Python no Muerde

Este libro estd disponible bajo una licencia CC-by-nc-sa-2.5.

®

Es decir que usted es libre de:

Copiar, distribuir, exhibir, y ejecutar la obra

Hacer obras derivadas

®E

Bajo las siguientes condiciones:

Atribucién — Usted debe atribuir la obra en la forma
especificada por el autor o el licenciante.

No Comercial — Usted no puede usar esta obra con fines
comerciales.

Compartir Obras Derivadas Igual — Si usted altera, transforma, o
crea sobre esta obra, s6lo podra distribuir la obra derivada
resultante bajo una licencia idéntica a ésta.

O®®

El texto completo de la licencia estd en el apéndice “LICENCIA” al final del
libro.

La “solpiente” fue creada por Pablo Ziliani, y licenciada bajo una licencia
CC-by-sa-2.5, mas detalles en http://creativecommons.org/licenses/by-sa/2.5/ar/

http://creativecommons.org/licenses/by-sa/2.5/ar/

Autor: Roberto Alsina <ralsina@netmanagers.com.ar>

Version: 8e80f80bdea9

mailto:ralsina@netmanagers.com.ar

Introducciéon

Introduccioén

Requisitos

Este es un libro sobre Python . Es un libro que trata de explicar una manera
posible de usarlo, una manera de tomar una idea de tu cabeza y convertirla en
un programa, que puedas usar y compartir.

1 ¢Por qué Python? Porque es mi lenguaje favorito. éDe qué otro lenguaje
podria escribir?
¢Qué necesitas saber para poder leer este libro?

El libro no va a explicar la sintaxis de python, sino que va a asumir que la
conocés. De todas formas, la primera vez que aparezca algo nuevo, va a indicar
dénde se puede aprender mds sobre ello. Por ejemplo:

Creamos una lista con los cuadrados de los nimeros pares
cuadrados = [x**2 for x in numeros if x%2 == 0]

Referencia

Eso es una comprension de lista

En general esas referencias van a llevarte al Tutorial de Python en castellano.
Ese libro contiene toda la informacién acerca del lenguaje que se necesita para
poder seguir éste.

Cuando una aplicacién requiera una interfaz grafica, vamos a utilizar PyQt 2 No
vamos a asumir ningin conocimiento previo de PyQt pero tampoco se va a
explicar en detalle, excepto cuando involucre un concepto nuevo.

Por ejemplo, no voy a explicar el significado de setEnabled 3 pero si el
concepto de signals y slots cuando haga falta.

http://docs.python.org.ar/tutorial/datastructures.html#listas-por-comprensi-n
http://docs.python.org.ar/tutorial/

Convenciones

2 PyQt es software libre, es multiplataforma, y es muy potente y facil de
usar. Eso no quiere decir que las alternativas no tengan las mismas
caracteristicas, pero quiero enfocarme en programar, no en discutir, y
yo prefiero PyQt. Si preferis una alternativa, este libro es libre: podés
hacer una version propia!

3 PyQt tiene una excelente documentacion de referencia para esas cosas.

Convenciones

Las variables, funciones y palabras reservadas de python se mostraran en el
texto con letra monoespaciada. Por ejemplo, for es una palabra reservada.

Los fragmentos de cdodigo fuente se va a mostrar asi:

Creamos una lista con los cuadrados de los numeros impares
cuadrados = [x**2 for x in numeros if x%2 > 0]

Los listados extensos o programas completos se incluirdn sin cajas, mostraran
numeros de lineas e indicaran el nombre del mismo:
cuadrados.py

1 # Creamos una lista con los cuadrados de los numeros impares
2 cuadrados = [x**2 for x in numeros if x%2 > 0]

En ese ejemplo, deberia haber, en los ejemplos que acompafian al libro, un
archivo codigo/X/cuadrados.py donde X es el numero del capitulo en el que
el listado aparece.

Lenguaje

Las discusiones acerca de como escribir un libro técnico en castellano son
eternas. Que en Espaifa se traduce todo todo todo. Que en Argentina no. Que
decir “cadena de caracteres” en lugar de string es malo para la ecologia.

Por suerte en este libro hay un tnico criterio superador que ojald otros libros
adopten: Estd escrito como escribo yo. Ni un poquito distinto. No creo que
siquiera califique como castellano, como mucho estd escrito en argentino. Si a
los lectores de la ex madre patria les molesta el estilo... tradizcanlo.

http://www.riverbankcomputing.co.uk/static/Docs/PyQt4/html/classes.html

Mapa

Mapa

Dentro de lo posible, voy a intentar que cada capitulo sea autocontenido,
explicando un tema sin depender demasiado de los otros, y terminando con un
ejemplo concreto y funcional.

Estos son los capitulos del libro, con breves descripciones.

1.
2.

10.

Introducciéon
Pensar en python

Programar en python, a veces, no es como programar en otros lenguajes.
Acé vas a ver algunos ejemplos. Si te gustan... python es para vos. Si no te
gustan... bueno, el libro es barato... capaz que Java es lo tuyo..

. La vida es corta

Por eso, hay muchas cosas que no vale la pena hacer. Claro, yo estoy
escribiendo un editor de textos asi que este capitulo es pura hipocresia...

. Las capas de una aplicacién

Batman, los alfajores santafesinos, el ozono... las mejores cosas tienen
capas. Como organizar una aplicacién en capas.

. Documentacion y testing

Documentar es testear. Testear es documentar.

. La GUI es la parte facil

Lo dificil es saber que querés. Lamentablemente este capitulo te muestra
lo facil. Una introducciéon rdpida a PyQt.

. Disefio de interfaz gréafica

Visto desde la mirada del programador. Co6mo hacer para no meterse en
un callején sin salida. Cémo hacerle caso a un disefiador.

. Un programa util

Integremos las cosas que vimos antes y usémoslas para algo.

. Instalacién, deployment y otras yerbas

Hacer que tu programa funcione en la computadora de otra gente

Cémo crear un proyecto de software libre

Mapa

11.

12.

13.

¢Coémo se hace? éQué se necesita? {Me conviene? Las respuestas son

1 10

“depende”, “ganas” y “a veces”. O “asi”, “una idea” y “si”. O sea, no sé.
Pero veamos.

Rebelion contra el Zen

Cuando es mejor implicito que explicito? <J¢Cudndo es algo lo
suficientemente especial para ser, realmente, especial?

Herramientas
Programar tiene més en comun con la carpinteria que con la arquitectura.
Conclusiones, caminos y rutas de escape

¢Y ahora qué?

Este es un diagrama de dependencias. Cada capitulo tiene flechas que lo
conectan desde los capitulos que necesitas haber leido anteriormente.

Con suerte serd un grafo aciclico.

La linea de puntos significa ‘no es realmente necesario, pero...’

Este libro se lee siguiendo las flechas.

http://es.wikipedia.org/wiki/Grafo_ac�clico_dirigido

Acerca del Autor

Acerca del Autor

Habréa que pedirle a alguien que ponga algo no demasiado insultante.

Acerca del Autor

Contenidos

Introduccion

Requisitos
Convenciones
Lenguaje
Mapa

Acerca del Autor

Pensar en Python

Get/Set

Singletons

Loops y medios loops
Switches

Patos y Tipos

Genéricos

Decoradores

Claro pero corto pero claro
Lambdas vs alternativas
Ternarios vs ifs

Pedir perdén o pedir permiso

La vida es Corta

El Problema
Twill

Bottle
Autenticacién
Storm

HTML / Templates

B~ h

o O o O

13
13
17
21
22
23
25
28
33
35
37
38
41
42
44
46
49
56
62

Acerca del Autor

Backend 66
Conclusiones 70

Las Capas de una Aplicacién 71
Proyecto 72

El Problema 72
Capa de Datos: Disefio e Implementacion 74
Elementos 74

Campos 75

Disefio 75

Capa de Légica: Disefo 77
Capa de Interfaz: Diseno 77
Documentacion y Testing 78
Docstrings 79
Doctests 80
Cobertura 85
Limites de los doctests 87

Lo anterior, hecho distinto 88
Mocking 89

La Méquina M4dgica 92
Sacando tu programa a pasear: Tox 96
Testear todo el tiempo: Sniffer 100
Integracion continua: Jenkins 100
Documentos, por favor 100

La GUI es la Parte Facil 103
Proyecto 103
Programacién con Eventos 104

10

Acerca del Autor

Ventanas / Didlogos
Mostrando una Ventana
iQue haga algo!

Icono de Notificacién
Acciones

Ruido

Diseno de Interfaz Grafica

Proyecto

Corrigiendo la Interfaz Gréfica
¢Qué estamos haciendo?
Pulido

Nombres y Descripciones

Uso Desde el Teclado
Traducciones

Feedback

Un Programa Util

Instalacion, Deployment y Otras Yerbas

Como Crear un Proyecto de Software Libre

Proyecto

Rebelion Contra el Zen

Herramientas

Conclusiones, Caminos y Rutas de Escape

Licencia de este libro

Agradecimientos

El Meta-Libro

11

Cédigo

106
113
115
119
120
123
127
129
129
132
136
137
137
139
144
147
147
148
149
150
151
152
153
160
161
162

Acerca del Autor

12

Gréficos
Build
Feedback
Tipografia
HTML
Server
Versionado

Licencia

162
162
163
163
163
163
163
164

Pensar en Python

Pensar en Python

Lo triste es que esta pobre gente trabajé mucho més de lo
necesario, para producir mucho mas cédigo del necesario,
que funciona mucho mas lento que el cédigo python
idiomatico correspondiente

Phillip J. Eby en Python no es Java

Nuestra misién en este capitulo es pensar en qué quiere decir Eby con “cédigo
python idioméatico” en esa cita. Nunca nadie va a poder hacer un pythonémetro
que te mida cudn idiomatico es un fragmento de codigo, pero es posible
desarrollar un instinto, una “nariz” para sentir el “olor a python”, asi como un
endfilo * aprende a distinguir el aroma a clavos de hierro-niquel ntimero 7
ligeramente oxidados en un Cabernet Sauvignon. 5

4 En mi barrio los llamébamos curdas.
5 Con la esperanza de ser un poco menos pretencioso y/o chanta, si Zeus
quiere.

Y si la mejor forma de conocer el vino es tomar vino, la mejor forma de conocer
el cédigo es ver céddigo. Este capitulo no es exhaustivo, no muestra todas las
maneras en que python es peculiar, ni todas las cosas que hacen que tu codigo
sea “pythonic” — entre otros motivos porque no las conozco — pero muestra
varias. El resto es cuestion de gustos.

Get/Set

Una instancia de una clase contiene valores. éComo se accede a ellos? Hay dos
maneras. Una es con “getters y setters”, y estas son algunas de sus
manifestaciones:

Un getter te "toma" (get) un valor de adentro de un objeto y
se puede ver asi:

x1 = p.x()
x1 = p.get x()
x1 = p.getX()

Un setter "mete" un valor en un objeto y puede verse asi:
p.set x(x1)
p.setX(x1)

13

http://dirtsimple.org/2004/12/python-is-not-java.html

Pensar en Python

Otra manera es simplemente usar un miembro x de la clase:

La ventaja de usar getters y setters es el “encapsulamiento”. No dicta que la
clase tenga un miembro x, tal vez el valor que yo ingreso via setX es
manipulado, validado, almacenado en una base de datos, o tatuado en el
estémago de policias retirados con problemas neuroldgicos, lo unico que
importa es que luego cuando lo saco con el getter me dé lo que tenga que dar
(que no quiere decir “me dé lo mismo que puse”).

Muchas veces, los getters/setters se toman como un hecho de la vida, hago
programacion orientada a objetos => hago getters/setters.

Bueno, no.

Analogia rebuscada

En un almacén, para tener un paquete de yerba, hay que pedirselo al
almacenero. En un supermercado, para tener un paquete de yerba, hay
que agarrar un paquete de yerba. En una farmacia (de las grandes),
para obtener un paquete de yerba hay que agarrar un paquete de yerba,
pero para tener un Lexotanil hay que pedirlo al farmacéutico.

En Java o C++, la costumbre es escribir programas como almacenes,
porque la alternativa es escribir supermercados donde chicos de 5
compran raticida.

En Python, la costumbre es escribir programas como supermercados,
porque se pueden convertir en farmacias apenas decidamos que tener
raticida es buena idea.

Imaginemos que estamos escribiendo un programa que trabaja con “puntos” o
sea coordenadas (X)Y), y que queremos implementarlos con una clase. Por
ejemplo:

Listado 1

1 class Punto(object):
2 def init (self, x=0, y=0):

14

Pensar en Python

3 self.set x(x)
4 self.set y(y)
5

6 def x(self):

7 return self. x
8

9 def y(self):

10 return self. y
11

12 def set x(self,x):
13 self. x=x

14

15 def set y(self,y):
16 self. y=y

Esa es una implementacion perfectamente respetable de un punto. Guarda X,
guarda Y, permite volver a averiguar sus valores... el problema es que eso no es
python. Eso es C++. Claro, un compilador C++ se negaria a procesarlo, pero a
mi no me engaian tan fécil, eso es C++ reescrito para que parezca python.

¢Por qué eso no es python? Por el obvio abuso de los métodos de acceso
(accessors, getter/setters), que son completamente innecesarios.

Si la clase punto es simplemente esto, y nada més que esto, y no tiene otra
funcionalidad, entonces prefiero esta:
Listado 2

1 class Punto(object):

2 def init (self, x=0, y=0):
3 self.x=x

4 self.y=y

No sdélo es mas corta, sino que su funcionalidad es completamente equivalente,
es mas facil de leer porque es obvia (se puede leer de un vistazo), y hasta es
mas eficiente.

La tUnica diferencia es que lo que antes era p.x() ahora es p.x y que
p.set x(14) es p.x=14, que no es un cambio importante, y es una mejora en
legibilidad.

Es mads, si la clase punto fuera solamente ésto, podria ni siquiera ser una clase,
sino una namedtuple:
Listado 3

15

Pensar en Python

1 Punto = namedtuple('Punto', 'x y')

Y el comportamiento es exactamente el del listado 2 excepto que es aun mas
eficiente.

Nota

Es fundamental conocer las estructuras de datos que te da el lenguaje.
En Python eso significa conocer diccionarios, tuplas y listas y el médulo
collections de la biblioteca standard.

Por supuesto que siempre esta la posibilidad de que la clase Punto evolucione, y
haga otras cosas, como por ejemplo calcular la distancia al origen de un punto.

Si bien seria facil hacer una funcién que tome una namedtuple y calcule ese
valor, es mejor mantener todo el cédigo que manipula los datos de Punto dentro
de la clase en vez de crear una coleccién de funciones ad-hoc. Una namedtuple
es un reemplazo para las clases sin métodos o los struct de C/C++.

Pero... hay que considerar el programa como una criatura en evolucién. Tal vez
al comenzar con una namedtuple era suficiente. No valia la pena demorar lo

demds mientras se disefiaba la clase Punto. Y pasar de una namedtuple a la
clase Punto del listado 2 es sencillo, ya que la interfaz que presentan es
idéntica.

La critica que un programador que conoce OOP 6 harfa (con justa razén) es que
no tenemos encapsulamiento. Que el usuario accede directamente a Punto.x y
Punto.y por lo que no podemos comprobar la validez de los valores asignados, o
hacer operaciones sobre los mismos, etc.

6 Object Oriented Programming, o sea, Programaciéon Orientada a
Objetos, pero me niego a usar la abreviatura POO porque pienso en
ositos.

Muy bien, supongamos que queremos que el usuario pueda poner soélo valores
positivos en x, y que los valores negativos deban ser multiplicados por -1.

En la clase del listado 1:
Listado 4

16

Singletons

1 class PuntoDerecho(Punto):
''"'Un punto que solo puede estar a la derecha del eje Y'''

def set x(self, x):
self. x = abs(x)

u A WN

Pero... también es facil de hacer en el listado 2, sin cambiar la interfaz que se
presenta al usuario:

Listado 5
1 class PuntoDerecho(object):
2 ""'Un punto que solo puede estar a la derecha del eje Y''
3
4 def get x(self):
5 return self. x
6
7 def set x(self, x):
8 self. x = abs(x)
9
10 x = property(get x, set x)

Obviamente esto es casi lo mismo que si partimos del listado 1, pero con
algunas diferencias:

* La forma de acceder a x o de modificarlo es mejor — print p.x en lugar
de print p.x(). Si, es cuestiéon de gustos nomas.

No se hicieron los métodos para y por ser innecesarios.

Esto es importante: de ser necesarios esos métodos en el futuro es facil
agregarlos. Si nunca lo son, entonces el listado 1 tiene dos funciones
inutiles.

Si, son dos funciones cortas, que seguramente no crean bugs pero tienen
implicaciones de performance, y tienen un efecto que a mi personalmente
me molesta: separan el cédigo que hace algo metiendo en el medio cédigo
que no hace nada.

Si esos métodos son funcionalmente nulos, cada vez que estan en pantalla
es como una franja negra de censura de 5 lineas de alto cruzando mi
editor. Es molesto.

Singletons

17

Singletons

En un lenguaje funcional, uno no necesita patrones de disefio
porque el lenguaje es de tan alto nivel que termindas
programando en conceptos que eliminan los patrones de
disefio por completo.

Slava Akhmechet

Una de las preguntas mas frecuentes de novicios en python, pero con
experiencia en otros lenguajes es “écomo hago un singleton?”. Un singleton es
una clase que sélo puede instanciarse una vez. De esa manera, uno puede
obtener esa Unica instancia simplemente reinstanciando la clase.

Hay varias maneras de hacer un singleton en python, pero antes de eso,
dejemos en claro qué es un singleton: un singleton es una variable global
“lazy”.

En este contexto “lazy” quiere decir que hasta que la necesito no se instancia.
Excepto por eso, no habria diferencias visibles con una variable global.

El mecanismo “obvio” para hacer un singleton en python es un médulo, que son
singletons porque asi estan implementados.

Ejemplo:

>>> import os

>>> 0s.x=1

>>> 0S.X

1

>>> import os as o0s2
>>> 0S2.X

>>> 052.x=4
>>> 0S.X
4

>>>

No importa cuantas veces importe 0s (o cualquier otro médulo), no importa con
qué nombre lo haga, siempre es el mismo objeto.

Por lo tanto, podriamos poner todos nuestros singletons en un médulo (o en
varios) e instanciarlos con import y funciones dentro de ese médulo.

Ejemplo:
singletonl.py

18

Singletons

1 # -*- coding: utf-8 -*-
2

3 cosa = []

4

5 def misingle():

6 return cosa

>>> import singletonl

>>> uno=singletonl.misingle()
>>> dos=singletonl.misingle()
>>> print uno

[]

>>> uno.append('xx")

>>> print dos

['xx"]

Como pueden ver, uno y dos son el mismo objeto.

Una alternativa es no usar un singleton, sino lo que Alex Martelli llamé un Borg:

class Borg:
_ shared state = {}
def init (self):
self. dict = self. shared state

¢Coémo funciona?

>>> a=Borg()
>>> b=Borg()
>>> a.x=1

>>> print b.x
1

Si bien a y b no son el mismo objeto por lo que no son realmente singletons, el
efecto final es el mismo.

Por ultimo, si andds con ganas de probar magia mas potente, es posible hacer
un singleton usando metaclases, segun esta receta de Andres Tuells:

1 ## {{{ http://code.activestate.com/recipes/102187/ (rl1)
2 non

3 USAGE:

4 class A:

19

http://code.activestate.com/recipes/66531-singleton-we-dont-need-no-stinkin-singleton-the-bo/
http://code.activestate.com/recipes/102187-singleton-as-a-metaclass/

Singletons

©O© 00 N o !

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

20

__metaclass__ = Singleton
def init (self):
self.a=1
a=A()
b=A()

a is b #true

You
you
the

don't have access to the constructor,
only can call a factory that returns always
same instance.

_global dict = {}

def

Singleton(name, bases, namespace):
class Result:pass

Result. name_ _ = name
Result. bases = bases
Result. dict = namespace

~global dict[Result] = Result()

return Factory(Result)

class Factory:

def

def init (self, key):
self. key = key
def call (self):
return global dict[self. key]

test():

class A:
__metaclass__ = Singleton
def init (self):

self.a=1

a=A()

al=A()

print "a is al", a is al

a.a=12

a2=A()

Loops y medios loops

45 print "a.a == a2.a == 12", a.a == a2.a == 12
46 class B:

47 __metaclass__ = Singleton

48 b=B()

49 a=A()

50 print "a is b",a==b

51 ## end of http://code.activestate.com/recipes/102187/ }}}

Seguramente hay otras implementaciones posibles. Yo opino que Borg al no ser
un verdadero singleton, es la més interesante: hace lo mismo, son tres lineas de
codigo facil, eso es python.

Loops y medios loops

Repetirse es malo

Andénimo
Repetirse es malo

Andénimo

Hay una estructura de control que Knuth llama el “loop n y medio” (n-and-half
loop). Es algo asi:

Inicio Loop

l

A

also erdadero

Resto del programa B

21

Switches

iSe sale por el medio! Como siempre se pasa al menos por una parte del loop
(A), Knuth le puso "loop n y medio".

Esta es la representacién de esta estructura en Python:

while True:
frob(gargle)
Cortamos?
if gargle.blasted:
Cortamos!
break
refrob(gargle)

No, no quiero que me discutan. Esa es la forma de hacerlo. No hay que tenerle
miedo al break! En particular la siguiente forma me parece mucho peor:

frob(gargle)

Seguimos?

while not gargle.blasted:
refrob(gargle)
frob(gargle)

Es mas propensa a errores. Antes, podia ser que frob(gargle) no fuera lo
correcto. Ahora no solo puede ser incorrecto, sino que puede ser incorrecto o
inconsistente, si cambio solo una de las dos veces que se usa.

Claro, en un ejemplo de juguete esa repeticion no molesta. En la vida real, tal
vez haya 40 lineas entre una y otra y no sea obvio que esa linea se repite.

Switches

Hay una cosa que muchas veces los que programan en Python envidian de otros
lenguajes... switch (o case).

Si, Python no tiene un “if multirrama” ni un “goto computado” ni nada de eso.
Pero ... hay maneras y maneras de sobrevivir a esa carencia.

Esta es la peor:

if codigo == 'a':
return procesa af()

if codigo == 'b':
return procesa b()

22

Patos y Tipos

etc.
Esta es apenas un cachito mejor:

if codigo == 'a':
return procesa af()

elif codigo == 'b':
return procesa b()

etc.
Esta es la buena:

procesos = {
'a': procesa_a,
'b': procesa b,

etc.

return procesos[codigo] ()

Al utilizar un diccionario para clasificar las funciones, es mucho mas eficiente
que una cadena de if. Es ademas muchisimo mdés facil de mantener (por
ejemplo, podriamos poner procesos en un moédulo separado).

Patos y Tipos

"Estds en un laberinto de pasajes retorcidos, todos iguales.”
Will Crowther en "Adventure"

"Estds en un laberinto de pasajes retorcidos, todos
distintos.”

Don Woods en "Adventure"

Observemos este fragmento de cédigo:

23

Patos y Tipos

def diferencia(a,b):
Devuelve un conjunto con las cosas que estdn
en A pero no en B
return set(a) - set(b)

Set

Un set (conjunto) es una estructura de datos que almacena cosas sin
repeticiones. Por ejemplo, set([1,2,3,2]) es lo mismo que
set([1,2,3]).

También soporta las tipicas operaciones de conjuntos, como
interseccion, union y diferencia.

Ver también: Sets en la biblioteca standard

Es obvio como funciona con, por ejemplo, una lista:

>>> diferencia([1,2],[2,31)
set([1])

¢Pero es igual de obvio que funciona con cadenas?

>>> diferencia("batman","murciélago")
set(['b', 't', 'n'])

¢Por qué funciona? ¢Es que las cadenas estdn implementadas como una
subclase de list? No, la implementaciéon de las clases str o unicode es
completamente independiente. Pero son parecidos. Tienen muchas cosas en
comun.

S5 'L=[|C|’|a|'|S|'|a|]
>>> s='casa'
>>> 1[0] , s[0]

(‘c, 'c')

>>> 1[-2:1 , s[-2:]
(['s', 'a']l, 'sa')
>>> '-' . join(1l)
'‘c-a-s-a'

24

http://docs.python.org/library/stdtypes.html#set-types-set-frozenset

Genéricos

>>> '-'.join(s)
'c-a-s-a'

>>> set(l)

set(['a', 'c', 's'l])
>>> set(s)

set(['a', 'c', 's'])

Para la mayoria de los usos posibles, listas y cadenas son muy parecidas. Y
resulta que son lo bastante parecidas como para que en nuestra funcién
diferencia sean completamente equivalentes.

Un programa escrito sin pensar en “é{De qué clase es este objeto?” sino en
“¢{Qué puede hacer este objeto?”, es un programa muy diferente.

Para empezar, suele ser un programa mas “informal” en el sentido de que
simplemente asumimos que nos van a dar un objeto que nos sirva. Si no nos
sirve, bueno, habra una excepcion.

Al mismo tiempo que da una sensacion de libertad (iHey, puedo usar dos clases
sin un ancestro comun!) también puede producir temor ({Qué pasa si alguien
llama hacerpancho(Perro())?). Pues resulta que ambas cosas son ciertas. Es
posible hacer un pancho de perro, en cuyo caso es culpa del que lo hace, y es
problema suyo, no un error en la definiciéon de hacerpancho.

Esa es una diferencia filosoéfica. Si hacerpancho verifica que la entrada sea una
salchicha, siempre va a producir por lo menos un pancho. Nunca va a producir
un sandwich con una manguera de jardin en el medio, pero tampoco va a
producir un sandwich de portobelos salteados con ciboulette.

Es demasiado facil imponer restricciones arbitrarias al limitar los tipos de datos
aceptables.

Y por supuesto, si es posible hacer funciones genéricas que funcionan con
cualquier tipo medianamente compatible, uno evita tener que implementar
veinte variantes de la misma funcién, cambiando sélo los tipos de argumentos.
Evitar esa repeticién descerebrante es uno de los grandes beneficios de los
lenguajes de programaciéon dindmicos como python.

Genéricos

Supongamos que necesito poder crear listas con cantidades arbitrarias de
objetos, todos del mismo tipo, inicializados al mismo valor.

25

Genéricos

Comprensién de lista

En las funciones que siguen, [tipo() for i in range(cantidad)] se
llama una comprensiéon de lista, y es una forma més compacta de
escribir un for para generar una lista a partir de otra:

resultado=[]
for i in range(cantidad):
resultado.append(tipo())

No conviene utilizarlo si la expresion es demasiado complicada.

Ver también: Listas por comprension en el tutorial de Python

Un enfoque ingenuo podria ser este:

def listadestr(cantidad):
return ['' for i in range(cantidad)]

def listadeint(cantidad):
return [0 for i in range(cantidad)]

Y asi para cada tipo que necesite...
Los defectos de esa solucién son obvios. Una mejor solucién:

def listadecosas(tipo, cantidad):
return [tipo() for i in range(cantidad)]

Esa es una aplicacién de programacion genérica. Estamos creando cédigo que
solo puede tener un efecto cuando, méas adelante, lo apliquemos a un tipo. Es un
caso extremo de lo mostrado anteriormente, en este caso literalmente el tipo a
usar no importa. iCualquier tipo que se pueda instanciar sin argumentos sirve!

Desde ya que es posible — como diria un programador C++ — “especializar el
template”:

def templatelistadecosas(tipo):
def listadecosas(cantidad):
return [tipo() for i in range(cantidad)]

26

http://docs.python.org.ar/tutorial/datastructures.html#listas-por-comprensi-n

Genéricos

return listadecosas

>>> listadestr=templatelistadecosas(str)
>>> listadeint=templatelistadecosas(int)
>>>

>>> listadestr(10)

[II IIIIIIIIIIIIIIIIIIIIIIIIII]

>>> listadeint(10)
[0, 6, @, 0, 0, O, 0, 0, O, O]

El truco de ese fragmento es que templatelistadecosas crea y devuelve una
nueva funcién cada vez que la invoco con un tipo especifico. Esa funcién es la
“especializacion” de templatelistadecosas.

Otra forma de hacer lo mismo es utilizar la funcién functools.partial de la
biblioteca standard:

import functools
def listadecosas(tipo, cantidad):
return [tipo() for i in range(cantidad)]

listadestr=functools.partial(listadecosas, (str))
listadeint=functools.partial(listadecosas, (int))

Este enfoque para resolver el problema es mas tipico de la asi llamada
“programacion funcional”, y partial es una funcién de orden superior
(higher-order function) que es una manera de decir que es una funcién que se
aplica a funciones.

¢Notaron que todo lo que estamos haciendo es crear funciones muy poco
especificas?
Por ejemplo, listadecosas también puede hacer esto:
import random
>>> listaderandom=functools.partial(listadecosas,
(Lambda : random.randint(0,100)))

>>> listaderandom(10)
[68, 92, 83, 55, 89, 2, 9, 74, 9, 58]

Después de todo... ¢Quién dijo que tipo era un tipo de datos? iTodo lo que
hago con tipo es tipo()!

27

Decoradores

O sea que tipo puede ser una clase, o una funcion, o cualquiera de las cosas que
en python se llaman callables.

lambdas

lambda define una “funcién andénima”. EL ejemplo usado es el
equivalente de

def f():
return random.randint(0,100)
listaderandom=functools.partial(listadecosas, f)

La ventaja de utilizar lambda es que, si no se necesita reusar la funcion,
mantiene la definicién en el lugar donde se usa y evita tener que
buscarlo en otra parte al leer el codigo.

Mas informacién

Decoradores

En un capitulo posterior vamos a ver fragmentos de cédigo como este:

159 @bottle.post('/")
160 @bottle.get('/")
161 @bottle.view('usuario.tpl')
162 def alta():

163 """Crea un nuevo slug.

Esos misteriosos @algo son decoradores. Un decorador es simplemente una
cosa que se llama pasando la funcidén a decorar como argumento. Lo que en
matematica se denomina “composicion de funciones”.

Usados con cuidado, los decoradores mejoran mucho la legibilidad de forma
casi magica. ¢Querés un ejemplo? Asi se veria ese cddigo sin decoradores:

def alta():
"""Crea un nuevo Slug

28

http://docs.python.org.ar/tutorial/controlflow.html#formas-con-lambda

Decoradores

UGH
alta = bottle.route('/"')(bottle.view('usuario.tpl')(alta))

¢Cuando usar decoradores? Cuando querés cambiar el comportamiento de una
funcién, y el cambio es:

 Suficientemente genérico como para aplicarlo en mdas de un lugar.

* Independiente de la funcién en si.

Como decoradores no esta cubierto en el tutorial vamos a verlos con un poco de
detalle, porque es una de las técnicas que mas diferencia pueden hacer en tu
codigo.

Los decoradores se podrian dividir en dos clases, los “con argumentos” y los
“sin argumentos”.

Los decoradores sin argumentos son mas faciles, el ejemplo clasico es un
“memoizador” de funciones. Si una funcién es “pesada”, no tiene efectos
secundarios, y estd garantizado que siempre devuelve el mismo resultado a
partir de los mismos parametros, puede valer la pena “cachear” el resultado.
Ejemplo:

deco.py
1 # -*- coding: utf-8 -*-
2
3 def memo(f):
4 cache={}
5 def memof(arg):
6 if not arg in cache:
7 cache[arg]=f(arg)
8 return cachelarg]
9 return memof
10
11 @memo
12 def factorial(n):
13 print 'Calculando, n = ',n
14 if n > 2:
15 return n * factorial(n-1)
16 else:
17 return n
18

29

http://docs.python.org.ar/tutorial/contenido.html

Decoradores

19 print factorial
20 print factorial
21 print factorial
22 print factorial

—_— e~~~

4)
4)
5)
3)

¢Qué sucede cuando lo ejecutamos?

$ python codigo/1/deco.py

Calculando, n = 4
Calculando, n = 3
Calculando, n = 2
24

24

Calculando, n= 5
120

6

Resulta que ahora no siempre se ejecuta factorial. Por ejemplo, el segundo
llamado a factorial(4) ni siquiera entré en factorial, y el factorial(5)
entrd una sola vez en vez de 4. ’

7 Usando un cache de esta forma, la versiéon recursiva puede ser mdas
eficiente que la version iterativa, dependiendo de con qué argumentos
se las llame (e ignorando los problemas de agotamiento de pila).

Hay un par de cosas ahi que pueden sorprender un poquito.

* memo toma una funciéon f como argumento y devuelve otra (memof). Eso ya
lo vimos en genéricos.

e cache queda asociada a memof, para cada funciéon “memoizada” hay un
cache separado.

Eso es asi porque es local a memo. Al usar el decorador hacemos
factorial = memo(factorial) y como esa memof tiene una referencia al
cache que se cred localmente en esa llamada a memo, ese cache sigue
existiendo mientras memof exista.

Si uso memo con otra funcidn, es otra memof y otro cache.

Los decoradores con argumentos son... un poco mas densos. Veamos un
ejemplo en detalle.

Consideremos este ejemplo “de juguete” de un programa cuyo flujo es
impredecible 8

30

Decoradores

8 Si, ya sé que realmente es un poco predecible porque no uso bien
random. Es a propésito ;-)
decol.py

-*- coding: utf-8 -*-
import random

def f1()
print 'Estoy haciendo algo importante'

def f2():
print 'Estoy haciendo algo no tan importante'

O 00O NO Ul &~ WN -

1

(<]

def f3():
print 'Hago varias cosas'
12 for f in range(1,5):
13 random.choice([f1,f2])()
14
15 3()

=
=

Al ejecutarlo hace algo asi:

$ python codigo/1/decol.py

Hago varias cosas

Estoy haciendo algo no tan importante
Estoy haciendo algo importante

Estoy haciendo algo no tan importante
Estoy haciendo algo no tan importante

Si no fuera tan obvio cudl funcién se ejecuta en cada momento, tal vez nos
interesaria saberlo para poder depurar un error.

Un tradicionalista te diria “andé a cada funcion y agregdle logs”. Bueno, pues es
posible hacer eso sin tocar cada funcién (por lo menos no mucho) usando
decoradores.

deco2.py

1 # -*- coding: utf-8 -*-
2 import random

3
4 def logger(nombre):
5 def wrapper(f):

31

Decoradores

6 def f2(*args):

7 print '===> Entrando a',nombre
8 r=f(*args)

9 print '<=== Saliendo de',nombre
10 return r

11 return f2

12 return wrapper

13

14 @logger('F1')

15 def f1():

16 print 'Estoy haciendo algo importante'
17

18 @logger('F2')

19 def f2():

20 print 'Estoy haciendo algo no tan importante'
21

22 @logger('Master')

23 def f3():

24 print 'Hago varias cosas'

25 for f in range(1,5):

26 random.choice([f1,f2])()

27

28 f3()

¢Y qué hace?

$ python codigo/1/deco2.py

===> Entrando a Master

Hago varias cosas

===> Entrando a F1

Estoy haciendo algo importante

<=== Saliendo de F1

===> Entrando a F1

Estoy haciendo algo importante

<=== Saliendo de F1

===> Entrando a F2

Estoy haciendo algo no tan importante
<=== Saliendo de F2

===> Entrando a F2

Estoy haciendo algo no tan importante
<=== Saliendo de F2

32

Claro pero corto pero claro

<=== Saliendo de Master

Este decorador es un poco mas complicado que memo, porque tiene dos partes.

Recordemos que un decorador tiene que tomar como argumento una funcién y

devolver una funcién °.

9 No es estrictamente cierto, podria devolver una clase, o cualquier cosa
x que soporte x(f) pero digamos que una funcién.

Entonces al usar logger en fl en realidad no voy a pasarle f1 a la funcién
logger sino al resultado de logger(‘F1’)

Eso es lo que hay que entender, asi que lo repito: iNo a logger sino al
resultado de logger(‘F1’)!

En realidad logger no es el decorador, es una “fadbrica” de decoradores. Si
hago logger(‘F1’) crea un decorador que imprime ===> Entrando a Fl y
<=== Saliendo de F1l antesy después de llamar a la funcién decorada.

Entonces wrapper es el decorador “de verdad”, y es comparable con memo y f2
es el equivalente de memof, y tenemos exactamente el caso anterior.

Claro pero corto pero claro

Depurar es dos veces mas dificil que programar. Por lo tanto,
si escribfs el codigo lo mas astuto posible, por definicién, no
sos lo suficientemente inteligente para depurarlo.

Brian W. Kernighan

Una de las tentaciones de todo programador es escribir cédigo corto 10 vo
mismo soy débil ante esa tentacion.

10 Esta peculiar perversion se llama “code golfing”. Y es muy divertida, si
no se convierte en un modo de vida.

Codigo Corto
j=''.join

seven seg=Llambda z:j(j(') || |'"[ord(\
"ufJcd*\]Rml"[int(a)])/u%8*2:][:3]for a in z)+\

33

Claro pero corto pero claro

"\n"for u in(64,8,1))

>>> print seven seg('31337')
S I B I

S I B I

El problema es que el cédigo se escribe una sola vez, pero se lee cientos. Cada
vez que vayas a cambiar algo del programa, vas a leer mas de lo que escribis.
Por lo tanto es fundamental que sea facil de leer. El cédigo muy corto es
ilegible. El cddigo demasiado largo también.

Funciones de 1000 lineas, ifs anidados de 5 niveles, cascadas de condicionales
con 200 ramas... todas esas cosas son a veces tan ilegibles como el ejemplo
anterior.

Lo importante es lograr un balance, hacer que el cédigo sea corto, pero no
demasiado corto. En python hay varias estructuras de control o de datos que
ayudan en esa mision.

Consideremos la tercera cosa que aprende todo programador: iteraciéon. En
python, se itera sobre listas 1 por lo que no sabemos, a priori, la posiciéon del
item que estamos examinando, y a veces es necesaria.

11 No exactamente, se itera sobre iterables, valga la redundancia, pero los
podemos pensar como listas.

Malo:

index=0
happy items=[]
for item in lista:
if item.is happy:
happy items.append(index)
index+=1

Mejor:

happy items=[]
for index, item in enumerate(lista):
if item.is happy:

34

Lambdas vs alternativas

happy items.append(index)
Mejor si te gustan las comprensiones de lista:

happy items=[index for (index, item) in enumerate(lista) \
if item.is happy 1]

Tal vez demasiado:
filter(lambda x: x[0] if x[1].is happy else None, enumerate(lista))

¢Por qué demasiado? Porque yo no entiendo que hace a un golpe de vista,
necesito “desanidarlo”, leer el lambda, desenredar el operador ternario, darme
cuenta de qué filtra, ver a qué se aplica el filtro.

Seguramente otros, mejores programadores si se dan cuenta. En cuyo caso el
limite de “demasiado corto” para ellos estara mas lejos.

Sin embargo, el cédigo no se escribe para uno (o al menos no se escribe sélo
para uno), sino para que lo lean otros. Y no es bueno hacerles la vida dificil al
divino botén, o para ahorrar media linea.

Nota

La expresién ternaria u operador ternario se explica en Ternarios vs ifs

Lambdas vs alternativas

En ejemplos anteriores he usado lambda. éQué es lambda? Es otra manera de
definir una funcién, nada mas. En lo que a python respecta, estos dos
fragmentos son exactamente lo mismo:

suma = lambda a,b: a+b

def suma(a,b):
return a+b

Lambda tiene una limitacién: Su contenido solo puede ser una expresion, es
decir, algo que “devuelve un resultado”. El resultado de esa expresion es el
resultado del lambda.

35

Lambdas vs alternativas

¢Cuando conviene usar lambda, y cudndo definir una funcién? Mas alla de la
obviedad de “cuando lambda no alcanza, usa funciones”, en general, me parece
mas claro usar funciones, a menos que haya un excelente motivo.

Por otro lado, hay veces que queda muy bonito como para resistirse,
especialmente combinado con filter:

Devuelve los items mayores que O de una lista
filter (lambda x: x > 0 , lista)

Pero yo probablemente haria esto:

Devuelve los items mayores que O de una lista
[x for x in lista if x > 0]

¢Es uno mas legible que el otro? No lo sé. Si sé que el primero tiene un “gusto”
mas a programacion funcional, mientras que el segundo es més unicamente
python, pero es cuestion de preferencias personales.

Usar lambda en el medio de lineas de cddigo o como argumentos a funciones
puede hacer que la complejidad de la linea pase el umbral de “expresivo” a
“farolero”, y disminuye la legibilidad del cédigo.

Un caso en el que lambda es mejor que una funcién es cuando se usa una Unica
vez en el coédigo y el significado es obvio, porque insertar definiciones de
funciones “internas” en el medio del cédigo arruina el flujo.

import random

>>> listaderandom=functools.partial(listadecosas,
(lambda : random.randint(0,100)))

>>> listaderandom(10)

[68, 92, 83, 55, 89, 2, 9, 74, 9, 58]

Me parece més elegante que esto:

import random
def f1():
return random.randint(0,100)
>>> listaderandom=functools.partial(listadecosas,
(f1))
>>> listaderandom(10)
[68, 92, 83, 55, 89, 2, 9, 74, 9, 58]

36

Ternarios vs ifs

Especialmente en un ejemplo real, donde f1 se va a definir en el medio de un
algoritmo cualquiera con el que no tiene nada que ver.

Como el lector verd... me cuesta elegir. En general, trato de no usar lambda a
menos que la alternativa sea farragosa y ensucie el entorno de cédigo.

Ternarios vs ifs

El operador ternario en python es relativamente reciente, aparecié en la versién
2.5y es el siguiente:

>>> "A" if True else "B"

A

>>> "A" if False else "B"

B

Es una forma abreviada del if que funciona como expresién (se evalia y

devuelve un valor).

La forma general es:
VALORL if CONDICION else VALOR2

Si CONDICION es verdadera, entonces la expresiéon devuelve VALOR1, si no,
devuelve VALOR2.

¢Cual es el problema del operador ternario?

Sdélo se puede usar cuando no te importe no ser compatible con python 2.4.
Acordéate que hay (y va a haber hasta el 2013 por lo menos) versiones de Linux
en amplio uso con python 2.4

Si ignoramos eso, hay casos en los que simplifica mucho el cddigo. Tomemos el
ejemplo de un argumento por default, de un tipo modificable a una funcién.
Esta es la versién clasica:

class c:
def f(self, arg = None):
if arg is None:
self.arg = []
else:
self.arg = arg

Y esta es la version “moderna”:

37

Pedir perddn o pedir permiso

class c:
def f(self, arg = None):
self.arg = 42 if arg is None else arg

|«

¢La ventaja? iSe lee de corrido! “self.arg es 42 si arg es None, si no, es arg”

Nota

La version realmente obvia:

>>> class c:
def f(self, arg=[]):
self.arg=arg

Tiene el problema de que... no funciona. Al ser [] modificable, cada vez
que se llame a instancia.f() sin argumentos se va a asignar la
misma lista a instancia.arg. Si luego se modifica su contenido en
alguna instancia... iSe modifica en todas las instancias! Ejemplo:

>>> cl=c()

>>> cl.f()

>>> c2=c()

>>> c2.f()

>>> cl.arg.append('x")

>>> c2.arg

['x']

Si, es raro. Pero tiene sentido si se lo piensa un poco. En python la
asignacion es unicamente decir “este nombre apunta a este objeto”.

El [] de la declaracion es un objeto Unico. Estamos haciendo que
self.arg apunte a ese objeto cada vez que llamamos a c. f.

Con un tipo inmutable (como un string) esto no es problema.

Pedir perddén o pedir permiso

"Puede fallar.”

38

Pedir perdén o pedir permiso

Tu Sam

No hay que tener miedo a las excepciones. Las cosas pueden fallar, y cuando
fallen, es esperable y deseable que den una excepcion.

¢Cémo sabemos si un archivo se puede leer? éCon os.stat(“archivo”)? iNo,

non

con open(“archivo”,”r")!

Por ejemplo, esto no es buen python:
esnumero.py

1 # -*- coding: utf-8 -*-

2

3 import string

4

5 def es numero(x):

6 '"'"'"Verifica que x sea convertible a ndmero''
7 s = str(x)

8 for c in s:

9 if c not in string.digits+'."':
10 return False

11 return True

12

13 s=raw_input()
14 if es numero(s):

15 print "El doble es ", float(s)*2
16 else:
17 print "No es un numero"

Eso lo que muestra es miedo a que falle float(). (Y sabés qué? float estd
mucho mejor hecha que mi es_numero...

Esto es mucho mejor Python:

s = raw_input()
try:

print "El doble es ",2 * float(s)
except ValueError:

print "No es un ndmero"

Esto estd muy relacionado con el tema de “duck typing” que vimos antes. Si
vamos a andarnos preocupando por como puede reaccionar cada uno de los
elementos con los que trabajamos, vamos a programar de forma completamente

39

Pedir perddn o pedir permiso

burocratica y descerebrante.

Lo que queremos es tratar de hacer las cosas, y manejar las excepciones como
corresponda. éNo se pudo calcular el doble? iOk, avisamos y listo!

No hay que programar a la defensiva, hay que ser cuidadoso, no miedoso.

Si se produce una excepcioén que no te imaginaste, esta bien que se propague.
Por ejemplo, si antes en vez de un ValueError sucediera otra cosa, queremos
enterarnos.

Faltan subsecciones? Se pueden agregar si la idea surge viendo los otros
capitulos.

40

La vida es Corta

La vida es Corta

Hasta que cumple veinticinco, todo hombre piensa cada
tanto que dadas las circunstancias correctas podrfa ser el
mas jodido del mundo. Si me mudara a un monasterio de
artes marciales en China y estudiara duro por diez afos. Si
mi familia fuera masacrada por traficantes colombianos y
jurara venganza. Si tuviera una enfermedad fatal, me
quedara un afno de vida y lo dedicara a acabar con el crimen.
Si tan s6lo abandonara todo y dedicara mi vida a ser jodido.

Neal Stephenson (Snow Crash)

A los veinticinco, sin embargo, uno se da cuenta que realmente no vale la pena
pasarse diez anos estudiando en un monasterio, porque no hay WiFi y no hay
una cantidad ilimitada de afios como para hacerse el Kung Fu.

De la misma forma, cuando uno empieza a programar cree que cada cosa que
encuentra podria rehacerse mejor. Ese framework web es demasiado grande y
complejo. Esa herramienta de blog no tiene exactamente los features que yo
quiero. Y la reacciéon es “iYo puedo hacerlo mejor!” y ponerse a programar
furiosamente para demostrarlo.

Eso es bueno y es malo.

Es bueno porque a veces de ahi salen cosas que son, efectivamente, mucho
mejores que las existentes. Si nadie hiciera esto, el software en general seria
una porqueria.

Es malo porque la gran gran mayoria de las veces, tratando de implementar el
framework web numero 9856, que es un 0.01% mejor que los existentes, se
pasa un afilo y no se hace algo original que realmente puede hacer una
diferencia.

Por eso digo que “la vida es corta”. No es que sea corta, es que es demasiado
corta para perder tiempo haciendo lo que ya esta hecho o buscandole la quinta
pata al gato. Hay que sobreponerse a la tristeza de que nunca vamos a usar
100% programas hechos por nosotros y nuestros amigos, y aplicar la fuerza en
los puntos criticos, crear las cosas que no existen, no las que ya estén.

Antes de decidirse a empezar un proyecto hay que preguntarse muchas cosas:

* {Me va a dejar plata?

41

El Problema

* {Qué es lo nuevo de este proyecto?

¢Tengo alguna idea de implementacién que nadie tuvo?

¢Tengo alguna idea de interface original?

¢Por qué alguien va a querer usar eso?
* ¢(Tengo tiempo y ganas de encarar este proyecto?

e {Me voy a divertir haciéndolo?

Las mas importantes son probablemente la dltima y la primera. La primera
porque de algo hay que vivir, y la tltima porque es suficiente. Si uno decide que
si, que va a encarar un proyecto, hay que tratar de programar lo menos posible.

Una de las tentaciones del programador es afeitar yaks 12, es una actividad
inutil en si misma, que uno espera le dé beneficios més adelante.

12 Frase inventada por Carlin Vieri

Yo estoy escribiendo este libro que tiene links a URLs. Yo quiero que
esas URLs sean validas para siempre. Entonces necesito poder
editarlas después de que se imprima el libro y me gustaria un
“acortador” de URLs donde se puedan editar. Como no lo encuentro lo
escribo.

Si siguiera con “y para eso necesito hacer un framework web, y un
moddulo para almacenar los datos”... estoy afeitando yaks.

Para poder hacer A, uno descubre que necesita B, para B necesita C. Cuando
llegas a D... estds afeitando yaks.

Si necesitds B para lograr A, entonces, buscd una B en algun lado, y usala. Si
realmente no existe nada parecido, entonces ahora tenés dos proyectos. Pensa
si te interesa mas A o B, y si podés llevar los dos adelante. Es un problema.

En este capitulo lo que vamos a hacer es aprender a no reinventar la rueda.
Vamos a elegir un objetivo y vamos a lograrlo sin afeitar ningtn yak. Vas a ver
como creamos un programa util con casi nada de cédigo propio.

El Problema

Recibf algunas quejas acerca de que algunos links en mis
libros no funcionaban cuando fueron publicados.

42

http://projects.csail.mit.edu/gsb/old-archive/gsb-archive/gsb2000-02-11.html

El Problema

Para el proximo libro que estoy escribiendo, le propuse a mi
editor crear un sitio para registrar las referencias
mencionadas.

Usando referencias ascii cortas y Unicas a lo largo del libro,
es facil proveer un servicio sencillo de redireccién a la URL
de destino, y arreglarlo cuando cambie (simplemente
creando un alerta de email si la redireccién da error 404).

Tarek Ziadé en URLs in Books

Ya que no tengo editor, lo voy a tener que hacer yo mismo. Me parece una
buena idea, va a ser tutil para este proyecto, no encuentro nada hecho similar 13
es un buen ejemplo del objetivo de este capitulo... ivendido!

13 El que me hizo ver esa cita de Tarek Ziadé fué Martin Gaitdn. Con el
capitulo ya escrito, Juanjo Conti me ha hecho notar http://a.gd

Una vez decidido a encarar este proyecto, establezcamos las metas:

* Un redirector estilo tinyURL, bit.ly, etc.

* Que use URLs cortas y mnemotécnicas.

* Que el usuario pueda editar las redirecciones en cualquier momento.

* Que notifique cuando la URL no sirva, para poder corregirla.
Ademds, como metas “ideoldgicas”:

* Un minimo de afeitado de yaks.

* Que sea un programa relativamente breve.

» Cédigo lo més simple posible: no hay que hacerse el piola, porque no
quiero mantener algo complejo.

* Cada vez que haya que hacer algo: buscar si ya estd hecho (excepto el
programa en si; si no, el capitulo termina dentro de dos renglones).

Separemos la tarea en componentes:
* Una funcién que dada una URL genera un slug 14
* Un componente para almacenar las relaciones slug => URL
* Un sitio web que haga la redirecciéon

* Un mecanismo de edicion de las relaciones

43

http://tarekziade.wordpress.com/2009/04/19/urls-in-books/
http://a.gd

Twill

14 Slug es un término que vi en Django: un identificador unico formado
con letras y nimeros. En este caso, es la parte tnica de la URL.

Veamos los componentes elegidos para este desarrollo.

Twill

Una de las cosas interesantes de este proyecto me parece hacer que el sistema
testee automaticamente las URLs de un usuario.

Una herramienta muy cémoda para estas cosas es Twill que podria definirse
como un lenguaje de testing de sitios web.

Por ejemplo, si todo lo que quiero es saber si el sitio www.google.com funciona
es tan sencillo como:

go http://www.google.com
code 200

Y asi funciona:

$ twill-sh twilltest.script

>> EXECUTING FILE twilltest.script
AT LINE: twilltest.script:0

==> at http://www.google.com.ar/
AT LINE: twilltest.script:1

1 of 1 files SUCCEEDED.

Ahora bien, twill es demasiado para nosotros. Permite almacenar cookies 15
llenar formularios, y mucho més. Yo tan solo quiero lo siguiente:

15 Como problema adicional, almacena cookies en el archivo que le digas.
Serio problema de seguridad para una aplicacién web.

1. Ir al sitio indicado.
2. Testear el cddigo (para asegurarse que la pagina existe).

3. Verificar que un texto se encuentra en la pagina (para asegurarse que
ahora no es un sitio acerca de un tema distinto).

O sea, solo necesito los comandos twill code y find. Porque soy buen tipo,
podriamos habilitar notfind y title.

44

http://twill.idyll.org

Twill

Todos esos comandos son de la forma comando argumento con lo que un parser
de un lenguaje “minitwill” es muy féacil de hacer:
pyurl3.py

10 from twill.commands import go, code, find, notfind, title
11

12

13 def minitwill(url, script):

14 '''Dada una URL y un script en una versién limitada
15 de twill, ejecuta ese script.

16 Apenas una linea falla, devuelve False.

17

18 Si todas tienen éxito, devuelve True.

19

20 Ejemplos:

21

22 >>> minitwill('http://google.com', 'code 200')
23 ==> at http://www.google.com.ar/

24 True

25

26 >>> minitwill('http://google.com', 'title bing')
27 ==> at http://www.google.com.ar/

28 title is 'Google'.

29 False

30

31 v

32 try:

33 go(url)

34 except:

35 return False

36 for line in script.splitlines():

37 cmd, arg = line.split(' ', 1)

38 try:

39 if cmd in ['code', 'find', 'notfind', 'title']:
40 # Si line es "code 200", esto es el equivalente
41 # de code(200)

42 r = globals()[cmd](arg)

43 except:

44 return False

45 return True

45

Bottle

46

Veamos minitwill en accién:

>>> minitwill('http://www.google.

==> at http://www.google.com.ar/
True

>>> minitwill('http://www.google.

==> at http://www.google.com.ar/
False

>>> minitwill('http://www.google.

==> at http://www.google.com.ar/
False

>>> minitwill('http://www.google.

==> at http://www.google.com.ar/
title is 'Google'.
False

>>> minitwill('http://www.google.

==> at http://www.google.com.ar/
title is 'Google'.
True

Bottle

com','code 200")
com','code 404")
'find bing')

com-,

com','title google')

com','title Google')

Esto va a ser una aplicacién web. Hay docenas de frameworks para crearlas
usando Python. Voy a elegir casi al azar uno que se llama Bottle porque es
sencillo, sirve para lo que necesitamos, y es un tnico archivo. Literalmente se

puede aprender a usar en una hora.

¢Qué P4ginas tiene nuestra aplicacion web?

e/ donde el usuario se puede autenticar o ver un listado de sus

redirecciones existentes.

* /SLUG/edit donde se edita una redireccion (solo para el dueino del slug).

e /SLUG/del para eliminar una redireccion (solo para el dueno del slug).

* /SLUG/test para correr el test de una redireccion (solo para el dueno del

slug).

¢ /SLUG redirige al sitio deseado.

e /static/archivo devuelve un archivo (para CSS, imagenes, etc)

46

http://bottle.paws.de

Bottle

* /logout cierra la sesién del usuario.
Empecemos con un “stub”, una aplicaciéon bottle minima que controle esas
URLs. El concepto basico en bottle es:

* Creas una funcién que toma argumentos y devuelve una pagina web

e Usas el decorador @bottle.route para que un PATH de URL
determinado llame a esa funcién.

* Si querés que una parte de la URL sea un argumento de la funcion, usas
:nombrearg y la tomds como argumento (ej: ver en el listado, funcién
borrar)

47

Bottle

Después hay mas cosas, pero esto es suficiente por ahora:
pyurll.py

-*- coding: utf-8 -*-
"'"'Un acortador de URLs pero que permite:

*

Editar adonde apunta el atajo mas tarde
* Eliminar atajos
Definir tests para saber si el atajo es valido

*

O 00 NO U WN =

10 # Usamos bottle para hacer el sitio

11 import bottle

12

13 @bottle.route('/")

14 def alta():

15 """Crea un nuevo slug"""

16 return "Pagina: /"

17

18 @bottle.route('/:slug/edit")

19 def editar(slug):

20 "“"Edita un slug"""

21 return "Editar el slug=%s"%slug

22

23 @bottle.route('/:slug/del"')

24 def borrar(slug):

25 """Elimina un slug"""

26 return "Borrar el slug=%s"%slug

27

28 # Un slug estd formado sélo por estos caracteres
29 @bottle.route('/:slug#[a-zA-Z0-9]+#")
30 def redir(slug):

31 """Redirigir un slug"""

32 return "Redirigir con slug=%s"%slug
33

34 @bottle.route('/static/:filename#.*#")
35 @bottle.route('/:filename#favicon.*#')
36 def static file(filename):

37 """Archivos estdticos (CSS etc)"""
38 # No permitir volver para atras

39 filename.replace("..",".")

40 # bottle.static file parece no funcionar en esta version de bottle

48

Autenticacion

41 return open(os.path.join("static", *filename.split("/")))
42

43 if name =='main ':

44 """Ejecutar con el server de debug de bottle"""
45 bottle.debug(True)

46 app = bottle.default app()

47

48 # Mostrar excepciones mientras desarrollamos

49 app.catchall = False

50

51 # Ejecutar aplicacidn

52 bottle.run(app)

Para probarlo, alcanza con python pyurll.py y sale esto en la consola:

$ python pyurll.py

Bottle server starting up (using WSGIRefServer())...
Listening on http://127.0.0.1:8080/

Use Ctrl-C to quit.

Apuntando un navegador a esa URL podemos verificar que cada funcién
responde en la URL correcta y hace lo que tiene que hacer:

[http://127.0.0.1:8...
€ C A % httpy/127.00.1

Borrar el slug=asdasdasd

La aplicacién de prueba funcionando.

Autenticacion

Bottle es un framework WSGI. WSGI es un standard para crear aplicaciones
web. Permite conectarlas entre si, y hacer muchas cosas interesantes.

En particular, tiene el concepto de “middleware”. éQué es el middleware? Es
una aplicacién intermediaria. El pedido del cliente va al middleware, este lo
procesa y luego se lo pasa a tu aplicacion original.

Un caso particular es el middleware de autenticaciéon, que permite que la
aplicacion web sepa si el usuario estd autenticado o no. En nuestro caso, ciertas
areas de la aplicacion sdlo deben ser accesibles a ciertos usuarios. Por ejemplo,
un atajo sélo puede ser editado por el usuario que lo creé.

49

http://wsgi.org/

Autenticacién

Todo lo que esta aplicacidn requiere del esquema de autenticacion es saber:

1. Si el usuario estd autenticado o no.

2. Cudl usuario es.

Vamos a usar AuthKit con OpenID. De esa manera vamos a evitar una de las
cosas mas molestas de las aplicaciones web, la proliferaciéon de cuentas de
usuario.

Al usar OpenID, no vamos a tener ningun concepto de usuario propio,
simplemente vamos a confiar en que OpenID haga su trabajo y nos diga “este
acceso lo estd haciendo el usuario X” o “este acceso es de un usuario sin
autenticar”.
¢Coémo se autentica el usuario?
Yahoo

Ingresa yahoo.com
Google

Ingresa https://www.google.com/accounts/08/id '°
Otro proveedor OpenliD

Ingresa el dominio del proveedor o su URL de usuario.

16 O se crean botones “Entrar con tu cuenta de google”, etc. En
views/invitado.tpl puede verse como hacerlo usando openid-selector
una muy interesante solucion basada pricipalmente en javascript.

Luego OpenID se encarga de autenticarlo via Yahoo/Google/etc. y darnos el
usuario autenticado como parte de la sesidén.

Hagamos entonces que nuestra aplicaciéon de prueba soporte OpenlID.

Para empezar, se “envuelve” la aplicaciéon con el middleware de autenticacién.
Es necesario importar varios mddulos nuevos 17 Eso significa que todos los
pedidos realizados ahora se hacen a la aplicacion de middleware, no a la
aplicacién original de bottle.

Esta aplicacion de middleware puede decidir procesar el pedido ella misma (por
ejemplo, una aplicaciéon de autenticacidon va a querer procesar los errores 401,
que significan “No autorizado”), o si no, va a pasar el pedido a la siguiente
aplicacién de la pila (en nuestro caso la aplicacion bottle).

50

http://authkit.org/
http://code.google.com/p/openid-selector/

Autenticacion

17 Hasta donde sé, necesitamos instalar:

» AuthKit

* Beaker

» PasteDeploy
» PasteScript
* WebOb

* Decorator
pyurl2.py

9 # Middlewares

10 from beaker.middleware import SessionMiddleware
11 from authkit.authenticate import middleware

12 from paste.auth.auth_tkt import AuthTKTMiddleware
13

21 if npame_ ==' main_ ':

22 """Ejecutar con el server de debug de bottle"""
23 bottle.debug(True)

24 app = bottle.default app()

25

26 # Mostrar excepciones mientras desarrollamos

27 app.catchall = False

28

29 app = middleware(app,

30 enable=True,

31 setup method='openid',

32 openid store type='file',

33 openid store config=os.getcwd(),
34 openid path signedin='/")

35

36 app = AuthTKTMiddleware(SessionMiddleware(app),
37 'some auth ticket secret');
38

39 # Ejecutar aplicacidn

40 bottle.run(app)

Para entender esto, necesitamos ver como es el flujo de una conexién standard
en Bottle (o en casi cualquier otro framework web). 18

51

Autenticacién

18 Este diagrama es 90% mentira. Por ejemplo, en realidad route no
llama a pyurl2.alta sino que la devuelve a app que después la
ejecuta. Sin embargo, digamos que es metaféricamente cierto.

bottle.template

Una conexién a la URL "/".

1. El usuario hace un pedido via HTTP pidiendo la URL “/”

2. La aplicacién web recibe el pedido, ve el PATH y pasa el mismo pedido a
route.

3. La funcién registrada para ese PATH es pyurl2.alta, y se la llama.

4. pyurl2.alta devuelve datos, pasados a un mecanismo de templates — o
HTML directo al cliente, pero eso no es lo habitual.

5. De una manera u otra, se devuelve el HTML al cliente, que vé el resultado
de su pedido.

Al “envolver” app con un middleware, es importante que recordemos que app
ya no es la misma de antes, tiene cdédigo nuevo, que proviene de AuthKit. 19 g
nuevo “flujo” es algo asi (lo nuevo estd en linea de puntos en el diagrama):

19 Nuevamente es muy mentiroso, estamos ignorando completamente el
middleware de sesion, y sin eso AuthKit no funciona. Como excusa: iEs
con fines educativos! todo lo que hacen las sesiones para nosotros es
que AuthKit tenga un lugar donde guardar las credenciales del usuario
para el paso 6.

52

Autenticacion

23
24
25
26
27
28
29

53

, \
GET / /encargéte',
\

e

\
'Error 401 HTML
|

bottle.route

i

bottle.template

Una conexién a la URL "/" con AuthKit.

1. El usuario hace un pedido via HTTP pidiendo la URL “/”

2. La aplicacién web recibe el pedido, ve el PATH y pasa el mismo pedido a
route.

3. La funcién registrada para ese PATH es pyurl2.alta, y se la llama.

4. Si pyurl2.alta decide que esta pagina no puede ser vista, sin estar
autenticado, entonces en vez de mandar datos al template, pasa una

excepcion a app (Error 401).
pyurl2.py

@bottle.route('/")
def alta():
"""Crea un nuevo slug"""
if not 'REMOTE USER' in bottle.request.environ:
bottle.abort (401, "Sorry, access denied.")
return "Pagina: /"

5. Si app recibe un error 401, en vez de devolverlo al usuario, le dice a
AuthKit: “hacete cargo”. Ahi Authkit muestra el login, llama a yahoo o
quien sea, verifica las credenciales, y una vez que esta todo listo...

Autenticacién

6. Vuelve a llamar a pyurl2.alta pero esta vez, ademdas de el request
original hay unas credenciales de usuario, indicando que hubo un login
exitoso.

7. pyurl2.alta devuelve datos, pasados a un mecanismo de templates — o
HTML directo al cliente, pero eso no es lo habitual.

8. De una manera u otra, HTML se devuelve al cliente, que vé el resultado de

su pedido.
Para que el usuario pueda cerrar su sesion, implementamos logout:
pyurl2.py
14 @bottle.route('/logout')
15 def logout():
16 bottle.request.environ['paste.auth tkt.logout user']()
17 if 'REMOTE USER' in bottle.request.environ:
18 del bottle.request.environ['REMOTE USER']
19 bottle.redirect('/")
20
¢Funciona?

€« C ¢ httpy/localhost

Please Sign In

OpenID Passurl:

Submit

El sitio muestra una pantalla de login (Es fea porque es la que viene por
default)

54

Autenticacién

'O!Sign in to Yahoo! x s = rEF%

€ 9 C | % https:login.yahoo.com/config/login?.intl=us&.src=openid& partner=&.pd=c%30nr & » [~ K~

YAHOO.’@ Yahoo! ' Help

localhost Are you protected?
o Create your sign-in seal.
Sign in to (Why?)

localhost with your Yahoo! ID

Yahoo! ID:

(e.g. free2rthyme@yahoo.com)

Password:

| can't access my account

Canvrinht ®@ 2010 Yahaa! Ine Al riahts recerved

Tal vez, el proveedor de OpeniD pide usuario/password

'O!Vahoo! Review and C... » \§&3 =[@][X

€ 9> C % https:yjopen.login.yahoo.com/openidfop/start?z=bHjSvs_9xBMAWVd3vUds1 T sINES » [~ K~

YAHOO.’@ Hi, martigarello~ Sign Out Help

n Warning: Yahoo! cannot verify this website. We recommend you
do not share any personal information with this website.

Click "Agree" to sign into localhost using your Yahoo! ID.

By clicking Agree you are agreeing to the Yahoo! Addttional Terms of Service.

Copyright ®2010 Yahoo! Inc. Al rights reserved.
CopyrightIP Policy | Terms of Sevice | Guide to Online Security | Privacy Policy

Por una Unica vez se pide autorizar al otro sitio.

€ > C % http/localhost:2080/

Pagina: /

55

Storm

Estamos autenticados y nuestra aplicacion de prueba funciona como antes.
¢Puede quedar bueno esto?

PyURL - Acorta URLs

PYURL es un servicio de inmortalizacién de URLs. Es parecido a un acortador, pero con algunas diferencias:

* Permite cambiar el destino del atajo.
¢ Avisa si la pagina deja de funcionar.

Para poder utilizar este servicio, debe autenticarse. No hace falta abrir una cuenta, utilice cualquier proveedor OpeniD.

Entrar usando:

Google® yaroo! AOL %> my@penD |

VOB Q3

Este mismo programa, en produccién, en http://pyurl.sytes.net

Storm

Es obviamente necesario guardar las relaciones usuario/slug/URL en alguna
parte. Lo obvio es usar una base de datos. Lo inteligente es usar un ORM.

A favor de usar un ORM:
No se usa SQL directo, lo que permite hacer todo (o casi) en Python. El

programa queda mas “limpio” al no tener que cambiar de contexto todo el
tiempo.

En contra de usar un ORM:
Es una dependencia extra, te ata a un producto que tal vez marfiana

“desaparezca”. Puede tener una pérdida de performance con respecto a
usar la base de datos en forma directa.

No me parece grave: Si tenemos cuidado y aislamos el ORM del resto de la
aplicacién, es posible reemplazarlo con otro mas adelante (o eliminarlo y
“bajar” a SQL o a NoSQL).

L0

Por lo tanto, en el espiritu de “no inventes, usa”, vamos a usar un ORM. En
particular vamos a usar Storm, un ORM creado por Canonical, que me gusta 20,

20 Me gusta mas Elixir pero es bastante mdas complicado para algunas
cosas.

56

http://pyurl.sytes.net
https://storm.canonical.com/
http://www.canonical.com
http://elixir.ematia.de/trac/wiki

Storm

En esta aplicaciéon los requerimientos de base de datos son minimos. Necesito

poder guardar algo como (url,usuario,slug,test) y poder después

recuperarlo sea por slug, sea por usuario.

Necesito que el slug sea tnico. Todos los demés campos pueden repetirse. 2

21 Seria bueno que la combinacién usuario+url lo fuera pero lo veremos
mas adelante.

Veamos cédigo. Primero, definimos lo que Storm requiere.

pyurl3.py
42 # Usamos storm para almacenar los datos
43 from storm.locals import *
44
45
46 # FIXME: tengo que hacer mds consistentes los nombres
47 # de los métodos.
48 class Atajo(object):
49 '''Representa una relacién slug <=> URL
50
51 Miembros:
52
53 id = Unico, creciente, entero (primary key)
54 url = la URL original
55 test = un test de validez de la URL
56 user = el duefio del atajo
57 activo = Si este atajo estd activo o no.
58 Nunca hay que borrarlos, sino el ID puede volver
59 atrds y se "recicla" una URL. iMalo, malo, malo!
60 status = Resultado del dGltimo test (bien/mal)
61 ultimo = Fecha/hora del Ultimo test
62 v
63
64 # Hacer que los datos se guarden via Storm
65 __storm_table = "atajo"
66 id = Int(primary=True)
67 url = Unicode()
68 test = Unicode()
69 user = Unicode()
70 activo = Bool()

57

Storm

71 status = Bool()
72 ultimo = DateTime()
73
74
Veamos ahora el init de esta clase. Como “truco”, se guarda
automaticamente en la base de datos al crearse:
pyurl3.py
65 def init (self, url, user, test=''):
66 '''Exigimos la URL y el usuario, test es opcional,
67 _id es automdtico.'''
68
69 # Hace falta crear esto?
70 r = self.store.find(Atajo, user=user, url=url)
71 self.url = url
72 self.user = user
73 self.activo = True
74 # Test por default, verifica que la pdgina exista.
75 self.test = u'code 200'
76 if r.count():
77 # FIXME: esto creo que es una race condition
78 # Existe la misma URL para el mismo usuario,
79 # reciclamos el id y el test, pero activa.
80 viejo = r.one()
81 Atajo.store.remove(viejo)
82 self.id = viejo.id
83 self.test = viejo.test
84 self.store.add(self)
85 # Autosave/flush/commit a la base de datos
86 self.save()
87
88 def save(self):
89 '''Método de conveniencia'''
90 Atajo.store.flush()
91 Atajo.store.commit()
92
93

¢Y de dénde sale self.store? De un método de inicializaciéon que hay que llamar
antes de poder crear una instancia de Atajo:

58

Storm

pyurl3.py
113 @classmethod
114 def init db(cls):
115 # Creamos una base SQLite
116 if not os.path.exists('pyurl.sqlite'):
117 cls.database = create database(
118 "sqlite:///pyurl.sqlite")
119 cls.store = Store(cls.database)
120 try:
121 # Creamos la tabla
122 cls.store.execute('""'
123 CREATE TABLE atajo (
124 id INTEGER PRIMARY KEY,
125 url VARCHAR,
126 test VARCHAR,
127 user VARCHAR,
128 activo TINYINT,
129 status TINYINT,
130 ultimo TIMESTAMP
131)t
132 cls.store.flush()
133 cls.store.commit()
134 except:
135 pass
136 else:
137 cls.database = create database(
138 "sqlite:///pyurl.sqlite")
139 cls.store = Store(cls.database)
140
141
142

El cédigo “original”, es decir, convertir URLs a slugs y viceversa es bastante
tonto:

pyurl3.py
125 # Caracteres validos en un atajo de URL
126 validos = string.letters + string.digits
127

128 def slug(self):

59

Storm

129 '''Devuelve el slug correspondiente al

130 ID de este atajo

131

132 Basicamente un slug es un nUmero en base 62,
133 representado usando a-zA-Z0-9 como "digitos",
134 y dado vuelta:

135

136 Mas significativo a la derecha.

137

138 Ejemplo:

139

140 100000 => '4aA’

141 100001 => '5aA’

142

143 e

144 s ="'

145 n = self.id

146 while n:

147 s += self.validos[n % 62]

148 n=n// 62

149 return s

150

151 @classmethod

152 # FIXME: no estoy feliz con esta API

153 def get(cls, slug=None, user=None, url=None):

154 """ Dado un slug, devuelve el atajo correspondiente.
155

156 Dado un usuario:

157 Si url es None, devuelve la lista de sus atajos
158 Si url no es None , devuelve *ese* atajo.
159 v

160 if slug is not None:

161 i=0

162 for p, 1 in enumerate(slug):

163 i += 62 ** p * cls.validos.index(1)
164 return cls.store.find(cls, id=i,

165 activo=True).one()

166 if user is not None:

167 if url is None:

168 return cls.store.find(cls, user=user,

60

Storm

169 activo=True)

170 else:

171 return cls.store.find(cls, user=user,
172 url=url, activo=True).one()

173

174 def delete(self):

175 ""'"Eliminar este objeto de la base de datos'''
176 self.activo = False

177 self.save()

178

179 def run test(self):

180 "'"'Correr el test con minitwill y almacenar
181 el resultado'''

182 self.status = minitwill(self.url, self.test)
183 self.ultimo = datetime.datetime.now()

184 self.save()

185

iVedmoslo en accion!

>>> from pyurl3 import Atajo

>>> Atajo.init db()

>>> al = Atajo(u'http://nomuerde.netmanagers.com.ar',
u'unnombredeusuario')

>>> al.slug()

b

>>> al = Atajo(u'http://www.python.org',
u'unnombredeusuario')

>>> al.slug()

'c

>>> Atajo.get(slug='b').url

u'http://nomuerde.netmanagers.com.ar'

>>> [x.url for x in Atajo.get(user=u'unnombredeusuario')]

[u'http://nomuerde.netmanagers.com.ar',

u'http://www.python.org'l]

Y desde ya que todo estd en la base de datos:

sqlite> .dump
PRAGMA foreign keys=0FF;
BEGIN TRANSACTION;

61

HTML / Templates

CREATE TABLE atajo (

id INTEGER PRIMARY KEY,

url VARCHAR,

test VARCHAR,

user VARCHAR

)

INSERT INTO "atajo" VALUES(1, 'http://nomuerde.netmanagers.com.ar',
NULL, 'unnombredeusuario');
INSERT INTO "atajo" VALUES(2, 'http://www.python.org' NULL,
‘unnombredeusuario');
COMMIT;

HTML / Templates

BlueTrip te da un conjunto razonable de estilos y una forma
comun de construir un sitio web para que puedas saltear la
parte aburrida y ponerte a disefar.

http://bluetrip.org

Soy un cero a la izquierda en cuanto a disefio grafico, HTML, estética, etc. En
consecuencia, para CSS y deméas simplemente busqué algo facil de usar y lo
usé. Todo el “look” del sitio va a estar basado en BlueTrip, un framework de
CSS.

Dado que no pienso disefiar mucho, igracias BlueTrip!
Necesitamos 3 paginas en HTML:
» Bienvenida (invitado):

* Ofrece login.
* Explica el servicio.
* Bienvenida (usuario):
* Ofrece crear nuevo atajo
* Muestra atajos existentes (ofrece edicion/eliminar/status)
* Ofrece logout

 Edicion de atajo:

e Cambiar donde apunta (URL).

62

http://bluetrip.org
http://bluetrip.org/

HTML / Templates

¢ Cambiar test.
¢ Probar test.

¢ Eliminar.
No voy a mostrar el detalle de cada pagina, mi HTML es bésico, sélo veamos
algunas capturas de las paginas:

'maienvenidoaPyURL x Y=g =& <
€ C % httpy/localhost:8080/ > O~ £

PyURL - Acorta URLs

PyURL es un semicio de inmortalizacién de URLs. Es parecido a un acortador, pero con algunas diferencias:

* Permite cambiar el destino del atajo.
* Avisa si la pagina deja de funcionar.

Para poder utilizar este sewicio, debe autenticarse. No hace falta abrir una cuenta, utilice cualquier proveedor OpenlD.

Su URL de identificacién OpenlD: Ingresar

Pantalla de invitado.

'O!Signedin * a2 =&)L
€« C % httpy/localhost:8080/ » O~ &~

PyURL - Acorta URLs

Atajos Existentes

Crear nuevo atajo:
Atajo Acciones
URL a acortar:

Editar / Eliminar / Probar

Crear

Pantalla de usuario.

63

HTML / Templates

'B http://localhost:8080... e B3

<~ C | % http://localhost:8080/c/edit > OG- F~

PyURL - Acorta URLs

Propiedades del atajo ¢

URL:
Ittp://google . cam
Activo:

4

Test:
code 200

Status:
Ultimo test: 2010-04-12 13:43:04.017789

Guardar

Usuario editando un atajo.

Como las paginas son en realidad generadas con el lenguaje de templates de
bottle, hay que pensar qué parametros se pasan, y usarlos en el template.
Luego, se le dice a bottle que template usar.

Tomemos como ejemplo la pagina usuario.tpl, que es lo que vé el usuario
registrado en el sitio y es la mas complicada. Explicacion breve de la sintaxis de
los templates 22,

22 Si no te gusta, es facil reemplazarlo con otro motor de templates.

e {{variable}} se reemplaza con el valor de variable.
e {{funcion()}} se reemplaza con el resultado de funcion()

¢ {{!cosa}} es un reemplazo inseguro. En los otros, se reemplaza < con
< etc. para prevenir problemas de seguridad.

 Las lineas que empiezan con % son Python. Pero....

Hay que cerrar cada bloque con %end (porque no podemos confiar en la
indentacion). Ejemplo:

%for x in range(10):
{{x}}

%end

64

HTML / Templates

Ignorando HTML aburrido, es algo asi:
usuario.tpl

25 %if mensaje:

26 <p class="{{clasemensaje}}">
27 {{'mensaje}}

28 </p>

29 %end

30 </div>

31

32 <div style="float: right; text-align: left; width: 350px;">
33 <form method="POST">

34 <fieldset>

35 <legend>Crear nuevo atajo:</legend>

36 <div>

37 <label for="url">URL a acortar:</label>

38 <input type="text" name="url" id="url"></div>
39 <button class="button positive">Crear</button>
40 </fieldset>

41 </form>

42 </div>

43

44 <div style="float:left;text-align: right; width: 350px;">
45 <table style="width:100%; ">

46 <caption>Atajos Existentes</caption>

47 <thead>

48 <tr> <th>Atajo</th> <th>Acciones</th> </tr>

49 </thead>

50 % for atajo in atajos:

51 <tr>

52 % if atajo.status:

53 <td><img src="/static/weather-clear.png" alt="Success"
54 align="MIDDLE" />

55 {{atajo.slug()}}

56 % else:

57 <td><img src="/static/weather-storm.png" alt="Failure"
58 align="MIDDLE" />

59 {{atajo.slug()}}

60 % end

61 <td>Editar /

65

Backend

62 Eliminar /
63 Probar

64 </tr>

65 %end

66 </table>

La pantalla para usuario no autenticado es un caso particular: la genera
AuthKit, no Bottle, por lo que hay que pasar el contenido como parametro de
creacion del middleware:

pyurl3.py
360 app = middleware(app,
361 enable=True,
362 setup _method='openid',
363 openid store type='file',
364 openid template file=os.path.join(os.getcwd(),
365 'views', 'invitado.tpl'),
366 openid store config=os.getcwd(),
367 openid path signedin='/")
368
Backend

Vimos recién que al template usuario.tmpl hay que pasarle:

* Un mensaje (opcional) con una clasemensaje que define el estilo.

* Una lista atajos conteniendo los atajos de este usuario.

También vemos que el formulario de acortar URLs apunta a esta misma pagina
con lo que la funcién debera:

* Ver si el usuario esta autenticado (o dar error 401)
 Sirecibe un pardmetro url, acortarlo y dar un mensaje al respecto.

* Pasar al template la variable atajos con los datos necesarios.
pyurl3.py

159 @bottle.post('/")

160 @bottle.get('/")

161 @bottle.view('usuario.tpl')
162 def alta():

163 """Crea un nuevo slug."""

66

Backend

164 # Requerimos que el usuario esté autenticado.

165 if not 'REMOTE USER' in bottle.request.environ:

166 bottle.abort (401, "Sorry, access denied.")

167 usuario = bottle.request.environ['REMOTE_USER'].decode('utf8")
168 # Data va a contener todo lo que el template

169 # requiere para hacer la pagina

170 data = {}

171 # Esto probablemente deberia obtenerse de una

172 # configuracion

173 data['baseurl'] = 'http://pyurl.sytes.net/'

174 # Si tenemos un parametro URL, estamos en esta

175 # funcion porque el usuario envié una URL a acortar.
176 if 'url' in bottle.request.POST:

177 # La acortamos

178 url = bottle.request.POST['url'].decode('utf8")
179 if not urlparse.urlparse(url).scheme:

180 url = 'http://' + url

181 parseada = urlparse.urlparse(url)

182 if not all([parseada.scheme, parseada.netloc]):
183 datal'url'] = None

184 data['short'] = None

185 datal 'mensaje']l = u"""URL caca!"""

186 data['clasemensaje']l = 'error'

187 else:

188 a = Atajo(url=url, user=usuario)

189 data['short'] = a.slug()

190 datal'url'] = url

191 # La probamos

192 a.run_test()

193 # Mensaje para el usuario de que el acortamiento
194 # tuvo éxito.

195 datal'mensaje']l = u'''La URL

196 %(url)s se convirtié en:
197

198 %(baseurl)s%(short)s'"'"' % data

199

200 # Clase (CSS que muestra las cosas como buenas
201 data['clasemensaje'] = 'success'

202 else:

203 # No se acortd nada, no hay nada para mostrar.
204 datal['url'] = None

67

Backend

205 data['short'] = None

206 datal['mensaje'] = None

207

208 # Lista de atajos del usuario.

209 data['atajos'] = Atajo.get(user=usuario)
210

211 # Crear la pdgina con esos datos.

212 return data

Las demaés paginas no aportan nada interesante:

pyurl3.py
274 @bottle.route('/:slug/edit')
275 @bottle.post('/:slug/edit')
276 @bottle.view('atajo.tpl')
277 def editar(slug):
278 ""“Edita un slug"""
279 if not 'REMOTE USER' in bottle.request.environ:
280 bottle.abort (401, "Sorry, access denied.")
281 usuario = bottle.request.environ['REMOTE USER'].decode('utf8"')
282
283 # Solo el duefio de un atajo puede editarlo
284 a = Atajo.get(slug)
285 # Atajo no existe o no sos el duefio
286 if not a or a.user != usuario:
287 bottle.abort (404, 'El atajo no existe')
288
289 if 'url' in bottle.request.POST:
290 # El usuario mandé el form
291 a.url = bottle.request.POST['url'].decode('utf-8")
292 a.activo = 'activo' in bottle.request.POST
293 a.test = bottle.request.POST['test'].decode('utf-8"')
294 a.save()
295 bottle.redirect('/")
296 return {'atajo': a,
297 'mensaje': '',
298 }
299
300

301 @bottle.route('/:slug/del")

302 def borrar(slug):

303 """Elimina un slug"""

304 if not 'REMOTE_USER' in bottle.request.environ:

68

Backend

305 bottle.abort (401, "Sorry, access denied.")

306 usuario = bottle.request.environ['REMOTE USER'].decode('utf8"')
307 # Solo el duefio de un atajo puede borrarlo

308 a = Atajo.get(slug)

309 if a and a.user == usuario:

310 a.delete()

311 # FIXME: pasar un mensaje en la sesidn

312 bottle.redirect('/")

313

314

315 @bottle.route('/:slug/test')
316 def run_test(slug):

317 """Corre el test correspondiente a un atajo"""
318 if not 'REMOTE USER' in bottle.request.environ:
319 bottle.abort (401, "Sorry, access denied.")
320 usuario = bottle.request.environ['REMOTE USER'].decode('utf8")
321

322 # Solo el duefo de un atajo puede probarlo

323 a = Atajo.get(slug)

324 if a and a.user == usuario:

325 a.run test()

326 # FIXME: pasar un mensaje en la sesion

327 bottle.redirect('/%s/edit' % slug)

328

329

330 # Un slug estd formado sélo por estos caracteres
331 @bottle.route('/:slug#[a-zA-ZO-9]+#")
332 def redir(slug):

333 """Redirigir un slug"""

334 # Buscamos el atajo correspondiente

335 a = Atajo.get(slug=slug)

336 if not a:

337 bottle.abort (404, 'El atajo no existe')
338 bottle.redirect(a.url)

339

340

341 @bottle.route('/static/:filename#.*#')
342 @bottle.route('/:filename#favicon.*#')
343 def static file(filename):

344 """Archivos estdticos (CSS etc)"""

345 # No permitir volver para atras

346 filename.replace("..", ".")

347 # bottle.static file parece no funcionar en esta version de bottle

69

Conclusiones

348 return open(os.path.join("static", *filename.split("/")))
349

Conclusiones

En este capitulo se ve una aplicaciéon web, completa, util y (semi)original. El
cédigo que hizo falta escribir fue... unas 250 lineas de python.

Obviamente esta aplicacion no esta lista para ponerse en produccién. Algunos
de los problemas obvios:

* Necesita un robots.txt para no pasarse la vida respondiendo a robots
* Se puede optimizar mucho

» Necesita proteccién contra DOS (ejemplo, limitar la frecuencia de corrida
de los tests)

* Necesita que correr un test no bloquee todo el sitio.

* Necesita ser util para el fin propuesto!

e Idea: formulario que toma una lista de URLs y devuelve la lista
correspondiente de enlaces acortados.

* Necesita muchisimo laburo de “UI”".

Y hay muchos features posibles:

* Opcionalmente redirigir en un IFrame y permitir cosas como comentarios
acerca de la pagina de destino.

» Estadisticas de uso de los links.

* Una p&agina publica “Los links de Juan Perez” (y convertirlo en
http://del.icio.us).

» Soportar cosas que no sean links si no texto (y convertirlo en un pastebin).
» Soportar imagenes (y ser un image hosting).
 Correr tests periddicamente.

* Notificar fallas de test por email.

Todas esas cosas son posibles... y quien quiera hacerlas, puede ayudar!

Este programa es open source, se aceptan sugerencias Tal vez hasta esté
funcionando en http://pyurl.sytes.net ... Visiten y ayuden!

70

http://del.icio.us
http://pyurl.sytes.net

Las Capas de una Aplicacién

Las Capas de una Aplicacion
"Que tu mano izquierda no sepa lo que hace tu mano
derecha”
Andénimo
En el capitulo anterior cuando estaba mostrando el uso del ORM puse

Si tenemos cuidado y aislamos el ORM del resto de la
aplicacion, es posible reemplazarlio con otro mas adelante (o
eliminarlo y "bajar" a SQL 0 a NoSQL).

¢Qué significa, en ese contexto, “tener cuidado”? Bueno, estoy hablando
bésicamente de lo que en inglés se llama multi-tier architecture.

Sin entrar en detalles formales, la idea general es decidir un esquema de
separacion en capas dentro de tu aplicacion.

Siguiendo con el ejemplo del ORM: si todo el acceso al ORM estd concentrado
en una sola clase, entonces para migrar el sistema a NoSQL alcanza con
reimplementar esa clase y mantener la misma seméntica.

Algunos de los “puntos” clasicos en los que partir la aplicacion son:
Interfaz/Légica/Datos y Frontend/Backend.

Por supuesto que esto es un formalismo: Por ejemplo, para una aplicacién
puede ser que todo twitter.com sea el backend, pero para los que lo crean,
twitter.com a su vez esta dividido en capas.

Yo no creo en definiciones estrictas, y no me voy a poner a decidir si un método
especifico pertenece a una capa u otra, normalmente uno puede ser flexible
siempre que siga al pie de la letra tres reglas:

Una vez definida que tu arquitectura es en capas “A”/”B”/”C”/”D” (exagerando,
normalmente dos o tres capas son suficiente):

* Las capas son una lista ordenada, se usa hacia abajo.
Si estds en la capa “B” usas “C”, no “A”.
* Nunca dejes que un componente se saltee una capa.

Si estds en la capa “A” entonces podés usar las cosas de la capa “B”. “B”
usa “C”. “C” usa “D”. Y asi. Nunca “A” usa “C”. Eso es joda.

71

http://en.wikipedia.org/wiki/Multitier_architecture

Proyecto

e Tenés que saber en qué capa estas en todo momento.

Apenas dudes “lestoy en B o en C?” la respuesta correcta es “estds en el
horno.”

¢Coémo sabemos en qué capa estamos? Con las siguientes reglas:

1. Si usamos el ORM estamos en la capa datos.

2. Si el método en el que estamos es accesible por el usuario, estamos en la
capa de interfaz.
3. Sinot 1 and not 2 estamos en la capa de légica.

No es exactamente un ejemplo de formalismo, pero este libro tampoco lo es.

Proyecto

Vamos a hacer un programa dividido en tres capas, interfaz/légica/datos. Vamos
a implementar dos veces cada capa, para demostrar que una separacion clara
independiza las implementaciones y mejora la claridad conceptual del cédigo.

El Problema

Pensemos en una aplicacion de tareas pendientes (el clasico TODO list). ¢Como
la podriamos describir de forma stuper genérica?

* Hay una lista de tareas almacenada en alguna parte (por ejemplo, una
base de datos).

* Cada tarea tiene una serie de atributos, por ejemplo, un texto
describiéndola, un titulo, un estado (hecho/pendiente), una fecha limite,
etc.

Podriamos asignarle a cada tarea una serie de atributos adicionales como
categorias (tags), colores, etc. Por ese motivo es probablemente una
buena idea poder asignar datos de forma arbitraria, mas alld de un
conjunto predefinido.

72

Proyecto

* Hay distintas maneras de ver la lista de tareas:

 Por fecha limite
¢ Por categoria
¢ Por fecha de dltimo update
¢ Por cualquier dato arbitrario que le podamos asignar segun
mencionamos antes.
* Hay que poder editar esos atributos de alguna forma.
Ahora pensemos en un tablero de Kanban. O pensemos en un sistema de

reporte de bugs.

¢Cudl es exactamente la diferencia en la descripcion al nivel que usé antes?
Bueno, la diferencia principal es cuales datos se asignan por default a cada
“tarea”. Si tenemos una descripcién razonable de cémo debiera ser una tarea,
entonces deberia ser posible implementar estas cosas compartiendo mucho
codigo.
Entonces dividamos esta tedrica aplicacién en capas:
Interfaz:

Muestra las tareas/bugs/tarjetas/loquesea y permite editarlas.
Légica:

Procesa los cambios recibidos via la interfaz, los valida y procesa.
Datos:

Luego de que un cambio es validado por la capa de ldgica, almacena el
estado en alguna parte, de alguna manera. Es responsable de definir
exactamente qué datos se esperan y/o aceptan.

Vamos a implementar esta aplicacién de una manera... peculiar. Cada capa va a
ser implementada dos veces, de maneras lo méas distintas posible.

La manera mas practica de implementar estas cosas es de atras para adelante:
FIXME hacer diagrama

Datos -> Légica -> Interfaz

73

http://es.wikipedia.org/wiki/Kanban

Capa de Datos: Disefo e Implementacién

Capa de Datos: Disefio e Implementacion

Necesitamos describir completamente y de forma genérica todas estas
aplicaciones.

Qué tenemos en comun:

Elementos
Son objetos que tienen un conjunto de datos. Deben incluir una
especificacion de cuales campos son requeridos y cuales no, y qué tipo de
datos es cada uno.

Ejemplo: una tarea, un bug, una tarjeta.

Campos
Cada uno de los datos que “pertenecen” a un elemento. Tiene un tipo
(fecha, texto, color, email, etc). Puede tener una funciéon de validacion.

Creo que con esos elementos puedo representar cualquiera de estas

aplicaciones. 23

23 La ventaja que tengo al ser el autor del libro es que si no es asi vengo,
edito la lista, y parece que tengo todo clarisimo desde el principio. No
es ese el caso.

Elementos

Estamos hablando de crear objetos y guardarlos en una base de datos.
Hablamos de que esos objetos tienen campos de distintos tipos. Si eso no te
hace pensar en un ORM por favor contdme en que estabas pensando.

Hay montones de ORM disponibles para python. No quiero que este capitulo
degenere en una discusion de cudl es mejor, por lo que voy a admitir de entrada
que el que vamos a usar no lo es, pero que tengo mis motivos para usarlo:

* Funciona
* Es relativamente simple de usar
* No tiene grandes complejidades escondidas

* Por todo lo anterior: te lo puedo explicar a la pasada

El ORM que vamos a usar se llama Storm y ya usamos en el capitulo anterior.

De hecho, uno podria decir “mi capa de datos es el ORM”, y que toda la
definicion de campos, etc. es ldgica de aplicacion, y no seria muy loco. En este

74

http://es.wikipedia.org/wiki/Mapeo_objeto-relacional
http://storm.canonical.com

Capa de Datos: Diseflo e Implementacion

ejemplo no voy a hacer eso principalmente para poder presentar una interfaz
uniforme en la capa de datos entre dos implementaciones.

Campos

Storm provee algunos tipos de datos incluyendo fechas, horas, strings,
nameros, y... Pickle. Pickle es interesante porque permite en principio
almacenar casi cualquier cosa, mientras no te interese indexar en base a ese
campo.

Con un poco de imaginacion uno puede guardar cualquier cosa usando Storm y
ofrecer una interfaz razonable para su uso. Al intentar tener un disefio tan
genérico necesitamos algo adicional: necesitamos poder saber qué campos
proveemos y de qué tipo es cada uno. Eso se llama introspeccién.

Disefio

Nuestro plan es crear una aplicacion que pueda ser cosas distintas
reemplazando pedazos de la misma. Para ello es fundamental ser claro al
definir la interfaz entre las capas. Si no es completamente explicita, si tiene
suposiciones que ignoramos, si no es clara en lo que hace, entonces no vamos a
tener capas separadas, vamos a tener un enchastre en el que se filtran datos de
una capa a otra a través de esos huecos en nuestras definiciones.

Por lo tanto, seria til tener algin mecanismo de especificacion de interfaces.
Por suerte, 1o hay: Zope.Interface

Primero, no dejes que te asuste el nombre. No vamos a implementar una
aplicacién Zope. Zope.Interface es una biblioteca para definir interfaces,
nomas.

No vamos a incluir aca un tutorial de Zope.Interface, pero creo que el cédigo es
bastante claro.

Veamos primero la interfaz que queremos proveer para los elementos.
datosl.py

5 # Definiciones de interfaces

6

7

8 class IFieldType(zope.interface.Interface):
9

10 """l a definicién de un tipo de campo.
11

75

https://storm.canonical.com/Manual#Tableofpropertiesvs.pythonvs.databasetypes
http://docs.zope.org/zope.interface/README.html

Capa de Datos: Disefo e Implementacién

12 name = zope.interface.Attribute("Nombre del tipo de campo")
13

14 def set value(v):

15 """Almacenar valor "v" en la instancia del campo."""
16

17 def get value(v):

18 """Obtener valor de la instancia del campo."""

19

20

21 class IElement(zope.interface.Interface):

22

23 """Un elemento a almacenar, una tarea, etc."""

24

25 def fields():

26 """Una lista de los campos de este elemento."""

27

28 def save():

29 """Guarda este elemento en storage persistente."""
30

31 def remove():

32 """Elimina este elemento del storage."""

33

34 # Fin de definicion de interfaces

Algunas aclaraciones con respecto a estas interfaces. Hay un elemento que no
vamos a implementar de manera abstracta en la capa de datos que deberia, en
cualquier implementacion seria, estar alli: busquedas.

Normalmente, la interfaz de datos deberia proveer algin mecanismo para
obtener un subconjunto de los elementos, tal vez ordenados por algun criterio.
Lamentablemente, es muy dificil implementar eso sin quedar pegados a la
implementacion del backend.

Vamos a proveer algunos mecanismos con este fin, pero desde ya sepan que son

limitados, y hacen que el cédigo sea ineficiente y complicado, comparado con lo
que deberta ser %%

24 iLero lero, es un ejemplo con fines educativos! iEsa excusa da para casi
todo, che!

76

Capa de Légica: Disefio

Capa de Légica: Disefio

Capa de Interfaz: Disefio

77

Documentacion y Testing

Documentacion y Testing

“Si lo que dice ahf no estd en el manual, esta equivocado. Si
estd en el manual es redundante.”

Califa Omar, Alejandrfa, Afio 634.

FIXME

1. Cambiar el orden de las subsecciones (probablemente)
2. ¢(Poner este capitulo después del de deployment?

3. Con el ejemplo nuevo, meter setUp / tearDown

¢Pero como sabemos si el programa hace exactamente lo que dice el manual?

Bueno, pues para eso (entre otras cosas) estan los tests 25 1os tests son la rama
militante de la documentaciéon. La parte activa que se encarga de que ese
manual no sea letra muerta e ignorada por perder contacto con la realidad, sino
un texto que refleja lo que realmente existe.

25 También estan para la gente mala que no documenta.

Si la realidad (el funcionamiento del programa) se aparta del ideal (el manual),
es el trabajo del test chiflar y avisar que estd pasando. Para que esto sea
efectivo tenemos que cumplir varios requisitos:
Cobertura
Los tests tienen que poder detectar todos los errores, o por lo menos
aspirar a eso.
Integracion
Los tests tienen que ser ejecutados ante cada cambio, y las diferencias de
resultado explicadas.
Ganas

El programador y el documentador y el tester (o sea uno) tiene que aceptar
que hacer tests es necesario. Si se lo ve como una carga, no vale la pena:
vas a aprender a ignorar las fallas, a hacer “pasar” los tests, a no hacer
tests de las cosas que sabés que son dificiles.

78

Docstrings

Por suerte en Python hay muchas herramientas que hacen que testear sea, si no
divertido, por lo menos tolerable.

Docstrings

Tomemos un ejemplo semi-zonzo: una funciéon para cortar pedazos de archivos
26

26 Ejemplo idea de Facundo Batista.

jack.py

jack.py va a ser un programa que permita cortar pedazos de archivos
en dos ejes. Es decir que le podemos indicar:
e De la linea A a la linea B

¢ De la columna X a la columna Y

Va a recibir esos parametros, un nombre de archivo, y produce el corte
en la salida standard.

Comencemos con una funcién que corta en el eje vertical, cortando por filas:

79

Generadores

Esta funcién que usa yield es lo que se llama un generador.

Trabajar de esta manera es mas eficiente. Por ejemplo, si lineas fuera
un objeto archivo, esto funciona sin leer todo el archivo en memoria.

Y si lineas es una lista... bueno, igual funciona.

jackl.py

1 # -*- coding: utf-8 -*-
2
3 def selecciona lineas(lineas, desde=0, hasta=-1):

http://docs.python.org.ar/tutorial/classes.html#generadores

Doctests

4 """Filtra el texto dejando sélo las lineas [desde:hasta].

5

6 A diferencia de los iterables en python, no soporta indices
7 negativos.

3 W

9

10 for i, 1 in enumerate(lineas):

11 if desde <= i < hasta:

12 yield(1l)

Esa cadena debajo del def se llama docstring y siempre hay que usarla. éPor
qué?

* Es el lugar “oficial” para explicar qué hace cada funcién
 iSirven como ayuda interactiva!

>>> import jackl
>>> help(jackl.selecciona_lineas)

Help on function selecciona lineas in module jackl:

selecciona lineas(lineas, desde=0, hasta=-1)
Filtra el texto dejando sdlo las lineas [desde:hastal].

A diferencia de los iterables en python, no soporta indices
negativos.

* Usando una herramienta como epydoc se pueden usar para generar una
guia de referencia de tu mddulo (imanual gratis!)

* Son el hogar de los doctests.

Doctests

“Los comentarios mienten. El cddigo no.’

Ron Jeffries

Un comentario mentiroso es peor que ningin comentario. Y los comentarios se
vuelven mentira porque el cédigo cambia y nadie edita los comentarios. Es el
problema de repetirse: uno ya dijo lo que queria en el cédigo, y tiene que volver
a explicarlo en un comentario; a la larga las copias divergen, y siempre el que

80

http://epydoc.sourceforge.net/

Doctests

estd equivocado es el comentario.

Un doctest permite asegurar que el comentario es cierto, porque el comentario
tiene codigo de su lado, no es sélo palabras.

Y acé viene la primera cosa importante de testing: Uno quiere testear todos los
comportamientos intencionales del cédigo.

Si el cédigo se supone que ya hace algo bien, aunque sea algo muy chiquitito, es
el momento ideal para empezar a hacer testing. Si vas a esperar a que la
funcién sea “interesante”, ya va a ser muy tarde. Vas a tener un déficit de tests,
vas a tener que ponerte un dia sdlo a escribir tests, y vas a decir que testear es
aburrido.

¢Como sé yo que selecciona lineas hace lo que yo quiero? iPorque la probé!
Como no soy el mago del cédigo que lo escribe y le anda a la primera, hice esto
en el intérprete interactivo:

>>> from jackl import selecciona lineas

>>> print range(10)[5:10]

[5, 6, 7, 8, 9]

>>> print list(selecciona lineas(range(10), 5, 10))
[5, 6, 7, 8, 9]

Y dije, si, ok, eso es coherente.

Si no hubiera hecho ese test manual no tendria la mas minima confianza en este
cddigo, y creo que todos hacemos esta clase de cosas, {0 no?.

El problema con este testing manual ad hoc es que lo hacemos una vez, la
funcién hace lo que se supone debe hacer (al menos por el momento), y nos
olvidamos.

Por suerte no tiene Por qué ser asi, gracias a los doctests.

De hecho, el doctest es poco mas que cortar y pegar esos tests informales que
mostré arriba. Veamos una version con algunos doctests:

jack2.py
1 # -*- coding: utf-8 -*-
2
3 def selecciona lineas(lineas, desde=0, hasta=-1):
4 """Filtra el texto dejando sélo las lineas [desde:hastal.
5
6 A diferencia de los iterables en python, no soporta indices

81

Doctests

7 negativos.

8

9 >>> list(selecciona lineas(range(10), 5, 10))
10 [5, 6, 7, 8, 9]

11 >>> list(selecciona lineas(range(10), -5, 1))
12 [0]

13 >>> list(selecciona lineas(range(10), 5, 100))
14 [5, 6, 7, 8, 9]

15 >>> list(selecciona lineas(range(10), 5, -1))
16 [1

17 o

18

19 for i, 1 in enumerate(lineas):

20 if desde <= i < hasta:

21 yield(1l)

Eso es todo lo que se necesita para implementar doctests. iEn serio!. {Y como
hago para saber si los tests pasan o fallan? Hay muchas maneras. Tal vez la que
mas me gusta es usar Nose, una herramienta cuyo unico objetivo es hacer que
testear sea mas facil.

$ nosetests --with-doctest -v jack2.py
Doctest: jack2.selecciona lineas ... ok

Ran 1 test in 0.019s

0K

Lo que hizo nosetests es “descubrimiento de tests” (test discovery). Toma la
carpeta actual o el archivo que indiquemos (en este caso jack2.py), encuentra
las cosas que parecen tests y las usa. El parametro —with-doctest es para que
reconozca doctests (por default los ignora), y el -v es para que muestre cada
cosa que prueba.

De ahora en mas, cada vez que el programa se modifique, volvemos a correr los
tests. Si falla alguno que antes andaba, es una regresion, paramos de romper y
la arreglamos. Si pasa alguno que antes fallaba, es un avance, nos felicitamos y
nos damos un caramelo.

Dentro del limitado alcance de nuestro programa actual, lo que hace, lo hace
bien. Obviamente hay muchas cosas que no hace, por ejemplo cortar por

82

http://somethingaboutorange.com/mrl/projects/nose/

Doctests

columnas. Agreguemos una funcion selecciona columnas:
jack2.py

1 def selecciona columnas(lineas, desde=0, hasta=-1):

2 """Filtra el texto dejando sdélo las columnas [desde:hastal].
3

4 Soporta indices positivos y negativos con la misma semdntica
5 de los slices de python.

6

7 >>> list(selecciona columnas(("ornitorrinco",) * 5, 5, 10))
8 ['orrin', ‘'orrin', ‘'orrin', 'orrin', 'orrin']

9 >>> list(selecciona _columnas(("ornitorrinco",) * 5, 5, 99999))
10 ['orrinco', 'orrinco', 'orrinco', 'orrinco', 'orrinco']

11 e

12

13 for 1 in lineas:

14 yield(1[desde:hasta])

¢Qué hacemos entonces? iAgregamos un test que falla! Bienvenido al mundo
del TDD o “Desarrollo impulsado por tests” (Test Driven Development). La idea
es que, en general, si sabemos que hay un bug, seguimos este proceso:

* Creamos un test que falla.
* Arreglamos el cddigo para que no falle el test.

* Verificamos que no rompimos otra cosa usando el test suite.

Un test que falla es bueno porque nos marca qué hay que corregir. Si los tests
son piolas, y cada uno prueba una sola cosa 27 | entonces hasta nos va a indicar
qué parte del cédigo es la que esta rota.

27 Un test que prueba muchas cosas juntas no es un buen test, porque al
fallar no sabés por qué. Eso se llama granularidad de los tests y es muy
importante.

Entonces, el problema de gaso2.py es que no funciona cuando no hay acentos

ortograficos. ¢Solucién? Una funciéon que diga donde esta el acento prosoédico

en una palabra 28,

28 Y en este momento agradezcan que esto es castellano, que es un idioma
casi obsesivo compulsivo en su regularidad.

Modificamos gasear asi:

83

Doctests

gaso3.py
22 def gasear(palabra):
23 u'''Dada una palabra, la convierte al rosarino
24
25 \xel y \\xel son "a con tilde", los doctests son un poco
26 quisquillosos con los acentos.
27
28 >>> gasear(u'c\xelmara')
29 u'cagas\\xelmara'
30
31 >>> gasear(u'rosarino')
32 u'rosarigasino’
33
34 te
35
36 # El caso obvio: acentos.
37 # Lo resolvemos con una regexp
38 # Uso \xel etc, porque asi se puede copiar y pegar en un
39 # archivo sin importar el encoding.
40
41 if re.search(u'[\xel\xe9\xed\xf3\xfa]', palabra):
42 return re.sub(u'([\xellxe9\xed\xf3\xfal)",
43 lambda x: gas(x.group(0)), palabra, 1)
44 # No tiene acento ortogréfico
45 pos = busca acento(palabra)
46 return palabral:pos] + gas(palabra[pos]) + palabra[pos + 1:]
47
48
49 def busca acento(palabra):
50 """Dada una palabra (sin acento ortografico),
51 devuelve la posicién de la vocal acentuada.
52
53 Sabiendo que la palabra no tiene acento ortografico,
54 sélo puede ser grave o aguda. Y sélo es grave si termina
55 en 'nsaeiou’.
56
57 Ignorando diptongos, hay siempre una vocal por silaba.
58 Ergo, si termina en 'nsaeiou' es la penidltima vocal, si no,
59 es la Ultima.

84

Cobertura

60

61 >>> pusca acento('casa')

62 1

63

64 >>> pusca acento('impresor')

65 6

66 e

67

68 if palabra[-1] in 'nsaeiou':

69 # Palabra grave, acento en la penultima vocal

70 # Posicidén de la pendltima vocal:

71 pos = list(re.finditer('[aeiou]', palabra))[-2].start()
72 else:

73 # Palabra aguda, acento en la ultima vocal

74 # Posicidén de la ultima vocal:

75 pos = list(re.finditer('[aeiou]', palabra))[-1].start()
76 return pos

¢Notaste que agregar tests de esta forma no se siente como una carga?

Es parte natural de escribir el cddigo, pienso, “uy, esto no debe andar”, meto el
test como creo que deberia ser en el docstring, y de ahora en mas sé si eso anda
0 no.

Por otro lado te da la tranquilidad de “no estoy rompiendo nada”. Por lo menos
nada que no estuviera funcionando exclusivamente por casualidad.

Por ejemplo, gasol.py pasaria el test de la palabra “la” y gaso2.py fallaria,
pero no porque gasol.py estuviera haciendo algo bien, sino porque respondia
de forma afortunada.

Cobertura

Es importante que nuestros tests “cubran” el cdédigo. Es decir que cada parte
sea usada por lo menos una vez. Si hay un fragmento de cédigo que ningtn test
utiliza nos faltan tests (o nos sobra cédigo 29)

29 El cédigo muerto en una aplicaciéon es un problema serio, molesta
cuando se intenta depurar porque estd metido en el medio de las partes
que si se usan y distrae.

La forma de saber qué partes de nuestro cédigo estan cubiertas es con una
herramienta de cobertura (“coverage tool”). Veamos una en accion:

85

Cobertura

[ralsinaghp python-no-muerde]$ nosetests --with-coverage --with-doctest \
-v gaso3.py buscaacentol.py

Doctest: gaso3.gas ... ok

Doctest: gaso3.gasear ... ok

Doctest: buscaacentol.busca acento ... ok

Name Stmts Exec Cover Missing
buscaacentol 6 6 100%
encodings.ascii 19 0 0% 9-42
gaso3 10 10 100%

TOTAL 35 16 45%

Ran 3 tests in 0.018s

0K

Al usar la opciéon —with-coverage, nose usa el médulo coverage.py para ver
cuales lineas de cédigo se usan y cuales no. Lamentablemente el reporte incluye
un médulo de sistema, encodings.ascii lo que hace que los porcentajes no
sean correctos.

Una manera de tener un reporte mas preciso es correr coverage report luego
de correr nosetests:

[ralsina@hp python-no-muerdel$ coverage report

Name Stmts Exec Cover
buscaacentol 6 6 100%
gaso3 10 10 100%
TOTAL 16 16 100%

Ignorando encodings.ascii (que no es nuestro), tenemos 100% de cobertura:
ese es el ideal. Cuando ese porcentaje baje, deberiamos tratar de ver qué parte
del codigo nos estamos olvidando de testear, aunque es casi imposible tener
100% de cobertura en un programa no demasiado sencillo.

Coverage también puede crear reportes HTML mostrando cuales lineas se usan
y cuales no, para ayudar a disenar tests que las ejerciten.

86

Limites de los doctests

Nota

FIXME

Mostrar captura salida HTML**

Limites de los doctests

¢Entonces hacemos doctests y ya estd? No. Los doctests son completamente
inutiles en ciertos casos.

Por ejemplo: es posible tener un médulo que necesite 200 o 300 tests. ¢Vamos a
meter todo eso en los docstrings? ¢Y vamos a tener docstrings de 1000 lineas
llenas de cédigo? Eso ni siquiera cumple el objetivo de “dar algunos ejemplos”.
Tener 1000 ejemplos es a veces peor que no tener ninguno.

Asi que no, no alcanza con doctests. Para hacer testing en serio necesitas hacer
test suites.

Son herramientas complementarias. Los doctests son bésicamente
documentacion para que los demds sepan como se usa. Su componente “test” es
principalmente para que la documentacién sea precisa. Pero por su misma
naturaleza, los doctests no pueden ser exhaustivos, excepto para funciones
triviales.

Por suerte, hay una herramienta razonable para eso en la biblioteca standard, el
modulo unittest. Sin embargo, no vamos a usar eso, si no, nuevamente, nose.
¢Por qué? Porque es menos burocréatico.

Para hacer un test con unittest, tenés que:

* Crear una clase que herede unittest.TestCase.

* Definir dentro de esa clase una funcién test algo.

Con nose podés hacer exactamente lo mismo. O crear una funcién. O una clase
con tests adentro que no herede TestCase. Y ademds soporta correr los
doctests también.

No es una diferencia enorme, pero es algo menos de laburo, y -laburo ==
bueno.

87

http://docs.python.org/library/unittest.html
http://docs.python.org/library/unittest.html

Lo anterior, hecho distinto

Lo anterior, hecho distinto
gasod.py

1 # Test Suite

2

3 class TestBuscaAcento(object):

4

5 """Test case de la funcién busca acento.

6

7 En este test case estamos agrupando los tests de esa funcién.
3 wan

9

10 def test grave(self):

11 """Test de palabra grave."""

12 resultado = busca acento("casa")

13 assert resultado ==

14

15 def test aguda(self):

16 """Test de palabra aguda."""

17 resultado = busca acento("impresor")

18 assert resultado ==

19

20

21 class TestGasear(object):

22

23 """Test case de la funcién gasear.

24

25 En este test case estamos agrupando los tests de esa funcién.
26 e

27

28 def test acento ortografico(self):

29 """Test palabra con acento ortogrdfico."""

30 assert gasear(u'cl\xelmara') == u'cagas\xelmara'
31

32 def test grave prosodico(self):

33 """Test palabra grave con acento prosédico."""
34 assert gasear(u'rosarino') == u'rosarigasino'

Vemos cdmo usamos nosetests con este nuevo test suite:

88

Mocking

$ nosetests codigo/4/gaso4.py -v

Test de palabra aguda. ... ok

Test de palabra grave. ... ok

Test palabra con acento ortografico. ... ok
Test palabra grave con acento prosédico. ... ok

Ran 4 tests in 0.012s

0K
Algunos detalles a favor de este approach:

¢ Podemos ponerles descripciones a los tests.

* Tenemos mas libertad de hacer cosas antes y después de la llamada a la
funcidén que testeamos.

* Es mas natural y flexible la manera de hacer los asserts en cada test.

Pero testing no termina ahi. Estos son tests obvios de funciones muy faciles de
testear, toman u parametro, dan un resultado, no requieren nada, no tienen
efectos secundarios, son una bici con rueditas.

Vamos a pasar ahora a un ejemplo bastante méas “real”. Y las cosas se van a
volver ligeramente méas densas.

Mocking

La Unica manera de reconocer al maestré del disfraz es su

risa. Se rfe “jo jo jo
Inspector Austin, Backyardigans

A veces para probar algo, se necesita un objeto, y no es practico usar el objeto
real por diversos motivos, entre otros:

* Puede ser un objeto “caro”: una base de datos.
* Puede ser un objeto “inestable”: un sensor de temperatura.

* Puede ser un objeto “malo”: por ejemplo un componente que atn no esta
implementado.

* Puede ser un objeto “no disponible”: una pagina web, un recurso de red.

89

Mocking

e Simplemente quiero “separar” los tests, quiero que los errores de un
componente no se propaguen a otro. 30

30 Esta separacién de los elementos funcionales es lo que hace que esto
sea “unit testing”: probamos cada unidad funcional del cédigo.

* Estamos haciendo doctests de un método de una clase: la clase no esta
instanciada al ejecutar el doctest.

Para resolver este problema se usa mocking. ¢Qué es eso? Es una manera de
crear objetos falsos que hacen lo que uno quiere y podemos usar en lugar del
real.

Una herramienta sencilla de mocking para usar en doctests es minimock.

Apartandonos de nuestro ejemplo por un momento, ya que no se presta a usar
mocking sin inventar nada ridiculo, pero aun asi sabiendo que estamos
persiguiendo hormigas con aplanadoras...

mockl.py

3 def largo de pagina(url):

4 '''Dada una URL, devuelve el numero de caracteres que la pagina tiene.
5 Basado en cédigo de Paul Prescod:

6 http://code.activestate.com/recipes/65127-count-tags-in-a-document/
7

8 Como las pdaginas cambian su contenido periddicamente,

9 usamos mock para simular el acceso a Internet en el test.
10

11 >>> from minimock import Mock, mock

12

13 Creamos un falso URLOpener

14

15 >>> opener = Mock ('opener')

16

17 Creamos un falso archivo

18

19 >>> file = Mock ('file')

20

21 E1l metodo open del URLopener devuelve un falso archivo
22

23 >>> opener.open = Mock('open', returns = file)

24

25 urllib.URLopener devuelve un falso URLopener

26

27 >>> mock('urllib.URLopener', returns = opener)

90

http://pypi.python.org/pypi/MiniMock

Mocking

28

29 El falso archivo devuelve lo que yo quiero:

30

31 >>> file.read = Mock('read', returns = '<hl>Hola mundo!</hl>"')
32

33 >>> largo_de_pagina ('http://www.netmanagers.com.ar"')
34 Called urllib.URLopener()

35 Called open('http://www.netmanagers.com.ar')

36 Called read()

37 20

38 v

39

40 return len(urllib.URLopener().open(url).read())

Es especialmente interesante esta parte:

9 >>> largo de pagina ('http://www.netmanagers.com.ar")

10 Called urllib.URLopener()

11 Called open('http://www.netmanagers.com.ar")
12 Called read()

13 20

14

¢Qué es exactamente lo que estamos comprobando en ese doctest?

* Que se llamo6 exactamente a esas funciones y a ninguna otra.
* Que se las llamo6 con los argumentos correctos.

* Que cuando nuestra funcion recibio los datos de esta “internet falsa”, hizo
el calculo correcto.

Por supuesto es posible hacer algo muy similar en forma de test, en vez de
doctest, usando otra herramienta de mocking, Mock:

mock?2.py
11 from mock import Mock, patch
12
13 def test_largo de pagina():
14 """Test usando mock, para no requerir internet."""
15
16 # Este "with" crea un bloque en el cual urllib.URLopener
17 # es reemplazado con un objeto Mock.
18 with patch('urllib.URLopener') as mock:
19 # En Mock, todos los atributos de un Mock
20 # son Mock. Y todos los Mock son "llamables" como funciones que
21 # devuelven su propio return_value. Entonces solo necesito
22 # especificar el resultado de la (ltima de la cadena

91

http://www.voidspace.org.uk/python/mock/

La Maquina M4égica

23 url = 'http://www.netmanagers.com.ar'

24 mock.return_value.open.return_value.read.return_value = '<hl>Hola mundo!</h1>'
25 1 = largo_de_pagina(url)

26 assert 1 == 20

27 # Se deberia haber llamado una vez, sin argumentos

28 mock.assert_called_once with()

29 # Se llama una vez, con la URL

30 mock.return_value.open.assert_called once with(url)

31 # Se llama una vez, sin argumentos

32 mock.return_value.open.return_value.read.assert_called_once with()

Ojo que este ultimo ejemplo de mock no hace exactamente lo mismo que el
primero. Por ejemplo, no se asegura que no llamé o usé otros atributos de los
objetos Mock...

Hay otras variantes de mocks, por ejemplo, los mocks “record and replay” (que
no me gustan mucho, porque producen tests muy opacos, y te tientan a tocar
aca y alld hasta que el test pase en vez de hacer un test util).

La Maquina Magica

Mucho se puede aprender por la repeticiéon bajo diferentes
condiciones, alin si no se logra el resultado deseado

Archer J. P. Martin

Un sintoma de falta de testing es la maquina mégica. Es un equipo en particular
en el que el programa funciona perfectamente. A nadie més le funciona, y el
desarrollador nunca puede reproducir los errores de los usuarios.

¢Por qué sucede esto? Porque si no funcionara en la maquina del desarrollador,
él se habria dado cuenta. Por ese motivo, los desarrolladores siempre tenemos
exactamente la combinacién misteriosa de versiones, carpetas, software,
permisos, etc. que resuelve todo.

Para evitar estas suposiciones implicitas en el cédigo, lo mejor es tener un
entorno repetible en el que correr los tests. O mejor ain: muchos.

De esa forma uno sabe “este bug no se produce si tengo la versiéon X del
paquete Y con python 2.6” y puede hacer el diagndstico hasta encontrar el
problema de fondo.

Por ejemplo, para un programa mio llamado rst2pdf 3 que requiere un
software llamado ReportLab, y (opcionalmente) otro llamado Wordaxe, los tests
se ejecutan en las siguientes condiciones:

92

La Maquina M4égica

31 Si estds leyendo este libro en PDF o impreso, probablemente estas
viendo el resultado de rst2pdf.

e Python 2.4 + Reportlab 2.4
e Python 2.5 + Reportlab 2.4
* Python 2.6 + Reportlab 2.4
* Python 2.6 + Reportlab 2.3

* Python 2.6 + Reportlab 2.4 + Wordaxe

Hasta que no estoy contento con el resultado de todas esas corridas de prueba,
no voy a hacer un release. De hecho, si no lo probé con todos esos entornos no
estoy contento con un commit.

¢Como se hace para mantener todos esos entornos de prueba en
funcionamiento? Usando virtualenv.

Virtualenv no se va a encargar de que puedas usar diferentes versiones de
Python 32, pero si de que sepas exactamente qué versiones de todos los médulos
y paquetes estds usando.

32 Eso es cuestion de instalar varios Python en paralelo, y depende (entre
otras cosas) de qué sistema operativo estés usando. Una herramienta
interesante es tox

Tomemos como ejemplo la version final de la aplicacién de reduccion de URLs
del capitulo La vida es corta.

Esa aplicacion tiene montones de dependencias que no hice ningun intento de
documentar o siquiera averiguar mientras la estaba desarrollando.

Veamos como virtualenv nos ayuda con esto. Empezamos creando un entorno
virtual vacio:

[python-no-muerdel$ cd codigo/2/

[2]1$ virtualenv virt --no-site-packages --distribute

New python executable in virt/bin/python

Installing distribute..........c i done.

La opcidn —no-site-packages hace que nada de lo que instalé en el Python “de
sistema” afecte al entorno virtual. Lo tnico disponible es la biblioteca standard.

La opcién —distribute hace que utilice Distribute en lugar de setuptools. No
importa demasiado por ahora, pero para mas detalles podés leer el capitulo de

93

http://pypi.python.org/pypi/virtualenv
http://codespeak.net/~hpk/tox/

La Maquina M4égica

deployment.

[2]$. virt/bin/activate
(virt)[2]$ which python
/home/ralsina/Desktop/proyectos/python-no-muerde/codigo/2/virt/bin/python

iFijate que ahora python es un ejecutable dentro del entorno virtual! Eso es
activarlo. Todo lo que haga ahora funciona con ese entorno, si instalo un
programa con pip se instala ahi adentro, etc. E1 (virt) en el prompt indica
cudl es el entorno virtual activado.

Probemos nuestro programa:

(virt)[21$ python pyurl3.py
Traceback (most recent call last):
File "pyurl3.py", line 14, in <module>
from twill.commands import go, code, find, notfind, title
ImportError: No module named twill.commands

Bueno, necesitamos twill:

(virt)[2]$ pip install twill

Downloading/unpacking twill

Downloading twill-0.9.tar.gz (242Kb): 242Kb downloaded

Running setup.py egg info for package twill

Installing collected packages: twill

Running setup.py install for twill
changing mode of build/scripts-2.6/twill-fork from 644 to 755
changing mode of /home/ralsina/Desktop/proyectos/
python-no-muerde/codigo/4/virt/bin/twill-fork to 755
Installing twill-sh script to /home/ralsina/Desktop/proyectos/
python-no-muerde/codigo/4/virt/bin

Successfully installed twill

Si sigo intentando ejecutar pyurl3.py me dice que necesito storm.locals
(instalo storm), beaker.middleware (instalo beaker), authkit.authenticate
(instalo authkit).

Como authkit también trata de instalar beaker resulta que las dunicas
dependencias reales son twill, storm y authkit, lo demés son dependencias de
dependencias

Con esta informacién tendriamos suficiente para crear un script de instalacion,
como veremos en el capitulo sobre deployment.

94

La Maquina M4égica

De todas formas lo importante ahora es que tenemos una base estable sobre la
cual diagnosticar problemas con el programa. Si alguien nos reporta un bug,
solo necesitamos ver qué versiones tiene de:

* Python: porque tal vez usamos algo que no funciona en su version, o
porque la biblioteca standard cambid.

Los paquetes que instalamos en virtualenv. Podemos ver cuales son
facilmente:

(virt)[2]$ pip freeze
AuthKit==0.4.5
Beaker==1.5.3
Paste==1.7.3.1
PasteDeploy==1.3.3
PasteScript==1.7.3
WebOb==0.9.8
decorator==3.1.2
distribute==0.6.10
elementtree==1.2.7-20070827-preview
nose==0.11.3
python-openid==2.2.4
storm==0.16.0
twill==0.9
wsgiref==0.1.2

De hecho, es posible usar la salida de pip freeze como un archivo de
requerimientos, para reproducir exactamente este entorno. Si tenemos esa lista
de requerimientos en un archivo req.txt, entonces podemos comenzar con un
entorno virtual vacio y “llenarlo” exactamente con eso en un solo paso:

[2]1$ virtualenv virt2 --no-site-packages --distribute

New python executable in virt2/bin/python

Installing distribute........... done.

[2]$. virt2/bin/activate

(virt2)[2]$ pip install -r req.txt

Downloading/unpacking Beaker==1.5.3 (from -r req.txt (line 2))
Real name of requirement Beaker is Beaker
Downloading Beaker-1.5.3.tar.gz (46Kb): 46Kb downloaded

95

Sacando tu programa a pasear: Tox

Successfully installed AuthKit Beaker decorator elementtree nose
Paste PasteDeploy PasteScript python-openid storm twill WebOb

Fijadte como pasamos de “no tengo idea de qué se necesita para que esta
aplicacién funcione” a “con este comando tenés exactamente el mismo entorno
que yo para correr la aplicacién”.

Y de la misma forma, si alguien te dice “no me autentica por OpenID” podés
decirle: “dame las versiones que tenés instaladas de AuthKit, Beaker,
python-openid, etc.”, hacés un req.txt con las versiones del usuario, y podés
reproducir el problema. iTu méquina ya no es magica!

De ahora en mas, si te interesa la compatibilidad con distintas versiones de
otros moddulos, podés tener una serie de entornos virtuales y testear contra
cada uno.

Sacando tu programa a pasear: Tox

There are many factors in the environment that are
"problems” that require "solutions”.

Iris Saxer and/or Alfred L. Rosenberger

Como mencioné antes, los tests sélo prueban (como méximo) que tu programa
se va a comportar correctamente en un entorno exactamente igual al tuyo, y es
mejor probarlo contra distintos ambientes de ejecucién, para asegurarse de que
funciona correctamente para una mayor cantidad de gente.

Esto es mas importante para aplicaciones “de escritorio” que para servers. Si
las instrucciones de instalacién de un server incluyen “necesita pirucho 1.4”...
bueno, se consigue uno y se instala, aunque sea sélo para esa aplicacién. Los
deployments en servers suelen hacerse asi, tratando de satisfacer los pedidos
de lo que estés instalando.

Pero si queremos decir “funciona con médulo X versiones Yy Z”... tenemos que
por lo menos correr los tests contra esas versiones.

Ya expliqué que virtualenv es una manera de hacer eso. Por favor, decime
que mientras leias eso pensabas “iclaro, puedo hacer un script que me arme los
virtualenvs y corra los tests!” 33

33 Si no lo pensaste.... vergiienza deberia darte ;-)

96

Sacando tu programa a pasear: Tox

Por otro lado, es obvio que alguien tiene que haberlo pensado. Y alguien tiene
que haberlo escrito. Y alguien tiene que haberlo publicado como open source.

Y si, ese alguien es el autor de Tox, una herramienta para automatizar la
creacién de virtualenvs y la corrida de tests en los mismos. iY esta buena!

Supongamos que queremos probar los tests de nuestro traductor al rosarino
(gaso4.py)con python 2 y python 3.

Lo primero que vamos a necesitar es un setup.py. Lamentablemente, explicar
como crear uno es tarea para mas adelante en el libro, pero vamos a crear uno
muy sencillito.

setup.py
1 from distutils.core import setup
2 setup(name='gaso4',
3 version='1.0",
4 py_modules=['gaso4'],
5)
Luego creamos un archivo tox.ini que le dice a Tox que necesitamos:

tox.in

y corro los tests
commands=nosetests gaso4.py

1 # Esto va junto con el setup.py
2 [tox]

3 # En que pythons quiero probarlo
4 envlist = py27,py32

5 [testenv]

6 # Instalo dependencias

7 deps=nose

8

9

Y al ejecutar tox, primero crea un “paquete” de nuestro médulo:

[ralsina@archie 4]$ tox

[tox sdist]
[TOX] ***creating sdist package
[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4$ /usr/b
in/python2 setup.py sdist --formats=zip --dist-dir .tox/dist >.tox/log/
0.1log
[TOX] ***copying new sdistfile to '/home/ralsina/.tox/distshare/gaso4-1
.0.zip'

97

http://codespeak.net/~hpk/tox

Sacando tu programa a pasear: Tox

Luego crea un virtualenv con python 2.7:

[tox testenv:py27]
[TOX] ***creating virtualenv py27

[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox$ /
usr/bin/python2.7 ../../../../../../../../usr/lib/python2.7/site-packag
es/tox-1.1-py2.7.egg/tox/virtualenv.py --distribute --no-site-packages
py27 >py27/1og/0.1log

[TOX] ***installing dependencies: nose

[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/py
27/1og$../bin/pip install --download-cache=/home/ralsina/Desktop/proye
ctos/python-no-muerde/codigo/4/.tox/_download nose >1.log

[TOX] ***installing sdist

[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/py
27/1og$../bin/pip install --download-cache=/home/ralsina/Desktop/proye
ctos/python-no-muerde/codigo/4/.tox/ download ../../dist/gaso4-1.0.zip
>2.1log

Y ejecuta los tests (exitosamente):

[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4$.tox/p
y27/bin/nosetests gaso4.py

Ran 4 tests in 0.016s

0K
Hace lo mismo con python 3.2:

[tox testenv:py32]
[TOX] ***creating virtualenv py32
[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox$ /
usr/bin/python3.2 ../../../../../../../../usr/lib/python2.7/site-packag
es/tox-1.1-py2.7.egg/tox/virtualenv.py --no-site-packages py32 >py32/1o
g/0.1log
[TOX] ***installing dependencies: nose
[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/py
32/log$../bin/pip install --download-cache=/home/ralsina/Desktop/proye
ctos/python-no-muerde/codigo/4/.tox/ download nose >1.log
[TOX] ***installing sdist
[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/py
32/1og$../bin/pip install --download-cache=/home/ralsina/Desktop/proye

98

Sacando tu programa a pasear: Tox

ctos/python-no-muerde/codigo/4/.tox/ download ../../dist/gaso4-1.0.zip
>2.1log

Pero los tests fallan miserablemente:

[TOX] /home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4$.tox/
py32/bin/nosetests gaso4.py
E

ERROR: Failure: SyntaxError (invalid syntax (gaso4.py, line 21))
Traceback (most recent call last):
File "/home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/p
y32/1lib/python3.2/site-packages/nose/failure.py", line 37, in runTest
raise self.exc_class(self.exc_val).with_traceback(self.tb)
File "/home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/p
y32/1lib/python3.2/site-packages/nose/loader.py", line 390, in loadTest
sFromName
addr.filename, addr.module)
File "/home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/p
y32/1lib/python3.2/site-packages/nose/importer.py", line 39, in importF
romPath
return self.importFromDir(dir path, fqgname)
File "/home/ralsina/Desktop/proyectos/python-no-muerde/codigo/4/.tox/p
y32/1lib/python3.2/site-packages/nose/importer.py", line 86, in importF
romDir
mod = load module(part fgname, fh, filename, desc)
File "<string>", line None
SyntaxError: invalid syntax (gaso4.py, line 21)

Ran 1 test in 0.002s

FAILED (errors=1)
[TOX] ERROR: InvocationError: '.tox/py32/bin/nosetests gaso4.py'

Y al final, un resumen:

[tox summary]
[TOX] py27: commands succeeded
[TOX] ERROR: py32: commands failed

Cosas que no tuve que hacer para cada virtualenv:

99

Testear todo el tiempo: Sniffer

* Crearlo y/o activarlo.

* Copiar mi cédigo.

 Instalar dependencias.

» Correr los tests manualmente.

e Juntar los resultados de cada corrida de tests.

Si bien cada paso es relativamente sencillo, son muchos. Y Tox automatiza todo.

Testear todo el tiempo: Sniffer

Cita copada aquf

Yo

Integracion continua: Jenkins

Cita copada aquf

Yo

Documentos, por favor

Desde el principio de este capitulo estoy hablando de testing. Pero el titulo del
capitulo es “Documentacion y Testing”... éDdénde estd la documentacion? Bueno,
la documentacion estd infiltrada, porque venimos usando doctests en
docstrings, y resulta que es posible usar los doctests y docstrings para generar
un bonito manual de referencia de un médulo o un API.

Si estds documentando un programa, en general documentar el API interno sélo
es util en general para el desarrollo del mismo, por lo que es importante pero
no de vida o muerte.

Si estds documentando una biblioteca, en cambio, documentar el API es de vida
o muerte. Si bien hay que afladir un documento “a vista de pajaro” que explique
qué se supone que hace uno con ese bicho, los detalles son fundamentales.

Consideremos nuestro ejemplo gaso3.py.

Podemos verlo como cdédigo con comentarios, y esos comentarios como
explicaciones con tests intercalados, o... podemos verlo como un manual con
cédigo adentro.

100

Testear todo el tiempo: Sniffer

Ese enfoque es el de “Literate programming” y hay bastantes herramientas
para eso en Python, por ejemplo:

PyLit
Es tal vez la mas “tradicional”: podés convertir cddigo en manual y manual
en codigo.
Ya no desde el lado del Literate programming, sino de un enfoque mas habitual
en Java o C++:
epydoc

Es una herramienta de extraccién de docstrings, los toma y genera un sitio
con referencias cruzadas, etc.

Sphinx

Es en realidad una herramienta para hacer manuales. Incluye una
extension llamada autodoc que hace extraccion de docstrings.

Hasta hay un médulo en la biblioteca standard llamado pydoc que hace algo
parecido.

A mi me parece que los manuales creados exclusivamente mediante extraccién
de docstrings son aridos, generalmente de tono desparejo y con una tendencia a
carecer de cohesién narrativa, pero bueno, son exhaustivos y son “gratis” en lo
que se refiere a esfuerzo, asi que peor es nada.

Combinando eso con que los doctests nos aseguran que los comentarios no
estén completamente equivocados... ¢COmo hacemos para generar un bonito
manual de referencia a partir de nuestro c6digo?

Usando epydoc, por ejemplo:
$ epydoc gaso3.py --pdf

Produce este tipo de resultado:

101

http://pylit.berlios.de/
http://epydoc.sourceforge.net/
http://sphinx.pocoo.org/

Testear todo el tiempo: Sniffer

1 Module gaso3

1.1 Functions

gas(letra)

Dada una letra X devuelve XgasX excepto si X es una vocal acentuada, en cuyo caso
devuelve la primera X sin acento.

El uso de normalize lo saqué de google.
4y \xel son "a con tilde”, los doctests son un poco quisquillosos con los acentos.

>>> gas(u’a’)
u’agas\xel’

>>> gas(u’a’)
u’agasa’

gasear(palabra)

Dada una palabra, la convierte al rosarino

4y \xel son "a con tilde”, los doctests son un poco quisquillosos con los acentos.

PDF producido por epydoc. También genera HTML.

No recomendaria usar Sphinx a menos que lo uses como herramienta para
escribir otra documentacién. Usarlo sélo para extraccion de docstrings me
parece mucho esfuerzo para poca ganancia >*.
34 ¢Pero como herramienta para crear el manual y/o el sitio? iEs
buenisimo!

Igual que con los tests, esperar para documentar tus funciones es una garantia
de que vas a tener un déficit a remontar. Con un uso medianamente inteligente
de las herramientas es posible mantener la documentacién “siguiendo” al
cddigo, y actualizada.

102

La GUI es la Parte Facil

La GUI es la Parte Facil

"There are no original ideas. There are only original people.”
Barbara Grizzuti Harrison

Empezar a crear la interfaz grafica de una aplicacién es como empezar a
escribir un libro. Tenés un espacio en blanco, esperando que hagas algo, y si no
sabés qué es lo que querés poner ahi, la infinitud de los caminos que se te
abren es paralizante.

Este capitulo no te va a ayudar en absoluto con ese problema, si no que vamos a
tratar de resolver su opuesto: sabiendo qué querés hacer: ¢ccomo se hace?

Vamos a aprender a hacer programas sencillos usando PyQt, un toolkit de
interfaz grafica potente, multiplataforma, y relativamente sencillo de usar.

Proyecto

Vamos a hacer una aplicaciéon completa. Como esto es un libro de Python y no
especificamente de PyQt, no va a ser tan complicada. Veamos un escenario para
entender de dénde viene este proyecto.

Supongamos que estds usando tu computadora y querés escuchar musica.
Supongamos también que te gusta escuchar radios online.

Hoy en dia hay varias maneras de hacerlo:

e Ir al sitio de la radio.

» Utilizar un reproductor de medios (Amarok, Banshee, Media Player o
similar).
* Usar RadioTray.
Resulta que mi favorita es la tercera opcion, y nuestro proyecto es crear una

aplicacién similar, minimalista y facil de entender.

En nuestro caso, como nos estamos basando (en principio) en clonar otra
aplicacién 3% no hace falta pensar demasiado el disefio de la interfaz o el uso de
la misma (de ahi eso de que este capitulo no te va a ayudar a saber qué hacer).

35 Actividad con la que no estoy demasiado contento en general, pero
bueno, es con fines educativos. (ime encanta esa excusa!)

103

http://radiotray.sf.net

Programacion con Eventos

Sin embargo, en el capitulo siguiente vamos a darle una buena repasada a lo
que creamos en este, y vamos a pulir todos los detalles. iNo es demasiado grave
si empezamos con una versién un poco rustica!

Programacion con Eventos

La funcién principal que se ejecuta en cualquier aplicaciéon grafica, en
particular en una en PyQt, es sorprendentemente corta, y es igual en el 90% de

los casos:
radiol.py
9 def main():
10 app = QtGui.QApplication(sys.argv)
11 window=Main()
12 window.show()
13 sys.exit(app.exec ())
14
15 if name == " main_":
16 main()

Esto es porque no hace gran cosa:

1. Crea un objeto “aplicacién”.
2. Crea y muestra una ventana.

3. Lanza el “event loop”, y cuando este termina, muere.

Eso es asi porque las aplicaciones de escritorio no hacen casi nada por su
cuenta, son reactivas, reaccionan a eventos que suceden.

Estos eventos pueden ser iniciados por el usuario (click en un botén) o por el
sistema (se enchufé una cémara), u otra cosa (un timer que se dispara
periddicamente), pero el estado natural de la aplicaciéon es estar en el event
loop, esperando, justamente, un evento.

Entonces nuestro trabajo es crear todas las cosas que se necesiten en la
aplicacién — ventanas, didlogos, etc — esperar que se produzcan los eventos y
escribir el cédigo que responda a los mismos.

En PyQt, casi siempre esos eventos los vamos a manejar mediante Signals
(sefiales) y Slots.

¢Qué son esas cosas? Bueno, son un mecanismo de manejo de eventos ;-)

104

Programacién con Eventos

En particular, una sefial es un mensaje. Y un slot es un receptor de esos
mensajes. Por ejemplo, cuando el usuario aprieta un botén, el objeto
QPushButton correspondiente emite la sefial clicked().

¢Y qué sucede? Absolutamente nada, porque las sefales no tienen efectos. Es
como si el botdn se pusiera a gritar “me apretaron”. Eso en si no hace nada.

Pero imaginemos que hay otro objeto que estd escuchando y tiene
instrucciones de que si ese botdén especifico dice “me apretaron”, debe cerrar la
ventana. Bueno, cerrar la ventana es un slot, y el ejemplo es una conexién a un
slot.

La conexién observa esperando una sefal 36, y cuando la sefial se produce,
ejecuta una funcién comun y corriente, que es el slot.

36 Hay un “despachador de sefales” que se encarga de ejecutar cada slot
cuando se emiten las sefiales conectadas a él.

Pero lo mas lindo de sefiales y slots es que tiene acoplamiento débil (es “loosely
coupled”). Cada sefial de cada objeto puede estar conectada a ninguno, a uno, o
a muchos slots. Cada slot puede tener conectadas ninguna, una o muchas
senales.

Hasta es posible “encadenar” sefiales: si uno conecta una sefial a otra, al
emitirse una se emite la otra.

Es mas, en principio, ni al emisor de la sefial ni al receptor de la misma les
importa quién es el otro.

La sintaxis de conexién que vamos a usar es la nueva, que so6lo estad disponible
en PyQt 4.7 o superior, porque es mucho mas agradable que la otra.

Por ejemplo, si cerrar es un QPushButton (o sea, un botén comun y corriente),
y ventana es un QDialog (o sea, una ventana de didlogo), se pueden conectar
asi:

cerrar.clicked.connect(ventana.accept)

Eso significaria “cuando se emita la sefal clicked del botén cerrar, entonces
ejecuta el método accept de ventana.” Como el método QDialog.accept
cierra la ventana, la ventana se cierra.

También es posible usar autoconexion de signals y slots, pero eso lo vemos mas
adelante.

105

Ventanas / Didlogos

Ventanas / Didlogos

Empecemos con la parte divertida: idibujitos!

Radiotray tiene exactamente dos ventanas 37,

X

Radio Name | o= Add
Blue Mars
Voices F. Within

/" Edit
w= Remove
arUp

L Down

¥ close

X radiotray v & X

Radio Name
[

URL

%Qancel ok

El didlogo de administracidn de radios y el de afiadir radio.

37 Bueno, mentira, tiene también una ventana “Acerca de”.

No creo en hacer ventanas a mano. Creo que acomodar los widgets en el lugar
adonde van es un problema resuelto, y la solucién es usar un disefiador de
dialogos. 38

38 Si, ya sé, “no tenés el mismo control”. Tampoco tengo mucho control
sobre la creacion de la pizzanesa a la espafiola en La Farola de San
Isidro, pero si alguna vez la comiste sabés que eso es lo de menos.

En nuestro caso, como estamos usando PyQt, la herramienta es Qt Designer 39,

39 Lamentablemente una buena explicacion de Designer requiere videos y
mucho mas detalle del que puedo incluir en un capitulo, pero vamos a
tratar de ver lo importante, sin quedarnos en cémo se hace cada cosa
exactamente.

106

Ventanas / Didlogos

B o
Fle Edt Form View Settings Window Help
PEd 9@ DOred HLIE NSHE

‘Widget Box

QtDesigner

E]

(3
@
3

Property Editor o x
- k=2

Layouts

&5 vertical Layout
1)) Horizontal Layout
4 Grid Layout

B Form Layout -
Spacers Dialog with Buttons Bot...
¥ Horizontal Spacer Dialog with Buttons Right
E vertical spacer el Witidow

& Buttons Widget

(] push Button & Widgets

Tool Button + Custom Widgets

@ Radio Button

@ CheckBox
© Command Link Button
[Button Box

- Item Views (Model-Based)
ListView Embedded Design
18 Tree view Device: None
) Table view
D column view

- Item Widgets (itemBased)
] v Show this Dialog on Startuf
List Widget & U 2

Property Value

| Property Editor | Object Inspector
L T Action Editor o x
Screensize: Defaultsize | SHCRCISEN B i

Name Used Text Shortcut <

8 Tree Widget Open.. | Recent v | Create
) Table widget

= Containers
=) Group Box

scroll Area

B ool Box

) Teb Widget

@ stacked Widget
P

Designer a punto de crear un didlogo vacio.

El proceso de crear una interfaz en Designer tiene varios pasos. Sabiendo qué
interfaz queremos 40 el primero es acomodar méas o menos a ojo los objetos
deseados.

40 En nuestro caso, como estamos robando, es muy sencillo. En la vida
real, este trabajo se basaria en wireframing, o algin otro proceso de
creacion de interfaces.

] Dialog - untitled* ¥ x

PushButton
PushButton
PushButton
PushButton

PushButton

- - -
® PushButton =
e .

El primer borrador.

Literalmente, tomé unos botones y una lista y los tiré adentro de la ventana
mas 0 menos en posicion.

107

Ventanas / Didlogos

El acomodarlos muy asi nomas es intencional, porque el siguiente paso es usar
Layout Managers para que los objetos queden bien acomodados. En una GUI
moderna no tiene sentido acomodar las cosas en posiciones absolutas, porque
no tenés idea de como va a ser la interfaz para el usuario final con tanto nivel
de detalle. Por ejemplo:

e Traducciones a otros idiomas hacen que los botones deban ser méas anchos
o angostos.

e Cambios en la tipografia del sistema pueden hacer que sean mas altos o
bajos.
* Cambios en el estilo de widgets, o en la plataforma usada pueden cambiar
la forma misma de un botdén (¢méas redondeado? ¢mds plano?)
Dadas todas esas variables, es nuestro trabajo hacer un layout que funcione con

todas las combinaciones posibles, que sea flexible y responda a esos cambios
con gracia.

En nuestro caso, podriamos imponer las siguientes “restricciones” a las
posiciones de los widgets:

* El botén de “Cerrar” va abajo a la derecha.

* Los otros botones van en una columna a la derecha de la lista, en la parte
de arriba de la ventana.

e La lista va a la izquierda de los botones.

Veamos por partes.

Los botones se agrupan con un “Vertical Layout”, para que queden alineados y
en columna. Los seleccionamos todos usando Ctrl+click y apretamos el botén
de “vertical layout” en la barra de herramientas:

[Dialog - untitled* v x|

-
PushButton

PushButton

PushButton
PushButton

PushButton
-

PushButton

El layout vertical de botones se ve como un recuadro rojo.

108

Ventanas / Didlogos

Un layout vertical solo hace que los objetos que contiene queden en una
columna. Todos tienen el mismo ancho y estan espaciados regularmente.

Para que los botones queden al lado de la lista, seleccionamos el layout y la
lista, y hacemos un layout horizontal:

Il Dialog - untitled* e x|
. - .

PushButton
PushButton

L] PushButton s
PushButton

PushButton

PushButton

iLayouts anidados!

El layout horizontal hace exactamente lo mismo que el vertical, pero en vez de
una columna forman una fila.

Por ultimo, deberiamos hacer un layout vertical conteniendo el layout horizontal
que acabamos de crear y el botén que nos queda.

Como ese layout es el “top level” y tiene que cubrir toda la ventana, se hace
ligeramente distinto: botén derecho en el fondo de la ventana y “Lay out” ->
“Lay Out Vertically”:

'E Dialog - untitled* v x|
PushButton
PushButton
PushButton
PushButton

PushButton

PushButton
iFeo!
Si bien el resultado cumple las cosas que habiamos definido, es horrible:

* El botdn de cerrar cubre todo el fondo de la ventana.

» El espaciado de los otros botones es antinatural.

109

Ventanas / Didlogos

La soluciéon en ambos casos es el uso de espaciadores, que “empujen” el botén
de abajo hacia la derecha (luego de meterlo en un layout horizontal) y los otros
hacia arriba:

'r Dialog - untitled* v x|
PushButton
PushButton
PushButton
PushButton

PushButton

iMejor!

Por supuesto que hay méas de una soluciéon para cada problema de cémo
acomodar widgets:

'F Dialog - untitled* v x|
PushButton
PushButton
PushButton
PushButton

PushButton

PushButton
{Mejor o peor que la anterior? iVean el capitulo siguiente!

El siguiente paso es poner textos 41 jconos *?, y nombres de objetos para que la
interfaz empiece a parecer algo util.

41 Si, estoy haciendo la interfaz en inglés. Después vamos a ver como
traducirla al castellano. Si la hacés directamente en castellano te estas
encerrando en un nicho (por lo menos si la aplicacion es software libre,
como esta).

42 Yo uso los iconos de Reinhardt: me gustan estéticamente, son
minimalistas y se ven igual de raros en todos los sistemas operativos. Si
querés usar otros, hay millones de iconos gratis dando vueltas. Es
cuestion de ser consistente (iy fijarse la licencia!)

Los iconos se van a cargar en un archivo de recursos, icons.qrc:

110

http://kde-look.org/content/show.php?content=6153

Ventanas / Didlogos

<RCC>
<qresource prefix="/">
<file>ok.svg</file>
<file>configure.svg</file>
<file>filenew.svg</file>
<file>delete.svg</file>
<file>ldownarrow.svg</file>
<file>luparrow.svg</file>
<file>antenna.svg</file>
<file>exit.svg</file>
<file>stop.svg</file>
</qresource>
</RCC>

Ese archivo se compila para generar un moédulo python con todas las imagenes
en su interior. Eso simplifica el deployment.

[codigo/5]1$ pyrcc4 icons.qrc -o icons_rc.py
[codigo/5]1$ ls -1th icons rc.py
-rw-r--r-- 1 ralsina users 58K Apr 30 10:14 icons rc.py

El didlogo en si estd definido en el archivo radio.ui, y se ve de esta manera:

[Radios - radio.ui v x|
B) Add
N\ Edit
X Remove
A Up
s a °
& ¥ Down 8
a L]

o

: [Close

Nuestro clon.
El otro didlogo es mucho méas simple, y no voy a mostrar el proceso de layout,
pero tiene un par de peculiaridades.
Buddies

Cuando se tiene una pareja etiqueta/entrada (por ejemplo, “Radio Name:”
y el widget donde se ingresa), hay que poner el atajo de teclado en la
etiqueta. Para eso se usan “buddies”.

111

Ventanas / Didlogos

Se elije el modo “Edit Buddies” del designer y se marca la etiqueta y luego
el widget de ingreso de datos. De esa forma, el atajo de teclado elegido
para la etiqueta activa el widget.

D BRERE NEHESE BN

[Add Radio - addradio.ui

Radid'Name:

|
]
]
|

X Cancel Vv Add

Tab Order
¢En qué orden se pasa de un widget a otro usando Tab? Es importante que
se siga un orden logico acorde a lo que se ve en pantalla y no andar
saltando de un lado para otro sin una légica visible.

Se hace en el modo “Edit Tab Order” de designer.

D BRBE 0

11|
x
B
8
]

[Add Radio - addradio.ui €3 123

Edio Name:
?rL:

|:|X Cancel Ds/ Add

Signals/Slots

Los didlogos tienen métodos accept y reject que coinciden con el
objetivo obvio de los botones. iEntonces conectémoslos!

En el modo “Edit Signals/Slots” de designer, se hace click en el botén y
luego en el didlogo en si, y se elige qué se conecta.

112

Mostrando una Ventana

[Add Radio - addradio.ui
Radio Name:

Configure Connection

pushButton_2 (QPushButton) Dialog (QDialog)

CECT R [acept
clicked(bool) exec)
pressed) open(
released) eje
toggled(bool)

Edit.. Edit...

_ show signals and slots inherited from QWidget
¥ OK @ Cancel

Pasemos a una comparativa lado a lado de los objetos terminados:

X © Config radios
Radio Name
Blue Mars

Voices F. Within

A@ Radios

Vi

y 4 . .
Add Radio radiotray

X Cancel || v Add

Son similares. iHasta tienen algunos problemas similares!

Mostrando una Ventana

Ya tenemos dos bonitas ventanas creadas, necesitamos hacer que la aplicaciéon

muestre una de ellas. Esto es cddigo standard, y aqui tenemos una aplicacion

completa que muestra la ventana principal y no hace absolutamente nada:
radiol.py

1 # -*- coding: utf-8 -*-
2
3 """La interfaz de nuestra aplicacién."""

113

Mostrando una Ventana

4
5 import os,sys

6

7 # Importamos los médulos de Qt

8 from PyQt4 import QtCore, QtGui, uic

9

10 # Cargamos los iconos

11 import icons_rc

12

13 class Main(QtGui.QDialog):

14 """la ventana principal de la aplicacién."""

15 def init (self):

16 QtGui.QDialog. init (self)

17

18 # Cargamos la interfaz desde el archivo .ui
19 uifile = os.path.join(

20 os.path.abspath(

21 os.path.dirname(_ file)),'radio.ui')
22 uic.loadUi(uifile, self)

23

24

25 class AddRadio(QtGui.QDialog):

26 """El didlogo de agregar una radio"""

27 def init (self, parent):

28 QtGui.QDialog. init (self, parent)

29

30 # Cargamos la interfaz desde el archivo .ui
31 uifile = os.path.join(

32 os.path.abspath(

33 os.path.dirname(file)),'addradio.ui')
34 uic.loadUi(uifile, self)

35

36

37 class EditRadio(AddRadio):

38 """E1l didlogo de editar una radio.

39 Es exactamente igual a AddRadio, excepto

40 que cambia el texto de un botén."""

41 def init (self, parent):

42 AddRadio. init (self, parent)

43 self.addButton.setText("&Save")

114

iQue haga algo!

44

45

46 def main():

47 app = QtGui.QApplication(sys.argv)
48 window=Main()

49 window.show()

50 sys.exit(app.exec ())

51

52 if name == " main_ ":

53 main()

El que Main y AddRadio sean casi exactamente iguales deberia sugerir que esto
es codigo standard... y es cierto, es siempre lo mismo:

Creamos una clase cuya interfaz estd definida por un archivo .ui que se carga
en tiempo de ejecucién. Toda la interfaz estd definida en el .ui, (casi) toda la
légica en el . py.

Normalmente, por prolijidad, usariamos un médulo para cada clase, pero en
esta aplicacidn, y por organizacién de los ejemplos, no vale la pena.

IQue haga algo!

Un lugar fécil para empezar es hacer que apretar “Add” muestre el didlogo de
agregar una radio. Bueno, es casi tan facil como decirlo, tan solo hay que
agregar un método a la clase Main:

radio2.py
55 @QtCore.pyqtSlot()
56 def on add clicked(self):
57 addDlg = AddRadio(self)
58 r = addDlg.exec ()
59 if r: # 0 sea, apretaron "Add"
60 self.radios.append ((unicode(addDlg.name.text()),
61 unicode(addDlg.url.text())))
62 self.saveRadios()
63 self.listRadios()
64

Veamos qué es cada linea:

@QtCore.pyqtSlot()

115

iQue haga algo!

Para explicar esta linea hay que dar un rodeo:

En C++, se pueden tener dos métodos que se llamen igual pero difieran en el
tipo de sus argumentos. Y de acuerdo al tipo de los argumentos con que se lo
llame, se ejecuta uno u otro.

La sefial clicked se emite dos veces. Una con un argumento (que se llama
checked y es booleano) y otra sin él. En C++ no es problema, si
on_add clicked recibe un argumento booleano, entonces se ejecuta, si no, no.

En Python no es asi por como funcionan los tipos. En consecuencia,
on_add clicked se ejecutaria dos veces, una al llamarla con checked y la otra
sin.

Si bien dije que un slot es simplemente una funcién, este decorador declara que
este es un slot sin argumentos. De esa manera sélo se ejecuta una unica
llamada al slot.

Si en cambio hubiera sido @QtCore.pyqtSlot(int) hubiera sido un slot que
toma un argumento de tipo entero.

def on_add clicked(self):

Definimos un método on add clicked. Al cargarse la interfaz via loadUi se
permite hacer autoconexion de slots. Esto significa que si la clase tiene un
método que se llame on NOMBRE_SIGNAL queda automaticamente conectado a la
sefial SIGNAL del objeto NOMBRE.

En consecuencia, este método se va a ejecutar cada vez que se haga click en el
botdén que se llama add.

addDlg = AddRadio(self)

Creamos un objeto AddRadio con parent nuestro didlogo principal. Cuando un
didlogo tiene “padre” se muestra centrado sobre €l, y el sistema operativo tiene
algunas ideas de como mostrarlo mejor.

r = addDlg.exec ()

Mostramos este didlogo para que el usuario interactie con él. Se muestra por
default de forma modal, es decir que bloquea la interaccién con el didlogo
“padre”. El valor de r va a depender de qué botén presione el usuario para
cerrar el didlogo.

116

iQue haga algo!

if r: # 0 sea, apretaron "ok"
self.radios.append ((unicode(addDlg.name.text()),
unicode(addDlg.url.text())))
self.saveRadios()
self.listRadios()

Si dijo “Add”, guardamos los datos y refrescamos la lista de radios. Si no, no
hacemos nada.

Los métodos saveRadios, loadRadios y listRadios son cortos, y me parece
que son lo bastante tontos como para que no valga la pena hacer un backend de
datos “serio” para esta aplicacion:

radio2.py

29 def loadRadios(self):

30 "Carga la lista de radios de disco"
31 try:

32 f = open(os.path.expanduser('~/.radios'))
33 data = f.read()

34 f.close()

35 self.radios = json.loads(data)
36 except:

37 self.radios = []

38

39 if self.radios is None:

40 # El archivo estaba vacio

41 self.radios = []

42

43 def saveRadios(self):

44 "Guarda las radios a disco"

45 f = open(os.path.expanduser('~/.radios'),'w")
46 f.write(json.dumps(self.radios))

47 f.close()

48

49 def listRadios(self):

50 "Muestra las radios en la lista"

51 self.radioList.clear()

52 for nombre,url in self.radios:

53 self.radioList.addItem(nombre)
54

117

iQue haga algo!

Finalmente, estos son los métodos para editar una radio, eliminarla, y moverla
en la lista, sin explicacion. Deberian ser bastante obvios:

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

118

radio2.py

@QtCore.pyqtSlot()
def on edit clicked(self):

"Edita la radio actualmente seleccionada"
curldx = self.radioList.currentRow()
name, url = self.radios[curIldx]
editDlg = EditRadio(self)
editDlg.name.setText(name)
editDlg.url.setText(url)
r = editDlg.exec ()
if r: # 0 sea, apretaron "Save"
self.radios[curIdx]= [unicode(editD1lg.name.text(
unicode(editDlg.url.text())

),
1
self.saveRadios()

self.listRadios()
self.radioList.setCurrentRow(curIdx)

@QtCore.pyqtSlot()
def on remove clicked(self):

"Borra la radio actualmente seleccionada"
curldx = self.radioList.currentRow()

del (self.radios[curIdx])
self.saveRadios()

self.listRadios()

@QtCore.pyqtSlot()
def on up clicked(self):

"Sube la radio seleccionada una posicion."
curldx = self.radioList.currentRow()
if curldx > 0:
self.radios=self.radios[:curldx-1]+\
[self.radios[curIldx], self.radios[curIdx-1]1]1+\
self.radios[curIdx+1:]
self.saveRadios()
self.listRadios()
self.radioList.setCurrentRow(curIdx-1)

Icono de Notificacion

103 @QtCore.pyqtSlot()

104 def on _down clicked(self):

105 "Baja la radio seleccionada una posicion."
106 curldx = self.radiolList.currentRow()

107 if curIldx < len(self.radios):

108 self.radios=self.radios[:curldx]+\

109 [self.radios[curIdx+1], self.radios[curIdx]]+\
110 self.radios[curldx+2:]

111 self.saveRadios()

112 self.listRadios()

113 self.radioList.setCurrentRow(curIdx+1)
114

115

Con esto, ya tenemos una aplicacién que permite agregar, editar, y eliminar
radios identificadas por nombre, con una URL asociada.

Nos faltan solamente dos cosas para que esta aplicacion esté terminada:

1. El icono en area de notificacién, que es la forma normal de operacion de
Radiotray.

2. iQue sirva para escuchar la radio!

Empecemos por la primera...

lcono de Notificacion

No es muy dificil, porque PyQt trae una clase para hacer esto en forma
multiplataforma sin demasiado esfuerzo.

Tan solo hay que cambiar la funcién main de esta forma:

radio3.py
15 class TrayIcon(QtGui.QSystemTrayIcon):
16 "Icono en area de notificacidn"
17 def init (self):
18 QtGui.QSystemTrayIcon. init (self,
19 QtGui.QIcon(":/antenna.svg"))
20
21 def main():
22 app = QtGui.QApplication(sys.argv)
23 tray = TrayIcon()

119

Acciones

24 tray.show()
25 sys.exit(app.exec ())

Esta version de la aplicacién muestra el icono de una antena en el &rea de
notificacion... y no permite ninguna interaccion.

Lo que queremos es un menu al hacer click con el botén izquierdo mostrando
las radios disponibles, y la opcién “Apagar la radio”, y otro ment con click del

» o

botén derecho para las opciones de “Configuracién”, “Acerca de”, y “Salir”.

Para eso, vamos a tener que aprender Acciones...

Acciones

Una Accién (una instancia de QAction) es una abstraccidon de un elemento de
interfaz con el que el usuario interacttia. Una accién puede verse como un
botén en una barra de herramientas, o como una entrada en un menu, o como
un atajo de teclado.

La idea es que al usar acciones, uno las integra en la interfaz en los lugares que
desee, y si, por ejemplo, deseo hacer que la acciéon tenga un estado
“deshabilitado”, el efecto se produce tanto para el atajo de teclado como para el
botén en la barra de herramientas, como para la entrada en el mend.

Realmente simplifica mucho el cédigo.

Entonces, para cada entrada en los mentes de contexto del icono de area de
notificaciéon, debemos crear una accién. Si estuviéramos trabajando con una
ventana, podriamos usar designer 43 que tiene un comodo editor de acciones.

43 Podriamos hacer trampa y definir las acciones en el didlogo de
cofiguracién de radios, pero es una chanchada.

De todas formas no es complicado. Comencemos con el menu de botén derecho:
radio4.py

92 class TrayIcon(QtGui.QSystemTrayIcon):

93 "Icono en area de notificacion"

94

95 loadRadios = loadRadios

96

97 def init (self):

98 QtGui.QSystemTrayIcon. init (self,
99 QtGui.QIcon(":/antenna.svg"))

120

Acciones

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

Acciones del menu de botdén derecho
self.configAction = QtGui.QAction(
QtGui.QIcon(":/configure.svg"),

"&Configure...",self)
self.aboutAction = QtGui.QAction(
"§&About...",self)

self.quitAction = QtGui.QAction(
QtGui.QIcon(":/exit.svg"),
"&Quit",self)

Armamos el menU con las acciones
self.rmbMenu=QtGui.QMenu()
self.rmbMenu.addActions ([
self.configAction,
self.aboutAction,
self.quitAction
1

Ponemos este ment como meny de contexto

self.setContextMenu(self.rmbMenu)

Por supuesto, necesitamos que las acciones que creamos... bueno, hagan algo.

Necesitamos conectar sus sefiales triggered a distintos métodos que hagan lo
que corresponda:

169
170
171
172
173

radio4.py

self.configAction.triggered.connect(self.showConfig)
self.aboutAction.triggered.connect(self.showAbout)

self.quitAction.triggered.connect(

QtCore.QCoreApplication.instance().quit)

Obviamente falta implementar showConfig y showAbout, pero no tienen nada
que no hayamos visto antes:

204
205
206
207
208

121

@QtCore.pyqgtSlot()
def showConfig(self):

"Muestra didlogo de configuracion"
self.confDlg = Main()
self.confDlg.exec ()

radiod.py

Acciones

209
210
211
212
213
214
215
216
217
218

@QtCore.pyqtSlot()
def showAbout(self):
QtGui.QMessageBox.about(None, u"Radio",
u"Example app from 'Python No Muerde'
"\
u"© 2010 Roberto Alsina
"\
u"More information: http://nomuerde.netmanagers.com.ar"

El menu del botdn izquierdo es un poco mas complicado. Para empezar, tiene

una entrada “normal” como las que vimos antes, pero las otras son dindmicas y
dependen de cuéles radios estan definidas.

Para mostrar un ment ante un click de botén izquierdo, debemos conectarnos a
la sefial activated (las primeras lineas son parte de TrayIcon. init):

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

122

radio4 py

Conectamos el botén izquierdo
self.activated.connect(self.activatedSlot)

def activatedSlot(self, reason):
"""E1l usuario activé este icono
if reason == QtGui.QSystemTrayIcon.Trigger:
E1l menu del botén izquierdo
self.stopAction=QtGui.QAction(
QtGui.QIcon(":/stop.svg"),
"&Turn Off Radio",self)

self.lmbMenu=QtGui.QMenu()
self.lmbMenu.addAction(self.stopAction)
self.lmbMenu.addSeparator()

self.loadRadios ()
self.radioActions = []
for r in self.radios:
receiver = lambda url=r[1]: self.playURL(url)
self.lmbMenu.addAction(
r[0], receiver)

Ruido

197 # Mostramos el menu en la posicién del cursor
198 self.lmbMenu.exec (QtGui.QCursor.pos())

199

200 def playURL(self, url):

201 print url

202

203

204

En vez de crear las QAction a mano, dejamos que el mena las cree
implicitamente con addAction y —esta es la parte rara— creamos un
“receptor” lambda para cada senal, que llama a playURL con la URL que
corresponde a cada radio.

¢Porqué tenemos que hacer eso? Porque si conectaramos todas las sefiales a
playURL, no tendriamos manera de saber cudl radio queremos escuchar.

¢Se acuerdan que les dije que signals y slots tienen “acoplamiento débil”?
Bueno, este es el lado malo de eso. No es terrible, la solucién son dos lineas de
codigo, pero... tampoco es obvio.

En este momento, nuestra aplicacién tiene todos los elementos de interfaz
terminados. Tan solo falta que, dada la URL de una radio, produzca sonido.

Por suerte, Qt es muy completo. Tan completo que tiene casi todo lo que
necesitamos para hacer eso. Veamoslo en detalle...

Ruido

Comencemos con un ejemplo de una radio por Internet. Es gratis, y me gusta
escucharla mientras escribo o programo, y se llama Blue Mars 44 pueden ver
mas informacion en http://bluemars.org

44 De hecho son tres estaciones, vamos a probar la que se llama Blue
Mars.

En el sitio dice “Tune in to BLUEMARS” y da la URL de un archivo listen.pls.

Ese archivo es el “playlist”, y a su vez contiene la URL desde donde se baja el
audio. El contenido es algo asi:

[playlist]
NumberOfEntries=1
Filel=http://207.200.96.225:8020/

123

http://bluemars.org
http://207.200.96.225:8020/listen.pls

Ruido

El formato es muy sencillo, hay una explicacion completa en Wikipedia pero
béasicamente es un archivo INI, que:

¢ DEBE tener una seccién playlist
* DEBE tener una entrara NumberOfEntries

* Tiene una cantidad de entradas llamadas Filel...“FileN“, que son URLs
de los audios, y (opcionalmente) Titlel...“TitleN“ y Lengthl...“LengthN“
para titulos y duraciones.

Seguramente en alguna parte hay un mddulo para parsear estos archivos y/o
todos los otros formatos de playlist que hay dando vueltas por el mundo, pero
esto es un programa de ejemplo, y me conformo con cumplir las leyes del TDD:

¢ Hacé un test que falle
* Programad hasta que el test no falle

e Pard de programar
Asi que... les presento una funcién que puede parsear exactamente este playlist
y probablemente ningtn otro:
plsparser.py

1 # -*- coding: utf-8 -*-

2

3 """Médulo de parsing de playlists PLS."""

4

5 import urllib

6 from ConfigParser import RawConfigParser

7

8 def parse pls(url):

9 ut'"

10 Dada una URL, baja el contenido, y devuelve una lista de [titulo,url]
11 obtenida del PLS al que la URL apunta.

12

13 Devuelve [] si el archivo no se puede parsear o si hubo
14 cualquier problema.

15

16 >>> parse pls('http://207.200.96.225:8020/1isten.pls")
17 [['", "http://207.200.96.225:8020/"']]

18

19 R

20 try:

21 parser = RawConfigParser()

22 parser.readfp(urllib.urlopen(url))

124

http://en.wikipedia.org/wiki/PLS_(file_format)

Ruido

23

24 # Hacemos las cosas de acuerdo a la descripcién de Wikipedia:
25 # http://en.wikipedia.org/wiki/PLS (file format)

26

27 if not parser.has section('playlist'):

28 return []

29 if not parser.has option('playlist', 'NumberOfEntries'):
30 return []

31

32 result=[]

33 for i in range(1l, parser.getint('playlist', 'NumberOfEntries')+1l):
34

35 if parser.has option('playlist', 'Title%s'%i):

36 title=parser.get('playlist', 'Title%s'%i)

37 else:

38 title=""

39 result.append([

40 title,

41 parser.get('playlist', 'File%s'%i)

42 1)

43 return result

44 except:

45 # FIXME: reportar el error en log

46 return []

Teniendo esto, podemos comenzar a implementar playURL. Preparate para
entrar al arduo mundo de la multimedia...

Primero, necesitamos importar un par de cosas:
radio5.py

12 # Soporte de sonido

13 from PyQt4.phonon import Phonon
14

15 # Parser de playlists

16 from plsparser import parse pls

Y esta es playURL completa:
radio5.py

207 def playURL(self, url):

208 """Toma la URL de un playlist, y empieza a hacer ruido"""
209 data = parse pls(url)

210 if data: # Tengo una URL

211 # Si, tomamos el primer stream y listo.

125

Ruido

212 url = data[0][1]

213

214 self.player = Phonon.createPlayer(Phonon.MusicCategory,
215 Phonon.MediaSource(url))

216 self.player.play()

217

218 else: # Pasé algo malo

219 QtGui.QMessageBox.information(None,

220 "Radio - Error reading playlist",
221 "Sorry, error starting this radio.")
222

223

Y efectivamente, radio5.py permite escuchar (algunas) radios de internet.
Tiene montones de problemas y algunos features ain no estan implementados
(por ejemplo, “Stop” no hace nada), pero es una aplicaciéon funcional. Rustica,
pero funcional.

En el siguiente capitulo la vamos a pulir. Y la vamos a pulir hasta que brille.

126

Disefio de Interfaz Grafica

Disefio de Interfaz Grafica

"iCémo se hace una estatua de un elefante? Empezas con
un bloque de marmol y sacas todo lo que no parece un
elefante.”

Andénimo.

"Abandonen la esperanza del valor afiadido a través de la
rareza. Es mejor usar técnicas de interaccién consistentes
que le den a los usuarios el poder de enfocarse en tu
contenido, en vez de preguntarse como se llega a él."

Jakob Nielsen

¢Siendo un programador, qué sabe uno de disenos de interfaces? La respuesta,
al menos en mi caso es poco y nada. Sin embargo, hay unos cuantos principios
que ayudan a que uno no cree interfaces demasiado horribles, o a veces hasta
agradables.

» Aprender de otros.

Estamos rodeados de ejemplos de buenas y malas interfaces. Copiar es
bueno.

Contenerse.

Tenemos una tendencia natural a crear cabinas de Concord. No te digo
que no estd buena la cabina de un Concord, lo que te digo es que para
hacer tostadas es demasiado.

En general, dado que uno no tiene la habilidad (en principio) de crear
asombrosas interfaces, lo mejor es crear lo menos posible. iLo que no esta
ahi no puede estar tan mal!

127

Diseno de Interfaz Grafica

Concord cockpit by wynner3, licencia CC-BY-NC
(http://www.flickr.com/photos/wynner3/3805698150/)

¢ Pensar mucho antes.

Siempre es mas facil agregar y mantener un feature bien pensado, con
una interfaz limitada, que tratar de hacer que funcione una pila de cosas a
medio definir.

Si no sabés exactamente cémo funciona tu aplicacién, no estas listo para
hacer una interfaz usable para ella. Si podés hacer una de prueba.

Tird una.

Hacé una interfaz mientras estds empezando. Después tirdla. Si hiciste
una clara separacién de capas eso deberia ser posible.

Pedi ayuda.

Si tenés la posibilidad de que te de una mano un experto en usabilidad,
usdla. Si, ya sé que vos podés crear una interfaz que funcione, eso es lo
fdcil, lo dificil es crear una interfaz que alguien quiera usar.

Mas alla de esos criterios, en este capitulo vamos a tomar la interfaz creada en
el capitulo anterior y la vamos a rehacer, pero bien. Porque esa era la de
desarrollo, y la vamos a tirar.

128

http://www.flickr.com/photos/wynner3/3805698150/

Proyecto

Proyecto

Asumamos que la aplicacién de streaming de radio que desarrollamos en el
capitulo anterior funciona correctamente y carece de bugs 45 iQué hay que
hacer ahora?

45 No es asi, pero estoy escuchando musica con ella iEn este mismo
momento!

Bueno, falta resolver todas las cosas que no son bugs desde el punto de vista de
funcionamiento pero que estan mal.

Corrigiendo la Interfaz Grafica

Empecemos con la ventana de configuracion, viendo algunos problemas de base
en el disefio. Desde ya que el 90% de lo que veamos ahora es discutible. Es mas,
como no soy un experto en el tema, es probable que el 90% esté equivocado.
Sin embargo, hasta que consiga un experto en UI que le pegue una revisada...

es lo que hay 46,

46 De hecho, pedi ayuda en twitter/identi.ca y mi blog y salieron unas
cuantas respuestas, incluyendo un post en otro blog. iCon mockups y
todo!

A Radios L INCORCNEE'3
) Add
N\ Edit
X Remove
A Up
V Down

Vv Close

Funciona, pero tiene problemas.

Esa ventana tiene muchos problemas.

129

http://lateral.netmanagers.com.ar/weblog/posts/BB889.html
http://thesmithfam.org/blog/2010/05/16/whats-wrong-with-this-dialog/

Proyecto

A Radios IR

) Add

N Edit
Remove

1 A up
V Down

v Close

Botdén "Close" no alineado.

Normalmente no vas a ver este caso cubierto en las guias de disefio de interfaz
porque estamos usando un layout “columna de botones” que no es de lo mas
standard.

Si hubiera méas de un botén abajo, entonces tal vez “Close” se veria como
perteneciente a ese elemento visual, sin embargo, al estar solo, se lo ve como
un elemento de la columna, aunque “destacado” por la separacion vertical.

Al ser “absorbido” visualmente por esa columna, queda muy raro que no tenga
el mismo ancho que los otros botones.

Como no debemos asignar anchos fijos a los botones (por motivos que vamos a
ver mas adelante) debemos solucionarlo usando layout managers.

Una manera de resolverlo es una matriz 2x2 con un grid layout:

© ¢
) Add
N Edit
X Remove
A Up
V Down

v Close

Botdn "Close" alineado.

El resultado final es bastante méas arménico, y divide visualmente el didlogo en
dos componentes claros, la lista a la izquierda, los controles a la derecha.

Lo que nos lleva al segundo problema:

130

Proyecto

A Radios ORI

) Add
N Edit
X Remove
A Up
V Down

— AL

Espacio muerto.

Si el layout es “dos columnas” entonces no tiene sentido que la lista termine
antes del fondo del didlogo. Nuevamente, si hubiera dos botones abajo (por
ejemplo, “Accept” y “Reject”), entonces si tendria sentido extender ese
componente visual hacia la izquierda.

Al tener sdlo uno, ese espacio vacio es innecesario y antifuncional.

Entonces cambiamos el esquema de layouts, y terminamos con un layout
horizontal de dos elementos, el derecho un layout vertical conteniendo todos los
botones:

A Radios - [Preview] 2 00 ®

) Add
N Edit
X Remove
A Up
V Down

v Close

Resultado con layout horizontal.

El siguiente problema es que al tener iconos y texto, y al estar centrado el
contenido de los botones, se ve horrible:

131

¢Qué estamos haciendo?

A Radios - [Preview] 2 Q@ &

) Add
N Edit
X Remove
A Up

4
¥ Down

Vv Close

Etiquetas centradas con iconos a la izquierda.
Hay varias soluciones para esto:

* Podemos no poner iconos: El texto centrado no molesta tanto visualmente.

* Podemos no centrar el contenido de los botones: Se ve mejor, pero es muy
poco standard 47

47 Ver la cita de Nielsen al principio del capitulo.

* Podemos no poner texto en el botdén sino en un tooltip: Funciona, es
standard, resuelve el alineamiento, hace la interfaz levemente menos
obvia.

* Mover algunos elementos inline en cada item (los que afectan a un Unico
item) y mover los demaés a una linea horizontal por debajo de la lista.

O ... podemos dejar de ponerle lapiz de labios al chancho y admitir que es un
chancho.

El problema de este didlogo no es que los botones estén desalineados, es que no
sabemos siquiera porqué los botones estan.

Asi que, teniendo una interfaz que funciona, hagamos un desarrollo racional de
la version nueva, y olvidemos la vieja.

¢Qué estamos haciendo?

Pensemos el objetivo, la tarea a realizar. Es controlar una lista de radios. Lo
minimo seria esto:

* Agregar radios nuevas (Add).
¢ Cambiar algo en una radio ya existente (Edit).

» Sacar radios que no nos gustan mas (Delete).

132

¢Qué estamos haciendo?

* Cerrar el didlogo (Close) 48

48 Podriamos tener “Apply”, “Cancel”, etc, pero me gusta méas la idea de
este didlogo como de aplicacién instantdnea, “aplicar cambios” es un
concepto nerd. La manipulacion directa es la metafora moderna. Bah,
es una opinién.

Adicionalmente teniamos esto:

* Cambiar el orden de las radios en la lista
¢Pero... porqué estaba? En nuestro caso es porque nos robamos la interfaz de
RadioTray, pero... {alguien necesita hacerlo? ¢Porqué?

Veamos las justificaciones que se me ocurren:

1. Poner las radios mas usadas al principio.

Pero... {No seria mejor si el programa mostrara las ultimas radios usadas
al principio en forma automética?

2. Organizarlas por tipo de radio (ejemplo: tener todas las de musica country
juntas)

Para hacer esto correctamente, creo que seria mejor tener multiples
niveles de mentes. También podriamos agregarle a cada radio un campo
“género” o tags, y usar eso para clasificarlas.

En ambos casos, me parece que el ordenamiento manual no es la manera
correcta de resolver el problema. Es casi lo contrario de un feature. Es un
anti-feature que sélo sirve para que a los que realmente querrian un feature
determinado se les pueda decir “usa los botones de ordenar”.

Si existe algun modelo de uso para el que mover las radios usando flechitas es
el modo de interaccién correcta... no se me ocurre y perdén desde ya.

Por lo tanto, este “feature” va a desaparecer por ahora.

Sino tenemos los botones de subir y bajar, no tiene tanto sentido la idea de una
columna de botones a la derecha, y podemos pasar a un layout con botones
horizontales:

133

¢Qué estamos haciendo?

[Radios - radio2.ui ¥ X
s

n M s
) Add N Edit X Remove |/Hm//////////////////////////4 + Done

Repensando el didlogo. Ya que estamos "Done" es mds adecuado para el
botén que "Close".

¢En qué se parecen y en qué se diferencian esos cuatro botones que tenemos
ahi abajo?

« Edit y Remove afectan a una radio que esté seleccionada.

e Add y Done no dependen de la seleccion en la lista.

¢Que pasaria si pusiéramos Edit y Remove en los items mismos? Bueno, lo
primero que pasaria es que tendriamos que cambiar cédigo porque el
QListWidget soporta una sola columna y tenemos que pasar a un QTreeWidget.
Veamos como funciona en la GUI:

A Radios 2 ® @ 6
Blue Mars N\ Edit X Remove
Cryosleep N Edit X Remove
Voices From Within N\ Edit X Remove

) Add v/ Done

iLess is more!

También al no tener més botones de Edit y Remove, hay que mover un poco el
cédigo porque ahora responde a otras senales.

134

¢Qué estamos haciendo?

La parte interesante (no mucho) del cédigo es esta:

radio6.py
65 def listRadios(self):
66 "Muestra las radios en la lista"
67 self.radioList.clear()
68 for nombre,url in self.radios:
69 item = QtGui.QTreeWidgetItem([nombre,"Edit","Remove"])
70 item.setIcon(1,QtGui.QIcon(":/edit.svg"))
71 item.setIcon(2,QtGui.QIcon(":/delete.svg"))
72 self.radioList.addTopLevelItem(item)
73
74 @QtCore.pyqtSlot()
75 def on add clicked(self):
76 addDlg = AddRadio(self)
77 r = addDlg.exec_ ()
78 if r: # 0 sea, apretaron "Add"
79 self.radios.append ((unicode(addDlg.name.text()),
80 unicode(addDlg.url.text())))
81 self.saveRadios()
82 self.listRadios()
83
84 def on radiolList clicked(self, index):
85 curldx = index.row()
86
87 if index.column() == 1: # Edit
88 name, url = self.radios[curIdx]
89 editDlg = EditRadio(self)
90 editDlg.name.setText (name)
91 editDlg.url.setText(url)
92 r = editDlg.exec ()
93 if r: # 0 sea, apretaron "Save"
94 self.radios[curldx]= [unicode(editDlg.name.text()),
95 unicode(editDlg.url.text())]
96 self.saveRadios()
97 self.listRadios()
98 self.radiolList.setCurrentRow(curIdx)
99
100 elif index.column() == 2: # Remove
101 del (self.radios[curIdx])
102 self.saveRadios()
103 self.listRadios()

135

Pulido
104
105

¢Es esto todo lo que estd mal? Vaya que no.

Pulido

Los iconos que venimos usando son del set “Reinhardt” que a mi personalmente
me gusta mucho, pero algunos de sus iconos no son exactamente obvios. ¢Por
ejemplo, esto te dice “Agregar”?

Bueno, en cierta forma si, pero estd pensado para documentos. Seria mejor por
ejemplo un signo +. De la misma forma, si bien la X funciona como “remove”, si
usamos un + para “Add”, es mejor un - para “Remove”.

Y para “Edit” es mejor usar un lapiz y no un destornillador. El problema ahi es
usar el mismo icono que para “Configure”. Si bien ambos casos son acciones
relacionadas, son lo suficientemente distintas para merecer su propio icono.

A Radios DI
Blue Mars / Edit = Remove
Cryosleep / Edit = Remove
Voices From Within / Edit = Remove

+ Add v/ Done
iShiny!

¢Quiere decir que este didlogo ya esta terminado? No, en absoluto.

136

Nombres y Descripciones

Nombres y Descripciones

En algunos sistemas operativos tu ventana va a tener un botén extra,
generalmente un signo de pregunta. Eso activa el “What’s This?” o “éQué es
esto?” y tambien se lo accede con un atajo de teclado (muchas veces Shift+F1).

Luego, al hacer click en un elemento de la interfaz, se ve un tooltip extendido
con informacion detallada acerca del mismo. Esta informaciéon es 1util como
ayuda online.

Es sencillo agregarlo usando designer, y si lo hacemos se ve de esta forma:

A Radios 2 v oA X
Blue Mars / Edit = Remove
Cryosleep / Edit = Remove
Voices From Within / Edit = Remove

This is a list of radio stations you have
configured.

To change one of them, click on "Edit" next to
its name, and to remove it from the list, click
on "Remove".

If you want to add more stations, click the
"Add" button, and if you are finished, click
"Done".

+ Add + Done

"What's This?" de la lista de radios.

Los programas deberian ser accesibles para personas con problemas de visién,
por lo cual es importante ocuparse de todo lo que sea teconologias asistivas. En
Qt, eso quiere decir por lo menos completar los campos accessibleName vy
accessibleDescription de todos los widgets con los que el usuario pueda
interactuar.

+ toolTip

+ statusTip

- whatsThis This is a list of radio stations you have conf...
translatable v
disambiguation
comment

- accessibleName List of Radios

translatable v
disambiguation
comment

« LTS TN (This s a Jist of radio stations vou have) ... *

Datos de accesibilidad.

Uso Desde el Teclado

Es importante que una aplicacién no obligue al uso del mouse a menos que sea
absolutamente indispensable. La Gnica manera de hacer eso que conozco es...
usandola completa sin tocar el mouse.

137

Nombres y Descripciones

Probar esta aplicacion en su estado actual muestra varias partes que fallan esa
prueba.

* En el didlogo de agregar radios no es obvio como usar los botones “Add” y
“Cancel” porque no tienen atajo de teclado asignado.

Eso es facil de arreglar con Designer, y se hizo en addradio2.ui. De
ahora en mas utilizaremos la aplicacién radio7.py que usa ese archivo.

En el didlogo de configuracién no hay manera de editar o eliminar radios
sin usar el mouse.

Esto es bastante méas complicado, porque involucra varias partes del
diseflo, y podria hasta ser suficiente para hacernos repensar la idea del
“Edit/Remove” dentro de la lista. Veamos qué podemos hacer al respecto.

El primer problema es que la lista de radios esta configurada para no aceptar
seleccion, con lo que no hay manera de elegir un item. Eso lo cambiamos en
designer, poniendo la propiedad selectionMode en SingleSelection.

Con eso, serd posible seleccionar una radio. Luego, debemos permitir que se
apliquen acciones a la misma. Una manera es habilitar atajos de teclado para
Edit y Remove, por ejemplo “Ctrl+E” y “Delete”.

La forma mas sencilla es crear dos acciones (clase QAction) con esos atajos y
hacer que hagan lo correcto.

138

Traducciones

radio7.py
57 # Acciones para atajos de teclado
58 self.editAction = QtGui.QAction("Edit", self,
59 triggered = self.editRadio)
60 self.editAction.setShortcut(QtGui.QKeySequence("Ctri+E"))
61 self.removeAction = QtGui.QAction("Remove", self,
62 triggered = self.removeRadio)
63 self.removeAction.setShortcut(QtGui.QKeySequence("Del"))
64 self.addActions([self.editAction, self.removeAction])
65
66 def editRadio(self, b=None):
67 # Simulamos un click en Edit
68 items = self.radiolList.selectedItems()
69 if items: # Si no hay ninguno seleccionado,
70 # no hay que hacer nada
71 # Simulamos un click en la segunda columna de ese
72 # item.
73 item = items[0]
74 self.on _radiolList clicked(self.radiolList.indexFromItem(item,1))
75
76 def removeRadio(self, b=None):
77 # Simulamos un click en Remove
78 items = self.radiolList.selectedItems()
79 if items: # Si no hay ninguno seleccionado,
80 # no hay que hacer nada
81 # Simulamos un click en la tercera columna de ese
82 # item.
83 item = items[0]
84 self.on radiolList clicked(self.radioList.indexFromItem(item,2))
85

Traducciones

Uno no hace aplicaciones para uno mismo, o aun si las hace, estd bueno si las

pueden usar otros. Y estd muy bueno si la puede usar gente de otros paises. Y

para eso es fundamental que puedan tenerla en su propio idioma 49

49 Yo personalmente es rarisimo que use las aplicaciones traducidas, pero
para otros es necesario.

Esta parte es una de esas que dependen mucho de como sea lo que se esta
programando. Vamos a hacer un ejemplo con las herramientas de Qt, para otros
desarrolos hay cosas parecidas.

139

Traducciones

Hay varios pasos, extraccién de strings, traduccion, y compilacion de los strings
generados a un formato usable.

A fin de poder traducir lo que un programa dice, necesitamos saber
exactamente qué dice. Las herramientas de extraccion de strings se encargan
de buscar todas esas cosas en nuestro cédigo y ponerlas en un archivo para que
podamos trabajar con ellas.

En la versién actual de nuestro programa, tenemos los siguientes archivos:

* radio7.py (nuestro programa principal)
 plsparser.py (parser de archivos .pls, no tiene interfaz)
* addradio2.ui (didlogo de agregar una radio)
* radio3.ui (didlogo de configuracién)
iExtraigamos esos strings! Este comando crea un archivo radio.ts con todo lo

traducible de esos archivos, para crear una traduccidon al castellano:

[codigo/6]1$ pylupdated4 radio7.py plsparser.py addradio2.ui \
radio3.ui -ts radio es.ts

Los archivos .ts son un XML bastante obvio. Este es un ejemplo de una
traduccién al castellano:
radio_es.ts

1 <?xml version="1.0" encoding="utf-8"?>
2 <IDOCTYPE TS><TS version="1.1" language="es AR">
3 <context>

4 <name>Dialog</name>

5 <message>

6 <location filename="addradio2.ui" line="14"/>
7 <source>Add Radio</source>

8 <translation>Agregar Radio</translation>

9 </message>

Otras herramientas crean archivos en otros formatos, mas o menos faciles de
editar a mano, y/o proveen herramientas para editarlos.

¢Ahora, como editamos la traduccion? Usando Linguist, que viene con Qt. Lo
primero que hard es preguntarnos a qué idioma queremos traducir:

140

Traducciones

o l® Settings for 'radio’ - Qt Linguist R

Source language
Language POSIX v

Country/Region Any Country v

Target language

Language Spanish v

Country/Region [Argentina v]

« OK @ Cancel

Diélogo inicial de Linguist

Linguist es muy interesante porque te muestra como queda la interfaz con la
traducciéon mientras lo estas traduciendo (por lo menos para los archivos .ui),
lo que permite apreciar si estamos haciendo macanas.

Strings © x Sources and Forms
< Source text #Add Radio SRS
Add Radio
[~&Radio Name: |
&URL:
&Cancel #URL:
&Add —

Radios

This is a list of ...
List of Radios

This is a list of r...
This button lets ...
Add

Add a new radio ...
This button clos...
Done

&Done

#Cancel #Add

Source text
&Radio-Name:
Spanish translation
+

4-“

Spanish translator comments

Linguist en accién

Entonces uno tradujo todo lo mejor que pudo, écémo hacemos que la aplicacion
use nuestra traduccién? Por suerte es muy standard. Primero, creamos un
archivo “release” de la traduccion, con extension .gm, donde compilamos a un

formato méas eficiente:

[codigo/6]$ lrelease radio es.ts -compress -gm radio es.gm
Updating 'radio es.gm'...
Generated 15 translation(s) (15 finished and 0 unfinished)

141

Traducciones

Del lado del cédigo, debemos decirle a nuestra aplicaciéon donde esta el archivo
.gm. Asumiendo que esta junto con el script principal:

radio7.py
27 # Cargamos las traducciones de la aplicacidn
28 locale = unicode(QtCore.QLocale.system().name())
29 translator=QtCore.QTranslator()
30 translator.load(os.path.join(os.path.abspath(
31 os.path.dirname(file)),
32 "radio " + unicode(locale)))
33 app.installTranslator(translator)
34
35 # También hay que cargar las traducciones de Qt,
36 # para los didlogos standard.
37 gtTranslator=QtCore.QTranslator()
38 gtTranslator.load("qt " + locale,
39 QtCore.QLibraryInfo.location(
40 QtCore.QLibraryInfo.TranslationsPath))
41 app.installTranslator(qtTranslator);
42 # Fin de carga de traducciones

Y nuestra aplicacién estd traducida:

A Radios 2 © © &

Cryosleep / Edit = Remove
Voices From Within / Edit = Remove

+ Agregar v/ Cerrar

iTraducida! ... ¢Traducida?

Nos olvidamos que no todo nuestro texto visible (y traducible) viene de
designer. Hay partes que estan escritas en el cédigo python, y hay que
marcarlas como traducibles, para que pylupdate4 las agregue al archivo .ts.

Eso se hace pasando los strings a traducir por el método tr de la aplicacién o
del widget del que forman parte. Por ejemplo, en vez de hacer asi:

item = QtGui.QTreeWidgetItem([nombre,"Edit", "Remove"1])

142

Traducciones

Hay que hacer asi:

item = QtGui.QTreeWidgetItem([nombre,self.tr("Edit"),
self.tr("Remove")])

Esta operaciéon hay que repetirla en cada lugar donde queden strings sin
traducir. Por ese motivo... ihay que marcar para traduccion desde el
principio!

Como esto modifica fragmentos de cédigo por todas partes, vamos a crear una
nueva version del programa, radio8. py.

Al agregar nuevos strings que necesitan traduccién, es necesario actualizar el
archivo .ts:

[codigo/61$ pylupdate4 -verbose radio8.py plsparser.py addradio2.ui\
radio3.ui -ts radio es.ts

Updating 'radio es.ts'...

Found 24 source texts (9 new and 15 already existing)

Y, luego de traducir con linguist, recompilar el . gm:

[codigo/61$ lrelease radio es.ts -compress -gm radio es.gm
Updating 'radio es.gm'...
Generated 24 translation(s) (24 finished and 0 unfinished)

Como todo este proceso es muy engorroso, puede ser practico crear un
Makefile o algun otro mecanismo de automatizaciéon de la actualizacién y
compilacién de traducciones. Por ejemplo, con este Makefile un make
traducciones se encarga de todo:

Makefile

traducciones: radio_es.qgm

radio es.qgm: radio es.ts
lrelease radio es.ts -compress -gm radio es.qgm

radio es.ts: radio8.py plsparser.py addradio2.ui radio3.ui
pylupdate4 -verbose radio8.py plsparser.py addradio2.ui\

1
2
3
4
5
6
7
8 radio3.ui -ts radio_es.ts

143

Feedback

Feedback

En este momento, cuando el usuario elige una radio que desea escuchar, suena.
¢Pero qué estd sonando? ¢Cudl radio estd escuchando? dQue tema estan
pasando en este momento? Deberiamos brindar esa informacion, si el usuario la
desea, de manera lo menos molesta posible.

En este caso puntual, lo que queremos es el “metadata” del objeto reproductor,
y un mecanismo posible para mostrar esa informaciéon es un OSD (On Screen
Display) o usar una de las APIs de notificacién del sistema 50,
50 Hay pros y contras para cada una de las formas de mostrar
notificaciones. Voy a hacer una que tal vez no es éptima, pero que
funciona en todas las plataformas.

En cuanto a qué notificar, es sencillo, cada vez que nuestro reproductor de
audio emita la senal metaDataChanged tenemos que ver el resultado de
metaData() y ahi esté todo.

También es importante que se pueda ver qué radio se estd escuchando en este
momento. Eso lo vamos a hacer mediante una marca junto al nombre de la radio
actual.

Ya que estamos, tiene mas sentido que “Quit” esté en el ment principal (el del
botdn izquierdo) que en el secundario, asi que lo movemos.

Ah, vy implementamos que “Turn Off Radio” solo aparezca si hay una radio en
uso (y hacemos que funcione).

Para que quede claro qué modificamos, creamos una nueva version de nuestro
programa, radio9.py, y esta es la parte interesante:

radio9.py
197 def activatedSlot(self, reason):
198 """Fl usuario activé este icono"""
199 if reason == QtGui.QSystemTrayIcon.Trigger:
200 # El mend del botén izquierdo
201 self.lmbMenu=QtGui.QMenu()
202
203 if self.player and \
204 self.player.state() == Phonon.PlayingState:
205 self.stopAction=QtGui.QAction(
206 QtGui.QIcon(":/stop.svg"),
207 self.tr("&Turn Off Radio"),self)
208 self.stopAction.triggered.connect(self.player.stop)

144

Feedback

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

252
253

145

self.lmbMenu.addAction(self.stopAction)
self.lmbMenu.addSeparator()

self.loadRadios ()
self.radioActions = []
for r in self.radios:
receiver = lambda url=r[1]: self.playURL(url)
action = self.lmbMenu.addAction(
r[0], receiver)
action.setCheckable(True)

Marcamos la radio que estamos escuchando ahora,

si es que estamos escuchando alguna

if self.player and \
self.player.state() == Phonon.PlayingState and\
getattr(self, 'playingURL','"') == r[1]:
action.setChecked(True)

Ponemos "Quit" en el menl del botén izquierdo.
self.lmbMenu.addSeparator()
self.lmbMenu.addAction(self.quitAction)

Mostramos el menu en la posicidén del cursor
self.lmbMenu.exec (QtGui.QCursor.pos())

def playURL(self, url):
"""Toma la URL de un playlist, y empieza a hacer ruido"""
data = parse_pls(url)
if data: # Tengo una URL
la anoto
self.playingURL = url
Si, tomamos el primer stream y listo.
url = data[0][1]

self.player = Phonon.createPlayer(Phonon.MusicCategory,
Phonon.MediaSource(url))

self.player.play()

Notificar cada cambio en metaData (qué se esta escuchando)

self.player.metaDataChanged.connect(self.notify)

else: # Pasé algo malo

QtGui.QMessageBox.information(None,
self.tr("Radio - Error reading playlist"),
self.tr("Sorry, error starting this radio."))

@QtCore.pyqtSlot()

Feedback

254 def notify(self):
255 # Obtenemos metadata y mostramos en 0SD y en tooltip.
256 md = self.player.metaData
257 self.showMessage(self.tr("Now playing:"),
258 "%s"%(md("TITLE")[0O]),
259 QtGui.QSystemTrayIcon.Information,
260 5000)
261 self.setToolTip("%s"%(md("TITLE")[0]))
262
263
264

© Now playing: x

Cryosleep - Zero Beat Guaranteed

Musica tranqui.

146

Un Programa Util

Un Programa Util

Este es el temido “capitulo integrador” en el que vamos a tomar todo lo que
vimos hasta ahora y tratar de crear algo interesante. Repasemos qué se supone
que tenemos en nuestra caja de herramientas...

* Una coleccién enorme de software que podemos aprovechar en vez de
escribirlo nosotros.

* Capacidad de separar nuestra aplicacién en capas, para dque los
componentes sean reemplazables.

* La conviccién de que testear y documentar el cédigo es importante.
» Sabemos hacer interfaces graficas y/o web.
* Sabemos usar un ORM.

e Diversas cosas menores que nos cruzamos por el camino.

Proyecto

Vamos a hacer un sistema de integraciéon continua al estilo Hudson para
proyectos python.

Tal vez no tenga tantos features, pero va a ser suficiente para la mayoria de los
casos.

147

https://hudson.dev.java.net/

Instalacién, Deployment y Otras Yerbas

Instalacion, Deployment y Otras Yerbas

En este momento (primera mitad del 2010) la situacién de los mecanismos de
deployment disponibles para python es bastante cadtica. Hay media docena de

maneras de acercarse al tema.
¢ Podés usar distutils (viene en la stdlib)

e Podés usar setuptools

¢ Podés usar distribute (reemplaza a setuptools)

148

Cémo Crear un Proyecto de Software Libre

CoOmo Crear un Proyecto de Software Libre

149

Rebelién Contra el Zen

Rebelién Contra el Zen

150

Herramientas

Herramientas

151

Conclusiones, Caminos y Rutas de Escape

Conclusiones, Caminos y Rutas de Escape

152

Licencia de este libro

Licencia de este libro

LA OBRA (TAL COMO SE DEFINE MAS ABAJO) SE PROVEE BAJO LOS
TERMINOS DE ESTA LICENCIA PUBLICA DE CREATIVE COMMONS (“CCPL”
O “LICENCIA”). LA OBRA ESTA PROTEGIDA POR EL DERECHO DE AUTOR
Y/O POR OTRAS LEYES APLICABLES. ESTA PROHIBIDO CUALQUIER USO DE
LA OBRA DIFERENTE AL AUTORIZADO BAJO ESTA LICENCIA O POR EL
DERECHO DE AUTOR.

MEDIANTE EL EJERCICIO DE CUALQUIERA DE LOS DERECHOS AQUI
OTORGADOS SOBRE LA OBRA, USTED ACEPTA Y ACUERDA QUEDAR
OBLIGADO POR LOS TERMINOS DE ESTA LICENCIA. EL LICENCIANTE LE
CONCEDE LOS DERECHOS AQUI CONTENIDOS CONSIDERANDO QUE
USTED ACEPTA SUS TERMINOS Y CONDICIONES.

1. Definiciones

a. “Obra Colectiva” significa una obra, tal como una edicién periddica,
antologia o enciclopedia, en la cual la Obra, en su integridad y forma
inalterada, se ensambla junto a otras contribuciones que en si
mismas también constituyen obras separadas e independientes,
dentro de un conjunto colectivo. Una obra que integra una Obra
Colectiva no serd considerada una Obra Derivada (tal como se define
mas abajo) a los fines de esta Licencia.

b. “Obra Derivada” significa una obra basada sobre la Obra o sobre la
Obra y otras obras preexistentes, tales como una traduccion, arreglo
musical, dramatizacién, ficcionalizacién, versiéon filmica, grabacion
sonora, reproduccion artistica, resumen, condensaciéon, o cualquier
otra forma en la cual la Obra puede ser reformulada, transformada o
adaptada. Una obra que constituye una Obra Colectiva no serd
considerada una Obra Derivada a los fines de esta Licencia. Para
evitar dudas, cuando la Obra es una composicion musical o
grabacién sonora, la sincronizaciéon de la Obra en una relacién
temporal con una imagen en movimiento (“synching”) serd
considerada una Obra Derivada a los fines de esta Licencia.

c. “Licenciante” significa el individuo o entidad que ofrece la Obra bajo
los términos de esta Licencia.

d. “Autor Original” significa el individuo o entidad que cre6 la Obra.

153

Licencia de este libro

e. “Obra” significa la obra sujeta al derecho de autor que se ofrece
bajo los términos de esta Licencia.

f. “Usted” significa un individuo o entidad ejerciendo los derechos bajo
esta Licencia quien previamente no ha violado los términos de esta
Licencia con respecto a la Obra, o quien, a pesar de una previa
violacion, ha recibido permiso expreso del Licenciante para ejercer
los derechos bajo esta Licencia.

g. “Elementos de la Licencia” significa los siguientes atributos
principales de la licencia elegidos por el Licenciante e indicados en
el titulo de la Licencia: Atribucién, NoComercial,
CompartirDerivadasIgual.

2. Derechos de Uso Libre y Legitimo. Nada en esta licencia tiene por
objeto reducir, limitar, o restringir cualquiera de los derechos
provenientes del uso libre, legitimo, derecho de cita u otras limitaciones
que tienen los derechos exclusivos del titular bajo las leyes del derecho de
autor u otras normas que resulten aplicables.

3. Concesion de la Licencia. Sujeto a los términos y condiciones de esta
Licencia, el Licenciante por este medio le concede a Usted una licencia de
alcance mundial, libre de regalias, no-exclusiva, perpetua (por la duracién
del derecho de autor aplicable) para ejercer los derechos sobre la Obra
como se establece abajo:

a. para reproducir la Obra, para incorporar la Obra dentro de una o
mas Obras Colectivas, y para reproducir la Obra cuando es
incorporada dentro de una Obra Colectiva;

b. para crear y reproducir Obras Derivadas;

c. para distribuir copias o fonogramas, exhibir publicamente, ejecutar
publicamente y ejecutar publicamente por medio de una transmision
de audio digital las Obras, incluyendo las incorporadas en Obras
Colectivas;

d. para distribuir copias o fonogramas, exhibir publicamente, ejecutar
publicamente y ejecutar publicamente por medio de una transmision
de audio digital las Obras Derivadas;

Los derechos precedentes pueden ejercerse en todos los medios y formatos
ahora conocidos o a inventarse. Los derechos precedentes incluyen el derecho
de hacer las modificaciones técnicamente necesarias para ejercer los derechos

154

Licencia de este libro

en otros medios y formatos. Todos los derechos no concedidos expresamente
por el Licenciante son reservados, incluyendo, aunque no sélo limitado a estos,
los derechos presentados en las Secciones 4 (e) y 4 (f).

155

4. Restricciones. La licencia concedida arriba en la Seccién 3 estd
expresamente sujeta a, y limitada por, las siguientes restricciones:

a. Usted puede distribuir, exhibir publicamente, ejecutar publicamente

o ejecutar publicamente la Obra en forma digital sélo bajo los
términos de esta Licencia, y Usted debe incluir una copia de esta
Licencia o de su Identificador Uniforme de Recursos (Uniform
Resource Identifier) con cada copia o fonograma de la Obra que
Usted distribuya, exhiba publicamente, ejecute publicamente, o
ejecute publicamente en forma digital. Usted no podrd ofrecer o
imponer condiciéon alguna sobre la Obra que altere o restrinja los
términos de esta Licencia o el ejercicio de los derechos aqui
concedidos a los destinatarios. Usted no puede sublicenciar la Obra.
Usted debe mantener intactas todas las notas que se refieren a esta
Licencia y a la limitacién de garantias. Usted no puede distribuir,
exhibir = publicamente, ejecutar publicamente o ejecutar
publicamente en forma digital la Obra con medida tecnoldgica
alguna que controle el acceso o uso de la Obra de una forma
inconsistente con los términos de este Acuerdo de Licencia. Lo
antedicho se aplica a la Obra cuando es incorporada en una Obra
Colectiva, pero esto no requiere que la Obra Colectiva, con
excepcion de la Obra en si misma, quede sujeta a los términos de
esta Licencia. Si Usted crea una Obra Colectiva, bajo requerimiento
de cualquier Licenciante Usted debe, en la medida de lo posible,
quitar de la Obra Colectiva cualquier crédito requerido en la
clausula 4(d), conforme lo solicitado. Si Usted crea una Obra
Derivada, bajo requerimiento de cualquier Licenciante Usted debe,
en la medida de lo posible, quitar de la Obra Derivada cualquier
crédito requerido en la cldusula 4(d), conforme lo solicitado.

. Usted puede distribuir, exhibir ptublicamente, ejecutar publicamente

o0 ejecutar publicamente en forma digital una Obra Derivada sdélo
bajo los términos de esta Licencia, una version posterior de esta
Licencia con los mismos Elementos de la Licencia, o una licencia de
Creative Commons iCommons que contenga los mismos Elementos
de la Licencia (v.g., Atribucion, NoComercial,
CompartirDerivadasIgual 2.5 de Japon). Usted debe

Licencia de este libro

156

incluir una copia de esta licencia, o de otra licencia de las
especificadas en la oracion precedente, o de su Identificador
Uniforme de Recursos (Uniform Resource Identifier) con cada copia
o fonograma de la Obra Derivada que Usted distribuya, exhiba
publicamente, ejecute publicamente o ejecute publicamente en
forma digital. Usted no podré ofrecer o imponer condicién alguna
sobre la Obra Derivada que altere o restrinja los términos de esta
Licencia o el ejercicio de los derechos aqui concedidos a los
destinatarios, y Usted debe mantener intactas todas las notas que
refieren a esta Licencia y a la limitaciéon de garantias. Usted no
puede distribuir, exhibir publicamente, ejecutar publicamente o
ejecutar publicamente en forma digital la Obra Derivada con medida
tecnoldgica alguna que controle el acceso o uso de la Obra de una
forma inconsistente con los términos de este Acuerdo de Licencia.
Lo antedicho se aplica a la Obra Derivada cuando es incorporada en
una Obra Colectiva, pero esto no requiere que la Obra Colectiva, con
excepcién de la Obra Derivada en si misma, quede sujeta a los
términos de esta Licencia.

. Usted no puede ejercer ninguno de los derechos a Usted concedidos

precedentemente en la Secciéon 3 de alguna forma que esté
primariamente orientada, o dirigida hacia, la obtencién de ventajas
comerciales o compensaciones monetarias privadas. El intercambio
de la Obra por otros materiales protegidos por el derecho de autor
mediante el intercambio de archivos digitales (file-sharing) u otras
formas, no serd considerado con la intencién de, o dirigido a, la
obtencion de ventajas comerciales o compensaciones monetarias
privadas, siempre y cuando no haya pago de ninguna compensacion
monetaria en relaciéon con el intercambio de obras protegidas por el
derecho de autor.

. Si usted distribuye, exhibe publicamente, ejecuta publicamente o

ejecuta publicamente en forma digital la Obra o cualquier Obra
Derivada u Obra Colectiva, Usted debe mantener intacta toda la
informacién de derecho de autor de la Obra y proporcionar, de
forma razonable segin el medio o manera que Usted esté
utilizando: (i) el nombre del Autor Original si esta provisto (o
seudoénimo, si fuere aplicable), y/o (ii) el nombre de la parte o las
partes que el Autor Original y/o el Licenciante hubieren designado
para la atribucién (v.g., un instituto patrocinador, editorial,
publicacién) en la informacién de los derechos de autor del

Licencia de este libro

157

Licenciante, términos de servicios o de otras formas razonables; el
titulo de la Obra si esta provisto; en la medida de lo razonablemente
factible y, si estd provisto, el Identificador Uniforme de Recursos
(Uniform Resource Identifier) que el Licenciante especifica para ser
asociado con la Obra, salvo que tal URI no se refiera a la nota sobre
los derechos de autor o a la informacién sobre el licenciamiento de
la Obra; y en el caso de una Obra Derivada, atribuir el crédito
identificando el uso de la Obra en la Obra Derivada (v.g.,
“Traduccion Francesa de la Obra del Autor Original,” o “Guién
Cinematografico basado en la Obra original del Autor Original”). Tal
crédito puede ser implementado de cualquier forma razonable; en el
caso, sin embargo, de Obras Derivadas u Obras Colectivas, tal
crédito aparecera, como minimo, donde aparece el crédito de
cualquier otro autor comparable y de una manera, al menos, tan
destacada como el crédito de otro autor comparable.

e. Para evitar dudas, cuando una Obra es una composicion musical:

i. Derechos Economicos y Ejecucion bajo estas Licencias. El
Licenciante se reserva el derecho exclusivo de colectar, ya sea
individualmente o via una sociedad de gestiéon colectiva de
derechos (v.g., SADAIC, ARGENTORES), los valores (royalties)
por la ejecucién publica o por la ejecucién publica en forma
digital (v.g., webcast) de la Obra si esta ejecucién estd
principalmente orientada a, o dirigida hacia, la obtencién de
ventajas comerciales o compensaciones monetarias privadas.

ii. Derechos Econémicos sobre Fonogramas. El Licenciante se
reserva el derecho exclusivo de colectar, ya sea
individualmente, via una sociedad de gestién colectiva de
derechos (v.g., SADAIC, AADI-CAPIF), o via una agencia de
derechos musicales o algin agente designado, los valores
(royalties) por cualquier fonograma que Usted cree de la Obra
(“versiéon”, “cover”) y a distribuirlos, conforme a las
disposiciones aplicables del derecho de autor, si su
distribucién de la versién (cover) estd principalmente
orientada a, o dirigida hacia, la obtencién de ventajas
comerciales o compensaciones monetarias privadas.

f. Derechos Econdmicos y Ejecucion Digital (Webcasting). Para

evitar dudas, cuando la Obra es una grabaciéon sonora, el

Licencia de este libro

158

Licenciante se reserva el derecho exclusivo de colectar, ya sea
individualmente o via una sociedad de gestion colectiva de derechos
(v.g., SADAIC, ARGENTORES), los valores (royalties) por la
ejecucion publica digital de la Obra (v.g., webcast), conforme a las
disposiciones aplicables de derecho de autor, si esta ejecucién estd
principalmente orientada a, o dirigida hacia, la obtenciéon de
ventajas comerciales o compensaciones monetarias privadas.

5. Representaciones, Garantias y Limitacion de Responsabilidad

A MENOS QUE SEA ACORDADO DE OTRA FORMA Y POR ESCRITO
ENTRE LAS PARTES, EL LICENCIANTE OFRECE LA OBRA “TAL Y COMO
SE LA ENCUENTRA” Y NO OTORGA EN RELACION A LA OBRA NINGUN
TIPO DE REPRESENTACIONES O GARANTIAS, SEAN EXPRESAS,
IMPLICITAS O LEGALES; SE EXCLUYEN ENTRE OTRAS, SIN
LIMITACION, LAS GARANTIAS SOBRE LAS CONDICIONES,
CUALIDADES, TITULARIDAD O EXACTITUD DE LA OBRA, ASI COMO
TAMBIEN, LAS GARANTIAS SOBRE LA AUSENCIA DE ERRORES U
OTROS DEFECTOS, SEAN ESTOS MANIFIESTOS O LATENTES, PUEDAN
O NO DESCUBRIRSE. ALGUNAS JURISDICCIONES NO PERMITEN LA
EXCLUSION DE GARANTIAS IMPLICITAS, POR TANTO ESTAS
EXCLUSIONES PUEDEN NO APLICARSELE A USTED.

. Limitacién de Responsabilidad. EXCEPTO EN LA EXTENSION

REQUERIDA POR LA LEY APLICABLE, EL LICENCIANTE EN NINGUN
CASO SERA REPONSABLE FRENTE A USTED, CUALQUIERA SEA LA
TEORIA LEGAL, POR CUALQUIER DANO ESPECIAL, INCIDENTAL,
CONSECUENTE, PUNITIVO O EJEMPLAR, PROVENIENTE DE ESTA
LICENCIA O DEL USO DE LA OBRA, AUN CUANDO EL LICENCIANTE
HAYA SIDO INFORMADO SOBRE LA POSIBILIDAD DE TALES DANOS.

7. Finalizacion

a. Esta Licencia y los derechos aqui concedidos finalizardn
automaticamente en caso que Usted viole los términos de la misma.
Los individuos o entidades que hayan recibido de Usted Obras
Derivadas u Obras Colectivas conforme a esta Licencia, sin
embargo, no veran finalizadas sus licencias siempre y cuando
permanezcan en un cumplimiento integro de esas licencias. Las
secciones 1, 2, 5, 6, 7, y 8 subsistiran a cualquier finalizacién de esta
Licencia.

Licencia de este libro

159

b. Sujeta a los términos y condiciones precedentes, la Licencia

concedida aqui es perpetua (por la duraciéon del derecho de autor
aplicable a la Obra). A pesar de lo antedicho, el Licenciante se
reserva el derecho de difundir la Obra bajo diferentes términos de
Licencia o de detener la distribucion de la Obra en cualquier
momento; sin embargo, ninguna de tales elecciones servird para
revocar esta Licencia (o cualquier otra licencia que haya sido, o sea
requerida, para ser concedida bajo los términos de esta Licencia), y
esta Licencia continuard con plenos efectos y validez a menos que
termine como se indicé precedentemente.

8. Miscelaneo

. Cada vez que Usted distribuye o ejecuta publicamente en forma

digital la Obra o una Obra Colectiva, el Licenciante ofrece a los
destinatarios una licencia para la Obra en los mismos términos y
condiciones que la licencia concedida a Usted bajo esta Licencia.

. Cada vez que Usted distribuye o ejecuta publicamente en forma

digital una Obra Derivada, el Licenciante ofrece a los destinatarios
una licencia para la Obra original en los mismos términos y
condiciones que la licencia concedida a Usted bajo esta Licencia.

. Si alguna disposicidon de esta Licencia es invalida o no exigible bajo

la ley aplicable, esto no afectard la validez o exigibilidad de los
restantes términos de esta Licencia, y sin necesidad de mas accion
de las partes de este acuerdo, tal disposicion sera reformada en la
minima extensién necesaria para volverla vélida y exigible.

. Ningtin término o disposicion de esta Licencia se considerard

renunciado y ninguna violaciéon se considerara consentida a no ser
que tal renuncia o consentimiento sea por escrito y firmada por las
partes que seran afectadas por tal renuncia o consentimiento.

. Esta Licencia constituye el acuerdo integral entre las partes con

respecto a la Obra licenciada aqui. No hay otros entendimientos,
acuerdos o representaciones con respecto a la Obra que no estén
especificados aqui. El Licenciante no serda obligado por ninguna
disposicién adicional que pueda aparecer en cualquier comunicacion
proveniente de Usted. Esta Licencia no puede ser modificada sin el
mutuo acuerdo por escrito entre el Licenciante y Usted.

Agradecimientos

Agradecimientos

Sin las siguientes personas este libro no seria lo que es (iasi que a llorar al
ziggurat!) En ningtn orden:

» Pablo Ziliani

e Andrés Gattinoni
¢ Juan Pedro Fisanotti
* Lucio Torre

* Dario Grana

* Sebastidn Bassi

* Leonardo Vidarte
* Daniel Moisset

* Ernesto Savoretti
e Dave Smith

¢ Claudio Céanepa

* El que me olvidé. iSi, ése!

160

El Meta-Libro

El Meta-Libro

"Escribir es un asunto privado."”
Goldbarth
Una de las intenciones de este experimento escribir-un-libro fue hacerlo “en

publico”. éPorqué?

* Me gusta mucho el open source. Trato de aplicarlo en muchas cosas, aun
en aquellas en las que no se hace habitualmente. Por ejemplo, si bien no
acepto colaboraciones para el libro, si acepto parches.

En mi experiencia, si hay gente que le interesa un proyecto mio, entonces
es mas probable que no lo deje pudrirse por abandono. Crei
(aparentemente con razén) que a la gente de PyAr le interesaria este
proyecto. Ergo, le vengo poniendo pilas.

Los ultimos quince afios metido en proyectos open source y diez afios de
blog me han convertido en una especie de exhibicionista intelectual. Idea
que me pasa por el bocho la tiro para afuera. O la hago cédigo, o la hago
blog, o algo. Este libro es algo asi, tuve la idea, no la puedo contener en
mi cabeza, la tengo que mostrar.

Y uno de los efectos de querer mostrar el libro mientras lo hacia es que tengo
que poder mostrarlo y no tiene que ser algo demasiado vergonzoso
estéticamente y tiene que poder leerse comodamente.

Como ya es casi natural para mi escribir reStructured text (hasta los mails me
suelen salir como reSt valido), busqué algo por ese lado.

Para generar PDFs, elegi rst2pdf porque es mio y si no hace exactamente lo que
yo quiero... lo cambio para que lo haga 51

51 De hecho, usarlo para este proyecto me ha permitido arreglar por lo
menos cinco bugs :-)

Para el sitio, la solucién obvia era Sphinx, pero... me molestan algunas cosas
(menores) de incompatibilidad con docutils (especialmente la directiva class),
que hacen que un documento Sphinx sélo se pueda procesar con Sphinx.

Entonces, buscando alternativas encontré rest2web de Michael Foord que es
muy fécil de usar y flexible.

Al ser este un libro de programacion, tiene algunos requerimientos particulares.

161

Cédigo

Codigo

Es necesario mostrar codigo fuente. Rst2pdf lo soporta nativamente con la

directiva code-block pero no es parte del restructured text standard. En

consecuencia, tuve que emparchar rest2web para que la use 32

52 Por suerte la directiva es completamente genérica, funciona para
HTML igual que para PDF. Esto es lo que tuve que agregar al principio
de r2w.py:

from rst2pdf import pygments code block directive
from docutils.parsers.rst import directives
directives.register directive('code-block', \

pygments code block directive.code block directive)

Graficos
Hay algunos diagramas. Los genero con la excelente herramienta Graphviz.

Los quiero generar en dos formatos, PNG para web PDF para el PDF, por suerte
graphviz soporta ambos.

Build

Quiero que cuando cambia un listado se regeneren el sitio y los PDF. Quiero
que cuando cambia el estilo del PDF se regenere este pero no el sitio. Quiero
que todo eso se haga solo.

Si, podria haber pensado en algo basado en Python pero, realmente para estas
cosas, la respuesta es make. Sera medio criptico de a ratos, pero hace lo que
hace.

Por ejemplo, asi se reconstruye el PDF de un diagrama:

%.graph.pdf: %.dot
dot -Tpdf $< > $@ -Efontname="DejaVu Sans" |\
-Nfontname="DejaVu Sans"

Y se ejecuta asi:

$ make loop-n-y-medio.graph.pdf
dot -Tpdf loop-n-y-medio.dot > loop-n-y-medio.graph.pdf
-Efontname="DejaVu Sans" -Nfontname="DejaVu Sans"

162

Feedback

Normalmente no hace falta hacerlo manualmente, pues se hace, de ser
necesario, cuando se publica al sitio o a PDF.

Feedback

Como toda la idea es tener respuesta, hay que tener como dejarla. Comentarios
en el sitio via disqus.

Tipografia

Es complicado encontrar un set de fuentes modernas, buenas, y coherentes.
Necesito por lo menos bold, italic, bold italic para el texto y lo mismo en una
variante monoespaciada.

Las unicas familias que encontré tan completas son las tipografias DejaVu y
Vera. Inclusive hay una DejaVu Thin méas decorativa que me gusté para los
titulos.

HTML

Soy un queso para el HTML, asi que tomé prestado un CSS llamado LSR de
http://rst2a.com. Para que la estética quede similar a la del libro usé TypeKit
(lamentablemente me limita a 2 tipografias, asi que no pude usar Dejavu Thin
en los titulos/citas).

Server

No espero que tenga mucho trafico. Y atn si lo tuviera no seria problema: es un
sitio en HTML estdtico por lo que probablemente un pentium 3 pueda saturar
1Mbps. Lo puse directamente en el mismo VPS que tiene mi blog.

Versionado

No hay mucho para discutir, cualquiera de los sitios de hosting libres para
control de versiones serviria. Usé mercurial (porque queria aprenderlo mejor)
sobre googlecode (porque es mi favorito).

Por supuesto que toda la infraestructura usada esta en el mismo repositorio de
mercurial que el resto del libro.

163

http://rst2a.com

Licencia

Licencia

La eleccion de licencia para un trabajo es un tema personal de cada uno. Creo
que la que elegi es suficientemente libre, en el sentido de que prohibe las cosas
que no quiero que se hagan (editar el libro y venderlo) y permite las que me
interesa permitir (copiarlo, cambiarlo).

Por supuesto, al ser yo el autor, siempre es posible obtener permisos especiales
para cualquier cosa pidiéndolo. Tenés el 99% de probabilidad de que diga que
si.

164

	Introducción
	Requisitos
	Convenciones
	Lenguaje
	Mapa
	Acerca del Autor

	Pensar en Python
	Get/Set
	Singletons
	Loops y medios loops
	Switches
	Patos y Tipos
	Genéricos
	Decoradores
	Claro pero corto pero claro
	Lambdas vs alternativas
	Ternarios vs ifs
	Pedir perdón o pedir permiso

	La vida es Corta
	El Problema
	Twill
	Bottle
	Autenticación
	Storm
	HTML / Templates
	Backend
	Conclusiones

	Las Capas de una Aplicación
	Proyecto
	El Problema
	Capa de Datos: Diseño e Implementación
	Elementos
	Campos
	Diseño

	Capa de Lógica: Diseño
	Capa de Interfaz: Diseño

	Documentación y Testing
	Docstrings
	Doctests
	Cobertura
	Límites de los doctests
	Lo anterior, hecho distinto
	Mocking
	La Máquina Mágica
	Sacando tu programa a pasear: Tox
	Testear todo el tiempo: Sniffer
	Integración continua: Jenkins
	Documentos, por favor

	La GUI es la Parte Fácil
	Proyecto
	Programación con Eventos
	Ventanas / Diálogos
	Mostrando una Ventana
	¡Que haga algo!
	Icono de Notificación
	Acciones
	Ruido

	Diseño de Interfaz Gráfica
	Proyecto
	Corrigiendo la Interfaz Gráfica
	¿Qué estamos haciendo?
	Pulido
	Nombres y Descripciones
	Uso Desde el Teclado
	Traducciones
	Feedback

	Un Programa Útil
	Proyecto

	Instalación, Deployment y Otras Yerbas
	Cómo Crear un Proyecto de Software Libre
	Rebelión Contra el Zen
	Herramientas
	Conclusiones, Caminos y Rutas de Escape
	Licencia de este libro
	Agradecimientos
	El Meta-Libro
	Código
	Gráficos
	Build
	Feedback
	Tipografía
	HTML
	Server
	Versionado
	Licencia

