cuando	ya	hay	una	versión	lo	suficientemente	madura	del	documento	que	contenga	las
ideas	principales	del	mismo	y	que	estén	explicadas	de	forma	clara	para	autor	y	revisor,	se
hace	parte	activa	del	workflow	el	Editor.

Es	posible	que	el	editor	no	requiera	ayuda	del	autor	o	revisor	para	realizar	su	tarea,	pero	si
hay	algo	de	fondo	que	se	deba	cambiar	o	alguna	idea	no	está	clara,	el	editor	debe	consultar
al	autor.

Aquí	ya	tenemos	dos	aristas	del	triángulo

Herramientas	Agiles

63Revisión	Triangular	de	Documentos



_Figura	10.2.	Interacción	autor-editor_

Si	el	autor	no	es	capaz	de	responder	a	la	pregunta	o	no	está	disponible	en	ese	momento,	el
editor	debe	acudir	al	revisor.

La	tercer	arista	es	más	liviana	(editor	al	revisor	y	viceversa)	ya	que	quien	intermedia	cada
revisión	en	el	workflow,	es	el	autor.

Herramientas	Agiles

64Revisión	Triangular	de	Documentos



Figura	10.3.	Interacción	editor-revisor

Este	ciclo	de	3	etapas,	debe	repetirse	cuantas	veces	sea	necesario.

Durante	la	generación	del	documento	la	revisión	se	realiza	de	manera	cruzada	e	iterativa
hasta	tener	la	versión	final	que	también	es	revisada	por	el	autor	previa	a	su	publicación.

Otros	detalles

Cada	equipo	de	revisión	debe	generar	su	propio	mecanismo	para	saber	cuándo	le	toca	a
quién	(siguiendo	el	workflow	anterior)	y	no	pisarse	en	los	cambios.	No	es	recomendable	que
revisor,	editor	y/o	autor	hagan	cambios	en	simultáneo	sobre	la	misma	parte	del	documento.
Cada	uno	debe	decir	explícitamente	si	el	documento	completo	o	qué	parte	del	él	está	lista
desde	su	perspectiva.

Otro	punto	inflexible	es	que	aquel	que	decide	que	algo	debe	escribirse	de	otro	modo,
borra	lo	escrito	y	escribe	su	idea.	No	pide	permiso.	Esto	puede	sonar	agresivo	pero	no
lo	es	y	el	resultado	es	favorablemente	bueno,	ya	que	quien	escribe,	lee	y	elabora	su	idea
sin	pensar	en	una	frase	o	concepto	que	ya	decidió	que	debía	reformularse.	La	revisión	y
elaboración	de	la	revisión	es	un	proceso	de	aprendizaje.	Tomo	mi	mejor	decisión,	aprendo	y
mejoro	mi	decisión	en	la	siguiente	iteración.

Herramientas	Agiles

65Revisión	Triangular	de	Documentos



Por	esta	razón	es	fundamental	que	la	herramienta	de	soporte	de	la	edición,	guarde	las
versiones	y	los	cambios	con	autor	y	timestamp.	De	ese	modo	es	posible	tener	y	visualizar	la
traza	a	versiones	anteriores	y	resolver	dudas	aclarando	ideas	nuevas.

Conclusiones

Este	patrón	se	propone	como	un	mecanismo	de	aprendizaje	extendiendo	la	idea	de	revisión
de	pares.	Se	definen	3	roles	principales,	cada	uno	con	su	expertise	aportando	valor	en	un
proceso	iterativo	de	revisión.

A	la	hora	de	implementarlo	seamos	concientes	que	los	participantes	van	a	ser	enriquecidos
en	conocimiento	y	nos	ayudará	a	mantener	la	información	actualizada	no	solo	escrita,	sino
también	en	las	mentes	de	todos	los	participantes.

De	este	modo,	se	facilita	la	elaboración	de	documentos	que	soporten	la	gestión	del
conocimiento	a	partir	de	un	documento	de	calidad,	dividiendo	y	distribuyendo	la	revisión	en
pequeñas	tareas	y	actuando	de	forma	colaborativa.	Aplicado	el	patrón,	el	producto	debe
lograrse	en	cortos	períodos	de	tiempo	dando	valor	y	resolviendo	una	necesidad	actual	de
aprendizaje	y	divulgación,	e	incrementando	una	base	de	conocimiento	que	intenta
mantenerse	actualizada.

Agradecimientos

Este	capítulo	se	ha	realizado	utilizando	este	patrón	de	revisión	triangular	a	través	de	2
iteraciones.	Agradecemos	a	Pablo	Tortorella	y	Nicolás	Páez,	como	revisor	y	editor
respectivamente,	por	su	colaboración	en	la	primer	iteración	de	revisión	triangular	que	dio
forma	a	este	documento.

Herramientas	Agiles

66Revisión	Triangular	de	Documentos



SEF:	Sesión	Exprés	de	feedback
Por	Leonardo	Barrientos	Silva,	@leobarrientos

Palabras	clave
retrospectiva	dual,	personas,	feedback,	5	minutos,	retroalimentación.

Motivación
Los	procesos	de	maduración	de	equipo	son,	bajo	mi	punto	de	vista,	muy	distintos	y	pueden
o	bien	encontrar	su	óptimo	al	cabo	de	un	par	de	Sprints	o	requerir	un	tiempo	no	menor	de
conocerse	y	generar	confianza.	Recordemos	que	todo	es	cuestión	de	relaciones	humanas	y
comunicación.

Valores	como	el	compromiso,	coraje,	foco,	respeto	y	apertura	no	emergen	de	forma
espontánea	de	un	equipo	sin	conocerse.	Si	bien	cada	integrate	del	equipo	puede	valorar
más	uno	que	otro	y	actuar	como	quiera,	claramente	no	está	asegurado	que	el	equipo	tenga
el	compromiso	de	entregar	valor	al	cliente	de	forma	temprana,	iterativa	e	incremental.

Lo	que	queremos	es	llegar	a	un	ritmo	que	permita	transmitir	tranquilidad	a	nuestros	clientes
para	bajar	la	ansiedad	de	que	el	equipo	ágil	esté	en	su	desempeño	óptimo	lo	antes	posible,
además	de	ser	flexibles,	y	por	sobre	todo	desarrollar	de	forma	incremental	con	calidad,
Time	to	Market	y	con	un	presupuesto	controlado.

Fomentar	el	sano	vínculo	dado	por	relaciones	humanas	sólidas	permitirá	llevar	un	proceso
de	maduración	más	tranquilo,	sostenible	y	por	sobre	todo	defendible	ante	el	cliente.

Descripción
Se	presenta	una	actividad	que	permitirá	de	forma	clara	entregar	feedback	a	los	miembros
del	equipo	en	forma	objetiva,	respetuosa,	certera,	oportuna,	rápida	y	concisa	para	corregir
un	comportamiento	o	acción	que	provoque	un	declive	en	el	desempeño	del	equipo,	por
ejemplo	alguna	mala	práctica	de	desarrollo,	uso	de	algún	patrón,	antipatrón	de	diseño.	Es
necesario	potenciar	el	proceso	creativo	de	desarrollo	de	software.

Herramientas	Agiles

67SEF:	Sesión	Exprés	de	feedback



Comúnmente	los	miembros	del	equipo	no	saben	cómo	comunicar	a	sus	pares	los	defectos
que	han	encontrado	en	sus	desarrollos	o	cómo	enfrentar	las	situaciones	post	crisis	esto	es,
la	corrección	de	un	incidente	en	producción	producto	de	un	mal	patrón	de	diseño	por
ejemplo.

La	transparencia	y	la	confianza	son	claves	al	momento	de	construir	lazos	en	los	equipos.

La	actividad	se	denomina	Sesión	Exprés	de	feedback	(SEF)	y	está	enfocada	a	que	dos
miembros	del	equipo	se	comuniquen	de	tal	forma	en	que	uno	de	ellos	da	el	feedback	y	el
otro	escuche,	analice	y	se	propongan	acciones	de	mejora.

La	actividad	se	divide	en	cuatro	fases:

La	primera	fase	la	inicia	la	persona	que	quiere	dar	feedback	y	consiste	en	determinar	a
quién	se	le	dará,	cuál	es	la	problemática	a	comunicar	y	los	hechos	concretos.

Para	mostrar	claramente	la	problemática	y	hacer	que	la	reunión	sea	expres	y	no
desviarnos	en	la	conversación	con	cualquier	cosa,	nos	apoyaremos	con	notas
autoadhesivas	para	anotar	e	individualizar	los	hechos	y	objetivos.
Luego	se	deben	priorizar	y	elegir	un	solo	una	nota	autoadhesiva.	El	cual	será	el
foco	de	la	reunión.

Comunicar	y	Agendar.	Es	básicamente	concertar	e	invitar	a	la	persona	a	una	SER.
Se	puede	enviar	una	cita	electrónicamente	o	directamente	se	solicita	cara	a	cara.
Se	debe	privilegiar	e	incentivar	la	solicitud	verbal	cara	a	cara	para	favorecer	los
lazos	humanos.

Ejecutar	la	SEF:	es	la	reunión	en	donde	daremos	el	feedback.
Los	primeros	minutos	deben	destinarse	a	contextualizar	el	tipo	de	feedback.
Mostrar	las	notas	autoadhesivas	a	conversar
Hablar	siempre	calmado	y	concentrado.
Exponer	los	hechos	e	interpretaciones	para	demostrar	que	te	importa	el	hecho	a
discutir.	Hablar	desde	las	emociones.
Pedir	que	és	lo	que	se	quiere.

Cierre	y	Compromiso,	etapa	que	busca:
Conocer	la	opinión	del	otro.
Formular	acciones	que	conduzcan	a	mantener	y	mejorar	los	hechos.
Formular	acciones	que	generen	un	compromiso	de	cambio.

Herramientas	Agiles

68SEF:	Sesión	Exprés	de	feedback



Improvement	Kata
Por	Hiroshi	Hiromoto,	@hhiroshi

Palabras	clave
mejora	continua,	generación	de	valor,	auto-organización,	kaizen,	lean

Intención
En	muchas	organizaciones	algo	recurrente	es	el	deseo	por	ser	mejores	en	algún	aspecto,
ya	sea	en	reconocimiento,	en	ganancias,	en	la	calidad	de	su	producto	o	felicidad	de	sus
colaboradores.	Algo	igual	de	recurrente,	independientemente	de	sus	desafíos,	es	que	existe
una	gran	dificultad	para	convertir	esos	deseos	en	mejoras	concretas	y	una	mayor	dificultad
aún,	para	sostenerlas	en	el	tiempo.

Improvement	Kata	es	un	patrón	que	nos	ayuda	a	lograr	convertir	esos	deseos	en	mejoras
concretas.

Motivación
Si	bien	Improvement	Kata	puede	ser	utilizado	a	diferentes	niveles	de	una	organización	(C-
Level,	middle	management,	áreas,	equipos,	etc),	este	capítulo	estará	enfocado	en	su	uso	a
nivel	de	equipo;	en	particular	en	equipos	que	se	desenvuelven	en	el	trabajo	del
conocimiento.

En	estos	equipos,	independientemente	de	si	están	desarrollando	software,	definiendo
estrategias,	creando	campañas	de	marketing,	transformando	una	organización	o	diseñando
un	servicio,	existe	un	alto	grado	de	incertidumbre	en	cómo	superar	los	desafíos	a	los	que	se
enfrentan.	Esta	característica	en	particular	hace	que	la	posibilidad	de	crear	una	planificación
prescriptiva	para	afrontar	sus	desafíos	sea	poco	realista,	y	que	aparezca	la	necesidad	de
utilizar	un	marco	que	pueda	ser	adaptativo.

Por	ejemplo	en	el	Agile	Manifesto	[Manifesto	2001],	la	necesidad	de	poder	generar	mejoras
a	la	forma	de	trabajo	de	forma	adaptativa	se	ve	reflejada	en	el	siguiente	principio	ágil:

“A	intervalos	regulares	el	equipo	reflexiona	sobre	cómo	ser	más	efectivo	para	a
continuación	ajustar	y	perfeccionar	su	comportamiento	en	consecuencia.”

Herramientas	Agiles

69Improvement	Kata



Donde	el	uso	de	intervalos	de	tiempo,	permite	hacer	ajustes	y	reflexionar	sobre	los	cambios
que	se	vienen	adoptando.

Asimismo,	si	revisamos	la	definición	[Scrum	Guide	2016]	de	la	reunión	de	retrospectiva	en
Scrum	(una	práctica	que	se	basa	en	el	principio	que	acabamos	de	revisar),	nos
encontramos	con:

“La	Sprint	Retrospective	es	una	oportunidad	para	el	Scrum	Team	para	inspeccionarse	y
crear	un	plan	de	mejoras	a	ser	ejecutadas	durante	el	siguiente	Sprint.”

Donde	los	intervalos	regulares	han	sido	reemplazados	por	el	Sprint	y	se	hace	más	foco	en
la	inspección	que	en	la	reflexión.	Además,	al	ser	una	reunión,	la	incorporación	de	las
mejoras	queda	fuera	del	alcance	de	la	misma	(dado	que	se	realiza	durante	el	Sprint).

Si	tenemos	en	cuenta	que	la	retrospectiva	es	la	práctica	más	utilizada	[ScrumAlliance	2015]
por	los	practicantes	de	Scrum	(80%),	siendo	este	el	framework	más	utilizado	en	el	mundo
ágil,	uno	podría	pensar	que	muchos	de	los	equipos	ágiles	están	constantemente
moviéndose	hacia	el	logro	de	sus	desafíos.

Lamentablemente,	en	mi	experiencia,	pocos	son	los	equipos	que	están	logrando	mejorar
continuamente	con	cadencia	y	resultados	tangibles.	Muchos	podrán	argumentar	que	la
mayoría	de	retrospectivas	están	llenas	de	anti-patrones	que	las	hacen	inefectivas	(con	lo
que	estoy	de	acuerdo),	pero	creo	que	no	es	la	única	razón	por	la	que	no	se	ven	resultados.

Mi	hipótesis	(que	he	ido	validando	con	equipos	a	los	que	acompaño)	es	que	hay	tres
elementos	que	hacen	falta	en	la	mayoría	de	sesiones	de	mejora	para	que	estas	sean
efectivas.

El	primer	elemento	es	la	ausencia	de	un	desafío	claro	y	preciso,	que	vaya	mucho	más
allá	de	“ser	más	efectivos”	(como	dice	el	principio	ágil),	y	que	permita	generar	foco	en
las	iniciativas	de	mejora	que	nos	lleven	de	la	pregunta	“qué	podemos	mejorar”	a	la
pregunta	“qué	debemos	mejorar”.
El	segundo	elemento	es	un	mecanismo	que	nos	ayude	a	recorrer	el	camino	hacia	ese
desafío.	Que	evite	que	tengamos	sesiones	Whack-a-Mole	(como	el	juego	de	arcade),
en	donde	simplemente	estemos	reaccionando	de	forma	instintiva	ante	lo	que	aparece
al	frente	de	nuestros	ojos,	sin	tener	en	cuenta	todo	el	panorama	ni	las	causas	raíces	de
los	problemas.
El	tercer	y	último	elemento	es	la	experimentación	sobre	los	planes	de	acción	como
indica	Hiromoto	[Hiromoto	2014],	que	permite	hacer	foco	en	los	impactos	que
queremos	generar	y	amplifique	el	aprendizaje	cuando	no	logramos	esos	impactos	con
nuestras	hipótesis.

Herramientas	Agiles

70Improvement	Kata



Si	bien	es	cierto	que	he	visto	equipos	aplicar	estos	tres	elementos	en	una	retrospectiva,	me
parece	más	natural	utilizar	un	patrón	que	ya	las	contenga	por	diseño,	y	es	ahí	donde	entra
Improvement	Kata.

Descripción
Antes	de	profundizar	en	Improvement	Kata,	quisiera	comentar	brevemente	sobre	el
concepto	de	la	kata,	ya	que	da	las	bases	para	entender	la	importancia	del	patrón.

Kata

La	kata	es	un	concepto	que	viene	de	las	artes	marciales.	De	forma	general	es	un	patrón
que	repites	continuamente	de	forma	deliberada	para	generar	memoria	muscular	y	luego
realizarlo	casi	sin	pensar.	Por	ejemplo	en	la	película	Karate	Kid	[Karate	Kid	1984],	Daniel
repetía	el	movimiento	de	encerar	y	pulir	para	tenerlo	interiorizado	y	poder	utilizarlo	en	la
pelea	de	karate	de	forma	natural,	casi	automática.

En	el	caso	de	Improvement	Kata,	este	es	un	patrón	que	repetimos	para	generar	una
memoria	muscular	de	mejora,	de	forma	que	se	vuelva	un	hábito.

Improvement	Kata

Improvement	Kata	[Rother	2009]	está	enfocado	en	ayudarnos	a	dar	pasos	que	nos	permitan
ir	acercándonos	al	desafío	mejorando	continuamente.	A	grandes	rasgos	tiene	dos	etapas:
una	de	planificación	y	otra	de	experimentación,	que	se	repiten	cíclicamente.

Etapa	de	planificación

En	esta	etapa	se	genera	la	parte	estratégica	de	Improvement	Kata,	así	como	el	seteo	inicial
que	nos	permitirá	experimentar.	Existen	cuatro	elementos	a	tomar	en	cuenta:

El	desafío

El	desafío	es	aquel	reto,	alineado	con	una	visión,	que	tiene	el	equipo	y	es	el	motivo	por	el
cual	se	está	usando	Improvement	Kata.	Uno	puede	decir	que	ese	desafío	es	relevante
cuando	cumple	las	siguientes	tres	características:

Dirección:	Brinda	una	dirección	al	equipo,	que	les	permite	avanzar.
Tensión	positiva:	Genera	una	tensión	positiva	hacia	el	desafío,	parecida	a	la	fuerza	de
la	gravedad.	Ya	que	la	forma	en	cómo	hacemos	las	cosas	(status	quo)	genera	una
tensión	que	evita	cambios,	la	tensión	del	desafío	debe	ser	superior	para	permitir	que	el
equipo	se	mueva.

Herramientas	Agiles

71Improvement	Kata



Significado	de	ganar:	Tener	un	desafío	claro	nos	permite	entender	qué	significa	ganar
en	nuestro	contexto,	dentro	de	la	definición	de	ganar	de	Kofman	[Kofman	2006].

Situación	Actual

La	situación	actual	son	los	hechos	y	datos	que	te	dicen	dónde	está	el	equipo	hoy	en	día	en
función	del	desafío.	La	situación	actual	usualmente	tiene	varios	componentes	como:

Diagrama	de	bloque	del	proceso:	Una	representación	de	cómo	se	hacen	las	cosas	hoy
en	día.
Métricas	de	proceso:	Indicadores	claves	de	performance	que	nos	permitan	evaluar
cómo	funciona	el	proceso.
Métricas	de	resultado:	Indicadores	claves	de	performance	que	nos	permitan	evaluar	el
resultado	generado.
Características	del	proceso:	Datos	adicionales	contextuales	que	nos	ayuden	a	entender
mejor	la	situación.

Siguiente	Condición	Objetivo

La	siguiente	condición	objetivo	es	la	descripción	de	dónde	quiere	estar	el	equipo	en	un
determinado	periodo	de	tiempo.	Funciona	como	punto	intermedio	entre	la	situación	actual	y
el	desafío.	Además	nos	permite	enfocarnos	entre	lo	que	podemos	hacer	y	lo	que	tenemos
que	hacer.

La	siguiente	condición	objetivo	usualmente	tiene	varios	componentes	como:

Fecha	límite:	Momento	en	el	tiempo	en	donde	el	equipo	espera	estar	en	la	situación
descrita.
Diagrama	de	bloque	del	proceso:	Una	representación	de	cómo	se	harían	las	cosas.
Métricas	de	proceso:	Números	que	deberían	alcanzar	los	indicadores	claves	de
performance	que	miden	el	proceso.
Métricas	de	resultado:	Números	que	deberían	alcanzar	los	indicadores	claves	de
performance	que	miden	el	resultado	generado.
Características	del	proceso:	Datos	adicionales	contextuales	que	deberían	ser	diferentes
en	la	situación	descrita.

Algo	a	tener	en	cuenta	es	que	una	siguiente	condición	objetivo	no	requiere	cambios	en	cada
uno	de	los	componentes	descritos.	Esto	significa	que	un	equipo	puede	plantearse	una
siguiente	condición	objetivo	modificando	únicamente	el	valor	de	un	indicador	y	dejando	el
resto	tal	como	está.

Obstáculos

Los	obstáculos	son	una	lista	de	elementos	que	te	impiden	estar	en	la	siguiente	condición
objetivo.	Estos	pueden	tomar	forma	de	problemas,	impedimentos	o	contextos.

Herramientas	Agiles

72Improvement	Kata



Etapa	de	Experimentación

En	esta	etapa	es	donde	ocurre	toda	la	magia	y	es	el	momento	en	dónde	se	ponen	a	prueba
las	hipótesis	y	se	genera	el	aprendizaje.

Ciclos	PHVA

Una	vez	que	están	identificados	los	obstáculos	se	procede	a	elegir	uno	y	tratar	de
removerlo	a	través	de	experimentos.	La	ejecución	se	realiza	siguiendo	ciclos	de	PHVA
(Planear,	Hacer,	Verificar	y	Actuar),	en	donde	primero	se	define	un	experimento	que	incluye
la	generación	de	una	hipótesis	y	su	resultado	esperado.	Luego	de	la	definición	del
experimento,	se	procede	a	ejecutarlo,	para	luego	revisar	los	resultados	y	capitalizar	el
aprendizaje.

Algo	importante	a	notar	es	que	Improvement	Kata	promueve	el	uso	de	los	experimentos	de
factor	único	(single-factor	experiments),	que	implican	hacer	un	solo	cambio	a	la	vez,	lo	que
permite	capitalizar	el	aprendizaje	de	forma	más	efectiva.

Figura	12.1.	Improvement	Kata

Ejemplo	de	aplicación	de	Improvement	Kata

Para	hacer	más	didáctica	la	explicación	usaré	un	ejemplo	simplificado	de	aplicación	en	un
equipo	de	desarrollo	de	software.

Les	presento	a	Juan,	Karl,	Martín,	Carlos	y	Lisbeth	(Team	Leader).	Ellos	son	un	equipo	de
desarrollo	que	trabaja	desarrollando	y	dando	soporte	a	la	aplicación	de	ventas	de	su
organización.

Herramientas	Agiles

73Improvement	Kata



Figura	12.2.	El	equipo

En	la	empresa	donde	trabaja	el	equipo,	el	área	de	tecnología	tiene	una	visión	común	que
es:

“Ser	un	brazo	estratégico	del	desarrollo	del	negocio	a	través	de	tecnología."

El	desafío

Con	la	visión	en	mente	tanto	Lisbeth	como	el	director	de	IT	llegaron	a	un	consenso	sobre	el
desafío	que	tienen	tomando	en	cuenta	la	visión	del	área:

“Entregar	software	de	valor	continuamente	con	menos	del	5%	de	funcionalidades	con	bugs
en	producción	por	release."

Figura	12.3.	El	desafío

Herramientas	Agiles

74Improvement	Kata



Situación	Actual

Con	el	desafío	claro,	Lisbeth	se	reúne	con	su	equipo	en	el	lugar	del	trabajo,	para	que	juntos
determinen	la	situación	actual.

Ellos	actualmente	utilizan	un	tablero	kanban	y	tienen	algunas	métricas	tanto	del	proceso
como	del	resultado.	Basado	en	eso	la	condición	actual	es:

Figura	12.4.	La	situación	actual

Nota:	La	definición	de	la	situación	actual	está	simplificada	para	el	ejemplo.

Siguiente	Condición	Objetivo

Una	vez	conscientes	de	la	situación	actual,	Lisbeth	junto	con	el	equipo	se	proponen	una
siguiente	condición	objetivo	que	debería	ser	cumplida	en	dos	meses.	Consiste	en	reducir	el
porcentaje	de	bugs:

“15%	de	features	con	bugs	en	producción	por	release”

Herramientas	Agiles

75Improvement	Kata



_Figura	12.5.	La	siguiente	condición	objetivo_

Obstáculos

Ahora	que	Lisbeth	y	el	equipo	tienen	una	meta	clara	a	cumplir	en	los	dos	siguientes	meses,
pueden	comenzar	a	pensar	en	los	obstáculos	que	actualmente	están	evitando	que	estén	en
esa	situación	deseada.	Luego	de	un	poco	de	brainstorm,	análisis	y	discusión,	llegaron	a	la
siguiente	lista:

Figura	12.6.	Los	obstáculos

De	todos	estos	obstáculo,	ellos	han	decidido	atacar	el	obstáculo	en	naranja	primero.

Herramientas	Agiles

76Improvement	Kata



Con	esto	el	equipo	ha	terminado	la	etapa	de	planificación	de	Improvement	Kata	y	están
listos	para	iniciar	la	etapa	de	ejecución,	es	decir,	están	listos	para	experimentar.

Ciclos	PDCA

Luego	de	una	conversación	sobre	cuál	debería	ser	su	primer	experimento	para	buscar
remover	el	obstáculo	seleccionado,	Lisbeth	y	el	equipo	determinan	que	probarán	lo
siguiente:

Experimento:	Hacer	pairing	con	el	tester	antes	de	iniciar	el	desarrollo	de	una	nueva
funcionalidad.
Resultado	esperado:	Que	el	tester	tenga	contexto	del	feature	y	pueda	preparar	con
tiempo	el	set	de	pruebas.	Con	esto	aumentar,	en	al	menos	1	día,	el	tiempo	de	ejecución
efectiva	de	pruebas,	incluyendo	las	exploratorias.

Figura	12.7.	Experimentos

Finalmente	ahora	que	entendemos	cómo	funciona	Improvement	Kata	solo	queda	resaltar
que	dado	que	las	katas	están	diseñadas	para	ayudar	a	la	persona	a	recorrer	un	camino,	es
relevante	entender	que	el	uso	del	patrón	tal	como	está	presentado	solo	es	el	inicio.	Así	que
hago	la	invitación	a	¡comenzar	a	recorrerlo!

Herramientas	Agiles

77Improvement	Kata



Guardián	de	un	equipo	con	múltiples
asignaciones
Por	Tomás	Christie,	@tommychristie

Palabras	clave
Scrum,	mantenimiento,	desarrollo,	multi-proyecto

Intención
La	intención	de	esta	técnica	es	aislar	al	equipo	de	las	interrupciones,	permitiéndoles
desarrollar	tranquilos.

Motivación
En	equipos	pequeños	que	atienden	múltiples	proyectos	en	forma	simultánea,	los	integrantes
suelen	sufrir	interrupciones	permanentemente.	Se	pierde	el	foco,	existe	un	costo	altísimo	de
cambio	de	contexto	y	puede	traer	desmotivación.	En	general	estas	interrupciones	son	por
fallas	en	los	sistemas,	que	requieren	de	atención	inmediata	por	parte	de	alguno	de	los
integrantes	del	equipo,	o	más	de	uno.

Descripción
Se	presenta	típicamente	en	los	casos	de	equipos	pequeños	que	tienen	una	gran	cantidad
de	proyectos,	en	todas	las	etapas	del	ciclo	de	vida.	En	estos	casos	suele	suceder	que	las
tareas	de	mantenimiento	correctivo	entran	fácilmente	en	conflicto	con	los	nuevos
desarrollos,	al	punto	que	en	algunos	casos	se	vuelve	muy	difícil	planificar.

Este	conflicto	típicamente	lleva	a	que	se	le	dedique	poco	tiempo	a	realizar	las	tareas	de
mantenimiento	y	a	que	los	problemas	se	solucionan	con	“parches”,	sin	resolver	realmente	el
problema	de	fondo.	Irremediablemente,	los	parches	se	empiezan	a	acumular,	parche	sobre
parche.

Herramientas	Agiles

78Guardián	de	un	equipo	con	múltiples	asignaciones



Esta	situación	hace	que	la	calidad	del	software	se	vuelva	progresivamente	peor,	llevando	a
que	se	generen	cada	vez	más	incidencias	de	mantenimiento	correctivo,	más	interrupciones,
menos	foco	por	parte	del	equipo	y	más	insatisfacción	(tanto	del	cliente	como	del	equipo).

Se	propone	tener	a	alguien	que	sea	el	guardián	del	equipo	y	que	se	encargue	de	que	el
resto	del	equipo	no	sufra	interrupciones	(o	la	menor	cantidad	posible).	En	una	primera	etapa
a	este	guardián	lo	podríamos	llamar	“Bombero”,	ya	que	mayormente	atenderá	urgencias,
estará	“apagando	incendios”.

Como	suele	ser	una	tarea	estresante,	el	equipo	de	desarrollo	establece	algún	orden	cíclico
que	incluya	a	todos.	Luego,	por	sorteo	(o	alguna	otra	manera	que	el	equipo	decida),	se
selecciona	al	primer	Bombero.	Cada	desarrollador	tiene	este	rol	por	una	semana,	o	el
tiempo	que	el	equipo	considere	conveniente.	Personalmente,	creo	que	es	importante	que
sea	un	tiempo	balanceado.	Es	decir,	lo	suficientemente	corto	como	para	que	no
sobrecargue	al	Bombero	de	turno	(ya	que	es	una	tarea	demandante)	y	lo	suficientemente
larga	como	para	que	los	demás	logren	descansar	del	rol.

Cualquier	pedido	de	acción	que	esté	por	fuera	de	la	planificación,	debe	ser	atendido	por	el
Bombero.	Esto	en	general	debería	responder	a	la	resolución	de	bugs	“urgentes”,	del	tipo
“necesitamos	facturar	y	no	funciona	tal	o	cual	cosa”.

Algunas	ventajas	que	vienen	por	añadidura:

Distribución	del	conocimiento.	El	Bombero,	al	tener	que	resolver	problemas	de
cualquier	sistema,	a	la	fuerza	debe	interiorizarse	con	cada	sistema	a	medida	que
requiera	atención.
Proporciona	tiempos	de	respuesta	más	rápidos	ante	bugs	de	los	sistemas.
Durante	un	período	breve	de	tiempo,	sólo	uno	sufre	el	constante	cambio	de	contexto	y
luego	tiene	tranquilidad	por	un	período	proporcionalmente	largo.

En	general	este	estado	de	“bombardeo	de	bugs	al	equipo”	es	inicialmente	fuerte	y	hace	que
el	Bombero	esté	constantemente	apagando	incendios.	Después	de	algún	tiempo,	esta
situación	tiende	a	mejorar,	gracias	a	que	la	figura	del	Bombero	tiene	dedicación	absoluta	a
estos	temas	y	su	tiempo	no	entra	en	conflicto	con	la	planificación.

Cuando	esto	pasa,	la	figura	del	Bombero	puede	transformarse	en	la	de	un	“Guardia”.	De	la
misma	manera	que	antes,	el	Guardia	va	rotando	semana	a	semana.	Hay	dos	variantes
posibles	para	la	figura	del	Guardia:

Dedicar	su	tiempo	a	tareas	preventivas	o	de	saneamiento.	Por	ejemplo,	implementar
más	tests,	hacer	refactoring	de	código	con	optimizaciones,	etc.	Muy	probablemente,
esta	variante	pueda	aplicarse	primero,	a	modo	de	transición	entre	el	Bombero	y	la
segunda	variante	del	Guardia.
Al	Guardia	se	lo	incluye	dentro	de	la	planificación.	Realiza	tareas	de	desarrollo	al	igual

Herramientas	Agiles

79Guardián	de	un	equipo	con	múltiples	asignaciones



que	el	resto,	con	la	salvedad	de	que	es	el	interrumpible.	Es	para	equipos	bastante
evolucionados,	con	software	de	alta	calidad,	donde	la	incidencia	del	mantenimiento	es
baja.	De	esta	manera,	el	Guardia	colabora	con	el	desarrollo	siendo	el	único	que
“padece”	las	interrupciones.

Conclusión

La	técnica	funciona	muy	bien.	Los	resultados	se	ven	en	el	corto	plazo.	El	equipo	en	general
adquiere	un	estado	más	relajado	de	trabajo,	sabiendo	que	puede	poner	todo	su	foco	en	el
desarrollo	que	tiene	entre	manos,	sin	tener	interrupciones	constantes.

En	general,	las	tareas	de	apagar	incendios	merma	y	comienzan	las	tareas	de	prevención	y
Guardia.	Vemos	que	al	poder	dedicarle	tiempo	a	tareas	de	prevención,	la	calidad	del
software	tiende	a	subir	y	las	incidencias	de	bugs	caen.	¡Se	ingresa	en	un	círculo	virtuoso!

Herramientas	Agiles

80Guardián	de	un	equipo	con	múltiples	asignaciones



Coding	Dojo:	técnica	de	entrenamiento
Por	Pablo	Tortorella,	@pablitux

Palabras	clave
Coding	dojo,	conocimientos,	experiencia,	práctica,	entrenamiento

Intención
Muchas	empresas	y	profesionales	creen	que	el	aprendizaje	continuo	trae	grandes
beneficios.	Por	otro	lado,	los	desafíos	del	mundo	globalizado,	competitivo	y	cambiante
muchas	veces	llevan	a	los	equipos	de	trabajo	a	focalizarse	exclusivamente	en	resolver	sus
problemas,	dejando	así	poco	espacio	para	la	reflexión,	la	mejora	y	la	transferencia	de
conocimientos.

En	este	capítulo	quiero	dar	a	conocer	las	ventajas	y	contar	cuáles	son	las	características	de
un	método	de	capacitación	e	integración	que	considero	eficaz,	eficiente,	divertido	y	serio	al
mismo	tiempo.	Se	trata	del	Coding	Dojo.

Motivación
Messi	entrena	a	diario.	Corre,	hace	ejercicio	físico	y	practica	jugadas	con	pelota.	Hace
prácticas	de	tiros	libres	de	todo	tipo:	con	barrera,	sin	barrera,	con	arquero/portero,	sin	él,
desde	lejos	y	desde	más	cerca.	Fue	elegido	como	el	mejor	jugador	de	fútbol	del	planeta
tierra,	cinco	veces.	Cinco.	Y	aun	así,	el	tipo	sigue	entrenando.	A	diario.	Y	lo	mismo	hacen
todos	los	deportistas	profesionales	y	de	alto	rendimiento.	¿Por	qué	lo	hacen?	Para	mejorar
su	nivel,	para	perfeccionarse.

Así	como	Messi	y	los	demás	deportistas,	también	los	músicos	entrenan:	ensayan.	Aun
siendo	autores	de	las	canciones.	Aun	conociendo	cada	una	de	las	notas	y	de	los	ritmos	con
los	cuales	quieren	interpretarlos	en	un	concierto.	Aun	así,	ensayan	una	y	otra	vez	los	temas,
sus	introducciones,	sus	estribillos	y	sus	finales.	Ensayan	solos	con	sus	instrumentos	y
también	ensayan	con	los	demás	integrantes	de	las	bandas	u	orquestas	de	las	cuales
forman	parte.

Herramientas	Agiles

81Coding	Dojo:	técnica	de	entrenamiento



Todas	estas	personas	ejercitan	sus	habilidades	y	las	potencian	mediante	práctica	y	más
práctica.	Saben	que	son	capaces	de	mejorar	y	seguir	mejorando.	Refinando	tanto	detalles
gruesos	como	finos.	Mejoras	que	tal	vez	para	otros	sean	imperceptibles.	Mejoras	que	se
identifican	luego	de	miles	de	horas	de	entrenamiento.

¿Por	qué	nosotros,	los	profesionales	del	conocimiento,	no	practicamos,	no	entrenamos	y
no	ensayamos?	¿Será	nuestro	ego?	¿Será	un	tema	cultural?	¿Qué	tan	ciegos	nos	están
dejando	nuestras	urgencias	laborales?	Creo	que	debemos	cambiar	esto:	Aún	los	mejores
en	nuestras	disciplinas,	deberían	seguir	practicando,	practicando	y	practicando	para	mejorar
de	forma	permanente.

Es	por	eso,	porque	no	practicamos	-excepto	algunos	en	los	cursos	y	las	carreras
académicas	que	realizan	por	fuera	del	horario	laboral-	que	considero	que	el	Coding	Dojo
puede	ser	de	gran	utilidad	para	todos	nosotros.

Dojo	es	una	palabra	japonesa.	Significa	"el	lugar	del	camino",	que	hace	alusión	al	camino
de	la	perfección	espiritual,	física	y	mental.	No	es	un	camino	con	un	destino,	sino	que	es	un
camino	en	el	que	se	ingresa	para	-ojalá-	mantenerse	toda	la	vida.

El	Dojo,	en	Japón,	es	concretamente	el	lugar	físico	en	el	que	se	practica,	donde	se
entrena.	Existen	dojos	para	variadas	disciplinas,	por	ejemplo,	para	artes	marciales.	En	este
caso	particular,	en	el	Coding	Dojo,	se	trata	de	la	búsqueda	de	la	perfección	en	el	uso	de	las
técnicas	ágiles	de	desarrollo	de	software

Descripción

Roles

En	un	Coding	Dojo	la	práctica	suele	hacerse	en	grupos.	Específicamente	suelen	ser
grupos	de	3	participantes.	Dentro	de	cada	grupo	hay	roles	y	cada	rol	tiene	sus
responsabilidades.	Los	roles	dentro	de	un	grupo	son	Coder,	Co-piloto	y	Asistente.	El	Coder
también	es	llamado	Driver,	haciendo	referencia	al	conductor	de	autos	de	Rally.	Es	quien
puede	tocar	el	teclado	para	escribir	código	fuente,	con	foco	en	lo	que	se	está	haciendo	en
ese	mismo	momento.	El	Co-piloto	es	llamado	así	haciendo	referencia	al	acompañante	del
conductor	de	un	auto	de	carrera;	es	quien	se	encarga	de	pensar	estrategias	de	más
mediano	plazo,	poniendo	foco	en	los	detalles	a	mejorar	y	en	los	escenarios	que	se	irán
resolviendo	a	continuación.	El	Asistente	es	como	el	Co-piloto,	con	la	salvedad	de	que	tiene
una	responsabilidad	adicional,	relacionada	con	un	tablero	del	cual	se	habla	más	adelante	en
este	mismo	capítulo.

Herramientas	Agiles

82Coding	Dojo:	técnica	de	entrenamiento



Estos	tres	roles	suelen	rotar	a	medida	que	se	desarrolla	la	práctica,	de	forma	tal	que	cada
participante	pueda	practicar	todos	los	roles.	Ahondaremos	más	adelante	al	respecto	de	esta
rotación.

En	todo	Dojo,	también	participa	un	Sensei.	Es	quien	tiene	la	responsabilidad	de	guiar	a	los
participantes,	llamados	también	aprendices,	en	el	camino	de	la	mejora.	También	suele
conocer	en	detalle	las	técnicas	que	se	practicarán	en	su	Dojo.	Debe	tener	la	tolerancia	y	la
capacidad	didáctica	para	lograr	compartir	sus	conocimientos	y	su	experiencia	con	los
aprendices.	También	es	recomendable	que	tenga	la	habilidad	de	transmitir	esos	saberes	a
diferentes	asistentes,	por	ejemplo,	de	distintos	niveles	de	experiencia.

Etapas

Un	Coding	Dojo	es	un	evento	que	puede	realizarse	de	muy	variadas	formas.	Personalmente
he	facilitado	más	de	100	dojos	en	estos	últimos	años	a	lo	largo	y	ancho	del	continente
americano	y	tengo	una	agenda	tentativa	bastante	refinada	que	casi	siempre	consta	de	las
etapas	que	describo	a	continuación.

Invitación

Si	querés	que	alguien	participe	de	tu	Coding	Dojo,	deberás	-como	mínimo-	avisarle.
Aprovechando	el	aviso,	podés	comentarle	que	se	necesitarán	computadoras	(notebooks,
netbooks,	ultrabooks	o	las	máquinas	que	se	puedan	conseguir).	¿Cuántas	se	requieren?
Aproximadamente	una	computadora	por	cada	dos	a	cinco	participantes.	Será	provechoso	si
ya	llevan	instalado	y	configurado,	antes	de	comenzar	el	evento,	algún	entorno	de	desarrollo
(del	inglés,	IDE:	Integrated	Development	Environment)	con	algún	framework	de	pruebas
unitarias,	como	es	el	caso	de	JUnit	para	Java,	por	mencionar	un	ejemplo.

En	la	invitación	también	es	relevante	que	asistan	con	la	intención	de	aprender	cosas
nuevas,	dado	que	muchas	personas	participan	de	reuniones	sólo	para	"difundir	todo	eso
que	ya	saben	a	las	personas	ignorantes	que	las	rodean"	y	se	pierden	grandes
oportunidades	de	incorporar	novedades	a	sus	vidas.	También	les	pido	que	traigan	buena
onda,	pues	es	algo	que	nunca	está	de	más	y	aporta	grandes	beneficios.

Preparación

En	todos	los	casos	que	facilité	un	Coding	Dojo	permití,	exceptuando	un	solo	evento	en	una
pequeña	ciudad	de	la	selva	en	el	interior	de	Perú,	que	cada	participante	tuviera	su	silla	o
banqueta	para	sentarse.	En	aquel	evento	académico	fueron	60	alumnos	y	docentes	al
Coding	Dojo	en	el	que	-directivos	y	quien	escribe-	calculamos	que	irían	sólo	15.	A	pesar	de
las	condiciones,	fue	un	hermoso	Dojo	en	el	que,	algo	incómodos,	alcanzamos	los	objetivos.

Herramientas	Agiles

83Coding	Dojo:	técnica	de	entrenamiento



Entonces,	al	preparar	tu	Coding	Dojo	deberás	tener	en	cuenta	lo	siguiente:

1.	 Calculá	cuánta	gente	entra	cómoda,	y	evitarás	así	que	te	pase	lo	que	a	mí	en	el	evento
mencionado	anteriormente.

2.	 Un	Coding	Dojo	que	tiene	algo	ligero	para	comer	y	tomar,	es	un	mejor	Coding	Dojo.
3.	 Un	Coding	Dojo	con	comida	y	sin	servilletas,	será	un	desastre	para	los	teclados.
4.	 Estos	eventos	duran	entre	una	y	dos	horas,	aproximadamente.
5.	 El	foco	suele	tenerlo	la	práctica	de	desarrollo	ágil	de	software,	con	lo	cual	vendrá	bien

que	haya	interés	de	los	organizadores	en	prácticas	tales	como	Pair	Programming
(Programación	de	a	Pares),	TDD	(Test	Driven	Development)	y	Refactoring,	así	como
también	conocimiento	en	principios	SOLID	de	diseño,	por	mencionar	algunos	temas
ágiles	relacionados	con	el	desarrollo	de	software.

6.	 Los	invitados	pueden	no	saber	qué	es	TDD,	Refactoring	ni	SOLID.	Lo	aprenderán	en	el
Dojo.	Tampoco	necesitan	saber	cómo	escribir	pruebas	unitarias.

7.	 Si	bien	se	espera	que	los	participantes	sepan	programar,	hubo	excepciones	en	las
cuales	participaron	exitosamente	abogados,	vendedores	y	otros	perfiles	no	técnicos.

8.	 Deberás	tener	una	agenda	para	presentarles	a	los	que	asistan.	Posiblemente	se
parezca	a	un	listado	con	los	títulos	que	vienen	a	continuación.

Llegada	y	Presentación

La	llegada	al	Dojo	puede	marcar	el	estado	de	ánimo	del	encuentro.	Un	ambiente	de
recepción	con	música	y	comida	predispone	bien	a	muchas	personas.	Luego,	llegado	el
momento	de	iniciar,	se	hace	una	ronda	para	dar	lugar	a	una	breve	presentación	de	cada
uno	de	los	participantes	y	de	sus	intenciones	en	el	Coding	Dojo.	La	disposición	en	ronda	es
intencional.	Su	objetivo	es	la	participación	activa,	la	horizontalidad	y	la	posibilidad	de	que
todo	el	que	hable	pueda	ser	escuchado	y	mirado	por	los	demás.

Explicación	de	temas

Luego	de	la	presentación,	se	da	lugar	a	la	explicación	de	varios	conceptos,	siempre	y
cuando	esto	se	necesite.	Es	habitual	describir	qué	es	un	Coding	Dojo,	cuáles	son	sus
objetivos,	cómo	será	el	mecanismo	de	trabajo	y	cuáles	son	los	roles	que	se	practicarán.
También	se	suele	describir	-en	mayor	o	menor	detalle-	qué	es	TDD	y	técnicas	de	desarrollo
ágil,	como	puede	ser	Refactoring.	En	general	es	útil	ilustrar	estos	conceptos	con	ejemplos
simples	y	concretos,	llevados	adelante	en	vivo,	ahí	mismo.

A	partir	de	la	explicación	de	TDD,	suelo	pedir	a	los	participantes	que	esquematicen	en	una
hoja	de	papel	las	etapas	del	ciclo	de	trabajo	que	esa	técnica	propone,	llamado	RGR	(del
inglés	Red,	Green,	Refactor).	Con	la	hoja	del	ciclo	RGR,	el	Asistente	guiará	y	controlará	a

Herramientas	Agiles

84Coding	Dojo:	técnica	de	entrenamiento



su	grupo	en	el	seguimiento	del	ciclo	RGR.	El	uso	que	se	da	a	esta	hoja	se	asemeja	al	que
tiene	el	tablero	en	un	juego	de	mesa.

Esta	etapa	de	explicación	podría	durar	entre	15	y	45	minutos,	dependiendo	del	grado	de
conocimiento	que	existe	al	respecto	entre	los	participantes.	Y,	dado	que	el	objetivo	del	Dojo
es	aprender	y	mejorar	mediante	la	práctica,	es	importante	que	la	explicación	no	dure
demasiado,	aún	si	quedan	dudas.	Durante	la	práctica	y	en	las	conclusiones	finales,
muchas	de	esas	dudas	suelen	resolverse.

El	desafío	o	la	Kata

El	Coding	Dojo	fomenta	la	práctica	a	través	de	ejercicios	concretos	y	finitos	que	representen
un	desafío	y	resulten	motivadores.	Estos	desafíos	no	son	problemas	que	los	equipos
deban	resolver	para	sus	trabajos.	Al	tratarse	de	un	entrenamiento,	se	proponen	desafíos
que	les	sirvan	a	los	participantes	para	aprender	y	mejorar.	Los	desafíos	se	llevan	adelante
mediante	la	realización	de	una	actividad.	Esa	actividad	suele	ser	una	Kata,	palabra	que	en
japonés	significa	“forma”.	Las	katas	en	las	artes	marciales	son	ejercicios	que	se	realizan
repetidamente,	con	el	objetivo	de	incorporar	movimientos	de	forma	evolutiva.	Así,	en	un
combate,	luego	de	muchas	repeticiones,	esos	movimientos	se	podrán	realizar	naturalmente
sin	siquiera	pensarlos.

Por	ejemplo,	una	Kata	que	suelo	proponer	para	aprender	TDD	es	crear	un	componente	de
software	que	convierta	números	naturales	a	números	romanos.	Si	el	componente	recibe	un
1	deberá	devolver	“I”,	si	recibe	un	2	deberá	devolver	“II”,	si	recibe	5	deberá	devolver	“V”	y
así	para	todos	los	números	romanos	hasta	3999.	El	objetivo	de	la	Kata	no	es	resolver	el
desafío	por	completo	ni	diseñar	desde	el	inicio	la	solución	final,	sino	practicar	paso	a	paso,
resolviendo	cada	una	de	las	partes,	tal	como	propone	TDD.

Desarrollo	de	la	Kata

Una	vez	que	los	conceptos	han	quedado	claros	y	se	ha	elegido	una	Kata,	comienza	la
práctica.	Se	invita	a	los	participantes	a	que	se	organicen	en	grupos	de	3	integrantes.	Si
son	pares,	que	se	armen	todos	los	grupos	de	3	que	sean	posibles	y	finalmente	quedará
algún	grupo	de	4	o	de	2.	Todo	el	grupo	trabajará	en	una	misma	computadora.

Se	trabajará	en	ciclos	cortos,	también	llamados	iteraciones.	Son	períodos	de	tiempo	que
pueden	ir	entre	5	y	10	minutos.	En	los	Dojos	en	los	cuales	hay	mayoría	de	grupos	con	3
integrantes,	la	duración	que	he	encontrado	más	conveniente	es	de	7	minutos.

Al	cabo	de	los	7	minutos,	pedir	a	los	participantes	que	roten	de	rol.	Entonces	el	Coder
pasará	a	ser	Co-piloto,	el	Co-piloto	pasará	a	ser	Asistente	y	el	Asistente	pasará	a	ser
Coder.	Eso	será	así	durante	los	siguientes	7	minutos.	Y	así	se	repetirá	durante	4	a	8

Herramientas	Agiles

85Coding	Dojo:	técnica	de	entrenamiento



iteraciones,	aproximadamente.	Esta	cantidad	depende	del	tiempo	que	se	quiere	invertir	en
el	Coding	Dojo.

El	Sensei	deberá	estar	atento	a	las	necesidades	que	los	grupos	puedan	tener	durante	en	el
desarrollo	de	la	Kata,	compartiendo	oportunamente	su	conocimiento	y	experiencia.	También
podrá	realizar	aclaraciones	y	comentarios	entre	ciclos,	para	compartir	con	todos	los	grupos
algún	conocimiento	o	hallazgo	que	haya	ocurrido	en	algún	grupo	en	particular.

Una	posibilidad	opcional	es	fomentar,	cada	3	o	4	iteraciones,	la	rotación	de	los	grupos	para
que	los	participantes	trabajen	también	con	el	código	fuente	que	fue	desarrollado	por	otros.
El	objetivo	de	esta	otra	rotación	es	generar	mayor	conciencia	al	respecto	de	la
mantenibilidad,	un	atributo	de	calidad	esencial	en	el	desarrollo	ágil	de	software.	Este	tipo	de
rotación	implica	que	todo	el	grupo	(o	parte	del	mismo)	se	mueva	a	otra	computadora	y
trabaje	allí	durante	algunas	iteraciones.	Si	alguien	del	grupo	se	queda	trabajando	en	la
computadora	original,	es	deseable	que	comience	la	iteración	como	Co-piloto	o	Asistente,
para	permitir,	a	sus	nuevos	compañeros	de	grupo,	que	conozcan	la	solución	que	se	ha
estado	desarrollando	antes	de	su	llegada.

Conclusiones	y	cierre	del	Dojo

Un	rato	antes	de	terminar	el	encuentro,	se	suele	realizar	una	nueva	ronda.	En	esta	ronda
de	cierre,	se	invita	a	los	participantes	a	que	compartan	sus	conclusiones,	a	partir	de	lo	que
han	aprendido,	de	los	desafíos	que	se	han	encontrado,	de	las	emociones	y	sensaciones
que	han	sentido.	También	se	los	invita	a	compartir	cómo	han	pasado	en	general.	Esto	último
apunta	a	que	no	solamente	compartan	cuestiones	técnicas,	sino	que	también	puedan
también	conversar	sobre	lo	que	les	haya	resultado	relevante	a	lo	largo	del	Coding	Dojo.	No
es	raro	escuchar	reflexiones	acerca	del	trabajo	en	equipo,	la	distribución	de	teclados
ajenos,	la	tolerancia	frente	a	diferentes	formas	de	pensar	soluciones	para	la	Kata	y	las
inquietudes	más	profundas	relacionadas	con	las	técnicas	que	se	han	estado	utilizando
durante	la	práctica.

Para	poder	mejorar	entre	un	Coding	Dojo	y	el	siguiente,	es	habitual	pedir	retroalimentación
a	los	participantes,	para	que	compartan	qué	les	pareció	útil,	qué	les	gustó,	qué	no	les	gustó
y	qué	ideas	tienen	para	mejorar	de	cara	al	siguiente	encuentro.

Conclusión

Habiendo	facilitado	más	de	cien	Coding	Dojos	en	estos	últimos	cinco	años,	tanto	en	ámbitos
comunitarios	como	académicos	y	corporativos,	puedo	asegurar	que	siempre	ocurrió	la
magia:	gente	que	aprendió	cosas	nuevas	relevantes	para	su	día	a	día	y	que	pasó	a	ser	más

Herramientas	Agiles

86Coding	Dojo:	técnica	de	entrenamiento



consciente.	A	partir	de	participar	activamente	de	un	Coding	Dojo,	miles	de	personas
empezaron	a	ver	cosas	a	su	alrededor	que	antes	no	habían	visto:	Temas	técnicos,
metodológicos,	humanos	y	tecnológicos.

Gracias	a	esa	experiencia,	puedo	garantizar	que	organizar	eventos	del	tipo	Coding	Dojo	en
el	marco	de	un	equipo,	compañía	o	comunidad	de	práctica,	sirve	para:

Difundir	y	compartir	conocimientos	de	todo	tipo.
Fomentar	la	posterior	auto-capacitación.
Mejorar	el	uso	de	técnicas	y	herramientas.
Ampliar	capacidades.
Refinar	habilidades.
Establecer	bases	de	un	lenguaje	común	que	mejora	la	comunicación.
Crear	y	mejorar	relaciones	entre	los	participantes.
Mejorar	potencialmente	la	calidad	del	código	fuente	y	por	ende	del	producto.
Establecer	un	ambiente	en	el	cual	la	mejora	continua	sea	posible	y	real.

¿Qué	hacés	ahí,	leyendo?	¿Qué	esperás	para	organizar	y	facilitar	tu	propio	Coding	Dojo?

Herramientas	Agiles

87Coding	Dojo:	técnica	de	entrenamiento



Automatización	a	través	de	Git	hooks
Por	Fernando	Di	Bartolo,	@fdibartolo

Palabras	clave
desarrollo	de	software,	git,	automatización,	entrega	continua

Intención
Minimizar	el	error	humano	a	través	de	la	automatización	de	ciertas	rutinarias	tareas	de	un
desarrollador	de	software.

Motivación
Somos	humanos,	y	por	ello,	cometemos	errores.	Por	otra	parte,	en	la	ingeniería	de
software,	se	menciona	el	hecho	de	que	cuanto	más	tarde	se	descubre	un	defecto,	mayor	es
el	esfuerzo	necesario	para	solucionarlo.	Dicho	esto,	desde	la	perspectiva	del	desarrollador
de	software,	si	damos	por	sentado	que	vamos	a	introducir	errores,	defectos,	y/o	violación	de
estándares,	¿qué	podemos	hacer	para	detectarlos	lo	suficientemente	temprano	como	para
que	corregirlos	sea	trivial?

A	esta	altura	y	por	los	años	que	corren,	la	respuesta	a	la	pregunta	de	arriba	podría	ser:
“escribe	tus	pruebas	unitarias,	escribe	tus	pruebas	de	integración,	escribe	tus	pruebas	de
interfaz	gráfica,	bla	bla	bla”.	Claramente	yo	apoyo	esta	moción	(sujeto	al	contexto	del
proyecto	en	cuestión),	pero	aun	así,	y	lo	he	visto,	no	todos	los	miembros	de	un	equipo	de
desarrollo	tienen	la	misma	disciplina	de	correr	dichas	pruebas	antes	de	enviar	sus	cambios
al	repositorio,	o	bien,	solo	corren	aquellas	que	“teóricamente”	están	asociadas	a	su	cambio
en	el	código.	Entonces,	nuevamente,	¿qué	podemos	hacer?

Descripción
La	idea	planteada	aquí	no	es	bala	de	plata	para	cualquier	implementación,	ni	tampoco	la
única.	Sin	ir	más	lejos,	existen	herramientas	que	incluso	facilitan	lo	que	estoy	a	punto	de
describir,	pero	la	intención	es	plantear	las	bases,	más	aún	cuando	nuestro	contexto	nos

Herramientas	Agiles

88Automatización	a	través	de	Git	hooks



limita	a	poder	hacer	uso	de	aquellas	herramientas	(por	ejemplo,	si	trabajamos	con	un	cliente
que	ya	tiene	su	set	de	herramientas	predefinido;	o	bien	que	por	políticas	internas,	las
herramientas	que	podríamos	usar	no	están	permitidas).

Los	git	hooks	(ganchos)	son	pequeños	scripts	que	nos	permiten	ejecutar	acciones	en
ciertos	puntos	del	flujo	de	trabajo.	Estas	acciones	podrían	ser	por	ejemplo:

Generar	un	nuevo	objeto	commit.
Sincronizar	código	propio	con	un	repositorio	remoto.
Hacer	un	merge	de	dos	ramas	del	repositorio.

En	pos	de	mantener	la	simpleza,	aquí	mencionaremos	solo	3	hooks,	aunque	la	lista	es	larga
como	indica	Scott	Chacon	en	su	libro	“Pro	Git”,	[Chacon	2009].

Entonces,	en	líneas	generales,	un	desarrollador	debe:

1.	 Cumplir	con	estándares	de	codificación.
2.	 Ejecutar	la(s)	suite(s)	de	pruebas	localmente,	contemos	o	no	con	un	servidor	de

integración	continua.
3.	 Desplegar	código	a	un	servidor/entorno	de	prueba.

Veamos	cuáles	git	hooks	nos	ayudan	a	lograr	que	estas	tareas	rutinarias	se	ejecuten	en	el
momento	adecuado	y	de	manera	automática,	sin	riesgo	de	error	humano	(errores	tales
como	olvido	o	mala	lectura	del	resultado	por	falta	de	atención).

Nos	encontramos	escribiendo	código	y	guardando	los	cambios	a	través	del	comando	git
add.	Estamos	listos	para	hacer	un	commit.	Deberíamos	ahora	ejecutar	manualmente	la
herramienta	para	asegurar	que	nuestros	cambios	no	violan	ningún	estándar,	pero
frecuentemente,	es	algo	que	olvidamos	y	que	terminamos	chequeando	post-mortem.	He
aquí	un	git	hook	al	rescate:	pre-commit.	Creamos	un	archivo	con	ese	mismo	nombre
dentro	de	[repo]/.git/hooks,	con	su	correspondiente	permiso	de	ejecución.	Dentro	del	mismo,
programamos	aquello	mismo	que	veníamos	corriendo	a	mano,	que	dependiendo	del
lenguaje	de	programación	en	cuestión,	será	usando	librerías	tales	como	Rubocop,	JsLint	o
CodeAnalysis.	Una	particularidad	con	este	hook	es	que,	llegado	el	caso	que	algún	estándar
no	se	cumpla	y	quisiéramos	por	ello	rechazar	el	commit,	solo	tenemos	que	hacer	que	el
script	retorne	un	valor	distinto	de	cero.

Tenemos	ahora	un	conjunto	de	commits	listos	para	empujarlos	a	un	repositorio	remoto.	Si
no	lo	hicimos	antes,	deberíamos	ejecutar	manualmente	nuestro	conjunto	de	pruebas,	y
nuevamente,	solo	lo	hacemos	cuando	nos	acordamos.	El	hook	que	ahora	nos	puede	ayudar
es	el	pre-push.	Así	como	hicimos	antes,	creamos	un	archivo	con	el	mismo	nombre	del	hook
(pre-push)	y	en	el	mismo	lugar	físico	([repo]/.git/hooks).	Escribimos	dentro	de	él	aquel	o
aquellos	comandos	que	corren	nuestras	pruebas.	Ante	una	prueba	fallida,	haremos
nuevamente	que	el	script	retorne	un	valor	distinto	de	cero,	y	el	push	será	rechazado.	Como

Herramientas	Agiles

89Automatización	a	través	de	Git	hooks



habrán	notado,	todos	aquellos	hooks	cuyo	nombre	comience	con	pre-,	se	ejecutan	un
instante	antes	de	la	acción	en	cuestión,	con	lo	cual,	haciendo	que	el	script	retorne	un	valor
distinto	de	cero,	impedimos	que	la	acción	se	lleve	a	cabo.

Por	último,	necesitamos	desplegar	código	a	un	entorno	de	pruebas,	y	esto	puede	requerir
varios	pasos:	actualizar	esquema	de	base	de	datos,	minimizar	javascripts	y/o	hojas	de
estilo,	etc.	Tareas	rutinarias,	algunas	fácil	de	saltear,	por	lo	cual,	¡automaticemos!
Suponiendo	que	desplegar	implica	empujar	código	a	un	repositorio	remoto	(por	ejemplo,	de
la	forma	que	funciona	Heroku),	podemos	hacer	uso	del	hook	post-receive.	En	este	caso,	a
diferencia	de	los	2	primeros,	debemos	crear	el	archivo	en	el	repositorio	remoto,	no	en	el	que
tenemos	localmente.	Una	vez	que	empujemos	código	via	git	push	desde	nuestro	repositorio
local	hacia	el	remoto,	el	script	correrá	en	el	servidor,	aunque	tendremos	la	posibilidad	de	ver
el	log	de	ejecución	desde	nuestra	máquina,	en	tiempo	real.

En	resumen

No	todos	los	pasos	o	procesos	que	automatizamos	en	el	contexto	de	un	proyecto,	funcionan
tal	cual	en	otro.	De	la	misma	manera,	la	automatización	está	limitada	por	la	creatividad	del
desarrollador;	lo	importante	es	hacer	una	buena	lectura	del	contexto	y	aplicarla	con	criterio.

Herramientas	Agiles

90Automatización	a	través	de	Git	hooks



Versionado	de	código,	configuración	y
ambientes
Por	Nicolás	Paez,	@inicopaez

Palabras	clave
Devops,	versionado,	entrega	continua

Intención
¿Cómo	organizar	el	versionado	de	artefactos	de	software	en	un	contexto	de	entrega
continua?

Motivación
Desde	una	perspectiva	de	entrega	continua	toda	aplicación	es	código	ejecutándose	en	un
determinado	ambiente	con	una	determinada	configuración.	Algunos	fanáticos	podrían
insistir	en	que	los	datos	son	también	parte	de	la	aplicación,	pero	este	es	un	punto	que
puede	resultar	muy	polémico	y	por	ello	se	dejará	de	lado	en	esta	ocasión.	Entonces
tenemos:

código	+	configuración	+	ambiente

Por	ambiente	entendemos	como	mínimo	una	máquina	(física	o	virtual)	con	un	cierto	sistema
operativo	con	determinado	software	de	base,	por	ejemplo:	un	servidor	de	aplicaciones	o	un
servidor	web.	En	la	actualidad	existen	diversas	herramientas	que	permiten	especificar	los
ambientes	en	forma	de	código	(Chef,	Puppet,	Ansible,	etc).	Entonces	con	una	vuelta	de
rosca	más	tenemos:

código	de	la	aplicación	+	configuración	de	la	aplicación	+	código	que	describe	el	ambiente
de	la	aplicación.

Finalmente	como	nuestra	aplicación	deberá	evolucionar	a	lo	largo	del	tiempo,	agregaremos
a	nuestra	lista	un	paquete	de	código	adicional	que	describa	cómo	instalar/desplegar	nuestra
aplicación,	con	su	correspondiente	configuración,	en	su	correspondiente	ambiente.	Pasando
en	limpio,	podemos	decir	que	toda	aplicación	se	compone	entonces	de	3	artefactos:

Herramientas	Agiles

91Versionado	de	código,	configuración	y	ambientes



El	código	fuente.
La	configuración.
Los	scripts	de	despliegue.

En	un	contexto	de	entrega	continua	es	necesario	gestionar	y	versionar	cada	uno	de	estos	3
artefactos.	La	pregunta	es	entonces	cómo	hacerlo.

Descripción
Estos	tres	artefactos	tienen	un	frecuencia	de	cambio	distinta:	el	código	fuente	suele	estar	en
constante	modificación,	mientras	que	los	scripts	de	despliegue	suelen	ser	mucho	más
estables	y	en	algunos	casos	no	recibir	cambios	por	semanas	o	meses.	La	frecuencia	de
cambio	de	la	configuración	de	la	aplicación	se	encuentra	en	un	punto	intermedio,	no	está	en
constante	cambio	pero	tampoco	es	tan	estable	como	los	scripts	de	despliegue.

Por	otro	lado,	dependiendo	del	contexto	organizacional,	pueden	definirse	distintas	políticas
de	acceso	a	estos	artefactos.	En	algunas	organizaciones	es	muy	común	que	el	equipo	de
desarrolladores	no	tenga	permisos	para	acceder	a	los	parámetros	de	configuración	del
ambiente	productivo.	También	suele	ocurrir	que	los	scripts	de	despliegue	de	la	aplicación
sean	administrados	por	personas	ajenas	al	equipo	de	desarrolladores	(usualmente
personas	del	área	de	operaciones).

Estas	dos	cuestiones,	frecuencia	de	cambio	y	permisos	de	acceso,	son	las	que	nos	motivan
a	separar	estos	tres	artefactos	del	proyecto	en	diferentes	repositorios.

El	primer	repositorio	es	el	que	almacena	el	código	fuente	de	la	aplicación.	Dependiendo	de
la	complejidad	del	proyecto,	puede	haber	más	de	un	repositorio	para	el	código	fuente.	Un
caso	típico	de	esto	son	las	arquitecturas	basadas	en	microservicios,	donde	cada
microservicio	suele	tener	su	propio	repositorio.

El	segundo	repositorio	es	el	que	almacena	la	configuración	de	la	aplicación.	Este	repositorio
tiene	típicamente	un	branch	por	ambiente	(por	ejemplo:	desarrollo,	testing,	producción)	ya
que	la	configuración	de	la	aplicación	suele	variar	de	un	ambiente	a	otro.	Hay	que	destacar
que	estos	branches	nunca	se	mezclan,	sino	que	evolucionan	a	la	par.	Cuando	la	aplicación
requiere	de	un	nuevo	parámetro	de	configuración,	el	mismo	debe	ser	agregado
simultáneamente	a	cada	uno	de	los	branches	con	el	valor	correspondiente	al	ambiente
asociado.

Finalmente	el	tercer	repositorio	es	el	que	contiene	los	scripts	de	despliegue.	Dependiendo
de	la	infraestructura	del	proyecto	pueden	ser	simplemente	scripts	de	Bash	o	de	alguna
herramientas	específica	como	Ansible,	Puppet	o	similar.

Herramientas	Agiles

92Versionado	de	código,	configuración	y	ambientes



Referencias
[Ágiles	2015]	Agiles	2015,	VIII	Jornadas	Latinoamericanas	de	Metodologias	Agiles,
Montevideo,	Uruguay	-	agiles2015.agiles.org

[Adzic	2014a]	Adzic,	Gojko.	(2014).	User	stories	should	be	about	behaviour	changes.
gojko.net	Recuperado	de:	https://gojko.net/2014/02/12/user-stories-should-be-about-
behaviour-changes/

[Adzic	2014b]	Adzic,	Gojko.	(2016)	ABE15	(Agile	By	Example)	Make	Impact	Not	Software
YouTube:	https://youtu.be/-Hp9MEENliI

[Adzic-Evans	2014]	Adzic,	Gojko	&	Evans,	David.	(2014)	Fifty	Quick	Ideas	to	Improve	your
User	Stories.	Neuri	Consulting	LLP.

[AOC	2016]	Sitio	del	Agile	Open	Camp	2016,	Descripción	del	Mecanismo	San	Saru	-
www.agileopencamp.com.ar/index.php/sansaru

[Buonamico	2013]	Buonamico,	Damián	,	Visual	Story	Mapping	Aplicado,	disponible	en	línea:
http://www.caminoagil.com/2013/02/visual-story-mapping-aplicado.html,	como	estaba	en
Febrero	de	2016.

[Cagan	2012a]	Cagan,	Marty,	Continuous	Discovery,	disponible	en	línea:
http://www.svpg.com/continuous-discovery/

[Cagan	2012b]	Cagan,	Marty,	Dual	Track	Scrum,	disponible	en	línea:	http://svpg.com/dual-
track-scrum/

[Chacon	2009]	Chacon,	Scott,	Pro	Git,	Apress,	2009

[Cockburn	2008],	Cockburn,	Alistair,	Shu	Ha	Ri,	disponible	en	línea:
http://alistair.cockburn.us/Shu+Ha+Ri,	como	estaba	en	febrero	del	2016

[Crespo-Villena	2005]	Raquel	M.	Crespo	García,	Julio	Villena	Román,	Revisión	entre	pares
como	instrumento	de	aprendizaje.	Una	experiencia	práctica,	Universidad	Carlos	III	de
Madrid	Serie	de	innovación	docente,	Marzo	2005.

[Fowler	2014]	Fowler,	Martin,	ShuHaRi,	disponible	en	línea:
http://martinfowler.com/bliki/ShuHaRi.html,	como	estaba	en	febrero	del	2016

[Garzás	2015]	Garzás,	Javier,	Inception	en	contextos	ágiles:	dejemos	las	ideas	claras	desde
el	primer	momento,	disponible	en	línea:	http://www.javiergarzas.com/2015/09/inception-en-
contextos-agiles.html,	como	estaba	en	Febrero	de	2016.

Herramientas	Agiles

93Referencias

https://gojko.net/2014/02/12/user-stories-should-be-about-behaviour-changes/
https://youtu.be/-Hp9MEENliI
http://www.caminoagil.com/2013/02/visual-story-mapping-aplicado.html
http://www.svpg.com/continuous-discovery/
http://svpg.com/dual-track-scrum/
http://alistair.cockburn.us/Shu+Ha+Ri
http://martinfowler.com/bliki/ShuHaRi.html
http://www.javiergarzas.com/2015/09/inception-en-contextos-agiles.html


[Hiromoto	2013]	Hiromoto,	Hiroshi,	Visión	-	Bonus	Track:	Product	Vision	Board,	disponible
en	línea:	http://scrumorganico.com/blog/visi%C3%B3n-bonus-track-product-vision-board,
como	estaba	en	Febrero	de	2016.

[Jared	2014]	Jared,	Jeremy.	(2014).	Stories	versus	Themes	versus	Epics.	Navigating	the
Waters	en	Scrum	Alliance	Member	Articles	Recuperado	de:
https://www.scrumalliance.org/community/articles/2014/march/stories-versus-themes-
versus-epics#sthash.aqJoq80Z.dpuf

[Karen	2013]	Karen,	Martin,	Value	Stream	Mapping:	How	to	Visualize	Work	and	Align
Leadership	for	Organizational	Transformation,	McGraw-Hill	Education,	2013.

[Larsen	y	Nies	2011]	Larsen,	Diana	y	Nies,	Ainsley,	Liftoff:	launching	agile	projects	and
teams,	Onyx	Neon	Press,	2011.

[Libro	2015]	Disponible	en	linea	en:
https://www.gitbook.com/book/nicopaez/libroagileaoc2015/

[Manifiesto	ágil]	Disponible	en	linea	en:	http://www.agilemanifesto.org/iso/es/,	como	estaba
en	Febrero	de	2015

[Cohn	2015]	Product	Backlog	Refinement	(Grooming),	disponible	en	línea:
https://www.mountaingoatsoftware.com/blog/product-backlog-refinement-grooming

[Mock	Objects]	Mock	Objetcs,	disponible	en	línea:	http://www.mockobjects.com/

[Patton	2014]	Patton,	Jeff,	User	Story	Mapping,	O’Reilly,	2014.

[Pichler	2013]	Pichler,	Roman,	Product	Vision	Board,	disponible	en	línea:
http://www.romanpichler.com/tools/vision-board/,	como	estaba	en	Febrero	de	2016.

[Rasmusson	2010a]	Rasmusson,	Jonathan,	The	Agile	Samurai:	How	Agile	Masters	Deliver
Great	Software,	The	Pragmatic	Bookshelf,	2010.

[Rasmusson	2010b]	Rasmusson,	Jonathan,	The	Agile	Inception	Deck,	disponible	en	línea:
https://agilewarrior.wordpress.com/2010/11/06/the-agile-inception-deck/,	como	estaba	en
Febrero	de	2016.

[Román	2006]	Román	José,	Los	3	monos	misticos,	2006	-
http://www.emezeta.com/articulos/los-tres-monos-misticos

[Steinberg-Palmer	2003]	Steinberg,	Daniel	H.	&	Palmer,	Daniel	W.	(2003).	Extreme	Software
Engineering	A	Hands-On	Approach.	Upper	Saddle	River,	NJ,	EE.	UU.	:	Prentice-Hall,	Inc.

[Suzuki	1987]	Suzuki,	Shunryu,	Mente	Zen,	mente	de	principiante,	Estaciones,	1987

Herramientas	Agiles

94Referencias

http://scrumorganico.com/blog/visi%C3%B3n-bonus-track-product-vision-board
https://www.scrumalliance.org/community/articles/2014/march/stories-versus-themes-versus-epics#sthash.aqJoq80Z.dpuf
https://www.gitbook.com/book/nicopaez/libroagileaoc2015/
http://www.agilemanifesto.org/iso/es/
https://www.mountaingoatsoftware.com/blog/product-backlog-refinement-grooming
http://www.mockobjects.com/
http://www.romanpichler.com/tools/vision-board/
https://agilewarrior.wordpress.com/2010/11/06/the-agile-inception-deck/
http://www.emezeta.com/articulos/los-tres-monos-misticos


[Wake	2003]	Wake,	Bill.	(2003).	INVEST	in	Good	Stories,	and	SMART	Tasks	XP123	-
Xplorations	Recuperado	de:	http://xp123.com/xplor/xp0308/index.shtml

[Wendel	2013]	Wendel,	Stephen.	(2013).	Designing	for	Behavior	Change:	Applying
Psychology	and	Behavioral	Economics.	Boston,	MS,	EE.	UU.	:	O'Reilly	Media.

Herramientas	Agiles

95Referencias

http://xp123.com/xplor/xp0308/index.shtml

	Introducción
	San Saru: selección natural de equipos
	Integración de prácticas para lanzamiento de proyectos de software
	Value Stream Mapping
	Elaboración de historias de usuario centradas en comportamiento
	Técnicas de OnBoarding para la gestión de conocimiento
	SHU-HA-RI: Un Modelo de Aprendizaje
	Continuous Discovery: Validación de ideas para el Backlog
	Prácticas eficaces para aplicar en Reuniones (In)eficientes
	Introducción a Visual Management
	Revisión Triangular de Documentos
	SEF: Sesión Exprés de feedback
	Improvement Kata
	Guardián de un equipo con múltiples asignaciones
	Coding Dojo: técnica de entrenamiento
	Automatización a través de Git hooks
	Versionado de código, configuración y ambientes
	Referencias

