
Python no Muerde

Yo Sí.
por Roberto Alsina

Este libro está disponible bajo una licencia CC-by-nc-sa-2.5.

Es decir que usted es libre de:

Copiar, distribuir, exhibir, y ejecutar la obra

Hacer obras derivadas

Bajo las siguientes condiciones:

Atribución — Usted debe atribuir la obra en la forma
especificada por el autor o el licenciante.

No Comercial — Usted no puede usar esta obra con fines
comerciales.

Compartir Obras Derivadas Igual — Si usted altera, transforma, o
crea sobre esta obra, sólo podrá distribuir la obra derivada
resultante bajo una licencia idéntica a ésta.

El texto completo de la licencia está en el apéndice “LICENCIA” al final del
libro.

La “solpiente” fue creada por Pablo Ziliani, y licenciada bajo una licencia
CC-by-sa-2.5, más detalles en http://creativecommons.org/licenses/by-sa/2.5/ar/

2

http://creativecommons.org/licenses/by-sa/2.5/ar/

Autor: Roberto Alsina <ralsina@netmanagers.com.ar>

Versión: 8e80f80bdea9

3

mailto:ralsina@netmanagers.com.ar

Introducción

Requisitos
Éste es un libro sobre Python 1. Es un libro que trata de explicar una manera
posible de usarlo, una manera de tomar una idea de tu cabeza y convertirla en
un programa, que puedas usar y compartir.

1 ¿Por qué Python? Porque es mi lenguaje favorito. ¿De qué otro lenguaje
podría escribir?

¿Qué necesitás saber para poder leer este libro?

El libro no va a explicar la sintaxis de python, sino que va a asumir que la
conocés. De todas formas, la primera vez que aparezca algo nuevo, va a indicar
dónde se puede aprender más sobre ello. Por ejemplo:

Creamos una lista con los cuadrados de los números pares
cuadrados = [x**2 for x in numeros if x%2 == 0]

Referencia

Eso es una comprensión de lista

En general esas referencias van a llevarte al Tutorial de Python en castellano.
Ese libro contiene toda la información acerca del lenguaje que se necesita para
poder seguir éste.

Cuando una aplicación requiera una interfaz gráfica, vamos a utilizar PyQt 2. No
vamos a asumir ningún conocimiento previo de PyQt pero tampoco se va a
explicar en detalle, excepto cuando involucre un concepto nuevo.

Por ejemplo, no voy a explicar el significado de setEnabled 3 pero sí el
concepto de signals y slots cuando haga falta.

Introducción

4

http://docs.python.org.ar/tutorial/datastructures.html#listas-por-comprensi-n
http://docs.python.org.ar/tutorial/

2 PyQt es software libre, es multiplataforma, y es muy potente y fácil de
usar. Eso no quiere decir que las alternativas no tengan las mismas
características, pero quiero enfocarme en programar, no en discutir, y
yo prefiero PyQt. Si preferís una alternativa, este libro es libre: podés
hacer una versión propia!

3 PyQt tiene una excelente documentación de referencia para esas cosas.

Convenciones
Las variables, funciones y palabras reservadas de python se mostrarán en el
texto con letra monoespaciada. Por ejemplo, for es una palabra reservada.

Los fragmentos de código fuente se va a mostrar así:

Creamos una lista con los cuadrados de los números impares
cuadrados = [x**2 for x in numeros if x%2 > 0]

Los listados extensos o programas completos se incluirán sin cajas, mostrarán
números de líneas e indicarán el nombre del mismo:

cuadrados.py

1 # Creamos una lista con los cuadrados de los números impares
2 cuadrados = [x**2 for x in numeros if x%2 > 0]

En ese ejemplo, debería haber, en los ejemplos que acompañan al libro, un
archivo codigo/X/cuadrados.py donde X es el número del capítulo en el que
el listado aparece.

Lenguaje
Las discusiones acerca de como escribir un libro técnico en castellano son
eternas. Que en España se traduce todo todo todo. Que en Argentina no. Que
decir “cadena de caracteres” en lugar de string es malo para la ecología.

Por suerte en este libro hay un único criterio superador que ojalá otros libros
adopten: Está escrito como escribo yo. Ni un poquito distinto. No creo que
siquiera califique como castellano, como mucho está escrito en argentino. Si a
los lectores de la ex madre patria les molesta el estilo… tradúzcanlo.

Convenciones

5

http://www.riverbankcomputing.co.uk/static/Docs/PyQt4/html/classes.html

Mapa
Dentro de lo posible, voy a intentar que cada capítulo sea autocontenido,
explicando un tema sin depender demasiado de los otros, y terminando con un
ejemplo concreto y funcional.

Éstos son los capítulos del libro, con breves descripciones.

1. Introducción

2. Pensar en python

Programar en python, a veces, no es como programar en otros lenguajes.
Acá vas a ver algunos ejemplos. Si te gustan… python es para vos. Si no te
gustan… bueno, el libro es barato… capaz que Java es lo tuyo..

3. La vida es corta

Por eso, hay muchas cosas que no vale la pena hacer. Claro, yo estoy
escribiendo un editor de textos así que este capítulo es pura hipocresía…

4. Las capas de una aplicación

Batman, los alfajores santafesinos, el ozono… las mejores cosas tienen
capas. Cómo organizar una aplicación en capas.

5. Documentación y testing

Documentar es testear. Testear es documentar.

6. La GUI es la parte fácil

Lo difícil es saber que querés. Lamentablemente este capítulo te muestra
lo fácil. Una introducción rápida a PyQt.

7. Diseño de interfaz gráfica

Visto desde la mirada del programador. Cómo hacer para no meterse en
un callejón sin salida. Cómo hacerle caso a un diseñador.

8. Un programa útil

Integremos las cosas que vimos antes y usémoslas para algo.

9. Instalación, deployment y otras yerbas

Hacer que tu programa funcione en la computadora de otra gente

10. Cómo crear un proyecto de software libre

Mapa

6

¿Cómo se hace? ¿Qué se necesita? ¿Me conviene? Las respuestas son
“depende”, “ganas” y “a veces”. O “así”, “una idea” y “sí”. O sea, no sé.
Pero veamos.

11. Rebelión contra el Zen

Cuándo es mejor implícito que explícito? ¿Cuándo es algo lo
suficientemente especial para ser, realmente, especial?

12. Herramientas

Programar tiene más en común con la carpintería que con la arquitectura.

13. Conclusiones, caminos y rutas de escape

¿Y ahora qué?

Este es un diagrama de dependencias. Cada capítulo tiene flechas que lo
conectan desde los capítulos que necesitás haber leído anteriormente.

Con suerte será un grafo acíclico.

La línea de puntos significa ‘no es realmente necesario, pero…’

1
2

11

3

4

5

7

6

8

9 10

13

12

Este libro se lee siguiendo las flechas.

Mapa

7

http://es.wikipedia.org/wiki/Grafo_ac�clico_dirigido

Acerca del Autor
Habrá que pedirle a alguien que ponga algo no demasiado insultante.

Acerca del Autor

8

Contenidos
Introducción 4

Requisitos 4

Convenciones 5

Lenguaje 5

Mapa 6

Acerca del Autor 8

Pensar en Python 13

Get/Set 13

Singletons 17

Loops y medios loops 21

Switches 22

Patos y Tipos 23

Genéricos 25

Decoradores 28

Claro pero corto pero claro 33

Lambdas vs alternativas 35

Ternarios vs ifs 37

Pedir perdón o pedir permiso 38

La vida es Corta 41

El Problema 42

Twill 44

Bottle 46

Autenticación 49

Storm 56

HTML / Templates 62

Acerca del Autor

9

Backend 66

Conclusiones 70

Las Capas de una Aplicación 71

Proyecto 72

El Problema 72

Capa de Datos: Diseño e Implementación 74

Elementos 74

Campos 75

Diseño 75

Capa de Lógica: Diseño 77

Capa de Interfaz: Diseño 77

Documentación y Testing 78

Docstrings 79

Doctests 80

Cobertura 85

Límites de los doctests 87

Lo anterior, hecho distinto 88

Mocking 89

La Máquina Mágica 92

Sacando tu programa a pasear: Tox 96

Testear todo el tiempo: Sniffer 100

Integración continua: Jenkins 100

Documentos, por favor 100

La GUI es la Parte Fácil 103

Proyecto 103

Programación con Eventos 104

Acerca del Autor

10

Ventanas / Diálogos 106

Mostrando una Ventana 113

¡Que haga algo! 115

Icono de Notificación 119

Acciones 120

Ruido 123

Diseño de Interfaz Gráfica 127

Proyecto 129

Corrigiendo la Interfaz Gráfica 129

¿Qué estamos haciendo? 132

Pulido 136

Nombres y Descripciones 137

Uso Desde el Teclado 137

Traducciones 139

Feedback 144

Un Programa Útil 147

Proyecto 147

Instalación, Deployment y Otras Yerbas 148

Cómo Crear un Proyecto de Software Libre 149

Rebelión Contra el Zen 150

Herramientas 151

Conclusiones, Caminos y Rutas de Escape 152

Licencia de este libro 153

Agradecimientos 160

El Meta-Libro 161

Código 162

Acerca del Autor

11

Gráficos 162

Build 162

Feedback 163

Tipografía 163

HTML 163

Server 163

Versionado 163

Licencia 164

Acerca del Autor

12

Pensar en Python
Lo triste es que esta pobre gente trabajó mucho más de lo
necesario, para producir mucho más código del necesario,
que funciona mucho más lento que el código python
idiomático correspondiente.

Phillip J. Eby en Python no es Java

Nuestra misión en este capítulo es pensar en qué quiere decir Eby con “código
python idiomático” en esa cita. Nunca nadie va a poder hacer un pythonómetro
que te mida cuán idiomático es un fragmento de código, pero es posible
desarrollar un instinto, una “nariz” para sentir el “olor a python”, así como un
enófilo 4 aprende a distinguir el aroma a clavos de hierro-níquel número 7
ligeramente oxidados en un Cabernet Sauvignon. 5

4 En mi barrio los llamábamos curdas.

5 Con la esperanza de ser un poco menos pretencioso y/o chanta, si Zeus
quiere.

Y si la mejor forma de conocer el vino es tomar vino, la mejor forma de conocer
el código es ver código. Este capítulo no es exhaustivo, no muestra todas las
maneras en que python es peculiar, ni todas las cosas que hacen que tu código
sea “pythonic” — entre otros motivos porque no las conozco — pero muestra
varias. El resto es cuestión de gustos.

Get/Set
Una instancia de una clase contiene valores. ¿Cómo se accede a ellos? Hay dos
maneras. Una es con “getters y setters”, y estas son algunas de sus
manifestaciones:

Un getter te "toma" (get) un valor de adentro de un objeto y
se puede ver así:
x1 = p.x()
x1 = p.get_x()
x1 = p.getX()

Un setter "mete" un valor en un objeto y puede verse así:
p.set_x(x1)
p.setX(x1)

Pensar en Python

13

http://dirtsimple.org/2004/12/python-is-not-java.html

Otra manera es simplemente usar un miembro x de la clase:

p.x = x1
x1 = p.x

La ventaja de usar getters y setters es el “encapsulamiento”. No dicta que la
clase tenga un miembro x, tal vez el valor que yo ingreso via setX es
manipulado, validado, almacenado en una base de datos, o tatuado en el
estómago de policías retirados con problemas neurológicos, lo único que
importa es que luego cuando lo saco con el getter me dé lo que tenga que dar
(que no quiere decir “me dé lo mismo que puse”).

Muchas veces, los getters/setters se toman como un hecho de la vida, hago
programación orientada a objetos => hago getters/setters.

Bueno, no.

Analogía rebuscada

En un almacén, para tener un paquete de yerba, hay que pedírselo al
almacenero. En un supermercado, para tener un paquete de yerba, hay
que agarrar un paquete de yerba. En una farmacia (de las grandes),
para obtener un paquete de yerba hay que agarrar un paquete de yerba,
pero para tener un Lexotanil hay que pedirlo al farmacéutico.

En Java o C++, la costumbre es escribir programas como almacenes,
porque la alternativa es escribir supermercados donde chicos de 5
compran raticida.

En Python, la costumbre es escribir programas como supermercados,
porque se pueden convertir en farmacias apenas decidamos que tener
raticida es buena idea.

Imaginemos que estamos escribiendo un programa que trabaja con “puntos” o
sea coordenadas (X,Y), y que queremos implementarlos con una clase. Por
ejemplo:

Listado 1

 1 class Punto(object):
 2 def __init__(self, x=0, y=0):

Pensar en Python

14

 3 self.set_x(x)
 4 self.set_y(y)
 5
 6 def x(self):
 7 return self._x
 8
 9 def y(self):
10 return self._y
11
12 def set_x(self,x):
13 self._x=x
14
15 def set_y(self,y):
16 self._y=y

Esa es una implementación perfectamente respetable de un punto. Guarda X,
guarda Y, permite volver a averiguar sus valores… el problema es que eso no es
python. Eso es C++. Claro, un compilador C++ se negaría a procesarlo, pero a
mí no me engañan tan fácil, eso es C++ reescrito para que parezca python.

¿Por qué eso no es python? Por el obvio abuso de los métodos de acceso
(accessors, getter/setters), que son completamente innecesarios.

Si la clase punto es simplemente esto, y nada más que esto, y no tiene otra
funcionalidad, entonces prefiero esta:

Listado 2

1 class Punto(object):
2 def __init__(self, x=0, y=0):
3 self.x=x
4 self.y=y

No sólo es más corta, sino que su funcionalidad es completamente equivalente,
es más fácil de leer porque es obvia (se puede leer de un vistazo), y hasta es
más eficiente.

La única diferencia es que lo que antes era p.x() ahora es p.x y que
p.set_x(14) es p.x=14, que no es un cambio importante, y es una mejora en
legibilidad.

Es más, si la clase punto fuera solamente ésto, podría ni siquiera ser una clase,
sino una namedtuple:

Listado 3

Pensar en Python

15

1 Punto = namedtuple('Punto', 'x y')

Y el comportamiento es exactamente el del listado 2 excepto que es aún más
eficiente.

Nota

Es fundamental conocer las estructuras de datos que te da el lenguaje.
En Python eso significa conocer diccionarios, tuplas y listas y el módulo
collections de la biblioteca standard.

Por supuesto que siempre está la posibilidad de que la clase Punto evolucione, y
haga otras cosas, como por ejemplo calcular la distancia al origen de un punto.

Si bien sería fácil hacer una función que tome una namedtuple y calcule ese
valor, es mejor mantener todo el código que manipula los datos de Punto dentro
de la clase en vez de crear una colección de funciones ad-hoc. Una namedtuple
es un reemplazo para las clases sin métodos o los struct de C/C++.

Pero… hay que considerar el programa como una criatura en evolución. Tal vez
al comenzar con una namedtuple era suficiente. No valía la pena demorar lo
demás mientras se diseñaba la clase Punto. Y pasar de una namedtuple a la
clase Punto del listado 2 es sencillo, ya que la interfaz que presentan es
idéntica.

La crítica que un programador que conoce OOP 6 haría (con justa razón) es que
no tenemos encapsulamiento. Que el usuario accede directamente a Punto.x y
Punto.y por lo que no podemos comprobar la validez de los valores asignados, o
hacer operaciones sobre los mismos, etc.

6 Object Oriented Programming, o sea, Programación Orientada a
Objetos, pero me niego a usar la abreviatura POO porque pienso en
ositos.

Muy bien, supongamos que queremos que el usuario pueda poner sólo valores
positivos en x, y que los valores negativos deban ser multiplicados por -1.

En la clase del listado 1:
Listado 4

Pensar en Python

16

1 class PuntoDerecho(Punto):
2 '''Un punto que solo puede estar a la derecha del eje Y'''
3
4 def set_x(self, x):
5 self._x = abs(x)

Pero… también es fácil de hacer en el listado 2, sin cambiar la interfaz que se
presenta al usuario:

Listado 5

 1 class PuntoDerecho(object):
 2 '''Un punto que solo puede estar a la derecha del eje Y'''
 3
 4 def get_x(self):
 5 return self._x
 6
 7 def set_x(self, x):
 8 self._x = abs(x)
 9
10 x = property(get_x, set_x)

Obviamente esto es casi lo mismo que si partimos del listado 1, pero con
algunas diferencias:

• La forma de acceder a x o de modificarlo es mejor — print p.x en lugar
de print p.x(). Sí, es cuestión de gustos nomás.

• No se hicieron los métodos para y por ser innecesarios.

Esto es importante: de ser necesarios esos métodos en el futuro es fácil
agregarlos. Si nunca lo son, entonces el listado 1 tiene dos funciones
inútiles.

Sí, son dos funciones cortas, que seguramente no crean bugs pero tienen
implicaciones de performance, y tienen un efecto que a mí personalmente
me molesta: separan el código que hace algo metiendo en el medio código
que no hace nada.

Si esos métodos son funcionalmente nulos, cada vez que están en pantalla
es como una franja negra de censura de 5 líneas de alto cruzando mi
editor. Es molesto.

Singletons

Singletons

17

En un lenguaje funcional, uno no necesita patrones de diseño
porque el lenguaje es de tan alto nivel que terminás
programando en conceptos que eliminan los patrones de
diseño por completo.

Slava Akhmechet

Una de las preguntas más frecuentes de novicios en python, pero con
experiencia en otros lenguajes es “¿cómo hago un singleton?”. Un singleton es
una clase que sólo puede instanciarse una vez. De esa manera, uno puede
obtener esa única instancia simplemente reinstanciando la clase.

Hay varias maneras de hacer un singleton en python, pero antes de eso,
dejemos en claro qué es un singleton: un singleton es una variable global
“lazy”.

En este contexto “lazy” quiere decir que hasta que la necesito no se instancia.
Excepto por eso, no habría diferencias visibles con una variable global.

El mecanismo “obvio” para hacer un singleton en python es un módulo, que son
singletons porque así están implementados.

Ejemplo:

>>> import os
>>> os.x=1
>>> os.x
1
>>> import os as os2
>>> os2.x
1
>>> os2.x=4
>>> os.x
4
>>>

No importa cuantas veces importe os (o cualquier otro módulo), no importa con
qué nombre lo haga, siempre es el mismo objeto.

Por lo tanto, podríamos poner todos nuestros singletons en un módulo (o en
varios) e instanciarlos con import y funciones dentro de ese módulo.

Ejemplo:
singleton1.py

Singletons

18

1 # -*- coding: utf-8 -*-
2
3 cosa = []
4
5 def misingle():
6 return cosa

>>> import singleton1
>>> uno=singleton1.misingle()
>>> dos=singleton1.misingle()
>>> print uno
[]
>>> uno.append('xx')
>>> print dos
['xx']

Como pueden ver, uno y dos son el mismo objeto.

Una alternativa es no usar un singleton, sino lo que Alex Martelli llamó un Borg:

class Borg:
 __shared_state = {}
 def __init__(self):
 self.__dict__ = self.__shared_state

¿Cómo funciona?

>>> a=Borg()
>>> b=Borg()
>>> a.x=1
>>> print b.x
1

Si bien a y b no son el mismo objeto por lo que no son realmente singletons, el
efecto final es el mismo.

Por último, si andás con ganas de probar magia más potente, es posible hacer
un singleton usando metaclases, según esta receta de Andres Tuells:

 1 ## {{{ http://code.activestate.com/recipes/102187/ (r1)
 2 """
 3 USAGE:
 4 class A:

Singletons

19

http://code.activestate.com/recipes/66531-singleton-we-dont-need-no-stinkin-singleton-the-bo/
http://code.activestate.com/recipes/102187-singleton-as-a-metaclass/

 5 __metaclass__ = Singleton
 6 def __init__(self):
 7 self.a=1
 8
 9 a=A()
10 b=A()
11 a is b #true
12
13 You don't have access to the constructor,
14 you only can call a factory that returns always
15 the same instance.
16 """
17
18 _global_dict = {}
19
20 def Singleton(name, bases, namespace):
21 class Result:pass
22 Result.__name__ = name
23 Result.__bases__ = bases
24 Result.__dict__ = namespace
25 _global_dict[Result] = Result()
26 return Factory(Result)
27
28
29 class Factory:
30 def __init__(self, key):
31 self._key = key
32 def __call__(self):
33 return _global_dict[self._key]
34
35 def test():
36 class A:
37 __metaclass__ = Singleton
38 def __init__(self):
39 self.a=1
40 a=A()
41 a1=A()
42 print "a is a1", a is a1
43 a.a=12
44 a2=A()

Singletons

20

45 print "a.a == a2.a == 12", a.a == a2.a == 12
46 class B:
47 __metaclass__ = Singleton
48 b=B()
49 a=A()
50 print "a is b",a==b
51 ## end of http://code.activestate.com/recipes/102187/ }}}

Seguramente hay otras implementaciones posibles. Yo opino que Borg al no ser
un verdadero singleton, es la más interesante: hace lo mismo, son tres líneas de
código fácil, eso es python.

Loops y medios loops

Repetirse es malo.

Anónimo

Repetirse es malo.

Anónimo

Hay una estructura de control que Knuth llama el “loop n y medio” (n-and-half
loop). Es algo así:

Inicio Loop

A

Condición

BResto del programa

VerdaderoFalso

Loops y medios loops

21

¡Se sale por el medio! Como siempre se pasa al menos por una parte del loop
(A), Knuth le puso "loop n y medio".

Ésta es la representación de esta estructura en Python:

while True:
 frob(gargle)
 # Cortamos?
 if gargle.blasted:
 # Cortamos!
 break
 refrob(gargle)

No, no quiero que me discutan. Ésa es la forma de hacerlo. No hay que tenerle
miedo al break! En particular la siguiente forma me parece mucho peor:

frob(gargle)
Seguimos?
while not gargle.blasted:
 refrob(gargle)
 frob(gargle)

Es más propensa a errores. Antes, podía ser que frob(gargle) no fuera lo
correcto. Ahora no solo puede ser incorrecto, sino que puede ser incorrecto o
inconsistente, si cambio solo una de las dos veces que se usa.

Claro, en un ejemplo de juguete esa repetición no molesta. En la vida real, tal
vez haya 40 líneas entre una y otra y no sea obvio que esa línea se repite.

Switches
Hay una cosa que muchas veces los que programan en Python envidian de otros
lenguajes… switch (o case).

Sí, Python no tiene un “if multirrama” ni un “goto computado” ni nada de eso.
Pero … hay maneras y maneras de sobrevivir a esa carencia.

Esta es la peor:

if codigo == 'a':
 return procesa_a()
if codigo == 'b':
 return procesa_b()

Switches

22

:
:
etc.

Esta es apenas un cachito mejor:

if codigo == 'a':
 return procesa_a()
elif codigo == 'b':
 return procesa_b()
:
:
etc.

Esta es la buena:

procesos = {
 'a': procesa_a,
 'b': procesa_b,
 :
 :
 etc.
}

return procesos[codigo]()

Al utilizar un diccionario para clasificar las funciones, es mucho más eficiente
que una cadena de if. Es además muchísimo más fácil de mantener (por
ejemplo, podríamos poner procesos en un módulo separado).

Patos y Tipos

“Estás en un laberinto de pasajes retorcidos, todos iguales.”

Will Crowther en "Adventure"

“Estás en un laberinto de pasajes retorcidos, todos
distintos.”

Don Woods en "Adventure"

Observemos este fragmento de código:

Patos y Tipos

23

def diferencia(a,b):
 # Devuelve un conjunto con las cosas que están
 # en A pero no en B
 return set(a) - set(b)

Set

Un set (conjunto) es una estructura de datos que almacena cosas sin
repeticiones. Por ejemplo, set([1,2,3,2]) es lo mismo que
set([1,2,3]).

También soporta las típicas operaciones de conjuntos, como
intersección, unión y diferencia.

Ver también: Sets en la biblioteca standard

Es obvio como funciona con, por ejemplo, una lista:

>>> diferencia([1,2],[2,3])
set([1])

¿Pero es igual de obvio que funciona con cadenas?

>>> diferencia("batman","murciélago")
set(['b', 't', 'n'])

¿Por qué funciona? ¿Es que las cadenas están implementadas como una
subclase de list? No, la implementación de las clases str o unicode es
completamente independiente. Pero son parecidos. Tienen muchas cosas en
común.

>>> l=['c','a','s','a']
>>> s='casa'
>>> l[0] , s[0]
('c', 'c')
>>> l[-2:] , s[-2:]
(['s', 'a'], 'sa')
>>> '-'.join(l)
'c-a-s-a'

Patos y Tipos

24

http://docs.python.org/library/stdtypes.html#set-types-set-frozenset

>>> '-'.join(s)
'c-a-s-a'
>>> set(l)
set(['a', 'c', 's'])
>>> set(s)
set(['a', 'c', 's'])

Para la mayoría de los usos posibles, listas y cadenas son muy parecidas. Y
resulta que son lo bastante parecidas como para que en nuestra función
diferencia sean completamente equivalentes.

Un programa escrito sin pensar en “¿De qué clase es este objeto?” sino en
“¿Qué puede hacer este objeto?”, es un programa muy diferente.

Para empezar, suele ser un programa más “informal” en el sentido de que
simplemente asumimos que nos van a dar un objeto que nos sirva. Si no nos
sirve, bueno, habrá una excepción.

Al mismo tiempo que da una sensación de libertad (¡Hey, puedo usar dos clases
sin un ancestro común!) también puede producir temor (¿Qué pasa si alguien
llama hacerpancho(Perro())?). Pues resulta que ambas cosas son ciertas. Es
posible hacer un pancho de perro, en cuyo caso es culpa del que lo hace, y es
problema suyo, no un error en la definición de hacerpancho.

Esa es una diferencia filosófica. Si hacerpancho verifica que la entrada sea una
salchicha, siempre va a producir por lo menos un pancho. Nunca va a producir
un sandwich con una manguera de jardín en el medio, pero tampoco va a
producir un sandwich de portobelos salteados con ciboulette.

Es demasiado fácil imponer restricciones arbitrarias al limitar los tipos de datos
aceptables.

Y por supuesto, si es posible hacer funciones genéricas que funcionan con
cualquier tipo medianamente compatible, uno evita tener que implementar
veinte variantes de la misma función, cambiando sólo los tipos de argumentos.
Evitar esa repetición descerebrante es uno de los grandes beneficios de los
lenguajes de programación dinámicos como python.

Genéricos
Supongamos que necesito poder crear listas con cantidades arbitrarias de
objetos, todos del mismo tipo, inicializados al mismo valor.

Genéricos

25

Comprensión de lista

En las funciones que siguen, [tipo() for i in range(cantidad)] se
llama una comprensión de lista, y es una forma más compacta de
escribir un for para generar una lista a partir de otra:

resultado=[]
for i in range(cantidad):
 resultado.append(tipo())

No conviene utilizarlo si la expresión es demasiado complicada.

Ver también: Listas por comprensión en el tutorial de Python

Un enfoque ingenuo podría ser este:

def listadestr(cantidad):
 return ['' for i in range(cantidad)]

def listadeint(cantidad):
 return [0 for i in range(cantidad)]

Y así para cada tipo que necesite...

Los defectos de esa solución son obvios. Una mejor solución:

def listadecosas(tipo, cantidad):
 return [tipo() for i in range(cantidad)]

Esa es una aplicación de programación genérica. Estamos creando código que
solo puede tener un efecto cuando, más adelante, lo apliquemos a un tipo. Es un
caso extremo de lo mostrado anteriormente, en este caso literalmente el tipo a
usar no importa. ¡Cualquier tipo que se pueda instanciar sin argumentos sirve!

Desde ya que es posible — como diría un programador C++ — “especializar el
template”:

def templatelistadecosas(tipo):
 def listadecosas(cantidad):
 return [tipo() for i in range(cantidad)]

Genéricos

26

http://docs.python.org.ar/tutorial/datastructures.html#listas-por-comprensi-n

 return listadecosas

>>> listadestr=templatelistadecosas(str)
>>> listadeint=templatelistadecosas(int)
>>>
>>> listadestr(10)
['', '', '', '', '', '', '', '', '', '']
>>> listadeint(10)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

El truco de ese fragmento es que templatelistadecosas crea y devuelve una
nueva función cada vez que la invoco con un tipo específico. Esa función es la
“especialización” de templatelistadecosas.

Otra forma de hacer lo mismo es utilizar la función functools.partial de la
biblioteca standard:

import functools
def listadecosas(tipo, cantidad):
 return [tipo() for i in range(cantidad)]

listadestr=functools.partial(listadecosas, (str))
listadeint=functools.partial(listadecosas, (int))

Este enfoque para resolver el problema es más típico de la así llamada
“programación funcional”, y partial es una función de orden superior
(higher-order function) que es una manera de decir que es una función que se
aplica a funciones.

¿Notaron que todo lo que estamos haciendo es crear funciones muy poco
específicas?

Por ejemplo, listadecosas también puede hacer esto:

import random
>>> listaderandom=functools.partial(listadecosas,
 (lambda : random.randint(0,100)))
>>> listaderandom(10)
[68, 92, 83, 55, 89, 2, 9, 74, 9, 58]

Después de todo… ¿Quién dijo que tipo era un tipo de datos? ¡Todo lo que
hago con tipo es tipo()!

Genéricos

27

O sea que tipo puede ser una clase, o una función, o cualquiera de las cosas que
en python se llaman callables.

lambdas

lambda define una “función anónima”. EL ejemplo usado es el
equivalente de

def f():
 return random.randint(0,100)
listaderandom=functools.partial(listadecosas, f)

La ventaja de utilizar lambda es que, si no se necesita reusar la función,
mantiene la definición en el lugar donde se usa y evita tener que
buscarlo en otra parte al leer el código.

Más información

Decoradores
En un capítulo posterior vamos a ver fragmentos de código como este:

159 @bottle.post('/')
160 @bottle.get('/')
161 @bottle.view('usuario.tpl')
162 def alta():
163 """Crea un nuevo slug."""

Esos misteriosos @algo son decoradores. Un decorador es simplemente una
cosa que se llama pasando la función a decorar como argumento. Lo que en
matemática se denomina “composición de funciones”.

Usados con cuidado, los decoradores mejoran mucho la legibilidad de forma
casi mágica. ¿Querés un ejemplo? Así se vería ese código sin decoradores:

def alta():
 """Crea un nuevo slug"""
 :
 :

Decoradores

28

http://docs.python.org.ar/tutorial/controlflow.html#formas-con-lambda

UGH
alta = bottle.route('/')(bottle.view('usuario.tpl')(alta))

¿Cuándo usar decoradores? Cuando querés cambiar el comportamiento de una
función, y el cambio es:

• Suficientemente genérico como para aplicarlo en más de un lugar.

• Independiente de la función en sí.

Como decoradores no está cubierto en el tutorial vamos a verlos con un poco de
detalle, porque es una de las técnicas que más diferencia pueden hacer en tu
código.

Los decoradores se podrían dividir en dos clases, los “con argumentos” y los
“sin argumentos”.

Los decoradores sin argumentos son más fáciles, el ejemplo clásico es un
“memoizador” de funciones. Si una función es “pesada”, no tiene efectos
secundarios, y está garantizado que siempre devuelve el mismo resultado a
partir de los mismos parámetros, puede valer la pena “cachear” el resultado.
Ejemplo:

deco.py

 1 # -*- coding: utf-8 -*-
 2
 3 def memo(f):
 4 cache={}
 5 def memof(arg):
 6 if not arg in cache:
 7 cache[arg]=f(arg)
 8 return cache[arg]
 9 return memof
10
11 @memo
12 def factorial(n):
13 print 'Calculando, n = ',n
14 if n > 2:
15 return n * factorial(n-1)
16 else:
17 return n
18

Decoradores

29

http://docs.python.org.ar/tutorial/contenido.html

19 print factorial(4)
20 print factorial(4)
21 print factorial(5)
22 print factorial(3)

¿Qué sucede cuando lo ejecutamos?

$ python codigo/1/deco.py
Calculando, n = 4
Calculando, n = 3
Calculando, n = 2
24
24
Calculando, n = 5
120
6

Resulta que ahora no siempre se ejecuta factorial. Por ejemplo, el segundo
llamado a factorial(4) ni siquiera entró en factorial, y el factorial(5)
entró una sola vez en vez de 4. 7

7 Usando un cache de esta forma, la versión recursiva puede ser más
eficiente que la versión iterativa, dependiendo de con qué argumentos
se las llame (e ignorando los problemas de agotamiento de pila).

Hay un par de cosas ahí que pueden sorprender un poquito.

• memo toma una función f como argumento y devuelve otra (memof). Eso ya
lo vimos en genéricos.

• cache queda asociada a memof, para cada función “memoizada” hay un
cache separado.

Eso es así porque es local a memo. Al usar el decorador hacemos
factorial = memo(factorial) y como esa memof tiene una referencia al
cache que se creó localmente en esa llamada a memo, ese cache sigue
existiendo mientras memof exista.

Si uso memo con otra función, es otra memof y otro cache.

Los decoradores con argumentos son… un poco más densos. Veamos un
ejemplo en detalle.

Consideremos este ejemplo “de juguete” de un programa cuyo flujo es
impredecible 8

Decoradores

30

8 Sí, ya sé que realmente es un poco predecible porque no uso bien
random. Es a propósito ;-)

deco1.py

 1 # -*- coding: utf-8 -*-
 2 import random
 3
 4 def f1():
 5 print 'Estoy haciendo algo importante'
 6
 7 def f2():
 8 print 'Estoy haciendo algo no tan importante'
 9
10 def f3():
11 print 'Hago varias cosas'
12 for f in range(1,5):
13 random.choice([f1,f2])()
14
15 f3()

Al ejecutarlo hace algo así:

$ python codigo/1/deco1.py
Hago varias cosas
Estoy haciendo algo no tan importante
Estoy haciendo algo importante
Estoy haciendo algo no tan importante
Estoy haciendo algo no tan importante

Si no fuera tan obvio cuál función se ejecuta en cada momento, tal vez nos
interesaría saberlo para poder depurar un error.

Un tradicionalista te diría “andá a cada función y agregále logs”. Bueno, pues es
posible hacer eso sin tocar cada función (por lo menos no mucho) usando
decoradores.

deco2.py

 1 # -*- coding: utf-8 -*-
 2 import random
 3
 4 def logger(nombre):
 5 def wrapper(f):

Decoradores

31

 6 def f2(*args):
 7 print '===> Entrando a',nombre
 8 r=f(*args)
 9 print '<=== Saliendo de',nombre
10 return r
11 return f2
12 return wrapper
13
14 @logger('F1')
15 def f1():
16 print 'Estoy haciendo algo importante'
17
18 @logger('F2')
19 def f2():
20 print 'Estoy haciendo algo no tan importante'
21
22 @logger('Master')
23 def f3():
24 print 'Hago varias cosas'
25 for f in range(1,5):
26 random.choice([f1,f2])()
27
28 f3()

¿Y qué hace?

$ python codigo/1/deco2.py
===> Entrando a Master
Hago varias cosas
===> Entrando a F1
Estoy haciendo algo importante
<=== Saliendo de F1
===> Entrando a F1
Estoy haciendo algo importante
<=== Saliendo de F1
===> Entrando a F2
Estoy haciendo algo no tan importante
<=== Saliendo de F2
===> Entrando a F2
Estoy haciendo algo no tan importante
<=== Saliendo de F2

Decoradores

32

<=== Saliendo de Master

Este decorador es un poco más complicado que memo, porque tiene dos partes.

Recordemos que un decorador tiene que tomar como argumento una función y
devolver una función 9.

9 No es estrictamente cierto, podría devolver una clase, o cualquier cosa
x que soporte x(f) pero digamos que una función.

Entonces al usar logger en f1 en realidad no voy a pasarle f1 a la función
logger si no al resultado de logger(‘F1’)

Eso es lo que hay que entender, así que lo repito: ¡No a logger sino al
resultado de logger(‘F1’)!

En realidad logger no es el decorador, es una “fábrica” de decoradores. Si
hago logger(‘F1’) crea un decorador que imprime ===> Entrando a F1 y
<=== Saliendo de F1 antes y después de llamar a la función decorada.

Entonces wrapper es el decorador “de verdad”, y es comparable con memo y f2
es el equivalente de memof, y tenemos exactamente el caso anterior.

Claro pero corto pero claro

Depurar es dos veces más difícil que programar. Por lo tanto,
si escribís el código lo más astuto posible, por definición, no
sos lo suficientemente inteligente para depurarlo.

Brian W. Kernighan

Una de las tentaciones de todo programador es escribir código corto 10. Yo
mismo soy débil ante esa tentación.

10 Esta peculiar perversión se llama “code golfing”. Y es muy divertida, si
no se convierte en un modo de vida.

Código Corto

j=''.join
seven_seg=lambda z:j(j(' _ |_ _|_| |'[ord(\
"u�cd*\]Rml"[int(a)])/u%8*2:][:3]for a in z)+\

Claro pero corto pero claro

33

"\n"for u in(64,8,1))
>>> print seven_seg('31337')
_ _ _ _
_| | _| _| |
_| | _| _| |

El problema es que el código se escribe una sola vez, pero se lee cientos. Cada
vez que vayas a cambiar algo del programa, vas a leer más de lo que escribís.
Por lo tanto es fundamental que sea fácil de leer. El código muy corto es
ilegible. El código demasiado largo también.

Funciones de 1000 líneas, ifs anidados de 5 niveles, cascadas de condicionales
con 200 ramas… todas esas cosas son a veces tan ilegibles como el ejemplo
anterior.

Lo importante es lograr un balance, hacer que el código sea corto, pero no
demasiado corto. En python hay varias estructuras de control o de datos que
ayudan en esa misión.

Consideremos la tercera cosa que aprende todo programador: iteración. En
python, se itera sobre listas 11 por lo que no sabemos, a priori, la posición del
ítem que estamos examinando, y a veces es necesaria.

11 No exactamente, se itera sobre iterables, valga la redundancia, pero los
podemos pensar como listas.

Malo:

index=0
happy_items=[]
for item in lista:
 if item.is_happy:
 happy_items.append(index)
 index+=1

Mejor:

happy_items=[]
for index, item in enumerate(lista):
 if item.is_happy:

Claro pero corto pero claro

34

 happy_items.append(index)

Mejor si te gustan las comprensiones de lista:

happy_items=[index for (index, item) in enumerate(lista) \
 if item.is_happy]

Tal vez demasiado:

filter(lambda x: x[0] if x[1].is_happy else None, enumerate(lista))

¿Por qué demasiado? Porque yo no entiendo que hace a un golpe de vista,
necesito “desanidarlo”, leer el lambda, desenredar el operador ternario, darme
cuenta de qué filtra, ver a qué se aplica el filtro.

Seguramente otros, mejores programadores sí se dan cuenta. En cuyo caso el
límite de “demasiado corto” para ellos estará más lejos.

Sin embargo, el código no se escribe para uno (o al menos no se escribe sólo
para uno), sino para que lo lean otros. Y no es bueno hacerles la vida difícil al
divino botón, o para ahorrar media línea.

Nota

La expresión ternaria u operador ternario se explica en Ternarios vs ifs

Lambdas vs alternativas
En ejemplos anteriores he usado lambda. ¿Qué es lambda? Es otra manera de
definir una función, nada más. En lo que a python respecta, estos dos
fragmentos son exactamente lo mismo:

suma = lambda a,b: a+b

def suma(a,b):
 return a+b

Lambda tiene una limitación: Su contenido solo puede ser una expresión, es
decir, algo que “devuelve un resultado”. El resultado de esa expresión es el
resultado del lambda.

Lambdas vs alternativas

35

¿Cuando conviene usar lambda, y cuándo definir una función? Más allá de la
obviedad de “cuando lambda no alcanza, usá funciones”, en general, me parece
más claro usar funciones, a menos que haya un excelente motivo.

Por otro lado, hay veces que queda muy bonito como para resistirse,
especialmente combinado con filter:

Devuelve los items mayores que 0 de una lista
filter (lambda x: x > 0 , lista)

Pero yo probablemente haría esto:

Devuelve los items mayores que 0 de una lista
[x for x in lista if x > 0]

¿Es uno más legible que el otro? No lo sé. Si sé que el primero tiene un “gusto”
más a programación funcional, mientras que el segundo es más únicamente
python, pero es cuestión de preferencias personales.

Usar lambda en el medio de líneas de código o como argumentos a funciones
puede hacer que la complejidad de la línea pase el umbral de “expresivo” a
“farolero”, y disminuye la legibilidad del código.

Un caso en el que lambda es mejor que una función es cuando se usa una única
vez en el código y el significado es obvio, porque insertar definiciones de
funciones “internas” en el medio del código arruina el flujo.

import random
>>> listaderandom=functools.partial(listadecosas,
 (lambda : random.randint(0,100)))
>>> listaderandom(10)
[68, 92, 83, 55, 89, 2, 9, 74, 9, 58]

Me parece más elegante que esto:

import random
def f1():
 return random.randint(0,100)
>>> listaderandom=functools.partial(listadecosas,
 (f1))
>>> listaderandom(10)
[68, 92, 83, 55, 89, 2, 9, 74, 9, 58]

Lambdas vs alternativas

36

Especialmente en un ejemplo real, donde f1 se va a definir en el medio de un
algoritmo cualquiera con el que no tiene nada que ver.

Como el lector verá… me cuesta elegir. En general, trato de no usar lambda a
menos que la alternativa sea farragosa y ensucie el entorno de código.

Ternarios vs ifs
El operador ternario en python es relativamente reciente, apareció en la versión
2.5 y es el siguiente:

>>> "A" if True else "B"
'A'
>>> "A" if False else "B"
'B'

Es una forma abreviada del if que funciona como expresión (se evalúa y
devuelve un valor).

La forma general es:

VALOR1 if CONDICION else VALOR2

Si CONDICION es verdadera, entonces la expresión devuelve VALOR1, si no,
devuelve VALOR2.

¿Cuál es el problema del operador ternario?

Sólo se puede usar cuando no te importe no ser compatible con python 2.4.
Acordáte que hay (y va a haber hasta el 2013 por lo menos) versiones de Linux
en amplio uso con python 2.4

Si ignoramos eso, hay casos en los que simplifica mucho el código. Tomemos el
ejemplo de un argumento por default, de un tipo modificable a una función.
Ésta es la versión clásica:

class c:
 def f(self, arg = None):
 if arg is None:
 self.arg = []
 else:
 self.arg = arg

Y esta es la versión “moderna”:

Ternarios vs ifs

37

class c:
 def f(self, arg = None):
 self.arg = 42 if arg is None else arg

¿La ventaja? ¡Se lee de corrido! “self.arg es 42 si arg es None, si no, es arg”

Nota

La versión realmente obvia:

>>> class c:
... def f(self, arg=[]):
... self.arg=arg

Tiene el problema de que… no funciona. Al ser [] modificable, cada vez
que se llame a instancia.f() sin argumentos se va a asignar la
misma lista a instancia.arg. Si luego se modifica su contenido en
alguna instancia… ¡Se modifica en todas las instancias! Ejemplo:

>>> c1=c()
>>> c1.f()
>>> c2=c()
>>> c2.f()
>>> c1.arg.append('x')
>>> c2.arg
['x']

Sí, es raro. Pero tiene sentido si se lo piensa un poco. En python la
asignación es únicamente decir “este nombre apunta a este objeto”.

El [] de la declaración es un objeto único. Estamos haciendo que
self.arg apunte a ese objeto cada vez que llamamos a c.f.

Con un tipo inmutable (como un string) esto no es problema.

Pedir perdón o pedir permiso

“Puede fallar.”

Pedir perdón o pedir permiso

38

Tu Sam

No hay que tener miedo a las excepciones. Las cosas pueden fallar, y cuando
fallen, es esperable y deseable que den una excepción.

¿Cómo sabemos si un archivo se puede leer? ¿Con os.stat(“archivo”)? ¡No,
con open(“archivo”,”r”)!

Por ejemplo, esto no es buen python:
esnumero.py

 1 # -*- coding: utf-8 -*-
 2
 3 import string
 4
 5 def es_numero(x):
 6 '''Verifica que x sea convertible a número'''
 7 s = str(x)
 8 for c in s:
 9 if c not in string.digits+'.':
10 return False
11 return True
12
13 s=raw_input()
14 if es_numero(s):
15 print "El doble es ", float(s)*2
16 else:
17 print "No es un numero"

Eso lo que muestra es miedo a que falle float(). ¿Y sabés qué? float está
mucho mejor hecha que mi es_numero…

Esto es mucho mejor Python:

s = raw_input()
try:
 print "El doble es ",2 * float(s)
except ValueError:
 print "No es un número"

Esto está muy relacionado con el tema de “duck typing” que vimos antes. Si
vamos a andarnos preocupando por como puede reaccionar cada uno de los
elementos con los que trabajamos, vamos a programar de forma completamente

Pedir perdón o pedir permiso

39

burocrática y descerebrante.

Lo que queremos es tratar de hacer las cosas, y manejar las excepciones como
corresponda. ¿No se pudo calcular el doble? ¡Ok, avisamos y listo!

No hay que programar a la defensiva, hay que ser cuidadoso, no miedoso.

Si se produce una excepción que no te imaginaste, está bien que se propague.
Por ejemplo, si antes en vez de un ValueError sucediera otra cosa, queremos
enterarnos.

Faltan subsecciones? Se pueden agregar si la idea surge viendo los otros
capítulos.

Pedir perdón o pedir permiso

40

La vida es Corta
Hasta que cumple veinticinco, todo hombre piensa cada
tanto que dadas las circunstancias correctas podría ser el
más jodido del mundo. Si me mudara a un monasterio de
artes marciales en China y estudiara duro por diez años. Si
mi familia fuera masacrada por traficantes colombianos y
jurara venganza. Si tuviera una enfermedad fatal, me
quedara un año de vida y lo dedicara a acabar con el crimen.
Si tan sólo abandonara todo y dedicara mi vida a ser jodido.

Neal Stephenson (Snow Crash)

A los veinticinco, sin embargo, uno se da cuenta que realmente no vale la pena
pasarse diez años estudiando en un monasterio, porque no hay WiFi y no hay
una cantidad ilimitada de años como para hacerse el Kung Fu.

De la misma forma, cuando uno empieza a programar cree que cada cosa que
encuentra podría rehacerse mejor. Ese framework web es demasiado grande y
complejo. Esa herramienta de blog no tiene exactamente los features que yo
quiero. Y la reacción es “¡Yo puedo hacerlo mejor!” y ponerse a programar
furiosamente para demostrarlo.

Eso es bueno y es malo.

Es bueno porque a veces de ahí salen cosas que son, efectivamente, mucho
mejores que las existentes. Si nadie hiciera esto, el software en general sería
una porquería.

Es malo porque la gran gran mayoria de las veces, tratando de implementar el
framework web número 9856, que es un 0.01% mejor que los existentes, se
pasa un año y no se hace algo original que realmente puede hacer una
diferencia.

Por eso digo que “la vida es corta”. No es que sea corta, es que es demasiado
corta para perder tiempo haciendo lo que ya está hecho o buscándole la quinta
pata al gato. Hay que sobreponerse a la tristeza de que nunca vamos a usar
100% programas hechos por nosotros y nuestros amigos, y aplicar la fuerza en
los puntos críticos, crear las cosas que no existen, no las que ya están.

Antes de decidirse a empezar un proyecto hay que preguntarse muchas cosas:

• ¿Me va a dejar plata?

La vida es Corta

41

• ¿Qué es lo nuevo de este proyecto?

• ¿Tengo alguna idea de implementación que nadie tuvo?

• ¿Tengo alguna idea de interface original?

• ¿Por qué alguien va a querer usar eso?

• ¿Tengo tiempo y ganas de encarar este proyecto?

• ¿Me voy a divertir haciéndolo?

Las más importantes son probablemente la última y la primera. La primera
porque de algo hay que vivir, y la última porque es suficiente. Si uno decide que
sí, que va a encarar un proyecto, hay que tratar de programar lo menos posible.

Una de las tentaciones del programador es afeitar yaks 12: es una actividad
inútil en sí misma, que uno espera le dé beneficios más adelante.

12 Frase inventada por Carlin Vieri

Yo estoy escribiendo este libro que tiene links a URLs. Yo quiero que
esas URLs sean válidas para siempre. Entonces necesito poder
editarlas después de que se imprima el libro y me gustaría un
“acortador” de URLs donde se puedan editar. Como no lo encuentro lo
escribo.

Si siguiera con “y para eso necesito hacer un framework web, y un
módulo para almacenar los datos”… estoy afeitando yaks.

Para poder hacer A, uno descubre que necesita B, para B necesita C. Cuando
llegás a D… estás afeitando yaks.

Si necesitás B para lograr A, entonces, buscá una B en algún lado, y usala. Si
realmente no existe nada parecido, entonces ahora tenés dos proyectos. Pensá
si te interesa más A o B, y si podés llevar los dos adelante. Es un problema.

En este capítulo lo que vamos a hacer es aprender a no reinventar la rueda.
Vamos a elegir un objetivo y vamos a lograrlo sin afeitar ningún yak. Vas a ver
como creamos un programa útil con casi nada de código propio.

El Problema

Recibí algunas quejas acerca de que algunos links en mis
libros no funcionaban cuando fueron publicados.

El Problema

42

http://projects.csail.mit.edu/gsb/old-archive/gsb-archive/gsb2000-02-11.html

Para el próximo libro que estoy escribiendo, le propuse a mi
editor crear un sitio para registrar las referencias
mencionadas.

Usando referencias ascii cortas y únicas a lo largo del libro,
es facil proveer un servicio sencillo de redirección a la URL
de destino, y arreglarlo cuando cambie (simplemente
creando un alerta de email si la redirección da error 404).

Tarek Ziadé en URLs in Books

Ya que no tengo editor, lo voy a tener que hacer yo mismo. Me parece una
buena idea, va a ser útil para este proyecto, no encuentro nada hecho similar 13,
es un buen ejemplo del objetivo de este capítulo… ¡vendido!

13 El que me hizo ver esa cita de Tarek Ziadé fué Martín Gaitán. Con el
capítulo ya escrito, Juanjo Conti me ha hecho notar http://a.gd

Una vez decidido a encarar este proyecto, establezcamos las metas:

• Un redirector estilo tinyURL, bit.ly, etc.

• Que use URLs cortas y mnemotécnicas.

• Que el usuario pueda editar las redirecciones en cualquier momento.

• Que notifique cuando la URL no sirva, para poder corregirla.

Además, como metas “ideológicas”:

• Un mínimo de afeitado de yaks.

• Que sea un programa relativamente breve.

• Código lo más simple posible: no hay que hacerse el piola, porque no
quiero mantener algo complejo.

• Cada vez que haya que hacer algo: buscar si ya está hecho (excepto el
programa en sí; si no, el capítulo termina dentro de dos renglones).

Separemos la tarea en componentes:

• Una función que dada una URL genera un slug 14

• Un componente para almacenar las relaciones slug => URL

• Un sitio web que haga la redirección

• Un mecanismo de edición de las relaciones

El Problema

43

http://tarekziade.wordpress.com/2009/04/19/urls-in-books/
http://a.gd

14 Slug es un término que ví en Django: un identificador único formado
con letras y números. En este caso, es la parte única de la URL.

Veamos los componentes elegidos para este desarrollo.

Twill
Una de las cosas interesantes de este proyecto me parece hacer que el sistema
testee automáticamente las URLs de un usuario.

Una herramienta muy cómoda para estas cosas es Twill que podría definirse
como un lenguaje de testing de sitios web.

Por ejemplo, si todo lo que quiero es saber si el sitio www.google.com funciona
es tan sencillo como:

go http://www.google.com
code 200

Y así funciona:

$ twill-sh twilltest.script
>> EXECUTING FILE twilltest.script
AT LINE: twilltest.script:0
==> at http://www.google.com.ar/
AT LINE: twilltest.script:1
--
1 of 1 files SUCCEEDED.

Ahora bien, twill es demasiado para nosotros. Permite almacenar cookies 15,
llenar formularios, y mucho más. Yo tan solo quiero lo siguiente:

15 Como problema adicional, almacena cookies en el archivo que le digas.
Serio problema de seguridad para una aplicación web.

1. Ir al sitio indicado.

2. Testear el código (para asegurarse que la página existe).

3. Verificar que un texto se encuentra en la página (para asegurarse que
ahora no es un sitio acerca de un tema distinto).

O sea, solo necesito los comandos twill code y find. Porque soy buen tipo,
podríamos habilitar notfind y title.

Twill

44

http://twill.idyll.org

Todos esos comandos son de la forma comando argumento con lo que un parser
de un lenguaje “minitwill” es muy fácil de hacer:

pyurl3.py

10 from twill.commands import go, code, find, notfind, title
11
12
13 def minitwill(url, script):
14 '''Dada una URL y un script en una versión limitada
15 de twill, ejecuta ese script.
16 Apenas una línea falla, devuelve False.
17
18 Si todas tienen éxito, devuelve True.
19
20 Ejemplos:
21
22 >>> minitwill('http://google.com','code 200')
23 ==> at http://www.google.com.ar/
24 True
25
26 >>> minitwill('http://google.com','title bing')
27 ==> at http://www.google.com.ar/
28 title is 'Google'.
29 False
30
31 '''
32 try:
33 go(url)
34 except:
35 return False
36 for line in script.splitlines():
37 cmd, arg = line.split(' ', 1)
38 try:
39 if cmd in ['code', 'find', 'notfind', 'title']:
40 # Si line es "code 200", esto es el equivalente
41 # de code(200)
42 r = globals()[cmd](arg)
43 except:
44 return False
45 return True

Twill

45

46

Veamos minitwill en acción:

>>> minitwill('http://www.google.com','code 200')
==> at http://www.google.com.ar/
True
>>> minitwill('http://www.google.com','code 404')
==> at http://www.google.com.ar/
False
>>> minitwill('http://www.google.com','find bing')
==> at http://www.google.com.ar/
False
>>> minitwill('http://www.google.com','title google')
==> at http://www.google.com.ar/
title is 'Google'.
False
>>> minitwill('http://www.google.com','title Google')
==> at http://www.google.com.ar/
title is 'Google'.
True

Bottle
Esto va a ser una aplicación web. Hay docenas de frameworks para crearlas
usando Python. Voy a elegir casi al azar uno que se llama Bottle porque es
sencillo, sirve para lo que necesitamos, y es un único archivo. Literalmente se
puede aprender a usar en una hora.

¿Qué Páginas tiene nuestra aplicación web?

• / donde el usuario se puede autenticar o ver un listado de sus
redirecciones existentes.

• /SLUG/edit donde se edita una redirección (solo para el dueño del slug).

• /SLUG/del para eliminar una redirección (solo para el dueño del slug).

• /SLUG/test para correr el test de una redirección (solo para el dueño del
slug).

• /SLUG redirige al sitio deseado.

• /static/archivo devuelve un archivo (para CSS, imágenes, etc)

Bottle

46

http://bottle.paws.de

• /logout cierra la sesión del usuario.

Empecemos con un “stub”, una aplicación bottle mínima que controle esas
URLs. El concepto básico en bottle es:

• Creás una función que toma argumentos y devuelve una página web

• Usás el decorador @bottle.route para que un PATH de URL
determinado llame a esa función.

• Si querés que una parte de la URL sea un argumento de la función, usás
:nombrearg y la tomás como argumento (ej: ver en el listado, función
borrar)

Bottle

47

Después hay más cosas, pero esto es suficiente por ahora:
pyurl1.py

 1 # -*- coding: utf-8 -*-
 2 '''Un acortador de URLs pero que permite:
 3
 4 * Editar adonde apunta el atajo más tarde
 5 * Eliminar atajos
 6 * Definir tests para saber si el atajo es válido
 7
 8 '''
 9
10 # Usamos bottle para hacer el sitio
11 import bottle
12
13 @bottle.route('/')
14 def alta():
15 """Crea un nuevo slug"""
16 return "Pagina: /"
17
18 @bottle.route('/:slug/edit')
19 def editar(slug):
20 """Edita un slug"""
21 return "Editar el slug=%s"%slug
22
23 @bottle.route('/:slug/del')
24 def borrar(slug):
25 """Elimina un slug"""
26 return "Borrar el slug=%s"%slug
27
28 # Un slug está formado sólo por estos caracteres
29 @bottle.route('/:slug#[a-zA-Z0-9]+#')
30 def redir(slug):
31 """Redirigir un slug"""
32 return "Redirigir con slug=%s"%slug
33
34 @bottle.route('/static/:filename#.*#')
35 @bottle.route('/:filename#favicon.*#')
36 def static_file(filename):
37 """Archivos estáticos (CSS etc)"""
38 # No permitir volver para atras
39 filename.replace("..",".")
40 # bottle.static_file parece no funcionar en esta version de bottle

Bottle

48

41 return open(os.path.join("static", *filename.split("/")))
42
43 if __name__=='__main__':
44 """Ejecutar con el server de debug de bottle"""
45 bottle.debug(True)
46 app = bottle.default_app()
47
48 # Mostrar excepciones mientras desarrollamos
49 app.catchall = False
50
51 # Ejecutar aplicación
52 bottle.run(app)

Para probarlo, alcanza con python pyurl1.py y sale esto en la consola:

$ python pyurl1.py
Bottle server starting up (using WSGIRefServer())...
Listening on http://127.0.0.1:8080/
Use Ctrl-C to quit.

Apuntando un navegador a esa URL podemos verificar que cada función
responde en la URL correcta y hace lo que tiene que hacer:

La aplicación de prueba funcionando.

Autenticación
Bottle es un framework WSGI. WSGI es un standard para crear aplicaciones
web. Permite conectarlas entre sí, y hacer muchas cosas interesantes.

En particular, tiene el concepto de “middleware”. ¿Qué es el middleware? Es
una aplicación intermediaria. El pedido del cliente va al middleware, este lo
procesa y luego se lo pasa a tu aplicación original.

Un caso particular es el middleware de autenticación, que permite que la
aplicación web sepa si el usuario está autenticado o no. En nuestro caso, ciertas
áreas de la aplicación sólo deben ser accesibles a ciertos usuarios. Por ejemplo,
un atajo sólo puede ser editado por el usuario que lo creó.

Autenticación

49

http://wsgi.org/

Todo lo que esta aplicación requiere del esquema de autenticación es saber:

1. Si el usuario está autenticado o no.

2. Cuál usuario es.

Vamos a usar AuthKit con OpenID. De esa manera vamos a evitar una de las
cosas más molestas de las aplicaciones web, la proliferación de cuentas de
usuario.

Al usar OpenID, no vamos a tener ningún concepto de usuario propio,
simplemente vamos a confiar en que OpenID haga su trabajo y nos diga “este
acceso lo está haciendo el usuario X” o “este acceso es de un usuario sin
autenticar”.

¿Cómo se autentica el usuario?

Yahoo
Ingresa yahoo.com

Google
Ingresa https://www.google.com/accounts/o8/id 16

Otro proveedor OpenID
Ingresa el dominio del proveedor o su URL de usuario.

16 O se crean botones “Entrar con tu cuenta de google”, etc. En
views/invitado.tpl puede verse como hacerlo usando openid-selector
una muy interesante solución basada pricipalmente en javascript.

Luego OpenID se encarga de autenticarlo via Yahoo/Google/etc. y darnos el
usuario autenticado como parte de la sesión.

Hagamos entonces que nuestra aplicación de prueba soporte OpenID.

Para empezar, se “envuelve” la aplicación con el middleware de autenticación.
Es necesario importar varios módulos nuevos 17. Eso significa que todos los
pedidos realizados ahora se hacen a la aplicación de middleware, no a la
aplicación original de bottle.

Esta aplicación de middleware puede decidir procesar el pedido ella misma (por
ejemplo, una aplicación de autenticación va a querer procesar los errores 401,
que significan “No autorizado”), o si no, va a pasar el pedido a la siguiente
aplicación de la pila (en nuestro caso la aplicación bottle).

Autenticación

50

http://authkit.org/
http://code.google.com/p/openid-selector/

17 Hasta donde sé, necesitamos instalar:

• AuthKit

• Beaker

• PasteDeploy

• PasteScript

• WebOb

• Decorator
pyurl2.py

 9 # Middlewares
10 from beaker.middleware import SessionMiddleware
11 from authkit.authenticate import middleware
12 from paste.auth.auth_tkt import AuthTKTMiddleware
13

21 if __name__=='__main__':
22 """Ejecutar con el server de debug de bottle"""
23 bottle.debug(True)
24 app = bottle.default_app()
25
26 # Mostrar excepciones mientras desarrollamos
27 app.catchall = False
28
29 app = middleware(app,
30 enable=True,
31 setup_method='openid',
32 openid_store_type='file',
33 openid_store_config=os.getcwd(),
34 openid_path_signedin='/')
35
36 app = AuthTKTMiddleware(SessionMiddleware(app),
37 'some auth ticket secret');
38
39 # Ejecutar aplicación
40 bottle.run(app)

Para entender esto, necesitamos ver como es el flujo de una conexión standard
en Bottle (o en casi cualquier otro framework web). 18

Autenticación

51

18 Este diagrama es 90% mentira. Por ejemplo, en realidad route no
llama a pyurl2.alta sino que la devuelve a app que después la
ejecuta. Sin embargo, digamos que es metafóricamente cierto.

Usuario

app

GET /

bottle.route

GET /

pyurl2.alta

request

bottle.template

Datos

HTML

Una conexión a la URL "/".

1. El usuario hace un pedido via HTTP pidiendo la URL “/”

2. La aplicación web recibe el pedido, ve el PATH y pasa el mismo pedido a
route.

3. La función registrada para ese PATH es pyurl2.alta, y se la llama.

4. pyurl2.alta devuelve datos, pasados a un mecanismo de templates — o
HTML directo al cliente, pero eso no es lo habitual.

5. De una manera u otra, se devuelve el HTML al cliente, que vé el resultado
de su pedido.

Al “envolver” app con un middleware, es importante que recordemos que app
ya no es la misma de antes, tiene código nuevo, que proviene de AuthKit. 19 El
nuevo “flujo” es algo así (lo nuevo está en linea de puntos en el diagrama):

19 Nuevamente es muy mentiroso, estamos ignorando completamente el
middleware de sesión, y sin eso AuthKit no funciona. Como excusa: ¡Es
con fines educativos! todo lo que hacen las sesiones para nosotros es
que AuthKit tenga un lugar donde guardar las credenciales del usuario
para el paso 6.

Autenticación

52

Usuario

app

GET /

bottle.route

GET /

AuthKit

encargáte

pyurl2.alta

request

Error 401

bottle.template

Datos

request+credenciales

HTML

Una conexión a la URL "/" con AuthKit.

1. El usuario hace un pedido via HTTP pidiendo la URL “/”

2. La aplicación web recibe el pedido, ve el PATH y pasa el mismo pedido a
route.

3. La función registrada para ese PATH es pyurl2.alta, y se la llama.

4. Si pyurl2.alta decide que esta página no puede ser vista, sin estar
autenticado, entonces en vez de mandar datos al template, pasa una
excepción a app (Error 401).

pyurl2.py

23 @bottle.route('/')
24 def alta():
25 """Crea un nuevo slug"""
26 if not 'REMOTE_USER' in bottle.request.environ:
27 bottle.abort(401, "Sorry, access denied.")
28 return "Pagina: /"
29

5. Si app recibe un error 401, en vez de devolverlo al usuario, le dice a
AuthKit: “hacete cargo”. Ahí Authkit muestra el login, llama a yahoo o
quien sea, verifica las credenciales, y una vez que está todo listo…

Autenticación

53

6. Vuelve a llamar a pyurl2.alta pero esta vez, además de el request
original hay unas credenciales de usuario, indicando que hubo un login
exitoso.

7. pyurl2.alta devuelve datos, pasados a un mecanismo de templates — o
HTML directo al cliente, pero eso no es lo habitual.

8. De una manera u otra, HTML se devuelve al cliente, que vé el resultado de
su pedido.

Para que el usuario pueda cerrar su sesión, implementamos logout:
pyurl2.py

14 @bottle.route('/logout')
15 def logout():
16 bottle.request.environ['paste.auth_tkt.logout_user']()
17 if 'REMOTE_USER' in bottle.request.environ:
18 del bottle.request.environ['REMOTE_USER']
19 bottle.redirect('/')
20

¿Funciona?

El sitio muestra una pantalla de login (Es fea porque es la que viene por
default)

Autenticación

54

Tal vez, el proveedor de OpenID pide usuario/password

Por una única vez se pide autorizar al otro sitio.

Autenticación

55

Estamos autenticados y nuestra aplicación de prueba funciona como antes.

¿Puede quedar bueno esto?

Este mismo programa, en producción, en http://pyurl.sytes.net

Storm
Es obviamente necesario guardar las relaciones usuario/slug/URL en alguna
parte. Lo obvio es usar una base de datos. Lo inteligente es usar un ORM.

A favor de usar un ORM:
No se usa SQL directo, lo que permite hacer todo (o casi) en Python. El
programa queda más “limpio” al no tener que cambiar de contexto todo el
tiempo.

En contra de usar un ORM:
Es una dependencia extra, te ata a un producto que tal vez mañana
“desaparezca”. Puede tener una pérdida de performance con respecto a
usar la base de datos en forma directa.

No me parece grave: Si tenemos cuidado y aislamos el ORM del resto de la
aplicación, es posible reemplazarlo con otro más adelante (o eliminarlo y
“bajar” a SQL o a NoSQL).

Por lo tanto, en el espíritu de “no inventes, usá”, vamos a usar un ORM. En
particular vamos a usar Storm, un ORM creado por Canonical, que me gusta 20.

20 Me gusta más Elixir pero es bastante más complicado para algunas
cosas.

Storm

56

http://pyurl.sytes.net
https://storm.canonical.com/
http://www.canonical.com
http://elixir.ematia.de/trac/wiki

En esta aplicación los requerimientos de base de datos son mínimos. Necesito
poder guardar algo como (url,usuario,slug,test) y poder después
recuperarlo sea por slug, sea por usuario.

Necesito que el slug sea único. Todos los demás campos pueden repetirse. 21

21 Sería bueno que la combinación usuario+url lo fuera pero lo veremos
más adelante.

Veamos código. Primero, definimos lo que Storm requiere.
pyurl3.py

42 # Usamos storm para almacenar los datos
43 from storm.locals import *
44
45
46 # FIXME: tengo que hacer más consistentes los nombres
47 # de los métodos.
48 class Atajo(object):
49 '''Representa una relación slug <=> URL
50
51 Miembros:
52
53 id = Único, creciente, entero (primary key)
54 url = la URL original
55 test = un test de validez de la URL
56 user = el dueño del atajo
57 activo = Si este atajo está activo o no.
58 Nunca hay que borrarlos, sino el ID puede volver
59 atrás y se "recicla" una URL. ¡Malo, malo, malo!
60 status = Resultado del último test (bien/mal)
61 ultimo = Fecha/hora del último test
62 '''
63
64 # Hacer que los datos se guarden via Storm
65 __storm_table__ = "atajo"
66 id = Int(primary=True)
67 url = Unicode()
68 test = Unicode()
69 user = Unicode()
70 activo = Bool()

Storm

57

71 status = Bool()
72 ultimo = DateTime()
73
74

Veamos ahora el __init__ de esta clase. Como “truco”, se guarda
automáticamente en la base de datos al crearse:

pyurl3.py

65 def __init__(self, url, user, test=''):
66 '''Exigimos la URL y el usuario, test es opcional,
67 _id es automático.'''
68
69 # Hace falta crear esto?
70 r = self.store.find(Atajo, user=user, url=url)
71 self.url = url
72 self.user = user
73 self.activo = True
74 # Test por default, verifica que la página exista.
75 self.test = u'code 200'
76 if r.count():
77 # FIXME: esto creo que es una race condition
78 # Existe la misma URL para el mismo usuario,
79 # reciclamos el id y el test, pero activa.
80 viejo = r.one()
81 Atajo.store.remove(viejo)
82 self.id = viejo.id
83 self.test = viejo.test
84 self.store.add(self)
85 # Autosave/flush/commit a la base de datos
86 self.save()
87
88 def save(self):
89 '''Método de conveniencia'''
90 Atajo.store.flush()
91 Atajo.store.commit()
92
93

¿Y de dónde sale self.store? De un método de inicialización que hay que llamar
antes de poder crear una instancia de Atajo:

Storm

58

pyurl3.py

113 @classmethod
114 def init_db(cls):
115 # Creamos una base SQLite
116 if not os.path.exists('pyurl.sqlite'):
117 cls.database = create_database(
118 "sqlite:///pyurl.sqlite")
119 cls.store = Store(cls.database)
120 try:
121 # Creamos la tabla
122 cls.store.execute('''
123 CREATE TABLE atajo (
124 id INTEGER PRIMARY KEY,
125 url VARCHAR,
126 test VARCHAR,
127 user VARCHAR,
128 activo TINYINT,
129 status TINYINT,
130 ultimo TIMESTAMP
131)''')
132 cls.store.flush()
133 cls.store.commit()
134 except:
135 pass
136 else:
137 cls.database = create_database(
138 "sqlite:///pyurl.sqlite")
139 cls.store = Store(cls.database)
140
141
142

El código “original”, es decir, convertir URLs a slugs y viceversa es bastante
tonto:

pyurl3.py

125 # Caracteres válidos en un atajo de URL
126 validos = string.letters + string.digits
127
128 def slug(self):

Storm

59

129 '''Devuelve el slug correspondiente al
130 ID de este atajo
131
132 Básicamente un slug es un número en base 62,
133 representado usando a-zA-Z0-9 como "dígitos",
134 y dado vuelta:
135
136 Más significativo a la derecha.
137
138 Ejemplo:
139
140 100000 => '4aA'
141 100001 => '5aA'
142
143 '''
144 s = ''
145 n = self.id
146 while n:
147 s += self.validos[n % 62]
148 n = n // 62
149 return s
150
151 @classmethod
152 # FIXME: no estoy feliz con esta API
153 def get(cls, slug=None, user=None, url=None):
154 ''' Dado un slug, devuelve el atajo correspondiente.
155
156 Dado un usuario:
157 Si url es None, devuelve la lista de sus atajos
158 Si url no es None , devuelve *ese* atajo.
159 '''
160 if slug is not None:
161 i = 0
162 for p, l in enumerate(slug):
163 i += 62 ** p * cls.validos.index(l)
164 return cls.store.find(cls, id=i,
165 activo=True).one()
166 if user is not None:
167 if url is None:
168 return cls.store.find(cls, user=user,

Storm

60

169 activo=True)
170 else:
171 return cls.store.find(cls, user=user,
172 url=url, activo=True).one()
173
174 def delete(self):
175 '''Eliminar este objeto de la base de datos'''
176 self.activo = False
177 self.save()
178
179 def run_test(self):
180 '''Correr el test con minitwill y almacenar
181 el resultado'''
182 self.status = minitwill(self.url, self.test)
183 self.ultimo = datetime.datetime.now()
184 self.save()
185

¡Veámoslo en acción!

>>> from pyurl3 import Atajo
>>> Atajo.init_db()
>>> a1 = Atajo(u'http://nomuerde.netmanagers.com.ar',
 u'unnombredeusuario')
>>> a1.slug()
'b'
>>> a1 = Atajo(u'http://www.python.org',
 u'unnombredeusuario')
>>> a1.slug()
'c'
>>> Atajo.get(slug='b').url
u'http://nomuerde.netmanagers.com.ar'
>>> [x.url for x in Atajo.get(user=u'unnombredeusuario')]
[u'http://nomuerde.netmanagers.com.ar',
u'http://www.python.org']

Y desde ya que todo está en la base de datos:

sqlite> .dump
PRAGMA foreign_keys=OFF;
BEGIN TRANSACTION;

Storm

61

CREATE TABLE atajo (
 id INTEGER PRIMARY KEY,
 url VARCHAR,
 test VARCHAR,
 user VARCHAR
);
INSERT INTO "atajo" VALUES(1,'http://nomuerde.netmanagers.com.ar',
NULL,'unnombredeusuario');
INSERT INTO "atajo" VALUES(2,'http://www.python.org',NULL,
'unnombredeusuario');
COMMIT;

HTML / Templates

BlueTrip te da un conjunto razonable de estilos y una forma
común de construir un sitio web para que puedas saltear la
parte aburrida y ponerte a diseñar.

http://bluetrip.org

Soy un cero a la izquierda en cuanto a diseño gráfico, HTML, estética, etc. En
consecuencia, para CSS y demás simplemente busqué algo fácil de usar y lo
usé. Todo el “look” del sitio va a estar basado en BlueTrip, un framework de
CSS.

Dado que no pienso diseñar mucho, ¡gracias BlueTrip!

Necesitamos 3 páginas en HTML:

• Bienvenida (invitado):

• Ofrece login.

• Explica el servicio.

• Bienvenida (usuario):

• Ofrece crear nuevo atajo

• Muestra atajos existentes (ofrece edición/eliminar/status)

• Ofrece logout

• Edición de atajo:

• Cambiar donde apunta (URL).

HTML / Templates

62

http://bluetrip.org
http://bluetrip.org/

• Cambiar test.

• Probar test.

• Eliminar.
No voy a mostrar el detalle de cada página, mi HTML es básico, sólo veamos
algunas capturas de las páginas:

Pantalla de invitado.

Pantalla de usuario.

HTML / Templates

63

Usuario editando un atajo.

Como las páginas son en realidad generadas con el lenguaje de templates de
bottle, hay que pensar qué parámetros se pasan, y usarlos en el template.
Luego, se le dice a bottle que template usar.

Tomemos como ejemplo la página usuario.tpl, que es lo que vé el usuario
registrado en el sitio y es la más complicada. Explicación breve de la sintaxis de
los templates 22:

22 Si no te gusta, es fácil reemplazarlo con otro motor de templates.

• {{variable}} se reemplaza con el valor de variable.

• {{funcion()}} se reemplaza con el resultado de funcion()

• {{!cosa}} es un reemplazo inseguro. En los otros, se reemplaza < con
< etc. para prevenir problemas de seguridad.

• Las líneas que empiezan con % son Python. Pero….

Hay que cerrar cada bloque con %end (porque no podemos confiar en la
indentación). Ejemplo:

%for x in range(10):
 {{x}}
%end

HTML / Templates

64

Ignorando HTML aburrido, es algo así:
usuario.tpl

25 %if mensaje:
26 <p class="{{clasemensaje}}">
27 {{!mensaje}}
28 </p>
29 %end
30 </div>
31
32 <div style="float: right; text-align: left; width: 350px;">
33 <form method="POST">
34 <fieldset>
35 <legend>Crear nuevo atajo:</legend>
36 <div>
37 <label for="url">URL a acortar:</label>
38 <input type="text" name="url" id="url"></div>
39 <button class="button positive">Crear</button>
40 </fieldset>
41 </form>
42 </div>
43
44 <div style="float:left;text-align: right; width: 350px;">
45 <table style="width:100%;">
46 <caption>Atajos Existentes</caption>
47 <thead>
48 <tr> <th>Atajo</th> <th>Acciones</th> </tr>
49 </thead>
50 % for atajo in atajos:
51 <tr>
52 % if atajo.status:
53 <td><img src="/static/weather-clear.png" alt="Success"
54 align="MIDDLE"/>
55 {{atajo.slug()}}
56 % else:
57 <td><img src="/static/weather-storm.png" alt="Failure"
58 align="MIDDLE"/>
59 {{atajo.slug()}}
60 % end
61 <td>Editar /

HTML / Templates

65

62 Eliminar /
63 Probar
64 </tr>
65 %end
66 </table>

La pantalla para usuario no autenticado es un caso particular: la genera
AuthKit, no Bottle, por lo que hay que pasar el contenido como parámetro de
creación del middleware:

pyurl3.py

360 app = middleware(app,
361 enable=True,
362 setup_method='openid',
363 openid_store_type='file',
364 openid_template_file=os.path.join(os.getcwd(),
365 'views', 'invitado.tpl'),
366 openid_store_config=os.getcwd(),
367 openid_path_signedin='/')
368

Backend
Vimos recién que al template usuario.tmpl hay que pasarle:

• Un mensaje (opcional) con una clasemensaje que define el estilo.

• Una lista atajos conteniendo los atajos de este usuario.

También vemos que el formulario de acortar URLs apunta a esta misma página
con lo que la función deberá:

• Ver si el usuario está autenticado (o dar error 401)

• Si recibe un parámetro url, acortarlo y dar un mensaje al respecto.

• Pasar al template la variable atajos con los datos necesarios.
pyurl3.py

159 @bottle.post('/')
160 @bottle.get('/')
161 @bottle.view('usuario.tpl')
162 def alta():
163 """Crea un nuevo slug."""

Backend

66

164 # Requerimos que el usuario esté autenticado.
165 if not 'REMOTE_USER' in bottle.request.environ:
166 bottle.abort(401, "Sorry, access denied.")
167 usuario = bottle.request.environ['REMOTE_USER'].decode('utf8')
168 # Data va a contener todo lo que el template
169 # requiere para hacer la página
170 data = {}
171 # Esto probablemente debería obtenerse de una
172 # configuración
173 data['baseurl'] = 'http://pyurl.sytes.net/'
174 # Si tenemos un parámetro URL, estamos en esta
175 # funcion porque el usuario envió una URL a acortar.
176 if 'url' in bottle.request.POST:
177 # La acortamos
178 url = bottle.request.POST['url'].decode('utf8')
179 if not urlparse.urlparse(url).scheme:
180 url = 'http://' + url
181 parseada = urlparse.urlparse(url)
182 if not all([parseada.scheme, parseada.netloc]):
183 data['url'] = None
184 data['short'] = None
185 data['mensaje'] = u"""URL caca!"""
186 data['clasemensaje'] = 'error'
187 else:
188 a = Atajo(url=url, user=usuario)
189 data['short'] = a.slug()
190 data['url'] = url
191 # La probamos
192 a.run_test()
193 # Mensaje para el usuario de que el acortamiento
194 # tuvo éxito.
195 data['mensaje'] = u'''La URL
196 %(url)s se convirtió en:
197
198 %(baseurl)s%(short)s''' % data
199
200 # Clase CSS que muestra las cosas como buenas
201 data['clasemensaje'] = 'success'
202 else:
203 # No se acortó nada, no hay nada para mostrar.
204 data['url'] = None

Backend

67

205 data['short'] = None
206 data['mensaje'] = None
207
208 # Lista de atajos del usuario.
209 data['atajos'] = Atajo.get(user=usuario)
210
211 # Crear la página con esos datos.
212 return data

Las demás páginas no aportan nada interesante:
pyurl3.py

274 @bottle.route('/:slug/edit')
275 @bottle.post('/:slug/edit')
276 @bottle.view('atajo.tpl')
277 def editar(slug):
278 """Edita un slug"""
279 if not 'REMOTE_USER' in bottle.request.environ:
280 bottle.abort(401, "Sorry, access denied.")
281 usuario = bottle.request.environ['REMOTE_USER'].decode('utf8')
282
283 # Solo el dueño de un atajo puede editarlo
284 a = Atajo.get(slug)
285 # Atajo no existe o no sos el dueño
286 if not a or a.user != usuario:
287 bottle.abort(404, 'El atajo no existe')
288
289 if 'url' in bottle.request.POST:
290 # El usuario mandó el form
291 a.url = bottle.request.POST['url'].decode('utf-8')
292 a.activo = 'activo' in bottle.request.POST
293 a.test = bottle.request.POST['test'].decode('utf-8')
294 a.save()
295 bottle.redirect('/')
296 return {'atajo': a,
297 'mensaje': '',
298 }
299
300
301 @bottle.route('/:slug/del')
302 def borrar(slug):
303 """Elimina un slug"""
304 if not 'REMOTE_USER' in bottle.request.environ:

Backend

68

305 bottle.abort(401, "Sorry, access denied.")
306 usuario = bottle.request.environ['REMOTE_USER'].decode('utf8')
307 # Solo el dueño de un atajo puede borrarlo
308 a = Atajo.get(slug)
309 if a and a.user == usuario:
310 a.delete()
311 # FIXME: pasar un mensaje en la sesión
312 bottle.redirect('/')
313
314
315 @bottle.route('/:slug/test')
316 def run_test(slug):
317 """Corre el test correspondiente a un atajo"""
318 if not 'REMOTE_USER' in bottle.request.environ:
319 bottle.abort(401, "Sorry, access denied.")
320 usuario = bottle.request.environ['REMOTE_USER'].decode('utf8')
321
322 # Solo el dueño de un atajo puede probarlo
323 a = Atajo.get(slug)
324 if a and a.user == usuario:
325 a.run_test()
326 # FIXME: pasar un mensaje en la sesión
327 bottle.redirect('/%s/edit' % slug)
328
329
330 # Un slug está formado sólo por estos caracteres
331 @bottle.route('/:slug#[a-zA-Z0-9]+#')
332 def redir(slug):
333 """Redirigir un slug"""
334 # Buscamos el atajo correspondiente
335 a = Atajo.get(slug=slug)
336 if not a:
337 bottle.abort(404, 'El atajo no existe')
338 bottle.redirect(a.url)
339
340
341 @bottle.route('/static/:filename#.*#')
342 @bottle.route('/:filename#favicon.*#')
343 def static_file(filename):
344 """Archivos estáticos (CSS etc)"""
345 # No permitir volver para atras
346 filename.replace("..", ".")
347 # bottle.static_file parece no funcionar en esta version de bottle

Backend

69

348 return open(os.path.join("static", *filename.split("/")))
349

Conclusiones
En este capítulo se ve una aplicación web, completa, útil y (semi)original. El
código que hizo falta escribir fue… unas 250 líneas de python.

Obviamente esta aplicación no está lista para ponerse en producción. Algunos
de los problemas obvios:

• Necesita un robots.txt para no pasarse la vida respondiendo a robots

• Se puede optimizar mucho

• Necesita protección contra DOS (ejemplo, limitar la frecuencia de corrida
de los tests)

• Necesita que correr un test no bloquee todo el sitio.

• Necesita ser útil para el fin propuesto!

• Idea: formulario que toma una lista de URLs y devuelve la lista
correspondiente de enlaces acortados.

• Necesita muchísimo laburo de “UI”.

Y hay muchos features posibles:

• Opcionalmente redirigir en un IFrame y permitir cosas como comentarios
acerca de la página de destino.

• Estadísticas de uso de los links.

• Una página pública “Los links de Juan Perez” (y convertirlo en
http://del.icio.us).

• Soportar cosas que no sean links si no texto (y convertirlo en un pastebin).

• Soportar imágenes (y ser un image hosting).

• Correr tests periódicamente.

• Notificar fallas de test por email.

Todas esas cosas son posibles… y quien quiera hacerlas, puede ayudar!

Este programa es open source, se aceptan sugerencias Tal vez hasta esté
funcionando en http://pyurl.sytes.net … Visiten y ayuden!

Conclusiones

70

http://del.icio.us
http://pyurl.sytes.net

Las Capas de una Aplicación
“Que tu mano izquierda no sepa lo que hace tu mano
derecha”

Anónimo

En el capítulo anterior cuando estaba mostrando el uso del ORM puse

Si tenemos cuidado y aislamos el ORM del resto de la
aplicación, es posible reemplazarlo con otro más adelante (o
eliminarlo y “bajar” a SQL o a NoSQL).

¿Qué significa, en ese contexto, “tener cuidado”? Bueno, estoy hablando
básicamente de lo que en inglés se llama multi-tier architecture.

Sin entrar en detalles formales, la idea general es decidir un esquema de
separación en capas dentro de tu aplicación.

Siguiendo con el ejemplo del ORM: si todo el acceso al ORM está concentrado
en una sola clase, entonces para migrar el sistema a NoSQL alcanza con
reimplementar esa clase y mantener la misma semántica.

Algunos de los “puntos” clásicos en los que partir la aplicación son:
Interfaz/Lógica/Datos y Frontend/Backend.

Por supuesto que esto es un formalismo: Por ejemplo, para una aplicación
puede ser que todo twitter.com sea el backend, pero para los que lo crean,
twitter.com a su vez está dividido en capas.

Yo no creo en definiciones estrictas, y no me voy a poner a decidir si un método
específico pertenece a una capa u otra, normalmente uno puede ser flexible
siempre que siga al pie de la letra tres reglas:

Una vez definida que tu arquitectura es en capas “A”/”B”/”C”/”D” (exagerando,
normalmente dos o tres capas son suficiente):

• Las capas son una lista ordenada, se usa hacia abajo.

Si estás en la capa “B” usás “C”, no “A”.

• Nunca dejes que un componente se saltee una capa.

Si estás en la capa “A” entonces podés usar las cosas de la capa “B”. “B”
usa “C”. “C” usa “D”. Y así. Nunca “A” usa “C”. Eso es joda.

Las Capas de una Aplicación

71

http://en.wikipedia.org/wiki/Multitier_architecture

• Tenés que saber en qué capa estás en todo momento.

Apenas dudes “¿estoy en B o en C?” la respuesta correcta es “estás en el
horno.”

¿Cómo sabemos en qué capa estamos? Con las siguientes reglas:

1. Si usamos el ORM estamos en la capa datos.

2. Si el método en el que estamos es accesible por el usuario, estamos en la
capa de interfaz.

3. Si not 1 and not 2 estamos en la capa de lógica.

No es exactamente un ejemplo de formalismo, pero este libro tampoco lo es.

Proyecto
Vamos a hacer un programa dividido en tres capas, interfaz/lógica/datos. Vamos
a implementar dos veces cada capa, para demostrar que una separación clara
independiza las implementaciones y mejora la claridad conceptual del código.

El Problema
Pensemos en una aplicación de tareas pendientes (el clásico TODO list). ¿Cómo
la podríamos describir de forma súper genérica?

• Hay una lista de tareas almacenada en alguna parte (por ejemplo, una
base de datos).

• Cada tarea tiene una serie de atributos, por ejemplo, un texto
describiéndola, un título, un estado (hecho/pendiente), una fecha límite,
etc.

Podríamos asignarle a cada tarea una serie de atributos adicionales como
categorías (tags), colores, etc. Por ese motivo es probablemente una
buena idea poder asignar datos de forma arbitraria, mas allá de un
conjunto predefinido.

Proyecto

72

• Hay distintas maneras de ver la lista de tareas:

• Por fecha límite

• Por categoría

• Por fecha de último update

• Por cualquier dato arbitrario que le podamos asignar según
mencionamos antes.

• Hay que poder editar esos atributos de alguna forma.

Ahora pensemos en un tablero de Kanban. O pensemos en un sistema de
reporte de bugs.

¿Cuál es exactamente la diferencia en la descripción al nivel que usé antes?
Bueno, la diferencia principal es cuales datos se asignan por default a cada
“tarea”. Si tenemos una descripción razonable de cómo debiera ser una tarea,
entonces debería ser posible implementar estas cosas compartiendo mucho
código.

Entonces dividamos esta teórica aplicación en capas:

Interfaz:
Muestra las tareas/bugs/tarjetas/loquesea y permite editarlas.

Lógica:
Procesa los cambios recibidos via la interfaz, los valida y procesa.

Datos:
Luego de que un cambio es validado por la capa de lógica, almacena el
estado en alguna parte, de alguna manera. Es responsable de definir
exactamente qué datos se esperan y/o aceptan.

Vamos a implementar esta aplicación de una manera… peculiar. Cada capa va a
ser implementada dos veces, de maneras lo más distintas posible.

La manera más práctica de implementar estas cosas es de atrás para adelante:

FIXME hacer diagrama

Datos -> Lógica -> Interfaz

Proyecto

73

http://es.wikipedia.org/wiki/Kanban

Capa de Datos: Diseño e Implementación
Necesitamos describir completamente y de forma genérica todas estas
aplicaciones.

Qué tenemos en común:

Elementos
Son objetos que tienen un conjunto de datos. Deben incluir una
especificación de cuales campos son requeridos y cuales no, y qué tipo de
datos es cada uno.

Ejemplo: una tarea, un bug, una tarjeta.

Campos
Cada uno de los datos que “pertenecen” a un elemento. Tiene un tipo
(fecha, texto, color, email, etc). Puede tener una función de validación.

Creo que con esos elementos puedo representar cualquiera de estas
aplicaciones. 23

23 La ventaja que tengo al ser el autor del libro es que si no es así vengo,
edito la lista, y parece que tengo todo clarísimo desde el principio. No
es ese el caso.

Elementos
Estamos hablando de crear objetos y guardarlos en una base de datos.
Hablamos de que esos objetos tienen campos de distintos tipos. Si eso no te
hace pensar en un ORM por favor contáme en que estabas pensando.

Hay montones de ORM disponibles para python. No quiero que este capítulo
degenere en una discusión de cuál es mejor, por lo que voy a admitir de entrada
que el que vamos a usar no lo es, pero que tengo mis motivos para usarlo:

• Funciona

• Es relativamente simple de usar

• No tiene grandes complejidades escondidas

• Por todo lo anterior: te lo puedo explicar a la pasada

El ORM que vamos a usar se llama Storm y ya usamos en el capítulo anterior.

De hecho, uno podría decir “mi capa de datos es el ORM”, y que toda la
definición de campos, etc. es lógica de aplicación, y no sería muy loco. En este

Capa de Datos: Diseño e Implementación

74

http://es.wikipedia.org/wiki/Mapeo_objeto-relacional
http://storm.canonical.com

ejemplo no voy a hacer eso principalmente para poder presentar una interfaz
uniforme en la capa de datos entre dos implementaciones.

Campos
Storm provee algunos tipos de datos incluyendo fechas, horas, strings,
números, y… Pickle. Pickle es interesante porque permite en principio
almacenar casi cualquier cosa, mientras no te interese indexar en base a ese
campo.

Con un poco de imaginación uno puede guardar cualquier cosa usando Storm y
ofrecer una interfaz razonable para su uso. Al intentar tener un diseño tan
genérico necesitamos algo adicional: necesitamos poder saber qué campos
proveemos y de qué tipo es cada uno. Eso se llama introspección.

Diseño
Nuestro plan es crear una aplicación que pueda ser cosas distintas
reemplazando pedazos de la misma. Para ello es fundamental ser claro al
definir la interfaz entre las capas. Si no es completamente explícita, si tiene
suposiciones que ignoramos, si no es clara en lo que hace, entonces no vamos a
tener capas separadas, vamos a tener un enchastre en el que se filtran datos de
una capa a otra a través de esos huecos en nuestras definiciones.

Por lo tanto, sería útil tener algún mecanismo de especificación de interfaces.
Por suerte, lo hay: Zope.Interface

Primero, no dejes que te asuste el nombre. No vamos a implementar una
aplicación Zope. Zope.Interface es una biblioteca para definir interfaces,
nomás.

No vamos a incluir acá un tutorial de Zope.Interface, pero creo que el código es
bastante claro.

Veamos primero la interfaz que queremos proveer para los elementos.
datos1.py

 5 # Definiciones de interfaces
 6
 7
 8 class IFieldType(zope.interface.Interface):
 9
10 """La definición de un tipo de campo."""
11

Capa de Datos: Diseño e Implementación

75

https://storm.canonical.com/Manual#Tableofpropertiesvs.pythonvs.databasetypes
http://docs.zope.org/zope.interface/README.html

12 name = zope.interface.Attribute("Nombre del tipo de campo")
13
14 def set_value(v):
15 """Almacenar valor "v" en la instancia del campo."""
16
17 def get_value(v):
18 """Obtener valor de la instancia del campo."""
19
20
21 class IElement(zope.interface.Interface):
22
23 """Un elemento a almacenar, una tarea, etc."""
24
25 def fields():
26 """Una lista de los campos de este elemento."""
27
28 def save():
29 """Guarda este elemento en storage persistente."""
30
31 def remove():
32 """Elimina este elemento del storage."""
33
34 # Fin de definicion de interfaces

Algunas aclaraciones con respecto a estas interfaces. Hay un elemento que no
vamos a implementar de manera abstracta en la capa de datos que debería, en
cualquier implementación seria, estar allí: búsquedas.

Normalmente, la interfaz de datos debería proveer algún mecanismo para
obtener un subconjunto de los elementos, tal vez ordenados por algún criterio.
Lamentablemente, es muy difícil implementar eso sin quedar pegados a la
implementación del backend.

Vamos a proveer algunos mecanismos con este fin, pero desde ya sepan que son
limitados, y hacen que el código sea ineficiente y complicado, comparado con lo
que debería ser 24.

24 ¡Lero lero, es un ejemplo con fines educativos! ¡Esa excusa da para casi
todo, che!

Capa de Datos: Diseño e Implementación

76

Capa de Lógica: Diseño

Capa de Interfaz: Diseño

Capa de Lógica: Diseño

77

Documentación y Testing
“Si lo que dice ahí no está en el manual, está equivocado. Si
está en el manual es redundante.”

Califa Omar, Alejandría, Año 634.

FIXME

1. Cambiar el orden de las subsecciones (probablemente)

2. ¿Poner este capítulo después del de deployment?

3. Con el ejemplo nuevo, meter setUp / tearDown

¿Pero cómo sabemos si el programa hace exactamente lo que dice el manual?

Bueno, pues para eso (entre otras cosas) están los tests 25. Los tests son la rama
militante de la documentación. La parte activa que se encarga de que ese
manual no sea letra muerta e ignorada por perder contacto con la realidad, sino
un texto que refleja lo que realmente existe.

25 También están para la gente mala que no documenta.

Si la realidad (el funcionamiento del programa) se aparta del ideal (el manual),
es el trabajo del test chiflar y avisar que está pasando. Para que esto sea
efectivo tenemos que cumplir varios requisitos:

Cobertura
Los tests tienen que poder detectar todos los errores, o por lo menos
aspirar a eso.

Integración
Los tests tienen que ser ejecutados ante cada cambio, y las diferencias de
resultado explicadas.

Ganas
El programador y el documentador y el tester (o sea uno) tiene que aceptar
que hacer tests es necesario. Si se lo ve como una carga, no vale la pena:
vas a aprender a ignorar las fallas, a hacer “pasar” los tests, a no hacer
tests de las cosas que sabés que son difíciles.

Documentación y Testing

78

Por suerte en Python hay muchas herramientas que hacen que testear sea, si no
divertido, por lo menos tolerable.

Docstrings
Tomemos un ejemplo semi-zonzo: una función para cortar pedazos de archivos
26.

26 Ejemplo idea de Facundo Batista.

jack.py

jack.py va a ser un programa que permita cortar pedazos de archivos
en dos ejes. Es decir que le podemos indicar:

• De la línea A a la línea B

• De la columna X a la columna Y

Va a recibir esos parámetros, un nombre de archivo, y produce el corte
en la salida standard.

Comencemos con una función que corta en el eje vertical, cortando por filas:

Generadores

Esta función que usa yield es lo que se llama un generador.

Trabajar de esta manera es más eficiente. Por ejemplo, si lineas fuera
un objeto archivo, esto funciona sin leer todo el archivo en memoria.

Y si lineas es una lista… bueno, igual funciona.

jack1.py

 1 # -*- coding: utf-8 -*-
 2
 3 def selecciona_lineas(lineas, desde=0, hasta=-1):

Docstrings

79

http://docs.python.org.ar/tutorial/classes.html#generadores

 4 """Filtra el texto dejando sólo las lineas [desde:hasta].
 5
 6 A diferencia de los iterables en python, no soporta índices
 7 negativos.
 8 """
 9
10 for i, l in enumerate(lineas):
11 if desde <= i < hasta:
12 yield(l)

Esa cadena debajo del def se llama docstring y siempre hay que usarla. ¿Por
qué?

• Es el lugar “oficial” para explicar qué hace cada función

• ¡Sirven como ayuda interactiva!

>>> import jack1
>>> help(jack1.selecciona_lineas)

Help on function selecciona_lineas in module jack1:

selecciona_lineas(lineas, desde=0, hasta=-1)
 Filtra el texto dejando sólo las lineas [desde:hasta].

 A diferencia de los iterables en python, no soporta índices
 negativos.

• Usando una herramienta como epydoc se pueden usar para generar una
guía de referencia de tu módulo (¡manual gratis!)

• Son el hogar de los doctests.

Doctests

“Los comentarios mienten. El código no.”

Ron Jeffries

Un comentario mentiroso es peor que ningún comentario. Y los comentarios se
vuelven mentira porque el código cambia y nadie edita los comentarios. Es el
problema de repetirse: uno ya dijo lo que quería en el código, y tiene que volver
a explicarlo en un comentario; a la larga las copias divergen, y siempre el que

Doctests

80

http://epydoc.sourceforge.net/

está equivocado es el comentario.

Un doctest permite asegurar que el comentario es cierto, porque el comentario
tiene código de su lado, no es sólo palabras.

Y acá viene la primera cosa importante de testing: Uno quiere testear todos los
comportamientos intencionales del código.

Si el código se supone que ya hace algo bien, aunque sea algo muy chiquitito, es
el momento ideal para empezar a hacer testing. Si vas a esperar a que la
función sea “interesante”, ya va a ser muy tarde. Vas a tener un déficit de tests,
vas a tener que ponerte un día sólo a escribir tests, y vas a decir que testear es
aburrido.

¿Cómo sé yo que selecciona_lineas hace lo que yo quiero? ¡Porque la probé!
Como no soy el mago del código que lo escribe y le anda a la primera, hice esto
en el intérprete interactivo:

>>> from jack1 import selecciona_lineas
>>> print range(10)[5:10]
[5, 6, 7, 8, 9]
>>> print list(selecciona_lineas(range(10), 5, 10))
[5, 6, 7, 8, 9]

Y dije, sí, ok, eso es coherente.

Si no hubiera hecho ese test manual no tendría la más mínima confianza en este
código, y creo que todos hacemos esta clase de cosas, ¿o no?.

El problema con este testing manual ad hoc es que lo hacemos una vez, la
función hace lo que se supone debe hacer (al menos por el momento), y nos
olvidamos.

Por suerte no tiene Por qué ser así, gracias a los doctests.

De hecho, el doctest es poco más que cortar y pegar esos tests informales que
mostré arriba. Veamos una versión con algunos doctests:

jack2.py

 1 # -*- coding: utf-8 -*-
 2
 3 def selecciona_lineas(lineas, desde=0, hasta=-1):
 4 """Filtra el texto dejando sólo las lineas [desde:hasta].
 5
 6 A diferencia de los iterables en python, no soporta índices

Doctests

81

 7 negativos.
 8
 9 >>> list(selecciona_lineas(range(10), 5, 10))
10 [5, 6, 7, 8, 9]
11 >>> list(selecciona_lineas(range(10), -5, 1))
12 [0]
13 >>> list(selecciona_lineas(range(10), 5, 100))
14 [5, 6, 7, 8, 9]
15 >>> list(selecciona_lineas(range(10), 5, -1))
16 []
17 """
18
19 for i, l in enumerate(lineas):
20 if desde <= i < hasta:
21 yield(l)

Eso es todo lo que se necesita para implementar doctests. ¡En serio!. ¿Y cómo
hago para saber si los tests pasan o fallan? Hay muchas maneras. Tal vez la que
más me gusta es usar Nose, una herramienta cuyo único objetivo es hacer que
testear sea más fácil.

$ nosetests --with-doctest -v jack2.py
Doctest: jack2.selecciona_lineas ... ok

--
Ran 1 test in 0.019s

OK

Lo que hizo nosetests es “descubrimiento de tests” (test discovery). Toma la
carpeta actual o el archivo que indiquemos (en este caso jack2.py), encuentra
las cosas que parecen tests y las usa. El parámetro —with-doctest es para que
reconozca doctests (por default los ignora), y el -v es para que muestre cada
cosa que prueba.

De ahora en más, cada vez que el programa se modifique, volvemos a correr los
tests. Si falla alguno que antes andaba, es una regresión, paramos de romper y
la arreglamos. Si pasa alguno que antes fallaba, es un avance, nos felicitamos y
nos damos un caramelo.

Dentro del limitado alcance de nuestro programa actual, lo que hace, lo hace
bien. Obviamente hay muchas cosas que no hace, por ejemplo cortar por

Doctests

82

http://somethingaboutorange.com/mrl/projects/nose/

columnas. Agreguemos una función selecciona_columnas:
jack2.py

 1 def selecciona_columnas(lineas, desde=0, hasta=-1):
 2 """Filtra el texto dejando sólo las columnas [desde:hasta].
 3
 4 Soporta índices positivos y negativos con la misma semántica
 5 de los slices de python.
 6
 7 >>> list(selecciona_columnas(("ornitorrinco",) * 5, 5, 10))
 8 ['orrin', 'orrin', 'orrin', 'orrin', 'orrin']
 9 >>> list(selecciona_columnas(("ornitorrinco",) * 5, 5, 99999))
10 ['orrinco', 'orrinco', 'orrinco', 'orrinco', 'orrinco']
11 """
12
13 for l in lineas:
14 yield(l[desde:hasta])

¿Qué hacemos entonces? ¡Agregamos un test que falla! Bienvenido al mundo
del TDD o “Desarrollo impulsado por tests” (Test Driven Development). La idea
es que, en general, si sabemos que hay un bug, seguimos este proceso:

• Creamos un test que falla.

• Arreglamos el código para que no falle el test.

• Verificamos que no rompimos otra cosa usando el test suite.

Un test que falla es bueno porque nos marca qué hay que corregir. Si los tests
son piolas, y cada uno prueba una sola cosa 27 , entonces hasta nos va a indicar
qué parte del código es la que está rota.

27 Un test que prueba muchas cosas juntas no es un buen test, porque al
fallar no sabés por qué. Eso se llama granularidad de los tests y es muy
importante.

Entonces, el problema de gaso2.py es que no funciona cuando no hay acentos
ortográficos. ¿Solución? Una función que diga donde está el acento prosódico
en una palabra 28.

28 Y en este momento agradezcan que esto es castellano, que es un idioma
casi obsesivo compulsivo en su regularidad.

Modificamos gasear así:

Doctests

83

gaso3.py

22 def gasear(palabra):
23 u'''Dada una palabra, la convierte al rosarino
24
25 \xe1 y \\xe1 son "a con tilde", los doctests son un poco
26 quisquillosos con los acentos.
27
28 >>> gasear(u'c\xe1mara')
29 u'cagas\\xe1mara'
30
31 >>> gasear(u'rosarino')
32 u'rosarigasino'
33
34 '''
35
36 # El caso obvio: acentos.
37 # Lo resolvemos con una regexp
38 # Uso \xe1 etc, porque así se puede copiar y pegar en un
39 # archivo sin importar el encoding.
40
41 if re.search(u'[\xe1\xe9\xed\xf3\xfa]', palabra):
42 return re.sub(u'([\xe1\xe9\xed\xf3\xfa])',
43 lambda x: gas(x.group(0)), palabra, 1)
44 # No tiene acento ortográfico
45 pos = busca_acento(palabra)
46 return palabra[:pos] + gas(palabra[pos]) + palabra[pos + 1:]
47
48
49 def busca_acento(palabra):
50 """Dada una palabra (sin acento ortográfico),
51 devuelve la posición de la vocal acentuada.
52
53 Sabiendo que la palabra no tiene acento ortográfico,
54 sólo puede ser grave o aguda. Y sólo es grave si termina
55 en 'nsaeiou'.
56
57 Ignorando diptongos, hay siempre una vocal por sílaba.
58 Ergo, si termina en 'nsaeiou' es la penúltima vocal, si no,
59 es la última.

Doctests

84

60
61 >>> busca_acento('casa')
62 1
63
64 >>> busca_acento('impresor')
65 6
66 """
67
68 if palabra[-1] in 'nsaeiou':
69 # Palabra grave, acento en la penúltima vocal
70 # Posición de la penúltima vocal:
71 pos = list(re.finditer('[aeiou]', palabra))[-2].start()
72 else:
73 # Palabra aguda, acento en la última vocal
74 # Posición de la última vocal:
75 pos = list(re.finditer('[aeiou]', palabra))[-1].start()
76 return pos

¿Notaste que agregar tests de esta forma no se siente como una carga?

Es parte natural de escribir el código, pienso, “uy, esto no debe andar”, meto el
test como creo que debería ser en el docstring, y de ahora en más sé si eso anda
o no.

Por otro lado te da la tranquilidad de “no estoy rompiendo nada”. Por lo menos
nada que no estuviera funcionando exclusivamente por casualidad.

Por ejemplo, gaso1.py pasaría el test de la palabra “la” y gaso2.py fallaría,
pero no porque gaso1.py estuviera haciendo algo bien, sino porque respondía
de forma afortunada.

Cobertura
Es importante que nuestros tests “cubran” el código. Es decir que cada parte
sea usada por lo menos una vez. Si hay un fragmento de código que ningún test
utiliza nos faltan tests (o nos sobra código 29)

29 El código muerto en una aplicación es un problema serio, molesta
cuando se intenta depurar porque está metido en el medio de las partes
que sí se usan y distrae.

La forma de saber qué partes de nuestro código están cubiertas es con una
herramienta de cobertura (“coverage tool”). Veamos una en acción:

Cobertura

85

[ralsina@hp python-no-muerde]$ nosetests --with-coverage --with-doctest \
 -v gaso3.py buscaacento1.py

Doctest: gaso3.gas ... ok
Doctest: gaso3.gasear ... ok
Doctest: buscaacento1.busca_acento ... ok

Name Stmts Exec Cover Missing

buscaacento1 6 6 100%
encodings.ascii 19 0 0% 9-42
gaso3 10 10 100%

TOTAL 35 16 45%

Ran 3 tests in 0.018s

OK

Al usar la opción —with-coverage, nose usa el módulo coverage.py para ver
cuáles líneas de código se usan y cuales no. Lamentablemente el reporte incluye
un módulo de sistema, encodings.ascii lo que hace que los porcentajes no
sean correctos.

Una manera de tener un reporte más preciso es correr coverage report luego
de correr nosetests:

[ralsina@hp python-no-muerde]$ coverage report
Name Stmts Exec Cover

buscaacento1 6 6 100%
gaso3 10 10 100%

TOTAL 16 16 100%

Ignorando encodings.ascii (que no es nuestro), tenemos 100% de cobertura:
ese es el ideal. Cuando ese porcentaje baje, deberíamos tratar de ver qué parte
del código nos estamos olvidando de testear, aunque es casi imposible tener
100% de cobertura en un programa no demasiado sencillo.

Coverage también puede crear reportes HTML mostrando cuales líneas se usan
y cuales no, para ayudar a diseñar tests que las ejerciten.

Cobertura

86

Nota

FIXME

Mostrar captura salida HTML**

Límites de los doctests
¿Entonces hacemos doctests y ya está? No. Los doctests son completamente
inútiles en ciertos casos.

Por ejemplo: es posible tener un módulo que necesite 200 o 300 tests. ¿Vamos a
meter todo eso en los docstrings? ¿Y vamos a tener docstrings de 1000 líneas
llenas de código? Eso ni siquiera cumple el objetivo de “dar algunos ejemplos”.
Tener 1000 ejemplos es a veces peor que no tener ninguno.

Así que no, no alcanza con doctests. Para hacer testing en serio necesitás hacer
test suites.

Son herramientas complementarias. Los doctests son básicamente
documentación para que los demás sepan cómo se usa. Su componente “test” es
principalmente para que la documentación sea precisa. Pero por su misma
naturaleza, los doctests no pueden ser exhaustivos, excepto para funciones
triviales.

Por suerte, hay una herramienta razonable para eso en la biblioteca standard, el
módulo unittest. Sin embargo, no vamos a usar eso, si no, nuevamente, nose.
¿Por qué? Porque es menos burocrático.

Para hacer un test con unittest, tenés que:

• Crear una clase que herede unittest.TestCase.

• Definir dentro de esa clase una función test_algo.

Con nose podés hacer exactamente lo mismo. O crear una función. O una clase
con tests adentro que no herede TestCase. Y además soporta correr los
doctests también.

No es una diferencia enorme, pero es algo menos de laburo, y -laburo ==
bueno.

Límites de los doctests

87

http://docs.python.org/library/unittest.html
http://docs.python.org/library/unittest.html

Lo anterior, hecho distinto
gaso4.py

 1 # Test Suite
 2
 3 class TestBuscaAcento(object):
 4
 5 """Test case de la función busca_acento.
 6
 7 En este test case estamos agrupando los tests de esa función.
 8 """
 9
10 def test_grave(self):
11 """Test de palabra grave."""
12 resultado = busca_acento("casa")
13 assert resultado == 1
14
15 def test_aguda(self):
16 """Test de palabra aguda."""
17 resultado = busca_acento("impresor")
18 assert resultado == 6
19
20
21 class TestGasear(object):
22
23 """Test case de la función gasear.
24
25 En este test case estamos agrupando los tests de esa función.
26 """
27
28 def test_acento_ortografico(self):
29 """Test palabra con acento ortográfico."""
30 assert gasear(u'c\xe1mara') == u'cagas\xe1mara'
31
32 def test_grave_prosodico(self):
33 """Test palabra grave con acento prosódico."""
34 assert gasear(u'rosarino') == u'rosarigasino'

Vemos cómo usamos nosetests con este nuevo test suite:

Lo anterior, hecho distinto

88

$ nosetests codigo/4/gaso4.py -v
Test de palabra aguda. ... ok
Test de palabra grave. ... ok
Test palabra con acento ortográfico. ... ok
Test palabra grave con acento prosódico. ... ok

--
Ran 4 tests in 0.012s

OK

Algunos detalles a favor de este approach:

• Podemos ponerles descripciones a los tests.

• Tenemos más libertad de hacer cosas antes y después de la llamada a la
función que testeamos.

• Es más natural y flexible la manera de hacer los asserts en cada test.

Pero testing no termina ahí. Estos son tests obvios de funciones muy fáciles de
testear, toman u parámetro, dan un resultado, no requieren nada, no tienen
efectos secundarios, son una bici con rueditas.

Vamos a pasar ahora a un ejemplo bastante más “real”. Y las cosas se van a
volver ligeramente más densas.

Mocking

La única manera de reconocer al maestró del disfraz es su
risa. Se ríe “jo jo jo”.

Inspector Austin, Backyardigans

A veces para probar algo, se necesita un objeto, y no es práctico usar el objeto
real por diversos motivos, entre otros:

• Puede ser un objeto “caro”: una base de datos.

• Puede ser un objeto “inestable”: un sensor de temperatura.

• Puede ser un objeto “malo”: por ejemplo un componente que aún no está
implementado.

• Puede ser un objeto “no disponible”: una página web, un recurso de red.

Mocking

89

• Simplemente quiero “separar” los tests, quiero que los errores de un
componente no se propaguen a otro. 30

30 Esta separación de los elementos funcionales es lo que hace que esto
sea “unit testing”: probamos cada unidad funcional del código.

• Estamos haciendo doctests de un método de una clase: la clase no está
instanciada al ejecutar el doctest.

Para resolver este problema se usa mocking. ¿Qué es eso? Es una manera de
crear objetos falsos que hacen lo que uno quiere y podemos usar en lugar del
real.

Una herramienta sencilla de mocking para usar en doctests es minimock.

Apartándonos de nuestro ejemplo por un momento, ya que no se presta a usar
mocking sin inventar nada ridículo, pero aún así sabiendo que estamos
persiguiendo hormigas con aplanadoras…

mock1.py

 3 def largo_de_pagina(url):
 4 '''Dada una URL, devuelve el número de caracteres que la página tiene.
 5 Basado en código de Paul Prescod:
 6 http://code.activestate.com/recipes/65127-count-tags-in-a-document/
 7
 8 Como las páginas cambian su contenido periódicamente,
 9 usamos mock para simular el acceso a Internet en el test.
10
11 >>> from minimock import Mock, mock
12
13 Creamos un falso URLOpener
14
15 >>> opener = Mock ('opener')
16
17 Creamos un falso archivo
18
19 >>> _file = Mock ('file')
20
21 El metodo open del URLopener devuelve un falso archivo
22
23 >>> opener.open = Mock('open', returns = _file)
24
25 urllib.URLopener devuelve un falso URLopener
26
27 >>> mock('urllib.URLopener', returns = opener)

Mocking

90

http://pypi.python.org/pypi/MiniMock

28
29 El falso archivo devuelve lo que yo quiero:
30
31 >>> _file.read = Mock('read', returns = '<h1>Hola mundo!</h1>')
32
33 >>> largo_de_pagina ('http://www.netmanagers.com.ar')
34 Called urllib.URLopener()
35 Called open('http://www.netmanagers.com.ar')
36 Called read()
37 20
38 '''
39
40 return len(urllib.URLopener().open(url).read())

Es especialmente interesante esta parte:

 9 >>> largo_de_pagina ('http://www.netmanagers.com.ar')
10 Called urllib.URLopener()
11 Called open('http://www.netmanagers.com.ar')
12 Called read()
13 20
14

¿Qué es exactamente lo que estamos comprobando en ese doctest?

• Que se llamó exactamente a esas funciones y a ninguna otra.

• Que se las llamó con los argumentos correctos.

• Que cuando nuestra función recibió los datos de esta “internet falsa”, hizo
el cálculo correcto.

Por supuesto es posible hacer algo muy similar en forma de test, en vez de
doctest, usando otra herramienta de mocking, Mock:

mock2.py

11 from mock import Mock, patch
12
13 def test_largo_de_pagina():
14 """Test usando mock, para no requerir internet."""
15
16 # Este "with" crea un bloque en el cual urllib.URLopener
17 # es reemplazado con un objeto Mock.
18 with patch('urllib.URLopener') as mock:
19 # En Mock, todos los atributos de un Mock
20 # son Mock. Y todos los Mock son "llamables" como funciones que
21 # devuelven su propio return_value. Entonces solo necesito
22 # especificar el resultado de la última de la cadena

Mocking

91

http://www.voidspace.org.uk/python/mock/

23 url = 'http://www.netmanagers.com.ar'
24 mock.return_value.open.return_value.read.return_value = '<h1>Hola mundo!</h1>'
25 l = largo_de_pagina(url)
26 assert l == 20
27 # Se debería haber llamado una vez, sin argumentos
28 mock.assert_called_once_with()
29 # Se llama una vez, con la URL
30 mock.return_value.open.assert_called_once_with(url)
31 # Se llama una vez, sin argumentos
32 mock.return_value.open.return_value.read.assert_called_once_with()

Ojo que este último ejemplo de mock no hace exactamente lo mismo que el
primero. Por ejemplo, no se asegura que no llamé o usé otros atributos de los
objetos Mock…

Hay otras variantes de mocks, por ejemplo, los mocks “record and replay” (que
no me gustan mucho, porque producen tests muy opacos, y te tientan a tocar
acá y allá hasta que el test pase en vez de hacer un test útil).

La Máquina Mágica

Mucho se puede aprender por la repetición bajo diferentes
condiciones, aún si no se logra el resultado deseado.

Archer J. P. Martin

Un síntoma de falta de testing es la máquina mágica. Es un equipo en particular
en el que el programa funciona perfectamente. A nadie más le funciona, y el
desarrollador nunca puede reproducir los errores de los usuarios.

¿Por qué sucede esto? Porque si no funcionara en la máquina del desarrollador,
él se habría dado cuenta. Por ese motivo, los desarrolladores siempre tenemos
exactamente la combinación misteriosa de versiones, carpetas, software,
permisos, etc. que resuelve todo.

Para evitar estas suposiciones implícitas en el código, lo mejor es tener un
entorno repetible en el que correr los tests. O mejor aún: muchos.

De esa forma uno sabe “este bug no se produce si tengo la versión X del
paquete Y con python 2.6” y puede hacer el diagnóstico hasta encontrar el
problema de fondo.

Por ejemplo, para un programa mío llamado rst2pdf 31, que requiere un
software llamado ReportLab, y (opcionalmente) otro llamado Wordaxe, los tests
se ejecutan en las siguientes condiciones:

La Máquina Mágica

92

31 Si estás leyendo este libro en PDF o impreso, probablemente estás
viendo el resultado de rst2pdf.

• Python 2.4 + Reportlab 2.4

• Python 2.5 + Reportlab 2.4

• Python 2.6 + Reportlab 2.4

• Python 2.6 + Reportlab 2.3

• Python 2.6 + Reportlab 2.4 + Wordaxe

Hasta que no estoy contento con el resultado de todas esas corridas de prueba,
no voy a hacer un release. De hecho, si no lo probé con todos esos entornos no
estoy contento con un commit.

¿Cómo se hace para mantener todos esos entornos de prueba en
funcionamiento? Usando virtualenv.

Virtualenv no se va a encargar de que puedas usar diferentes versiones de
Python 32, pero sí de que sepas exactamente qué versiones de todos los módulos
y paquetes estás usando.

32 Eso es cuestión de instalar varios Python en paralelo, y depende (entre
otras cosas) de qué sistema operativo estés usando. Una herramienta
interesante es tox

Tomemos como ejemplo la versión final de la aplicación de reducción de URLs
del capítulo La vida es corta.

Esa aplicación tiene montones de dependencias que no hice ningún intento de
documentar o siquiera averiguar mientras la estaba desarrollando.

Veamos como virtualenv nos ayuda con esto. Empezamos creando un entorno
virtual vacío:

[python-no-muerde]$ cd codigo/2/
[2]$ virtualenv virt --no-site-packages --distribute
New python executable in virt/bin/python
Installing distribute...................................done.

La opción —no-site-packages hace que nada de lo que instalé en el Python “de
sistema” afecte al entorno virtual. Lo único disponible es la biblioteca standard.

La opción —distribute hace que utilice Distribute en lugar de setuptools. No
importa demasiado por ahora, pero para más detalles podés leer el capítulo de

La Máquina Mágica

93

http://pypi.python.org/pypi/virtualenv
http://codespeak.net/~hpk/tox/

deployment.

[2]$. virt/bin/activate
(virt)[2]$ which python
/home/ralsina/Desktop/proyectos/python-no-muerde/codigo/2/virt/bin/python

¡Fijáte que ahora python es un ejecutable dentro del entorno virtual! Eso es
activarlo. Todo lo que haga ahora funciona con ese entorno, si instalo un
programa con pip se instala ahí adentro, etc. El (virt) en el prompt indica
cuál es el entorno virtual activado.

Probemos nuestro programa:

(virt)[2]$ python pyurl3.py
Traceback (most recent call last):
 File "pyurl3.py", line 14, in <module>
 from twill.commands import go, code, find, notfind, title
ImportError: No module named twill.commands

Bueno, necesitamos twill:

(virt)[2]$ pip install twill
Downloading/unpacking twill
Downloading twill-0.9.tar.gz (242Kb): 242Kb downloaded
Running setup.py egg_info for package twill
Installing collected packages: twill
Running setup.py install for twill
 changing mode of build/scripts-2.6/twill-fork from 644 to 755
 changing mode of /home/ralsina/Desktop/proyectos/
 python-no-muerde/codigo/4/virt/bin/twill-fork to 755
 Installing twill-sh script to /home/ralsina/Desktop/proyectos/
 python-no-muerde/codigo/4/virt/bin
Successfully installed twill

Si sigo intentando ejecutar pyurl3.py me dice que necesito storm.locals
(instalo storm), beaker.middleware (instalo beaker), authkit.authenticate
(instalo authkit).

Como authkit también trata de instalar beaker resulta que las únicas
dependencias reales son twill, storm y authkit, lo demás son dependencias de
dependencias.

Con esta información tendríamos suficiente para crear un script de instalación,
como veremos en el capítulo sobre deployment.

La Máquina Mágica

94

De todas formas lo importante ahora es que tenemos una base estable sobre la
cual diagnosticar problemas con el programa. Si alguien nos reporta un bug,
solo necesitamos ver qué versiones tiene de:

• Python: porque tal vez usamos algo que no funciona en su versión, o
porque la biblioteca standard cambió.

• Los paquetes que instalamos en virtualenv. Podemos ver cuales son
fácilmente:

(virt)[2]$ pip freeze
AuthKit==0.4.5
Beaker==1.5.3
Paste==1.7.3.1
PasteDeploy==1.3.3
PasteScript==1.7.3
WebOb==0.9.8
decorator==3.1.2
distribute==0.6.10
elementtree==1.2.7-20070827-preview
nose==0.11.3
python-openid==2.2.4
storm==0.16.0
twill==0.9
wsgiref==0.1.2

De hecho, es posible usar la salida de pip freeze como un archivo de
requerimientos, para reproducir exactamente este entorno. Si tenemos esa lista
de requerimientos en un archivo req.txt, entonces podemos comenzar con un
entorno virtual vacío y “llenarlo” exactamente con eso en un solo paso:

[2]$ virtualenv virt2 --no-site-packages --distribute
New python executable in virt2/bin/python
Installing distribute..............................done.
[2]$. virt2/bin/activate
(virt2)[2]$ pip install -r req.txt
Downloading/unpacking Beaker==1.5.3 (from -r req.txt (line 2))
 Real name of requirement Beaker is Beaker
 Downloading Beaker-1.5.3.tar.gz (46Kb): 46Kb downloaded
:
:
:

La Máquina Mágica

95

:

Successfully installed AuthKit Beaker decorator elementtree nose
Paste PasteDeploy PasteScript python-openid storm twill WebOb

Fijáte como pasamos de “no tengo idea de qué se necesita para que esta
aplicación funcione” a “con este comando tenés exactamente el mismo entorno
que yo para correr la aplicación”.

Y de la misma forma, si alguien te dice “no me autentica por OpenID” podés
decirle: “dame las versiones que tenés instaladas de AuthKit, Beaker,
python-openid, etc.”, hacés un req.txt con las versiones del usuario, y podés
reproducir el problema. ¡Tu máquina ya no es mágica!

De ahora en más, si te interesa la compatibilidad con distintas versiones de
otros módulos, podés tener una serie de entornos virtuales y testear contra
cada uno.

Sacando tu programa a pasear: Tox

There are many factors in the environment that are
“problems” that require “solutions”.

Iris Saxer and/or Alfred L. Rosenberger

Como mencioné antes, los tests sólo prueban (como máximo) que tu programa
se va a comportar correctamente en un entorno exactamente igual al tuyo, y es
mejor probarlo contra distintos ambientes de ejecución, para asegurarse de que
funciona correctamente para una mayor cantidad de gente.

Esto es más importante para aplicaciones “de escritorio” que para servers. Si
las instrucciones de instalación de un server incluyen “necesita pirucho 1.4”…
bueno, se consigue uno y se instala, aunque sea sólo para esa aplicación. Los
deployments en servers suelen hacerse así, tratando de satisfacer los pedidos
de lo que estás instalando.

Pero si queremos decir “funciona con módulo X versiones Y y Z”… tenemos que
por lo menos correr los tests contra esas versiones.

Ya expliqué que virtualenv es una manera de hacer eso. Por favor, decíme
que mientras leías eso pensabas “¡claro, puedo hacer un script que me arme los
virtualenvs y corra los tests!” 33

33 Si no lo pensaste…. vergüenza debería darte ;-)

Sacando tu programa a pasear: Tox

96

Por otro lado, es obvio que alguien tiene que haberlo pensado. Y alguien tiene
que haberlo escrito. Y alguien tiene que haberlo publicado como open source.

Y sí, ese alguien es el autor de Tox, una herramienta para automatizar la
creación de virtualenvs y la corrida de tests en los mismos. ¡Y está buena!

Supongamos que queremos probar los tests de nuestro traductor al rosarino
(gaso4.py)con python 2 y python 3.

Lo primero que vamos a necesitar es un setup.py. Lamentablemente, explicar
como crear uno es tarea para más adelante en el libro, pero vamos a crear uno
muy sencillito.

setup.py

1 from distutils.core import setup
2 setup(name='gaso4',
3 version='1.0',
4 py_modules=['gaso4'],
5)

Luego creamos un archivo tox.ini que le dice a Tox que necesitamos:
tox.ini

1 # Esto va junto con el setup.py
2 [tox]
3 # En que pythons quiero probarlo
4 envlist = py27,py32
5 [testenv]
6 # Instalo dependencias
7 deps=nose
8 # y corro los tests
9 commands=nosetests gaso4.py

Y al ejecutar tox, primero crea un “paquete” de nuestro módulo:

[ralsina@archie 4]$ tox
_____________________________ [tox sdist] _____________________________
[TOX] ***creating sdist package
[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4$ /usr/b
in/python2 setup.py sdist --formats=zip --dist-dir .tox/dist >.tox/log/
0.log
[TOX] ***copying new sdistfile to '/home/ralsina/.tox/distshare/gaso4-1
.0.zip'

Sacando tu programa a pasear: Tox

97

http://codespeak.net/~hpk/tox

Luego crea un virtualenv con python 2.7:

_________________________ [tox testenv:py27] __________________________
[TOX] ***creating virtualenv py27
[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox$ /
usr/bin/python2.7 ../../../../../../../../usr/lib/python2.7/site-packag
es/tox-1.1-py2.7.egg/tox/virtualenv.py --distribute --no-site-packages
py27 >py27/log/0.log
[TOX] ***installing dependencies: nose
[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/py
27/log$../bin/pip install --download-cache=/home/ralsina/Desktop/proye
ctos/python-no-muerde/codigo/4/.tox/_download nose >1.log
[TOX] ***installing sdist
[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/py
27/log$../bin/pip install --download-cache=/home/ralsina/Desktop/proye
ctos/python-no-muerde/codigo/4/.tox/_download ../../dist/gaso4-1.0.zip
>2.log

Y ejecuta los tests (exitosamente):

[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4$.tox/p
y27/bin/nosetests gaso4.py
....
--
Ran 4 tests in 0.016s

OK

Hace lo mismo con python 3.2:

_________________________ [tox testenv:py32] __________________________
[TOX] ***creating virtualenv py32
[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox$ /
usr/bin/python3.2 ../../../../../../../../usr/lib/python2.7/site-packag
es/tox-1.1-py2.7.egg/tox/virtualenv.py --no-site-packages py32 >py32/lo
g/0.log
[TOX] ***installing dependencies: nose
[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/py
32/log$../bin/pip install --download-cache=/home/ralsina/Desktop/proye
ctos/python-no-muerde/codigo/4/.tox/_download nose >1.log
[TOX] ***installing sdist
[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/py
32/log$../bin/pip install --download-cache=/home/ralsina/Desktop/proye

Sacando tu programa a pasear: Tox

98

ctos/python-no-muerde/codigo/4/.tox/_download ../../dist/gaso4-1.0.zip
>2.log

Pero los tests fallan miserablemente:

[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4$.tox/
py32/bin/nosetests gaso4.py
E
==
ERROR: Failure: SyntaxError (invalid syntax (gaso4.py, line 21))
--
Traceback (most recent call last):
File "/home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/p
y32/lib/python3.2/site-packages/nose/failure.py", line 37, in runTest
 raise self.exc_class(self.exc_val).with_traceback(self.tb)
File "/home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/p
y32/lib/python3.2/site-packages/nose/loader.py", line 390, in loadTest
sFromName
 addr.filename, addr.module)
File "/home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/p
y32/lib/python3.2/site-packages/nose/importer.py", line 39, in importF
romPath
 return self.importFromDir(dir_path, fqname)
File "/home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/p
y32/lib/python3.2/site-packages/nose/importer.py", line 86, in importF
romDir
 mod = load_module(part_fqname, fh, filename, desc)
File "<string>", line None
SyntaxError: invalid syntax (gaso4.py, line 21)

--
Ran 1 test in 0.002s

FAILED (errors=1)
[TOX] ERROR: InvocationError: '.tox/py32/bin/nosetests gaso4.py'

Y al final, un resumen:

____________________________ [tox summary] ____________________________
[TOX] py27: commands succeeded
[TOX] ERROR: py32: commands failed

Cosas que no tuve que hacer para cada virtualenv:

Sacando tu programa a pasear: Tox

99

• Crearlo y/o activarlo.

• Copiar mi código.

• Instalar dependencias.

• Correr los tests manualmente.

• Juntar los resultados de cada corrida de tests.

Si bien cada paso es relativamente sencillo, son muchos. Y Tox automatiza todo.

Testear todo el tiempo: Sniffer

Cita copada aquí

Yo

Integración continua: Jenkins

Cita copada aquí

Yo

Documentos, por favor
Desde el principio de este capítulo estoy hablando de testing. Pero el título del
capítulo es “Documentación y Testing”… ¿Dónde está la documentación? Bueno,
la documentación está infiltrada, porque venimos usando doctests en
docstrings, y resulta que es posible usar los doctests y docstrings para generar
un bonito manual de referencia de un módulo o un API.

Si estás documentando un programa, en general documentar el API interno sólo
es útil en general para el desarrollo del mismo, por lo que es importante pero
no de vida o muerte.

Si estás documentando una biblioteca, en cambio, documentar el API es de vida
o muerte. Si bien hay que añadir un documento “a vista de pájaro” que explique
qué se supone que hace uno con ese bicho, los detalles son fundamentales.

Consideremos nuestro ejemplo gaso3.py.

Podemos verlo como código con comentarios, y esos comentarios como
explicaciones con tests intercalados, o… podemos verlo como un manual con
código adentro.

Testear todo el tiempo: Sniffer

100

Ese enfoque es el de “Literate programming” y hay bastantes herramientas
para eso en Python, por ejemplo:

PyLit
Es tal vez la más “tradicional”: podés convertir código en manual y manual
en código.

Ya no desde el lado del Literate programming, sino de un enfoque más habitual
en Java o C++:

epydoc
Es una herramienta de extracción de docstrings, los toma y genera un sitio
con referencias cruzadas, etc.

Sphinx
Es en realidad una herramienta para hacer manuales. Incluye una
extensión llamada autodoc que hace extracción de docstrings.

Hasta hay un módulo en la biblioteca standard llamado pydoc que hace algo
parecido.

A mí me parece que los manuales creados exclusivamente mediante extracción
de docstrings son áridos, generalmente de tono desparejo y con una tendencia a
carecer de cohesión narrativa, pero bueno, son exhaustivos y son “gratis” en lo
que se refiere a esfuerzo, así que peor es nada.

Combinando eso con que los doctests nos aseguran que los comentarios no
estén completamente equivocados… ¿Cómo hacemos para generar un bonito
manual de referencia a partir de nuestro código?

Usando epydoc, por ejemplo:

$ epydoc gaso3.py --pdf

Produce este tipo de resultado:

Testear todo el tiempo: Sniffer

101

http://pylit.berlios.de/
http://epydoc.sourceforge.net/
http://sphinx.pocoo.org/

Variables Module gaso3

1 Module gaso3

1.1 Functions

gas(letra)

Dada una letra X devuelve XgasX excepto si X es una vocal acentuada, en cuyo caso
devuelve la primera X sin acento.

El uso de normalize lo saqué de google.

á y \xe1 son ”a con tilde”, los doctests son un poco quisquillosos con los acentos.

>>> gas(u’á’)

u’agas\xe1’

>>> gas(u’a’)

u’agasa’

gasear(palabra)

Dada una palabra, la convierte al rosarino

á y \xe1 son ”a con tilde”, los doctests son un poco quisquillosos con los acentos.

>>> gasear(u’cámara’)

u’cagas\xe1mara’

>>> gasear(u’rosarino’)

u’rosarigasino’

busca acento(palabra)

Dada una palabra (sin acento ortográfico), devuelve la posición de la vocal acentuada.

Sabiendo que la palabra no tiene acento ortográfico, sólo puede ser grave o aguda. Y sólo es
grave si termina en ’nsaeiou’.

Ignorando diptongos, hay siempre una vocal por śılaba. Ergo, si termina en ’nsaeiou’ es la
penúltima vocal, si no, es la última.

>>> busca acento(’casa’)

1

>>> busca acento(’impresor’)

6

1.2 Variables

Name Description

package Value: None

2

PDF producido por epydoc. También genera HTML.

No recomendaría usar Sphinx a menos que lo uses como herramienta para
escribir otra documentación. Usarlo sólo para extracción de docstrings me
parece mucho esfuerzo para poca ganancia 34.

34 ¿Pero como herramienta para crear el manual y/o el sitio? ¡Es
buenísimo!

Igual que con los tests, esperar para documentar tus funciones es una garantía
de que vas a tener un déficit a remontar. Con un uso medianamente inteligente
de las herramientas es posible mantener la documentación “siguiendo” al
código, y actualizada.

Testear todo el tiempo: Sniffer

102

La GUI es la Parte Fácil
“There are no original ideas. There are only original people.”

Barbara Grizzuti Harrison

Empezar a crear la interfaz gráfica de una aplicación es como empezar a
escribir un libro. Tenés un espacio en blanco, esperando que hagas algo, y si no
sabés qué es lo que querés poner ahí, la infinitud de los caminos que se te
abren es paralizante.

Este capítulo no te va a ayudar en absoluto con ese problema, si no que vamos a
tratar de resolver su opuesto: sabiendo qué querés hacer: ¿cómo se hace?

Vamos a aprender a hacer programas sencillos usando PyQt, un toolkit de
interfaz gráfica potente, multiplataforma, y relativamente sencillo de usar.

Proyecto
Vamos a hacer una aplicación completa. Como esto es un libro de Python y no
específicamente de PyQt, no va a ser tan complicada. Veamos un escenario para
entender de dónde viene este proyecto.

Supongamos que estás usando tu computadora y querés escuchar música.
Supongamos también que te gusta escuchar radios online.

Hoy en día hay varias maneras de hacerlo:

• Ir al sitio de la radio.

• Utilizar un reproductor de medios (Amarok, Banshee, Media Player o
similar).

• Usar RadioTray.

Resulta que mi favorita es la tercera opción, y nuestro proyecto es crear una
aplicación similar, minimalista y fácil de entender.

En nuestro caso, como nos estamos basando (en principio) en clonar otra
aplicación 35 no hace falta pensar demasiado el diseño de la interfaz o el uso de
la misma (de ahí eso de que este capítulo no te va a ayudar a saber qué hacer).

35 Actividad con la que no estoy demasiado contento en general, pero
bueno, es con fines educativos. (¡me encanta esa excusa!)

La GUI es la Parte Fácil

103

http://radiotray.sf.net

Sin embargo, en el capítulo siguiente vamos a darle una buena repasada a lo
que creamos en este, y vamos a pulir todos los detalles. ¡No es demasiado grave
si empezamos con una versión un poco rústica!

Programación con Eventos
La función principal que se ejecuta en cualquier aplicación gráfica, en
particular en una en PyQt, es sorprendentemente corta, y es igual en el 90% de
los casos:

radio1.py

 9 def main():
10 app = QtGui.QApplication(sys.argv)
11 window=Main()
12 window.show()
13 sys.exit(app.exec_())
14
15 if __name__ == "__main__":
16 main()

Esto es porque no hace gran cosa:

1. Crea un objeto “aplicación”.

2. Crea y muestra una ventana.

3. Lanza el “event loop”, y cuando este termina, muere.

Eso es así porque las aplicaciones de escritorio no hacen casi nada por su
cuenta, son reactivas, reaccionan a eventos que suceden.

Estos eventos pueden ser iniciados por el usuario (click en un botón) o por el
sistema (se enchufó una cámara), u otra cosa (un timer que se dispara
periódicamente), pero el estado natural de la aplicación es estar en el event
loop, esperando, justamente, un evento.

Entonces nuestro trabajo es crear todas las cosas que se necesiten en la
aplicación — ventanas, diálogos, etc — esperar que se produzcan los eventos y
escribir el código que responda a los mismos.

En PyQt, casi siempre esos eventos los vamos a manejar mediante Signals
(señales) y Slots.

¿Qué son esas cosas? Bueno, son un mecanismo de manejo de eventos ;-)

Programación con Eventos

104

En particular, una señal es un mensaje. Y un slot es un receptor de esos
mensajes. Por ejemplo, cuando el usuario aprieta un botón, el objeto
QPushButton correspondiente emite la señal clicked().

¿Y qué sucede? Absolutamente nada, porque las señales no tienen efectos. Es
como si el botón se pusiera a gritar “me apretaron”. Eso en sí no hace nada.

Pero imaginemos que hay otro objeto que está escuchando y tiene
instrucciones de que si ese botón específico dice “me apretaron”, debe cerrar la
ventana. Bueno, cerrar la ventana es un slot, y el ejemplo es una conexión a un
slot.

La conexión observa esperando una señal 36, y cuando la señal se produce,
ejecuta una función común y corriente, que es el slot.

36 Hay un “despachador de señales” que se encarga de ejecutar cada slot
cuando se emiten las señales conectadas a él.

Pero lo más lindo de señales y slots es que tiene acoplamiento débil (es “loosely
coupled”). Cada señal de cada objeto puede estar conectada a ninguno, a uno, o
a muchos slots. Cada slot puede tener conectadas ninguna, una o muchas
señales.

Hasta es posible “encadenar” señales: si uno conecta una señal a otra, al
emitirse una se emite la otra.

Es más, en principio, ni al emisor de la señal ni al receptor de la misma les
importa quién es el otro.

La sintaxis de conexión que vamos a usar es la nueva, que sólo está disponible
en PyQt 4.7 o superior, porque es mucho más agradable que la otra.

Por ejemplo, si cerrar es un QPushButton (o sea, un botón común y corriente),
y ventana es un QDialog (o sea, una ventana de diálogo), se pueden conectar
así:

cerrar.clicked.connect(ventana.accept)

Eso significaría “cuando se emita la señal clicked del botón cerrar, entonces
ejecutá el método accept de ventana.” Como el método QDialog.accept
cierra la ventana, la ventana se cierra.

También es posible usar autoconexión de signals y slots, pero eso lo vemos más
adelante.

Programación con Eventos

105

Ventanas / Diálogos
Empecemos con la parte divertida: ¡dibujitos!

Radiotray tiene exactamente dos ventanas 37:

El diálogo de administración de radios y el de añadir radio.

37 Bueno, mentira, tiene también una ventana “Acerca de”.

No creo en hacer ventanas a mano. Creo que acomodar los widgets en el lugar
adonde van es un problema resuelto, y la solución es usar un diseñador de
diálogos. 38

38 Sí, ya sé, “no tenés el mismo control”. Tampoco tengo mucho control
sobre la creación de la pizzanesa a la española en La Farola de San
Isidro, pero si alguna vez la comiste sabés que eso es lo de menos.

En nuestro caso, como estamos usando PyQt, la herramienta es Qt Designer 39.

39 Lamentablemente una buena explicación de Designer requiere videos y
mucho más detalle del que puedo incluir en un capítulo, pero vamos a
tratar de ver lo importante, sin quedarnos en cómo se hace cada cosa
exactamente.

Ventanas / Diálogos

106

Designer a punto de crear un diálogo vacío.

El proceso de crear una interfaz en Designer tiene varios pasos. Sabiendo qué
interfaz queremos 40, el primero es acomodar más o menos a ojo los objetos
deseados.

40 En nuestro caso, como estamos robando, es muy sencillo. En la vida
real, este trabajo se basaría en wireframing, o algún otro proceso de
creación de interfaces.

El primer borrador.

Literalmente, tomé unos botones y una lista y los tiré adentro de la ventana
más o menos en posición.

Ventanas / Diálogos

107

El acomodarlos muy así nomás es intencional, porque el siguiente paso es usar
Layout Managers para que los objetos queden bien acomodados. En una GUI
moderna no tiene sentido acomodar las cosas en posiciones absolutas, porque
no tenés idea de como va a ser la interfaz para el usuario final con tanto nivel
de detalle. Por ejemplo:

• Traducciones a otros idiomas hacen que los botones deban ser más anchos
o angostos.

• Cambios en la tipografía del sistema pueden hacer que sean más altos o
bajos.

• Cambios en el estilo de widgets, o en la plataforma usada pueden cambiar
la forma misma de un botón (¿más redondeado? ¿más plano?)

Dadas todas esas variables, es nuestro trabajo hacer un layout que funcione con
todas las combinaciones posibles, que sea flexible y responda a esos cambios
con gracia.

En nuestro caso, podríamos imponer las siguientes “restricciones” a las
posiciones de los widgets:

• El botón de “Cerrar” va abajo a la derecha.

• Los otros botones van en una columna a la derecha de la lista, en la parte
de arriba de la ventana.

• La lista va a la izquierda de los botones.

Veamos por partes.

Los botones se agrupan con un “Vertical Layout”, para que queden alineados y
en columna. Los seleccionamos todos usando Ctrl+click y apretamos el botón
de “vertical layout” en la barra de herramientas:

El layout vertical de botones se ve como un recuadro rojo.

Ventanas / Diálogos

108

Un layout vertical solo hace que los objetos que contiene queden en una
columna. Todos tienen el mismo ancho y están espaciados regularmente.

Para que los botones queden al lado de la lista, seleccionamos el layout y la
lista, y hacemos un layout horizontal:

¡Layouts anidados!

El layout horizontal hace exactamente lo mismo que el vertical, pero en vez de
una columna forman una fila.

Por último, deberíamos hacer un layout vertical conteniendo el layout horizontal
que acabamos de crear y el botón que nos queda.

Como ese layout es el “top level” y tiene que cubrir toda la ventana, se hace
ligeramente distinto: botón derecho en el fondo de la ventana y “Lay out” ->
“Lay Out Vertically”:

¡Feo!

Si bien el resultado cumple las cosas que habíamos definido, es horrible:

• El botón de cerrar cubre todo el fondo de la ventana.

• El espaciado de los otros botones es antinatural.

Ventanas / Diálogos

109

La solución en ambos casos es el uso de espaciadores, que “empujen” el botón
de abajo hacia la derecha (luego de meterlo en un layout horizontal) y los otros
hacia arriba:

¡Mejor!

Por supuesto que hay más de una solución para cada problema de cómo
acomodar widgets:

¿Mejor o peor que la anterior? ¡Vean el capítulo siguiente!

El siguiente paso es poner textos 41, iconos 42, y nombres de objetos para que la
interfaz empiece a parecer algo útil.

41 Sí, estoy haciendo la interfaz en inglés. Después vamos a ver como
traducirla al castellano. Si la hacés directamente en castellano te estás
encerrando en un nicho (por lo menos si la aplicación es software libre,
como esta).

42 Yo uso los iconos de Reinhardt: me gustan estéticamente, son
minimalistas y se ven igual de raros en todos los sistemas operativos. Si
querés usar otros, hay millones de iconos gratis dando vueltas. Es
cuestión de ser consistente (¡y fijarse la licencia!)

Los iconos se van a cargar en un archivo de recursos, icons.qrc:

Ventanas / Diálogos

110

http://kde-look.org/content/show.php?content=6153

<RCC>
 <qresource prefix="/">
 <file>ok.svg</file>
 <file>configure.svg</file>
 <file>filenew.svg</file>
 <file>delete.svg</file>
 <file>1downarrow.svg</file>
 <file>1uparrow.svg</file>
 <file>antenna.svg</file>
 <file>exit.svg</file>
 <file>stop.svg</file>
 </qresource>
</RCC>

Ese archivo se compila para generar un módulo python con todas las imágenes
en su interior. Eso simplifica el deployment.

[codigo/5]$ pyrcc4 icons.qrc -o icons_rc.py
[codigo/5]$ ls -lth icons_rc.py
-rw-r--r-- 1 ralsina users 58K Apr 30 10:14 icons_rc.py

El diálogo en sí está definido en el archivo radio.ui, y se ve de esta manera:

Nuestro clon.

El otro diálogo es mucho más simple, y no voy a mostrar el proceso de layout,
pero tiene un par de peculiaridades.

Buddies
Cuando se tiene una pareja etiqueta/entrada (por ejemplo, “Radio Name:”
y el widget donde se ingresa), hay que poner el atajo de teclado en la
etiqueta. Para eso se usan “buddies”.

Ventanas / Diálogos

111

Se elije el modo “Edit Buddies” del designer y se marca la etiqueta y luego
el widget de ingreso de datos. De esa forma, el atajo de teclado elegido
para la etiqueta activa el widget.

Tab Order
¿En qué orden se pasa de un widget a otro usando Tab? Es importante que
se siga un orden lógico acorde a lo que se ve en pantalla y no andar
saltando de un lado para otro sin una lógica visible.

Se hace en el modo “Edit Tab Order” de designer.

Signals/Slots
Los diálogos tienen métodos accept y reject que coinciden con el
objetivo obvio de los botones. ¡Entonces conectémoslos!

En el modo “Edit Signals/Slots” de designer, se hace click en el botón y
luego en el diálogo en sí, y se elige qué se conecta.

Ventanas / Diálogos

112

Pasemos a una comparativa lado a lado de los objetos terminados:

Son similares. ¡Hasta tienen algunos problemas similares!

Mostrando una Ventana
Ya tenemos dos bonitas ventanas creadas, necesitamos hacer que la aplicación
muestre una de ellas. Esto es código standard, y aquí tenemos una aplicación
completa que muestra la ventana principal y no hace absolutamente nada:

radio1.py

 1 # -*- coding: utf-8 -*-
 2
 3 """La interfaz de nuestra aplicación."""

Mostrando una Ventana

113

 4
 5 import os,sys
 6
 7 # Importamos los módulos de Qt
 8 from PyQt4 import QtCore, QtGui, uic
 9
10 # Cargamos los iconos
11 import icons_rc
12
13 class Main(QtGui.QDialog):
14 """La ventana principal de la aplicación."""
15 def __init__(self):
16 QtGui.QDialog.__init__(self)
17
18 # Cargamos la interfaz desde el archivo .ui
19 uifile = os.path.join(
20 os.path.abspath(
21 os.path.dirname(__file__)),'radio.ui')
22 uic.loadUi(uifile, self)
23
24
25 class AddRadio(QtGui.QDialog):
26 """El diálogo de agregar una radio"""
27 def __init__(self, parent):
28 QtGui.QDialog.__init__(self, parent)
29
30 # Cargamos la interfaz desde el archivo .ui
31 uifile = os.path.join(
32 os.path.abspath(
33 os.path.dirname(__file__)),'addradio.ui')
34 uic.loadUi(uifile, self)
35
36
37 class EditRadio(AddRadio):
38 """El diálogo de editar una radio.
39 Es exactamente igual a AddRadio, excepto
40 que cambia el texto de un botón."""
41 def __init__(self, parent):
42 AddRadio.__init__(self, parent)
43 self.addButton.setText("&Save")

Mostrando una Ventana

114

44
45
46 def main():
47 app = QtGui.QApplication(sys.argv)
48 window=Main()
49 window.show()
50 sys.exit(app.exec_())
51
52 if __name__ == "__main__":
53 main()

El que Main y AddRadio sean casi exactamente iguales debería sugerir que esto
es código standard… y es cierto, es siempre lo mismo:

Creamos una clase cuya interfaz está definida por un archivo .ui que se carga
en tiempo de ejecución. Toda la interfaz está definida en el .ui, (casi) toda la
lógica en el .py.

Normalmente, por prolijidad, usaríamos un módulo para cada clase, pero en
esta aplicación, y por organización de los ejemplos, no vale la pena.

¡Que haga algo!
Un lugar fácil para empezar es hacer que apretar “Add” muestre el diálogo de
agregar una radio. Bueno, es casi tan fácil como decirlo, tan solo hay que
agregar un método a la clase Main:

radio2.py

55 @QtCore.pyqtSlot()
56 def on_add_clicked(self):
57 addDlg = AddRadio(self)
58 r = addDlg.exec_()
59 if r: # O sea, apretaron "Add"
60 self.radios.append ((unicode(addDlg.name.text()),
61 unicode(addDlg.url.text())))
62 self.saveRadios()
63 self.listRadios()
64

Veamos qué es cada línea:

@QtCore.pyqtSlot()

¡Que haga algo!

115

Para explicar esta línea hay que dar un rodeo:

En C++, se pueden tener dos métodos que se llamen igual pero difieran en el
tipo de sus argumentos. Y de acuerdo al tipo de los argumentos con que se lo
llame, se ejecuta uno u otro.

La señal clicked se emite dos veces. Una con un argumento (que se llama
checked y es booleano) y otra sin él. En C++ no es problema, si
on_add_clicked recibe un argumento booleano, entonces se ejecuta, si no, no.

En Python no es así por como funcionan los tipos. En consecuencia,
on_add_clicked se ejecutaría dos veces, una al llamarla con checked y la otra
sin.

Si bien dije que un slot es simplemente una función, este decorador declara que
este es un slot sin argumentos. De esa manera sólo se ejecuta una única
llamada al slot.

Si en cambio hubiera sido @QtCore.pyqtSlot(int) hubiera sido un slot que
toma un argumento de tipo entero.

def on_add_clicked(self):

Definimos un método on_add_clicked. Al cargarse la interfaz vía loadUi se
permite hacer autoconexión de slots. Esto significa que si la clase tiene un
método que se llame on_NOMBRE_SIGNAL queda automáticamente conectado a la
señal SIGNAL del objeto NOMBRE.

En consecuencia, este método se va a ejecutar cada vez que se haga click en el
botón que se llama add.

addDlg = AddRadio(self)

Creamos un objeto AddRadio con parent nuestro diálogo principal. Cuando un
diálogo tiene “padre” se muestra centrado sobre él, y el sistema operativo tiene
algunas ideas de como mostrarlo mejor.

r = addDlg.exec_()

Mostramos este diálogo para que el usuario interactúe con él. Se muestra por
default de forma modal, es decir que bloquea la interacción con el diálogo
“padre”. El valor de r va a depender de qué botón presione el usuario para
cerrar el diálogo.

¡Que haga algo!

116

if r: # O sea, apretaron "ok"
 self.radios.append ((unicode(addDlg.name.text()),
 unicode(addDlg.url.text())))
 self.saveRadios()
 self.listRadios()

Si dijo “Add”, guardamos los datos y refrescamos la lista de radios. Si no, no
hacemos nada.

Los métodos saveRadios, loadRadios y listRadios son cortos, y me parece
que son lo bastante tontos como para que no valga la pena hacer un backend de
datos “serio” para esta aplicación:

radio2.py

29 def loadRadios(self):
30 "Carga la lista de radios de disco"
31 try:
32 f = open(os.path.expanduser('~/.radios'))
33 data = f.read()
34 f.close()
35 self.radios = json.loads(data)
36 except:
37 self.radios = []
38
39 if self.radios is None:
40 # El archivo estaba vacío
41 self.radios = []
42
43 def saveRadios(self):
44 "Guarda las radios a disco"
45 f = open(os.path.expanduser('~/.radios'),'w')
46 f.write(json.dumps(self.radios))
47 f.close()
48
49 def listRadios(self):
50 "Muestra las radios en la lista"
51 self.radioList.clear()
52 for nombre,url in self.radios:
53 self.radioList.addItem(nombre)
54

¡Que haga algo!

117

Finalmente, estos son los métodos para editar una radio, eliminarla, y moverla
en la lista, sin explicación. Deberían ser bastante obvios:

radio2.py

 67 @QtCore.pyqtSlot()
 68 def on_edit_clicked(self):
 69 "Edita la radio actualmente seleccionada"
 70 curIdx = self.radioList.currentRow()
 71 name, url = self.radios[curIdx]
 72 editDlg = EditRadio(self)
 73 editDlg.name.setText(name)
 74 editDlg.url.setText(url)
 75 r = editDlg.exec_()
 76 if r: # O sea, apretaron "Save"
 77 self.radios[curIdx]= [unicode(editDlg.name.text()),
 78 unicode(editDlg.url.text())]
 79 self.saveRadios()
 80 self.listRadios()
 81 self.radioList.setCurrentRow(curIdx)
 82
 83 @QtCore.pyqtSlot()
 84 def on_remove_clicked(self):
 85 "Borra la radio actualmente seleccionada"
 86 curIdx = self.radioList.currentRow()
 87 del (self.radios[curIdx])
 88 self.saveRadios()
 89 self.listRadios()
 90
 91 @QtCore.pyqtSlot()
 92 def on_up_clicked(self):
 93 "Sube la radio seleccionada una posicion."
 94 curIdx = self.radioList.currentRow()
 95 if curIdx > 0:
 96 self.radios=self.radios[:curIdx-1]+\
 97 [self.radios[curIdx], self.radios[curIdx-1]]+\
 98 self.radios[curIdx+1:]
 99 self.saveRadios()
100 self.listRadios()
101 self.radioList.setCurrentRow(curIdx-1)
102

¡Que haga algo!

118

103 @QtCore.pyqtSlot()
104 def on_down_clicked(self):
105 "Baja la radio seleccionada una posicion."
106 curIdx = self.radioList.currentRow()
107 if curIdx < len(self.radios):
108 self.radios=self.radios[:curIdx]+\
109 [self.radios[curIdx+1], self.radios[curIdx]]+\
110 self.radios[curIdx+2:]
111 self.saveRadios()
112 self.listRadios()
113 self.radioList.setCurrentRow(curIdx+1)
114
115

Con esto, ya tenemos una aplicación que permite agregar, editar, y eliminar
radios identificadas por nombre, con una URL asociada.

Nos faltan solamente dos cosas para que esta aplicación esté terminada:

1. El icono en area de notificación, que es la forma normal de operación de
Radiotray.

2. ¡Que sirva para escuchar la radio!

Empecemos por la primera…

Icono de Notificación
No es muy difícil, porque PyQt trae una clase para hacer esto en forma
multiplataforma sin demasiado esfuerzo.

Tan solo hay que cambiar la función main de esta forma:
radio3.py

15 class TrayIcon(QtGui.QSystemTrayIcon):
16 "Icono en area de notificación"
17 def __init__(self):
18 QtGui.QSystemTrayIcon.__init__ (self,
19 QtGui.QIcon(":/antenna.svg"))
20
21 def main():
22 app = QtGui.QApplication(sys.argv)
23 tray = TrayIcon()

Icono de Notificación

119

24 tray.show()
25 sys.exit(app.exec_())

Esta versión de la aplicación muestra el icono de una antena en el área de
notificación… y no permite ninguna interacción.

Lo que queremos es un menú al hacer click con el botón izquierdo mostrando
las radios disponibles, y la opción “Apagar la radio”, y otro menú con click del
botón derecho para las opciones de “Configuración”, “Acerca de”, y “Salir”.

Para eso, vamos a tener que aprender Acciones…

Acciones
Una Acción (una instancia de QAction) es una abstracción de un elemento de
interfaz con el que el usuario interactúa. Una acción puede verse como un
botón en una barra de herramientas, o como una entrada en un menú, o como
un atajo de teclado.

La idea es que al usar acciones, uno las integra en la interfaz en los lugares que
desee, y si, por ejemplo, deseo hacer que la acción tenga un estado
“deshabilitado”, el efecto se produce tanto para el atajo de teclado como para el
botón en la barra de herramientas, como para la entrada en el menú.

Realmente simplifica mucho el código.

Entonces, para cada entrada en los menúes de contexto del icono de área de
notificación, debemos crear una acción. Si estuviéramos trabajando con una
ventana, podríamos usar designer 43 que tiene un cómodo editor de acciones.

43 Podríamos hacer trampa y definir las acciones en el diálogo de
cofiguración de radios, pero es una chanchada.

De todas formas no es complicado. Comencemos con el menú de botón derecho:
radio4.py

 92 class TrayIcon(QtGui.QSystemTrayIcon):
 93 "Icono en area de notificación"
 94
 95 loadRadios = _loadRadios
 96
 97 def __init__(self):
 98 QtGui.QSystemTrayIcon.__init__ (self,
 99 QtGui.QIcon(":/antenna.svg"))

Acciones

120

100
101 ## Acciones del menú de botón derecho
102 self.configAction = QtGui.QAction(
103 QtGui.QIcon(":/configure.svg"),
104 "&Configure...",self)
105 self.aboutAction = QtGui.QAction(
106 "&About...",self)
107 self.quitAction = QtGui.QAction(
108 QtGui.QIcon(":/exit.svg"),
109 "&Quit",self)
110
111 # Armamos el menú con las acciones
112 self.rmbMenu=QtGui.QMenu()
113 self.rmbMenu.addActions([
114 self.configAction,
115 self.aboutAction,
116 self.quitAction
117])
118 # Ponemos este menú como menú de contexto
119 self.setContextMenu(self.rmbMenu)

Por supuesto, necesitamos que las acciones que creamos… bueno, hagan algo.
Necesitamos conectar sus señales triggered a distintos métodos que hagan lo
que corresponda:

radio4.py

169 self.configAction.triggered.connect(self.showConfig)
170 self.aboutAction.triggered.connect(self.showAbout)
171 self.quitAction.triggered.connect(
172 QtCore.QCoreApplication.instance().quit)
173

Obviamente falta implementar showConfig y showAbout, pero no tienen nada
que no hayamos visto antes:

radio4.py

204 @QtCore.pyqtSlot()
205 def showConfig(self):
206 "Muestra diálogo de configuración"
207 self.confDlg = Main()
208 self.confDlg.exec_()

Acciones

121

209
210 @QtCore.pyqtSlot()
211 def showAbout(self):
212 QtGui.QMessageBox.about(None, u"Radio",
213 u"Example app from 'Python No Muerde'
"\
214 u"© 2010 Roberto Alsina
"\
215 u"More information: http://nomuerde.netmanagers.com.ar"
216)
217
218

El menú del botón izquierdo es un poco más complicado. Para empezar, tiene
una entrada “normal” como las que vimos antes, pero las otras son dinámicas y
dependen de cuáles radios están definidas.

Para mostrar un menú ante un click de botón izquierdo, debemos conectarnos a
la señal activated (las primeras líneas son parte de TrayIcon.__init__):

radio4.py

175 # Conectamos el botón izquierdo
176 self.activated.connect(self.activatedSlot)
177
178 def activatedSlot(self, reason):
179 """El usuario activó este icono"""
180 if reason == QtGui.QSystemTrayIcon.Trigger:
181 # El menú del botón izquierdo
182 self.stopAction=QtGui.QAction(
183 QtGui.QIcon(":/stop.svg"),
184 "&Turn Off Radio",self)
185
186 self.lmbMenu=QtGui.QMenu()
187 self.lmbMenu.addAction(self.stopAction)
188 self.lmbMenu.addSeparator()
189
190 self.loadRadios()
191 self.radioActions = []
192 for r in self.radios:
193 receiver = lambda url=r[1]: self.playURL(url)
194 self.lmbMenu.addAction(
195 r[0], receiver)
196

Acciones

122

197 # Mostramos el menú en la posición del cursor
198 self.lmbMenu.exec_(QtGui.QCursor.pos())
199
200 def playURL(self, url):
201 print url
202
203
204

En vez de crear las QAction a mano, dejamos que el menú las cree
implícitamente con addAction y —esta es la parte rara— creamos un
“receptor” lambda para cada señal, que llama a playURL con la URL que
corresponde a cada radio.

¿Porqué tenemos que hacer eso? Porque si conectáramos todas las señales a
playURL, no tendríamos manera de saber cuál radio queremos escuchar.

¿Se acuerdan que les dije que signals y slots tienen “acoplamiento débil”?
Bueno, este es el lado malo de eso. No es terrible, la solución son dos líneas de
código, pero… tampoco es obvio.

En este momento, nuestra aplicación tiene todos los elementos de interfaz
terminados. Tan solo falta que, dada la URL de una radio, produzca sonido.

Por suerte, Qt es muy completo. Tan completo que tiene casi todo lo que
necesitamos para hacer eso. Veámoslo en detalle…

Ruido
Comencemos con un ejemplo de una radio por Internet. Es gratis, y me gusta
escucharla mientras escribo o programo, y se llama Blue Mars 44. Pueden ver
más información en http://bluemars.org

44 De hecho son tres estaciones, vamos a probar la que se llama Blue
Mars.

En el sitio dice “Tune in to BLUEMARS” y da la URL de un archivo listen.pls.

Ese archivo es el “playlist”, y a su vez contiene la URL desde donde se baja el
audio. El contenido es algo así:

[playlist]
NumberOfEntries=1
File1=http://207.200.96.225:8020/

Ruido

123

http://bluemars.org
http://207.200.96.225:8020/listen.pls

El formato es muy sencillo, hay una explicación completa en Wikipedia pero
básicamente es un archivo INI, que:

• DEBE tener una sección playlist

• DEBE tener una entrara NumberOfEntries

• Tiene una cantidad de entradas llamadas File1…“FileN“, que son URLs
de los audios, y (opcionalmente) Title1…“TitleN“ y Length1…“LengthN“
para títulos y duraciones.

Seguramente en alguna parte hay un módulo para parsear estos archivos y/o
todos los otros formatos de playlist que hay dando vueltas por el mundo, pero
esto es un programa de ejemplo, y me conformo con cumplir las leyes del TDD:

• Hacé un test que falle

• Programá hasta que el test no falle

• Pará de programar

Así que… les presento una función que puede parsear exactamente este playlist
y probablemente ningún otro:

plsparser.py

 1 # -*- coding: utf-8 -*-
 2
 3 """Módulo de parsing de playlists PLS."""
 4
 5 import urllib
 6 from ConfigParser import RawConfigParser
 7
 8 def parse_pls(url):
 9 u"""
10 Dada una URL, baja el contenido, y devuelve una lista de [título,url]
11 obtenida del PLS al que la URL apunta.
12
13 Devuelve [] si el archivo no se puede parsear o si hubo
14 cualquier problema.
15
16 >>> parse_pls('http://207.200.96.225:8020/listen.pls')
17 [['', 'http://207.200.96.225:8020/']]
18
19 """
20 try:
21 parser = RawConfigParser()
22 parser.readfp(urllib.urlopen(url))

Ruido

124

http://en.wikipedia.org/wiki/PLS_(file_format)

23
24 # Hacemos las cosas de acuerdo a la descripción de Wikipedia:
25 # http://en.wikipedia.org/wiki/PLS_(file_format)
26
27 if not parser.has_section('playlist'):
28 return []
29 if not parser.has_option('playlist', 'NumberOfEntries'):
30 return []
31
32 result=[]
33 for i in range(1, parser.getint('playlist', 'NumberOfEntries')+1):
34
35 if parser.has_option('playlist', 'Title%s'%i):
36 title=parser.get('playlist', 'Title%s'%i)
37 else:
38 title=''
39 result.append([
40 title,
41 parser.get('playlist', 'File%s'%i)
42])
43 return result
44 except:
45 # FIXME: reportar el error en log
46 return []

Teniendo esto, podemos comenzar a implementar playURL. Preparáte para
entrar al arduo mundo de la multimedia…

Primero, necesitamos importar un par de cosas:
radio5.py

12 # Soporte de sonido
13 from PyQt4.phonon import Phonon
14
15 # Parser de playlists
16 from plsparser import parse_pls

Y esta es playURL completa:
radio5.py

207 def playURL(self, url):
208 """Toma la URL de un playlist, y empieza a hacer ruido"""
209 data = parse_pls(url)
210 if data: # Tengo una URL
211 # Sí, tomamos el primer stream y listo.

Ruido

125

212 url = data[0][1]
213
214 self.player = Phonon.createPlayer(Phonon.MusicCategory,
215 Phonon.MediaSource(url))
216 self.player.play()
217
218 else: # Pasó algo malo
219 QtGui.QMessageBox.information(None,
220 "Radio - Error reading playlist",
221 "Sorry, error starting this radio.")
222
223

Y efectivamente, radio5.py permite escuchar (algunas) radios de internet.
Tiene montones de problemas y algunos features aún no están implementados
(por ejemplo, “Stop” no hace nada), pero es una aplicación funcional. Rústica,
pero funcional.

En el siguiente capítulo la vamos a pulir. Y la vamos a pulir hasta que brille.

Ruido

126

Diseño de Interfaz Gráfica
“¿Cómo se hace una estatua de un elefante? Empezás con
un bloque de mármol y sacás todo lo que no parece un
elefante.”

Anónimo.

“Abandonen la esperanza del valor añadido a través de la
rareza. Es mejor usar técnicas de interacción consistentes
que le den a los usuarios el poder de enfocarse en tu
contenido, en vez de preguntarse como se llega a él.”

Jakob Nielsen

¿Siendo un programador, qué sabe uno de diseños de interfaces? La respuesta,
al menos en mi caso es poco y nada. Sin embargo, hay unos cuantos principios
que ayudan a que uno no cree interfaces demasiado horribles, o a veces hasta
agradables.

• Aprender de otros.

Estamos rodeados de ejemplos de buenas y malas interfaces. Copiar es
bueno.

• Contenerse.

Tenemos una tendencia natural a crear cabinas de Concord. No te digo
que no está buena la cabina de un Concord, lo que te digo es que para
hacer tostadas es demasiado.

En general, dado que uno no tiene la habilidad (en principio) de crear
asombrosas interfaces, lo mejor es crear lo menos posible. ¡Lo que no está
ahí no puede estar tan mal!

Diseño de Interfaz Gráfica

127

Concord cockpit by wynner3, licencia CC-BY-NC
(http://www.flickr.com/photos/wynner3/3805698150/)

• Pensar mucho antes.

Siempre es más fácil agregar y mantener un feature bien pensado, con
una interfaz limitada, que tratar de hacer que funcione una pila de cosas a
medio definir.

Si no sabés exactamente cómo funciona tu aplicación, no estás listo para
hacer una interfaz usable para ella. Sí podés hacer una de prueba.

• Tirá una.

Hacé una interfaz mientras estás empezando. Después tirála. Si hiciste
una clara separación de capas eso debería ser posible.

• Pedí ayuda.

Si tenés la posibilidad de que te de una mano un experto en usabilidad,
usála. Sí, ya sé que vos podés crear una interfaz que funcione, eso es lo
fácil, lo difícil es crear una interfaz que alguien quiera usar.

Más allá de esos criterios, en este capítulo vamos a tomar la interfaz creada en
el capítulo anterior y la vamos a rehacer, pero bien. Porque esa era la de
desarrollo, y la vamos a tirar.

Diseño de Interfaz Gráfica

128

http://www.flickr.com/photos/wynner3/3805698150/

Proyecto
Asumamos que la aplicación de streaming de radio que desarrollamos en el
capítulo anterior funciona correctamente y carece de bugs 45… ¿Qué hay que
hacer ahora?

45 No es así, pero estoy escuchando música con ella ¡En este mismo
momento!

Bueno, falta resolver todas las cosas que no son bugs desde el punto de vista de
funcionamiento pero que están mal.

Corrigiendo la Interfaz Gráfica
Empecemos con la ventana de configuración, viendo algunos problemas de base
en el diseño. Desde ya que el 90% de lo que veamos ahora es discutible. Es más,
como no soy un experto en el tema, es probable que el 90% esté equivocado.
Sin embargo, hasta que consiga un experto en UI que le pegue una revisada…
es lo que hay 46.

46 De hecho, pedí ayuda en twitter/identi.ca y mi blog y salieron unas
cuantas respuestas, incluyendo un post en otro blog. ¡Con mockups y
todo!

Funciona, pero tiene problemas.

Esa ventana tiene muchos problemas.

Proyecto

129

http://lateral.netmanagers.com.ar/weblog/posts/BB889.html
http://thesmithfam.org/blog/2010/05/16/whats-wrong-with-this-dialog/

Botón "Close" no alineado.

Normalmente no vas a ver este caso cubierto en las guías de diseño de interfaz
porque estamos usando un layout “columna de botones” que no es de lo más
standard.

Si hubiera más de un botón abajo, entonces tal vez “Close” se vería como
perteneciente a ese elemento visual, sin embargo, al estar solo, se lo ve como
un elemento de la columna, aunque “destacado” por la separación vertical.

Al ser “absorbido” visualmente por esa columna, queda muy raro que no tenga
el mismo ancho que los otros botones.

Como no debemos asignar anchos fijos a los botones (por motivos que vamos a
ver más adelante) debemos solucionarlo usando layout managers.

Una manera de resolverlo es una matriz 2x2 con un grid layout:

Botón "Close" alineado.

El resultado final es bastante más armónico, y divide visualmente el diálogo en
dos componentes claros, la lista a la izquierda, los controles a la derecha.

Lo que nos lleva al segundo problema:

Proyecto

130

Espacio muerto.

Si el layout es “dos columnas” entonces no tiene sentido que la lista termine
antes del fondo del diálogo. Nuevamente, si hubiera dos botones abajo (por
ejemplo, “Accept” y “Reject”), entonces sí tendría sentido extender ese
componente visual hacia la izquierda.

Al tener sólo uno, ese espacio vacío es innecesario y antifuncional.

Entonces cambiamos el esquema de layouts, y terminamos con un layout
horizontal de dos elementos, el derecho un layout vertical conteniendo todos los
botones:

Resultado con layout horizontal.

El siguiente problema es que al tener iconos y texto, y al estar centrado el
contenido de los botones, se ve horrible:

Proyecto

131

Etiquetas centradas con iconos a la izquierda.

Hay varias soluciones para esto:

• Podemos no poner iconos: El texto centrado no molesta tanto visualmente.

• Podemos no centrar el contenido de los botones: Se ve mejor, pero es muy
poco standard 47

47 Ver la cita de Nielsen al principio del capítulo.

• Podemos no poner texto en el botón sino en un tooltip: Funciona, es
standard, resuelve el alineamiento, hace la interfaz levemente menos
obvia.

• Mover algunos elementos inline en cada item (los que afectan a un único
item) y mover los demás a una línea horizontal por debajo de la lista.

O … podemos dejar de ponerle lapiz de labios al chancho y admitir que es un
chancho.

El problema de este diálogo no es que los botones estén desalineados, es que no
sabemos siquiera porqué los botones están.

Así que, teniendo una interfaz que funciona, hagamos un desarrollo racional de
la versión nueva, y olvidemos la vieja.

¿Qué estamos haciendo?
Pensemos el objetivo, la tarea a realizar. Es controlar una lista de radios. Lo
mínimo sería esto:

• Agregar radios nuevas (Add).

• Cambiar algo en una radio ya existente (Edit).

• Sacar radios que no nos gustan más (Delete).

¿Qué estamos haciendo?

132

• Cerrar el diálogo (Close) 48

48 Podríamos tener “Apply”, “Cancel”, etc, pero me gusta más la idea de
este diálogo como de aplicación instantánea, “aplicar cambios” es un
concepto nerd. La manipulación directa es la metáfora moderna. Bah,
es una opinión.

Adicionalmente teníamos esto:

• Cambiar el orden de las radios en la lista

¿Pero… porqué estaba? En nuestro caso es porque nos robamos la interfaz de
RadioTray, pero… ¿alguien necesita hacerlo? ¿Porqué?

Veamos las justificaciones que se me ocurren:

1. Poner las radios más usadas al principio.

Pero… ¿No sería mejor si el programa mostrara las últimas radios usadas
al principio en forma automática?

2. Organizarlas por tipo de radio (ejemplo: tener todas las de música country
juntas)

Para hacer esto correctamente, creo que sería mejor tener múltiples
niveles de menúes. También podríamos agregarle a cada radio un campo
“género” o tags, y usar eso para clasificarlas.

En ambos casos, me parece que el ordenamiento manual no es la manera
correcta de resolver el problema. Es casi lo contrario de un feature. Es un
anti-feature que sólo sirve para que a los que realmente querrían un feature
determinado se les pueda decir “usá los botones de ordenar”.

Si existe algún modelo de uso para el que mover las radios usando flechitas es
el modo de interacción correcta… no se me ocurre y perdón desde ya.

Por lo tanto, este “feature” va a desaparecer por ahora.

Si no tenemos los botones de subir y bajar, no tiene tanto sentido la idea de una
columna de botones a la derecha, y podemos pasar a un layout con botones
horizontales:

¿Qué estamos haciendo?

133

Repensando el diálogo. Ya que estamos "Done" es más adecuado para el
botón que "Close".

¿En qué se parecen y en qué se diferencian esos cuatro botones que tenemos
ahí abajo?

• Edit y Remove afectan a una radio que esté seleccionada.

• Add y Done no dependen de la selección en la lista.

¿Que pasaría si pusiéramos Edit y Remove en los items mismos? Bueno, lo
primero que pasaría es que tendríamos que cambiar código porque el
QListWidget soporta una sola columna y tenemos que pasar a un QTreeWidget.
Veamos como funciona en la GUI:

¡Less is more!

También al no tener más botones de Edit y Remove, hay que mover un poco el
código porque ahora responde a otras señales.

¿Qué estamos haciendo?

134

La parte interesante (no mucho) del código es esta:
radio6.py

 65 def listRadios(self):
 66 "Muestra las radios en la lista"
 67 self.radioList.clear()
 68 for nombre,url in self.radios:
 69 item = QtGui.QTreeWidgetItem([nombre,"Edit","Remove"])
 70 item.setIcon(1,QtGui.QIcon(":/edit.svg"))
 71 item.setIcon(2,QtGui.QIcon(":/delete.svg"))
 72 self.radioList.addTopLevelItem(item)
 73
 74 @QtCore.pyqtSlot()
 75 def on_add_clicked(self):
 76 addDlg = AddRadio(self)
 77 r = addDlg.exec_()
 78 if r: # O sea, apretaron "Add"
 79 self.radios.append ((unicode(addDlg.name.text()),
 80 unicode(addDlg.url.text())))
 81 self.saveRadios()
 82 self.listRadios()
 83
 84 def on_radioList_clicked(self, index):
 85 curIdx = index.row()
 86
 87 if index.column() == 1: # Edit
 88 name, url = self.radios[curIdx]
 89 editDlg = EditRadio(self)
 90 editDlg.name.setText(name)
 91 editDlg.url.setText(url)
 92 r = editDlg.exec_()
 93 if r: # O sea, apretaron "Save"
 94 self.radios[curIdx]= [unicode(editDlg.name.text()),
 95 unicode(editDlg.url.text())]
 96 self.saveRadios()
 97 self.listRadios()
 98 self.radioList.setCurrentRow(curIdx)
 99
100 elif index.column() == 2: # Remove
101 del (self.radios[curIdx])
102 self.saveRadios()
103 self.listRadios()

¿Qué estamos haciendo?

135

104
105

¿Es esto todo lo que está mal? Vaya que no.

Pulido
Los iconos que venimos usando son del set “Reinhardt” que a mí personalmente
me gusta mucho, pero algunos de sus iconos no son exactamente obvios. ¿Por
ejemplo, esto te dice “Agregar”?

Bueno, en cierta forma sí, pero está pensado para documentos. Sería mejor por
ejemplo un signo +. De la misma forma, si bien la X funciona como “remove”, si
usamos un + para “Add”, es mejor un - para “Remove”.

Y para “Edit” es mejor usar un lápiz y no un destornillador. El problema ahí es
usar el mismo icono que para “Configure”. Si bien ambos casos son acciones
relacionadas, son lo suficientemente distintas para merecer su propio icono.

¡Shiny!

¿Quiere decir que este diálogo ya está terminado? No, en absoluto.

Pulido

136

Nombres y Descripciones
En algunos sistemas operativos tu ventana va a tener un botón extra,
generalmente un signo de pregunta. Eso activa el “What’s This?” o “¿Qué es
esto?” y tambien se lo accede con un atajo de teclado (muchas veces Shift+F1).

Luego, al hacer click en un elemento de la interfaz, se ve un tooltip extendido
con información detallada acerca del mismo. Esta información es útil como
ayuda online.

Es sencillo agregarlo usando designer, y si lo hacemos se ve de esta forma:

"What's This?" de la lista de radios.

Los programas deberían ser accesibles para personas con problemas de visión,
por lo cual es importante ocuparse de todo lo que sea teconologías asistivas. En
Qt, eso quiere decir por lo menos completar los campos accessibleName y
accessibleDescription de todos los widgets con los que el usuario pueda
interactuar.

Datos de accesibilidad.

Uso Desde el Teclado
Es importante que una aplicación no obligue al uso del mouse a menos que sea
absolutamente indispensable. La única manera de hacer eso que conozco es…
usándola completa sin tocar el mouse.

Nombres y Descripciones

137

Probar esta aplicación en su estado actual muestra varias partes que fallan esa
prueba.

• En el diálogo de agregar radios no es obvio como usar los botones “Add” y
“Cancel” porque no tienen atajo de teclado asignado.

Eso es fácil de arreglar con Designer, y se hizo en addradio2.ui. De
ahora en más utilizaremos la aplicación radio7.py que usa ese archivo.

• En el diálogo de configuración no hay manera de editar o eliminar radios
sin usar el mouse.

Esto es bastante más complicado, porque involucra varias partes del
diseño, y podría hasta ser suficiente para hacernos repensar la idea del
“Edit/Remove” dentro de la lista. Veamos qué podemos hacer al respecto.

El primer problema es que la lista de radios está configurada para no aceptar
selección, con lo que no hay manera de elegir un item. Eso lo cambiamos en
designer, poniendo la propiedad selectionMode en SingleSelection.

Con eso, será posible seleccionar una radio. Luego, debemos permitir que se
apliquen acciones a la misma. Una manera es habilitar atajos de teclado para
Edit y Remove, por ejemplo “Ctrl+E” y “Delete”.

La forma más sencilla es crear dos acciones (clase QAction) con esos atajos y
hacer que hagan lo correcto.

Nombres y Descripciones

138

radio7.py

57 # Acciones para atajos de teclado
58 self.editAction = QtGui.QAction("Edit", self,
59 triggered = self.editRadio)
60 self.editAction.setShortcut(QtGui.QKeySequence("Ctrl+E"))
61 self.removeAction = QtGui.QAction("Remove", self,
62 triggered = self.removeRadio)
63 self.removeAction.setShortcut(QtGui.QKeySequence("Del"))
64 self.addActions([self.editAction, self.removeAction])
65
66 def editRadio(self, b=None):
67 # Simulamos un click en Edit
68 items = self.radioList.selectedItems()
69 if items: # Si no hay ninguno seleccionado,
70 # no hay que hacer nada
71 # Simulamos un click en la segunda columna de ese
72 # item.
73 item = items[0]
74 self.on_radioList_clicked(self.radioList.indexFromItem(item,1))
75
76 def removeRadio(self, b=None):
77 # Simulamos un click en Remove
78 items = self.radioList.selectedItems()
79 if items: # Si no hay ninguno seleccionado,
80 # no hay que hacer nada
81 # Simulamos un click en la tercera columna de ese
82 # item.
83 item = items[0]
84 self.on_radioList_clicked(self.radioList.indexFromItem(item,2))
85

Traducciones
Uno no hace aplicaciones para uno mismo, o aún si las hace, está bueno si las
pueden usar otros. Y está muy bueno si la puede usar gente de otros países. Y
para eso es fundamental que puedan tenerla en su propio idioma 49

49 Yo personalmente es rarísimo que use las aplicaciones traducidas, pero
para otros es necesario.

Esta parte es una de esas que dependen mucho de como sea lo que se está
programando. Vamos a hacer un ejemplo con las herramientas de Qt, para otros
desarrolos hay cosas parecidas.

Traducciones

139

Hay varios pasos, extracción de strings, traducción, y compilación de los strings
generados a un formato usable.

A fin de poder traducir lo que un programa dice, necesitamos saber
exactamente qué dice. Las herramientas de extracción de strings se encargan
de buscar todas esas cosas en nuestro código y ponerlas en un archivo para que
podamos trabajar con ellas.

En la versión actual de nuestro programa, tenemos los siguientes archivos:

• radio7.py (nuestro programa principal)

• plsparser.py (parser de archivos .pls, no tiene interfaz)

• addradio2.ui (diálogo de agregar una radio)

• radio3.ui (diálogo de configuración)

¡Extraigamos esos strings! Este comando crea un archivo radio.ts con todo lo
traducible de esos archivos, para crear una traducción al castellano:

[codigo/6]$ pylupdate4 radio7.py plsparser.py addradio2.ui \
 radio3.ui -ts radio_es.ts

Los archivos .ts son un XML bastante obvio. Este es un ejemplo de una
traducción al castellano:

radio_es.ts

1 <?xml version="1.0" encoding="utf-8"?>
2 <!DOCTYPE TS><TS version="1.1" language="es_AR">
3 <context>
4 <name>Dialog</name>
5 <message>
6 <location filename="addradio2.ui" line="14"/>
7 <source>Add Radio</source>
8 <translation>Agregar Radio</translation>
9 </message>

Otras herramientas crean archivos en otros formatos, más o menos fáciles de
editar a mano, y/o proveen herramientas para editarlos.

¿Ahora, como editamos la traducción? Usando Linguist, que viene con Qt. Lo
primero que hará es preguntarnos a qué idioma queremos traducir:

Traducciones

140

Diálogo inicial de Linguist

Linguist es muy interesante porque te muestra cómo queda la interfaz con la
traducción mientras lo estás traduciendo (por lo menos para los archivos .ui),
lo que permite apreciar si estamos haciendo macanas.

Linguist en acción

Entonces uno tradujo todo lo mejor que pudo, ¿cómo hacemos que la aplicación
use nuestra traducción? Por suerte es muy standard. Primero, creamos un
archivo “release” de la traducción, con extensión .qm, donde compilamos a un
formato más eficiente:

[codigo/6]$ lrelease radio_es.ts -compress -qm radio_es.qm
Updating 'radio_es.qm'...
Generated 15 translation(s) (15 finished and 0 unfinished)

Traducciones

141

Del lado del código, debemos decirle a nuestra aplicación donde está el archivo
.qm. Asumiendo que está junto con el script principal:

radio7.py

27 # Cargamos las traducciones de la aplicación
28 locale = unicode(QtCore.QLocale.system().name())
29 translator=QtCore.QTranslator()
30 translator.load(os.path.join(os.path.abspath(
31 os.path.dirname(__file__)),
32 "radio_" + unicode(locale)))
33 app.installTranslator(translator)
34
35 # También hay que cargar las traducciones de Qt,
36 # para los diálogos standard.
37 qtTranslator=QtCore.QTranslator()
38 qtTranslator.load("qt_" + locale,
39 QtCore.QLibraryInfo.location(
40 QtCore.QLibraryInfo.TranslationsPath))
41 app.installTranslator(qtTranslator);
42 # Fin de carga de traducciones

Y nuestra aplicación está traducida:

¡Traducida! ... ¿Traducida?

Nos olvidamos que no todo nuestro texto visible (y traducible) viene de
designer. Hay partes que están escritas en el código python, y hay que
marcarlas como traducibles, para que pylupdate4 las agregue al archivo .ts.

Eso se hace pasando los strings a traducir por el método tr de la aplicación o
del widget del que forman parte. Por ejemplo, en vez de hacer así:

item = QtGui.QTreeWidgetItem([nombre,"Edit","Remove"])

Traducciones

142

Hay que hacer así:

item = QtGui.QTreeWidgetItem([nombre,self.tr("Edit"),
 self.tr("Remove")])

Esta operación hay que repetirla en cada lugar donde queden strings sin
traducir. Por ese motivo… ¡hay que marcar para traducción desde el
principio!

Como esto modifica fragmentos de código por todas partes, vamos a crear una
nueva versión del programa, radio8.py.

Al agregar nuevos strings que necesitan traducción, es necesario actualizar el
archivo .ts:

[codigo/6]$ pylupdate4 -verbose radio8.py plsparser.py addradio2.ui\
 radio3.ui -ts radio_es.ts
Updating 'radio_es.ts'...
Found 24 source texts (9 new and 15 already existing)

Y, luego de traducir con linguist, recompilar el .qm:

[codigo/6]$ lrelease radio_es.ts -compress -qm radio_es.qm
Updating 'radio_es.qm'...
Generated 24 translation(s) (24 finished and 0 unfinished)

Como todo este proceso es muy engorroso, puede ser práctico crear un
Makefile o algún otro mecanismo de automatización de la actualización y
compilación de traducciones. Por ejemplo, con este Makefile un make
traducciones se encarga de todo:

Makefile

1 traducciones: radio_es.qm
2
3 radio_es.qm: radio_es.ts
4 lrelease radio_es.ts -compress -qm radio_es.qm
5
6 radio_es.ts: radio8.py plsparser.py addradio2.ui radio3.ui
7 pylupdate4 -verbose radio8.py plsparser.py addradio2.ui\
8 radio3.ui -ts radio_es.ts

Traducciones

143

Feedback
En este momento, cuando el usuario elige una radio que desea escuchar, suena.
¿Pero qué está sonando? ¿Cuál radio está escuchando? ¿Que tema están
pasando en este momento? Deberíamos brindar esa información, si el usuario la
desea, de manera lo menos molesta posible.

En este caso puntual, lo que queremos es el “metadata” del objeto reproductor,
y un mecanismo posible para mostrar esa información es un OSD (On Screen
Display) o usar una de las APIs de notificación del sistema 50.

50 Hay pros y contras para cada una de las formas de mostrar
notificaciones. Voy a hacer una que tal vez no es óptima, pero que
funciona en todas las plataformas.

En cuanto a qué notificar, es sencillo, cada vez que nuestro reproductor de
audio emita la señal metaDataChanged tenemos que ver el resultado de
metaData() y ahí está todo.

También es importante que se pueda ver qué radio se está escuchando en este
momento. Eso lo vamos a hacer mediante una marca junto al nombre de la radio
actual.

Ya que estamos, tiene más sentido que “Quit” esté en el menú principal (el del
botón izquierdo) que en el secundario, así que lo movemos.

Ah, y implementamos que “Turn Off Radio” solo aparezca si hay una radio en
uso (y hacemos que funcione).

Para que quede claro qué modificamos, creamos una nueva versión de nuestro
programa, radio9.py, y esta es la parte interesante:

radio9.py

197 def activatedSlot(self, reason):
198 """El usuario activó este icono"""
199 if reason == QtGui.QSystemTrayIcon.Trigger:
200 # El menú del botón izquierdo
201 self.lmbMenu=QtGui.QMenu()
202
203 if self.player and \
204 self.player.state() == Phonon.PlayingState:
205 self.stopAction=QtGui.QAction(
206 QtGui.QIcon(":/stop.svg"),
207 self.tr("&Turn Off Radio"),self)
208 self.stopAction.triggered.connect(self.player.stop)

Feedback

144

209 self.lmbMenu.addAction(self.stopAction)
210 self.lmbMenu.addSeparator()
211
212 self.loadRadios()
213 self.radioActions = []
214 for r in self.radios:
215 receiver = lambda url=r[1]: self.playURL(url)
216 action = self.lmbMenu.addAction(
217 r[0], receiver)
218 action.setCheckable(True)
219
220 # Marcamos la radio que estamos escuchando ahora,
221 # si es que estamos escuchando alguna
222 if self.player and \
223 self.player.state() == Phonon.PlayingState and\
224 getattr(self,'playingURL','') == r[1]:
225 action.setChecked(True)
226
227 # Ponemos "Quit" en el menú del botón izquierdo.
228 self.lmbMenu.addSeparator()
229 self.lmbMenu.addAction(self.quitAction)
230
231 # Mostramos el menú en la posición del cursor
232 self.lmbMenu.exec_(QtGui.QCursor.pos())
233
234 def playURL(self, url):
235 """Toma la URL de un playlist, y empieza a hacer ruido"""
236 data = parse_pls(url)
237 if data: # Tengo una URL
238 # la anoto
239 self.playingURL = url
240 # Sí, tomamos el primer stream y listo.
241 url = data[0][1]
242
243 self.player = Phonon.createPlayer(Phonon.MusicCategory,
244 Phonon.MediaSource(url))
245 self.player.play()
246 # Notificar cada cambio en metaData (qué se esta escuchando)
247 self.player.metaDataChanged.connect(self.notify)
248 else: # Pasó algo malo
249 QtGui.QMessageBox.information(None,
250 self.tr("Radio - Error reading playlist"),
251 self.tr("Sorry, error starting this radio."))
252
253 @QtCore.pyqtSlot()

Feedback

145

254 def notify(self):
255 # Obtenemos metadata y mostramos en OSD y en tooltip.
256 md = self.player.metaData
257 self.showMessage(self.tr("Now playing:"),
258 "%s"%(md("TITLE")[0]),
259 QtGui.QSystemTrayIcon.Information,
260 5000)
261 self.setToolTip("%s"%(md("TITLE")[0]))
262
263
264

Musica tranqui.

Feedback

146

Un Programa Útil
Este es el temido “capítulo integrador” en el que vamos a tomar todo lo que
vimos hasta ahora y tratar de crear algo interesante. Repasemos qué se supone
que tenemos en nuestra caja de herramientas…

• Una colección enorme de software que podemos aprovechar en vez de
escribirlo nosotros.

• Capacidad de separar nuestra aplicación en capas, para que los
componentes sean reemplazables.

• La convicción de que testear y documentar el código es importante.

• Sabemos hacer interfaces gráficas y/o web.

• Sabemos usar un ORM.

• Diversas cosas menores que nos cruzamos por el camino.

Proyecto
Vamos a hacer un sistema de integración continua al estilo Hudson para
proyectos python.

Tal vez no tenga tantos features, pero va a ser suficiente para la mayoría de los
casos.

Un Programa Útil

147

https://hudson.dev.java.net/

Instalación, Deployment y Otras Yerbas
En este momento (primera mitad del 2010) la situación de los mecanismos de
deployment disponibles para python es bastante caótica. Hay media docena de
maneras de acercarse al tema.

• Podés usar distutils (viene en la stdlib)

• Podés usar setuptools

• Podés usar distribute (reemplaza a setuptools)

Instalación, Deployment y Otras Yerbas

148

Cómo Crear un Proyecto de Software Libre

Cómo Crear un Proyecto de Software Libre

149

Rebelión Contra el Zen

Rebelión Contra el Zen

150

Herramientas

Herramientas

151

Conclusiones, Caminos y Rutas de Escape

Conclusiones, Caminos y Rutas de Escape

152

Licencia de este libro
LA OBRA (TAL COMO SE DEFINE MÁS ABAJO) SE PROVEE BAJO LOS
TÉRMINOS DE ESTA LICENCIA PÚBLICA DE CREATIVE COMMONS (“CCPL”
O “LICENCIA”). LA OBRA ESTÁ PROTEGIDA POR EL DERECHO DE AUTOR
Y/O POR OTRAS LEYES APLICABLES. ESTÁ PROHIBIDO CUALQUIER USO DE
LA OBRA DIFERENTE AL AUTORIZADO BAJO ESTA LICENCIA O POR EL
DERECHO DE AUTOR.

MEDIANTE EL EJERCICIO DE CUALQUIERA DE LOS DERECHOS AQUÍ
OTORGADOS SOBRE LA OBRA, USTED ACEPTA Y ACUERDA QUEDAR
OBLIGADO POR LOS TÉRMINOS DE ESTA LICENCIA. EL LICENCIANTE LE
CONCEDE LOS DERECHOS AQUÍ CONTENIDOS CONSIDERANDO QUE
USTED ACEPTA SUS TÉRMINOS Y CONDICIONES.

1. Definiciones

a. “Obra Colectiva” significa una obra, tal como una edición periódica,
antología o enciclopedia, en la cual la Obra, en su integridad y forma
inalterada, se ensambla junto a otras contribuciones que en sí
mismas también constituyen obras separadas e independientes,
dentro de un conjunto colectivo. Una obra que integra una Obra
Colectiva no será considerada una Obra Derivada (tal como se define
más abajo) a los fines de esta Licencia.

b. “Obra Derivada” significa una obra basada sobre la Obra o sobre la
Obra y otras obras preexistentes, tales como una traducción, arreglo
musical, dramatización, ficcionalización, versión fílmica, grabación
sonora, reproducción artística, resumen, condensación, o cualquier
otra forma en la cual la Obra puede ser reformulada, transformada o
adaptada. Una obra que constituye una Obra Colectiva no será
considerada una Obra Derivada a los fines de esta Licencia. Para
evitar dudas, cuando la Obra es una composición musical o
grabación sonora, la sincronización de la Obra en una relación
temporal con una imagen en movimiento (“synching”) será
considerada una Obra Derivada a los fines de esta Licencia.

c. “Licenciante” significa el individuo o entidad que ofrece la Obra bajo
los términos de esta Licencia.

d. “Autor Original” significa el individuo o entidad que creó la Obra.

Licencia de este libro

153

e. “Obra” significa la obra sujeta al derecho de autor que se ofrece
bajo los términos de esta Licencia.

f. “Usted” significa un individuo o entidad ejerciendo los derechos bajo
esta Licencia quien previamente no ha violado los términos de esta
Licencia con respecto a la Obra, o quien, a pesar de una previa
violación, ha recibido permiso expreso del Licenciante para ejercer
los derechos bajo esta Licencia.

g. “Elementos de la Licencia” significa los siguientes atributos
principales de la licencia elegidos por el Licenciante e indicados en
el título de la Licencia: Atribución, NoComercial,
CompartirDerivadasIgual.

2. Derechos de Uso Libre y Legítimo. Nada en esta licencia tiene por
objeto reducir, limitar, o restringir cualquiera de los derechos
provenientes del uso libre, legítimo, derecho de cita u otras limitaciones
que tienen los derechos exclusivos del titular bajo las leyes del derecho de
autor u otras normas que resulten aplicables.

3. Concesión de la Licencia. Sujeto a los términos y condiciones de esta
Licencia, el Licenciante por este medio le concede a Usted una licencia de
alcance mundial, libre de regalías, no-exclusiva, perpetua (por la duración
del derecho de autor aplicable) para ejercer los derechos sobre la Obra
como se establece abajo:

a. para reproducir la Obra, para incorporar la Obra dentro de una o
más Obras Colectivas, y para reproducir la Obra cuando es
incorporada dentro de una Obra Colectiva;

b. para crear y reproducir Obras Derivadas;

c. para distribuir copias o fonogramas, exhibir públicamente, ejecutar
públicamente y ejecutar públicamente por medio de una transmisión
de audio digital las Obras, incluyendo las incorporadas en Obras
Colectivas;

d. para distribuir copias o fonogramas, exhibir públicamente, ejecutar
públicamente y ejecutar públicamente por medio de una transmisión
de audio digital las Obras Derivadas;

Los derechos precedentes pueden ejercerse en todos los medios y formatos
ahora conocidos o a inventarse. Los derechos precedentes incluyen el derecho
de hacer las modificaciones técnicamente necesarias para ejercer los derechos

Licencia de este libro

154

en otros medios y formatos. Todos los derechos no concedidos expresamente
por el Licenciante son reservados, incluyendo, aunque no sólo limitado a estos,
los derechos presentados en las Secciones 4 (e) y 4 (f).

4. Restricciones. La licencia concedida arriba en la Sección 3 está
expresamente sujeta a, y limitada por, las siguientes restricciones:

a. Usted puede distribuir, exhibir públicamente, ejecutar públicamente
o ejecutar públicamente la Obra en forma digital sólo bajo los
términos de esta Licencia, y Usted debe incluir una copia de esta
Licencia o de su Identificador Uniforme de Recursos (Uniform
Resource Identifier) con cada copia o fonograma de la Obra que
Usted distribuya, exhiba públicamente, ejecute públicamente, o
ejecute públicamente en forma digital. Usted no podrá ofrecer o
imponer condición alguna sobre la Obra que altere o restrinja los
términos de esta Licencia o el ejercicio de los derechos aquí
concedidos a los destinatarios. Usted no puede sublicenciar la Obra.
Usted debe mantener intactas todas las notas que se refieren a esta
Licencia y a la limitación de garantías. Usted no puede distribuir,
exhibir públicamente, ejecutar públicamente o ejecutar
públicamente en forma digital la Obra con medida tecnológica
alguna que controle el acceso o uso de la Obra de una forma
inconsistente con los términos de este Acuerdo de Licencia. Lo
antedicho se aplica a la Obra cuando es incorporada en una Obra
Colectiva, pero esto no requiere que la Obra Colectiva, con
excepción de la Obra en sí misma, quede sujeta a los términos de
esta Licencia. Si Usted crea una Obra Colectiva, bajo requerimiento
de cualquier Licenciante Usted debe, en la medida de lo posible,
quitar de la Obra Colectiva cualquier crédito requerido en la
cláusula 4(d), conforme lo solicitado. Si Usted crea una Obra
Derivada, bajo requerimiento de cualquier Licenciante Usted debe,
en la medida de lo posible, quitar de la Obra Derivada cualquier
crédito requerido en la cláusula 4(d), conforme lo solicitado.

b. Usted puede distribuir, exhibir públicamente, ejecutar públicamente
o ejecutar públicamente en forma digital una Obra Derivada sólo
bajo los términos de esta Licencia, una versión posterior de esta
Licencia con los mismos Elementos de la Licencia, o una licencia de
Creative Commons iCommons que contenga los mismos Elementos
de la Licencia (v.g., Atribución, NoComercial,
CompartirDerivadasIgual 2.5 de Japón). Usted debe

Licencia de este libro

155

incluir una copia de esta licencia, o de otra licencia de las
especificadas en la oración precedente, o de su Identificador
Uniforme de Recursos (Uniform Resource Identifier) con cada copia
o fonograma de la Obra Derivada que Usted distribuya, exhiba
públicamente, ejecute públicamente o ejecute públicamente en
forma digital. Usted no podrá ofrecer o imponer condición alguna
sobre la Obra Derivada que altere o restrinja los términos de esta
Licencia o el ejercicio de los derechos aquí concedidos a los
destinatarios, y Usted debe mantener intactas todas las notas que
refieren a esta Licencia y a la limitación de garantías. Usted no
puede distribuir, exhibir públicamente, ejecutar públicamente o
ejecutar públicamente en forma digital la Obra Derivada con medida
tecnológica alguna que controle el acceso o uso de la Obra de una
forma inconsistente con los términos de este Acuerdo de Licencia.
Lo antedicho se aplica a la Obra Derivada cuando es incorporada en
una Obra Colectiva, pero esto no requiere que la Obra Colectiva, con
excepción de la Obra Derivada en sí misma, quede sujeta a los
términos de esta Licencia.

c. Usted no puede ejercer ninguno de los derechos a Usted concedidos
precedentemente en la Sección 3 de alguna forma que esté
primariamente orientada, o dirigida hacia, la obtención de ventajas
comerciales o compensaciones monetarias privadas. El intercambio
de la Obra por otros materiales protegidos por el derecho de autor
mediante el intercambio de archivos digitales (file-sharing) u otras
formas, no será considerado con la intención de, o dirigido a, la
obtención de ventajas comerciales o compensaciones monetarias
privadas, siempre y cuando no haya pago de ninguna compensación
monetaria en relación con el intercambio de obras protegidas por el
derecho de autor.

d. Si usted distribuye, exhibe públicamente, ejecuta públicamente o
ejecuta públicamente en forma digital la Obra o cualquier Obra
Derivada u Obra Colectiva, Usted debe mantener intacta toda la
información de derecho de autor de la Obra y proporcionar, de
forma razonable según el medio o manera que Usted esté
utilizando: (i) el nombre del Autor Original si está provisto (o
seudónimo, si fuere aplicable), y/o (ii) el nombre de la parte o las
partes que el Autor Original y/o el Licenciante hubieren designado
para la atribución (v.g., un instituto patrocinador, editorial,
publicación) en la información de los derechos de autor del

Licencia de este libro

156

Licenciante, términos de servicios o de otras formas razonables; el
título de la Obra si está provisto; en la medida de lo razonablemente
factible y, si está provisto, el Identificador Uniforme de Recursos
(Uniform Resource Identifier) que el Licenciante especifica para ser
asociado con la Obra, salvo que tal URI no se refiera a la nota sobre
los derechos de autor o a la información sobre el licenciamiento de
la Obra; y en el caso de una Obra Derivada, atribuir el crédito
identificando el uso de la Obra en la Obra Derivada (v.g.,
“Traducción Francesa de la Obra del Autor Original,” o “Guión
Cinematográfico basado en la Obra original del Autor Original”). Tal
crédito puede ser implementado de cualquier forma razonable; en el
caso, sin embargo, de Obras Derivadas u Obras Colectivas, tal
crédito aparecerá, como mínimo, donde aparece el crédito de
cualquier otro autor comparable y de una manera, al menos, tan
destacada como el crédito de otro autor comparable.

e. Para evitar dudas, cuando una Obra es una composición musical:

i. Derechos Económicos y Ejecución bajo estas Licencias. El
Licenciante se reserva el derecho exclusivo de colectar, ya sea
individualmente o vía una sociedad de gestión colectiva de
derechos (v.g., SADAIC, ARGENTORES), los valores (royalties)
por la ejecución pública o por la ejecución pública en forma
digital (v.g., webcast) de la Obra si esta ejecución está
principalmente orientada a, o dirigida hacia, la obtención de
ventajas comerciales o compensaciones monetarias privadas.

ii. Derechos Económicos sobre Fonogramas. El Licenciante se
reserva el derecho exclusivo de colectar, ya sea
individualmente, vía una sociedad de gestión colectiva de
derechos (v.g., SADAIC, AADI-CAPIF), o vía una agencia de
derechos musicales o algún agente designado, los valores
(royalties) por cualquier fonograma que Usted cree de la Obra
(“versión”, “cover”) y a distribuirlos, conforme a las
disposiciones aplicables del derecho de autor, si su
distribución de la versión (cover) está principalmente
orientada a, o dirigida hacia, la obtención de ventajas
comerciales o compensaciones monetarias privadas.

f. Derechos Económicos y Ejecución Digital (Webcasting). Para
evitar dudas, cuando la Obra es una grabación sonora, el

Licencia de este libro

157

Licenciante se reserva el derecho exclusivo de colectar, ya sea
individualmente o vía una sociedad de gestión colectiva de derechos
(v.g., SADAIC, ARGENTORES), los valores (royalties) por la
ejecución pública digital de la Obra (v.g., webcast), conforme a las
disposiciones aplicables de derecho de autor, si esta ejecución está
principalmente orientada a, o dirigida hacia, la obtención de
ventajas comerciales o compensaciones monetarias privadas.

5. Representaciones, Garantías y Limitación de Responsabilidad

A MENOS QUE SEA ACORDADO DE OTRA FORMA Y POR ESCRITO
ENTRE LAS PARTES, EL LICENCIANTE OFRECE LA OBRA “TAL Y COMO
SE LA ENCUENTRA” Y NO OTORGA EN RELACIÓN A LA OBRA NINGÚN
TIPO DE REPRESENTACIONES O GARANTÍAS, SEAN EXPRESAS,
IMPLÍCITAS O LEGALES; SE EXCLUYEN ENTRE OTRAS, SIN
LIMITACIÓN, LAS GARANTÍAS SOBRE LAS CONDICIONES,
CUALIDADES, TITULARIDAD O EXACTITUD DE LA OBRA, ASÍ COMO
TAMBIÉN, LAS GARANTÍAS SOBRE LA AUSENCIA DE ERRORES U
OTROS DEFECTOS, SEAN ESTOS MANIFIESTOS O LATENTES, PUEDAN
O NO DESCUBRIRSE. ALGUNAS JURISDICCIONES NO PERMITEN LA
EXCLUSIÓN DE GARANTÍAS IMPLÍCITAS, POR TANTO ESTAS
EXCLUSIONES PUEDEN NO APLICÁRSELE A USTED.

6. Limitación de Responsabilidad. EXCEPTO EN LA EXTENSIÓN
REQUERIDA POR LA LEY APLICABLE, EL LICENCIANTE EN NINGÚN
CASO SERÁ REPONSABLE FRENTE A USTED, CUALQUIERA SEA LA
TEORÍA LEGAL, POR CUALQUIER DAÑO ESPECIAL, INCIDENTAL,
CONSECUENTE, PUNITIVO O EJEMPLAR, PROVENIENTE DE ESTA
LICENCIA O DEL USO DE LA OBRA, AUN CUANDO EL LICENCIANTE
HAYA SIDO INFORMADO SOBRE LA POSIBILIDAD DE TALES DAÑOS.

7. Finalización

a. Esta Licencia y los derechos aquí concedidos finalizarán
automáticamente en caso que Usted viole los términos de la misma.
Los individuos o entidades que hayan recibido de Usted Obras
Derivadas u Obras Colectivas conforme a esta Licencia, sin
embargo, no verán finalizadas sus licencias siempre y cuando
permanezcan en un cumplimiento íntegro de esas licencias. Las
secciones 1, 2, 5, 6, 7, y 8 subsistirán a cualquier finalización de esta
Licencia.

Licencia de este libro

158

b. Sujeta a los términos y condiciones precedentes, la Licencia
concedida aquí es perpetua (por la duración del derecho de autor
aplicable a la Obra). A pesar de lo antedicho, el Licenciante se
reserva el derecho de difundir la Obra bajo diferentes términos de
Licencia o de detener la distribución de la Obra en cualquier
momento; sin embargo, ninguna de tales elecciones servirá para
revocar esta Licencia (o cualquier otra licencia que haya sido, o sea
requerida, para ser concedida bajo los términos de esta Licencia), y
esta Licencia continuará con plenos efectos y validez a menos que
termine como se indicó precedentemente.

8. Misceláneo

a. Cada vez que Usted distribuye o ejecuta públicamente en forma
digital la Obra o una Obra Colectiva, el Licenciante ofrece a los
destinatarios una licencia para la Obra en los mismos términos y
condiciones que la licencia concedida a Usted bajo esta Licencia.

b. Cada vez que Usted distribuye o ejecuta públicamente en forma
digital una Obra Derivada, el Licenciante ofrece a los destinatarios
una licencia para la Obra original en los mismos términos y
condiciones que la licencia concedida a Usted bajo esta Licencia.

c. Si alguna disposición de esta Licencia es inválida o no exigible bajo
la ley aplicable, esto no afectará la validez o exigibilidad de los
restantes términos de esta Licencia, y sin necesidad de más acción
de las partes de este acuerdo, tal disposición será reformada en la
mínima extensión necesaria para volverla válida y exigible.

d. Ningún término o disposición de esta Licencia se considerará
renunciado y ninguna violación se considerará consentida a no ser
que tal renuncia o consentimiento sea por escrito y firmada por las
partes que serán afectadas por tal renuncia o consentimiento.

e. Esta Licencia constituye el acuerdo integral entre las partes con
respecto a la Obra licenciada aquí. No hay otros entendimientos,
acuerdos o representaciones con respecto a la Obra que no estén
especificados aquí. El Licenciante no será obligado por ninguna
disposición adicional que pueda aparecer en cualquier comunicación
proveniente de Usted. Esta Licencia no puede ser modificada sin el
mutuo acuerdo por escrito entre el Licenciante y Usted.

Licencia de este libro

159

Agradecimientos
Sin las siguientes personas este libro no sería lo que es (¡así que a llorar al
ziggurat!) En ningún orden:

• Pablo Ziliani

• Andrés Gattinoni

• Juan Pedro Fisanotti

• Lucio Torre

• Darío Graña

• Sebastián Bassi

• Leonardo Vidarte

• Daniel Moisset

• Ernesto Savoretti

• Dave Smith

• Claudio Cánepa

• El que me olvidé. ¡Sí, ése!

Agradecimientos

160

El Meta-Libro
“Escribir es un asunto privado.”

Goldbarth

Una de las intenciones de este experimento escribir-un-libro fue hacerlo “en
publico”. ¿Porqué?

• Me gusta mucho el open source. Trato de aplicarlo en muchas cosas, aún
en aquellas en las que no se hace habitualmente. Por ejemplo, si bien no
acepto colaboraciones para el libro, si acepto parches.

• En mi experiencia, si hay gente que le interesa un proyecto mío, entonces
es más probable que no lo deje pudrirse por abandono. Creí
(aparentemente con razón) que a la gente de PyAr le interesaría este
proyecto. Ergo, le vengo poniendo pilas.

• Los últimos quince años metido en proyectos open source y diez años de
blog me han convertido en una especie de exhibicionista intelectual. Idea
que me pasa por el bocho la tiro para afuera. O la hago código, o la hago
blog, o algo. Este libro es algo así, tuve la idea, no la puedo contener en
mi cabeza, la tengo que mostrar.

Y uno de los efectos de querer mostrar el libro mientras lo hacía es que tengo
que poder mostrarlo y no tiene que ser algo demasiado vergonzoso
estéticamente y tiene que poder leerse cómodamente.

Como ya es casi natural para mí escribir reStructured text (hasta los mails me
suelen salir como reSt válido), busqué algo por ese lado.

Para generar PDFs, elegí rst2pdf porque es mío y si no hace exactamente lo que
yo quiero… lo cambio para que lo haga 51

51 De hecho, usarlo para este proyecto me ha permitido arreglar por lo
menos cinco bugs :-)

Para el sitio, la solución obvia era Sphinx, pero… me molestan algunas cosas
(menores) de incompatibilidad con docutils (especialmente la directiva class),
que hacen que un documento Sphinx sólo se pueda procesar con Sphinx.

Entonces, buscando alternativas encontré rest2web de Michael Foord que es
muy fácil de usar y flexible.

Al ser este un libro de programación, tiene algunos requerimientos particulares.

El Meta-Libro

161

Código
Es necesario mostrar código fuente. Rst2pdf lo soporta nativamente con la
directiva code-block pero no es parte del restructured text standard. En
consecuencia, tuve que emparchar rest2web para que la use 52

52 Por suerte la directiva es completamente genérica, funciona para
HTML igual que para PDF. Esto es lo que tuve que agregar al principio
de r2w.py:

from rst2pdf import pygments_code_block_directive
from docutils.parsers.rst import directives
directives.register_directive('code-block', \
 pygments_code_block_directive.code_block_directive)

Gráficos
Hay algunos diagramas. Los genero con la excelente herramienta Graphviz.

Los quiero generar en dos formatos, PNG para web PDF para el PDF, por suerte
graphviz soporta ambos.

Build
Quiero que cuando cambia un listado se regeneren el sitio y los PDF. Quiero
que cuando cambia el estilo del PDF se regenere este pero no el sitio. Quiero
que todo eso se haga solo.

Sí, podría haber pensado en algo basado en Python pero, realmente para estas
cosas, la respuesta es make. Será medio críptico de a ratos, pero hace lo que
hace.

Por ejemplo, así se reconstruye el PDF de un diagrama:

%.graph.pdf: %.dot
 dot -Tpdf $< > $@ -Efontname="DejaVu Sans" \
 -Nfontname="DejaVu Sans"

Y se ejecuta así:

$ make loop-n-y-medio.graph.pdf
dot -Tpdf loop-n-y-medio.dot > loop-n-y-medio.graph.pdf
-Efontname="DejaVu Sans" -Nfontname="DejaVu Sans"

Código

162

Normalmente no hace falta hacerlo manualmente, pues se hace, de ser
necesario, cuando se publica al sitio o a PDF.

Feedback
Como toda la idea es tener respuesta, hay que tener como dejarla. Comentarios
en el sitio via disqus.

Tipografía
Es complicado encontrar un set de fuentes modernas, buenas, y coherentes.
Necesito por lo menos bold, italic, bold italic para el texto y lo mismo en una
variante monoespaciada.

Las únicas familias que encontré tan completas son las tipografías DejaVu y
Vera. Inclusive hay una DejaVu Thin más decorativa que me gustó para los
títulos.

HTML
Soy un queso para el HTML, así que tomé prestado un CSS llamado LSR de
http://rst2a.com. Para que la estética quede similar a la del libro usé TypeKit
(lamentablemente me limita a 2 tipografías, así que no pude usar Dejavu Thin
en los títulos/citas).

Server
No espero que tenga mucho tráfico. Y aún si lo tuviera no sería problema: es un
sitio en HTML estático por lo que probablemente un pentium 3 pueda saturar
1Mbps. Lo puse directamente en el mismo VPS que tiene mi blog.

Versionado
No hay mucho para discutir, cualquiera de los sitios de hosting libres para
control de versiones serviría. Usé mercurial (porque quería aprenderlo mejor)
sobre googlecode (porque es mi favorito).

Por supuesto que toda la infraestructura usada está en el mismo repositorio de
mercurial que el resto del libro.

Feedback

163

http://rst2a.com

Licencia
La elección de licencia para un trabajo es un tema personal de cada uno. Creo
que la que elegí es suficientemente libre, en el sentido de que prohíbe las cosas
que no quiero que se hagan (editar el libro y venderlo) y permite las que me
interesa permitir (copiarlo, cambiarlo).

Por supuesto, al ser yo el autor, siempre es posible obtener permisos especiales
para cualquier cosa pidiéndolo. Tenés el 99% de probabilidad de que diga que
sí.

Licencia

164

	Introducción
	Requisitos
	Convenciones
	Lenguaje
	Mapa
	Acerca del Autor

	Pensar en Python
	Get/Set
	Singletons
	Loops y medios loops
	Switches
	Patos y Tipos
	Genéricos
	Decoradores
	Claro pero corto pero claro
	Lambdas vs alternativas
	Ternarios vs ifs
	Pedir perdón o pedir permiso

	La vida es Corta
	El Problema
	Twill
	Bottle
	Autenticación
	Storm
	HTML / Templates
	Backend
	Conclusiones

	Las Capas de una Aplicación
	Proyecto
	El Problema
	Capa de Datos: Diseño e Implementación
	Elementos
	Campos
	Diseño

	Capa de Lógica: Diseño
	Capa de Interfaz: Diseño

	Documentación y Testing
	Docstrings
	Doctests
	Cobertura
	Límites de los doctests
	Lo anterior, hecho distinto
	Mocking
	La Máquina Mágica
	Sacando tu programa a pasear: Tox
	Testear todo el tiempo: Sniffer
	Integración continua: Jenkins
	Documentos, por favor

	La GUI es la Parte Fácil
	Proyecto
	Programación con Eventos
	Ventanas / Diálogos
	Mostrando una Ventana
	¡Que haga algo!
	Icono de Notificación
	Acciones
	Ruido

	Diseño de Interfaz Gráfica
	Proyecto
	Corrigiendo la Interfaz Gráfica
	¿Qué estamos haciendo?
	Pulido
	Nombres y Descripciones
	Uso Desde el Teclado
	Traducciones
	Feedback

	Un Programa Útil
	Proyecto

	Instalación, Deployment y Otras Yerbas
	Cómo Crear un Proyecto de Software Libre
	Rebelión Contra el Zen
	Herramientas
	Conclusiones, Caminos y Rutas de Escape
	Licencia de este libro
	Agradecimientos
	El Meta-Libro
	Código
	Gráficos
	Build
	Feedback
	Tipografía
	HTML
	Server
	Versionado
	Licencia

