Las 97 cosas que todo
programador deberia saber

Al comenzar en el mundo de la programaciondesconocemos infinidad
de trucos y alternativas que pueden facilitar nuestro trabajo. Aquel que
lleve programando durante mucho tiempo ha experimentado situaciones
dificiles que con el tiempo aprende a solventar. Es por esta razén que
existe un libro en inglés que contiene las 97 cosas que todo programador
deberia saber, y hoy quiero compartirles cada uno de
sus consejos traducidos al espaiiol.

En mi experiencia los consejos me han sido de mucho ayuda. Algunos de
los conceptos del libro ni siquiera los imaginaba, algunos me habrian
salvado la vida en ciertas situaciones anteriores. En el liboro podemos
encontrar consejos para refactorizar, hacer pruebas constantes, codigo
mas limpio, comentarios oportunos, revisiones, trabajo colaborativo entre
otros.

El libro esta dividido en 97 capitulos, cada uno con un consejo especifico y ha
sido escrito por 97 desarrolladores top que compartieron algo de su
experiencia. A continuacion voy listar cada uno de los consejos con su
respectivo enlace para que los puedan estudiar y poner en practica.

1. Actla con prudencia.

Autor: Seb Rose

‘En todo lo que emprendas, actua con prudencia y considera las

consecuencias” Anénimo

No importa qué tan comoda se vea una agenda de trabajo al comienzo de una iteracién, no
podras evitar sentirte bajo presién en algin momento. Si te encuentras en una situacion en la
que tienes que elegir entre “hacerlo bien” o “hacerlo rapido”, suele ser tentador “hacerlo rapido”
y pensar que regresaras a corregirlo mas adelante. Cuando te haces esta promesa a ti mismo,
a tu equipo, al cliente, lo haces en serio. Pero a menudo la siguiente iteraciéon trae nuevos
problemas y te debes enfocar en ellos. Este tipo de trabajo aplazado se conoce como deuda
técnica y no es un buen amigo. Martin Fowler, en su taxonomia de la deuda técnica, la llama
especificamente deuda técnica deliberada, la cual no deberia confundirse con la deuda técnica
inadvertida.

La deuda técnica es como un préstamo: te trae beneficios en el corto plazo, pero deberas pagar
intereses hasta terminar de saldarla. Tomar atajos a la hora de programar hace que sea mas
dificil agregar funcionalidad o refactorizar tu cédigo; las soluciones rapidas son un caldo de
cultivo para defectos y casos de prueba muy fragiles. Mientras mas tiempo las abandones, peor
se ponen. Para cuando te decidas a corregir el problema puede que haya toda una pila de malas
decisiones de disefio acumulada encima del problema original, haciendo que el cddigo sea

http://www.ewaldosoft.com/herramientas-programacion-desarrolladores-ebook/
http://97cosas.com/programador/actua-con-prudencia.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

mucho mas dificil de refactorizar y corregir. De hecho, es sélo cuando las cosas estan tan mal
como para tener que arreglarlas, que realmente vuelves y corriges el problema. Pero para
entonces suele ser tan dificil corregirlo que no te puedes permitir el tiempo ni correr el riesgo.

Hay ocasiones en las que debes incurrir en la deuda técnica para cumplir con una fecha limite
0 para implementar una pequefia parte de una funcién. Intenta esquivar esos casos; sélo hazlo
si la situacion lo exige. Pero (y éste es un gran pero) debes mantener un ojo sobre la deuda
técnica y pagarla tan pronto como puedas o las cosas se iran rapidamente cuesta abajo. Apenas
te hayas endeudado, escribe una tarjeta o registra el problema en tu sistema de seguimiento
para asegurarte de no olvidarlo.

Si planeas pagar la deuda en la préxima iteracion, el costo sera minimo. Pero si la abandonas,
se incrementaran los intereses y esto también debera registrarse para que el costo permanezca
a la vista. Hacer esto resaltara el impacto que tiene la deuda técnica del proyecto sobre el valor
de la empresa y permitira una priorizacion de pago. Como calcular y realizar el seguimiento de
los intereses dependera de cada proyecto, pero deberas hacerlo.

Paga la deuda técnica tan pronto como puedas; seria imprudente no hacerlo.
Traduccion: Natan Calzolari

Leer contribucién original

2. Adueinate (y Refactoriza) la compilacion.

Autor: Steve Berczuk

No es poco comun para los equipos que, aungue son altamente disciplinados sobre las practicas
de codificacion, descuiden los scripts de compilacion, quizas por la creencia de que son
meramente un detalle de poca importancia o por el miedo de que son complejos y necesitan ser
atendidos por el culto de la ingenieria de la liberacion. Los scripts que no son posibles de
mantener, con duplicaciones y errores, causan problemas de la misma magnitud que aquellos
con cédigo pobremente factorizado.

Una de las razones por las que los desarrolladores habiles y disciplinados tratan la compilacion
como algo secundario es que los scripts de compilacién son frecuentemente escritos en un
lenguaje diferente al codigo fuente. Otra es que la compilacion no es realmente “codigo”. Estas
justificaciones van en contra de la realidad de que la mayoria de los desarrolladores de software
disfrutan aprendiendo nuevos lenguajes y que la compilacion es lo que crea artefactos
ejecutables para desarrolladores y usuarios finales para probar y ejecutar. El codigo es inutil si
no ha sido compilado, y la compilacion es lo que define el componente de arquitectura de la
aplicacion. La compilacion es una parte esencial del desarrollo, y las decisiones sobre el proceso
compilado pueden hacer mas simples tanto el codigo como la codificacion.

Los scripts para la compilacion que son escritos usando modismos erréneos son dificiles de
mantener y, mas importante, de mejorar. Vale la pena tomarse tiempo para entender la forma
correcta de realizar un cambio. Los errores pueden aparecen cuando una aplicaciéon se compila
con la version incorrecta de una dependencia o cuando la configuracion del tiempo de
compilador esta mal.

Tradicionalmente las pruebas han sido algo que siempre fue dejado al equipo de “Quality
Assurance”. Ahora nos damos cuenta de que hacer pruebas mientras codificamos es necesario
para permitirnos liberar el valor predeciblemente. Del mismo modo, el proceso de compilacion
tiene que ser propiedad del equipo de desarrollo.

http://programmer.97things.oreilly.com/wiki/index.php/Act_with_Prudence
http://97cosas.com/programador/aduenate-build.html

Entender la compilacion puede simplificar el ciclo de vida completo y reducir costos. Una
compilacion simple de ejecutar permite al nuevo desarrollador empezar rapida y faciimente. La
automatizacién de la configuracion de compilacion puede permitirte obtener resultados
consistentes cuando muchas personas estan trabajando en un proyecto, evitando el “a mi me
funciona”. Muchas herramientas para compilacion te permiten ejecutar reportes de calidad de
cbdigo, lo que hace posible detectar problemas potenciales tempranamente. Al entender como
hacer tuya la compilacién, puedes ayudarte a ti mismo y a los integrantes de tu equipo. Enfécate
en codificar caracteristicas, en beneficio de las partes interesadas y para hacer tu trabajo mas
agradable.

Aprende lo suficiente de tu proceso de compilacion para saber cuando y como realizar los
cambios. Los scripts de compilaciéon son cédigo. También son muy importantes para dejarselos
a alguien mas, la aplicacion no estad completa hasta que se compila. El trabajo de programacién
no esta completo hasta que hayamos liberado software funcionando.

Traduccién: Espartaco Palma

3. Antes de Refactorizar.

Autor: Rajith Attapattu

En algun punto todo programador necesitara refactorizar cédigo existente. Pero antes de
hacerlo por favor piensa en lo siguiente, ya que tl y otras personas podrian ahorrar una gran
cantidad de tiempo (y dolor):

e El mejor enfoque para la reestructuracion comienza por hacer un balance del cédigo base
existente y las pruebas escritas contra ese cédigo. Esto ayudara a entender las fortalezas
y debilidades del codigo en su estado actual, por lo que puedes asegurar que retienes los
puntos fuertes, mientras evitas los errores. Todos pensamos que podemos hacerlo mejor
que el sistema actual... hasta que terminamos con algo que no es mejor —o incluso peor—
gue la anterior encarnacion, debido a que fallamos en aprender de los errores existentes en
el sistema.

e Evita la tentacién de volver a escribir todo. Es mejor reusar tanto cédigo como sea posible.
No importa que tan feo sea el cddigo, ya ha sido probado, revisado, etcétera. Desechar el
caédigo viejo —especialmente si esta en produccion— significa que estas desechando meses
(o afios) de pruebas sobre el aguerrido codigo que podria haber tenido ciertos atajos y
correcciones criticas de errores de los cuales no estas enterado. Si no tomas esto en cuenta,
el nuevo cédigo que se escriba podria terminar mostrando el mismo error misterioso que
fue reparado en el cédigo antiguo. Esto desperdiciara un montén de tiempo, esfuerzo y
conocimiento adquiridos a través de los afios.

e Muchos cambios incrementales son mejores que un cambio masivo. Los cambios
incrementales permiten medir el impacto en el sistema mas facilmente a través de la
retroalimentacion, como las pruebas. No es divertido ver cientos de pruebas fallidas
después de realizar un cambio. Esto puede conducir a la frustracion y presion que puede, a
su vez, dar lugar a malas decisiones. Un par de pruebas fallidas es facil de manejar y provee
un enfoque mas manejable.

http://97cosas.com/programador/antes-de-refactorizar.html

e Después de cada iteracién es importante asegurar que las pruebas existentes pasan.
Agrega nuevas pruebas si las pruebas existentes no son suficientes para cubrir los cambios
realizados. No deseches las pruebas del codigo antiguo sin la debida consideracion. En la
superficie algunas de estas pruebas podrian no parecer aplicables a tu nuevo disefio, pero
sera de utilidad el esfuerzo de investigacion a fondo de las razones por las cuales estas
pruebas en particular fueron afiadidas.

e Las preferencias personales y el ego no deben ponerse en el camino. Si algo no esta roto,
Jpara qué arreglarlo? Que el estilo o la estructura del c6digo no se ajuste a tus preferencias
personales no es una razon valida para reestructurarlo. Pesar que podrias hacer un mejor
trabajo que el programador previo no es una razén valida tampoco.

e Lanueva tecnologia es razén insuficiente para refactorizar. Una de las peores razones para
refactorizar se debe a que el codigo actual estd muy por detrds de las buenas tecnologias
gue tenemos hoy en dia, y creemos que un nuevo lenguaje o framework puede hacer las
cosas mucho mas elegantemente. A menos que un analisis de costo-beneficio muestre que
el nuevo lenguaje o framework beneficiara la funcionalidad, mantenimiento o productividad,
es mejor dejar las cosas como estan.

e Recuerda que los humanos cometen errores. Reestructurar no siempre garantiza que el
nuevo codigo serd mejor o tan bueno como el intento anterior. He visto y sido parte de
muchos intentos de reestructuracion fallidos. No fue bonito, pero fue humano.

Traduccioén: Espartaco Palma

4. Aplica los principios de la programacion funcional.

Autor: Edward Garson

Recientemente, la comunidad programadora ha demostrado un renovado interés por la
programacion funcional. Parte del motivo es que las propiedades emergentes de este paradigma
las hacen una buena opcién para abordar la transicion de la industria hacia el desarrollo sobre
arquitecturas multi-core. Sin embargo, aunque es, sin duda, una aplicacion importante, no es la
razon por la que este texto te exhorta a que aprendas sobre programacion funcional.

Dominar el paradigma funcional puede mejorar enormemente la calidad del cédigo que escribes
en otros contextos. Si lo comprendes y lo aplicas a tus disefios, lograras un nivel mucho mas
alto de transparencia referencial.

La transparencia referencial es una cualidad deseable: implica que las funciones devuelvan
siempre los mismos resultados cuando se les pase el mismo valor, independientemente de
donde y cuando se las invoque. Es decir, la evaluacién de una funciéon no depende tanto de los
efectos colaterales del estado mutable —idealmente, no depende en absoluto—.

Una de las principales causas de defectos cuando se programa en lenguajes imperativos no es
otra que las variables mutables. Cualquier persona que se encuentre leyendo esto habra tenido
que investigar alguna vez por qué un valor no es el esperado en una situacion particular. La
semantica de visibilidad puede ayudar a mitigar estos errores insidiosos o, al menos, reducir
drasticamente su ubicacion; pero es probable que el verdadero culpable de su existencia sea
un desarrollo que hace uso de mutabilidad excesiva.

http://97cosas.com/programador/aplica-programacion-funcional.html

Y la industria no nos ayuda mucho con este problema. La mayoria de la documentacion
introductoria sobre orientacion a objetos tacitamente promueve este tipo de practicas, porque a
menudo utilizan como ejemplo una serie de objetos con un tiempo de vida relativamente largo,
invocando métodos mutadores unos sobre otros, lo cual puede ser peligroso. Sin embargo, con
un buen desarrollo guiado por pruebas, particularmente asegurandose de “simular roles, no
objetos®, se puede evitar la mutabilidad excesiva.

El resultado neto sera un disefio que generalmente posee una mejor distribucion de
responsabilidades con una mayor cantidad de funciones —mas pequefias— que trabajan sobre
los argumentos que se les pasa, en lugar de hacer referencia a miembros mutables. Habra
menos defectos y también sera menos complejo detectarlos, porque es mas facil localizar dénde
se introdujo un valor no deseado que deducir el contexto especifico que resulta en una
asignacion errénea. Un disefio de este tipo establecera un nivel mucho mas alto de
transparencia referencial; y, de seguro, nada fijara mejor estas ideas en tu cabeza que estudiar
un lenguaje de programacién funcional, en el cual este modelo de computacion es la norma.

Por supuesto, este enfoque no es la mejor opcién para todas las situaciones. Por ejemplo, en
sistemas orientados a objetos de este estilo suele lograr mejores resultados con el desarrollo
del modelo de dominio (es decir, en el cual la interaccion de las funciones sirve para
descomponer la complejidad de las reglas de negocio) y no tanto con el desarrollo de la interfaz
de usuario.

Domina el paradigma de la programacion funcional y podrads —con criterio— aplicar en otros
contextos las lecciones que aprendas. Tus sistemas orientados a objetos (para empezar) se
llevaran mejor con las bondades de la transparencia referencial y, contrario a lo que muchos te
diran, estardn mas cerca de su contraparte funcional. De hecho, algunos incluso afirman que,
en el fondo, los paradigmas de programacion funcional y orientada a objetos no son mas que
un mero reflejo el uno del otro, una especie de yin y yang computacional.

Traduccion: Natan Calzolari

5. Aprende a decir “Hola, Mundo”.

Autor: Thomas Guest

Paul Lee, nombre de usuario “leep”, comunmente conocido como Hoppy, tenia la reputacion de
experto local en temas de programacion. Necesitaba ayuda. Caminé hacia el escritorio de
Hoppy y le pregunté:

— ¢ Podrias echar un vistazo al cédigo por mi?

— Seguro —dijo Hoppy—, toma una silla.

Tuve el cuidado de no derribar las latas vacias de soda apiladas en una piramide detras de él.
—¢ Qué cbdigo?

—En una funcién en un archivo —le dije.

—Echemos un vistazo a esta funcién.

Hoppy alejé una copia de K&R y deslizé su teclado frente a mi. ¢(Donde esta el IDE?
Aparentemente Hoppy no tenia un IDE ejecutandose, sélo algun editor que yo no podia operar.
Tomoé de nuevo el teclado. Unos cuantos teclazos después y teniamos el archivo abierto —era
un archivo algo grande— y estamos observando la funcién —era una funcién algo grande—. El
avanzo unas paginas hacia el bloque condicional que queria cuestionarle.

http://www.jmock.org/oopsla2004.pdf
http://www.jmock.org/oopsla2004.pdf
http://97cosas.com/programador/aprende-decir-hola-mundo.html

— ¢ Qué haria realmente esta clausula si x es negativo? —le pregunté—. ¢ Sin duda, es un error.

Habia estado probando toda la mafiana tratando de encontrar una manera de forzar que x fuera
negativo, pero la gran funcién en un gran archivo era parte de un gran proyecto, y el ciclo de
recompilar y volver a ejecutar mis experimentos me estaba venciendo. ¢No podria un experto
como Hoppy simplemente decirme la respuesta?

Hoppy admitié que estaba seguro. Para mi sorpresa, no busco en K&R. En vez de ello, copié el
bloque de codigo en un nuevo buffer del editor, lo reindentd y lo envolvié en una funcién. Un

poco mas tarde codificd una funcion main y lo cicld, pidiendo al usuario valores de entrada,
pasandolos a la funcion e imprimiendo el resultado. Guardé el buffer como un nuevo
archivo, tryit.c . Todo esto lo podria haber hecho yo mismo, creo que quizé no tan rapido. Sin

embargo, su siguiente paso fue maravillosamente simple y, para ese tiempo, un poco extrafio
para mi manera de trabajar

$ cc tryit.c && ./a.out

iMiral Su programa, concebido unos pocos minutos antes, ahora estaba en marcha y
funcionando. Probamos unos cuantos valores y confirm6 mis sospechas (jhabia tenido razén
sobre algo!) y entonces cotejo la seccidon correspondiente de K&R. Le agradeci a Hoppy y me
fui, una vez mas, teniendo cuidado de no molestar su piramide de latas de soda.

De regreso a mi escritorio, cerré mi IDE. Me habia hecho tan familiar al trabajo con un gran
proyecto con un gran producto que habia empezado a pensar qué debia hacer. Una
computadora de propdsito general puede realizar pequefias tareas también. Abri un editor de
texto y empecé a escribir.

#include <stdio.h>

int main() {
printf("Hello, World\n");
return 0;

}

Traduccién: Espartaco Palma

6. Aprende a hacer estimaciones.

Como programador debes ser capaz de proporcionar estimaciones a tus directivos, colegas y
usuarios de las tareas que necesitas realizar, asi ellos tendran una idea razonablemente precisa
del tiempo, costo, tecnologia y otros recursos necesarios para lograr sus objetivos.

Para poder estimar bien es obvia la importancia aprender algunas técnicas de estimacion. En
primer lugar, sin embargo, es fundamental aprender qué son las estimaciones y para qué
deberian ser usadas —por extrafio que parezca, muchos desarrolladores y administradores no
conocen esto—.

El siguiente dialogo entre un administrador de proyectos y un programador es nada atipico:

http://97cosas.com/programador/aprende-estimaciones.html

e Administrador de Proyecto: ¢Puedes darme un estimado del tiempo necesario para
desarrollar la caracteristica xyz?

e Programador: Un mes.

e Administrador de Proyecto: jEso es mucho tiempo! S6lo tenemos una semana.

e Programador: Necesito al menos tres.

e Administrador de Proyecto: Puedo darte dos cuando mucho.

e Programador: jEs un trato!

Al programador, al final, se le ocurre un “estimado” que concuerda con lo que es aceptable para
el administrador. Pero, ya que es una estimacion del programador, el gerente lo hara
responsable de ello. Para entender qué esta mal en esta conversacion necesitamos tres
definiciones: estimado, fin y compromiso.

e Un estimado es un calculo aproximado o un juicio de valor, nimero, cantidad o extension
de algo. Esta definicion implica que un estimado es una medicion factual basada en datos
concretos y experiencia previa; la esperanza y los deseos deben ser ignorados cuando se
calcula. La definicion también implica que, al ser aproximada, una estimacion no pueden
ser precisa, por ejemplo: una tarea de desarrollo no puede ser estimada para durar 234.14
dias.

e Un fin es una declaracion de un objetivo deseable del negocio, por ejemplo, “el sistema
debe soportar al menos 400 usuarios concurrentes”.

e Un compromiso es una promesa de ofrecer una funcionalidad especificada a una
determinado nivel de calidad en una cierta fecha o evento. Un ejemplo podria ser: “la
funcionalidad de busqueda estara disponible en la proxima version del producto”.

Los estimados, fines y compromisos son independientes uno del otro, pero los blancos y
cometidos deberian estar basados en estimados. Como Steve McConnell sefala: “El propésito
principal de la estimacion de software no es predecir el futuro del proyecto, sino determinar si
los fines son lo suficientemente realistas para que pueda ser controlado hasta lograrlo”. Por lo
tanto, el proposito de una estimacion es hacer una administracion de proyecto adecuada y una
planificacion posible, permitiendo que los interesados hagan compromisos basados en fines
realistas.

Lo que estaba pidiendo el administrador en la conversacion anterior al programador era hacer
un compromiso basado en un fin no declarado que el administrador tenia en mente, no dar un
estimado. La préxima vez que te pidan proporcionar un estimado asegurate que todos los
involucrados sepan de lo que estan hablando, y tus proyectos tendran una mejor oportunidad
de éxito. Ahora es el momento de aprender algunas técnicas...

Traduccién: Espartaco Palma

7. Aprende un lenguaje extranjero.

Autor: Klaus Marquardt

Los programadores necesitamos comunicarnos. Mucho.

http://97cosas.com/programador/aprende-lenguaje-extranjero.html

Hay periodos en la vida de un programador cuando mucha de su comunicacion parece ser con
la computadora. Mas precisamente, con los programas ejecutandose en esa computadora. Esta
comunicacion es con respecto a expresar ideas en una forma leible por la maquina. Sigue
siendo un prospecto emocionante: los programas son ideas convertidas en realidad, con
virtualmente ninguna sustancia fisica involucrada.

Los programadores deben tener fluidez en el lenguaje de la maquina, ya sea real o virtual, y en
las abstracciones que pueden estar relacionadas con el lenguaje via herramientas de desarrollo.
Es importante aprender muchas abstracciones diferentes, de otro modo algunas ideas se
vuelven increiblemente dificiles de expresar. Los buenos programadores necesitan ser capaces
de pararse fuera de su rutina diaria, de estar al tanto de otros lenguajes que son expresivos
para otros propdsitos. La hora siempre llega cuando éste vale la pena.

Mas alla de la comunicacion con las maquinas, los programadores necesitan comunicarse con
sus pares. Los grandes proyectos de hoy en dia son mas emprendimientos sociales que
simplemente una aplicacién en el arte de la programacién. Es importante entender y expresar
mas de lo que pueden las abstracciones de maquina. La mayoria de los mejores programadores
que conozco es muy fluida en su lengua madre y, por lo general, en otros idiomas también. Esto
no es sélo sobre la comunicacion con otros: hablar bien un lenguaje nos lleva a una claridad de
pensamiento que es indispensable cuando se abstrae un problema. Y también de eso se trata
la programacion.

Més all4d de la comunicacion con las maquinas, con uno mismo y con los compafieros, un
proyecto tiene muchos stakeholders, la mayoria con una formacién diferente o no técnica. Ellos
viven en las areas de pruebas, calidad y despliegue, en mercadeo y ventas, son usuarios finales
en alguna oficina (o tienda o casa). Necesitas entenderlos y a sus preocupaciones. Esto es casi
imposible si no puedes hablar su lenguaje en su mundo, su dominio. Mientras puedes pensar
gue una conversacion con ellos salio bien, ellos probablemente no.

Si puedes hablar con contadores, necesitas un conocimiento basico de contabilidad, de centros,
de costos o capital invertido, capital empleado, et al. Si vas a hablar con mercaddélogos o
abogados, algo de su jerga y lenguaje (y, por lo tanto, su mente) deberia serte familiar. Todos
estos lenguajes especificos del dominio necesitan ser dominados por alguien en el proyecto; de
preferencia los programadores, ya que son los responsables de llevar las ideas a la vida a través
de una computadora.

Y, por supuesto, la vida es mas que proyectos de software. Como lo nota Charlemagne, el
conocer otro lenguaje es tener otra alma. Para tus contactos mas alla de la industria del software
seras mas apreciado al conocer lenguajes extranjeros. Para saber cuando escucharlos en vez
de hablar. Para saber que la mayor parte del lenguaje es sin palabras.

“De lo que no se puede hablar, hay que callar”. Ludwig Wittgenstein.
Traduccién: Espartaco Palma

8. Aprendiendo continuamente.

Autor: Clint Shank

Vivimos en tiempos interesantes. Conforme el desarrollo se distribuye en todo el mundo, se
aprende que hay muchas personas capaces de hacer tu trabajo. Necesitas seguir aprendiendo
para seguir siendo comercializable. De lo contrario, te convertiras en dinosaurio, atrapado en el
mismo trabajo hasta que, un dia, no seras necesario o tu trabajo sera subcontratado con algin
recurso mas barato

http://97cosas.com/programador/aprendiendo-continuamente.html

Entonces, ¢qué hacer al respecto? Algunos empleadores son lo suficientemente generosos
para proveer formacién para ampliar tus habilidades. Otros pueden no ser capaces de ahorrar
el tiempo o el dinero para entrenarte. Para jugar a la segura, necesitas tomar responsabilidad
de tu propia educacion.

Aqui hay una lista de las ideas para mantenerte en aprendizaje. Muchas de se pueden encontrar
en Internet de forma gratuita:

e Lee libros, revistas, blogs, feeds de twitter y sitios web. Si quieres profundizar en un tema,
considera unirte a una lista de correo o grupos de noticias

e Sirealmente quieres estar inmerso en una tecnologia, pon las manos en ello y escribe algun
cadigo.

e Trata siempre de trabajar con un mentor, sentirse el mejor puede dificultar tu educacion.
Aungue puedes aprender algo de cualquiera, puedes aprender mucho mas de alguien mas
inteligente o mas experimentado que tu. Si no puedes encontrar un mentor, considera seguir
adelante.

e Utiliza mentores virtuales. Encuentra autores y desarrolladores en la web que realmente te
gusten y lee todo lo que han escrito. Inscribete en sus blogs.

e Conoce sobre los frameworks y bibliotecas que usan. Saber cémo funciona algo te hace
saber como usarlo mejor. Si son de software libre, estas de suerte. Usa el depurador para
ir paso a paso por el codigo para ver qué hay tras el telén. Podras ver el cédigo escrito y
revisado por personas realmente inteligentes.

e Cada vez que cometas un error, arregles un error o estés en un problema trata de entender
qué paso. Es probable que alguien mas haya tenido el mismo problema y haya escrito sobre
€l en algun lugar de la web. Google es util en este caso.

e Una buena manera de aprender algo es ensefiando o hablando sobre eso. Como la gente
estd para escucharte y te hara preguntas, estaras motivado a aprender. Intenta un
“almuerza y aprende” en el trabajo, un grupo de usuarios o con conferencias locales.

e Inicia o Unete a un grupo de estudio (a la comunidad de patrones) o a un grupo local de
usuarios del lenguaje, tecnologia o disciplina en la que estés interesado.

e Asiste a conferencias. Y si no puedes ir, muchas conferencias ponen sus charlas en linea
gratuitamente.

e ¢ Tienes un largo trayecto de la casa al trabajo? Escucha podcasts.

e ¢Alguna vez has ejecutado las herramientas de analisis estatico sobre tu codigo base o has
mirado en las advertencias de tu IDE? Comprende qué estan reportando y por qué.

e Sigue la recomendacion de The Pragmatic Programmer y aprende un nuevo lenguaje cada
afo. Al menos aprenderas una nueva tecnologia o herramienta. El diversificar te dara ideas
que puedes usar en tu pila tecnolégica actual.

e Notodo lo que aprendas tiene que ser sobre tecnologia. Aprende el dominio de lo que estas
trabajando, asi puedes comprender mejor los requerimientos y ayudar a resolver el
problema del negocio. Aprender a ser mas productivo — como trabajar mejor — es otra buena
opcion.

e Vuelve ala escuela.

https://pragprog.com/book/tpp/the-pragmatic-programmer

Seria bueno tener la capacidad que Neo tenia en The Matrix y simplemente descargar en tu
cerebro la informacion que necesitas. Pero no podemos, por lo que requerird un compromiso
de tiempo. No tienes que gastar cada hora de vigilia aprendiendo. Un poco de tiempo, por
ejemplo semanalmente, es mejor que nada. Existe (o deberia haber) una vida fuera del trabajo.

La tecnologia cambia rapidamente. No te quedes atras.

Traduccién: Espartaco Palma

9. Automatiza el estandar de codificacion.

Autor: Filip van Laenen

Probablemente a ti también te sucedid. Al comenzar un proyecto todo el mundo tiene buenas
intenciones; las llamaremos “resoluciones de proyecto nuevo”. A menudo, muchas de estas
resoluciones se documentan, y las que tienen que ver con el cddigo terminan en el estandar de
codificacién del proyecto. Durante la primera reunién, el jefe de desarrollo revisa la
documentacion y, en el mejor de los casos, todos aceptan que intentardn respetarla. Sin
embargo, una vez que el proyecto se pone en marcha, las buenas intenciones se van dejando
de lado, una a una. Para cuando se entrega el proyecto, el codigo es un desastre y nadie parece
saber por qué.

¢En qué momento salieron mal las cosas? Probablemente desde la reunién inicial. Algunos
miembros no estaban prestando atencién; otros no lo consideraron importante. Para peor,
algunos no estuvieron de acuerdo y ya estaban planeando rebelarse en contra del estandar.
Por dltimo, algunos si lo comprendieron y estuvieron de acuerdo pero, cuando la presion del
proyecto fue demasiada, tuvieron que dejar de lado algunas convenciones. Aplicar un buen
formato al cédigo no te hara ganar puntos con un cliente que desea mas funcionalidad. De
hecho, respetar un estandar de codificacion puede ser bastante aburrido si la funcién no esta
automatizada: intenta indentar una clase a mano para comprobarlo por tu cuenta.

Pero si es tan problematico, ¢para qué queremos un estandar de codificacion? Una de las
razones para darle un formato uniforme al cédigo es que, de este modo, nadie se “aduenara”
del codigo que escriba utilizando un formato propio. Probablemente queremos evitar que los
programadores utilicen ciertos antipatrones, para asi ahorrarnos algunos errores comunes. En
general, un estandar de codificacion deberia hacer mas facil el trabajo grupal de un proyecto y
mantener la velocidad de desarrollo desde el principio hasta el final. Se deduce entonces que
todos deberian estar de acuerdo con el estandar; no ayuda que un programador utilice tres
espacios para indentar y otro utilice cuatro.

Hay una gran cantidad de herramientas que se pueden usar para producir reportes de calidad
de cbdigo, y para documentar y mantener el estandar de codificacién, pero ésa no es la solucién
completa. El estandar deberia automatizarse e imponerse siempre que sea posible. Por
ejemplo, de las siguientes maneras:

e Asegurate de que parte del proceso de compilacién sea darle formato al cédigo, de modo
que todo el mundo lo realice cada vez que se compile la aplicacion.

e Utiliza herramientas de analisis de codigo estatico para encontrar antipatrones. Si se
encuentra alguno, detén la compilacion.

e Aprende a configurar estas herramientas para que detecten antipatrones definidos por ti
mismo y para tus proyectos especificos.

http://97cosas.com/programador/automatiza-estandar-codificacion.html

e Mide la cobertura del cédigo, pero también evalla automaticamente los resultados.
Nuevamente, detén la compilacion si los resultados son muy bajos.

Intenta aplicar esto en todo lo que consideres de importancia, aunque no te sera posible
automatizarlo todo. Las cosas que no puedas marcar o corregir automaticamente podrian
agruparse en un conjunto de directrices suplementarias al estandar automatizado, pero ten en
cuenta que probablemente ti y tus colegas no lo respeten con la misma diligencia.

Por ultimo, el estandar de codificacion deberia ser dinAmico y no estatico. A medida que el
proyecto evolucione, sus necesidades también irdn cambiando, y lo que quizas parecio
inteligente en un principio, no sera necesariamente inteligente algunos meses después.

Traduccion: Natan Calzolari

10. Averigua gué haria el usuario (tU no eres un usuario).

Autor: Giles Colborne

Todos tendemos a asumir que los demas piensan como nosotros, pero no es asi. Los psicologos
lo llaman efecto del falso consenso. Cuando la gente piensa o actla de un modo diferente a
nosotros es muy probable que (subconscientemente) los consideremos defectuosos en cierto
modo.

Este prejuicio explica por qué a los programadores les cuesta tanto ponerse en el lugar de los
usuarios. Los usuarios no piensan como programadores. Para empezar, pasan mucho menos
tiempo usando computadoras y no saben, ni les interesa, como funcionan. Esto significa que no
pueden recurrir a ninguna de las pilas de técnicas para resolver problemas que son tan comunes
entre programadores. Los usuarios no saben reconocer los patrones ni indicaciones que los
programadores manejan para trabajar y lidiar con las interfaces.

La mejor manera de entender cémo piensan los usuarios es observandolos. Pidele a un usuario
que realice una tarea utilizando una aplicacién similar a la que estas desarrollando. Asegurate
de que sea una tarea en serio: “agrega una columna de niumeros” estéa bien; “calcula tus gastos
del mes pasado” es mejor. Evita tareas muy especificas, como “jpuedes seleccionar estas
celdas y agregar una formula SUMA debajo?”; es una pregunta algo obvia. Haz que el usuario
te expliqgue en detalle el proceso que realiza. No lo interrumpas. No intentes ayudarlo.
Preguntate todo el tiempo por qué esta haciendo eso.

Lo primero que notaras es que los usuarios realizan una serie de cosas de manera similar.
Intentan completar las tareas en el mismo orden y cometen los mismos errores en los mismos
lugares. Deberias disefiar tu aplicacion en torno a esta conducta base. Esto es algo que difiere
de las reuniones de disefo, en las cuales se suelen hacer preguntas como: “;y si el usuario
quisiera...?”. Estos planteamientos conducen al desarrollo de funciones demasiado complejas
y generan confusion sobre lo que los usuarios realmente desean. Observarlos eliminara esta
confusion.

Veras que los usuarios suelen atascarse. Cuando tu te atascas, buscas una solucion. Cuando
los usuarios se atascan, reducen su foco de atencion; se les vuelve mas complicado ver una
solucion al problema en otro lugar de la pantalla. Esta es una de las razones por las que los
textos de ayuda son una mala solucion al mal disefio de interfaces de usuario. Si debes agregar
instrucciones o textos de ayuda, asegurate de hacerlo justo al lado de las areas problematicas.
Esta limitacion de los usuarios es el motivo por el que los tooltips son mas Utiles que los menus
de ayuda.

http://97cosas.com/programador/averigua-que-haria-usuario.html

Los usuarios tienden a salir del paso de alguna manera. Encontraran algo que funcione y se
aferraran a ello sin importar lo complejo que sea, pero es mejor proveer un modo obvio de hacer
las cosas que dos o tres atajos.

También te encontraras con que hay una marcada diferencia entre lo que los usuarios dicen
que quieren y lo que realmente quieren. Lo cual es preocupante, ya que para averiguar los
requerimientos lo normal es preguntarles. Es por esto que el mejor modo de relevar los
requerimientos es observando a los usuarios. Pasar una hora con ellos es mucho mas
informativo que pasar un dia suponiendo qué quieren.

Traduccion: Natan Calzolari

11. La belleza esta en la simplicidad.

Autor: Jarn dlmheim

Hay una gran cita de Platdn que es particularmente importante que los programadores sepamos
y recordemos siempre: “La belleza en el estilo, la armonia, la gracia y el buen ritmo dependen
de la simplicidad”. Creo que esta cita resume en una sola oracion todos los valores a los que
deberiamos aspirar los desarrolladores de software.

En nuestro codigo, nos esforzamos por lograr una serie de cosas:

e Legibilidad

e Mantenibilidad

e Velocidad de desarrollo

e La esquiva cualidad de la belleza

Platén nos estéa diciendo que el factor que nos permitird alcanzar todas estas cualidades es la
simplicidad.

¢ Pero qué hace bello al codigo? Esta puede ser una pregunta muy subjetiva. La percepcion de
la belleza depende mucho de nuestro trasfondo individual, tal como sucede con cualquier otra
cosa. La gente formada en las artes tiene una percepcion (o enfoque) sobre la belleza que es
distinta a la de la gente formada en las ciencias. En el ambito del arte se tiende a analizar la
belleza del software comparandola con obras de arte, mientras que en el de las ciencias se
habla de la simetria y la proporciéon aurea; se intenta reducir las cosas a férmulas. En mi
experiencia, la simplicidad es la base de los argumentos en ambos lados de la moneda.

Piensa en el cédigo que has estudiado. Si no has pasado un buen tiempo leyendo el cédigo de
alguien mas, deja de leer esto ahora mismo y ve a buscar algo de software libre para estudiar.
iEn serio, no es broma! Busca en Internet algo de cédigo en tu lenguaje preferido, escrito por
alglin experto reconocido.

¢Ya has regresado? Bien. ;Donde estdbamos? Ah, si... Me he encontrado con que el cddigo
que me llama la atenciéon y que considero hermoso siempre posee una misma serie de
caracteristicas. La mas importante es la simplicidad. Me encuentro con que, sin importar qué
tan complicada sea la aplicacion o sistema en su totalidad, las partes individuales deben
mantenerse simples: los objetos deben ser sencillos, poseer una Unica responsabilidad y
contener métodos similarmente simples, con una tarea bien definida y nombres descriptivos.
Algunos piensan que la idea de escribir métodos breves, de entre cinco y diez lineas de cédigo

http://97cosas.com/programador/belleza-simplicidad.html

cada uno, es bastante extrema, y algunos lenguajes hacen que sea muy dificil lograr esto, pero
YO creo que esta brevedad es un objetivo deseable.

En resumen, para que el cddigo sea bello debe ser simple. Cada pieza individual debe ser
sencilla, y poseer responsabilidades y relaciones simples con otras partes del sistema. De este
modo se logra que nuestros proyectos puedan mantenerse en el tiempo, con cédigo limpio,
sencillo y verificable, lo cual permite mantener una alta velocidad de desarrollo durante el tiempo
de vida del proyecto.

La belleza nace y se encuentra en la simplicidad.

12. El camino al mejor rendimiento esta lleno de sucias bombas de codigo.

Autor: Kirk Pepperdine

Mas frecuentemente que nunca, la optimizacion de rendimiento en un sistema requiere que
alteres cédigo. Cuando tenemos que alterar codigo, cada porcién intrincadamente compleja o
altamente acoplada es una sucia bomba de codigo, en espera de descarrilar el esfuerzo. La
primera victima de cédigo sucio sera tu agenda. Si el camino a seguir es suave, sera facil
predecir cuando acabara. Los encuentros inesperados con el codigo sucio haran que sea muy
dificil hacer una prediccién cuerda.

Considera la situacion en la que encuentras un punto de ejecucién complicado. El curso normal
de accién es reducir la fortaleza del algoritmo en cuestion. Digamos que respondes con “3-4
horas” a un estimado que te pide el gerente. Si aplicas el fix te daras cuenta rapidamente que
has descompuesto una parte dependiente. Debido a que las cosas estan relacionadas, a
menudo estan necesariamente acopladas, estas descomposturas son esperadas y se cuenta
con ellas. Pero, ¢qué pasa si un arreglo en esa dependencia termina rompiéndose en otra parte
dependiente? Por otro lado, entre mas lejos esta la dependencia de su origen, menos probable
es reconocerla como tal y tomarla en cuenta en tu estimado. De repente tu estimado de 3-4
horas pueden elevarse facilmente a 3-4 semanas. Con frecuencia esta inflacion inesperada en
la agenda sucede 1 o0 2 dias, todas al mismo tiempo. No es raro el ver refactorizaciones “rapidas”
que eventualmente toman varios meses en ser completadas. En esos casos, el dafio en la
credibilidad y capital politico del equipo responsable variara de severo a terminal. Si tan solo
tuviéramos una herramienta para ayudarnos a identificar y medir estos riesgos.

De hecho, tenemos varias maneras de medir y controlar el grado y profundidad de acoplamiento
y complejidad de nuestro codigo. Las métricas de software puede ser usadas para contar las
apariciones de caracteristica especificas en nuestro cédigo. Los valores de estos conteos se
correlacionan con la calidad del cédigo. Dos de estas métricas que miden el acoplamiento son
las llamadas fan-in y fan- out. El fan-out esté definido como el nimero de clases referenciadas,
ya sea directa o indirectamente, para una clase en particular. Puedes pensar en esto como un
recuento de todas las clases que deben ser compiladas antes de que tu clase pueda ser
compilada. El fan-in un conteo de todas las clases que depende de una clase en especifico.
Conociendo el fan-out y fan-in podemos calcular un factor de inestabilidad usando | = fo / (fi +
fo). Conforme se aproxima a 0, el paquete se vuelve mas estable. En cuanto se aproxime a 1,
el paquete se convierte en inestable. Los paquetes que son estables son objetivos de bajo
riesgo, mientras que los paquetes inestables son més propensos a estar llenos de sucias
bombas de cddigos. La meta de la refactorizaciéon es mover | lo mas cercano a O.

Cuando usamos métricas debemos recordar que so6lo son reglas empiricas. Basandose
puramente en las matematicas puedes ver que el incremento de fi sin cambiar fo movera | mas
cerca a 0. Sin embargo hay una desventaja en tener el valor fan-in alto, pues estas clases seran

http://97cosas.com/programador/camino-al-rendimiento-bombas-codigo.html

mas dificiles de modificar sin romper dependencias. Al no tener en cuenta el fan-out no estas
reduciendo realmente el riesgo, por lo que debe aplicarse algin balance.

Una desventaja de las métricas de software es que la gran cantidad que nimeros que producen
las herramientas pueden ser intimidantes para los no iniciados. Dicho esto, las métricas de
software pueden ser una poderosa herramienta en nuestra lucha por un cédigo limpio. Pueden
ayudar a identificar y eliminar las sucias bombas de cédigo antes de que sean un serio riesgo
al ejercicio de optimizacion del rendimiento.

Traduccién: Espartaco Palma
13. Codificando con la razén.

Autor: Yechiel Kimchi

Trata de averiguar manualmente la correctitud de software resulta en una prueba formal mas
larga y propensa a errores que el cdédigo mismo. Las herramientas automatizadas son
preferibles, pero no siempre posibles. Lo siguiente describe una ruta intermedia: razonamiento
semi-formal sobre la dicha correctitud.

El planteamiento de fondo es dividir todo el codigo en cuestion de secciones cortas —desde una
sola linea, como invocar a una funcién, hasta bloques de menos de 10 lineas—y discutir acerca
de su exactitud. Los argumentos s6lo necesitan ser suficientemente fuertes para convencer al
compafiero del diablo como tu pareja de programacion.

Una seccion deberia ser elegida de modo que en cada terminal el estado del programa (Iéase:
el conteo del programa y los valores de todos los objetos “vivos”) satisface una propiedad
facilmente descrita y que la funcionalidad de esa seccion (transformacién de estado) sea facil
de describir como una sola tarea —estos haran el razonamiento méas sencillo—. Tales
propiedades terminales generalizan conceptos como precondincion y poscondicion de
funciones, e invariantes para ciclos y clases (con respecto a sus instancias). La lucha para que
las secciones sean independientes de las otras tanto como sea posible simplifica el
razonamiento y es indispensable cuando estas secciones son modificadas.

Muchas de las préacticas de codificacion que son bien conocidas (aunque quizas menos
seguidas) y consideradas “buenas” hacen el razonamiento mas facil. Por lo tanto, sélo con la
intencion de razonar sobre tu codigo ya estas comenzando a pensar acerca de un mejor estilo
y estructura. Como era de esperarse, la mayoria de estas practicas pueden ser revisadas por
analizadores de cédigo estatico:

1. Evita usar sentencias goto, ya que hacen las secciones remotas altamente

interdependientes

2. Evita usar variables globales modificables, debido a que hacen dependientes a todas las
secciones que las usan.

3. Cada variable deberia tener el minimo alcance posible. Por ejemplo, un objeto local puede
ser declarado justo antes de su primer uso.

4. Haz los objetos inmutables cuando sea relevante.

5. Haz al codigo leible usando espacios, tanto horizontales como verticales. Por ejemplo,
alineando estructuras relacionadas y usando una linea vacia para separar dos secciones.

6. Haz al codigo semi-documentable escogiendo nombres descriptivos (pero relativamente
cortos) para los objetos, tipos, funciones, etc.

7. Sinecesitas una seccion anidada, crea una funcioén.

http://97cosas.com/programador/codifica-con-la-razon.html

8. Crea tus funciones cortas y enfocadas en una sola tarea. El viejo limite de 24 lineas aln
aplica. A pesar que los tamafios de las pantallas han cambiado, nada ha cambiado en la
cognicion humana desde la década de los sesenta.

9. Las funciones deben tener pocos parametros (cuatro es buen limite superior). Esto no
restringe los datos comunicados a las funciones: agrupando parametros relacionados en un
objeto beneficia desde sus invariantes y ahorra razonamiento, tales como su coherencia y
consistencia.

10. En general, cada unidad de cédigo, desde un blogue hasta una biblioteca, deberia tener
una interface rala. Menos comunicacion reduce el razonamiento requerido. Esto significa
que los getters que regresan estados internos son una responsabilidad —no pidas a un
objeto la informacién que ya tiene—. En otras palabras, la encapsulacion es todo sobre
interfaces limitadas.

11. Para poder preservar las clases invariantes, el uso de setters no deberia ser recomendada,
debido a que los setters tienden a permitir invariantes que gobiernan el estado de un objeto
hacia su ruptura.

Conforme se razone sobre la correctitud, argumentar sobre tu cédigo te ofrece entendimiento
sobre él. Comunica sus descubrimientos para el beneficio de todos.

Traduccién: Espartaco Palma

14. Codifica en el lenquaje del dominio.

Autor: Dan North

Imaginate dos cédigos bases. En uno te encuentras esto:
if (portfolioIdsByTraderId.get(trader.getId())

.containsKey(portfolio.getId())) {...}

Te rascas la cabeza imaginandote para que podria servir este cédigo. Parece que esta
obteniendo un ID desde un objeto comerciante (“trader”), usandolo para obtener aparentemente
un mapa de mapas y, entonces, esta viendo si otro ID desde un objeto portafolio (“portfolio”)
existe en el mapa interior. Te rascas la cabeza un poco mas. Ves la declaracion del
método portfolioIdsByTraderId y descubres esto:

Map<int, Map<int, int>> portfolioIdsByTraderId;

Poco a poco te das cuenta que podria tener algo que ver con que un comerciante tenga acceso
a un portafolio en particular. Y, por supuesto, encontraras el mismo fragmento de bldsqueda —o
un similar-pero- ligeramente-diferente fragmento de cédigo— en el momento en que a alguien le
importa si un comerciante tiene acceso a un portafolio en particular.

En el otro codigo base te encuentras con esto:

if (trader.canView(portfolio)) {...}

No hay rascado de cabeza. No necesitas saber como lo sabe un comerciante. Quizas es uno
de esos mapas de mapas escondidos dentro. Pero es un asunto del comerciante, no tuyo.

http://97cosas.com/programador/codifica-en-lenguaje-del-dominio.html

Ahora, ¢en cual de estos codigos te gustaria estar trabajando?

Hubo un tiempo en que sélo teniamos unas muy basicas estructuras de datos: bit, bytes y
caracteres (realmente so6lo bytes que pretendiamos que fueran letras y puntuaciones). Tener
decimales eran un poco truculento porque nuestros niumeros de base 10 no trabajan muy bien
en binario, asi que teniamos varios tamafios de tipos de punto flotante. Entonces vinieron las
matrices y las cadenas (realmente so6lo matrices distintas). Teniamos pilas, colas, hashes, listas
ligadas v listas salteadas y muchas otras excitantes estructuras de datos que no existian en el
mundo real. La “Ciencia Computacional” se trataba de gastar mucho esfuerzo mapeando el
mundo real en nuestras estructuras de datos restrictivas. Los verdaderos guris podrian incluso
recordar como lo habian logrado.

iEntonces tuvimos los tipos definidos por el usuario! Esta bien, esto no es noticia, pero fue un
cambio en el juego, de alguna manera. Si tu dominio contiene conceptos como negociantes y
portafolios, podias modelarlos con tipos llamados, digamos, Comerciantes y Portafolio. Pero,
mas importante que esto, también puedes modelar relaciones entre ellos usando términos de
dominio.

Si no codificas usando términos del dominio estds creando un entendimiento tacito (Iéase:
secreto) de que este valor de tipo entero que esta por ahi significa la manera de identificar a un
comerciante, donde ese valor de tipo entero por alla es la manera de identificar un portafolio.
(jMejor no confundirlos!) Y si representas un concepto de negocio (“a algunos comerciantes no
les esta permitido ver algunos portafolios —es ilegal-") con un algoritmo, digamos la existencia
de relaciones en un mapa de claves, no le estas haciendo ningun favor a los chicos de auditoria
y quejas.

El programador de junto quizas no sepa el secreto, asi que ¢ porqué no hacerlo explicito? Usar
una llave como el término de busqueda de otra llave que realiza la revision de una llave existente
no es terriblemente obvio. ¢ Cémo se supone que alguien intuya que ahi estan implementadas
las reglas de negocio que previenen conflictos de interés?

Realizar conceptos explicitos del dominio en tu cddigo significa que otros programadores
pueden adquirir la intencion del cédigo mucho mas facilmente que intentar meter un algoritmo
en lo que entienden sobre el dominio. Esto también significa que cuando el modelo del dominio
evoluciona —es decir, que tu entendimiento se incrementa— estés en una buena posicion para
evolucionar el cédigo. En conjunto con una buena encapsulacion, aumenta la oportunidad de
que la regla exista sélo en un lugar y que puedes cambiarla sin que el cédigo dependiente se
dé cuenta.

El programador que venga unos cuantos meses después a trabajar con el codigo te lo
agradecera y quizas ese programador seas ta.

Traduccién: Espartaco Palma

15. Codificacion Ubuntu para tus amigos.

Autor: Aslam Khan

A menudo escribimos cédigo en el aislamiento y refleja nuestra interpretacion personal de un
problema, asi como una solucion personalizada. Podemos ser parte de un equipo y aun asi
estar aislados. Olvidamos todo tan facilmente que este cddigo creado en el aislamiento sera
ejecutado, usado, extendido y ha confiado a otros. Es facil pasar por alto el aspecto social de la
creacion de software. Crear software es un ejercicio técnico mezclado con un ejercicio social.
Solo necesitamos levantar nuestra cabeza para darnos cuenta de que no estamos trabajado

http://97cosas.com/programador/codificacion-ubuntu.html

aisladamente y tenemos responsabilidades compartidas con respecto a incrementar la
probabilidad de éxito de todos, no solo del equipo de desarrollo.

Podemos escribir cédigo de buena calidad en el aislamiento, mientras nos perdemos en
nosotros mismos. Desde alguna perspectiva, eso es un enfoque egocéntrico (no ego como en
arrogante, sino ego como en lo personal). También es una visién Zen y es sobre ti, en ese
momento de la creacidn de cédigo. Siempre intento vivir en el momento porque ayuda a estar
mas cerca de la calidad, pero entonces vivo en mi momento. ¢,Qué pasa con el momento de mi
equipo? ¢ Es mi momento el mismo que el del equipo?

En Zulu, la filosofia de Ubuntu se resume en “Umuntu ngumuntu ngabantu”, que se podria
traducir como “una persona es una persona a través de (otras) personas”. Me siento mejor
porque tu me haces mejor a través de tus buenas acciones. La otra cara es que eres peor en lo
que haces cuando soy malo en lo que hago. Entre desarrolladores, podemos reducirlo a “un
desarrollador es un desarrollador a través de (otros) desarrolladores”. Si lo llevamos hasta el
metal, entonces “el codigo es codigo a través de codigo (de los otros)”.

La calidad del codigo que escribo afecta la calidad del cédigo que tu escribes. ¢ Qué pasa si mi
cédigo es de baja calidad? Incluso si escribes un cédigo muy limpio, los puntos donde usas mi
cbdigo es donde la calidad de tu cddigo se degrada. Puedes aplicar muchos patrones y técnicas
para limitar el dafio, pero el dafio ya esta hecho. He causado que tu hagas mas de lo que
necesitas hacer simplemente porque no pensé en ti cuando estaba viviendo mi momento.

Puede que considere mi cédigo como limpio, pero puedo aln hacerlo mejor sélo codificando
Ubuntu. ¢A que se parece el cédigo Ubuntu? Se ve como un buen cédigo limpio. No se trata del
cédigo, el artefacto. Se trata del acto de crear ese artefacto. Codificar para tus amigos con
Ubuntu ayudara a que tu equipo viva tus valores y refuerce sus principios. La siguiente persona
gue toque tu codigo, en cualquier forma, sera una mejor persona y un mejor desarrollador.

El Zen se trata de lo individual. Ubuntu es acerca del Zen para un grupo de personas. Muy, muy
raramente creamos codigo para nosotros mismos.

Traduccién: Espartaco Palma

16. El coédigo es diseno.

Autor: Ryan Brush

Imaginate despertar mafiana y saber que la industria de la construccion ha hecho el avance del
siglo. Millones de robots baratos e increiblemente rapidos pueden fabricar materiales de la nada,
tener gasto energético cercano a cero y se pueden reparar a si mismos. Y se pone mejor: al
darle un no-ambiguo plano para un proyecto de construccion, el robot puede construirlo sin la
intervencion humana, todo ello a un costo insignificante.

Uno puede imaginar el impacto en la industria de la construccion, pero ¢qué pasaria mas
adelante? ¢ Como cambiaria el comportamiento de los arquitectos y disefiadores si los costos
de construccion fueran insignificantes? Hoy en dia modelos fisicos y computacionales son
creados y rigorosamente probados antes de invertir en la construccion. ¢ Nos preocupariamos
si la construccion fuera esencialmente gratis? Si un disefio se colapsa, no hay problema, sélo
encuentra qué estuvo mal y pon a nuestros robots magicos a construir otro. Hay otras
implicaciones. Con modelos obsoletos, los disefios sin terminar evolucionan mediante la
construccion y mejoran en repetidas ocasiones hacia una aproximacion de la meta final. Un
observador casual podria tener problemas distinguiendo un disefio inacabado y un producto
terminado.

http://97cosas.com/programador/codigo-es-disenno.html

Nuestra capacidad para predecir lineas de tiempo se esfumaria. Los costos de construccion son
calculados mas facilmente que los costos de disefio —sabemos el costo aproximado de instalar
una viga y cuantas vigas necesitamos—. Como las tareas predecibles se reducen a cero, la
época del disefio menos predecible empieza a dominar. Los resultados se producen con mayor
rapidez, pero los plazos fiables escapan.

Por supuesto, se sigue aplicando la presion de una economia competitiva. Con los costos de
construccién eliminados, una empresa puede completar rapidamente un disefio ganando una
esquina en el mercado. El tener pronto los disefios terminados se convierte en el empuje central
de las firmas de ingenieria. Inevitablemente, alguien no familiarizado con el disefio verd una
version invalidada, ve una ventaja del mercado al liberar temprano y dice “esto parece lo
suficientemente bien”.

Algunos proyectos de vida o muerte seran mas diligentes, pero en muchos casos los
consumidores aprende a sufrir el disefio incompleto. Las empresas siempre puede mandar
robots magicos a “parchar” los edificios y vehiculos rotos que venden. Todo esto apunta a una
conclusion intuitiva: nuestra Unica premisa era una dramatica reduccion en los costos de
construccion, con el resultado de que la calidad ha empeorado.

No deberia sorprendernos que la historia de arriba fuera ejecutada por el software. Si aceptamos
que el cédigo es disefio —un proceso creativo en vez de uno mecanico- la crisis del software se
explica. Ahora tenemos una crisis de disefio: la demanda de disefios validados y de calidad
excede nuestra capacidad de crearlos. La presién por usar disefios incompletos es fuerte.

Afortunadamente, este modelo también ofrece pistas de cdmo mejorar. Las simulaciones fisicas
equivalen a pruebas automatizadas; el disefio de software no estd completo hasta que es
validado con una bateria de pruebas brutal. Para hacer tales pruebas mas efectivas estamos
encontrando maneras de frenar en el gran espacio de estados de los grandes sistemas. Los
lenguajes mejorados y las practicas de disefio nos dan esperanza. Finalmente, hay un hecho
ineludible: los grandes disefios son producidos por grandes disefiadores dedicados a la
maestria de su oficio. El codigo no es diferente.

Traduccién: Espartaco Palma

17. Comenta sélo lo que el codigo no dice.

Autor: Kevlin Henney

La diferencia entre teoria y practica es mas grande en la practica que en la teoria —una
observacion que aplica a los comentarios—. En teoria, la idea general de comentar cédigo suena
como algo util: ofrece al lector detalles, una explicacion de lo que esta pasando. ¢ Qué podria
ser mas util que ser Gtil? En la préactica, sin embargo, los comentarios frecuentemente se
convierten en una plaga. Asi como otras formas de escritura, existen habilidades para escribir
buenos comentarios. Mucho de esa habilidad es saber cuando no escribirlos.

Cuando el codigo estda mal formado, los compiladores, intérpretes y otras herramientas se
aseguran de objetar. Si el cddigo es, de algin modo, funcionalmente incorrecto, las revisiones,
los analisis estéticos, las pruebas y el uso diario en un ambiente de produccién eliminara muchos
de los errores. ¢Qué me dices de los comentarios? En The Elements of Programming Style,
Kernighan y Plauger notaron que “un comentario tiene valor de cero (o negativo) si es erroneo”.
Y, sin embargo, tales comentarios ofrecen poco y sobreviven en un cédigo base de una manera
que los errores de codificacion nunca pueden. Proporcionan una fuente constante de distraccion
y desinformacion, un lastre sutil pero constante en el pensamiento de un programador.

http://97cosas.com/programador/comenta-codigo-no-dice.html

¢, Qué hay con los comentarios que no estan técnicamente mal, pero no agregan valor al codigo?
Son ruido. Los comentarios que parlotean el codigo no ofrecen algo extra al lector —decir algo
una vez en codigo y otra vez en lenguaje natural no lo hace mas verdadero o mas real—. El
cbdigo comentado no es codigo ejecutable, por lo que no tiene un efecto til para el lector, ni en
tiempo de ejecucidon. También se vuelve rancio facilmente. Los comentarios relacionados a la
version y el cédigo comentado tratan de abordar preguntas sobre las versiones y la historia.
Estas preguntan ya han sido respondidas, de forma mas eficiente, por las herramientas de
control de versiones.

Una prevalencia de comentarios ruidosos e inconsistentes en el codigo base anima a los
programadores a ignorar todos los comentarios, ya sea saltandolos o tomando medidas activas
para ocultarlos. Los programadores tienen muchos recursos y le daran vuelta a cualquier cosa
que se perciba como dafiino: plegando los comentarios; cambiando el esquema de color, asi
los comentarios y el color de fondo se igualan; creando scripts para filtrar comentarios. Para
salvar el codigo base de las malas aplicaciones de la ingenuidad del programador, y reducir el
riesgo de pasar por alto cualquier comentario de valor genuino, los comentarios deberian ser
tratados como si fueran codigo. Cada comentario deberia agregar algo de valor al lector, de otro
modo es un desperdicio que deberia ser removido o reescrito.

¢ Qué lo califica como valioso? Los comentarios deberian decir algo que ¢ el codigo no hace y
no puede decir. Un comentario que explica lo que ¢ una pieza de cédigo ya deberia decir es una
invitacion para cambiar la ¢ estructura del codigo o las convenciones de codificacion para que
hable ¢ por si mismo. En vez de compensar la pobreza en el nombre de los ¢ métodos o de las
clases, renombralos. En vez de comentar secciones en ¢ funciones largas, extrae las funciones
pequefias cuyos nombres capturen ¢las intenciones de las anteriores partes. Intenta expresar
tanto como ¢ sea posible a través del codigo. Cualquier déficit entre lo que puedes ¢ expresar
en coédigo y lo que deseas expresar en su totalidad se ¢ convierte en un candidato plausible para
un comentario util. Comenta lo ¢, que el cédigo no puede decir, no lo que el cédigo no dice.

Traduccioén: Espartaco Palma

18. Un comentario acerca de los comentarios.

Autor: Cal Evans

En mi primera clase de programacién en la universidad, el profesor nos entregé dos hojas de
codificacion BASIC. En el pizarron, se leia la asignatura: “Escribir un programa para ingresar y
promediar 10 puntuaciones de bolos”. A continuacion, el profesor salié de la habitacion. ¢Qué
tan dificil puede ser? No recuerdo mi solucién final, pero estoy seguro que tenia un bucle
FOR/NEXT en él y no podia haber sido de méas de 15 lineas de longitud en total. Las hojas de
codificacién —para los nifios que leen esto, si, soliamos escribir el cédigo a mano antes de
ingresarlo a la computadora— permitian alrededor de 70 lineas de codigo cada una. Estaba
confundido sobre por qué el maestro nos habia dado dos hojas. Debido a que mi manuscrito
habia sido atroz, usé la segunda en transcribir mi cédigo muy cuidadosamente, esperando
obtener un par de puntos extras por el estilo.

Para mi sorpresa, cuando me regresaron la asignatura, al inicio de la siguiente clase, obtuve
una calificacion apenas aprobatoria. (Seria un presagio para mi el resto del tiempo en la
universidad). Garabateado en la parte superior de mi cuidadosamente copiado cadigo: “; Sin
comentarios?”.

http://97cosas.com/programador/comentario-acerca-de-comentarios.html

No era suficiente que el profesor y yo supiéramos lo que se suponia haria el programa. Parte
de los puntos de la asignatura era ensefiarme que mi cédigo debia explicarse por si mismo al
programador después de mi. Es una leccién que no he olvidado.

Los comentarios no son malignos. Son necesarios en la programacion tanto como los
constructos mas basicos de ramificaciones o ciclos. Los lenguajes mas modernos tienen una
herramienta similar a javadocs que analiza comentarios con el formato adecuado para construir
automaticamente la documentacion del API. Esto es un buen comienzo, pero no es suficiente.
Dentro de tu cédigo deberia haber explicaciones acerca de lo que se supone que esta haciendo.
Coadificar con el viejo adagio: “Si fue dificil de escribir, debe ser dificil de leer”, hace un pobre
favor a tu cliente, tu empleador, tus colegas o tu propio futuro.

Por otro lado, puedes irte demasiado lejos con tus comentarios. Asegurate de que clarifican el
cbdigo, pero no lo obscurecen. Espolvorea tu codigo con comentarios relevantes explicando
qué debe realizar. EI comentario principal deberia darle a cualquier programador suficiente
informacion para usarlo sin tener que leerlo, mientras que los comentarios en linea deberian
asistir al siguiente desarrollador que lo arregle o lo extienda.

En un trabajo estuve en desacuerdo con una decisién de disefio hecha por mis superiores. Por
intentar ser sarcastico, como suelen ser los programadores jovenes, copié el texto del correo en
el cual se me instruia a usar su disefio en el bloque del comentario principal del archivo. Sucedio
que los administradores de esta tienda en particular revisaron el cédigo cuando lo envié. Fue mi
primera introduccion al término “despido por limite de profesion”.

Traduccién: Espartaco Palma

19. ; Como usar un Gestor de Errores?.

Autor: Matt Doar

Como sea que lo llames: bug, defecto o incluso “efecto del lado de disefio”, no hay manera de
alejarse de ellos. Saber enviar un buen reporte de error y lo que se debe buscar son habilidades
para mantener un proyecto que se lleve bien.

Un buen reporte de error necesita tres cosas:

e CoOmo reproducir el error, lo mas preciso posible, y la frecuencia con que esto hara que
aparezca el error.

e (Qué deberia haber ocurrido? Al menos en tu opinién.
e (¢ Qué ocurrié realmente? Toda la informacién que has registrado.

La cantidad y calidad de la informacion reportada dice mucho acerca de quién reporta 'y del error
mismo. Los errores con enojo o tension (“jesta funcion apesta!”) nos dice que los
desarrolladores estaban teniendo un mal momento, pero no mas. Un error con gran cantidad de
contexto para que sea mas facil reproducirlo gana el respeto de todo el mundo, incluso si detiene
una liberacion.

Los errores son como un conversacion, con toda la historia ahi en frente de todos. No culpes a
otros o niegues la existencia del error. En vez de eso pide mas informacion o considera qué
pudiste haber olvidado.

Cambiar el estatus de un error, por ejemplo, de Abierto a Cerrado, es una declaracién publica
de lo que se piensa del error. Tomarse el tiempo de explicar por qué crees que el error deberia

http://97cosas.com/programador/como-usar-bug-tracker.html

estar cerrado ahorrara horas de tedio en justificarlo a directores y clientes frustrados. Cambiar
la prioridad de un error es similar a las declaraciones publicas, y s6lo porque es trivial no significa
que alguien esta dejando de usar el producto.

No sobrecargues los campos del error para tu propio proposito. Agregar “VITAL:” al campo de
titulo de error puede hacer que sea facil ordenar los resultados en algun informe, pero hara que
eventualmente sea copiado por otros e inevitablemente ser4 mal escrito o necesitara ser
removido para su uso en algun otro informe. En vez de eso usa un nuevo valor o un nuevo
campo, y documenta como el campo se supone debe ser usado, asi otras personas no tienen
que repetirlo.

Asegurate que todos sepan como encontrar el error en el que se supone esta trabajando el
equipo. Esto se puede hacer mediante una consulta publica con un nombre obvio. Asegurate
que todos estan usando la misma consulta, y no la actualices sin primero informar al equipo que
estas cambiando algo en lo que todos estan trabajando.

Recuerda, un error no es una unidad estandar de trabajo, como tampoco una linea de cédigo
es una unidad precisa de esfuerzo.

Traduccioén: Espartaco Palma

20. Conoce bien mas de dos lenguajes de programacion.

Autor: Kevlin Henney

La diferencia entre teoria y practica es mas grande en la practica que en la teoria —una
observacion que aplica a los comentarios—. En teoria, la idea general de comentar cédigo suena
como algo util: ofrece al lector detalles, una explicacion de lo que esta pasando. ¢ Qué podria
ser mas util que ser Gtil? En la préactica, sin embargo, los comentarios frecuentemente se
convierten en una plaga. Asi como otras formas de escritura, existen habilidades para escribir
buenos comentarios. Mucho de esa habilidad es saber cuando no escribirlos.

Cuando el codigo estd mal formado, los compiladores, intérpretes y otras herramientas se
aseguran de objetar. Si el codigo es, de algun modo, funcionalmente incorrecto, las revisiones,
los andlisis estaticos, las pruebas y el uso diario en un ambiente de produccién eliminara muchos
de los errores. ¢Qué me dices de los comentarios? En The Elements of Programming Style,
Kernighan y Plauger notaron que “un comentario tiene valor de cero (0 negativo) si es erroneo”.
Y, sin embargo, tales comentarios ofrecen poco y sobreviven en un codigo base de una manera
que los errores de codificacién nunca pueden. Proporcionan una fuente constante de distraccion
y desinformacion, un lastre sutil pero constante en el pensamiento de un programador.

¢, Qué hay con los comentarios que no estan técnicamente mal, pero no agregan valor al codigo?
Son ruido. Los comentarios que parlotean el codigo no ofrecen algo extra al lector —decir algo
una vez en codigo y otra vez en lenguaje natural no lo hace méas verdadero o mas real—. El
cédigo comentado no es codigo ejecutable, por lo que no tiene un efecto Util para el lector, ni en
tiempo de ejecucién. También se vuelve rancio facilmente. Los comentarios relacionados a la
version y el codigo comentado tratan de abordar preguntas sobre las versiones y la historia.
Estas preguntan ya han sido respondidas, de forma maés eficiente, por las herramientas de
control de versiones.

Una prevalencia de comentarios ruidosos e inconsistentes en el cddigo base anima a los
programadores a ignorar todos los comentarios, ya sea saltandolos o tomando medidas activas
para ocultarlos. Los programadores tienen muchos recursos y le daran vuelta a cualquier cosa
qgue se perciba como dafino: plegando los comentarios; cambiando el esquema de color, asi

http://97cosas.com/programador/conoce-bien-dos-lenguajes.html

los comentarios y el color de fondo se igualan; creando scripts para filtrar comentarios. Para
salvar el codigo base de las malas aplicaciones de la ingenuidad del programador, y reducir el
riesgo de pasar por alto cualquier comentario de valor genuino, los comentarios deberian ser
tratados como si fueran codigo. Cada comentario deberia agregar algo de valor al lector, de otro
modo es un desperdicio que deberia ser removido o reescrito.

¢ Qué lo califica como valioso? Los comentarios deberian decir algo que ¢ el codigo no hace y
no puede decir. Un comentario que explica lo que ¢ una pieza de cédigo ya deberia decir es una
invitacion para cambiar la ¢ estructura del codigo o las convenciones de codificaciéon para que
hable ¢por si mismo. En vez de compensar la pobreza en el nombre de los ¢ métodos o de las
clases, renombralos. En vez de comentar secciones en ¢ funciones largas, extrae las funciones
pequeias cuyos nombres capturen ¢las intenciones de las anteriores partes. Intenta expresar
tanto como ¢sea posible a través del codigo. Cualquier déficit entre lo que puedes ¢ expresar
en codigo y lo que deseas expresar en su totalidad se ¢ convierte en un candidato plausible para
un comentario util. Comenta lo ¢ que el cédigo no puede decir, no lo que el cédigo no dice.

Traduccién: Espartaco Palma

21. Conoce como usar las herramientas de linea de comandos.

Hoy en dia, muchas herramientas de desarrollo de software se empaquetan como
Entornos Integrados de Desarrollo (IDE, Integrated Development Environments).
Microsoft Visual Studio y el proyecto de software libre Eclipse son dos ejemplos
populares, aunque hay muchos otros. Hay muchas razones por las cuales nos gustan
los IDE. No solo porque son faciles de usar, sino que también alivian al programador
de pensar en un montdn de pequefos detalles que involucran el proceso de
construccion.

La facilidad de uso, sin embargo, tiene su lado negativo. Por lo general, cuando una
herramienta es facil de usar, es debido a que esta tomando decisiones por ti y
haciendo un monton de cosas automaticamente detras de la escena. Por lo tanto, si
un IDE es el Unico entorno de programacion que siempre has usado, quizas nunca
entiendas completamente lo que tus herramientas estan haciendo. Haces clic en un
botdn, algo de magia ocurre, y un archivo ejecutable aparece en la carpeta del
proyecto.

Al trabajar con las herramientas de linea de comandos vas a aprender mucho mas
sobre lo que estan haciendo cuando se esta construyendo el proyecto. Escribir tus
propios archivos make te ayudara al entendimiento de todos los pasos (compilar,
ensamblar, enlazar, etcétera) que estan en la construccion de un archivo ejecutable.
Experimentar con las muchas opciones de la linea de comandos de esas herramientas
también es una experiencia educacional valiosa. Para empezar con el uso de las
herramientas de construccion en linea de comandos, puedes usar las de software
libre, como GCC, o las proporcionadas por tu IDE propietario. Después de todo, un
IDE bien disefiado es sélo una interface grafica para un conjunto de herramientas de
linea de comandos.

http://97cosas.com/programador/conoce-como-usar-linea-comando.html

Ademas de mejorar tu entendimiento del proceso de construccién, hay algunas
tareas que pueden ser realizadas de forma mas facil o eficiente con las herramientas
de linea de comandos que con un IDE. Por ejemplo, las capacidades de buscar y
reemplazar provistas por las utilerias grep y sed son mas poderosas que aquellas que
encuentras en IDEs. Las herramientas de linea de comandos inherentemente
soportan secuencias de comandos (scripting), lo cual permite la automatizacion de
tareas, como calendarizar builds diarios, crear multiples versiones de un proyecto y
la ejecucion de conjuntos de pruebas. En un IDE este tipo de automatizacién puede
ser mas dificil (si no imposible) de realizar debido a que las opciones de construccién
son usualmente especificadas usando cajas de dialogo del GUI (Interface Gréfica de
Usuario) y el proceso de construccion es invocado con el clic del raton. Si nunca has
dado un paso fuera de un IDE, quizd nunca te diste cuenta de que estos tipos de
tareas automatizadas son posibles.

Pero, espera. jAcaso el IDE no existe para hacer el desarrollo mas facil y para mejorar
la productividad del programador? Bueno, si. La propuesta presentada aqui no es
que debes dejar de usar un IDE. La propuesta es que deberias “mirar debajo de la
cortina” y entender lo que el IDE esta haciendo por ti. La mejor manera de hacerlo
es aprender a usar las herramienta de linea de comandos. Luego, cuando vuelvas a
usar tu IDE, tendras un mucho mejor entendimiento de qué es lo que esta haciendo
por ti y cobmo puedes controlar el proceso de construccion. Por otra parte, una vez
que domines el uso de las herramientas de linea de comandos y experimentes el
poder y flexibilidad que ofrecen, quizas podrias encontrar que prefieres la linea de
comando sobre el IDE.

22. Conoce tu proximo Commit.

Toqué a tres programadores en su hombro y les pregunté qué estaban haciendo. “Estoy
refactorizando este método”, respondio el primero. “Estoy agregando algunos pardmetros a esta
actividad web”, respondio el segundo. El tercero respondio: “estoy trabajando en esta historia
de usuario”.

Podria ser que los primeros dos estaban dedicados en el detalle de su trabajo mientras el tercero
estaba viendo la escena completa y tenia un mejor enfoque. Sin embargo, cuando pregunté
sobre cuando y a qué le harian commit, la escena cambié dramaticamente. Los primeros dos
estaban bastante claros sobre qué archivos estarian involucrados y que esto estaria terminado
en una hora o dos. El tercer programador respondié: “oh, creo que estaré listo en unos dias.
Probablemente agregaré unas cuantas clases y quizas cambie de algun modo estos servicios”.

Los primeros dos no carecian de una vision de la meta general. Habian seleccionado tareas
que pensaron que los llevaria a una direcciéon productiva, y que podrian terminar en un par de
horas. Una vez que hubieran terminado con esas tareas, seleccionarian una nueva
caracteristica o refactorizacién en la cual trabajar. Todo el cddigo escrito era, por lo tanto,
realizado con un propésito claro y limitado, con una meta realizable en mente.

El tercer programador no habia sido capaz de descomponer el problema y habia trabajado en
todos los aspectos al mismo tiempo. No tenia idea de cuanto le tomaria, basicamente estaba

http://97cosas.com/programador/conoce-proximo-commit.html

haciendo programacion especulativa, esperando llegar a algin punto donde podria ser posible
hacer un commit. Probablemente, el cédigo escrito al inicio de su larga sesion fue pobremente
igualado a la solucion que sali6 al final.

¢Qué harian los primeros dos programadores si sus tareas tomaran mas de dos horas?
Después de darse cuenta de que habian tardado mucho, lo més probable es que desecharan
sus cambios, definieran tareas mas pequenfas y volvieran a empezar. El mantenerse trabajando
seria una carencia de concentracion y llevaria el codigo especulativo al repositorio. Los cambios
serian desechados, pero mantendrian su vision.

El tercer programador podria seguir adivinando y tratando desesperadamente de realizar sus
parches dentro de algo a lo que pudiera hacerle commit. Después de todo, no puedes tirar los
cambios de cddigo que has hecho —eso seria trabajo perdido, ¢no es asi?-.
Desafortunadamente, no desechar el codigo lleva a un c6digo un poco extrafio que carece de
un propésito claro al entrar al repositorio.

En algin momento, incluso los programadores enfocados en el commit, podrian no encontrar
algo util que pueda ser terminado en dos horas. Entonces, irian directamente al modo
especulativo, jugueteando con el cédigo y, por supuesto, desechando los cambios en el
momento en que alguna idea los lleve a ese camino. Incluso esas sesiones de hacking
aparentemente no estructuradas tienen un propésito: aprender sobre el cédigo y ser capaces
de definir una tarea que seria constitutiva de un paso productivo.

Conoce tu préximo commit. Si no puedes terminar, tira tus cambios, define una nueva tarea en
la que creas, con las ideas que has ganado. Haz experimentacion especulativa donde sea
necesario, pero no caigas en el modo especulativo sin darte cuenta. No mandes commit de
conjeturas a tu repositorio.

Traduccién: Espartaco Palma

23. Conoce tu IDE.

En la década de los ochenta nuestros entornos de programacién eran, por lo general, nada
mejor que editores de texto glorificados... si teniamos suerte. El resaltado de sintaxis, que
damos por sentado hoy en dia, era un lujo que ciertamente no estaba disponible para todos.
Los Pretty Printers para formatear bien nuestro cédigo eran usualmente herramientas externas
que tenian que ser ejecutadas para corregir nuestro espaciamiento. Los depuradores eran
también programas separados ejecutandose paso a paso a través de nuestro cédigo, pero con
un monton de teclazos cripticos.

Durante la década de los noventa las compafias comenzaron a reconocer el potencial de
ingresos que pudieran derivarse de equipar a los programadores con mejores y mas Utiles
herramientas. El Entorno Integrado de Desarrollo (IDE, por sus siglas en inglés) combinaba las
caracteristicas de edicion previas con un compilador, un depurador, Pretty Printer y otras
herramientas. Durante ese tiempo, los menus y el raton también se volvieron populares, lo cual
significaba que los desarrolladores ya no necesitaban aprender combinaciones de teclas
cripticos para usar sus editores. Podian simplemente seleccionar su comando en el mend.

En el siglo XXI los IDE se convirtieron en un lugar tan comin que eran regalados por las
compafiias que deseaban ganar un segmento del mercado en otras areas. El IDE moderno esté
equipado con una increible variedad de caracteristicas. Mi favorita es la refactorizacion
automatizada, particularmente la Extraccion de Método, en el cual puedo seleccionar y convertir
un fragmento de cédigo en un método. La herramienta de refactorizacion recogera todos los
parametros que deben ser transferidos al método, lo cuél hace extremadamente facil modificar
cédigo. Mi IDE detectara incluso otro fragmento de codigo que podria también ser reemplazado
por este método y preguntarme si deseo reemplazarlo también.

http://97cosas.com/programador/conoce-tu-ide.html

Otra caracteristica sorprendente en los IDE modernos es la capacidad de hacer cumplir las
reglas de estilo dentro de una empresa. Por ejemplo, en Java, algunos programadores han
empezado a hacer todos los parametros como final (lo cual, en mi opinion, es una pérdida de

tiempo). Sin embargo, como ellos lo tienen como una regla de estilo, todo lo que necesitaria
hacer a continuacién es configurarlo en mi IDE: obtendria algunas advertencias por cada

parametro que no fuese final. Las reglas de estilo también pueden ser utilizadas para

encontrar errores probables, tales como comparar objetos autoboxed para la igualdad de
referencia, por ejemplo, usando == en los valores primitivos que estan autoboxed en referencias
a objetos.

Desafortunadamente, los IDE modernos no requieren de invertir esfuerzo para aprender a
usarlos. Cuando programé por primera vez en C bajo Unix tuve que pasar un poco de tiempo
aprendiendo como trabajaba el editor vi, debido a su curva de aprendizaje. Este tiempo gastado
pago por adelantando bellamente al paso de los afos. Incluso he escrito el borrador de este
articulo con vi. Los IDE modernos tienen una curva de aprendizaje muy gradual, la cual puede
tener como consecuencia que nunca progresamos mas alla del uso basico de la herramienta.

Mis primeros pasos al aprender un IDE es memorizar los atajos de teclado. Ya a que mis dedos
estan en el teclado cuando estoy escribiendo mi cédigo, presionar Ctrl+Shift+| para alinear una
variable me ahorra tener que romper mi flujo, navegar por el menu con el raton interrumpe este
flujo. Estas interrupciones lleva a cambios de contexto innecesarios, haciéndome mucho menos
productivo si trato de hacer todo por el camino perezoso. La misma regla también aplica a las
habilidades del teclado: aprende a teclear, no te arrepentiras del tiempo invertido por
adelantado.

Por ultimo, como programadores tenemos herramientas de flujo Unix que pueden ayudarnos a
manipular el cédigo. Como si durante una revisiéon de cédigo me doy cuenta de que los
programadores han nombrado muchas de sus clases de la misma forma, puedo encontrarlas
facilmente usando las herramientas find, sed, sort, uniq y grep, por ejemplo:

find . -name "*.java" | sed 's/.*\///' | sort | uniq -c | grep -v "~ *1 " | sort -r

Esperamos que un plomero que llega a nuestra casa sea capaz de usar su soplete. Pasemos
un poco de tiempo estudiando como ser mas efectivos con nuestro IDE.

24. Conoce tus limites.

“Man’s got to know his limitations.” — Dirty Harry

Tus recursos son limitados. Soélo tienes cierto tiempo y dinero para hacer tu trabajo, incluyendo
el tiempo y dinero necesario para mantener al dia tus conocimiento, habilidades y herramientas.
Solo se puede trabajar duro, rapido e inteligentemente por cierto tiempo. Tus herramientas son
poderosas. Tus maquinas destino son poderosas. Tienes que respetar los limites de tus
recursos.

¢ Como respetar estos limites? Condcete a ti mismo, conoce a tu gente, tu presupuesto y tus
cosas. Especialmente, como ingeniero de software, conoce el espacio y tiempo de la
complejidad de tus estructuras de datos y algoritmos, asi como las caracteristicas y rendimiento
de tus sistemas. Tu trabajo es crear el enlace 6ptimo de software y sistemas.

La complejidad del espacio y tiempo estan dadas como la funciéon O(f(n)) donde n es igual al
tamafo de las entradas en el espacio asintético o el tiempo requerido conforme n incrementa
hacia infinito. Las clases de complejidad importantes para f(n) incluyen In(n), n, n In(n), ney e-.
Al graficar estas funciones se muestra claramente coémo conforme n se incrementa, O(In(n)) es

http://97cosas.com/programador/conoce-tus-limites.html
http://www.youtube.com/watch?v=t2JnCXvm_Qc)

siempre mucho mas pequefia que O(n) y O(n In(n)), las cuales son cada vez mas pequefias
que O(ne) y O(en). Como decia Sean Parent, para lograr ntodas las clases de complejidad se
acumulan casi constantemente, casi lineal o casi al infinito.

El analisis de complejidad est4 en términos de una maquina abstracta, pero el software se
ejecuta en maquinas reales. Las sistemas modernos de computadoras estan organizados como
jerarquias de maquinas fisicas y virtuales, incluyendo lenguajes en tiempo de ejecucion,
sistemas operativos, CPU, memoria caché, memoria de acceso aleatorio, manejadores de disco
y redes. La primera tabla muestra los limites en el tiempo de acceso aleatorio y la capacidad de
almacenamiento para un servidor en red tipico.

http://97cosas.com/programador/assets/img/complexity_classes.jpeg

Tiempo de Acceso Capacidad

register <1 ms 64b
cache line 64B
L1 cache 1 ms 64 KB
L2 cache 4 ns 8 MB
RAM 20 ns 32 GB
disk 10 ms 10TB
LAN 20 ms >1PB
internet 100 ms >17B

Toma en cuenta que la capacidad y velocidad difiere en varios 6rdenes de magnitud. El
almacenamiento en caché y el lookahead son usados ampliamente en cada nivel de nuestro
sistema para ocultar esta variacion, pero soélo funcionan cuando el acceso es predecible.
Cuando el caché falla es frecuente que el sistema esté arrastrandose. Por ejemplo, inspeccionar
aleatoriamente cada byte en un disco duro podria tomar hasta 32 afios. Incluso inspeccionar
aleatoriamente cada byte en la RAM podria tomar 11 minutos. El acceso aleatorio no es
predecible. ¢Qué lo es? Eso depende del sistema, pero volver a acceder a elementos
recientemente usados y acceder a elementos secuencialmente suele ser una victoria.

Los algoritmos y las estructuras de datos varian en qué tan efectivamente usan el caché. Por
ejemplo:

e Labusqueda lineal hace buen uso del lookahead, pero requiere O(n) comparaciones.
e La busqueda binaria de una matriz ordenada requiere sélo O(log(n)) comparaciones.
e La busqueda en un arbol van Emde Boas es O(log(n)) y es ajeno al caché.

¢ Cual elegir? Como en el pasado analisis, midiéndolo. La segunda tabla muestra el tiempo
requerido para buscar en matrices de enteros de 64 bits via estos tres métodos. En mi
computadora:

e La busqueda lineal es competitiva para matrices pequefias, pero pierde exponencialmente
para matrices grandes

e van Emde Boas gana sin usar las manos, gracias a su patrones de acceso predecible.

Elementoslineal binariovEB

8 50 90 40
64 180 150 70
512 1200 230 100
4096 17000320 160

“Pagas tu dinero y te llevas tu elecciéon”. — Punch
Traduccién: Espartaco Palma

Leer contribucion original

25. La conveniencia no es una -bilidad.

http://www.nytimes.com/1988/02/28/magazine/on-language-you-pays-yer-money.html?pagewanted=all
http://programmer.97things.oreilly.com/wiki/index.php/Know_Your_Limits
http://97cosas.com/programador/conveniencia.html

Autor: Gregor Hohpe

Mucho se ha dicho acerca de la importancia y desafios al disefiar una buena API. Es dificil
hacerlo bien la primera vez y es incluso mas dificil cambiarlo después. Algo asi como la crianza
de nifios. La mayoria de los programadores experimentados han aprendido que una buena API
sigue un nivel consistente de abstraccién, exhibe consistencia y simetria, y forma el vocabulario
para un lenguaje expresivo. Por lo tanto, estar consciente de los principios guia no se traduce
automaticamente en un comportamiento adecuado. Comer dulces es malo para ti.

En vez de predicar desde las alturas, quiero tomar una “estrategia” especifica de disefio de API,
una que me encuentro una y otra vez: el argumento de conveniencia. Comienza tipicamente
con los siguientes “puntos de vista”:

e No quiero que otras clases tengan que hacer dos llamadas separadas para hacer una cosa.

e ¢ Por qué deberia hacer otro método si es casi igual que éste? Sélo agregaré un switch
sencillo.

e Mira, es muy facil: si el segundo parametro de cadena termina con “.txt”, el método
automaticamente asume que el primer parametro es el nombre de archivo, por lo que no
necesito realmente dos métodos.

Aunque sea bien intencionado, tales argumentos son propensos a disminuir la legibilidad del
caédigo al usar el API. Una invocacién de método como esta:

parser.processNodes(text, false);

no tiene virtualmente algun significado si no sabemos la implementacion, o al menos consultar
la documentacion. Este método fue probablemente diseflado para la comodidad del
implementador como un opuesto de la conveniencia de quien llama. “No quiero que quien hace
la llamada tenga que hacer dos llamadas separadas” se traduce en: “no queria codificar dos
meétodos separados”. No hay nada fundamentalmente malo con la conveniencia si tiene
intencion de ser el antidoto del tedio, falta de idea o incomodidad. Sin embargo, si pensamos
mas cuidadosamente en ello, el antidoto para esos sintomas es la eficiencia, consistencia y
elegancia, no necesariamente la conveniencia. Se supone que el API oculta la complejidad
subyacente, podemos esperar de manera realista que un buen disefio de API requiere algo de
esfuerzo. Un solo método largo podria ser ciertamente mas conveniente de escribir que un bien
pensado conjunto de operaciones, pero ¢ seria facil de usar?

La metafora del API como un lenguaje puede guiarnos hacia mejores decisiones de disefio en
estas situaciones. Un API debe proporcionar un lenguaje expresivo, lo cual nos da en el
siguiente nivel suficiente de vocabulario para preguntar y responder preguntas Utiles. Esto no
implica que deberia proveer exactamente un método o verbo por cada pregunta que valga la
pena. Un vocabulario diverso nos permite expresar matices de significado. Por ejemplo,
preferimos decir correr en vez de caminar(true), a pesar de que podria ser visto como

esencialmente la misma operacién, sélo ejecutada en una velocidad distinta. Un vocabulario
API consistente y bien pensado hace expresivo y facil de entender el cédigo del siguiente nivel.
Mas importante adn, un vocabulario que pueda ser mejorado permite a otros programadores
usar el APl de formas que quizas no habias anticipado —jde hecho, una gran conveniencia para
los usuarios del API'—. La préxima vez que estés tentado a agrupar unas cuantas cosas en un
método API, recuerda que el idioma inglés no tiene wuna palabra para
MakeUpYourRoomBeQuietAndDoYourHomeWork (LimpiaTuCuartoSeCalladoyHazTuTarea), a
pesar de que parece muy conveniente para una operacion tan frecuentemente solicitada.

Traduccién: Espartaco Palma

26. Cuando Programadores y Testers colaboran.

Autor: Janet Gregory

Algo magico sucede cuando los testers y programadores empiezan a colaborar. Hay menos
tiempo perdido mandando bugs de ida y de regreso a través del sistema de rastreo de defectos.
Menos tiempo se desperdicia intentando imaginar si algo es realmente un error 0 una nueva
caracteristica, y mas tiempo es usado desarrollando buen software para satisfacer las
expectativas de los clientes. Hay muchas oportunidades para comenzar a colaborar, incluso
antes de que la codificacion inicie.

Los testers pueden ayudar a los clientes a escribir y automatizar las pruebas de aceptacion
usando el lenguaje de su dominio con herramientas tales como Fit (Framework for Integrated
Test). Cuando estas prueban son entregadas a los programadores antes de que la codificacién
inicie, el equipo esta practicando el Desarrollo Conducido por Pruebas de Aceptacion
(Acceptance Test Driven Development, ATDD). Los programadores escriben sus arreglos para
ejecutar las pruebas, y entonces codifican para hacer que las pruebas pasen. Estas pruebas se
convierten en parte de la suite de regresion. Cuando esta colaboraciéon ocurre, las pruebas
funcionales se completan de manera temprana, lo que da tiempo para las pruebas exploratorias
en condiciones extremas o a través de flujos de trabajo con un rango mas amplio.

odemos dar un paso mas adelante. Como tester puedo suministrar la mayoria de mis ideas de
prueba antes de que los programadores codifiguen una nueva caracteristica. Cuando le
pregunto a los programadores si tienen alguna sugerencia, ellos casi siempre me proveen la
informacién que me ayuda con una mejor cobertura de pruebas, o me ayuda a evitar gastar
mucho tiempo en pruebas innecesarias. Frecuentemente hemos prevenido defectos porque las
pruebas clarifican muchas de las ideas iniciales. Por ejemplo, en un proyecto en el que estaba,
la prueba Fit que le di al programado mostraba los resultados esperados de una consulta que
respondia a una busqueda con comodines. El programador pretendia codificar sélo busquedas
de palabras completas. Pudimos hablar con el cliente y determinar la interpretacion correcta
antes de que la codificacion iniciara. Al colaborar prevenimos el defecto, lo cual nos ahorré a
ambos un montén de tiempo.

Los programadores pueden colaborar con los testers para crear también una automatizacion
exitosa. Ellos entienden las buenas practicas de codificacién y pueden ayudar a los testers a
configurar una robusta suitede automatizacion de pruebas que funcione para todo el equipo.
Muchas veces he visto proyectos de automatizacion que fallan porque las pruebas estan mal
disefiadas. Las pruebas intentan probar mucho o los testers no han entendido lo suficiente
acerca de la tecnologia para ser capaces de mantener las pruebas independientes. Los testers
son frecuentemente el cuello de botella, asi que tiene sentido para los programadores el trabajar
con ellos en las tareas como la automatizacién. Al trabajar con los testers para entender qué
puede ser probado tempranamente, quizas al proporcionar una herramienta sencilla, dara a los
programadores otro ciclo de retroalimentacion que les ayudara, a largo plazo, a entregar mejor
caédigo.

Cuando los testers dejan de pensar que su Unico trabajo es romper el software y buscar errores
en el cédigo de los programadores, los programadores dejan de pensar que los testers “van por
ellos” y estan mas abiertos a la colaboracion. Cuando los programadores empiezan a darse
cuenta de que son responsables de construir calidad dentro de su cddigo, el realizar pruebas
es algo natural para el producto y el equipo puede automatizar mas pruebas de regresion juntos.
La magia del trabajo en equipo comienza.

http://97cosas.com/programador/cuando-programadores-testers-colaboran.html

Traduccién: Espartaco Palma

27. Ten cuidado al compartir.

Autor: Udi Dahan

Era mi primer proyecto en la compafia. Habia terminado mi carrera y estaba ansioso por
probarme a mi mismo, me quedaba tarde cada dia a revisar el cddigo existente. Conforme
trabajaba en mi primera caracteristica tomaba cuidados adicionales para poner en marcha cada
cosa que habia aprendido: comentarios, bitacoras, sacando codigo compartido a bibliotecas de
ser posible, el trabajo. La revision de codigo de la que habia sentido tan listo vino como una
sorpresa desagradable: jel redso estaba mal visto! ¢ Coémo podia ser eso posible? En toda la
universidad el reliso era tomado como el epitome de la ingenieria de calidad de software. Todos
los articulos que habia leido, los libros de textos, lo que me habian ensefiado los profesionales
de software con experiencia. ¢ Estaba todo mal?

Resulta que habia olvidado algo critico.
Contexto.

El hecho de que dos partes muy diferentes del sistema realizaran la misma l6gica de la misma
manera significaba menos de lo que pensaba. Hasta que saqué esas bibliotecas de cddigo
compartido, esas partes no eran dependientes una de otra. Cada una podian evolucionar
independientemente. Cada una podia cambiar su l6gica para satisfacer las necesidades de los
cambios en el entorno empresarial del sistema. Esas cuatro lineas de cédigo similar fueron
accidentales, una anomalia temporal, una coincidencia. Es decir, hasta que llegué.

Las bibliotecas de cédigo compartido que habia creado ataban los cordones de cada zapato de
cada pie entre ellos. Los pasos por un dominio de negocio no podrian ser hechos sin primero
sincronizarlos. Los costos de mantenimiento en estas funciones independientes solian ser
insignificantes, pero la biblioteca comun requeria un orden de magnitud de mas pruebas.

A pesar de que habia disminuido el nimero absoluto de lineas de cédigo en el sistema, habia
incrementado el nimero de dependencias. El contexto de esas dependencias es critico, si
hubieran sido localizadas, podian haber sido justificadas y tendrian algin valor positivo. Cuando
estas dependencias no se mantienen bajo control, sus tentaculos se enredan en las mas
grandes preocupaciones del sistema, a pesar de que el cédigo en si se ve muy bien.

Estos errores son insidiosos por eso, en esencia, suenan como una buena idea. Cuando se
aplican en el contexto adecuado, estas técnicas son valiosas. En el contexto equivocado,
incrementan el costo en vez del valor. Hoy en dia soy mucho mas cuidadoso en los temas de
compartir cuando entro en un cédigo base existente sin el conocimiento del contexto en el que
se utilizan las distintas partes.

Cuidado al compartir. Revisa tu contexto. S6lo entonces, procede.

Traduccién: Espartaco Palma

28. Cumple tus ambiciones con Codigo Abierto.

Hay una alta probabilidad de que no estés desarrollando software en tu trabajo para
cumplir tus mas ambiciosos suefios. Quizas estas desarrollando software para una
gran compafia de seguros cuando te gustaria estar trabajando en Google, Apple,

http://97cosas.com/programador/cuidado-al-compartir.html
http://97cosas.com/programador/cumple-ambiciones-con-codigo-abierto.html

Microsoft o tu propia start-up, desarrollando la préxima “gran cosa”. Nunca vas a
llegar a donde quieres desarrollando software para sistemas que no te importan.

Afortunadamente, hay una respuesta a tus problemas: software libre. Hay miles de
proyectos de software libre por ahi, muchos de ellos muy activos, los cuales ofrecen
cualquier tipo de experiencia de desarrollo de software que puedas desear. Si amas
la idea de desarrollar un sistema operativo, ve y ayuda con alguno. Si deseas trabajar
con software de musica, animacioén, criptografia, robética, juegos de PC, juegos
masivos en linea, teléfonos méviles o lo que sea, puedes estar casi seguro de que
encontraras, al menos, un proyecto de software libre dedicado a ese interés.

Por supuesto que no hay almuerzos gratis. Tienes que estar dispuesto a dar tu
tiempo libre porque probablemente no puedas trabajar en el un videojuego de
software libre en tu trabajo, aun tienes responsabilidad con tu empleador.
Adicionalmente, muy pocas personas hacen dinero contribuyendo con proyectos de
software libre. Debes estar dispuesto a renunciar a una parte de tu tiempo libre
(menos tiempo jugando videojuegos y mirando TV no te matara). Cuanto mas
trabajes en un proyecto de software libre, mas rapido te daras cuenta de tus
verdaderas ambiciones como programador. También es importante considerar tu
contrato de empleado, algunos empleadores pueden restringir contribuciones,
incluso en tu propio tiempo. Ademas, es necesario tener cuidado con las violaciones
de las leyes de propiedad intelectual que tienen que ver con derechos de autor,
patentes, marcas registradas y secretos comerciales.

El software libre provee enormes oportunidades para el programador motivado. En
primer lugar, se llega a ver como alguien mas implementa una solucion que te
interesa —puedes aprender mucho leyendo el codigo de otras personas—. En segundo
lugar, se llega a contribuir con tu propio cédigo e ideas al proyecto —no todas las
ideas brillantes que tengas seran aceptadas, pero algunas podrian serlo, y
aprenderas algo nuevo con solo trabajar en soluciones y contribuir con el cédigo-.
En tercer lugar, conoceras a personas grandiosas con la misma pasion que tu por el
mismo tipo de software —estas amistades pueden duran toda la vida—. En cuarto
lugar, asumiendo que eres un contribuidor competente, estaras en disposicion de
agregar la experiencia del mundo real en la tecnologia que actualmente te interesa.

Iniciar con el software libre es bastante facil. Hay plena documentacion en las
herramientas que necesitas (por ejemplo, administracion de cédigo fuente, editores,
lenguajes de programacion, sistemas de construccion, etcétera). Primero, encuentra
el proyecto en el que deseas trabajar y aprende acerca de las herramientas que
utiliza. La documentacion en proyectos por si misma sera una luz en muchos casos,
pero esto quizas importe menos debido a que la mejor manera de aprender es

investigar el codigo por ti mismo. Si deseas estar involucrado, puedes ofrecer tu
ayuda con la documentacion. O puedes comenzar como voluntario para escribir las
pruebas de codigo. A pesar de que esto podria no sonar excitante, la verdad es que
aprendes mucho mas rapido escribiendo pruebas de cédigo para el software de otra
persona como casi cualquier otra actividad en software. Escribe pruebas de codigo,
realmente buenas pruebas de codigo; encuentra errores; sugiere correcciones; haz
amigos; trabaja en el software que te gusta y cumple tus ambiciones.

29. Los grandes datos interconectados pertenecen a una base de datos.

Autor: Diomidis Spinellis

Si tu aplicacién esta manejando un conjunto de elementos de datos grandes, persistentes e
interconectados, no dudes en almacenarlos en una base de datos relacional. En el pasado los
Sistemas de Administracion de Bases de Datos Relacionales (RDBMS, por sus siglas en inglés)
solian ser caros, escasos, complejos y unas bestias indomables. Ya no es el caso. Hoy en dia
los RDBMS son faciles de encontrar, lo mas probable es que el sistema que estas usando ya
tenga uno o dos instalados. Algunos RDBMS muy capaces, como MySQL y PostgreSQL, estan
disponibles como software libre, por lo que el costo de compra ya no es un tema. Aln mejor, los
llamados sistemas de bases de datos embebidos se pueden vincular como bibliotecas
directamente en tu aplicacién, requiriendo casi ninguna configuracion o administracion; dos
notables proyectos de software libre son SQLite y HSQLDB. Estos sistemas son
extremadamente eficientes.

Si los datos de tu aplicacién son mas grandes que la RAM del sistema, una tabla indexada del
RBDMS tendra un rendimiento de 6érdenes de magnitud mas rapida que la colecciéon de mapas
de tu biblioteca, que gastara paginas de memoria virtual. Los productos de bases de datos
modernos pueden crecer facilmente con tus necesidades. Con el cuidado adecuado, puedes
ampliar una base de datos embebida a un sistema mas grande cuando sea requerido. Después,
puedes cambiar de un producto de software libre a uno mejor soportado o un sistema propietario
mas poderoso.

Una vez que sepas los trucos de SQL, la creacion de aplicaciones centradas en bases de datos
es una alegria. Después de que hayas almacenado tus datos correctamente normalizados en
la base de datos es facil extraer eficientemente los hechos con una consulta SQL legible; no
hay necesidad de escribir ningiin cddigo complejo. Un solo comando SQL puede realizar
cambios de datos complejos. Para modificaciones Unicas, digamos, un cambio en la forma en
que organizas los datos, ni siquiera necesitas escribir cédigo: sélo lanza la interface directa de
SQL. Esta misma interface también te permite experimentar con consultas, dejando a un lado
el ciclo de compilaciéon-edicién de un lenguaje de programacion regular.

Otra de las ventajas de basar tu codigo en un RDBMS implica manejar las relaciones entre los
elementos de tus datos. Puedes describir las limitaciones de consistencia en los datos en una
manera declarativa, evitando el riesgo de que los apuntadores se cuelguen si olvidas actualizar
los datos en un caso extremo. Por ejemplo, puedes especificar que en caso de que un usuario
sea eliminado, entonces los mensajes enviados por ese usuario deberian ser eliminados
también.

También puedes crear enlaces eficientes entre tus entidades almacenadas en la base de datos
en el momento que lo desees, simplemente creando un indice. No hay necesidad de realizar

http://97cosas.com/programador/datos-interconectados-pertenecen-base-de-datos.html

caras y extensas refactorizaciones de campos de clases. Ademas, codificar en torno a una base
de datos permite que varias aplicaciones accedan a tus datos en manera segura. Esto hace facil
actualizar tu aplicacion para el uso concurrente y también permite codificar cada parte de tu
aplicacion usando el lenguaje y plataforma mas adecuada. Por ejemplo, puedes escribir el back-
end XML de una aplicacion web en Java, algunos scripts de autoria en Ruby y una interfaz de
visualizacion en Processing.

Finalmente, recuerda que el RDBMS sudara duro para optimizar los comandos SQL, lo que te
permitira concentrarte en la funcionalidad de tu aplicacion en vez de la refinacion de algoritmos.
Los sistemas avanzados de bases de datos incluso tomaran ventaja de los procesadores multi-
core a tus espaldas. Y, conforme la tecnologia mejora, también el rendimiento de tu aplicacion

Traduccién: Espartaco Palma

30. Deja que tu proyecto hable por si mismo.

Tu proyecto probablemente tenga un sistema de control de versiones . Quizas esta conectado
a un servidor de Integracién Continua que verifica la correctitud por medio de pruebas
automatizadas. Eso es genial.

Puedes incluir herramientas para el analisis estatico de cédigo en tu servidor de Integracion
Continua y asi recopilar métricas de cédigo. Estas métricas proveen retroalimentacion sobre
aspectos especificos, asi como la evolucion en el tiempo. Al instalar métricas de codigo, siempre
habra una linea roja que no querras cruzar. Supongamos que inicias con un 20% de cobertura
de pruebas y nunca caes por debajo del 15%. La Integracion Continua ayuda a mantener un
registro de todos estos numeros, pero todavia tienes que revisarlos regularmente. Imagina que
puedes delegar estas tareas al proyecto mismo y confiarle el reportar cuando las cosas se ponen
peor.

Necesitas darle a tu proyecto una voz. Esto puede ser realizado por email 0 mensajeria
instantanea, informando a los desarrolladores sobre la Ultima caida o mejora en los niumeros.
Pero esto es incluso mas efectivo de llevar usando un Dispositivo de Retroalimentacién Extrema
(XFD, por sus siglas en inglés, Extreme Feedback Device).

La idea del XFD es manejar un dispositivo fisico como una ldmpara, una fuente portatil, un robot
de juguete o incluso un lanza cohetes USB, basado en el resultado del analisis automatico.
Cada vez que tus limites se rompan, el instrumento altera su estado. En el caso de la lampara,
ésta se enciende, brillante y clara. No puedes olvidar el mensaje, incluso si estas cruzando la
puerta para irte a casa.

Dependiendo del tipo de dispositivo de retroalimentacion extrema, puedes oir la ruptura del
compilado, ver las sefales rojas de advertencia en tu cédigo, incluso oler tu cédigo. Los
instrumentos pueden ser replicados en distintos lugares si trabajas en un equipo distribuido.
Puedes colocar un semaforo en la oficina de tu director de proyecto, indicando el estado general
de salud. El director del proyecto te lo agradecera.

Deja que tu creatividad te guie al escoger el dispositivo apropiado. Si tu cultura es
bastante geek, podrias buscar la manera de equipar a la mascota de tu equipo con juguetes de
radio control. Si deseas una apariencia mas profesional, invierte en lamparas mas estilizadas.
Busca més inspiracion en Internet. Cualquier cosa con un enchufe de alimentacién o un control
remoto tiene el potencial de ser usado como un dispositivo de retroalimentacion extrema.

El dispositivo de retroalimentacién extrema actlia como la caja de voz de tu proyecto. El proyecto
ahora se encuentra fisicamente con los desarrolladores, quejandose o alabando, de acuerdo a
las reglas que el equipo haya escogido. Puedes llevar esta personificacién mas alla aplicando

http://97cosas.com/programador/deja-proyecto-hable-por-si-mismo.html

software de sintesis de voz y un par de altavoces. Ahora tu proyecto realmente habla por si
mismo.

Traduccién: Espartaco Palma

31. El diseio del codigo si importa.

Autor: Steve Freeman

Hace muchos afos trabajaba en un sistema en Cobol, en el cual no se le permitia al personal
cambiar la sangria a menos que tuvieran una razén para cambiar el cddigo, debido a que
alguien, alguna vez, descompuso algo al dejar un trozo de linea en una de las columnas
especiales al inicio de una linea. Esto aplicaba incluso si el disefio estaba equivocado, lo cual
sucedia algunas veces, asi que teniamos que leer el codigo muy cuidadosamente porque no
podiamos confiar en él. La politica debi6 costar una fortuna en friccion de programador.

Hay una investigacién que muestra que todos pasamos mas de nuestro tiempo de programacion
navegando y leyendo codigo —encontrando donde hacer el cambio— que escribiendo, asi que
esto es lo que queremos optimizar.

e Facil de escanear. La gente es buena en la comparacién de patrones visuales (una
reminiscencia de la época en la que teniamos que observar leones en la sabana), asi que
puedo ayudarme al hacer todo lo que no es directamente relevante al dominio, toda la
“complejidad accidental” que viene con muchos lenguajes comerciales, ocultarlo en el fondo
de pantalla para estandarizarlo. Si el c6digo que se comporta igual luce igual, entonces mi
sistema perceptual me ayudara a escoger las diferencias. Es por eso que también observo
las convenciones sobre como disefar las partes de una clase dentro de una unidad de
compilacion: constantes, campos, métodos publicos, métodos privados.

e Disefio expresivo. Todos hemos aprendido que toma su tiempo encontrar los nombres
adecuados para que nuestro cédigo exprese, tan claramente como es posible, lo que hace;
en lugar de soélo listar los pasos, ¢esta bien? El disefio de cédigo también es parte de esta
expresividad. Un primer corte es tener el acuerdo del equipo en un formateo automatico
para lo basico, entonces podemos hacer ajustes manuales mientras estamos codificando.
A menos que haya un disension activa, el equipo convergera rapidamente en un estilo de
“acabado manual” comun. Un formateador no puede entender mis intenciones (deberia
saberlo, una vez codifiqgué uno), y es mas importante para mi que los saltos de linea y los
agrupadores reflejen la intencién de mi codigo, no sélo la sintaxis del lenguaje (Ken McGuire
me liberé de mi esclavitud a los formateadores automaticos de cAdigo).

e Formato compacto. Mientras mas puedo conseguir en una pantalla, mas puedo ver si se
rompe el contexto al desplazarme o al cambiar de archivo, lo que significa que puedo dejar
menos estados en mi cabeza. Los comentarios del procedimiento largos y los espacios en
blanco tienen sentido para nombres de 8 caracteres e impresoras, pero ahora vivo en un
IDE que hace el coloreo de sintaxis y el enlace cruzado. Los pixeles son mi factor limitante,
asi que quiero que cada uno contribuya hacia mi entendimiento del cddigo. Quiero que el
disefio me ayude a entender el cédigo, pero no mas que eso.

http://97cosas.com/programador/diseno-en-codigo-importa.html

Un amigo no programador comenté alguna vez que el cédigo se parece a la poesia. Tengo esa
sensacion en el codigo bueno, que todo en el texto tiene un proposito y esta ahi para ayudarme
a entender la idea. Desafortunadamente, escribir codigo no tiene la misma imagen romantica
que escribir poesia.

Traduccién: Espartaco Palma

32. Distingue excepciones de Neqgocio de las excepciones Técnicas.

Autor: Dan Bergh Johnsson

Hay basicamente dos razones por las que las cosas van mal en tiempo de ejecucion: problemas
técnicos que impiden el uso de la aplicacién y la l6gica del negocio que evita hacer mal uso de
la aplicacion. La mayoria de los lenguajes modernos, como LISP, Java, Smalltalk y C#, usan
excepciones para sefialar ambas situaciones. Sin embargo, las dos situaciones son tan
diferentes que deberian ser tomadas por separado. Es una fuente potencial de confusién
representar ambas usando la misma jerarquia de excepciones, sin mencionar la misma clase
de excepciones.

Un problema técnico irresoluble puede ocurrir cuando hay un error de programacion. Por
ejemplo, si tratas de acceder al elemento 83 de una matriz de tamafio 17, entonces el programa
esta claramente fuera de control, y deberia resultar en alguna excepcion. La version mas sutil
es llamar a alguna biblioteca de cédigo con argumentos inapropiados, causando la misma
situacion dentro de la biblioteca.

Seria un error intentar resolver ti mismo estas situaciones que causaste. En vez de dejar que
la excepcidn se eleve al nivel arquitectonico mas alto y dejar que alglin mecanismo general de
manejo de excepciones haga lo que pueda para asegurar que el sistema estad en un estado
seguro, tales como deshacer una transaccion, registrar en la bitacora y alertar a la gerencia, e
informar (educadamente) al usuario.

Una variante de esta situacion es cuando te encuentras en la “situacion de biblioteca” y quien
hace el llamado rompié el contrato de tu método, por ejemplo, pasando un argumento extrafio
o0 sin tener un objeto dependiente configurado correctamente. Esto va a la par con el acceso al
83vo elemento de 17: quien hace la llamada deberia haber comprobado; no hacerlo es un error
del programador en el lado del cliente. La respuesta correcta es lanzar una excepcion técnica.

Una diferente, pero aun situacion técnica, es cuando el programa no puede continuar debido a
un problema en el ambiente de produccién, como una base de datos que no responde. En esta
situacion debes asumir que la infraestructura hizo lo que pudo para resolver la situacion —reparar
conexiones, reintentar un nimero razonable de veces— vy fall6. Incluso si la causa es diferente,
la situacion para el codigo es similar: hay poco que puedas al respecto. Asi que sefialamos la
situacion a través de una excepcién que subiremos hacia un mecanismo general de manejo de
excepciones.

En contraste a esas situaciones, tenemos la situacién en la cual no puedes completar la llamada
por una razén de dominio l6gico. En este caso nos hemos encontrado una situacion que es una
excepcion, es decir, una inusual e indeseable, pero no un error extrafio o programéatico. Por
ejemplo, tratar de retirar dinero de una cuenta con fondos insuficientes. En otras palabras, este
tipo de situaciones es una parte del contrato, y lanzar una excepcion es sélo una via de retorno
alternativa que es parte del modelo y que el cliente deberia tener en cuenta y estar preparado
para manejarlo. Para estas situaciones es apropiado crear una excepcion especifica o una
jerarquia de excepcién por separado, asi el cliente puede manejar la situacién en sus propios
términos.

http://97cosas.com/programador/distingue-excepciones-negocio-tecnicas.html

Mezclar excepciones técnicas y excepciones de negocios en la misma jerarquia desdibuja la
distincién y confunde a quien hace la llamada sobre qué método del contrato es, qué
condiciones se requiere asegurar antes de ejecutarlas y qué situaciones se supone debe
manejar. Separar los casos ofrece claridad e incrementa la oportunidad de que las excepciones
técnicas sean manejadas por algun framework de aplicaciones, mientras que las excepciones
de dominio del negocio son consideradas y manejadas por el cédigo del cliente.

Traduccién: Espartaco Palma

33. Dos cabezas son a menudo mejores que una.

Autor: Adrian Wible

La programacion requiere pensamiento profundo, y los pensamientos profundos requieren
soledad. Asi va el estereotipo del programador.

Este enfoque de “lobo solitario” de la programacion esta dando paso a un enfoque colaborativo,
el cudl, puedo decir, mejora la calidad, productividad y satisfaccion laboral de los
programadores. Este enfoque tiene a los desarrolladores trabajando mas cerca entre si y
también con los no desarrolladores —analistas de negocio y sistemas, profesionales de control
de calidad y usuarios—.

¢, Qué significa esto para los desarrolladores? Ser el experto técnico ya no es suficiente. Debes
ser mas efectivo trabajando con otros.

La colaboracién no se trata de preguntar y responder, 0 sentarse en reuniones. Se trata de
arremangarse con alguien mas para atacar conjuntamente el trabajo.

Soy un gran admirador de la programacion en pareja. Puedes llamar a esto “colaboracion
extrema”. Como desarrollador, mis habilidades crecen cuando hago pareja. Si soy mas débil
que mi compariero en el dominio o tecnologia, claramente aprendo de su experiencia. Cuando
soy mas fuerte en algun aspecto, aprendo mas sobre lo que conozco y no conozco al tener que
explicarme. Invariablemente, ambos traemos algo a la mesa y aprendemos mutuamente.

En pareja, cada uno de nosotros llevamos nuestras experiencias de programacion colectiva —
tanto de dominio como técnica— al problema en cuestién y podemos aportar agudeza y
experiencias Unicas al escribir software efectiva y eficientemente. Incluso en caso de
desequilibrio extremo en el dominio o conocimiento técnico, el participante mas experimentado
invariablemente aprende algo del otro —quizas un nuevo atajo del teclado o exposiciéon a una
nueva herramienta o biblioteca—. Para los miembros menos experimentados del par, es una
gran manera de ponerse al dia.

La programacioén en pareja es popular con, pero no exclusivamente a, promotores del desarrollo
agil del software. Alguien que se opone a la pareja sugiere: “;porqué deberia pagar a dos
programadores para hacer el trabajo de uno?”. Mi respuesta es que, en efecto, no deberia.
Argumento que el emparejamiento incrementa la calidad, el entendimiento del dominio y
tecnologia, técnicas (como los trucos del IDE) y mitiga el impacto del riesgo de loteria (uno de
tus desarrolladores expertos se gana la loteria y renuncia al siguiente dia).

¢, Cual es el valor a largo plazo de aprender un nuevo atajo del teclado? ¢Coémo medimos la
mejora global de la calidad del producto resultante del emparejamiento? ¢Cémo medimos el
impacto de que tu compafiero no te permita adoptar un enfoque sin salida en la solucién de un
problema dificil? Un estudio cita un incremento del 40% en eficacia y velocidad (J T Nosek, “The

http://97cosas.com/programador/dos-cabezas-mejor-una.html

Case for Collaborative Programming”, Communications of the ACM, Marzo de 1998). ; Cual es
el valor de mitigar tu “loteria de riesgo”? Muchas de estas ganancias son dificiles de medir.

¢ Quién deberia hacer pareja con quién? Si eres nuevo, es importante encontrar un miembro del
equipo que tenga conocimientos. Tan importante como encontrar quien tenga buenas
habilidades interpersonales y de entrenador. Si no tienes mucha experiencia del dominio,
emparéjate con un experto.

Si no estas convencido, experimenta: colabora con tus colegas. Haz pareja en un problema
retorcido e interesante. Ve como se siente. Inténtalo unas cuantas veces.

Traduccién: Espartaco Palma

34. Dos fallos pueden hacer un acierto (y es dificil de arreqglar).

Autor: Allan Kelly

El cddigo nunca miente, pero puede contradecirse. Algunas contradicciones llevan a esos
momentos de: “; cémo es posible que esto funcione?”.

En una entrevista, el disefiador principal del software del modulo lunar Apolo 11, Allan Klumpp,
revel6 que el software que controlaba los motores tenia un error que hacia el mddulo de
aterrizaje inestable. Sin embargo, otro error fue compensado por el primero y el software fue
usado por los aterrizajes lunares del Apolo 11 y 12 antes de que el error fuera encontrado y
arreglado.

Considera una funcibn que retorna un estatus de finalizacién. Imagina que
retorna false cuando deberia regresar un true. Ahora imagina que la llamada de funcion

olvida comprobar el valor de retorno. Todo funciona bien hasta que un dia alguien nota la falta
de verificacion y la inserta.

O considera una aplicacion que almacena su estado en un documento XML. Imagina que uno
de los nodos esta escrito incorrectamente como “TimeToLive” en vez de “TimeToDie”, como la
documentacion dice que deberia. Todo parece estar bien mientras el cédigo de escritura y el
cédigo de lectura contienen ambos el mismo error. Pero arregla uno, 0 agrega una nueva
aplicacion de lectura del mismo documento, y la simetria se rompe, al igual que el cédigo.

Cuando dos defectos en el codigo crean un defecto visible, el enfoque metodoldgico para
arreglar la falla puede, por si mismo, romperlo. El desarrollador recibe un reporte de error,
encuentra el defecto, lo arregla y lo vuelve a probar. Sin embargo, el fallo reportado ain ocurre,
debido a que un segundo defecto esta en funcionamiento. Asi que el primer arreglo se quita, el
cédigo es inspeccionado hasta que el segundo defecto es encontrado, y un arreglo se aplica.
Pero el primer defecto ha regresado, el fallo reportado aln se ve, asi que se deshace el segundo
arreglo. El proceso se repite, pero ahora el desarrollador ha desestimado dos posibles
soluciones y esta buscando una tercera, que nunca va a funcionar.

La interaccidn entre dos defectos de codigo que aparecen como un defecto visible no sélo hace
dificil arreglar el problema, ademas, lleva a los desarrolladores a callejones sin salida, sélo para
descubrir que intentaron la respuesta correcta desde el inicio.

Esto no pasa sélo en el codigo: el problema también existe en los documentos de requerimientos
escritos. Y puede extenderse, viralmente, de un lugar a otro. Un error en el c6digo compensa
un error en la descripcion escrita.

http://97cosas.com/programador/dos-fallos-pueden-hacer-acierto.html
http://www.netjeff.com/humor/item.cgi?file=ApolloComputer

Puede extenderse a la gente también: los usuarios aprenden que cuando la aplicacion dice
“lzquierda” se refiere a la “Derecha”, asi que ajustan su comportamiento, incluso lo pasan al
nuevo usuario: “recuerda que la aplicaciéon dice que hagas clic al boton izquierdo cuando
realmente se refiere al boton derecho”. Arregla ese error y, de repente, los usuarios necesitan
reentrenamiento.

Fallos sencillos pueden ser faciles de ver y de arreglar. Son los problemas con multiples causas,
que necesitan multiples cambios, los que son dificiles de resolver. En parte es porque los
problemas faciles tienden a ser arreglarlos con relativa rapidez y se quedan los mas dificiles
para una fecha posterior.

No hay un consejo simple que se pueda dar en como localizar fallos surgidos de defectos
simpatéticos. Es necesario darse cuenta de la posibilidad, una cabeza clara y voluntad de
considerar todas las posibilidades.

Traduccién: Espartaco Palma

35. Lenquajes Especificos del Dominio (DSL).

Autor: Michael Hunger

Cada vez que escuches una discusion de expertos de cualquier dominio, ya sean jugadores de
ajedrez, maestros de jardin de nifios o agentes de seguros, notaras que su vocabulario es un
poco diferente del lenguaje diario. Es parte de los Lenguajes Especificos del Dominio (DSL). Un
dominio especifico tiene un vocabulario especializado para describir cosas que son particulares
de ese dominio.

En el mundo del software, los DSL tratan sobre expresiones ejecutables en un lenguaje
especifico de un dominio con un limitado vocabulario y gramatica que es legible, entendible y —
afortunadamente— escribible por expertos del dominio. Los DSL dirigidos a desarrolladores de
software o cientificos han estado por aqui desde hace un largo tiempo. Por ejemplo, el “pequefio
lenguaje” de Unix encontrado en archivos de configuracion y los lenguajes creados con el poder
de macros de LISP son de los mas viejos ejemplos.

Los DSL son comUnmente clasificados como internos o externos:

e Los DSL internos son escritos en un lenguaje de programacion de propésito general, cuya
sintaxis se ha inclinado a parecerse mas al lenguaje natural. Es mas facil para los lenguajes
que ofrecen azulcar sintactica y posibilidades de formato (ej. Ruby y Scala) que para otros
que no lo hacen (ej. Java). Muchos DSL internos envuelven API existentes, bibliotecas o
codigo de negocio para proveer un contenedor con un acceso mas alucinante a sus
funcionalidades. Son ejecutados con sélo correrlos. Dependiendo en la implementacion y el
dominio, son usados para construir estructuras de datos, definir dependencias, ejecutar
procesos o tareas, comunicarse con otros sistemas o validar entradas de usuario. La
sintaxis de un DSL interno estan contenidas en el lenguaje anfitrion. Hay muchos patrones
—por ejemplo, constructores de expresiones, encadenadores de métodos y anotaciones—
gue pueden ayudarte a doblar el lenguaje anfitrion de tu DSL. Si el lenguaje anfitrion no
requiere recompilaciéon, entonces un DSL interno puede ser desarrollado rapidamente
trabajando lado a lado con los expertos del dominio.

http://97cosas.com/programador/dsl.html

e Los DSL externos son expresiones gréficas o textuales de un lenguaje, aunque los DSL
textuales tienden a ser mas comunes que los graficos. Las expresiones textuales pueden
ser procesadas por una cadena de herramientas que incluyen léxico, un analizador, un
transformador de modelo, generadores, y cualquier otro tipo de posprocesamiento. Los DSL
externos son frecuentemente leidos en modelos internos, los cuales forman los
fundamentos para su posterior procesamiento. Es Util definir una gramatica (por ejemplo,
en EBNF). Una gramatica provee un punto de partida para la generacion de partes de la
cadena de herramientas (por ejemplo, editor, visualizador, generador de analizadores). Para
los DSL sencillos, un analizador hecho a mano podria ser suficiente; usando, por ejemplo,
expresiones regulares. Los analizadores personalizados pueden llegar a ser dificiles de
manejar si se espera mucho de ellos, asi que tiene sentido mirar las herramientas disefiadas
especificamente para trabajar con gramaticas del lenguaje; por ejemplo,
openArchitectureWare, ANTIr, SableCC y AndroMDA. Es también comun el definir DSL
externos como los dialectos XML, aunque la legibilidad es frecuentemente un problema;
sobre todo para los lectores no técnicos.

Siempre debes tomar en cuenta la audiencia objetivo de tu DSL. ¢Son desarrolladores,
administradores, clientes de negocio o usuarios finales? Tienes que adaptar el nivel técnico del
lenguaje, las herramientas disponibles, ayuda de sintaxis (por ejemplo, intellisense), validacion
temprana, visualizacion y representacion a tu audiencia prevista. Al ocultar detalles técnicos, los
DSL pueden empoderar a los usuarios, dandoles la habilidad para adaptar los sistemas a sus
necesidades sin requerir la ayuda de los desarrolladores. También puede acelerar el desarrollo
debido al potencial de distribucidon de trabajo después de que el framework inicial esta en su
sitio. El lenguaje puede evolucionar gradualmente. Hay también disponibles diferentes rutas de
migracion para expresiones existentes y gramatica.

Traduccién: Espartaco Palma

36. El mito del Gurd.

Autor: Ryan Brush

Cualquiera que haya trabajado en el software el tiempo suficiente ha escuchado preguntas como
éstas: “estoy obteniendo una excepcion XYZ. ;Sabes cual es el problema?”.

Aquellos que hacen la pregunta rara vez se molestan en incluir la pila de rastreo, registros de
error 0 algun contexto que nos conduzca al problema. Al parecer creen que operas en un plano
distinto, que las soluciones se te aparecen sin ningun andlisis basado en evidencia. Piensan
que eres un gurd.

Esperamos dichas preguntas de quienes no tienen familiaridad con el software: para ellos los
sistemas pueden verse como algo magico. Lo que me preocupa es estar viendo esto en la
comunidad del software. Preguntas similares surgen en el disefio de programas, tales como:
“estoy construyendo un gestor de inventarios. ¢Debo utilizar el bloqueo optimista?”.
Irbnicamente, la gente que hace la pregunta esta mejor calificada para resolverla que el
destinatario. Los interrogadores presumiblemente conocen el contexto, los requisitos y pueden
leer acerca de las ventajas y desventajas de las diferentes estrategias. Sin embargo, esperan
gue les des una respuesta inteligente sin un contexto. Esperan magia.

http://97cosas.com/programador/el-mito-del-guru.html

Es tiempo de que la industria del software disipe este mito del guru. Los “gurds” son humanos.
Ellos aplican la I6gica y el andlisis sistematico de los problemas, como el resto de nosotros.
Aprovechan los atajos mentales y la intuiciébn. Considera al mejor programador que hayas
conocido: en algin momento esa persona sabia menos acerca del software de lo que ta ahora
mismo. Si alguien parece ser un gurl, es debido a sus afios dedicados al aprendizaje y al
perfeccionamiento de los procesos de pensamiento. Un “gurd” es simplemente una persona
inteligente con curiosidad incesante.

Por supuesto, sigue habiendo una gran variabilidad en la aptitud natural. Muchos hackers son
mas inteligentes, informados y productivos de lo que alguna dia puedo llegar a ser. Aun asi, el
desmitificar el mito del guru tiene un impacto positivo. Por ejemplo, si trabajo con una persona
mas inteligente que yo, me aseguro de hacer el trabajo de campo, proveer el suficiente contexto
para que esa persona pueda aplicar eficazmente sus habilidades. Quitar el mito del gurd
también significa eliminar una barrera en la percepcion de mejora. En vez de una barrera
magica, veo continuidad y puedo avanzar.

Por ultimo, uno de los mayores obstaculos en el software es la gente inteligente que propaga el
mito del gurl a propdsito. Esto podria hacerse por ego, 0 como una estrategia para incrementar
el valor percibido por un cliente o por su empleador. Irbnicamente, esta actitud puede hacer que
las personas inteligentes sean menos valiosas debido a que no contribuyen al crecimiento de
sus compafieros. No necesitamos gurls. Necesitamos expertos que estén dispuestos a
desarrollar a otros expertos en su campo. Hay espacio para todos nosotros.

Traduccién: Espartaco Palma

37. El Programador Profesional.

Autor: Uncle Bob

¢, Qué es un programador profesional?

El rasgo mas importante de un programador profesional es la responsabilidad personal. Los
programadores profesionales se responsabilizan por su carrera, sus estimaciones, el
compromiso con su agenda, sus errores y su mano de obra. Un programador profesional no le
pasa la responsabilidad a los demas.

e Si eres profesional, entonces eres responsable de tu propia carrera. Eres responsable de
leer y aprender. Eres responsable de mantenerte actualizado con la industria y la tecnologia.
Muchos programadores piensan que es trabajo de sus patrones entrenarlos. Lo siento,
estan tremendamente equivocados. ¢ Crees que los médicos se comportan de esa manera?
¢ Crees que los abogados se comportan de esa manera? No, ellos se entrenan en su propio
horario, y con su propio dinero. Ellos gastan muchas de sus horas libres leyendo revistas y
tomando decisiones. Se mantienen al dia. Y asi debemos hacerlo nosotros. La relacion
entre tl y tu empleador esta escrita claramente en tu contrato. En breve: prometen pagarte
y tu prometes hacer un buen trabajo.

e Los profesionales asumen la responsabilidad del cédigo que escriben. No liberan cédigo a
menos que sepan que funciona. Piensa en esto por un minuto. ¢ Cémo puedes considerar
llamarte profesional, si estas esperando liberar codigo del cual no estas seguro? Los

http://97cosas.com/programador/el-programador-profesional.html

programadores profesionales esperan que QA no encuentre algo porque no liberan su
cbdigo hasta que se ha probado completamente. Por supuesto, QA encontrara algunos
problemas, debido a que nadie es perfecto. Pero, como profesionales, nuestra actitud debe
ser: dejar nada para QA.

e Los profesionales son jugadores de equipo. Asumen responsabilidad de la salida de todo el
equipo, no solo de su propio trabajo. Se ayudan unos a otros, ensefian a los demas,
aprenden unos de otros e, incluso, cubren a los demas, si es necesario. Cuando un
compafero cae, los demas intervienen, sabiendo que algin dia ellos van a ser los que
necesiten cobertura.

e Los profesionales no toleran grandes listas de errores. Tener una lista asi es ser
descuidado. Los sistemas con cientos de issues en la base de datos de seguimiento de
problemas son tragedias por la falta de cuidado. De hecho, en muchos proyectos, la propia
necesidad de un sistema de seguimiento de problemas es un sintoma de descuido. Sdlo los
sistemas muy grandes deberian tener una lista de errores tan larga que sea necesario la
automatizacion para manejarla.

e Los profesionales no hacen un desastre. Se enorgullecen de su mano de obra. Mantienen
el codigo limpio, bien estructurado y facil de leer. Siguen estandares acordados y las
mejores practicas. Ellos nunca, jamas se apresuran. Imagina que estas teniendo una
experiencia “fuera de tu cuerpo” y miras a un cirujano realizar una cirugia a corazon abierto
en ti. Este médico tiene un hora limite (en sentido literal). Debe terminar antes de que la
maquina de derivacién corazén-pulmon dafie muchas de las células sanguineas. ¢ Cémo
quieres que se comporte? ¢Quieres que se comporte como el tipico desarrollador de
software, apresurado y haciendo un lio? ¢Quieres que diga: “regreso y lo arreglo luego™?
¢ O quieres que se aferre cuidadosamente a sus disciplinas, tomandose su tiempo, seguro
de que su enfoque es el mejor? ¢ Quieres un desastre o profesionalidad?

Los profesionales son responsables. Asumen la responsabilidad por sus propias carreras.
Asumen la responsabilidad de asegurarse de que su codigo funciona correctamente. Asumen
la responsabilidad de la calidad de su mano de obra. No abandonan sus principios cuando los
plazos se ciernen. De hecho, cuando la presién aumenta, los profesionales se aferran a las
disciplinas que saben que son correctas.

Traduccién: Espartaco Palma

38. El trabajo duro no paga.

Autor: Olve Maudal

Como programador, trabajar duro muchas veces no da frutos. Puedes engafiarte a ti mismo y a
unos pocos colegas al creer que estas contribuyendo mucho al proyecto al pasar largas horas
en la oficina. Pero, la verdad, es que trabajando menos puedes lograr mas, a veces mucho mas.
Si tratas de estar centrado y ser “productivo” por mas de treinta horas a la semana, entonces
probablemente estas trabajando demasiado duro. Debes considerar reducir la carga de trabajo
para ser mas eficaz y hacer mas cosas.

http://97cosas.com/programador/el-trabajo-duro-no-paga.html

Esta frase puede parecer contraria a la intuicion e incluso controversial, pero es una
consecuencia directa del hecho de que la programacién y el desarrollo de software, en conjunto,
implican un proceso de aprendizaje continuo. A medida en que trabajas en un proyecto
entenderas mas sobre el dominio del problema y, con suerte, encontraras la manera mas eficaz
de alcanzar tu meta. Para evitar el desperdicio de trabajo, debes permitirte tiempo para observar
los efectos de lo que estas haciendo, reflexionar sobre las cosas que se ven y cambiar el
comportamiento en consecuencia.

La programacion profesional no suele ser como correr duro durante unos cuantos kildmetros,
donde la meta puede ser vista al final de un camino pavimentado. Muchos proyectos de software
son mas como un largo maraton orientado; en la oscuridad, con s6lo un mapa esquematico
como guia. Si acabas de salir hacia una direccion, corriendo tan rapido como puedas, podrias
impresionar a algunos, pero no es probable que tengas éxito. Necesitas mantener un ritmo
sostenido y ajustar el curso cuando se aprende mas sobre donde te encuentras y hacia dénde
te diriges.

Adicionalmente, siempre necesitaras aprender mas sobre el desarrollo de software, en general,
y técnicas de programacion, en lo particular. Probablemente tengas que leer libros, ir a
conferencias, comunicarte con otros profesionales, experimentar con nuevas técnicas de
implementacion y aprender acerca de potentes herramientas que simplificaran el trabajo. Como
un programador profesional debes mantenerte actualizado en tu campo de especializacion; al
igual que se espera que los neurocirujanos y los pilotos se mantengan actualizados en sus
propios campos de experiencia. Necesitas pasar tardes, fines de semana y dias festivos
educandote, por lo tanto, no puedes pasar tus tardes, fines de semana y dias festivos trabajando
tiempo extra en tu proyecto actual. ¢, Realmente esperas que los neurocirujanos realicen cirugias
60 horas a la semana o que los pilotos vuelen 60 horas semanalmente? Por supuesto que no,
la preparacion y educacion son parte esencial de su profesion.

Enfocate en el proyecto, contribuye tanto como puedas encontrando soluciones inteligentes,
mejora tus habilidades, reflexiona sobre lo que estas haciendo y adapta tu comportamiento.
Evitar avergonzarte, y a nuestra profesién, al comportarte como un hamster en una jaula
corriendo en la rueda. Como programador profesional debes saber que tratar de estar
concentrado y ser “productivo” 60 horas a la semana no es lo mas sensato. Actda como un
profesional: preparate, sé eficaz, observa, reflexiona y cambia.

Traduccién: Espartaco Palma

39. Encapsula Comportamiento, no s6lo Estado.

Encapsula Comportamiento, no solo
Estado

Autor: Einar Landre

En la teoria de sistemas, el contenimiento es uno de los mas Utiles constructos cuando se esta
tratando con sistemas de estructuras muy grandes y complejas. En la industria de software el
valor del contenimiento o encapsulacién es bien entendido.

Los modulos y paquetes resuelven las necesidades a gran escala de la encapsulacién, mientras
que las clases, subrutinas y funciones resuelven los aspectos mas granulares en la materia. A
través de los afios he descubierto que las clases parecen ser uno de los constructos de

http://97cosas.com/programador/encapsula-comportamiento.html

encapsulacion mas dificiles que los desarrolladores entiendan. Es comdn encontrar una clase
con solo un método principal con 3 mil lineas de cddigo, o una clase con sélo

método set y get para sus atributos primitivos. Estos ejemplos demuestran que el

desarrollador involucrado no ha entendido por completo el pensamiento orientado a objetos,
fallando en tomar ventaja del poder de los objetos como constructos de modelaje. Para los
desarrolladores familiarizados con los términos POJO (Plain Old Java Object) y POCO (Plain
Old C# Object o Plain Old CLR Object), éste fue el intento para regresar a lo mas basico de OO
como el paradigma modelo, los objetos son planos y sencillos, pero no tontos.

Un objeto encapsula ambos; estado y comportamiento, donde el comportamiento es definido
por el estado actual. Considera un objeto puerta. Este tiene 4 estados: cerrado, abierto,
cerrando, abriendo. Ofrece dos operaciones: abrir y cerrar. Dependiendo del estado, las
operaciones de abrir y cerrar se comportaran de forma diferente. Esta propiedad inherente de
un objeto hace que el proceso de disefio conceptualmente simple. Esto se resume en dos tareas
sencillas: localizacion y delegacién de responsabilidad a los diferentes objetos, incluyendo los
protocolos de la interaccion entre objetos.

Como funciona en la practica se ilustra mejor con un ejemplo. Digamos que tienes tres
clases: Customer(Cliente), Order (Orden) e Item. El objeto Customer es marcador de posicién
natural para el limite de crédito y las reglas de validacién. Un objeto Order sabe sobre su

Customer asociado, y su operacion additem delega la validacion del crédito actual llamando al
método Customer.validaCredito(item.precio()). Si la poscondicion del método falla, una
excepcion puede ser enviada y la compra cancelada.

Los desarrolladores menos experimentados en orientacién a objetos podrian decidirse a
envolver todas las reglas de negocio en un objeto frecuentemente referido
como orderManager u OrderService. En este disefio, Order, Customer e Iltem son tratados
como algo mas que tipos de registros. Toda la légica es factorizada desde las clases y unidas
en un método largo y procedural con un monton de constructos internos if-the-else . Estos
métodos se rompen con facilidad y son casi imposibles de mantener. ¢La razon? La
encapsulacion esta rota.

Asi que, al final, no rompas la encapsulacion y usa el poder de tu lenguaje de programacién
para mantenerla.

Traduccién: Espartaco Palma

40. Escoge tus herramientas con cuidado.

Autor: Giovanni Asproni

Las aplicaciones modernas rara vez son construidas desde cero. Se ensamblan usando
herramientas existentes —componentes, bibliotecas y frameworks— por una serie de buenas
razones:

e Las aplicaciones crecen en tamafio, complejidad y sofisticacion, mientras el tiempo para
desarrollarlas decrece. Se hace un mejor uso del tiempo e inteligencia del desarrollador, si
pueden concentrarse en escribir mas cédigo del dominio del negocio y menos codigo de
infraestructura

http://97cosas.com/programador/escoge-herramientas-con-cuidado.html

e Los componentes y frameworks ampliamente utilizados con frecuencia tienen menos
errores que aquellos desarrollados en casa.

e Hay un montén de software de alta calidad disponible en la red de forma gratuita, lo cual
significa menores costos de desarrollo y mayor probabilidad de encontrar desarrolladores
con el interés y experiencia necesaria.

e La produccion y mantenimiento de software es un trabajo humanamente intensivo, por lo
que comprarlo podria ser mas barato que construirlo.

Sin embargo, escoger la mezcla completa de herramientas para tu aplicacion puede ser un
negocio riesgoso que requiere pensarlo un poco. De hecho, hay unas cuantas cosas que
deberias tener en mente mientras estas haciendo la eleccion:

e Las diferentes herramientas pueden estar basadas en distintos supuestos sobre su contexto
—por ejemplo, la infraestructura circundante, modelo de control, modelo de datos, protocolos
de comunicacion, etcétera — lo cual puede llevar a un diferencial de arquitectura entre la
aplicacion y las herramientas. Dichas diferencias conducen a hacks y workarounds que
haran el codigo mas complejo de lo necesario.

e Las diferentes herramientas tienen diferentes ciclos de vida, y actualizar una de ellas podria
convertirse en algo extremadamente dificil y una tarea que consume tiempo en cada nueva
funcionalidad, cambios de disefio o incluso correcciones de errores que podrian causar
incompatibilidades con las otras herramientas. Entre mas grande sea el nimero de
herramientas, peor es el problema en el que puede convertirse.

e Algunas herramientas requieren configuraciones, lo que frecuentemente significa uno o mas
archivos XML, lo cual se sale de control muy rapido. La aplicacion puede terminar como si
fuese escrita toda en XML mas unas cuantas lineas de codigo en algin lenguaje de
programacioén. La complejidad en la configuracion hara la aplicacion dificil de mantener y de
extender.

e Ocurre un vendor-lock cuando el cédigo que depende en gran medida en un proveedor
especifico termina siendo arriesgado por él en varias formas: mantenimiento, rendimiento,
habilidad para evolucionar, precio, etc.

e Siplaneas usar software libre, puedes descubrir que no es tan libre después de todo. Quizas
necesites comprar soporte comercial, lo cual no necesariamente va a ser barato.

e Los términos de licenciamiento importan, incluso para el software libre. Por ejemplo, en
algunas compaiiias no es aceptable usar software licenciado bajo los términos de la licencia
GNU, debido a su naturaleza viral, es decir, el software desarrollado con él debe ser
distribuido junto con su codigo fuente.

Mi estrategia personal para mitigar estos problemas es comenzar poco a poco, usando sélo las
herramientas que son absolutamente necesarias. Usualmente el enfoque inicial esta en quitar
la necesidad de participar en la programacion (y los problemas) de infraestructura de bajo nivel,
por ejemplo, usando algun middleware en vez de usar sockets para aplicaciones distribuidas. Y
entonces agregar mas si es necesario. También tiendo a aislar las herramientas externas de
mis objetos de dominio del negocio con respecto a interfaces y capas de presentacion, asi
puedo cambiar la herramienta, si lo tengo que hacer, con sé6lo una pequefia dosis de dolor. Un

lado positivo de este enfoque es que generalmente termino con una aplicacion mas pequefa
gue usa menos herramientas externas de lo que originalmente se pronostico.

Traduccién: Espartaco Palma

41. Escribe codigo como si tuvieras gue mantenerlo por el resto de tu vida.

Autor: Yuriy Zubarev

Puedes preguntarle a 97 personas lo que todo programador deberia saber y hacer, y podras
escuchar 97 respuestas distintas. Esto podria ser abrumador e intimidante al mismo tiempo.
Todo consejo es bueno, todos los principios son sélidos y todas las historias son convincentes,
pero ¢por donde empezar? Mas importante adn, una vez que has comenzado, ¢cémo te
mantienes al dia con todas las mejores practicas que has aprendido para hacer de ellas una
parte integral de tus practicas de programacion?

Creo que la respuesta reside en tu estado de animo o, mas claramente, en tu actitud. Si no te
preocupas por tus compafieros desarrolladores, testers, administradores, personal de venta y
mercadotecnia, asi como los usuarios finales, entonces no estaras dispuesto a emplear el
Desarrollo basado en Pruebas (Test-Driven Development) o escribir comentarios claros en tu
codigo, por ejemplo. Hay una manera sencilla de ajustar tu actitud y siempre estar dispuesto a
entregar productos de la mejor calidad::

Escribe cddigo como si tuvieras que mantenerlo por el resto de tu vida.

Eso es todo. Si aceptas esta idea, sucederan muchas cosas maravillosas. Si vas aceptar que
ninguno de tus empleadores previos o0 actuales tiene derecho a llamarte a la mitad de la noche
pidiéndote que expliques las decisiones que tomaste mientras escribias el método fooBar,
entonces deberias mejorar gradualmente para convertite en un programador experto.
Naturalmente querrias llegar a mejores nombres de variables y métodos. Te alejarias de
blogues de codigo que contienen cientos de lineas. Buscarias, aprenderias y usarias patrones
de disefio. Escribirias comentarios, probarias tu codigo y refactorarias continuamente. Mantener
todo el codigo que has escrito por el resto de tu vida sera también un esfuerzo escalable. Por lo
tanto, no tendrias mas opcién que convertirte en alguien mejor, mas listo y mas eficiente.

Si lo reflexionas, el codigo que escribiste hace muchos afios todavia influye en tu carrera, te
guste o no. Dejas un rastro de tu conocimiento, actitud, tenacidad, profesionalismo, nivel de
compromiso y grado de disfrute con cada método, clase y médulo que disefias y escribes. La
gente se formara opiniones de ti con base en el codigo que ven. Si esas opiniones son
constantemente negativas, entonces obtendras menos de tu carrera de lo que esperabas.
Preocupate por tu carrera, tus clientes y todos los usuarios con cada linea de codigo; escribe
codigo como si tuvieras que mantenerlo por el resto de tu vida.

Traduccién: Espartaco Palma

42. Escribe pequenas funciones usando ejemplos.

Autor: Keith Braithwaite

Nos gustaria escribir codigo que fuese correcto y tener evidencia en mano de que es correcto.
Puede ayudar con ambos temas pensar en el “tamafio” de una funcion. No en el sentido de la

http://97cosas.com/programador/escribe-codigo-mantenerlo-por-vida.html
http://97cosas.com/programador/escribe-funciones-con-ejemplos.html

cantidad de codigo que implementa una funcion, a pesar de que es interesante; sino, mas bien,
del tamafio como una funcién matematica que nuestro cédigo manifiesta.

Por ejemplo, en el juego de Go hay una condicion llamada atari, en la cual la piedra del jugador
puede ser capturada por su oponente: una piedra con dos 0 mas espacios libres adyacentes a
él (llamados liberties) no esta en atari. Puede ser dificil de contar cuantas liberties tiene una
piedra, pero determinar el atari es facil si se sabe. Podrias empezar escribiendo una funcién
como esta:

boolean atari(int libertyCount) libertyCount < 2

Esto es mas grande de lo que parece. Una funcién matematica puede ser entendida como un
conjunto, algun subconjunto del producto Cartesiano del conjunto que son su dominio (en este
caso, un entero) y rango (en este caso, un booleano). Si esos conjuntos de valores fueran del
mismo tamafio, como en Java, entonces seria 2L*(Integer.MAX_VALUE+(-

1L*Integer.MIN_VALUE)+1L) O 8,589,934,592 miembros en el conjunto int x boolean. La mitad

son miembros de un conjunto que es nuestra funcién, asi que para proveer una evidencia
completa de que nuestra funcién es correcta necesitariamos revisar al rededor de 4.3 x
10°ejemplos.

Esta es la esencia de la afirmacion de que las pruebas no pueden probar la ausencia de errores.
Sin embargo, las pruebas pueden demostrar la presencia de caracteristicas. Pero aun tenemos
este tema del tamafio.

El dominio del problema nos ayuda. La naturaleza de Go significa que el nUmero de liberties de
una piedra no es cualquier entero, pero exactamente uno de {1,2,3,4} . Asi pues, podriamos
escribir alternativamente:

LibertyCount = {1,2,3,4} boolean atari(LibertyCount libertyCount)

libertyCount == 1

Esto es mucho mas manejable: la funcion calculada es ahora un conjunto con, cuando mucho,
ocho miembros. De hecho, cuatro ejemplos seleccionados constituirian la evidencia de la
certeza completa de que la funcion es correcta. Esta es la razon por la cual es una buena idea
usar tipos estrechamente relacionados al dominio del problema para escribir programas, en vez
de tipos nativos. Usar tipos inspirados en dominios a menudo puede hacer que nuestras
funciones sean mucho mas pequefias. Una forma de encontrar qué tipo seria es encontrar los
ejemplos para comprobar en términos del dominio del problema, antes de escribir la funcién.

Traduccién: Espartaco Palma

43. Escribe las pruebas para las personas.

Autor: Gerard Meszaros

Estas escribiendo pruebas automatizadas para una parte o todo tu cédigo de produccion.
iFelicidades! ¢ Estés escribiendo tus pruebas antes de que escribas el c6digo? jiMucho mejor!!
El sélo hacerlo te convierte en uno de los primeros adoptantes de las mas avanzadas practicas
de la ingenieria de software. Pero, ¢ estas escribiendo buenas pruebas? ¢ Cémo saberlo? Una
manera es preguntar: “; para quién estoy escribiendo estas pruebas?”. Si la respuesta es “para
mi, para ahorrarme el esfuerzo de corregir errores” o “para el compilador, con eso puede ser
ejecutado”, entonces las apuestas estan en que no estas escribiendo las mejores pruebas

http://97cosas.com/programador/escribe-pruebas-para-personas.html

posibles. Asi que, ¢ para quién deberias estar escribiendo las pruebas? Para las personas que
tratan de entender tu codigo.

Las buenas pruebas actian como documentacién para el cédigo que estas probando. Describen
cémo funciona el cédigo. Por cada escenario de uso la(s) prueba(s): Describe el contexto, un
punto inicial o precondiciones que deben ser satisfechas; ilustra como el software es invocado;
describe los resultados esperados o poscondiciones a ser verificadas.

Los diferentes escenarios de uso tendran una versiéon distinta de cada una de ellas. Las
personas que tratan de entender tu codigo deberian poder mirar unas cuantas pruebas vy, al
comparar estas tres partes de las pruebas en cuestion, ver qué causa que el cédigo se comporte
diferente. Cada prueba deberia ilustrar claramente la relacion de causa y efecto entre estas tres
partes. Esto implica que lo que no es visible en las pruebas es tan importante como lo que es
visible. Mucho cédigo en las pruebas distrae al lector con trivialidades sin importancia. Cuando
sea posible oculta dichas trivialidades detras de llamados a métodos con significado; la
refactorizacion “Extraer Método” es tu mejor amigo. Y asegurate de darle a cada prueba un
nombre con significado que describa el escenario de uso particular, con esto el lector de la
prueba no tiene que hacer ingenieria inversa de cada prueba para entender de qué se tratan
los distintos escenarios. Entre ellos, el nombre de las clases de pruebay los métodos de clases
deben incluir, al menos, el punto inicial y como el software esta siendo invocado. Esto permite
que la cobertura de prueba sea verificada via un rapido escaneo de los nombres de los métodos.
También puede ser util incluir los resultados esperados en el nombre del método de prueba,
mientras esto no cause que el nombre sea demasiado largo para ver o leer.

También es buena idea poner a prueba tus pruebas. Puedes verificar que detectan el error al
incluir dicho error en el coédigo de produccién (por supuesto, en una copia privada que
desecharas). Asegurate que reporte los errores de manera significativa. También debes verificar
que tus pruebas hablan claramente a una persona que trata de entender tu codigo. La Unica
manera de hacerlo es tener a alguien que no esta familiarizado con tu cédigo para que lea tus
pruebas y te diga qué ha aprendido. Escucha cuidadosamente lo que te diga. Si no entendio
algo no es porque no sea muy brillante. Es mas probable que tl no fueras muy claro. (jContinta
e invierte los roles, lee sus pruebas!).

Traduccién: Espartaco Palma

44. Evita errores.

Autor: Giles Colborne

Los mensajes de error son la interaccién mas critica entre el usuario y el resto del sistema.
Suceden cuando la comunicacion, entre el usuario y el sistema, esta cerca del punto de quiebre.

Es facil pensar que un error esta siendo causado por una mala entrada de datos del usuario.
Pero la gente comete errores de forma predecible y sistematica. Asi que es posible depurar la
comunicacion entre el usuario y el resto del sistema asi como lo harias con otros componentes
del sistema.

Por ejemplo, digamos que quieres que el usuario introduzca una fecha en un rango permitido.
En vez de dejar que el usuario introduzca cualquier fecha es mejor ofrecer un dispositivo, como
una lista o calendario, mostrando sélo las fechas permitidas. Esto elimina cualquier oportunidad
de que el usuario introduzca una fecha fuera del rango.

El formato del error es otro problema comun. Por ejemplo, si a un usuario se le presenta un
campo de texto como fecha e introduce una fecha ambigua como “Julio 29, 2012” es razonable

http://97cosas.com/programador/evita-errores.html

el rechazarlo simplemente porque no es uno de los formatos preferidos (como “DD/MM/AAAA”).
Es peor aun rechazar “29 /07 / 2012” s6lo porque contiene espacios extra; este tipo de problema
es particularmente dificil de entender para usuarios porque la fecha parece estar en el formato
deseado.

Este error ocurre porque es mas facil rechazar una fecha que analizar los tres o cuatro formatos
de fecha mas comunes. Este tipo de errores insignificantes llevan al usuarios a la frustracion,
que a su vez conduce a errores adicionales conforme el usuario pierde su concentracion. En
cambio, respeta las preferencias del usuario al entrar informacion, no los datos.

Otra forma de evitar errores de formato es ofrecer sefiales, por ejemplo, con una etiqueta dentro
del campo mostrar el formato deseado (“DD/MM/AAAA”). Otra pista podria ser dividir el campo
en tres cajas de texto de dos, dos y cuatro caracteres.

Las sefales son diferentes de las instrucciones: las sefales tienden a ser indicios; las
instrucciones son detalladas; las sefiales ocurren en el punto de interaccion; las instrucciones
aparecen antes del punto de interaccion. Las sefales proveen contexto; las instrucciones dictan
el uso.

En general, las instrucciones son ineficientes para prevenir errores. Los usuarios tienden a
asumir que las interfaces trabajardn en la linea con su pasada experiencia (“¢ seguramente
todos saben el significado de ‘Julio 29, 2012’?”). Asi que las instruccién no son leidas. Las
sefiales dan un suave codazo alejando a los usuarios del error.

Otra forma de evitar errores es ofrecer valores predeterminados. Por ejemplo, los usuarios
tipicamente introducen valores que corresponden al hoy, mafana, mi cumpleafios, mi fecha
limite o la fecha que introduje la Ultima vez que usé este formulario. Dependiendo del contexto,
es probable que uno de ellos sea una buena opcion de un valor predeterminado inteligente.

Sin importar la causa, los sistemas deberian ser tolerantes a errores. Puedes hacer esto
proveyendo niveles multiples de “deshacer” para todas las acciones y en especial las acciones
que tenga el potencial de destruir o enmendar los datos del usuario.

El registro y andlisis de las acciones de “deshacer” puede también ser un punto a destacar, en
el cual la interfaz esta atrayendo a los usuarios a errores inconscientes, tales como hacer clic
persistentemente en un botén “equivocado”. Estos errores son, a menudo, causados por
sefiales engafiosas 0 secuencias de interaccién que puedes redisefar para prevenir mas
errores.

Cualquiera que sea el enfoque que tomes, la mayoria de los errores son sistematicos, el
resultado de malentendidos entre el usuario y el software. Entender cémo los usuarios piensan,
interpretan informacién, toman decisiones e introducen datos, de entrada, te ayudara a depurar
las interacciones entre el software y tus usuarios.

Traduccién: Espartaco Palma

45. Haz lo invisible mas visible.

Autor: Jon Jagger

Muchos aspectos de la invisibilidad son correctamente dichos como principios a usar. Nuestra
terminologia es rica en metéforas de invisibilidad, mecanismos de transparencia y ocultamiento
de informacién, para mencionar soélo dos. El software y el proceso de desarrollo pueden ser,
para parafrasear a Douglas Adams, casi invisibles:

http://97cosas.com/programador/haz-lo-invisible-mas-visible.html

e El codigo fuente no tiene una innata presencia o0 comportamiento, y no obedece las leyes
de la fisica. Es visible cuando lo cargas en un editor, pero cierra el editor y se ha ido. Piensa
sobre eso un rato y, como el arbol cayendo cuando nadie lo escucha, empieza a preguntarte
si en realidad existe.

e Una aplicacién en ejecucion tiene presencia y comportamiento, pero no revela nada del
cbdigo fuente con el que fue construido. La pagina principal de Google es placenteramente
minimalista; lo que pasa detras es lo realmente sustancial.

e Sihas terminado el 90% y estas eternamente atorado tratando de debugear el dltimo 10%
entonces no has acabado el 90%, ¢,0 si? Corregir errores no es progresar. No te pagan por
debugear. El debugging es un derroche. Es bueno hacer una pérdida mas visible asi puedes
ver qué es 'y empezar a pensar en no crearla, en primer lugar.

e Si tu proyecto esta aparentemente en camino y una semana después esta seis meses
atrasado, tienes problemas, el mas grande de ellos probablemente no sea que estas seis
meses tarde, jsino que el campo de invisibilidad es lo suficientemente poderoso como para
ocultar seis meses de retraso! La falta de progreso visible es sinébnimo de la falta de
progreso.

La invisibilidad puede ser peligrosa. Piensas mas claramente cuando tienes algo concreto a qué
amarrar tu pensamiento. Administras mejor las cosas cuando puedes verlas y verlas cambiar
constantemente:

e Escribir pruebas unitarias provee evidencia sobre qué tan facil es el cédigo unitario con
respecto a la prueba unitaria. Ayuda a revelar la presencia (o ausencia) de cualidades de
desarrollo que te gustaria que el codigo exhiba; cualidades como bajo acoplamiento y alta
cohesion.

e Ejecutar pruebas unitarias provee evidencia sobre el comportamiento del codigo. Ayuda a
revelar la presencia (o0 ausencia) de cualidades en tiempo de ejecucion que te gustaria que
la aplicacion exhiba; cualidades como la fortaleza y la correctitud.

e El usar tableros de boletines y tarjetas hace el progreso mas visible y concreto. Las tareas
pueden ser vistas como “No iniciadas”, “En progreso” o “Terminadas” sin la referencia a una
herramienta de administracion de proyectos y sin tener que perseguir a los programadores
para que entreguen reportes de estatus ficticios.

e Realizar desarrollo incremental aumenta la visibilidad del progreso del desarrollo (o la falta
de él) al incrementar la frecuencia de la evidencia del desarrollo. El completar la liberacion
del software revela realidad; los estimados no.

Es mejor desarrollar software con una gran cantidad de evidencia visible habitual. La visibilidad
otorga confianza de que el progreso es genuino y no una ilusién, deliberado y no involuntario,
repetible y no accidental.

Traduccién: Espartaco Palma

46. Haz mucha practica deliberada.

http://97cosas.com/programador/haz-mucha-practica-deliberada.html

Autor: Jon Jagger

La practica deliberada no es simplemente realizar una tarea. Si te preguntas “; porqué estoy
realizando esta tarea?” y tu respuesta es “para completar la tarea”, entonces no estas haciendo
practica deliberada.

Haces practica deliberada para mejorar tu habilidad de realizar una tarea. Se trata de habilidad
y técnica. La préactica deliberada significa repeticion. Significa realizar la tarea con el &nimo de
incrementar tu dominio de uno o mas aspectos de la tarea. Significa repetir la repeticion.
Lentamente, una y otra vez. Hasta lograr el nivel deseado de dominio. Haces practica deliberada
para dominar la tarea, no para terminar la tarea.

El propésito principal de pagar a los desarrolladores es terminar un producto, mientras que el
propésito de la practica deliberada es mejorar tu rendimiento. No es lo mismo. Preguntate:
¢écuanto tiempo inviertes desarrollando el producto de alguien mas? ¢ Cuanto desarrollandote?

¢,Cuanta practica deliberada toma el adquirir experiencia?

e Peter Norving escribe “Puede que sean 10,000 horas [...] es el nUmero magico”.

e En “Leading Lean Software Development’, Mary Poppendieck sefiala que: “A los
practicantes de elite les toma un minimo de 10 mil horas de préactica enfocada para
convertirse en expertos”.

La experiencia llega gradualmente con el tiempo, jno toda en la hora 10 mil! Sin embargo, 10
mil horas es mucho: cerca de 20 horas a la semana durante 10 afios. Dado este nivel de
compromiso podrias estar preocupado de no ser material experto. Lo eres. La grandeza es, en
gran medida, una cuestion de eleccion consciente. Tu eleccion. Las investigaciones realizadas
durante las dos ultimas décadas han demostrado que el factor principal de adquisicion de
experiencia es el tiempo dedicado a realizar practica deliberada. La habilidad innata no es el
factor principal.

e Mary: “Hay un consenso general entre investigadores de rendimiento experto de que el
talento natural no cuenta mas que el esfuerzo; puedes tener una minima cantidad de
habilidad natural para iniciar en un deporte o profesién. Después de eso, la gente que es
excelente es la que trabaja mas duro”.

No tiene mucho sentido la practica deliberada en algo ya eres un experto. La practica deliberada
significa practicar algo en lo que no eres bueno.

e Peter: “La clave [para desarrollar experiencia] es la practica deliberada: no soélo haciéndolo
unay otra vez, pero si retandote a ti mismo con una tarea que esta mas alla de tu capacidad
actual, intentandolo, analizando tu rendimiento mientras y después de hacerlo, y corrigiendo
cualquier error”.

e Mary: “La practica deliberada no significa hacer algo en lo que ya eres bueno; significa
retarte a ti mismo, haciendo algo en lo que no eres bueno. Esto no es necesariamente
divertido”.

La practica deliberada es acerca del aprendizaje. Acerca del aprendizaje que te cambia; del
aprendizaje que cambia tu comportamiento. Buena suerte.

http://norvig.com/21-days.html

Traduccién: Espartaco Palma

47. Las herramientas Unix son tus amigas.

Autor: Diomidis Spinellis

Si en mi camino al exilio en una isla desierta tuviera que escoger entre un IDE y un conjunto de
herramientas Unix, yo escogeria las herramientas Unix sin pensarlo dos veces. Aqui estén las
razones por las cuéles deberias dominar las herramientas Unix.

Primero, los IDE se enfocan en lenguajes especificos, mientras las herramientas Unix pueden
trabajar con cualquier cosa que aparezca en modo textual. En los ambientes de desarrollo de
hoy en dia, donde los nuevos lenguajes y notaciones florecen cada afio, aprender a trabajar de
la forma Unix es una inversion que se pagara con el tiempo una y otra vez.

Ademas, mientras los IDE ofrecen sélo los comandos que sus desarrolladores concibieron, con
las herramientas Unix puedes realizar cualquier tarea imaginable. Piensa en ello como (los
clasico pre- Bidnico) bloques Lego: creas tus propios comandos combinando las pequefas pero
versatiles herramientas Unix. Por ejemplo, la siguiente secuencia es una implementacion
basada en texto del andlisis de firmas de Cunningam; una secuencia de cada punto y coma,
llaves y comillas que puede revelar mucho sobre el contenido del archivo:

for i in *.java; do echo -n "$i: " sed 's/[*"{};1//g' $i | tr -d

'\n' echo done

En suma, cada operacion del IDE que aprendes es especifica a esa tarea; por ejemplo, agregar
un nuevo paso de depuracion en la configuracion de construccion del proyecto. En contraste,
afilar tus habilidades con las herramientas Unix te hace mas efectivo en cualquier tarea. Como
un ejemplo, he empleado la herramienta sed en la secuencia de comandos precedentes para
moadificar la construccién de un proyecto para la compilacion cruzada en mdaltiples arquitecturas
de procesador.

Las herramientas Unix fueron desarrolladas en una época en la que una computadora
multiusuario tenia 128kB de RAM. El ingenio que tuvo su disefio significa que en estos dias
pueden manejar enormes conjuntos de datos con extremada eficiencia. La mayoria de las
herramientas trabajan como filtros, procesando so6lo una linea a la vez, significando que no hay
limite superior en la cantidad de datos que pueden manejar. ¢Quieres buscar un nimero de
ediciones almacenadas en medio terabyte del respaldo de la Wikipedia en inglés? La simple
invocacion de

grep '<revision>' | wc -1

te dara la respuesta sin siquiera sudar. Si encuentras una secuencia de comandos util, puedes
empacarla facilmente en un script de shell, usando algunos poderosos constructos de
programacion, tales como hacer piping de datos en ciclos y condicionales. Mas impresionante
aun, los comandos Unix ejecutados como pipelines, como el arriba descrito, distribuira su carga
con naturalidad a través de las muchas unidades de procesamiento de los CPU multi-core
modernos.

Su génesis en “pequeno es bello” y las implementaciones de software libre de las herramientas
Unix las hacen disponibles ubicuamente, incluso en plataformas de recursos restringidos, como
mi reproductor multimedia de la sala o el router DSL. Es poco probable que tales dispositivos
ofrezcan una poderosa interface grafica, pero frecuentemente incluyen la aplicacién BusyBox,

http://97cosas.com/programador/herramientas-unix-amigas.html

la cual provee la mayoria de las herramientas comunmente usadas. Y si estas desarrollando en
Windows, el ambiente cygwin te ofrece todas las herramientas Unix imaginables, en forma de
ejecutable y codigo fuente.

Por dltimo, si ninguna de las herramientas disponibles se adecua a tus necesidades, es muy
facil extender el mundo de las herramientas Unix. S6lo escribe un programa (en cualquier
lenguaje que elijas) que juegue con unas pocas y sencillas reglas: tu programa debe realizar
sélo una tarea sencilla; debe leer datos como lineas de texto de su entrada estandar y debe
mostrar los resultados sin adornos, encabezados ni otros ruidos en su salida estandar. Los
pardmetros que afectan la operacion de la herramienta se dan en la linea de comandos. Sigue
estas reglas y “tuya sera la Tierra y todo lo que hay en ella”.

Traduccién: Espartaco Palma

48. Implementa rapido y con frecuencia.

Autor: Steve Berczuk

Depurar el proceso de implementacion e instalacion suele posponerse hasta que se acerca el
final del proyecto. En algunos proyectos, la escritura de herramientas de instalacion es delegada
a un ingeniero de entrega, quien asume la tarea como un “mal necesario”. Las revisiones y
demostraciones son realizadas a partir de un ambiente hecho a mano para asegurarse de que
todo funciona. El resultado es que el equipo no obtiene la experiencia en el proceso de
implementacion o sobre el ambiente de implementacion hasta que quizas es demasiado tarde
para hacer los cambios.

El proceso de instalacién/implementacion es lo primero que ve el cliente, y un proceso simple
de instalacion/implementacion es el primer paso para tener un ambiente de produccion fiable
(o, al menos, facil de depurar). El software implementado es lo que el cliente usara. El no
garantizar que laimplementacién configura la aplicacién correctamente hara que el cliente tenga
preguntas antes de que use tu software exhaustivamente.

Iniciar tu proyecto con un proceso de instalacion te dara tiempo para evolucionar el proceso
conforme se vaya moviendo en el ciclo de desarrollo del producto y la posibilidad para realizar
cambios al cédigo de la aplicacion para que la instalacion sea mas facil. Ejecutar y probar el
proceso de instalacién en un ambiente limpio periédicamente también provee un chequeo en el
que no tendras suposiciones en el cédigo que se base en los ambientes de desarrollo o de
prueba.

Poner la implementacion al tltimo significa que el proceso de implementacion puede necesitar
ser mas complicado para evitar las suposiciones en el cddigo. Lo que parece una buena idea
en un IDE, en el cual tienes el control total de un entorno, puede hacer que un proceso de
implementacion sea mucho mas complicado. Es mejor saber todas las ventajas y desventajas
mas temprano que tarde.

A pesar de que “ser capaz de implementar” desde el principio, no parece tener mucho mas valor
de negocio comparado con ver una aplicacion ejecutdndose en la computadora portatil del
desarrollador, la verdad es que mientras no puedas demostrar tu aplicacién en entorno final
habra un montén de trabajo que hacer antes de que puedas ofrecer un valor empresarial. Si el
fundamento de poner en marcha el proceso de implementacion es que es algo trivial, entonces
hazlo de todos modos, ya que es a bajo costo. Si es demasiado complicado, o si hay
demasiadas incertidumbres, haz lo que harias con el cédigo de una aplicacion: experimenta,
evalla y refactoriza el proceso de implementacion conforme avances.

http://97cosas.com/programador/implementa-rapido-y-con-frecuencia.html

El proceso de instalacion/implementacion es esencial para la productividad de los clientes o de
su equipo de servicio profesionales, por lo que deberias hacer pruebas y refactorizar este
proceso sobre la marcha. Probamos y refactorizamos el cédigo fuente de todo el proyecto. La
implementacion no se merece menos.

Traduccién: Espartaco Palma

49. Inicia con un Si.

Autor: Alex Miller

Recientemente fui a la tienda buscando arriba y abajo “edaname” (el cual solo sabia vagamente
que era algun tipo de vegetal). No estaba seguro si era algo que podria encontrar en la seccién
de vegetales, la seccién de congelados o en enlatados. Me rendi y busqué a una empleada para
que me ayudara. jElla tampoco sabia!

La empleada pudo haber respondido de muchas maneras distintas. Pudo haberme hecho sentir
ignorante por no saber donde buscar, darme vagas posibilidades o simplemente decirme que
no lo tenian. Pero en vez de ello, usé el pedido como una oportunidad de encontrar una solucion
y ayudar al cliente. Llamé a otro empleado y en minutos me habian guiado al articulo deseado,
ubicado en la seccion de congelados.

La empleada en este caso miré en un pedido e inicié con la premisa de que deberia resolver el
problema y satisfacer la peticion. Inicié con un si, en vez de empezar con un no.

La primera vez que fui colocado en un rol de lider técnico, senti que mi trabajo era proteger mi
precioso software del ridiculo flujo de demandas de los gestores de producto y analistas de
negocio. Iniciaba muchas conversaciones viendo un pedido como algo que tenia que vencer,
no algo que debia conceder.

En cierto punto, tuve una epifania: quizas habia una manera distinta de trabajar al cambiar mi
perspectiva de iniciar con un no, iniciando con un si. De hecho, he empezado a creer que iniciar
con un si es parte esencial de ser un lider tecnoldgico.

Este simple cambio radical alteré el como abordé mi trabajo. Como resultado, hay un montén
de maneras de decir si. Cuando alguien te dice: “Hey, esta aplicacion seria mejor si hacemos
todas las ventanas redondeadas y trasliucidas”, puedes rechazarlo por ridiculo. Pero
frecuentemente es mejor iniciar con un “;por qué?”. En primer lugar, usualmente existe una
actual e irresistible razén de por qué esa persona esta pidiendo ventanas redondeadas y
traslicidas. Por ejemplo, quizas ustedes estan a punto de firmar con un nuevo cliente muy
grande con un comité de estandares que obliga a tener ventanas redondeadas y traslicidas.

Constantemente encontrards que cuando sabes el contexto de la peticién, se abren nuevas
posibilidades. Es comun para la peticion estar cumpliendo con el producto existente en alguna
otra forma que permita decir si sin trabajar: “De hecho, en las preferencias de usuario puedes
descargar las cubiertas con ventanas traslucidas y activarlas”.

Algunas veces la otra persona simplemente no tendré idea que lo encuentras incompatible con
tu vision del producto. Me parece que es generalmente util revertir ese “;por qué?” hacia ti.
Algunas veces el acto de expresar la razén hara mas claro que tu primera reaccién no tiene
sentido. De lo contrario, quiz& necesites elevarlo a un nivel superior de tomadores de decisiones.
Recuerda, la meta de todo esto es decir si a la otra persona e intentar hacerlo funcionar, no sélo
por él, sino también por ti y tu equipo.

http://97cosas.com/programador/inicia-con-un-si.html

Si puedes expresar una irresistible explicacién de por qué esa caracteristica es incompatible
con el producto existente, entonces es probable tener una conversacién productiva sobre si
estan construyendo el producto correcto. Sin importar como concluya esa conversacion, todos
se enfocaran mas en qué es el producto y qué no lo es.

Iniciar con un si significa trabajar con tus colegas, no contra ellos.

Traduccién: Espartaco Palma

50. Instalame.

Autor: Marcus Baker
No tengo el menor interés en tu programa.

Estoy rodeado de problemas y tengo una lista de cosas por hacer tan larga como mi brazo. La
Unica razén por la que estoy en tu sitio web ahora mismo es porque he oido un poco probable
rumor de que cada uno de mis problemas sera eliminado por tu software. Perdbname si soy
esceéptico.

Si los estudios de seguimiento del globo ocular son correctos, ya he leido el titulo y estoy
buscando un texto subrayado con color azul marcado como “descargar ahora”. Como anotacion
al margen, si llegué a esta pagina con un navegador de Linux con una IP del Reino Unido, es
probable que me gustaria una version Linux desde un espejo en Europa, asi que por favor no
preguntes. Asumiendo que el didlogo de archivo se abre directamente, llevo la cosa a mi carpeta
de descargas y sigo leyendo.

Todos nosotros realizamos constantemente analisis de costo-beneficio de lo que hacemos. Si
tu proyecto cae debajo de mi umbral por un segundo, me desharé de él e iré a otra cosa. La
gratificacién instantanea es mejor.

El primer obstaculo es instalar. ¢ No crees que sea mucho problema? Ahora ve a tu carpeta de
descargas y mira alrededor. ¢ Lleno de archivos .tar y .zip, verdad? ¢Qué porcentaje de esos
han sido desempacados? ¢Cuantos has instalado? Si eres como yo, s6lo un tercio esta
haciendo algo méas que actuar como relleno en el disco duro.

Podria querer conveniencia a la puerta, pero no quiero que entres a mi casa sin invitacion. Antes
de escribir install querria saber exactamente dénde estas poniendo cosas. Es mi computadora
y quiero mantenerla ordenada cuando pueda. También quiero ser capaz de eliminar tu programa
al instante en el que me desencante de él. Si sospecho que eso es imposible no lo instalaré en
primer lugar. Mi maquina es estable ahora y quiero que siga asi.

Si tu programa se basa en GUI entonces quiero hacer algo simple y ver un resultado.
Los Asistentes no ayudan, porque ellos hacen cosas que no entiendo. Hay probabilidad de que
quiera leer o escribir un archivo. No quiero crear proyectos, importar directorios o decirte mi
correo electrénico. Si todo esta funcionando, ir al tutorial

Si tu software es una biblioteca, entonces seguiré leyendo tu pagina web buscando una guia
rapida de inicio. Quiero el equivalente de un “hola, mundo” en cinco lineas sin mucho pensar
con la salida descrita por tu sitio web. No quiero llenar un gran archivo XML o plantillas, sélo un
script. Recuerda, también he descargado tu framework rival. Ya sabes, ¢ el que siempre clama
ser mucho mejor que el tuyo en los foros? Si todo esta trabajando, al tutorial.

Hay un tutorial, ¢,no? ¢Uno que me habla en un lenguaje que pueda entender?

http://97cosas.com/programador/instalame.html

Y si el tutorial menciona mi problema, me animaré. Ahora estoy leyendo sobre las cosas que
puede hacer para que comience a ponerse interesante, incluso divertido. Me reclinaré y tomaré
mi té —¢ mencioné que soy del Reino Unido?-y jugaré con tus ejemplos y aprenderé a usar tu
creacion. Si resuelve mi problema, te enviaré un correo de agradecimiento. Enviaré reportes de
error cuando colapse y sugerencias de caracteristicas también. Incluso le diré a todos mis
amigos que es mejor tu software, aunque nunca probé el de tu rival. Y todo porque cuidaste mis
primeros pasos tentativos.

¢, Como pude haber dudado de ti?

Traduccién: Espartaco Palma

51. Haz las Interfaces faciles de usar correctamente vy dificiles de usar
incorrectamente.

Autor: Scott Meyers

Una de las tareas mas comunes en el desarrollo de software es la especificacion de la interfaz.
Las interfaces ocurren al mas alto nivel de abstraccion (interfaces de usuario), en la mas baja
(interfaces de funcién) y en los niveles intermedios (interfaces de clases, de bibliotecas,
etcétera). Independientemente de que estés trabajando con el usuario final para especificar
cémo estara interactuando con un sistema, colaborando con desarrolladores para especificar
un API o declarando funciones privadas para una clase, el disefio de interfaz es una parte
importante de tu trabajo. Si lo haces bien, sera un placer usar tus interfaces y aumentara la
productividad de los demas. Si lo haces pobremente, tus interfaces seran la fuente de
frustraciones y errores.

Las buenas interfaces son:

e Faciles de usar correctamente. La gente que usa una interfaz bien disefiada casi siempre
usa la interfaz correctamente, porque es la ruta de menor resistencia. En una Interfaz
Gréfica de Usuario (GUI) siempre hacen clic en el icono, botén o entrada de menu correcta,
debido a que es obvio y algo facil de hacer. En una API casi siempre pasan los pardmetros
correctos con el valor correcto, debido a que es la manera mas natural. Con interfaces que
son faciles de usar correctamente, la cosas funcionan.

e Dificiles de usar incorrectamente. Las buenas interfaces se anticipan a los errores que la
gente comete y hace que sea dificil —idealmente imposible— realizarlos. Una GUI deberia
deshabilitar o remover comandos que no tengan sentido en el contexto actual, por ejemplo,
0 una API deberia eliminar la secuencia de argumentos al permitir que los parametros sean
pasados en cualquier orden.

Una buena manera de disefiar interfaces que son faciles de usar correctamente es hacer
ejercicios antes de que existan. Simula una GUI —en un pizarron o usando fichas en una mesa—
y juega con ellos antes de que cualquier codigo haya sido creado. Escribe llamadas a la API
antes de que las funciones hayan sido declaradas. Revisa los casos de uso comunes y
especifica como quieres que se comporten las interfaces. ¢En qué quieres que puedan hacer
clic? ¢ Qué quieres pasarle? Las interfaces faciles de usar parecen naturales, debido a que te
dejan hacer lo que quieres hacer. Es mas frecuente dar con esas interfaces si las desarrollas

http://97cosas.com/programador/interfaces-faciles-usar.html
http://97cosas.com/programador/interfaces-faciles-usar.html

desde el punto de vista de los usuarios (esta perspectiva es una de las fortalezas de la
programacion test-first).

Hacer las interfaces dificiles de usar incorrectamente requiere dos cosas. Primero, debes
anticiparte a los errores que los usuarios podrian hacer y encontrar la manera de prevenirlos.
Segundo, debes observar cémo una interfaz es usada errbneamente durante las primeras
liberaciones y modifica la interfaz —jsi, modificar la interfaz!— para prevenir tales errores. La
mejor manera de prevenir el uso incorrecto es hacer tal uso imposible. Si los usuarios siguen
queriendo hacer un “deshacer” en una accion irrevocable, intenta hacer la accion revocable. Si
ellos siguen pasando un valor erréneo a la API, mejor modifica la API para tomar los valores
que el usuario quiere pasar.

Sobre todo, recuerda que las interfaces existen para la conveniencia de sus usuarios, no la de
sus implementadores.

Traduccién: Espartaco Palma

52. La comunicacion entre procesos afecta el tiempo de respuesta de la
aplicacion.

Autor: Randy Stafford

El tiempo de respuesta es critico en la usabilidad del software. Pocas cosas son tan frustrantes
como esperar a que responda algun sistema de software, especialmente cuando nuestra
interaccion involucra ciclos repetidos de estimulos y respuestas. Nos sentimos como si el
software estuviera desperdiciando nuestro tiempo y afectando nuestra productividad. Sin
embargo, las causas del pobre tiempo de respuesta son poco apreciadas, especialmente en las
aplicaciones modernas. Mucha literatura de administracion de rendimiento alun se enfoca en
estructuras de datos y algoritmos, temas que pueden hacer una diferencia en algunos casos,
pero que son mucho menos propensos a dominar el rendimiento en las modernas aplicaciones
empresariales multicapa.

Cuando el rendimiento es un problema en tales aplicaciones, mi experiencia ha sido que
examinar estructuras de datos y algoritmos no es el lugar adecuado para buscar mejoras. Los
tiempo de respuesta dependen mas del nUmero de comunicaciones remotas entre procesos
(IPC, inter- process communications) conducidas en respuesta a un estimulo. Aunque puede
haber otros cuellos de botella locales, el nUmero de IPC remotas domina usualmente. Cada IPC
remota contribuye a latencia no-despreciable para el tiempo de respuesta global, y estas
contribuciones remotas se suman, especialmente cuando incurren en secuencia.

Un buen ejemplo es la carga ondular en una aplicaciébn usando mapeo objeto-relacion
(ORM, object-relational mapping). La carga ondular describe la ejecucion secuencial de muchas
llamadas a la base de datos para seleccionar los datos necesarios para construir un objeto
grafico (vea: “Lazy Load”, del libro de Martin Fowler: Patterns of Enterprise Application
Architecture). Cuando el cliente de la base de datos es un servidor de aplicaciones de capa
intermedia renderizando una pagina web, estas llamadas a la base de datos son ejecutadas
usualmente en secuencia en un solo hilo. Sus latencias individuales se acumulan, lo que
contribuye al tiempo de respuesta global. Incluso si cada llamada a la base de datos toma sélo
10 minutos, una pagina que requiera mil llamadas (que no es poco comun) exhibira al menos
un tiempo de respuesta de 10 segundos. Otros ejemplos incluyen la invocacién de servicios
web, respuestas HTTP desde un navegador web, invocacion de objetos distribuidos, mensajeria
de peticion-respuesta (reply-request) e interaccion con redes de datos en protocolos de red

http://97cosas.com/programador/ipc-afecta.html
http://97cosas.com/programador/ipc-afecta.html

personalizados. Entre mas IPC remotas se necesiten para responder a un estimulo, mayor sera
el tiempo de respuesta.

Hay algunas estrategias relativamente obvias y bien conocidas para reducir el nimero de IPC
remotas por estimulo. Una estrategia es aplicar el principio de parsimonia, optimizando la
interfaz entre procesos, asi el nimero exacto de datos para el propdsito a mano es
intercambiado con la minima cantidad de interacciones. Otra estrategia es paralelizar las IPC
donde sea posible, asi el tiempo de respuesta global es llevado principalmente por la latencia
de IPC mas larga. Una tercera estrategia es almacenar en caché los resultados de IPC previos,
asi los futuros IPC pueden ser evitados al usar caché local en su lugar.

Cuando estés disefiando una aplicacion, ten en cuenta el nimero de IPC en respuesta a cada
estimulo. Al analizar aplicaciones que sufren de un rendimiento pobre, a menudo me he
encontrado radios de IPC-estimulo de miles a 1. La reduccién de este radio, ya sea mediante
caché, paralelizando o alguna otra técnica, vale mucho mas la pena que cambiar la seleccién
de estructuras de datos o ajustar un algoritmo de ordenamiento.

Traduccién: Espartaco Palma

53. Lee el codigo.

Autor: Karianne Berg

Nosotros, los programadores, somos criaturas raras. Amamos escribir cdédigo. Pero cuando toca
leerlo usualmente nos asustamos. Después de todo, escribir codigo es mas divertido y leerlo es
dificil, algunas veces casi imposible. Leer el codigo de otras personas es particularmente dificil.
No porque el cédigo de las demas personas sea malo, sino porque piensan y solucionan
problemas de una manera diferente a la tuya. ¢ Alguna vez consideraste que leer el cédigo de
alguien mas podria mejorar el tuyo?

La proxima vez que leas algun cédigo, detente y piensa un momento. ¢ El codigo es facil o dificil
de leer? Si es dificil de leer, ¢por qué lo es? ¢Su formato es pobre? ¢Esta nombrado
inconsistente o ildgicamente? ¢ Mezcla muchas preocupaciones en la misma pieza de codigo?
¢Quiza la eleccion del lenguaje impide que el codigo sea legible? Trata de aprender de los
errores de la gente, asi tu codigo no contendrd los mismos. Puedes recibir unas cuantas
sorpresas. Por ejemplo, las técnicas de ruptura de dependencias puede ser buenas para bajos
acoplamientos, pero a veces puede hacer que el codigo sea dificil de leer. Lo que algunas
personas llaman codigo elegante, otros lo llaman ilegible.

Si el codigo es facil de leer, detente para ver si hay algo Gtil que puedas aprender. Quizas hay
un patrén de disefio en uso que no conocias o que habias luchado para poder implementar. Tal
vez los métodos son mas cortos y sus nombres mas expresivos que los tuyos. Algunos
proyectos de codigo abierto estan llenos de buenos ejemplos de como escribir codigo brillante
y legible, jmientras otros sirven de ejemplo de todo lo contrario! Revisa un poco de su cédigo y
da un vistazo.

Leer codigo antiguo de algun proyecto que no estas trabajando actualmente también puede ser
una experiencia enriquecedora. Inicia con algunos de tus mas viejos programas y avanza hacia
el codigo presente. Probablemente encontraras que no es del todo facil leerlo como cuando lo
escribiste. Tu cddigo de un principio podria también tener un cierto valor de entretenimiento
embarazoso, como cuando se te recuerdan todas las cosas que dijiste mientras estabas
bebiendo en la cantina la noche anterior. Mirar como has desarrollado tus habilidades a lo largo
de los afios puede ser realmente motivador. Observa qué areas del codigo son dificiles de leer
y considera si todavia estas escribiendo codigo del mismo modo hoy en dia.

https://es.wikipedia.org/wiki/Navaja_de_Ockham
http://97cosas.com/programador/lee-el-codigo.html

Asi que la proxima vez que sientas la necesidad de mejorar tus habilidades de programacion,
no leas otro libro. Lee el codigo.

Traduccién: Espartaco Palma

54. Lee las humanidades.

Autor: Keith Braithwaite

En todo y hasta en el proyecto mas pequefio de desarrollo, las personas trabajan con personas.
En todos y hasta en el campo més abstracto de investigacion, las personas escriben software
para las personas a las que ayudan en alguna de sus metas. La gente escribe software con
gente para la gente. Es un negocio de personas. Desafortunadamente, lo que se ensefa a
programadores, a menudo, los equipa muy mal para hacer frente a las personas con las que
trabajan. Afortunadamente hay un completo campo de estudio que puede ayudar.

Por ejemplo, Ludwig Wittgenstein plantea un buen caso en “Philosophical Investigations” (y
donde sea): cualquier lenguaje que usamos para hablarnos no es, no puede ser, una formato
de serializacion para llevar un pensamiento o idea o imagen de la cabeza de una persona a
otra. Ya deberiamos estar en guardia en contra del malentendido cuando “obtenemos
requerimientos”. Wittgenstein también muestra que nuestra habilidad para entendernos del todo
no surge de definiciones compartidas, surge de una experiencia compartida, de una forma de
vida. Esto puede ser una razén por la cual los programadores que estan inmersos en su dominio
del problema tienden a hacerlo mejor que aquellos que estan fuera de ello.

Lakoff y Johnson nos presentan un catalogo de “Metaforas por la que vivimos”, sugiriendo que
el lenguaje es ampliamente metaférico, y que esas metaforas ofrecen una percepciéon de como
podemos entender el mundo. Incluso los términos aparentemente concretos, como “flujo de
efectivo”, que podriamos encontrar en una platica sobre el sistema de finanzas, pueden ser
vistos como metaféricos: “el dinero es un fluido”. ; Como se hace que la metafora influya en la
forma en que pensamos sobre los sistemas que manejan dinero? O podriamos hablar acerca
de capas en una pila de protocolos, como algunos de alto nivel y otros de bajo nivel. Algo
poderosamente metaférico: el usuario esta “arriba” y la tecnologia esta “caida”. Esto expone
nuestro pensamiento acerca de la estructura de los sistemas que construimos. Esto puede
también marcar un flojo habito de pensamiento del que nosotros deberiamos beneficiarnos de
vez en cuando.

Martin Heidegger estudié de cerca la manera en que la gente experimenta herramientas. Los
programadores construyen y usan herramientas, pensamos en ello y creamos, modificamos y
recreamos la herramienta. Las herramientas son objeto de interés para nosotros. Pero para sus
usuarios, como Heidegger muestra en “Being and Time”, una herramienta se convierte en una
cosa invisible entendida sélo en su uso. Para los usuarios las herramientas sélo se convierten
en objetos de interés cuando no funcionan. Esta diferencia en énfasis es Util para tomar en
cuenta cuando la usabilidad esta a discusion.

Eleanor Rosch anul6 el modelo aristotélico de las categorias en las que organizamos nuestra
comprension del mundo. Cuando los programadores preguntan a los usuarios sobre su deseos
para con un sistema, ellos tienden a preguntar las definiciones a través de predicados. Esto es
muy conveniente para nosotros. Los términos en predicado pueden ser convertidos facilmente
en atributos de una clase o columnas en una table. Este tipo de categorias son dificiles de
entender, disjuntas y ordenas. Desafortunadamente, tal y como Rosh mostré en “Natural
Categories” y trabajos posteriores, la gente no entiende el mundo, en general, de esta forma.
Ellos lo entienden en formas basadas en ejemplos. Algunos ejemplos, como los tan llamados

http://97cosas.com/programador/lee-humanidades.html
https://en.wikipedia.org/wiki/Ludwig_Wittgenstein
https://en.wikipedia.org/wiki/Martin_Heidegger
https://en.wikipedia.org/wiki/Eleanor_Rosch

prototipos, son mejores que otros y, por lo tanto, las categorias resultantes son difusas, se
superponen y pueden tener una rica estructura interna. Mientras sigamos insistiendo en
respuestas Aristotélicas seremos incapaces de preguntar a los usuarios las preguntas correctas
sobre su mundo, y estaremos luchando por llegar al comun entendimiento que necesitamos.

Traduccién: Espartaco Palma

55. El linker no es un programa magico.

Autor: Walter Bright

Con una frecuencia depresiva (me sucedio otra vez justo antes de escribir esto), la vision que
tienen muchos programadores sobre el proceso de pasar de cddigo fuente a un ejecutable
estaticamente enlazado en un lenguaje compilado es:

Editar codigo fuente

Compilar el codigo fuente en archivos objeto
Algo magico sucede

Ejecutar ejecutable

NP

El paso 3 es, por supuesto, el paso de enlazado. ¢ Por qué diria una cosa tan atroz? He estado
en soporte técnico por décadas, y tengo las siguientes preguntas una y otra vez:

1. Ellinker dice “def esta definido mas de una vez”.
2. Ellinker dice “abc es un simbolo sin resolver
3. ¢Por qué el ejecutable es tan grande?

Seguido de “;ahora qué hago?”, usualmente mezclado junto con las frases “parece que” y “de
alguna manera”, y un aura de total desconcierto. Son los “parece que” y “de alguna manera” los
que indican que el proceso de enlace es visto como un proceso magico, presumiblemente
entendible sélo por magos y brujos. El proceso de compilado no provoca este tipo de frases,
implicando que los programadores generalmente entienden cémo funcionan los compiladores
0, al menos, qué hacen.

Un linker es un programa muy estlpido, ordinario y directo. Todo lo que hace es concatenar el
codigo y las secciones de datos de los archivos objeto, conectar las referencias a los simbolos
con sus definiciones, empujar simbolos sin resolver fuera de la biblioteca y escribir un
ejecutable. Eso es todo. jSin hechizos! jSin magia! Lo tedioso de escribir un linker es
usualmente decodificar y generar formatos de archivo ridiculamente complicados, pero eso no
cambia la esencia natural de un linker.

Digamos que el linker esta diciendo “def esta definido mas de una vez”. Muchos lenguajes de
programacion, tales como C, C++, y D, tienen ambos, declaraciones y definiciones. Las
declaraciones normalmente van en archivos de encabezados, tales como:

extern int iii;

lo cual genera una referencia externa al simbolo iii . Una definicién, por otro lado, en realidad

establece el almacenamiento para el simbolo, usualmente aparece en el archivo de
implementacion, y luce asi:

http://97cosas.com/programador/linker-no-magico.html

int iii = 3;
¢ Cuantas definiciones puede haber por cada simbolo? Como en la pelicula Highlander, solo

puede haber una. Asi que, ¢qué tal si una definicién de iii aparece en mas de un archivo de
implementacion?

// Archivo a.c

int iii = 3;

// Archivo b.c
double iii(int x) { return 3.7; }

El linker se quejara porque iii esta siendo definido varias veces.

No sélo puede haber uno, debe haber uno. Si iii s6lo aparece como una declaracién, pero
nunca en una definicion, el linkers se quejara sobre iii por ser un simbolo no resuelto.

Para determinar por qué un ejecutable es del tamafio que es, dale un vistazo al archivo de mapa
que los linkers generan opcionalmente. Un archivo de mapa es una lista de todos los simbolos
en el ejecutable junto con sus direcciones. Te dice qué modulos fueron enlazados desde la
biblioteca y el tamafio de cada médulo. Ahora puedes ver de donde viene tanta hinchazon.
Frecuentemente habra maédulos de biblioteca que no tendras idea por qué fueron enlazados.
Para saberlo, quita temporalmente el médulo sospechoso de la biblioteca y vuelve a enlazar. El
error de “simbolo no definido” generado indicara quién esta referenciando ese maédulo.

Aunque no siempre es obvio por qué aparece un mensaje del linker en particular, no hay nada
magico sobre los linkers. La mecanica es directa: son los detalles lo que tienes que averiguar
en cada caso.

Traduccién: Espartaco Palma

56. La longevidad de las soluciones provisionales.

Autor: Klaus Marquardt
¢ Por qué creamos soluciones provisionales?

Tipicamente hay algun problema inmediato que resolver. Puede ser provisional para el equipo
de desarrollo, algunas herramientas que llenan un vacio en la cadena de herramientas. Puede
ser externo, visible al usuario final, como un solucién que aborda la funcionalidad faltante.

En muchos sistemas y equipos encontrards algin software que esta algo desintegrado del
sistema, que es considerado un borrador para ser cambiado en algiin momento, que no sigue
el estandar y las guias que dan forma al resto del cddigo. Inevitablemente oiras a
desarrolladores quejandose sobre esto. Las razones para su creacion son muchas y variadas,
pero la clave para el éxito de una solucién provisional es simple: es Util.

Las soluciones interinas, sin embargo, adquieren inercia (0 momentum, dependiendo de tu
punto de vista) debido a que estan ahi, Utiles y ampliamente aceptadas, no hay necesidad
inmediata para hacer algo mas. Sin embargo, cuando la parte interesada tiene que decidir qué

http://97cosas.com/programador/longevidad-soluciones-provisionales.html

accion agrega mas valor, habra muchos cosas que ranqueen mas algo que la instalacion
apropiada de una solucion provisional. ¢,Por qué? Porque esta ahi, funciona y es aceptada. El
unico lado malo perceptible es que no sigue los estandares seleccionados y directrices elegidas,
excepto en un pequefio nicho del mercado, esto no es considerado como una fuerza
significativa.

Asi que la solucion provisional se mantiene en su lugar. Por siempre.

Y si un problema surge con esa solucién provisional, es poco probable que se provea una
actualizacion que esté en linea con la calidad de produccion aceptable. ¢ Qué hacer? Una rapida
actualizacién en esa solucion provisional a menudo hace el trabajo. Y serd mas comdn que sea
bien recibida. Exhibe las mismas fortalezas que la solucidn provisional inicial... Sélo esta mas
actualizada.

¢ Es esto un problema?

La respuesta depende de tu proyecto, y de su interés personal en las normas del cédigo de
produccion. Cuando los sistemas contienen muchas soluciones provisionales, su entropia o
complejidad interna crece y su mantenibilidad disminuye. Sin embargo, quizas de inicio nuestra
pregunta sea la equivocada. Recuerda que estamos hablando sobre una solucion. Podria no
ser tu solucion preferida —es poco probable que sea la solucién preferida de alguien—, pero es
débil la motivacion para rehacer esta solucién.

¢, Qué podriamos hacer si vemos un problema??

1. Evitar crear una solucion provisional en primer lugar.
2. Cambiar las fuerzas que influencian la decision del Administrador de Proyecto.
3. Dejarlo como esta.

Vamos a examinar estas opciones mas de cerca.

1. Eludir no funciona en la mayoria de los casos. Hay un problema a resolver y los estandares
pasan a ser muy restrictivos. Puedes gastar energia para cambiar los estandares. Una
honorable aunque tediosa tarea... y ese cambio no sera efectivo a tiempo para el problema
actual.

2. Las fuerzas estan arraigadas en la cultura del proyecto, la cual se resiste a cambios
voluntarios. Podria tener éxito en proyectos pequefios —especialmente si sélo eres tu—y
acabas de limpiar el desorden sin preguntar antes. También podria tener éxito si el proyecto
es tan confuso que se ha estancado visiblemente y tomarse algun tiempo para la limpieza
suele ser aceptado.

3. El estatus quo automaticamente aplica si la opcién no lo hace.

Crearas muchas soluciones, algunas seran provisionales, muchas seran utiles. La mejor manera
de superar las soluciones provisionales es hacerlas superfluas, proveer una mas elegante y (til
solucion. Podrias recibir la serenidad de aceptar las cosas que no puedes cambiar, coraje para
cambiar las cosas que puedes y sabiduria para saber la diferencia.

Traduccién: Espartaco Palma

57. Mantén limpia la compilacion.

http://97cosas.com/programador/manten-limpia-compilacion.html

Autor: Johannes Brodwall

¢Alguna vez has visto una lista de advertencias de compilacién del largo de un ensayo sobre
mala codificacion y pensado: “deberia hacer algo al respecto, pero ahora no tengo tiempo”? Por
otro lado, ¢alguna vez has visto esa solitaria advertencia que acaba de aparecer en una
compilacion y simplemente la arreglaste?

Cuando inicio un nuevo proyecto desde cero no hay advertencias, no hay desorden, no hay
problemas. Pero conforme crece la base de cédigo, si no pongo atencién, el desorden, las
costras, las advertencias y los problemas pueden empezar a apilarse. Cuando hay mucho ruido,
es mas dificil encontrar la advertencia que realmente quiero leer entre los cientos de
advertencias que no me importan.

Para hacer las advertencias utiles de nuevo, trato de usar una politica de tolerancia cero a
advertencias desde la compilacién. Incluso si la advertencia no es importante, le hago frente. Si
no es critica, pero aun relevante, la arreglo. Si el compilador advierte sobre una potencial
excepcion de puntero nulo, arreglo la causa, incluso si “sé” que el problema nunca se presentara
en produccioén. Si la documentacién embebida (Javadoc o similar) hace referencia a parametros
gue han sido quitados o renombrados, limpio la documentacion.

Si es algo que realmente no me importa, pregunto al equipo si podemos cambiar nuestra politica
de advertencias. Por ejemplo, encontré que documentando los parametros y un valor de retorno
de un método en muchos casos no agrega ningun valor, asi que no deberia ser una advertencia
si faltan. O al actualizar una nueva versiéon del lenguaje de programaciéon el cédigo que
anteriormente estaba bien ahora emita advertencias. Por ejemplo, cuando Java 5
introdujo generics todo el cédigo antiguo que no especificaba el parametro de tipo generic nos

daba una advertencia. Este es el tipo de advertencias por las que no quiero ser molestado (al
menos, todavia no). Tener un conjunto de advertencias que esta fuera del camino de la realidad
no le sirve a nadie.

Al asegurarme de que la compilaciéon esta siempre limpia no tendré que decidir si una
advertencia es irrelevante cada vez que me la encuentro. Ignorar cosas es un trabajo mental y
necesito deshacerme de todo el trabajo mental innecesario que pueda. Tener una compilacion
limpia también hace facil para alguien mas hacerse cargo de mi trabajo. Si dejo las advertencias,
alguien mas tendra que encontrar qué es relevante y qué no lo es. O simplemente ignorar todas
las advertencias, incluyendo las importantes.

Las advertencias de tu compilador son Utiles. S6lo necesitas deshacerte del ruido para empezar
a notarlas. No esperes hacer esa “gran limpieza”. Cuando alguna aparece y no la quieres ver,
hazle frente de inmediato. También corrige la fuente de la advertencia, suprime esa advertencia
0 corrige las politicas de advertencia de tu herramienta. Mantener limpia la compilacién no se
trata s6lo de mantenerla limpia de errores de compilacion o fallos de pruebas: las advertencias
son también una parte importante y fundamental de la higiene del cddigo.

Traduccién: Espartaco Palma

58. Mejora el cédigo quitandolo.

Autor: Pete Goodliffe

Menos es mas. Es una maxima un poco trillada, pero algunas veces es cierto.

http://97cosas.com/programador/mejora-codigo-quitandolo.html

Una de las mejoras que he hecho en nuestro cédigo base en las Ultimas semanas es eliminar
trozos de él.

Hemos escrito el software siguiendo los principios de XP, incluyendo YAGNI (You Aren’t Gonna
Need It [No vas a necesitarlo]). La naturaleza humana es asi, inevitablemente nos quedamos
cortos en unos pocos lugares.

Observé que el producto estaba tomando demasiado tiempo para ejecutar ciertas tareas, tareas
sencillas que deberian ser casi instantdneas. Esto era porque estaban sobreimplementadas;
adornadas con campanas y silbatos adicionales que no eran requeridos, pero que en ese
momento parecian una buena idea.

Simplifiqué el cédigo, mejorando el rendimiento del producto y reduciendo el nivel de entropia
global del cédigo al quitar las caracteristicas infractoras del codigo base. Afortunadamente, mis
Pruebas Unitarias me dijeron que no habia roto nada durante la operacion.

Una experiencia sencilla y completamente satisfactoria.

Asi que ¢por qué termind ahi ese codigo innecesario? ¢Por qué un programador sintié la
necesidad de escribir codigo adicional y como paso la ultima revision o el proceso entre pares?
Es casi seguro que sucediod algo como esto:

e [Era un poco de diversion extra y el programador queria escribirlo. (Sugerencia: escribir
codigo porque agrega valor, no porque te divierte).

e Alguien penso6 que podria ser necesario en el futuro, asi que sintié que era mejor escribirlo
ahora. (Sugerencia: esto no es YAGNI. Si no lo necesitas en este momento, no lo escribas
ahora mismo).

e No parecia ser un gran “extra”, asi que era mas facil implementarlo en vez de regresar con
el cliente para ver si era requerido. (Sugerencia: siempre toma mas tiempo escribir y
mantener cddigo adicional. Y el cliente siempre esta disponible. Una partecita extra de
cédigo se vuelve una bola de nieve en descenso con el paso del tiempo, convirtiéndose en
una gran parte de trabajo que necesita ser mantenido).

e EIl programador inventd requisitos adicionales que no fueron documentados, ni discutidos
para justificar la funcién adicional. El requerimiento era en realidad falso. (Sugerencia: los
programadores no establecen los requerimientos del sistema; el cliente si).

¢En qué trabajas ahora mismo? ¢ Es todo necesario?

Traduccién: Espartaco Palma

59. Mensaje al futuro.

Autor: Linda Rising

Quizas sea porque la mayoria de ellos son personas inteligentes, pero en todos estos afios he
ensefiado y trabajado codo a codo con programadores, parece que muchos piensan que debido
a que los problemas con que estuvieron luchando eran dificiles, entonces las soluciones deben
ser dificiles de entender y mantener para todos (quizas incluso para ellos mismos unos cuantos
meses después de que el cddigo haya sido escrito

http://97cosas.com/programador/mensaje-al-futuro.html

Recuerdo un incidente con Joe, un estudiante en mi clase de estructuras de datos, quien habia
venido a mostrarme lo que él habia escrito.

—iTe apuesto que no puedes adivinar qué hace! —qgritd. —Estas en lo correcto —estuve de
acuerdo, sin gastar mucho tiempo en su ejemplo e imaginandome cOmo conseguir un importante
mensaje de esto—. Estoy segura de que has estado trabajando duro en esto. Me imagino, sin
embargo, que no has olvidado nada importante. Dime, Joe, ¢tienes un hermano menor? —Si.
iClaro que si! jPhil! El esta en tu clase de introduccion. jEsta aprendiendo a programar también!
—anuncio Joe orgullosamente. —Eso esta muy bien —repligué—. Me imagino que él pudo leer
este codigo. —jDe ninguna manera! —dijo Joe—. jEsto es algo dificil! —Solo supdén —sugeri—
que éste es un codigo de trabajo real y que en unos pocos afios Phil sera contratado para hacer
una actualizacion de mantenimiento. ¢ Qué has hecho con él?

Joe me mir6 parpadeando.

—Sabemos que Phil es realmente inteligente, ¢verdad? —Joe asintio—. Y odio decirlo, pero
isoy bastante inteligente también! —Joe sonri6—. Asi que si no puedo entender facilmente lo
que has hecho aqui y tu muy inteligente hermano menor probablemente se rompa la cabeza
con esto, ¢,qué significa eso de lo que has escrito?

Joe mird su cédigo un poco diferentemente, me parecio.

—¢ Qué tal esto? —sugeri con mi mejor voz de “soy tu amigable mentor"—. Piensa en cada
linea de cddigo que has escrito como un mensaje para alguien en el futuro, alguien que podria
ser tu hermano menor. Pretende que estas explicandole a esta persona inteligente como
resolver el dificil problema. ¢Es esto lo que te gustaria imaginar? Que un programador
inteligente en el futuro vea tu cédigo y diga: “{Wow! jEsto es geniall! Puedo entender
perfectamente qué ha hecho aquiy estoy impresionado, qué elegante, no, espera, qué hermosa
pieza de codigo es ésta. Voy a mostrarselo a los otros muchachos de mi equipo. jEsta es una
obra maestral. Joe, ¢crees que podrias escribir un cédigo que resuelva este dificil problema,
pero sea tan bello que cantaria? Si, igual que una melodia inquietante. Creo que cualquiera que
pueda llegar con la muy dificil solucién que tienes aqui también podria escribir algo hermoso.
Hmmm... me pregunto si deberia empezar a calificar la belleza. ; Tu qué crees, Joe?

Joe tomo su trabajo y me mird, una pequefia sonrisa se asomo en su cara.
—Lo entiendo, prof, me retiro a hacer un mundo mejor para Phil. Gracias.

Traduccién: Espartaco Palma

60. No solo aprendas el lenguaje, entiende su cultura.

En preparatoria tuve que aprender un idioma extranjero. En ese momento pensé que siendo
bueno en inglés podria arreglarmelas, asi que escogi dormir por tres afios en las clases de
francés. Unos afios mas tarde fui a Tunez de vacaciones. El arabe es la lengua oficial ahi y, al
ser una antigua colonia francesa, el francés es también de uso general. El inglés se habla sélo
en zonas turisticas. Debido a mi ignorancia linguistica, me encontraba confinado en la piscina
leyendo Finnegans Wake, de James Joyce, un tour de formas y lenguaje. Una mezcla Iudica de
mas de cuarenta idiomas, fue sorprendente, aunque una agotadora experiencia. Darme cuenta
de cémo mezclar palabras y frases extranjeras le dio al autor nuevas formas de expresarse es
algo que he mantenido conmigo en mi carrera como programador.

En su libro, The Pragmatic Programmer (EI Programador Pragmatico), Andy Hunt y Dave
Thomas nos animan a aprender un nuevo lenguaje de programacion cada afio. He intentado
vivir de acuerdo con su consejo y a lo largo de los afios he tenido la experiencia de programar
en muchos lenguajes. La leccion mas importante de mis aventuras como poliglota es que se
necesita algo mas que soélo aprender la sintaxis para aprender por completo el lenguaje:

http://97cosas.com/programador/no-aprendas-lenguaje-entiende-su-cultura.html

necesitas entender su cultura. Puedes escribir Fortran en cualquier lenguaje, pero para aprender
un lenguaje tienes que adoptarlo. No pongas excusas si tu codigo en C# es un largo método
Main con muchos métodos de ayuda, en vez de ello, aprende por qué las clases tienen sentido.
No te apenes si la pasas dificil entendiendo las expresiones lambda usadas en lenguajes
funcionales, obligate a usarlas

Una vez que hayas aprendido las trabas de un nuevo lenguaje, te sorprenderas al empezar a
usar lenguajes que ya sabias de nuevas maneras. Aprendi cémo usar eficazmente

los delegates en C# programando en Ruby, liberar todo el potencial de l0s generics de .NET

me dio ideas de cémo podria hacer mas utiles los generics de Java y LINQ hizo facil
enseflarme Scala.

También tendras un mejor entendimiento de disefio de patrones al moverte entre diferentes
lenguajes. Los programadores de C encuentran que C# y Java han méas comercial el patron
iterador. En Ruby y otros lenguajes dindmicos es posible seguir utilizando el patrén visitor, pero
tu implementacién no se parecera al ejemplo del libro de La Banda de los 4.

Algunos podrian argumentar que Finnegans Wake es imposible de leer, mientras que otros lo
aplaudiran por su belleza estilistica. Para hacer el libro una lectura un poco menos temible, hay
traducciones disponibles en un lenguaje Unico. Irdbnicamente, la primera traducciéon fue en
francés. Con la codificacion es similar en muchos sentidos. Si escribes cédigo Wake con un
poco de Python, algo de Java y un toque de Erlang, tus proyectos seran un desastre. Si exploras
un nuevo lenguaje para expandir tu mente y obtener ideas frescas sobre como puedes
solucionar las cosas de manera diferente, entonces encontraras que el codigo que escribes en
tu tan confiable lenguaje se hace mas hermoso por cada nuevo lenguaje que has aprendido.

Traduccioén: Espartaco Palma

61. No claves tu programa en la posicion vertical.
Una vez escribi una parodia de un test de C++ y satiricamente sugeria la siguiente estrategia
de manejo de excepciones:

Al realizar un monton de constructos try.catch a través de tu codigo base,

podemos, algunas veces, prevenir que nuestra aplicacion aborte. Creemos
que el estado resultante es “clavar el cuerpo en posicion vertical”.

Dejando a un lado la frivolidad, realmente estaba resumiendo una leccién que recibi de Dofa
Amarga Experiencia. Era una clase base de nuestra aplicacion, una biblioteca de C++ hecha en
casa. El cédigo habia sido manoseado por muchos programadores en los Ultimos afios.
Contenian cédigo para lidiar con todas las excepciones de escape de todo lo demés. Tomando
el ejemplo de Yossarian de Catch-22, decidimos o, mejor dicho, sentimos (decidir implicaba,
mas bien, pensarlo que estar en la construccion de este monstruo) que una instancia de esta
clase deberia vivir para siempre o morir en el intento.

Al final, interconectamos multiples manejadores de excepciones. Mezclamos excepciones
estructuradas de Windows con las nativas (¢recuerdas try.catch en C++? Yo tampoco).

Cuando las cosas se caian inesperadamente, tratabamos de llamarlas de nuevo, presionando
los pardmetros cada vez mas fuerte. Mirando atrds, me gustaria pensar que al escribir un
manejador interno de try...catch dentro de una clausula catch de otra, una especie de conciencia
se apoder6 de mi para haber tomado accidentalmente la ruda ruta de las buenas practicas en
la aromatica pero insalubre via de la locura. De cualquier modo, probablemente es sabiduria
retrospectiva.

https://es.wikipedia.org/wiki/Iterador_%28patr%C3%B3n_de_dise%C3%B1o%29
https://es.wikipedia.org/wiki/Iterador_%28patr%C3%B3n_de_dise%C3%B1o%29
https://es.wikipedia.org/wiki/Visitor_%28patr%C3%B3n_de_dise%C3%B1o%29
http://www.amazon.com/Design-patterns-elements-reusable-object-oriented/dp/0201633612
http://97cosas.com/programador/no-claves-programa.html
http://en.wikipedia.org/wiki/Yossarian

No necesito decir que cualquier cosa que estuviera mal en las aplicaciones basadas en esta
clase se desvanecia como victimas de la Mafia en el muelle, sin dejar atras algun rastro Gtil en
las burbujas que indicara qué demonios habia sucedido, a pesar de las rutinas de volcado que
supuestamente grabarian el desastre. Eventualmente —un largo eventualmente— hicimos un
balance de lo que habiamos hecho, y experimentamos vergiienza. Reemplazamos todo el lio
con un mecanismo de informe minimo y robusto. Pero esto fue como ver muchos accidentes en
la carretera.

No te molestaré mas con esto —seguramente nadie mas podria haber sido tan estipido como
nosotros lo fuimos—, excepto una discusion en linea que tuve recientemente con un individuo,
cuyo titulo académico declar6 que debia saberlo mejor. Estdbamos discutiendo cédigo Java en
una transaccién remota. Si el cddigo fallaba, él argumentaba, deberia capturar y bloquear la
excepcion in situ. (“¢Y entonces qué haria con ello?”, pregunté. “; Cocinarlo para la cena?”).

Cito la regla del disefiador de Ul: NUNCA DEJES QUE EL USUARIO VEA UN REPORTE DE
EXCEPCION, como si esto resolviera el asunto, poniéndolo en mayusculas y todo lo demas.
Me preguntaba si era el responsable del cddigo de una de esas pantallas azules de los cajeros
automaticos, cuyas fotos decoran los blogs mas endebles, y habia sido traumatizado
permanentemente.

De cualquier modo, si llegas a verlo, asienta con la cabeza y sonrie, no le hagas caso, mientras
te deslizas hacia la puerta.

Traduccién: Espartaco Palma

62. No confies en el “Aqui sucede la maqia”.

Autor: AlanGriffiths

Si nos fijamos en cualquier actividad, proceso o disciplina, desde lo lejano parece simple. Los
gerentes sin experiencia en el desarrollo piensan que lo que hacen los programadores es
sencillo, y los programadores sin experiencia en administracion piensan lo mismo sobre lo que
hacen los gerentes.

La programacion es algo que algunas personas hacen, por algun tiempo. Y la parte dificil —
pensar— es la menos visible y la menos apreciada por los no iniciados. Durante décadas ha
habido muchos intentos de quitar la necesidad de esta habilidad cognoscitiva. Uno de los
primeros y mas memorables es el esfuerzo de Grace Hopper por hacer los lenguajes de
programacién menos cripticos; algunos predijeron que quitaria la necesidad de programadores
especializados. El resultado (COBOL) ha contribuido a los ingresos de muchos programadores
especializados durante las décadas siguientes.

La vision persistente de que el desarrollo de software se puede simplificar al quitar la
programacion es, para el programador que entiende de lo que se trata, obviamente ingenua. Sin
embargo, el proceso mental que conduce a este error es parte de la naturaleza humana y los
programadores son tan propensos a realizarlo como cualquiera.

En cualquier proyecto hay muchas cosas en las que un programador no esté involucrado
activamente: obtener requerimientos de los usuarios, conseguir la aprobacion del presupuesto,
configurar el servidor de produccion, implementar la aplicacién a los ambientes de QA y
produccion, migrar el negocio desde los viejos procesos o programas, etc.

Cuando no estéas involucrado activamente en estas cosas existe una tendencia inconsciente a
asumir que son sencillas y que las cosas suceden “por arte de magia”. Mientras la magia siga

http://97cosas.com/programador/no-confies-magia.html

ocurriendo todo esta bien. Pero cuando —esto sucede “cuando” y no “si’— la magia se detiene,
el proyecto esté en problemas.

He conocido proyectos que pierden semanas de desarrollo porque nadie entiende como se
confia en la version “correcta” de un DLL que estd siendo cargado. Cuando las cosas
empezaron a fallar intermitentemente los miembros del equipo miraban a cualquier otra parte
antes de que alguien notara que una version “equivocada” del DLL habia sido cargada.

Otro departamento estaba funcionando sin problemas, proyectos enviados a tiempo, no mas
sesiones de depuracion nocturna, no arreglos de emergencia. Tan tranquilamente, de hecho,
que la Alta Gerencia decidid que las cosas “corrian por si mismas” y lo podria hacer sin el
administrador de proyectos. En los siguientes seis meses los proyectos en el departamento se
veian tan bien como en el resto de la organizacion: retrasados, con errores y siendo parchados
continuamente.

No tienes que entender toda la magia que sucede en tu proyecto, pero no esta de mas entender
algo de ella, o apreciar a aquellos que entienden las partes que tu no.

Mas importante, asegurate de que cuando la magia se detenga, pueda ser iniciada de nuevo.

Traduccioén: Espartaco Palma

63. jNo ignores ese error!.

Autor: Pete Goodliffe

Una tarde, estaba caminando por la calle para verme con unos amigos en un bar. No habiamos
compartido una cerveza en algun tiempo y queria verlos de nuevo. Con las prisas, no miré por
dénde iba. Tropecé con el borde de una esquina y cai de bruces . Bueno, me lo merecia por no
poner atencién, supongo.

Me dolia la pierna, pero tenia prisa por ver a mis amigos. Asi que me levanté y segui. Conforme
caminaba el dolor se ponia cada vez peor. A pesar de que al inicio lo desestimaba como una
conmocién, me di cuenta rapidamente de que habia algo mal.

Pero me apresuré hacia el bar de todos modos. Estaba en agonia en el momento en que llegué.
No tuve una gran noche, porque estaba terriblemente distraido. En la mafana fui al médico y
me enteré de que me habia fracturado el hueso de la espinilla. De haberme detenido cuando
senti el dolor, habria prevenido un montén del dafio adicional que me causé por seguir
caminando. Probablemente fue el peor dia-después de mi vida.

Muchos programadores escriben codigo como mi desastrosa salida en la noche.

¢Error, cual error? No va a ser grave. Honestamente. Puedo ignorarlo. Esta no es una estrategia
ganadora para un codigo sélido. De hecho, es pura flojera (de la mala). No importa que tan poco
probable creas que es un error en tu cédigo, siempre debes revisarlo y tomarlo en cuenta. Todas
las veces. No estas ahorrando tiempo si no lo haces: estas almacenando problemas potenciales
en el futuro.

Reportamos errores en nuestro codigo de distintas formas, incluyendo:

e (Codigos de Retorno. Pueden ser usados como valores resultantes de una funciéon para
significar “no funciond”. Los cédigos de error son bastante faciles de ignorar. No veras nada
en el cédigo que resalte el problema. De hecho, se ha convertido en una practica estandar

http://97cosas.com/programador/no-ignores-error.html

ignorar algunos retornos de valores de las funciones estandares de C. ¢(Qué tan
frecuentemente revisas el valor de retorno de printf ?

e errno. Es una curiosa aberracion de C, un conjunto de variables globales para sefialar
errores. Es facil ignorarlas, dificiles de usar y da lugar a todo tipo de problemas
desagradables; por ejemplo, ¢,qué pasa cuando tienes multiples hilos llamando a la misma
funcién? Algunas plataformas te aislan del dolor aqui; otras no.

e EXxcepciones. Son una forma mas soportada por los lenguajes estructurados para sefialar
y manipular errores. Y puedes ignorarlos. ¢ O no? He visto muchos cédigos como estos:

° try {

° // ...do something...

° }

° catch (...) {} // ignore errors

La salvacién en este horrible constructo es que resalta el hecho de que estas haciendo algo
moralmente dudoso.

Si ignoras un error, te haces de la vista gorda y haces de cuenta que nada ha pasado, corres
un gran riesgo; asi como mi pierna terminé en un peor estado por no haber dejado de caminar
inmediatamente, a pesar de que conduce a una falla muy compleja, enfrenta los problemas lo
antes posible. Mantén una cuenta breve.

No manejar errores conduce a:

e Cadigo fragil. Cédigo que se llena con errores excitantes y dificiles de encontrar.

e Cadigo inseguro. Los crackers frecuentemente explotan los pobres manejos de errores para
irrumpir en los sistemas de software.

e Estructura pobre. Si es un tedio enfrentar continuamente los errores que hay en tu cédigo,
probablemente tengas una pobre interfaz. Expresa tu interfaz de tal manera que los errores
sean menos intrusivos y su manejo sea menos 0neroso.

Al igual que debes comprobar todos los posibles errores en tu cddigo, necesitas exponer todas
las condiciones potenciales de error en tus interfaces. No ocultarlos, pretendiendo que tus
servicios siempre funcionaran.

¢Por qué no comprobamos si hay errores? Hay un serie de excusas comunes. ¢,Con cual de
ellas estas de acuerdo? ¢Coémo contrarrestar cada una?

e Elmanejo de errores estorba el flujo del codigo, haciéndolo dificil de leer y dificil de detectar
en el flujo “normal” de ejecucion.

e Esun trabajo extra y tengo la fecha de entrega inminente.
e Sé que esa llamada de funcibn nunca retornard un error (printf Siempre

funciona, malloc siempre retorna nueva memoria); si falla tenemos problemas mayores.
e Es sblo un programa de juguete y no necesita ser escrito con un nivel digno de produccion.

Traduccién: Espartaco Palma

64. No seas lindo con tus datos de prueba.

Autor: Rod Begbie

Se estaba haciendo tarde. Estaba tirando cosas en un repositorio de datos para probar el disefio
de péagina en el que estaba trabajando.

Me apropié de los miembros de The Clash para los nombres de usuario. ¢Nombres de
empresas? Los titulos de las canciones de Sex Pistols servirian. Ahora necesito algunos
simbolos de la bolsa de valores, sélo cuatro letras en mayusculas.

Usé las palabras de cuatro letras.

Parecia inofensivo. Sélo algo para divertirme, y quizds también a los otros desarrolladores el
dia siguiente antes de enlazarlo a fuentes de datos reales. La mafiana siguiente un gerente de
proyecto tomd algunas capturas de pantallas para una presentacion.

La historia de la programacién esta llena de este tipo de cuentos de guerra. Cosas que los
desarrolladores y disefiadores hicieron “y que nadie mas veria”, las cuales inesperadamente se
vuelven visibles.

El tipo de fuga puede variar, pero, cuando sucede, puede ser mortal para la persona, equipo o
compainiia responsables. Los ejemplos incluyen:

e Durante una junta para revision de estatus, un cliente hace clic en un botén que todavia no
ha sido implementado. El mensaje dice: “No hagas clic en eso de nuevo, idiota”. .

e Aun programador de mantenimiento de un sistema heredado se le habia dicho que afadiera
un mensaje de error y decidio usar la salida de registros “detras de la escena” existentes
para lograrlo. Los usuarios repentinamente se enfrentaban con mensajes como: “jSantos
errores de base de datos, Batman!”, cuando algo se descomponia.

e Alguien confundi6 las pruebas con la interfaz de administracién en vivo y hace una entrada
de datos “graciosos”. Los clientes detectaron un “Masajeador personal con forma de Bill
Gates” de $1 milléon de dolares a la venta en su tienda en linea.

Como para apropiarnos del viejo adagio de “una mentira puede viajar por la mitad del mundo
mientras la verdad se esta poniendo los zapatos”, en estas fechas y épocas una metedura de
pata puede ser tuiteada y facebookeada antes de que cualquiera de los desarrolladores de la
zona horaria esté despierto para hacer algo al respecto.

Incluso tu codigo fuente no esta necesariamente libre del escrutinio. En 2004, cuando un
comprimido del codigo fuente de Windows 2000 se abrié camino en las redes de intercambio
de archivos, algunos muchachos lo revisaron en busca de profanidad, insultos y otros
comentarios graciosos (el comentario // TERRIBLE HORRIBLE NO DIOS QUE MAL HACK,
debo admitir, jse vuelve adecuado para mi de vez en cuando desde entonces!).

En resumen, cuando escribas cualquier texto en tu cédigo —ya sea comentarios, registros,
mensajes o datos de prueba— siempre preglntate a ti mismo como se vera si se convierte en
algo publico. Esto te ahorrard, todo el tiempo, algunas caras rojas.

Traduccién: Espartaco Palma

http://97cosas.com/programador/no-seas-lindo-pruebas.html

65. No te repitas.

Autor: Steve Smith

De todos los principios de programacion, No te Repitas (Don’t Repeat Yourself, DRY) es quizas
uno de los fundamentales. El principio fue formulado por Andy Hunt y Dave Thomas en The
Pragmatic Programmer y subyace a muchas otras bien conocidas buenas précticas y disefios
de patrones en software. El desarrollador que aprende a reconocer la duplicaciéon y entiende
cémo eliminarla, a través de una abstraccion practica y apropiada, puede producir c6digo mucho
mas limpio que quien infecta continuamente la aplicacion con repeticidén innecesaria.

La duplicidad es un desperdicio

Cada linea de cédigo que va en una aplicacion se debe mantener y es una fuente potencial de
futuros errores. La duplicacion infla innecesariamente el codigo base, dando lugar a mas
oportunidades para los errores y agregando complejidad accidental al sistema. El atasco que la
duplicacion agrega al sistema también hace mas dificil para los desarrolladores que trabajan
con el sistema el completo entendimiento del sistema entero, o de tener la certeza de que los
cambios realizados en un lugar no necesitan también ser hechos en otros lugares que duplican
la I6gica de lo que se esta trabajando. DRY requiere que “cada pieza de conocimiento debe
tener una representacion Unica, inequivoca y autorizada en el sistema”.

Cambiar repeticion en llamadas de
procedimiento por automatizacion

Muchos de los procesos en el desarrollo del software son repetitivos y facilmente automatizados.
El principio DRY se aplica en estos contextos tan bien como en el codigo fuente de la aplicacion.
Las pruebas manuales son lentas, propensas al error y dificiles de repetir, por lo que, si es
posible, deberian usarse los conjuntos de pruebas automatizadas. Integrar software puede
tomar mucho tiempo y ser propenso al error si se hace manualmente, por lo que el proceso de
construccion debera ser ejecutado tan frecuente como sea posible, idealmente en cada check-
in. Donde sea que existan esos dolorosos procesos que puedan ser automatizados, deben ser
automatizados y estandarizados. La meta es asegurarse de que sélo hay una manera de llevar
a cabo la tarea, y que ésta sea lo menos dolorosa posible.

Cambiar repeticion en la logica por
abstraccion

La repeticién en la logica puede tomar muchas formas. Copiar-pegar logica de un if-

then 0 switch-case es uno de los casos mas comunes de detectar y corregir. Muchos patrones
de disefo tiene la meta especifica de reducir o eliminar la duplicacion en la légica de una
aplicacion. Si un objeto usualmente requiere que varias cosas sucedan antes de que pueda ser
utilizado, esto se puede lograr con una Abstract Factory O Method Factory . Si un objeto tiene
muchas variaciones posibles en su comportamiento, estos comportamientos pueden ser
inyectados con el patron de Estrategia en vez de largas estructuras if- then. De hecho, la
formulacion de patrones de disefio es un intento de reducir la duplicacién del esfuerzo necesario

http://97cosas.com/programador/no-te-repitas.html

para resolver problemas comunes y discutir dichas soluciones. Adicionalmente, DRY puede ser
aplicado a estructuras, tales como esquemas de base de datos, resultando en la normalizacién.

Una cuestion de principio

Otros principios de software también estan relacionados con DRY. El principio “Uno y Sélo Uno”,
el cual aplica al comportamiento funcional del cédigo, puede ser pensado como un subconjunto
de DRY. El principio “Abierto/Cerrado”, el cual estipula que “las entidades de software deben
estar abiertas para la extension, pero cerradas para la modificacion”, sélo funciona en la practica
cuando se sigue el DRY. Del mismo modo, el bien conocido Principio de la Responsabilidad
Unica (SPR), que requiere que una clase tenga “una Unica razén para cambiar’, se basa en
DRY.

Cuando se sigue en estructura, l6gica, procesos y funciones, el principio provee una guia
fundamental para los desarrolladores de software y ayuda a la creacién de aplicaciones mas
simples, mas faciles de mantener y de alta calidad. Si bien hay escenarios en los cuales la
repeticion puede ser necesaria para cumplir con el indice de rendimiento u otros requerimientos
(por ejemplo, desnormalizacion en base de datos), esto deberia ser usado sélo donde aplique
directamente un problema real en vez de uno imaginario.

Traduccioén: Espartaco Palma

66. No tengas miedo de romper cosas.

Autor: Mike Lewis

Todos los que tiene experiencia en el sector indudablemente han trabajado en un proyecto en
el que el cédigo base era, en el mejor de los casos, precario. El sistema es factorizado
pobremente y cambiar alguna cosa siempre lleva a descomponer otra caracteristica no
relacionada. Cada vez que se aflade un médulo, la meta del programador es cambiar lo menos
que sea posible, y contener la respiracion durante cada lanzamiento. Esto es el equivalente de
jugar Jenga con vigas de acero en un rascacielos, y se dirige a un desastre.

La razon por la que realizar cambios es tan destroza-nervios se debe a que el sistema esta
enfermo. Necesita un médico, de lo contrario su condicién s6lo empeorara. Ya sabes lo que
estd mal en tu sistema, pero tienes miedo de romper los huevos para hacer tu omelet. Un
cirujano experto sabe que deben hacerse cortes para operar, pero también sabe que esos cortes
son temporales y se curan. El resultado final de la operacion bien vale el dolor inicial y el paciente
debe sanar y estar en un mejor estado del que tenia antes de la operacion.

No tengas miedo de tu cédigo. ¢ A quién le importa si algo se rompe temporalmente mientras
mueves las cosas? Un miedo paralizante a los cambios es lo que tiene a tu proyecto en este
estado, de entrada. Invertir el tiempo para refactorizar se pagard por si mismo varias veces
durante el tiempo de vida de tu proyecto. Un beneficio adicional es que la experiencia de tu
equipo al lidiar con el sistema enfermo los hace expertos en saber cémo deberia funcionar.
Aplica este conocimiento en vez de resentirte. Trabajar con un sistema que odias es algo en lo
gue nadie deberia gastar su tiempo.

Redefine las interfases internas, reestructura modulos, refactoriza codigo copiado-pegado y
simplifica tu disefio reduciendo dependencias. Puedes reducir significativamente la complejidad
del cédigo eliminando “casos limite”, que, a menudo, resultan de caracteristicas incorrectamente
acopladas. Realiza lentamente la transicion de la vieja estructura a la nueva, haciendo pruebas

http://97cosas.com/programador/no-tengas-miedo-de-romper-cosas.html

en el camino. Tratar de realizar una larga refactorizacion en “un gran golpe” causara suficientes
problemas como para hacerte considerar abandonar todo el esfuerzo a la mitad del camino.

Sé el cirujano que no tiene miedo a cortar las partes enfermas para hacer espacio a la cura. La
actitud es contagiosa e inspirard a otros a empezar en los proyecto de limpieza que han estado
posponiendo. Mantén una lista de “higiene” de las tareas que el equipo siente que valen la pena
para el bien general del proyecto. Convence a la administracion de que, a pesar de que estas
tareas podrian no producir resultados visibles, reduciran los gastos y agilizaran las futuras
versiones. Nunca dejes de preocuparte por la “salud” general del codigo.

Traduccién: Espartaco Palma

67. {No togues ese codigo!.

Autor: Cal Evans

Nos ha pasado a todos en algiin momento. Tu codigo fue llevado al servidor de staging para las
pruebas del sistema y el director de pruebas te lo regresa diciendo que tiene un problema. Tu
primera reaccion es “rapido, déjame arreglarlo, sé qué esta mal”.

En un sentido mas amplio, sin embargo, lo que estd mal es que como desarrollador creas que
deberias tener acceso al servidor de staging.

En la mayoria de los ambientes de desarrollo basado en web la arquitectura puede fragmentarse
asi:

e Desarrollo local y pruebas unitarias en la maquina del desarrollador.

e Servidor de desarrollo, en el que se realizan las pruebas de integracion, manuales o
automaticas.

e Servidores de staging, en el cual el equipo de Control de Calidad y los usuarios realizan las
pruebas de aceptacion.

e Servidor de produccion.

Si, hay otros servidores y servicios salpicados por ahi, como el control de cédigo fuente
(SCC, Source Code Control) y el sistema de tickets, pero tienes la idea. Usando este modelo,
un desarrollador —incluso un desarrollador experimentado— nunca deberia tener acceso mas
alla del servidor de desarrollo. La mayor parte del desarrollo es hecho en la maquina del
desarrollador usando su mezcla favorita de IDE, maquinas virtuales y una apropiada cantidad
de magia negra para la buena suerte.

Una vez que el codigo se envia al SCC, ya sea automatica o manualmente, deberia ser pasado
al servidor de desarrollo, en el cual puede ser probado y ajustado, si es necesario, para
asegurarse de que todo funciona. A partir de este momento, sin embargo, el desarrollador es
un espectador en el proceso.

El director de staging deberia empaquetar y desplegar el codigo al servidor de staging del
equipo de Control de Calidad. Asi como los desarrolladores deberian no tener acceso a nada
mas alla del servidor de desarrollo, el equipo de Control de Calidad y los usuarios no tienen
necesidad de tocar nada en el servidor de desarrollo. Si esta listo para las pruebas de

http://97cosas.com/programador/no-toques-ese-codigo.html

aceptacion, libéralo y envialo, no pidas al usuario “mirar algo muy rapido” en el servidor de
desarrollo. Recuerda, a menos que estés codificando el proyecto tl solo, que otras personas
tienen codigo ahi y podria no estar listo para lo mire el usuario. El encargado de liberaciones es
la Unica persona que deberia tener acceso a ambos.

Bajo ninguna circunstancia —nunca, en lo absoluto— debe un desarrollador tener acceso al
servidor de produccion. Si hay algun problema, el personal de soporte deberia solucionarlo o
requerir que lo arreglen. Después de enviarlo al SCC, ellos pasaran un parche desde ahi.
Algunos de los mayores desastres de programacion de los que he sido parte han tenido lugar
porque alguien ejeeemmmyoeejeeemm viol6 esta Ultima regla. Si esta descompuesto,
produccion no es el lugar para arreglarlo..

Traduccién: Espartaco Palma

68. Los numeros de punto flotante no son reales.

Autor: Chuck Allison

Los numeros de punto flotante no son “numeros reales” en el sentido matematico, a pesar de
que son llamados reales en algunos lenguajes de programacion, como Pascal y Fortran. Los
ndmeros reales tienen una precisién infinita y son, por lo tanto, continuos y sin pérdidas; los
numeros de punto flotante tiene precision limitada, por lo que son finitos, y son recordados como
enteros “con mal comportamiento”, porque no son estan espaciados uniformemente a través de
su espacio de distribucion.

Para ilustrarlo, asigna 2147483647 (el nUmero mas grande en un entero de 32 hits) a una
variable float de 32 bits (digamos x) e imprimelo. Veras 2147483648. Ahora imprime x - 64 .

Aln 2147483648. Ahora calcula x - 65 y jobtendras 2147483520! ¢Por qué? Porque la

separacion entre flotantes adyacentes en ese rango es de 128 y las operaciones de punto
flotante se redondean al punto flotante mas cercano.

Los numeros de punto de flotante de la IEEE son nimeros de precision fija basados en notacion
cientifica de base 2: 1.d,d,...d,, x 2¢, donde p es la precision (24 para float , 53 para double).

El espaciamiento entre dos nimeros consecutivos es 2**, |o cual puede ser aproximado con
seguridad a €|x|, donde ¢ es el épsilon de la maquina (2»).

Conocer el espaciamiento en los vecinos de un nimero de punto flotante puede ayudarte a
evitar errores numeéricos clasicos. Por ejemplo, si estas realizando un célculo iterativo, como
buscar la raiz de una ecuacién, no tiene sentido buscar una precisién mas grande que el sistema
numeérico puede darte en la cercania de la respuesta. Asegurate que la tolerancia que pides no
es menor que el espaciado ahi; de otro modo haras un bucle infinito.

Debido a que los nimeros de punto flotante son aproximaciones de los ndimeros reales,
inevitablemente hay un pequefio error presente. Este error, llamado redondeo, puede llevarnos
a errores sorpresivos. Por ejemplo, cuando sustraes nimeros cercanamente iguales, los digitos
mas significativos se cancelan entre si, entonces lo que era el digito menos significativo (donde
reside el error de redondeo) es promovido a la posicion mas significativa en el resultado de
punto flotante, contaminando esencialmente cualquier cémputo relacionado (un fenémeno
conocido como smearing). Necesitas mirar muy de cerca tus algoritmos para prevenir esa
cancelacion catastrofica. Para ilustrarlo, considera resolver la ecuacion x2 - 100000x + 1 = Ocon
la férmula cuadratica. Como los operandos en la expresion -b + sqrt(b? - 4) son cercanamente

http://97cosas.com/programador/numeros-punto-flotante.html

iguales en magnitud, puedes en su lugar computar la raizr, = -b - sqgrt(b?-4), y entonces
obtener r, = 1/r,, como en cualquier ecuacion cuadratica, axz + bx + ¢ = 0, entonces la raiz
satisface rir, = ¢ /a.

El smearing puede ocurrir incluso en formas mas sutiles. Supén una libreria que ingenuamente
computa excon la férmula 1 + x + x¥/2 + x33! + ... Esto funciona bien para una x positiva, pero
considera qué pasa cuando x es un niumero negativo grande. Los términos impares potenciados
resultan en un ndmero positivo grande y sustrayendo las magnitudes de pares potenciados ni
se veran afectados en el resultado. El problema aqui es que el redondeo en los grandes términos
positivos esta a un digito de posicion de la mas grande significancia que la verdadera respuesta.
iLa respuesta difiere hacia positivo infinitamente! La solucién aqui también es simple: para una
X negativa, computa e* = 1/ ew,

No podemos irnos sin decir que no deberias usar numeros de punto flotante para aplicaciones
financieras, para eso son las clases decimales en lenguajes como Python y C#. Los niUmeros
de punto flotante son para un cémputo cientifico eficiente. Pero la eficiencia es indtil sin
precision, jasi que recuerda la fuente de los errores de redondeo y codifica en consecuencia!

Traduccién: Espartaco Palma

69. Oportunidades perdidas del Poliformismo.

Autor: Kirk Pepperdine

El polimorfismo es una de las grandes ideas fundamentales de la Orientacion a Objetos (OO).
La palabra, tomada del griego, significa muchas (poli) formas (morfos). En el contexto de
programacion el polimorfismo se refiere a las muchas formas de una clase particular de objetos
0 métodos. Pero el polimorfismo no es simplemente sobre implementaciones alternativas.
Usado con cuidado, crea diminutos contextos de ejecucién que nos dejan trabajar sin la
necesidad de detallados bloques if-then-else. Estar en un contexto nos permite hacer lo correcto
directamente, mientras que estar fuera del contexto nos obliga a reconstruirlo para entonces
poder hacer lo correcto. Con el uso cuidadoso de implementaciones alternadas podemos
capturar el contexto que nos ayude a producir menos cédigo que sea mas leible. Esto se
demuestra mejor con algo de cédigo, como el siguiente (e irreal) carrito de compras:

public class ShoppingCart {
private ArrayList<Item> cart = new ArraylList<Item>();
public void add(Item item) { cart.add(item); }
public Item takeNext() { return cart.remove(@); }
public boolean isEmpty() { return cart.isEmpty(); }

}

Digamos que nuestra compra en linea ofrece elementos que pueden ser descargados y
elementos que necesitan ser enviados. Vamos a construir otro objeto que soporte estas
operaciones:

public class Shipping {

public boolean ship(Item item, SurfaceAddress address) { ... }

http://97cosas.com/programador/oportunidades-perdidas-polimorfismo.html

public boolean ship(Item item, EMailAddress address { ... }

}
Cuando un cliente ha completado la compra, necesitamos enviar los bienes:

while (!cart.isEmpty()) {

shipping.ship(cart.takeNext(), ???);

}

El parametro ?2?? no es algun nuevo operador Elvis, esta preguntado si deberia enviar correo

electronico o correo normal. El contexto necesario para responder la pregunta ya no existe.
Pudimos haber capturado el método de envio en un boleano o en un enum y entonces usar

un if-then- else para llenar el parametro faltante. Otra solucion seria crear dos clases, en las
cuales ambas extiendan Item. Llamémosle DownloableItem y SurfaceItem.Ahora vamos a
escribir algo de cédigo. Promoveré Item para que sea una interfaz que soporte un Unico
método: ship . Para enviar el contenido del carrito haremos una llamada a item.ship(shipper) .
Ambas clases DownloadbleItem Yy SurfaceItem implementaran ship .

public class DownloadableItem implements Item {
public boolean ship(Shipping shipper) {

shipper.ship(this, customer.getEmailAddress());

public class SurfaceItem implements Item {
public boolean ship(Shipping shipper) {

shipper.ship(this, customer.getSurfaceAddress());

}

En este ejemplo hemos delegado la responsabilidad de trabajar con shipping en cada Item.
Debido a que cada item sabe cémo es mejor que sea enviado, este arreglo nos permite estar
con él sin la necesidad de un if-then-else. El cédigo también demuestra un uso de dos

patrones que frecuentemente actian juntos: Command y Double Dispatch. El uso efectivo de
estos patrones reside en un uso cuidadoso del polimorfismo. Cuando esto suceda habra una
reduccion del nimero de bloques if-then-else en nuestro cédigo.

Si bien hay casos en los que es mucho mas practico utilizar if-then- else en vez del
polimorfismo, es mas frecuente el caso en el cual un estilo de codigo mas polimérfico dara lugar

https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Double_dispatch

a un codigo base mas pequefio, mas facil de leer y menos fragil. El nimero de oportunidades
perdidas es un simple conteo de declaraciones if-then-else en nuestro cdigo.

Traduccién: Espartaco Palma

70. El paso de mensajes lleva a una mejor escalabilidad en sistemas
paralelos.

Autor: Russel Winder

A los programadores se les ensefia desde el primer momento de sus estudios en computacion
que la concurrencia -y especialmente el paralelismo, un subconjunto especial de la
concurrencia— es dificil, que soélo los mejores pueden tener la esperanzas de hacerlo bien y que
incluso se equivocan. Siempre hay una gran atencion a threads, semaforos, monitores y lo dificil
que es obtener el acceso simultaneo a variables para ser seguro en threads.

Es cierto, hay muchos problemas dificiles, y pueden ser muy dificiles de resolver. Pero, ¢,cudl
es la raiz del problema? Memoria compartida. Casi todos los problemas de concurrencia que la
gente tiene una y otra vez se relacionan con el uso de memoria compartida mutable: race
conditions, deadlocks, livelock, etcétera. La respuesta parece obvia: jrenunciar a la
concurrencia o abstenerse de la memoria compartida!

Olvidar la concurrencia casi seguramente no es una opcion. Las computadoras tienen mas y
mas nucleos de manera casi trimestral, por lo que el aprovechamiento de cierto paralelismo se
hace mas y mas importante. No nos podemos confiar tanto en cada incremento de la velocidad
del procesador para mejorar el rendimiento de nuestra aplicacion. Obviamente, no mejorar el
rendimiento es una opcién, pero es poco probable que sea aceptable para los usuarios.

Entonces, ¢podemos evitar la memoria compartida? Definitivamente.

En vez de usar threads y memoria compartida como nuestro modelo de programacion, podemos
usar procesos Yy el paso de mensajes. Los procesos aqui sélo significan un estado protegido e
independiente con cédigo ejecutandose, no necesariamente un proceso del sistema operativo.
Lenguajes como Erlang (y Occam antes de él) han mostrado que los procesos son un exitoso
mecanismo para la programacion de sistemas concurrentes y paralelos. Tales sistemas no
tienen todo el estrés de sincronizacion que la memoria compartida y los sistemas de multi-
thread tienen. Mas aln, hay un modelo formal —Proceso de Comunicacién Secuencial (CSP,
por sus siglas en inglés [Communicating Sequential Processes])— que puede ser aplicado como
parte de la ingenieria de tales sistemas.

Podemos ir méas alla e introducir sistemas de flujo de datos como una forma de computacion.
En un sistema de flujo de datos no hay un flujo de control explicitamente programado. En vez
de eso se configura un grafo directo de operadores conectados por rutas de datos y entonces
los datos son alimentados al sistema. La evaluacion es controlada por la disponibilidad de los
datos dentro del sistema. Definitivamente sin problemas de sincronizacion.

Dicho todo esto, lenguajes como C, C++, Java, Python y Groovy son el principal lenguaje del
desarrollo de sistemas y todos ellos son presentados a los programadores como lenguajes para
desarrollo de memoria compartida, sistemas de multi-thread. Entonces, ¢,qué se puede hacer?
La respuesta es utilizar —o, si no existen, crear— bibliotecas y frameworks que proporcionan
modelos de procesos y paso de mensajes, evitando todo el uso de memoria compartida
mutable.

http://97cosas.com/programador/paso-mensajes-mejor-escalabilidad.html
http://97cosas.com/programador/paso-mensajes-mejor-escalabilidad.html

Después de todo, no programar con memoria compartida y usar en vez de eso paso de
mensajes es probablemente la forma mas exitosa de implementar sistemas que aprovechan el
paralelismo que es ahora endémico en el hardware de computacion. Quizas extrafiamente, pero
a pesar de que los procesos son anteriores a los threads como unidad de concurrencia, el futuro
parece estar en usar threads para implementar procesos.

Traduccién: Espartaco Palma

71. Pensando en estados.

Autor: Niclas Nilsson

La gente en el mundo real tiene una rara relaciéon con los estados. Esta mafiana me paré en la
tienda local preparandome para otro dia de convertir cafeina en codigo. Debido a que mi forma
favorita de hacerlo es tomando un latte, al no encontrar leche me dijo la empleada:

—Disculpa, estamos super-dupe mega faltos de leche.

Para un programador, eso es una sentencia rara. Puedes tener leche o no. No hay escalas
cuando se trata de estar sin el lacteo. Quizas ella estaba tratando de decirme que les faltara
leche por una semana, pero el resultado era el mismo: dia de espresso para mi.

En muchas situaciones del mundo real, la actitud relajada de la gente con los estados no es un
problema. Sin embargo, desafortunadamente, muchos programadores son también algo
despistados con respecto a los estados y eso si es un problema.

Considere una tienda de ventas en linea que sélo acepta tarjetas de crédito y que no factura a
los clientes, tiene una clase orden conteniendo este método:

public boolean isComplete() {

return isPaid() && hasShipped();

}

Razonable, ¢no es asi? Bueno, incluso si la expresion es amablemente extraida en un método
en vez de copiar-pegar en todos lados, la expresion no deberia existir del todo. El hecho es que
si resalta un problema. ¢Por qué? La orden no puede ser enviada antes de que sea pagada.
Por lo tanto, hasshipped no puede ser verdadero a menos que isPaid sea verdadero, lo cual
hace parte de la expresion redundante. Por cuestiones de claridad puedes querer ailn
el iscomplete en el codigo, pero entonces deberia verse como esto:

public boolean isComplete() {

return hasShipped();

}

En mi trabajo veo todo el tiempo ambas: revisiones faltantes y revisiones redundantes. Este
ejemplo es pequefio, pero cuando agregas cancelaciones y reembolso, esto se vuelve mas
complejo y la necesidad de un buen manejo de estados se incrementa. En este caso, una orden
puede estar sélo en uno de tres distintos estados:

e En progreso: puede agregar o remover elementos. No se puede enviar.

http://97cosas.com/programador/pensando-en-estados.html

e Pagado: no puede agregar o remover elementos. Puede ser enviado.
e Enviado: Terminado. No se aceptan mas cambios.

Estos estados son importantes y necesitas revisar que estés en el estado esperado antes de
realizar operaciones, y que tu sélo puedas moverte a un estado legal desde donde estas. En
resumen, tienes que proteger tus objetos cuidadosamente, en los lugares correctos.

Sin embargo, ¢como empezar a pensar en estados? Extrayendo expresiones significativas a
los métodos es un buen inicio, pero es s6lo un comienzo. Las bases estan en entender
las maquinas de estados. Se que puedes tener malos recuerdos de tus clases de Ciencias
Computacionales, pero déjalos atras. Las maquinas de estados no son especialmente dificiles.
Visualizalas para hacerlas simples de entender y faciles de hablar de ellas. Haz tu codigo Test-
drive para desentrafiar los estados validos e invalidos, las transiciones y mantenlas correctas.
Estudia el patron State. Cuando te sientas comodo, lee sobre Disefio por Contrato. Esto ayuda
a asegurarte un estado apropiado al validar los datos de entrada y los objetos por si mismos al
entrar y salir de cada método publico.

Si tu estado no es correcto, hay un bug y estas en riesgo de tirar a la basura datos si no abortas.
Si encuentras que las revisiones de estado son ruidosas, aprende cémo usar una herramienta
de generacion de codigo, weaving o aspectos para ocultarlos. Independientemente del enfoque
que elijas, pensar en estados hara que tu cédigo sea mas simple y mas robusto.

Traduccién: Espartaco Palma

72. Pon todo bajo Control de Versiones.

Autor: Diomidis Spinellis

Pon todo lo que tienen tus proyectos bajo control de versiones. Los recursos que nhecesitas
estan ahi: herramientas libres como Subversion, Git, Mercurial y CVS; abundante espacio en
disco; servidores baratos y poderosos; una red ubicua; e incluso servicios de hospedaje de
proyectos. Después de instalar el software de control de versiones todo lo que necesitas para
poner tu trabajo en su repositorio es ejecutar el comando apropiado en un directorio limpio que
contenga tu codigo. Y sélo hay dos nuevas operaciones basicas por aprender: enviar el cambio
en tus codigos al repositorio y actualizar tu directorio de trabajo a la version del repositorio.

Una vez que el proyecto esta bajo el control de versiones es obvio que puedes rastrear su
historia, ver quién ha escrito qué codigo, y referir una version del archivo o proyecto a través de
un identificador Unico. Mas importante, puedes hacer grandes cambios sin miedo; no mas
codigo comentado, sélo en caso de que lo necesites en el futuro, porque la versién anterior vive
de manera segura en el repositorio. Puedes (y deberias) etiquetar una versién de software con
un nombre simbdlico, asi podras revisitarlo en el futuro en la version exacta del software que tu
cliente ejecuta. Puedes crear ramificaciones de desarrollo paralelo: la mayoria de los proyectos
tienen una rama de desarrollo activo y una o varias mas de mantenimiento de versiones
publicadas que son apoyadas activamente.

Un sistema de control de version minimiza la friccion entre desarrolladores. Cuando los
programadores trabajan en partes diferentes del software esto se integra casi por arte de magia,;
cuando se empalma el codigo el sistema lo nota y permite que resuelvan los conflictos. Con un
poco de configuracién adicional el sistema puede notificar a todos los desarrolladores de cada
cambio enviado, estableciendo un entendimiento comun sobre el progreso del proyecto.

https://es.wikipedia.org/wiki/Aut%C3%B3mata_finito
https://en.wikipedia.org/wiki/State_pattern
https://en.wikipedia.org/wiki/Design_by_Contract
https://en.wikipedia.org/wiki/Program_transformation
http://97cosas.com/programador/pon-todo-bajo-control-de-versiones.html

Al configurar el proyecto no seas tacafio: coloca todos los activos del proyecto bajo control de
versiones. Ademas del cddigo fuente, incluye la documentacion, herramientas, scripts de
creacion, casos de prueba, obras de arte, e incluso bibliotecas. Con el proyecto completo y
seguro en el repositorio (respaldado regularmente) se reduce al minimo el dafio de perder tu
disco o datos. Configurar el ambiente de desarrollo en una maquina nueva consiste simplemente
en traerse el proyecto desde el repositorio. Esto simplifica la distribucion, construccion y las
pruebas de cddigo en diferentes plataformas: en cada maquina un simple comando de
actualizacion se asegurara que el software esta en la version actual.

Una vez que ha visto la belleza de trabajar con un sistema de control de versiones, seguir unas
cuantas reglas hara que tl y tu equipo sean mas eficaces:

e Enviar cada cambio l6gico en una operacion separada. Agrupar muchos cambios hara dificil
desenredarlo en el futuro. Esto es especialmente importante al hacer una refactorizacion en
todo el proyecto o cambios de estilo, los cuales pueden oscurecer otras modificaciones.

e Acompafar cada envio con un mensaje explicativo. Como minimo describir brevemente lo
gue ha cambiado, pero si también deseas grabar la justificacion del cambio, entonces éste
es el mejor lugar para almacenarlo.

e Por ultimo, no enviar cédigo que rompa la construccion de un proyecto, de lo contrario se
volvera impopular con los otros desarrolladores del proyecto.

La vida bajo un control de versién es demasiado buena como para arruinarla con errores
facilmente evitables.

Traduccioén: Espartaco Palma

73. Da preferencia a tipos de Dominio Especifico gue los tipos primitivos.

Autor: Einar Landre

El 23 de septiembre de 1999 el Mars Climate Orbiter de U$327.6 millones se perdié mientras
entraba a la 6rbita alrededor de Marte, debido a un error del software aqui en la Tierra. Error
que mas tarde fue llamado de “métrica mixta”. El software de la estacion en tierra estaba
trabajando en libras, mientras que la nave esperaba newtons, llevando a la estacion a
subestimar el poder de los propulsores de la nave en un factor de 4.45.

Este es uno de los muchos ejemplos de fallas de software que se pudo haber prevenido, si se
hubiera aplicado un tipado mas fuerte y de dominio especifico. Es también un ejemplo del
razonamiento detras de muchas caracteristicas del lenguaje Ada, uno de sus principales metas
de disefio era implementar software de seguridad critica embebida. Ada estaba
fuertemente tipado con revisiones estaticas de ambos: tipos primitivos y tipos definidos por el
usuario.

type Velocity_In_Knots is new Float range 0.0 .. 500.00;

type Distance_In_Nautical Miles is new Float range 0.0 .. 3000.00;

http://97cosas.com/programador/preferencia-tipos-dominio-especifico.html

Velocity: Velocity_In_Knots;

Distance: Distance_In_Nautical Miles;

Some_Number: Float;

Some_Number:= Distance + Velocity; -- Serd capturado por el compilador como un error de t
ipos.

Los desarrolladores en dominios menos demandantes también se deberian beneficiar aplicando
mas tipadode dominio especifico, en el que pudieran, de otro modo, continuar usando tipos de
datos primitivos ofrecidos por el lenguaje y sus librerias, tales como cadenas y flotantes. En
Java, C++, Python y otros lenguajes modernos, los tipos de datos abstractos son conocidos
como clases. Usar clases como velocity In Knots Yy Distance_In_Nautical Miles agrega
mucho valor con respecto a la calidad del cédigo:

e EIl cbdigo se vuelve mas legible conforme expresa conceptos de un dominio, no solo
flotantes o cadenas.

e El codigo se vuelve mas testeable conforme encapsula su comportamiento, asi es
facilmente probado.

e El cddigo facilita la reutilizacién a través de aplicaciones y sistemas.

El enfoque es igualmente valido para usuarios de ambos lenguajes de tipo estatico y dinamico.
La Unica diferencia es que los desarrolladores que usan lenguajes de tipado estéatico obtienen
mas ayuda desde el compilados, mientras aquellos que adoptan lenguajes de tipado dindmico
es mas comun que confien en sus pruebas unitarias. El estilo de revisién podria ser diferente,
pero la motivacion y estilo de expresion no.

La moraleja es iniciar explorando los tipos de dominio especifico con el fin de desarrollar
software de calidad.

Traduccién: Espartaco Palma

74. Preocupate por el codigo.

Autor: Pete Goodliffe

No hace falta ser Sherlock Holmes para saber que los buenos programadores escriben buen
cbdigo. Los malos programadores... no. Ellos producen monstruosidades que el resto de
nosotros tenemos que limpiar. ¢ T4 quieres escribir las cosas buenas, verdad? Quieres ser un
buen programador.

El buen cédigo no rebota en el aire. No es algo que pasa por suerte cuando los planetas se
alinean. El buen cédigo tiene que ser trabajado, duramente. Y sélo obtendras buen cédigo si te
preocupas por un buen cédigo.

http://97cosas.com/programador/preocupate-por-el-codigo.html

La buena programacion no nace de la mera competencia técnica. He visto programadores
altamente intelectuales que pueden producir intensos e impresionantes algoritmos, que conocen
su lenguaje estandar de corazén, pero que escriben el codigo mas horrible. Es doloroso de leer,
doloroso de usar y doloroso de modificar. He visto programadores mas humildes que se
adhieren a un cédigo muy sencillo, pero que escriben programas elegantes y expresivos, y es
placentero trabajar con ellos.

Basado en mis afios de experiencia en la fabrica de software, he concluido que la verdadera
diferencia entre programadores adecuados y grandes programadores es esta: actitud. Los
buenos programadores se dedican a tomar un enfoque profesional y quieren escribir el mejor
software que puedan, aln con las limitaciones y presiones de la fabrica de software del mundo
real.

El cddigo del infierno estd empedrado de buenas intenciones. Para ser un excelente
programador tienes que estar mas arriba de las buenas intenciones y realmente preocuparte
por el codigo, fomentar perspectivas positivas y desarrollar actitudes sanas. El gran cddigo es
cuidadosamente confeccionado por maestros artesanos, no hackeado irreflexivamente por
programadores flojos o erigido misteriosamente por autoproclamados gurus del cédigo.

Ta quieres escribir buen cédigo. Quieres ser un buen programador. Entonces, te preocupas por
el codigo:

e En cualquier situacion de codificacion, te rehldsas a hackear algo que sdélo parece que
funciona. Te esfuerzas para elaborar un codigo elegante que es claramente correcto (y
tienes buenas pruebas para mostrar que es correcto).

e [Escribes cddigo que es descubrible (que otros programadores pueden tomarlo y entenderlo
facilmente), que es mantenible (que tu u otros programadores seran capaz de modificarlo
facilmente en el futuro) y que es correcto (tomas todas las medidas posibles para determinar
que has solucionado el problema, no s6lo hacer que parezca que el programa funciona).

e Trabajas bien junto con otros programadores. Ningln programador es una isla. Pocos
programadores trabajan solos; la mayoria trabaja en un equipo de programadores, ya sea
en un entorno empresarial o en un proyecto de cddigo abierto. Consideras a los otros
programadores y construyes codigo que otros pueden leer. Deseas que el equipo escriba
el mejor software posible, en lugar de hacerte lucir inteligente.

e Cada vez que tocas una pieza de coédigo te esfuerzas en dejarlo mejor que como lo
encontraste (ya sea mejor estructurado, mejor probado, mas entendible).

e Te preocupas por el cédigo y la programacién, asi que estas aprendiendo constantemente
nuevos lenguajes, idiomas y técnicas. Pero sélo los aplicas cuando es apropiado.

Afortunadamente, estas leyendo esta coleccién de consejos porque te preocupas por el codigo,
te interesa, es tu pasion. Te diviertes programando. Disfrutas cortar cédigo para solucionar
problemas dificiles. Produces software que te hace sentir orgulloso.

Traduccién: Espartaco Palma

75. El Principio de Responsabilidad Unica.

http://97cosas.com/programador/el-mito-del-guru.html
http://97cosas.com/programador/pruebas-son-rigor-ingenieril.html
http://97cosas.com/programador/escribe-codigo-mantenerlo-por-vida.html
http://97cosas.com/programador/regla-boy-scout.html
http://97cosas.com/programador/regla-boy-scout.html
http://97cosas.com/programador/no-aprendas-lenguaje-entiende-su-cultura.html
http://97cosas.com/programador/no-aprendas-lenguaje-entiende-su-cultura.html
http://97cosas.com/programador/aprende-lenguaje-extranjero.html
http://97cosas.com/programador/principio-responsabilidad-unica.html

Autor: Uncle Bob

Uno de los principios fundamentales de un buen disefio es: relina las cosas que cambian por la
misma razon y separe aquellas cosas que cambian por diferentes razones.

Este principio es conocido también como el Principio de la Responsabilidad Unica o SRP (por
sus siglas en inglés). En definitiva, se dice que un subsistema, médulo, clase o incluso una
funcion no debe tener mas de una razén para cambiar. El ejemplo clasico es una clase que tiene
métodos relacionados con reglas de negocio, reportes y base de datos:

public class Empleado {
public Money calculaPago() ...
public String reportaHoras() ...
public void guardar() ...

}

Algunos programadores podrian pensar que poner estas tres funciones en la misma clase es
perfectamente apropiado. Después de todo, se supone que las clases son colecciones de
funciones que operan sobre las variables comunes. Sin embargo, el problema es que las tres

funciones cambian por razones totalmente distintas. La funciéon calculaPago cambiara cada vez
que las reglas de negocio para calcular el pago cambien. La funcidn reportaHoras cambiara
cada vez que alguien quiera otro formato para el informe. La funcién guardar cambiara cada

vez que los DBA cambien el esquema de base de datos. Estas tres razones de cambio se
combinan para hacer a Empleado muy volatil. Cambiara por alguna de estas razones. Mas

importante aun, las clase que depende de Empleado sera afectadas por estos cambios.

El buen disefio de sistemas significa que separamos el sistema en componentes que pueden
ser implementados de forma independientemente. La implementacion independiente significa
que si cambiamos un componente no tenemos que volver a implementar alguno de los otros.
Sin embargo, si Empleado €s muy utilizado por muchas otras clases en otros componentes,

entonces es probable que cada cambio a Empleado cause que los otros componentes tengan

que volverse a implementar; negando asi el mayor beneficio del disefio de componentes (o
SOA, si se prefiere un nombre mas de moda).

public class Empleado {

public Money calculaPago() ...

public class ReporteadorEmpleado {

public String reportHora(Empleado e) ...

public class RepositorioEmpleado {

public void guardar(Empleado e) ...

}

La simple division mostrada arriba resuelve estos problemas. Cada una de estas clases se
puede colocar en un componente para si mismas. O, mejor dicho, todos las clases de reporteo
pueden ir en el componente de reporteo. Todas las clases relacionadas con base de datos
pueden estar en el componente de repositorios. Y todas las reglas de negocios pueden entrar
en el componente de reglas de negocio.

El lector astuto vera que aln existen dependencias en la solucién anterior. Ese Empleado adn
depende de las otras clases. Si se modifica Empleado, €s probable que las otras clases se

tengan que volver a compilar e implementar. Por lo tanto Empleado no se puede modificar y

después implementar independientemente. Sin embargo, las otras clases pueden ser
modificadas e implementadas independientemente. Ninguna modificacion de alguna clase
puede forzar a cualquiera de los otras a ser recompiladas o reimplementadas.
Incluso Empleado podria ser implementada independientemente a través de un uso cuidadoso

del Principio de Inversion de Dependencias (DIP), pero eso es un tema para otro libro.

La aplicacién cuidadosa del SRP, separando las cosas que cambian por diferentes razones, es
una de las claves para la creacion de disefios que tienen una estructura de componentes de
implementacion independientemente.

Traduccién: Espartaco Palma

76. Programa en pareja y siente el flujo.

Autor: Gudny Hauknes, Ann Katrin Gagnat, y Kari Rgssland

Imagina que estas totalmente absorto en lo que estas haciendo, enfocado, dedicado e
involucrado. Pudiste haber perdido el rastro del tiempo. Probablemente te sientas feliz. Estas
experimentando el flujo. Es dificil alcanzar y mantener el flujo de todo el equipo de
desarrolladores debido a que hay tantas interrupciones, interacciones y otras distracciones que
puede ser roto facilmente.

Si ya has practicado la programacion en pareja, probablemente estas familiarizado con cémo el
emparejamiento contribuye al flujo. Si no lo estas, jqueremos usar nuestras experiencias para
motivarte a comenzar ahora mismo! Para tener éxito con la programacion en pares tanto los
miembros individuales del equipo y el equipo como un todo tienen que poner algo de esfuerzo.

Como miembro de un equipo, sé paciente con los desarrolladores menos experimentados que
td. Enfrenta tus miedos de ser intimidado por desarrolladores mas habiles. Date cuenta de que
la gente es diferente y valéralo. Sé consciente de tus propias fortalezas y debilidades, asi como
las de los otros miembros del equipo. Podrias sorprenderte de cuanto puedes aprender de tus
colegas.

Como equipo, introduce la programacion en pareja para promover la distribucion de habilidades
y conocimiento a través del proyecto. Deberas solucionar tus tareas en parejas y rotar las
parejas y tareas frecuentemente. Acordar una regla de rotacion. Pongan la regla a un lado o
ajustenla cuando sea necesario. Nuestra experiencia es que no necesariamente tienen que

http://www.amazon.com/dp/0135974445/
http://97cosas.com/programador/programa-en-pareja-siente-flujo.html

completar una tarea antes de rotarla a otro par. Interrumpir las tareas para pasarla a otra pareja
puede sonar contradictorio, pero hemos descubierto que funciona.

Existen numerosas situaciones en las que el flujo se puede romper, pero aqui es donde la
programacioén en pareja ayuda a mantenerlo:

e Reduce el “factor camién”: es un experimento mental ligeramente mérbido, pero ¢, cuantos
de tus miembros del equipo tendrian que ser golpeados por un camién antes de que el
equipo sea incapaz de completar la entrega final? En otras palabras, ¢ qué tan dependiente
es tu entrega de ciertos miembros del equipo? ¢ El conocimiento se privilegia o se comparte?
Si has estado rotando las tareas entre las parejas, siempre hay alguien mas que tiene el
conocimiento y puede completar el trabajo. El flujo del equipo no es afectado por el “factor
camion”.

e Soluciona problemas efectivamente: si estas programando en pareja y entras en un
problema dificil, siempre tendras a alguien con quién discutirlo. Este dialogo puede abrir
mas posibilidades que si estas atorado tu solo. Conforme el trabajo se rota, tu solucion sera
revisitada y reconsiderada por el siguiente par, asi que no importa si inicialmente no elegiste
la solucién 6ptima.

e Integra sin problemas: si tu tarea actual consiste en llamar otro fragmento de cédigo,
esperas que los nombres de los métodos, los documentos y las pruebas sean lo
suficientemente descriptivas para darte una idea de lo que hacen. Si no, hacer pareja con
un desarrollador que estaba involucrado en escribir ese cédigo te dara una mejor vista
general e integracion rapida con tu propio cddigo. Adicionalmente, puedes usar la discusion
como una oportunidad para mejorar la nomenclatura, documentos y pruebas.

e Mitiga interrupciones: si alguien viene a preguntar algo, o suena tu teléfono, o tienes que
contestar un correo urgente, o tienes que atender una reunion, tu socio de programacién en
pareja puede quedarse codificando. Cuando regreses, tu socio estara aun en el flujo y
rapidamente lo alcanzaras y te incorporaras a él.

e Los nuevos miembros de equipo aceleran rapidamente: con la programacion en parejas,
y con una adecuada rotacion de pares y tareas, los recién llegados conoceran rapidamente
tanto el codigo como a los otros miembros del equipo.

El flujo te hace increiblemente productivo. Pero también es vulnerable. Haz lo que puedas para
obtenerlo y aférrate a él cuando lo tengas.

Traduccién: Espartaco Palma

77. Prueba el comportamiento requerido, no el comportamiento incidental.

Autor: Kevlin Henney

Una trampa comuln en las pruebas es asumir que lo que hace una implementacion es
precisamente lo que quieres probar. De primera instancia suena mas como una virtud que una
trampa. Sin embargo, expresado de otra manera, el tema se vuelve més obvio: una trampa

http://97cosas.com/programador/prueba-comportamiento-requerido-no-incidental.html

comun es escribir las pruebas para las especificaciones de una implementacion, en las cuales
estas especificaciones son incidentales y no tienen nada que ver con la funcionalidad deseada.

Cuando las pruebas estan amarradas a las implementaciones incidentales, los cambios en la
implementacion son compatibles con el comportamiento requerido y pueden provocar que las
pruebas fallen, conduciéndonos a falsos positivos. Los programadores frecuentemente
responden ya sea reescribiendo los test o reescribiendo el codigo. Asumir que un falso positivo
es realmente un verdadero positivo es frecuentemente una consecuencia de miedo,
incertidumbre o duda. Al reescribir una prueba, los programadores o reenfocan la prueba al
comportamiento requerido (bien) o simplemente lo amarran a la nueva implementaciéon (mal).
Las pruebas necesitan ser lo suficientemente precisas, pero también necesitan ser exactas.

Por ejemplo, en wuna comparacion de tres vias, tales como el strcpmde C o0
el string.compareTo de Java, el requerimiento en el resultado es que es negativo si el lado

izquierdo es menor que el derecho, positivo si el lado izquierdo es mayor que el derecho y cero
si son considerados iguales. Este estilo de comparacion es usado en muchas API, incluido el

comparador de la funcion gsort de Cy el compareTo en lainterfaz comparable de Java. Aunque

los valores especificos -1 y +1 son comUnmente usados en la implementacion para significar
menor-que y mayor-que, respectivamente, los programadores a menudo asumen errébneamente
que estos valores representan el requerimiento actual y consecuentemente escriben pruebas
que clavan esta suposicion en publico.

Un tema similar surge cuando las pruebas que hacen asserts en el espaciado, texto exacto y
otros aspectos del formato de texto y representacion son incidentales. A menos que estés
escribiendo, por ejemplo, un generador XML que ofrece un formateo configurable, el espaciado
no deberia ser significativo en la salida. Del mismo modo, amarrar el posicionamiento de
botones y etiquetas en controles de Interfaz de Usuario (Ul) reduce la opcién de cambio y refina
estas incidencias en el futuro. Los cambios menores en la implementacion, asi como los
cambios insignificantes en el formato se convierten de repente en cosas que rompen la
compilacion.

Las pruebas sobre-especificadas son frecuentemente un problema con enfoques de “caja
blanca” en las pruebas unitarias. Las pruebas de “cajas blanca” usan la estructura del codigo
para determinar los casos de prueba necesarios. La tipica falla en las pruebas de “caja blanca”
es que las pruebas terminan afirmando que el codigo hace lo que tiene que hacer. El sélo reiterar
lo obvio no agrega valor y conduce a una falsa sensacién de progreso y seguridad.

Para ser eficaces, las pruebas necesitan establecer obligaciones contractuales en lugar de
parlotear la implementacion. Necesitan tomar una visién de “caja negra” en las pruebas unitarias
a probar, esbozando los contratos de la interfaz de manera ejecutable. Y, asi, alinear el
comportamiento probado con el comportamiento requerido.

78. Prueba precisa y concretamente.

Autor: Kevlin Henney

Es importante probar el comportamiento deseado y esencial de una unidad de cédigo, en vez
de probar el comportamiento incidental de su implementacion en particular. Pero esto no
deberia ser tomado, o mal tomado, como una excusa para las pruebas vagas. Las pruebas
necesitan ser exactas y precisas.

Como ejemplo ilustrativo podemos tomar el caso intentado y probado mdltiples veces, siendo
ya todo un clasico: las rutinas de ordenamiento. Implementar un algoritmo de ordenamiento no

http://es.wikipedia.org/wiki/FUD
http://es.wikipedia.org/wiki/FUD
http://97cosas.com/programador/prueba-precisa-concretamente.html
http://97cosas.com/programador/prueba-comportamiento-requerido-no-incidental.html

es necesariamente una tarea diaria de un programador, pero el ordenamiento es una idea tan
familiar que mucha gente cree saber qué esperar de ello. Esta familiaridad casual, sin embargo,
puede hacer dificil ver mas alla de ciertos supuestos.

Cuando se le pregunta a los programadores “;qué es lo que probarias?”, la respuesta mas
comun y, por mucho, es “el resultado del ordenamiento es una secuencia ordenada de
elementos”. A pesar de que es verdad, no es toda la verdad. Cuando se les pide una condicién
mas precisa, muchos programadores agregan que la frecuencia resultante debe ser de la misma
longitud que el original. A pesar de que es correcto, aln no es suficiente. Por ejemplo, dada la
siguiente secuencia:

314159
La siguiente secuencia satisface una poscondicion de estar ordenado de manera no-
descendiente y teniendo la misma longitud que la secuencia original:

333333

A pesar de que satisface las especificaciones, jesto es también algo a lo que ciertamente no
nos referiamos! Este ejemplo esta basado en un error tomado de un cédigo de produccion real
(afortunadamente capturado antes de que fuera liberado), en el cual un simple desliz de un
teclazo o un lapso momentaneo del razonamiento nos lleva a un elaborado mecanismo de llenar
el resultado entero con el primer elemento de alguna matriz.

La poscondicion completa es que el resultado esté ordenado y que tenga una permutacion de
los valores originales. Esto restringe apropiadamente el comportamiento requerido. Que la
longitud del resultado sea el mismo que el de la longitud de la entrada viene con ello y no
necesita ser reiniciado.

Aun estipular la poscondicion en la manera descrita no es suficiente para darte una buena
prueba. Una buena prueba debe ser leible. Debe ser comprensible y suficiente como para que
leyéndola puedas ver si es correcta (0 no). A menos que ya tengas codigo por ahi para checar
que una secuencia se ordenay que esa secuencia contiene una permutacion de valores en otra,
es muy probable que el cddigo de prueba sea mas complejo que el cédigo a probar. Como Tony
Hoare observa: “Hay dos manera de construir un disefio de software: una manera es hacerlo
tan simple que obviamente no hay deficiencias y la otra es construirlo tan complicado que no
hay deficiencias obvias”.

Usando ejemplos concretos eliminamos esta complejidad accidental y oportunamente por
accidente. Por ejemplo, dada la siguiente secuencia:

314159

El resultado del ordenamiento es el siguiente:

113459

Ninguna otra respuesta lo sera. No aceptes sustitutos.

Los ejemplos concretos ayudan a ilustrar el comportamiento general de una manera accesible
y no ambigua. El resultado de agregar un item a una coleccion vacia no es simplemente que no
esté vacia: es que la coleccion ahora tiene un elemento y que ese elemento es el item agregado.
Dos 0 mas elementos calificarian como no vacio. Y estaria mal. Un s6lo elemento de un valor
diferente también estaria mal. El resultado de agregar una fila a una tabla no es simplemente
que la tabla es una fila més grande. Esto también implica que la llave para la fila puede ser
usada para recuperar la fila agregada. Y asi por el estilo.

Al especificar el comportamiento, las pruebas deberian ser simplemente exactas: también
deben ser precisas.

Traduccién: Espartaco Palma

79. Haz pruebas mientras duermes (y los fines de semana).

Autor: Rajith Attapattu

Tranquilo. No me refiero a centros de desarrollo a larga distancia, horas extra en fin de semana
o trabajar de noche. En vez de ello, quiero llamar tu atencién sobre la cantidad de poder de
cémputo que tenemos a disposicidn. Especificamente, cuanto no estamos aprovechando para
hacer nuestras vidas como programadores un poco mas faciles. ¢Constantemente estas
teniendo dificultades para tener suficiente poder de computo durante la jornada de trabajo? Si
es asi, ¢qué estan haciendo tus servidores de prueba fuera de las horas de trabajo normal? A
menudo estan sin carga durante la noche y los fines de semana. Puedes usar eso a tu favor.

e ¢ Te has sentido culpable de confirmar un cambio sin ejecutar todas las pruebas? Una de
las razones principales de que los programadores no ejecutan los conjuntos de pruebas
antes de hacer commit al codigo se debe a la cantidad de tiempo que puede tomar. Cuando
las fechas limite se avecinan y la presién acecha, los humanos naturalmente empezamos a
tomar atajos. Una forma de abordar esto es romper los largos conjuntos de pruebas en dos
0 mas perfiles. Uno pequefio, un perfil de pruebas obligatorio que sea rapido de ejecutar, te
ayudara a asegurarte de que las pruebas se ejecuten antes de cada commit. El total de lo
perfiles (incluyendo el perfil obligatorio, s6lo para estar seguros) puede ser automatizado
para ejecutarse durante la noche, listo para reportar los resultados en la mafana.

e ¢ Has tenido suficiente oportunidad de poner a prueba la estabilidad de tu producto? Las
pruebas de mas larga duracion son vitales para identificar fugas de memoria y otros
problemas de estabilidad. Rara vez se ejecutan durante el dia, ya que consumen tiempo y
recursos. Puedes automatizar una carga de prueba durante la noche y una un poco mas
larga durante el fin de semana. Del viernes 6.00 PM hasta las 6.00 AM del siguiente lunes
hay 60 horas de tiempo potencial para las pruebas.

e (Estas obteniendo tiempo de calidad en tu entorno de pruebas de rendimiento? He visto
altercados entre equipos para tener tiempo en estos entornos. En la mayoria de los casos
ningun equipo obtiene tiempo de calidad durante el dia, mientras que el ambiente esta
virtualmente inactivo durante las horas posteriores. Los servidores y la red no esta ocupados
durante la noche o los fines de semana. Es el momento ideal para ejecutar algunas pruebas
de rendimiento de calidad.

e (Hay demasiadas permutaciones de pruebas manuales? En muchos casos tu producto esta
destinado a ser ejecutado en una variedad de plataformas. Por ejemplo, en 32 y 64 bits, en
Linux, Solaris y Windows, o simplemente en diferentes versiones del mismo sistema
operativo. Para empeorar las cosas, muchas aplicaciones modernas son expuestas a una
plétora de mecanismos de transporte y protocolos (HTTP, AMQP, SOAP, CORBA,
etcétera). Probar manualmente todas estas permutaciones consume mucho tiempo vy
comUnmente se realizan cerca de una fecha de liberacion debido a la presion de recursos.
Por desgracia, puede ser demasiado tarde en el ciclo para capturar desagradables errores.

http://97cosas.com/programador/pruebas-fin-de-semana.html

Las pruebas automatizadas que se ejecutan durante la noche o fin de semana aseguraran que
todas estas permutaciones son puestas a prueba con mayor frecuencia. Con un poco de
pensamiento y algo de conocimiento de secuencias de comandos (scripting) puedes programar
unos cuantos trabajos cron para poner en marcha algunas pruebas durante la noche y los fines
de semana. Hay también muchas herramientas de prueba por ahi que podrian ser Utiles.
Algunas organizaciones incluso tienen granjas de servidores que turnan servidores a través de
diferentes departamentos y equipos para asegurar que los recursos son utilizados
eficientemente. Si esto esta disponible en tu empresa, puedes enviar las pruebas para que sean
ejecutadas en la noche o durante los fines de semana.

Traduccién: Espartaco Palma

80. Las pruebas son el rigor ingenieril del desarrollo de software.

Autor: Neal Ford

Los desarrolladores aman usar metaforas torturadoras cuando se trata de explicar a los
miembros de su familia, esposas y otros no técnicos qué es lo que hacen. Con frecuencia
recurrimos a la construccion de puentes y otras disciplinas de ingenierias “duras”. Todas estas
metaforas caen rapidamente, sin embargo, cuando intentas presionar hacia a ellas demasiado
duro. Resulta que el desarrollo de software no es como muchas de las otras disciplinas de la
ingenieria, “duras” en muchos aspectos importantes.

Comparado con las ingenierias “duras”, el mundo del desarrollo de software esta en el mismo
lugar donde los constructores de puentes estaban cuando la estrategia comun era construir el
puente y lanzar algo pesado sobre él. Si se mantenia de pie, era un buen puente. Si no, bueno,
era tiempo de regresar a la mesa de dibujo. Durante los dltimos miles de afos, los ingenieros
han desarrollado las matematicas y fisica que usan para una solucién estructural sin tener que
construirlo para ver lo que hace. No tenemos nada como eso en el software, y quizas nunca lo
tendremos, porque el software es, de hecho, algo muy diferente. Para una exploracion profunda
de la comparacion entre “ingenieria” de software y la ingenieria normal, lee el libro “What’s
Software Design”, escrito por Jack Reeves en C++ Journal en 1992, es un clasico. A pesar de
que fue escrito hace casi dos décadas, es alin remarcablemente exacto. El pinté un panorama
sombrio en esta comparacion, pero lo que faltaba en 1992 era una fuerte prueba Ethos para el
software.

Probar cosas “duras” es dificil porque tienes que construirlo para probarlo, lo cual desalienta la
construccion especulativa so6lo para ver qué pasara. Pero el proceso de construccion de
software es ridiculamente barato. Hemos desarrollado todo un ecosistema de herramientas que
hacen que sea facil hacer precisamente eso: pruebas unitarias, objetos de imitacion, arneses
de pruebas y un montén de otras cosas. A otros ingenieros les encantaria ser capaces de hacer
algo y probarlo bajo condiciones realistas. Como desarrolladores de software debemos abrazar
las pruebas como la verificacion primaria (pero no la Gnica) para el software. En lugar de esperar
por algun tipo de célculo de software, ya tenemos las herramientas a nuestra disposicion para
asegurar buenas practicas de ingenieria. Visto de esta manera, ahora tenemos municiones
contra los directivos que dicen: “No tenemos tiempo para pruebas”. Un constructor de puentes
nunca escuchara de su jefe: “No te molestes en hacer el analisis estructural para esa
construccion, tenemos un plazo muy corto”. El reconocimiento de que la prueba es, de hecho,
el camino para la reproduccion y la calidad de software nos permite, como desarrolladores,
regresar los argumentos contra su irresponsabilidad profesional.

Las pruebas toman su tiempo, al igual que el analisis estructural lleva su tiempo. Ambas
actividades garantizan la calidad del producto final. Es hora de que los desarrolladores tomen

http://97cosas.com/programador/pruebas-son-rigor-ingenieril.html
http://www.developerdotstar.com/mag/articles/reeves_design.html
http://www.developerdotstar.com/mag/articles/reeves_design.html

el mando de la responsabilidad de lo que producen. Las pruebas por si mismas no son
suficientes, pero son necesarias. Probar es el rigor ingenieril del desarrollo de software.

Traduccién: Espartaco Palma

Leer contribucion original

81. Los registros detallados perturbaran tu sueno.

Autor: Johannes Brodwall

Cuando me encuentro un sistema que ya ha estado en desarrollo o produccién por un tiempo,
la primera sefial de un verdadero problema es siempre un registro sucio. Sabes a lo que me
refiero. Cuando al hacer clic en un link de flujo normal de una péagina web, resulta en un diluvio
de mensajes en el Unico registro que el sistema provee. Demasiados registros pueden ser
inGtiles como ninguno.

Si tus sistemas son como los mios, cuando se termina tu trabajo empieza el trabajo de alguien
més. Después de que el sistema ha sido desarrollado, es de esperar que vivird una larga y
préspera vida de servicio a los clientes. Si tienes suerte. ¢ Como sabras si algo va mal cuando
el sistema esta en produccion y cémo lidiar con él?

Quizéas alguien mas lo monitoreara por ti o lo monitorearas ti mismo. De cualquier forma, los
registros probablemente seran parte del monitoreo. Si algo sucede y tienes que estar despierto
para lidiar con él, entonces quieres estar seguro gue hay una buena razon en ello. Si el sistema
esta muriendo, quiero saberlo. Pero si es solo hipo, preferiria disfrutar de mi bello suefio.

Para muchos sistemas, el primer indicador de que algo esta mal es un mensaje de registro
escrito en alguna bitacora. Generalmente, éste sera un registro de error. Asi que hazte un favor:
asegurate desde el dia uno de que si registras algo en la bitacora de errores, estas dispuesto a
tener a alguien llamando y despertandote a la mitad de la noche por ello. Si puedes simular
carga en tu sistema durante las pruebas, mirar en una bitdcora de errores libre de ruido es
también una buena primera indicacion de que tu sistema es razonablemente robusto. O una
alerta temprana si no lo es.

Los sistemas distribuidos agregan otro nivel de complejidad. Tienes que decidir como hacer
frente a uno de dependencia externa. Si tu sistema esta muy distribuido, esto sera una
ocurrencia comun. Asegurate de que tu politica de registro lo tome en cuenta.

En general, la mejor sefial de que todo esta bien es que los mensajes de menor prioridad estan
tildando felizmente. Deseo algo asi como un mensaje de registro de nivel INFO por cada evento
importante de la aplicacion.

Una bitacora desordenada es un indicador de que el sistema sera dificil de controlar una vez
que llegue a produccion. Si no esperas que nada se muestre en la bitacora de error, sera mucho
mas facil saber qué hacer cuando algo aparezca.

Traduccién: Espartaco Palma

82. La Regla Boy Scout.
Los Boy Scout tienen una regla: “Siempre deja el lugar de acampamento mas limpio que como
lo encontraste”. Si encuentras un desastre en el piso, lo limpias sin importar quién pudo haber

http://programmer.97things.oreilly.com/wiki/index.php/Testing_Is_the_Engineering_Rigor_of_Software_Development
http://97cosas.com/programador/registros-detallados-quitaran-sueno.html
http://97cosas.com/programador/regla-boy-scout.html

hecho el desastre. Mejoras intencionalmente el ambiente para el siguiente grupo de campistas.
En realidad, la forma original de la regla, escrita por Robert Stephenson Smyth Baden-Powell,
el padre del Scoutismo, era “Intenta y deja el mundo un poco mejor que como lo encontraste”.

Que tal si seguimos una regla similar con nuestro codigo: “siempre deja un moédulo mas limpio
que cuando lo revisaste”. No importa quién fue el autor original, qué tal si siempre hacemos
algun esfuerzo, sin importar lo pequefio, para mejorar el médulo. ¢ Cual seria el resultado?

Creo que si todos seguimos esa simple regla, podria ser el final del implacable deterioro en
nuestros sistemas. En vez de ello, nuestros sistemas serian gradualmente mejores y mejores
en cuanto evolucionaran. También veriamos equipos que cuidan el sistema como un todo, en
vez de individualistas cuidando su pequefia partecita.

No creo que esta regla sea mucho pedir. No tienes que hacer cada modulo perfecto antes de
dejarlo. Simplemente tienes que hacerlo un poco mejor cuando lo dejes. Claro, esto significa
que cualquier codigo que agregues al médulo debe estar limpio. Esto también significa que
limpies, al menos, alguna otra cosa antes de que regreses el modulo. Podrias simplemente
mejorar el nombre de una variable o separar una larga funcioén en dos pequefas. Podrias romper
una dependencia circular o agregar una interfaz para desacoplar la politica del detalle.

Francamente, esto me suena como decencia comun, como lavarte las manos después de usar
el bafio o poner la basura en el bote en vez de tirarla en el suelo. De hecho, el acto de dejar un
desastre en el codigo deberia ser socialmente inaceptable, como tirar basura. Esto deberia ser
algo que simplemente no se hace.

Pero es mas que eso. El cuidado de nuestro propio codigo es una cosa. Tener cuidado del
codigo del equipo es otra muy distinta. Los equipos se ayudan entre si, y después se limpian
entre ellos. Siguen la regla Boy Scout, porque es bueno para todos, no sélo para ellos.

Traduccioén: Espartaco Palma

83. Laregla de oro del disefio de API.

El disefio de API es dificil, particularmente los grandes. Si estas disefiando una API que va a
tener cientos o miles de usuarios, tienes que pensar qué podrias cambiar en el futuro y si los
cambios pueden romper el cédigo de tu cliente. Mas alla de esto, tienes que pensar como te
afectan los usuarios de tu API. Si unas de tus clases API usa uno de sus métodos internamente,
tienes que recordar que un usuario podria hacer una subclase de tu clase y sobrescribirla, y eso
puede ser desastroso. No podrias ser capaz de cambiar ese método porque alguno de tus
usuarios le ha dado un significado diferente. Tus futuras opciones de implementacién interna
estan a merced de tus usuarios..

Los desarrolladores de API solucionan este problema de varias formas, pero la mas facil es
bloquear el API. Si estas trabajando en Java quizas estés tentado a hacer final ala mayoria

de tus clases y métodos. En C# podrias hacer sealed tus clases y métodos.

Independientemente del lenguaje que estés usando, podrias estar tentado a presentar tu APl a
través de un singleton o usar métodos factory estéticos, asi puedes defenderte de la gente que
podria sobrescribir el comportamiento y usar tu codigo de formas que podrian restringir tus
opciones mas adelante. Todo esto parece razonable, pero ¢lo es realmente?

En la ultima década nos hemos dado cuenta gradualmente de que las pruebas unitarias son
una parte importante de la practica, pero esa leccion no ha penetrado completamente la
industria. La evidencia esta a nuestro alrededor. Toma arbitrariamente una clase que no ha sido
probada y que use un API de terceros e intenta escribir una prueba unitaria para él. La mayoria
de las veces encontraras problemas. Encontraras que el cédigo usando el API se pega a él
como con pegamento. No hay manera de impersonalizar las clases del API para que puedas

http://97cosas.com/programador/regla-oro-api.html

detectar las interacciones de tu codigo con ellos o proporcionar valores de retorno para la
prueba.

Con el tiempo, esto va a mejorar, pero sélo si empezamos a ver las pruebas como un caso de
uso real cuando disefiamos API. Desafortunadamente, es un poco mas complicado que soélo
probar nuestro cédigo. Es aqui donde encaja la Regla de Oro del disefio de API: no es suficiente
escribir pruebas del APl que desarrollas; tienes que escribir pruebas unitarias para el codigo
que usa tu API. Cuando lo haces aprendes de primera mano los obstaculos que tus usuarios
tendran que superar cuando intenten probar su cédigo independientemente.

Cuando no hay una forma Unica de hacer facil para los desarrolladores el probar el codigo que
usatuAPI, ni static, final 0 sealed soninherentemente malos constructos. A veces pueden

ser Utiles, pero es importante tener en cuenta el tema de las pruebas y, para lograrlo, tienes que
experimentarlo ti mismo. Una vez que lo haces, puedes enfocarlo como lo harias con cualquier
otro reto de disefio.

Traduccién: Espartaco Palma

84. Reinventa la rueda frecuentemente.

Autor: Jason P Sage

“Solo tienes que utilizar algo existente, es una tonteria reinventar la rueda...”
¢Alguna vez has oido esto 0 alguna variacion? jSeguro que si! Todos los desarrolladores y
estudiantes probablemente han escuchado un comentario como éste con frecuencia. ¢,Por qué
pensarlo? ¢ Por qué reinventar la rueda es tan mal visto? Porque, con frecuencia o no, el codigo
existente es codigo en funcionamiento. Ya ha pasado por algun tipo de control de calidad,
pruebas rigurosas y se esta utilizando con éxito. Adicionalmente, el tiempo y esfuerzo invertido
en la reinvencién es poco probable que pague tan bien como usar producto o codigo base
existente. ¢ Deberias preocuparte por reinventar la rueda? ¢Por qué? ¢ Cuando?

Quiza has visto publicaciones sobre patrones en el desarrollo de software o libros sobre disefio
de software. Estos libros pueden ser aburridos independientemente de la maravillosa
informacién contenida en ellos. Del mismo modo en que ver una pelicula sobre navegacion es
muy diferente a salir a navegar, asi también es usar cédigo existente frente a disefiar tu propio
software desde cero, probandolo, rompiéndolo, reparandolo y mejorandolo a lo largo del camino.

Reinventar la rueda no es solo un ejercicio en dénde colocar constructos de cédigo: se trata de
coémo conseguir un conocimiento profundo del funcionamiento interno de varios componentes
que ya existen. ¢Sabes cémo funcionan los gestores de memoria? ¢La paginacion virtual?
¢ Podrias implementarlo por ti mismo? ¢Qué tal las listas doblemente enlazadas? ¢ Clases de
matrices dinamicas? ¢ Clientes ODBC? ¢ Podrias escribir una interfaz gréafica de usuario que
funcione como alguna otra muy popular que conozcas o te guste? ¢Puedes crear tu
propios widgets de navegador web? ¢Sabes cuando escribir un sistema multiplexado contra
uno multihilo? ¢ Cémo decidir entre una base de datos basada en archivos o en memoria? La
mayoria de los desarrolladores nunca han creado estas implementaciones de software central
por si mismos y, por lo tanto, no tienen un conocimiento profundo de cémo funcionan. Como
consecuencia, todo este tipo de software es visto como misteriosas cajas negras que
simplemente funcionan. Comprender solo la superficie del agua no es suficiente para revelarnos
los peligros ocultos debajo de ella. No saber las cosas mas profundas en el desarrollo de
software limitara tu habilidad para crear trabajo estelar.

http://97cosas.com/programador/reinventa-rueda-frecuentemente.html

Reinventar la rueda y hacerlo mal es mas valioso que equivocarse la primera vez. jHay lecciones
aprendidas en la prueba y error que tienen un componente emocional que la lectura de un libro
técnico no te puede ofrecer!

Los hechos aprendidos y la informacion en los libros son cruciales, pero convertirse en un gran
programador es mucho mas sobre adquirir experiencia que la recoleccién de hechos. Reinventar
la rueda es tan importante para la educacion y habilidades de un desarrollador como lo es el
levantamiento de pesas para el fisicoculturista.

Traduccién: Espartaco Palma

85. Resiste la tentacion del patron Singleton.

Autor: Sam Saariste

El patron Singleton resuelve muchos de tus problemas. Sabes que sélo necesitas una sola
instancia. Tienes una garantia de que esta instancia fue inicializada antes de ser usada.
Mantiene tu disefio simple y con un solo punto de acceso global. Todo esta bien. ¢Qué es lo
gue no me gusta de este clasico patron de disefio?

Pues mucho, resulta ser. Puede ser tentador, pero la experiencia me mostré que la mayoria de
los Singletonhacen realmente mas dafio que bien. Dificultan las pruebas y dafian la capacidad
de mantenimiento. Desafortunadamente, esta sabiduria adicional no esta tan propagada como
deberia y los Singletons contintan siendo irresistibles para la mayoria de los programadores.
Pero vale la pena resistirse:

e El requisito de instancia Unica es con frecuencia imaginado. En muchos casos es pura
especulacion de que no se necesitaran instancias adicionales en el futuro. Difundir tales
propiedades especulativas, a través del disefio de la aplicacion, esta destinado a causar
dolor en algin momento. Los requerimientos cambiaran. El buen disefio lo adopta.
Los Singleton no.

e Los Singleton causan dependencia implicita entre unidades de cédigo conceptualmente
independientes. Esto es problematico porque estan ocultos e introducen acoplamiento
innecesario entre las unidades. Este olor del cédigo se pudre cuando intentas escribir
pruebas unitarias, las cuales dependen de soltar el acoplamiento y de la habilidad de
sustituir selectivamente una implementacion simulada (mock) de wuna real.
Los Singleton previenen la simulacién directa.

e Los Singleton también llevan estado persistente implicito, lo que dificulta mas las pruebas
unitarias. Las pruebas unitarias dependen de que sean independientes entre si, asi las
pruebas pueden ser ejecutadas en cualquier orden y el programa puede ser configurado a
un estado conocido antes de la ejecucion de cada prueba unitaria. Una vez que hayas
introducido Singleton con estado mutable, esto puede ser mas dificil de llevar a cabo.
Ademas, dicho estado globalmente accesible hace mas dificil razonar sobre el codigo,
especialmente en ambientes multihilos.

e Los multihilos introducen futuras fallas en el patrén Singleton. El bloqueo directo al acceso
no es muy eficiente, asi es como el llamado patrén de doble revisién de bloqueo (DCLP) ha
ganado popularidad. Desafortunadamente, esto puede llevar una forma adicional de

http://97cosas.com/programador/resiste-tentacion-singleton.html
https://es.wikipedia.org/wiki/Singleton

atraccion fatal. Resulta ser que muchos lenguajes DCLP no son thread-safe e, incluso
cuando lo son, aun hay oportunidades de sutiles errores.

El limpiado de Singleton puede presentar un reto final:

e No hay soporte para matar explicitamente a un Singleton, lo cual puede ser un problema
delicado en algunos contextos. Por ejemplo, en una arquitectura de plug-ins en la que
un plug-in sélo puede ser descargado de forma segura después de que todos sus objetos
han sido limpiados.

e No hay orden implicito de limpieza de Singleton al salir del programa. Esto puede ser
problematico para aplicaciones que contienen Singleton con interdependencias. Cuando se
cierra dicha aplicacion, un Singleton puede acceder a otra que ya ha sido destruida.

Algunas de estas deficiencias pueden ser superadas mediante la introduccion de mecanismos
adicionales. Sin embargo, esto viene con el costo de complejidad adicional en codigo que se
podria haber evitado escogiendo un disefio alternativo.

Por lo tanto, restringe el uso del patrén Singleton a las clases que realmente nunca deber ser
instanciadas mas de una vez. No uses un Singleton como punto de acceso global desde cddigo
arbitrario. En vez de ello, el acceso directo al Singleton deberia ser desde s6lo unos pocos
lugares definidos, donde pueda déarsele vuelta via una interfaz hacia otro cédigo. Este otro
cédigo no lo sabe y asi no depende de si un Singleton o cualquier otro tipo de clase implementa
la interfaz. Esto rompe la dependencia que impide las pruebas unitarias y mejora la capacidad
de mantenimiento. Asi que, la proxima vez que estés pensando en implementar o acceder a
un Singleton espero que hagas una pausay lo pienses de nuevo.

Traduccioén: Espartaco Palma

86. Retrocede y Automatiza, Automatiza, Automatiza.

Autor: Cay Horstmann

Trabajé con programadores que, cuando se les pidié un conteo del nimero de lineas de cédigo
de un médulo, copiaban los archivos en un procesador de texto y usaban la caracteristica de
“numero de lineas”. Y lo hicieron de nuevo la siguiente semana y la semana siguiente. Fue malo.

Trabajé en un proyecto que tenia un proceso de implementacién engorroso, implicaba la firma
de codigo y mover el resultado a un servidor, requiriendo muchos clics con el ratén. Alguien lo
automatizd y el script se ejecutd cientos de veces durante la prueba final, mucho mas
frecuentemente de lo previsto. Fue bueno.

Entonces, ¢por qué la gente realiza la misma tarea una y otra vez, en vez de retroceder y
tomarse el tiempo de automatizarla?

Concepto erréneo comun #1: La automatizacion es sdlo para las pruebas

Seguro, la automatizacion en las pruebas es genial, pero ¢ por qué detenerse ahi? Las tareas
repetitivas estéan en cualquier proyecto: control de versiones, compilacién, construccion de
archivos JAR, generacion de documentacion, implementacion y presentacion de informes. Para
muchas de estas tareas, el script es mas poderoso que el ratdn. Ejecutar tareas tediosas se
convierte en algo mas rapido y mas fiable.

http://97cosas.com/programador/retrocede-automatiza.html

Concepto erréneo comun #2: Tengo un IDE, asi que no necesito automatizar

¢SAlguna vez has tenido una discusién con un “pero (lo revisé | compila | pasa las pruebas) en
mi maquina” con alguno de tus compafieros de equipo? Los IDE modernos tienen miles de
configuraciones posibles y es practicamente imposible asegurar que todos los miembros del
equipo tienen configuraciones idénticas. Los sistemas de compilacion automatica, tales como
Ant 0 Autotools, te proporcionan control y repetitividad.

Concepto erréneo comun #3: Necesito aprender exdticas herramientas con el fin de
automatizar

Puedes seguir con un lenguaje de shell decente (tales como bash o Powershell) y un sistema
de automatizacion de compilacion. Si necesitas interactuar con un sitio web, usa herramientas
como iMacros o Selenium.

Concepto errébneo comun #4: No puedo automatizar esta tarea porque no puedo manejar
este tipo de formato

Si una parte de tu proceso requiere documentos Word, hojas de calculo o imagenes, es cierto
que puede ser un reto para la automatizacion, pero ¢es realmente necesario? ¢ Puedes usar
texto plano? ¢ Valores separados por coma? ¢ XML? ¢ Alguna herramienta que genere un dibujo
a partir de un archivo de texto? Con frecuencia, unos ligeros arreglos en el proceso puede llevar
a un buen resultado con una dramatica reduccion del tedio.

Concepto erréneo comun #5: No tengo el tiempo para averiguarlo

No tienes que aprender todo sobre bash o Ant para empezar. Aprende sobre la marcha. Cuando
tengas una tarea que crees que pueda y deba ser automatizada, aprende soélo lo necesario
acerca de la herramienta para hacerlo. Hazlo al inicio del proyecto cuando el tiempo es mas facil
de encontrar. Una vez que has tenido éxito, tl y tu jefe veran que tiene sentido invertir en
automatizacion.

Traduccién: Espartaco Palma

87. Primero revisa tu codigo antes de buscar culpar a otros.

Autor: Allan Kelly

Los desarrolladores —ijtodos nosotros!— frecuentemente tenemos problemas creyendo que
nuestro propio codigo esta roto. Es tan improbable que, por una sola vez, debe ser el compilador
el que no funciona.

Aunque la verdad es muy (muy) inusual que el codigo no funcione debido a un bug en el
compilador, intérprete, sistema operativo (SO), servidor de aplicaciones, base de datos, gestor
de memoria o cualquier otra parte del software del sistema. Si, esos bugs existen, pero son
mucho menos comunes de lo que quisieras creer.

Una vez tuve un genuino problema con un error en el compilador al optimizar un ciclo variable,
pero he imaginado que mi compilador o SO ha tenido un bug muchas mas veces. He
desperdiciado un montén de tiempo, horas de soporte y tiempo de gestion en el proceso solo
para sentirme un poco tonto cada vez que resultd ser mi error después de todo.

Asumiendo que las herramientas son ampliamente usadas, maduras y empleadas en varias
pilas de tecnologia, hay muy pocas razones para dudar de la calidad. Por supuesto, si la
herramienta es un “early release”, o usada soélo por una pocas personas en todo el mundo, o
una pieza raramente usada, version 0.1, Software Libre (Open Source) puede haber buenas

http://97cosas.com/programador/revisa-tu-codigo.html

razones para sospechar del software (igualmente, una version alfa de un software comercial
podria ser sospechosa).

Teniendo en cuenta qué tan raros son los errores del compilador, estas mucho mejor poniendo
tu tiempo y energia en encontrar el error en tu cédigo que probando que el compilador esta mal.
Todos los consejos comunes en la depuracion aplican, asi que aisla el problema, apaga las
llamadas, rodéalo con pruebas; revisa convenciones de llamada, bibliotecas compartidas y
ndmeros de version; explicalo a alguien mas; busca corrupciones de pilas y tipos de variables
gue no coinciden; prueba el codigo en diferentes maquinas y con diferentes configuraciones de
compilacion, como el debug y la liberacion.

Cuestiona tu propias suposiciones y las suposiciones de otros. Las herramientas de diferentes
proveedores pueden tener diferentes suposiciones dentro de ellas, asi también podrian diferir
las herramientas del mismo proveedor.

Cuando alguien mas esta reportando un problema que no puedes duplicar, ve y mira qué esta
haciendo. Ellos podrian estar haciendo algo que nunca pensaste o estan haciendo algo en
diferente orden.

Como una regla personal, si tengo un error que no puedo precisar, y empiezo a pensar que es
el compilador, entonces es tiempo de mirar dafios en la pila. Esto es especialmente cierto si la
adicion de rastreo de cédigo hace que el problema se vaya..

Los problemas multihilo son otra fuente de errores que convierte el cabello en gris e induce
gritarle a la maquina. Todas las recomendaciones para favorecer el codigo simple se multiplican
cuando un sistema es multihilo. No se puede confiar en la revision de errores y las pruebas
unitarias para encontrar tales errores con cierta coherencia, asi que la simplicidad de disefio es
fundamental.

Asi que antes de apresurarte en culpar al compilador, recuerda el consejo de Sherlock Holmes:
“Una vez que elimines lo imposible, o que quede, sin importar que tan improbable parezca,
debe ser verdad”, aunque yo prefiero el consejo de Drik Gently: “Una vez que eliminas lo
improbable, lo que quede, sin importar que tan imposible sea, debe ser verdad”.

Traduccién: Espartaco Palma

88. Revisiones de codigo.

Autor: Mattias Karlsson

Deberias hacer revisiones de cédigo. ¢ Por qué? Porque incrementan la calidad del codigo y
reducen la tasa de defectos. Pero no necesariamente por las razones que podrias pensar.

Debido a que pudieron haber tenido algunas malas experiencias con las revisiones, muchos
programadores tienden a rechazar las revisiones de codigo. He visto organizaciones que
requieren que todo el codigo pase por una revision formal antes de enviar a produccion. Con
frecuencia es el arquitecto o el lider de desarrollo quien hace esta revision, una practica que
puede ser descrita como arquitecto revisando todo. Esta escrito en el manual del proceso de
desarrollo de software, asi que los programadores deben acatar. Puede ser que algunas
organizaciones necesiten tal rigidez y procesos formales, pero muchas no. En la mayoria de las
organizaciones ese enfoque no es productivo. Los revisados pueden sentirse como que estan
siendo juzgados por una junta de libertad condicional. Los revisores necesitan tanto el tiempo
para leer el cédigo como el tiempo para estar al dia con todos los detalles del sistema. Los

http://97cosas.com/programador/revisiones-codigo.html

revisores se pueden convertir rapidamente en cuellos de botella en este proceso, y el proceso
se degenera pronto.

En vez de limitarse a corregir errores en el codigo, el propdsito de las revisiones de cédigo
deberia ser compartir conocimiento y establecer guias comunes de codificacién. Compartir tu
cédigo con otros programadores habilita la propiedad colectiva de cddigo. No limites su flujo,
deja que cualquier miembro del equipo revise el codigo con el resto del equipo. En vez de buscar
errores deberias revisar el codigo tratando de aprenderlo y entenderlo.

Sé gentil durante las revisiones de codigo. Asegurate de que los comentarios sean
constructivos, no céusticos. Introduce diferentes roles en la junta de revision, evitar tener a los
mas viejos dentro del equipo afecta las revisiones de codigo. Los ejemplos de roles pueden
incluir algun revisor enfocado en la documentacion, otro en excepciones y un tercero en busca
de funcionalidad. Este enfoque ayuda a distribuir la carga de las revisiones a través de los
miembros del equipo.

Haz la revision de cédigo con regularidad, un dia a la semana. Usa un par de horas en la junta
de revision. Rota a los que tuvieron revision semanalmente en un patrén simple de round-robin.
Recuerda también cambiar roles entre los miembros del equipo en cada junta de revision.
Involucra a los novatos en las revisiones de codigo. Puede que sean inexpertos, pero su
conocimiento universitario reciente puede proveer una perspectiva diferente. Involucra expertos
por su experiencia y conocimiento; identificaran codigo propenso a errores mas rapido y con
mayor precision. Las revisiones de codigo fluirdn mas facilmente si el equipo tiene convenciones
de codificacion que se comprueban mediante herramientas. De este modo, el formato del codigo
nunca sera discutido durante la junta de revisién de codigo.

Hacer las revisiones de codigo divertidas es quizas el factor mas importante para el éxito. Las
revisiones se tratan de la gente en revision. Si la junta de revisién es dolorosa o aburrida sera
mas dificil motivar a cualquiera. Que sea una revisién de cdédigo informal, cuyo propdsito
principal sea compartir conocimiento entre los miembros del equipo. Deja los comentarios
sarcasticos fuera y trae un pastel o almuerzo en bolsa café en su lugar.

Traduccién: Espartaco Palma

89. La Simplicidad viene de la Reduccion.

Autor: Paul W. Homer

“Hazlo de nuevo...”, me dijo el jefe mientras su dedo presionaba con fuerza la tecla de borrado.
Miré la pantalla de la computadora con una sensacion de vacio muy familiar, mientras mi codigo
—linea tras linea— desparecia en el olvido.

Mi jefe, Stefan, no siempre fue el mas vocal de las personas, pero él sabia que era un mal
cadigo cuando lo veia. Y sabia exactamente qué hacer con él.

Habia llegado a mi puesto actual como un programador estudiante con mucha energia, mucho
entusiasmo y sin la menor idea de como codificar. Tenia esa horrible tendencia a pensar que la
solucion a cada problema era agregar otra variable en algun lugar. O escribir otra linea. En un
mal dia, en vez de que la légica fuera haciéndose mejor con cada revisién, mi cédigo se hacia
gradualmente mas grande, mas complejo y mucho mas lejos del trabajo consistente.

Es natural, sobre todo cuando estas apresurado, que soélo quieres hacer los menores cambios
a un bloque de codigo existente, aunque sea horrible. Muchos programadores preservan mal
cédigo, temen que iniciar de nuevo requerird mucho mas esfuerzo que continuar donde se

http://97cosas.com/programador/simplicidad-reduccion.html

quedaron. Esto puede ser cierto para el cédigo que esta cerca de ser funcional, pero hay algunos
cédigos que estan mas alla de toda ayuda.

Se desperdicia mas tiempo en tratar de salvar un mal cddigo del que se deberia. Una vez que
algo se vuelve un sumidero de recursos, necesita ser descartado. Rapidamente

No es que debas tirar todo lo que has escrito, nombrado y formateado tan facilmente. La
reaccion de mi jefe fue extrema, pero me obligdb a repensar el cédigo en el segundo (u
ocasionalmente tercer) intento. Aln asi, la mejor estrategia para arreglar un mal codigo es
cambiandolo de tal modo que el codigo sea refactorizado sin misericordia, cambiado de lugar o
borrado.

El codigo deberia ser simple. Deberia ser un minimo de variables, funciones, declaraciones y
otras necesidades sintacticas del lenguaje. Las lineas, variables adicionales... nada de
adicional, en realidad, eso deberia ser purgado. Removido inmediatamente. Lo que esta ahi, lo
gue queda, soélo deberia ser lo suficiente para realizar el trabajo, completar el algoritmo o realizar
los célculos. Cualquier otra cosa y todo lo demés es so6lo ruido adicional no deseado, introducido
accidentalmente y que obscurece el flujo. Ocultando las cosas importantes.

Por supuesto, si no lo logra, entonces solo borra todo y escribelo una vez mas. Iniciar el disefio
desde lo recordado a menudo puede ayudar a cortar una gran cantidad de desorden
innecesario.

Traduccioén: Espartaco Palma

90. So6lo el coédigo dice la verdad.

Autor: Peter Sommerlad

La semantica final de un programa esta dada por el cddigo que se ejecuta. jSi esto es
Gnicamente en formato binario, sera una lectura dificil! El cédigo fuente debe, sin embargo, estar
disponible si se trata de tu programa, cualquier desarrollo de software comercial tipico, un
proyecto de software libre o cédigo en un lenguaje interpretado de forma dinamica. Al mirar el
codigo fuente, el significado del programa deberia ser evidente. Para saber qué hace el
programa, el cédigo es, en Ultima instancia, de lo que puedes estar seguro. Hasta el documento
de requisitos mas preciso no dice toda la verdad: no contiene el relato detallado de lo que el
programa esta haciendo, sélo las intenciones de mas alto nivel del analista de requerimientos.
Un documento de disefio podria capturar un disefio planeado, pero carece del nivel necesario
de detalle de la implementacion. Estos documento pueden perder sincronia con la
implementacion actual... o simplemente se han perdido. O nunca fueron escritos, en primer
lugar. El cédigo fuente puede ser lo Unico que queda.

Con esto en mente, preguntate: ¢qué tan claro es tu cédigo al decirte a ti 0 a cualquier otro
programador qué es lo que esta haciendo?

Podrias decir: “Oh, mis comentarios te diran todo lo que necesitas saber”. Pero recuerda que
los comentarios no son cédigo en ejecucion. Pueden ser tan malos como cualquier otra forma
de documentacion. Existe una tradicion que dice que los comentarios son incondicionalmente
algo bueno, asi que algunos programadores escriben mas y mas comentarios, incluso
reiniciando y explicando trivialidades que son obvias en el codigo. Esa es la forma erronea de
clarificar tu cédigo. Si tu cédigo tiene comentarios, considera refactorizar para que no los tenga.
Los comentarios extensos pueden saturar el espacio en la pantalla e incluso pueden ser
ocultados automaticamente por tu IDE. Si necesitas explicar un cambio, hazlo en el mensaje de
confirmacion del sistema de control de versiones, no en el cédigo.

http://97cosas.com/programador/solo-codigo-dice-verdad.html

¢, Qué se puede hacer para hacer que tu cédigo diga la verdad lo mas claro posible? Lucha por
buenos nombres. Estructura tu cédigo con respecto a la funcionalidad cohesiva, que también
facilita la nomenclatura. Desacopla el codigo para conseguir ortogonalidad. Escribe pruebas
automatizadas explicando el comportamiento previsto y comprueba las interfaces. Refactoriza
sin piedad cuando aprendas como codificar una solucién mejor y mas sencilla. Haz que tu
cbdigo sea tan sencillo como sea posible para leer y entender.

Trata a tu cédigo como a cualquier otra composicién, como un poema, un ensayo, un blog
publico o un email importante. Elabora lo que expresas con cuidado, de modo que haga lo que
debe y comunique tan directamente como sea posible lo que estda haciendo, para que
comunigue tus intenciones cuando no estés. Recuerda que el cddigo util se usa mucho mas
tiempo de lo previsto. Los programadores de mantenimiento te lo agradeceran. Y, si eres un
programador de mantenimiento y el cédigo en el que estds trabajando no dice la verdad
facilmente, aplica las directrices anteriores de manera proactiva. Establece algo de cordura en
el cédigo y mantén tu propia cordura.

Traduccién: Espartaco Palma

91. Suelta el raton y aléjate del teclado.

Autor: Cay Horstmann

Te has enfocado por horas en algun raro problema y no hay solucién a la vista. Asi que te
levantas para estirar las piernas o para llegar a la maquina expendedora y, en el camino de
vuelta, la respuesta repentinamente se vuelve evidente.

¢ Te suena familiar este escenario? ¢Alguna vez te preguntaste por qué sucede? El truco esta
en gue mientras estas codificando, la parte l6gica de tu cerebro esta activa y el lado creativo se
bloguea. No puede presentarte nada hasta que tu lado l6gico tome un descanso.

Aqui esta un ejemplo de la vida real: estaba limpiando un cédigo heredado y me encontré con
un método “interesante”. Estaba disefiado para verificar que una cadena contenia una hora
valida usando el formatohh:mm:ss xx, donde hh representa la hora, mm representa los
minutos, ss representa segundos y xx podria ser AM o PM.

El método utilizaba el siguiente cédigo para convertir dos caracteres (representando la hora) en
un numero y verificando que estuviera en el rango adecuado: :

try {
Integer.parseInt(time.substring(0, 2));
} catch (Exception x) {

return false;

if (Integer.parseInt(time.substring(@, 2)) > 12) {

return false;

http://97cosas.com/programador/suelta-raton-alejate-teclado.html

El mismo codigo aparecia dos veces mas, con cambios apropiados para el caracter y el limite
superior, para poner a prueba los minutos y segundos. El método terminaba con estas lineas
para comprobar AM y PM.

if (!time.substring(9, 11).equals("AM") &
Itime.substring(9, 11).equals("PM")) {

return false;

}

Si ninguna de esta serie de comparaciones fallaba, regresando false, el método
regresaba true.

Si el cédigo anterior se ve confuso y dificil de seguir, no te preocupes. Yo también lo creia, lo
que significaba que habia encontrado algo digno de limpieza. Lo refactoricé y escribi unas
cuantas pruebas unitarias, s6lo para estar seguro de que aun funcionaba

Cuando terminé, me sentia satisfecho con el resultado. La nueva version era facil de leer, de la
mitad del tamafio y mas precisa debido a que el cddigo original s6lo probaba los limites
superiores de las horas, minutos y segundos.

Mientras me preparaba para trabajar al dia siguiente, una idea surgié en mi cabeza: ¢por qué
no validar la cadena usando una expresion regular? Después de unos minutos escribiendo,
tenia una implementacion funcional de sélo una linea de cédigo. Aqui esté:

public static boolean validateTime(String time) {
return time.matches("(0[1-9]|1[@-2]):[©-5][0-9]:[@-5][@-9] ([APIM)");

}

El punto de esta historia no es que eventualmente reemplacé cerca de 30 lineas de cddigo con
s6lo una. El punto es que hasta que me alejé de la computadora pensaba que mi primer intento
era la mejor solucién al problema.

Asi que la préxima vez que estés ante un problema desagradable, hazte un favor: una vez que
realmente entiendas el problema ve a hacer algo que involucre el lado creativo de tu cerebro;
esboza el problema, escucha algo de musica o da un paseo al aire libre. A veces la mejor cosa
que puedes hacer para resolver un problema es soltar el ratén y alejarte del teclado.

Traduccién: Espartaco Palma

92. Noticias raras — Los testers son tus amigos.

Autor: Burk Hufnagel

Ya sea que se llamen ellos mismos Aseguramiento de Calidad (QC, Quality Check) o Control
de Calidad, muchos programadores los Illaman problemas. En mi experiencia, los
programadores tienen frecuentemente una relacion de confrontacion con la gente que prueba

http://97cosas.com/programador/testers-amigos.html

su software. “Son demasiado exigentes” y “quieren todo perfecto” son las quejas comunes. ¢ Te
suena familiar?

No estoy seguro del porqué, pero siempre he tenido una vision diferente de los testers. Quizés
es porque el “tester” en mi primer trabajo era la secretaria de la empresa. Margaret era una
sefiora muy agradable que mantenia la oficina funcionando e intentaba ensefiar a un par de
jévenes programadores como comportarse profesionalmente frente a los clientes. Ella también
tenia el don de encontrar cualquier error, no importa lo oscuro, en cuestion de minutos.

En ese entonces estaba trabajando en un programa escrito por un contador que pensaba que
era un programador. No es necesario decirlo, tenia algunos problemas serios. Cuando pensaba
gue tenia una pieza solida, Margaret intentaria usarlo y, mas frecuentemente que nunca, fallaria
en alguna forma justo después de algunos teclazos. A veces era frustrante y embarazoso, pero
ella era una persona agradable a quien nunca pensé en culpar por hacerme ver mal.
Eventualmente llegd el dia cuando Margaret fue capaz de iniciar limpiamente el programa,
introducir una factura, imprimirla y cerrarlo. Estaba muy emocionado. Aun mejor, cuando lo
instalamos en una de las computadoras de nuestros clientes, todo funcionaba. Ellos nunca
vieron ningun problema porque Margaret me habia ayudado a encontrarlos y arreglarlos
primero.

Es por eso que digo que los testers son tus amigos. Puedes pensar que te hacen ver mal al
reportar cuestiones triviales. Pero cuando los clientes estan emocionados por no ser molestados
con todas esas “pequenas cosas” que QC te hizo corregir, entonces te veras bien. ;Ves a lo
que me refiero?

Imaginate esto: estas revisando una utileria que usa “los mas prometedores algoritmos de
inteligencia artificial” para encontrar y solucionar problemas de concurrencia. Lo inicias e
inmediatamente notas que han escrito mal “inteligencia” en la pantalla de inicio. Un poco
optimista, pensaras: es soélo un error de dedo, ¢verdad? Entonces notas que la pantalla de
configuracion usa varias casillas que deberian ser botones de radio y algunos de los atajos de
teclado no funcionan. Ahora bien, ninguno de estos son un gran problema, pero conforme los
errores se van sumando empiezas a preguntarte sobre los programadores. Si no pueden tener
las cosas sencillas bien, ¢, cuales son las probabilidades de que su IA pueda realmente encontrar
y solucionar algo tan complicado como los problemas de concurrencia?

Puede que sean genios quienes estaban tan enfocados a hacer la |IA increiblemente mejor como
para no notar esas pequefas cosas triviales. Y sin esos “testers exigentes” apuntando los
problemas, terminaste encontrandolos. Ahora te estas cuestionando la competencia de los
programadores.

Asi que por extrafio que suene, estos testers, quienes parecen determinados a exponer cada
pequefio error en tu cédigo, son realmente tus amigos.

Traduccién: Espartaco Palma

93. Toma ventaja de las herramientas de analisis de codigo.

Autor: Nate Jackson

Nunca he conocido a un cliente que no estuviera muy feliz de decirme qué es lo que queria,
usualmente con gran detalle. El problema es que los clientes no siempre dicen toda la verdad.
Generalmente no mienten, pero hablan en idioma cliente, no en idioma desarrollador. Usan sus

http://97cosas.com/programador/toma-ventaja-analisis-codigo.html

términos y contextos. Dejan fuera detalles importantes. Suponen que has estado en su
companiia por 20 afios, igual que ellos. jEsto se agrava con el hecho de que muchos clientes
realmente no saben lo que quieren en primer lugar! Algunos pueden tener un rasgo de la “vision
global”, pero rara vez son capaces de comunicar los detalles de sus visiones con efectividad.
Otros podrian ser un poco claros en la visidn completa, pero saben lo que no quieren. Entonces,
¢,como es posible que puedas entregar un proyecto de software a alguien que no esta diciendo
toda la verdad acerca de lo que quiere? Es bastante simple. Sélo interactia mas.

Reta a tus clientes tempranamente y rétalos seguido. No te limites a repetir lo que dijeron que
querian en sus palabras. Recuerda: ellos no quieren decir lo que te dijeron. Frecuentemente
hago esto intercambiando palabras en conversaciones con ellos y juzgando sus reacciones.
Estaras sorprendido de cuantas veces el término cliente tiene un significado completamente
diferente al término comprador. Sin embargo, el hombre diciéndote qué quiere en su proyecto
de software usara los términos indistintamente y espera que sigas el rastro de a cudl se refiere.
Te confundiras y el software que escribas sufrira.

Discute los temas numerosas veces con tus clientes antes de que decidas que has entendido
lo que quieren. Intenta reformular el problema dos o tres veces con ellos. Hablales acerca de
las cosas que suceden justo antes o justo después del tépico del que estan hablando para
obtener un mejor contexto. Si es posible, ten a varias personas hablandote del mismo tema en
conversaciones separadas. Casi siempre te diran historias diferentes, las cuales descubriran
hechos separados pero relacionados. Dos personas hablandote sobre el mismo tema se
contradicen frecuentemente. Tu mayor oportunidad de éxito es discutir a fondo las diferencias
antes de comenzar la elaboracion de tu ultracomplejo software.

Haz uso de ayudas visuales en tus conversaciones. Esto podria ser tan sencillo como usar una
pizarra en una reunion, tan facil como crear un maqueta visual en la fase de disefio o tan
complejo como elaborar un prototipo funcional. Es conocido que usar ayudas visuales durante
una conversacion ayuda a prolongar nuestro periodo de atencién e incrementa la tasa de
retencién de la informacién. Toma ventaja de este hecho y configura tu proyecto para el éxito.

En una vida anterior era un “programador multimedia” en un equipo que producia proyectos
ostentosos. Un cliente nuestro describié sus pensamientos con el look & feel del proyecto con
gran detalle. El esquema general de colores discutido en las reuniones de disefio indicaba un
fondo negro para la presentacion. Pensdbamos que lo teniamos hecho. Los equipos de
disefiadores graficos comenzaron a producir cientos de capas de archivos graficos. Un montén
de tiempo fue invertido moldeando el producto final. Una sorprendente revelacion fue hecha el
dia en que mostramos al cliente el fruto de nuestra labor. Al ver el producto, las palabras exactas
sobre el color de fondo fueron: “Cuando dije negro, me referia a blanco”. Asi que, ya ves, nunca
es tan claro como el blanco y negro.

Traduccién: Espartaco Palma

94. Tus clientes no quieren decir lo que dicen.

Autor: Nate Jackson

Nunca he conocido a un cliente que no estuviera muy feliz de decirme qué es lo que queria,
usualmente con gran detalle. El problema es que los clientes no siempre dicen toda la verdad.
Generalmente no mienten, pero hablan en idioma cliente, no en idioma desarrollador. Usan sus
términos y contextos. Dejan fuera detalles importantes. Suponen que has estado en su

http://97cosas.com/programador/tus-clientes.html

compafia por 20 afos, igual que ellos. jEsto se agrava con el hecho de que muchos clientes
realmente no saben lo que quieren en primer lugar! Algunos pueden tener un rasgo de la “vision
global”, pero rara vez son capaces de comunicar los detalles de sus visiones con efectividad.
Otros podrian ser un poco claros en la vision completa, pero saben lo que no quieren. Entonces,
¢,COmo es posible que puedas entregar un proyecto de software a alguien que no esta diciendo
toda la verdad acerca de lo que quiere? Es bastante simple. Sélo interactia mas.

Reta a tus clientes tempranamente y rétalos seguido. No te limites a repetir lo que dijeron que
querian en sus palabras. Recuerda: ellos no quieren decir lo que te dijeron. Frecuentemente
hago esto intercambiando palabras en conversaciones con ellos y juzgando sus reacciones.
Estaras sorprendido de cuantas veces el término cliente tiene un significado completamente
diferente al término comprador. Sin embargo, el hombre diciéndote qué quiere en su proyecto
de software usara los términos indistintamente y espera que sigas el rastro de a cudl se refiere.
Te confundiras y el software que escribas sufrira.

Discute los temas numerosas veces con tus clientes antes de que decidas que has entendido
lo que quieren. Intenta reformular el problema dos o tres veces con ellos. Hablales acerca de
las cosas que suceden justo antes o justo después del tépico del que estan hablando para
obtener un mejor contexto. Si es posible, ten a varias personas hablandote del mismo tema en
conversaciones separadas. Casi siempre te diran historias diferentes, las cuales descubriran
hechos separados pero relacionados. Dos personas hablandote sobre el mismo tema se
contradicen frecuentemente. Tu mayor oportunidad de éxito es discutir a fondo las diferencias
antes de comenzar la elaboracion de tu ultracomplejo software.

Haz uso de ayudas visuales en tus conversaciones. Esto podria ser tan sencillo como usar una
pizarra en una reunion, tan facil como crear un maqueta visual en la fase de disefio o tan
complejo como elaborar un prototipo funcional. Es conocido que usar ayudas visuales durante
una conversacion ayuda a prolongar nuestro periodo de atencion e incrementa la tasa de
retencién de la informacién. Toma ventaja de este hecho y configura tu proyecto para el éxito.

En una vida anterior era un “programador multimedia” en un equipo que producia proyectos
ostentosos. Un cliente nuestro describié sus pensamientos con el look & feel del proyecto con
gran detalle. El esquema general de colores discutido en las reuniones de disefio indicaba un
fondo negro para la presentacion. Pensdbamos que lo teniamos hecho. Los equipos de
disefiadores graficos comenzaron a producir cientos de capas de archivos graficos. Un montén
de tiempo fue invertido moldeando el producto final. Una sorprendente revelacion fue hecha el
dia en que mostramos al cliente el fruto de nuestra labor. Al ver el producto, las palabras exactas
sobre el color de fondo fueron: “Cuando dije negro, me referia a blanco”. Asi que, ya ves, nunca
es tan claro como el blanco y negro.

Traduccién: Espartaco Palma

95. Un binario.

Autor: Steve Freeman

He visto muchos proyectos en los cuales la compilacion reescribe alguna parte del codigo para
generar un binario personalizado para cada ambiente destino. Esto siempre hace las cosas mas
complicadas de lo que deberian ser, e introduce el riesgo de que el equipo podria no tener
versiones consistentes en cada instalacion. Como minimo involucra la compilacién de multiples,
casi idénticas copias de software, cada una tiene que ser desplegada en el lugar correcto.

http://97cosas.com/programador/un-binario.html

Significa méas partes movibles de lo necesario, lo que significa mas oportunidad de cometer un
error.

Una vez trabajé en un equipo en el cual cada cambio tenia que ser revisado en cada ciclo de
compilacion, por los que los testers se quedaban esperando cada que se necesitaba un ajuste
menor (¢ mencioné que la compilacion tomaba también mucho tiempo?). También trabajé en un
equipo en el que los administradores de sistemas insistian en reconstruir desde cero en
produccién (usando el mismo script que hicimos), lo que significaba que no teniamos pruebas
de que la versidn en produccion era la misma que habia estado bajo prueba. Y asi por el estilo.

La regla es sencilla: compila un sélo binario que puedas identificar y promover a través de todas
las etapas en la linea de liberacion. Mantén detalles especificos del entorno en el ambiente.
Esto podria significar, por ejemplo, mantenerlos en el contenedor de componentes, en un
archivo conocido o en la ruta.

Si tu equipo tiene un revoltijo de cédigo para compilar o almacenar todas las configuraciones
destino en el codigo, esto sugiere que nadie ha pensado el disefio con el suficiente cuidado para
separar estas caracteristicas, que son fundamentales de la aplicaciéon, de aquellas que son
especificas de las plataforma. O podria ser peor: el equipo sabe qué hacer, pero no puede
priorizar el esfuerzo para hacer el cambio.

Por supuesto, hay excepciones: podrias estar compilando para algin destino que tiene
importantes restricciones de recursos, pero esto no aplica para la mayoria de nosotros que
estamos escribiendo aplicaciones de “bases de datos a pantalla y de regreso”. Alternativamente,
podrias estar viviendo con algun desorden heredado que es muy dificil de corregir ahora mismo.
En tales casos, tienes que mover gradualmente, pero empezar tan pronto como sea posible.

Una cosa mas: mantén la informacion del entorno con algun control de versiones. No hay nada
peor que romper una configuracion de entorno y no ser capaz de imaginarte qué cambié. La
informacién de entorno deberia ser versionada separadamente del cédigo, ya que cambiara a
diferentes periodos y por diferentes razones. Algunos equipos usan sistemas de control de
versiones distribuidos para esto (como bazaar y git), ya que hacen mas facil de enviar cambios
hechos en ambientes de produccion —como sucede inevitablemente— de vuelta al repositorio.

Traduccién: Espartaco Palma

96. Usa el algoritmo vy estructura de datos correcto.

Autor: JC van Winkel

Un gran banco con muchas sucursales se quejé de que las nuevas computadoras que habia
comprado para los cajeros eran muy lentas. Esto era antes de que todos usaran la banca
electronica y los cajeros automaticos no estaban tan extendidos como lo estan ahora. La gente
visitaba el banco mucho mas frecuentemente y se hacian largas filas debido a las computadoras
lentas. En consecuencia, el banco amenazé con romper su contrato con el proveedor.

El proveedor envié un especialista en analisis y tuning para determinar la causa de los retrasos.
Pronto encontré un programa especifico ejecutandose en la terminal consumiendo casi toda la

http://97cosas.com/programador/pon-todo-bajo-control-de-versiones
http://97cosas.com/programador/usa-algoritmo-estructura-de-datos-correcto.html

capacidad del CPU. Usando una herramienta de perfilado se enfocé en el programa y pudo ver
la funcion culpable. El codigo se leia:

for (i=0; i<strlen(s); ++i) {
if (... s[i] ...)

}

La cadena s tenia, en promedio, miles de caracteres de longitud. El codigo (escrito por el
banco) fue rapidamente cambiado y los cajeros vivieron felices por siempre...

¢No debia el programador haberlo hecho mejor que un cddigo que innecesariamente escalaba
cuadraticamente?

Cada llamada a strlen recorria cada uno de los miles de caracteres en la cadena para

encontrar su caracter de terminacion nula. La cadena, sin embargo, nunca cambiaba. Al
determinar su longitud por adelantado, el programador podia haber ahorrado cientos de

llamadas a strlen (y millones de ejecuciones del bucle):

n=strlen(s);
for (i=0; i<n; ++i) {

if (... s[i] ...)

}

Todos conocen el viejo dicho “primero haz que funcione, luego haz que funcione rapido” para
evitar las trampas de la micro-optimizacién. Pero el ejemplo de arriba casi nos hace creer que
el programador siguio el maquiavélico adagio “primero haz que funcione lentamente”.

Este tipo de descuido es algo con lo podrias cruzarte mas de una vez. Y no es solo un “no
reinventes la rueda”. Algunas veces los programadores novatos solo empiezan a escribir sin
realmente pensar y de repente han “inventado” el ordenamiento por burbuja. Incluso podrian
estar alardeando sobre eso.

El otro lado de elegir el algoritmo correcto es la eleccién de la estructura de datos. Puede hacer
una gran diferencia: usar una lista enlazada para una coleccién de millones de elementos por
las que quieres buscar —comparada con una estructura de datos de hash— va a tener un gran
impacto en la apreciacion del usuario de tu programacion.

Los programadores no deberian reinventar la rueda y deberian usar bibliotecas existente
cuando fuera posible. Pero, para ser capaces de evitar problemas como el del banco, deberian
también ser educados acerca de los algoritmos y como escalan. ¢ Es sélo la vistosidad en los
editores lo que hace que sean tan lentos como los anticuados programas como WordStar en la
década de los ochenta? Muchos dicen que el relso en la programacion es de gran importancia.
Por encima de todo, sin embargo, los programadores deben saber cuando, qué y como
reutilizar. Para poder hacer eso deben tener el dominio del problema y los algoritmos y
estructuras de datos.

Un buen programador deberia también saber cuando usar un algoritmo abominable. Por
ejemplo, si el dominio del problema dicta que nunca puede haber mas de cinco elementos (como
el nimero del dado en el juego Yahtzee) y sabes que siempre tendras que ordenar, al menos,

cinco elementos. En este caso, el ordenamiento por burbuja puede ser la més eficiente forma
de ordenar los elementos. Cada perro tiene su dia.

Entonces, lee algunos buenos libros y asegurate de que los entiendas. Si realmente lees bien
El arte de la programacion, de Donald Knuth, podrias incluso ser afortunado: encuentra una
equivocacion del autor y gana uno de los cheques de dolares hexadecimales ($2.56).

Traduccién: Espartaco Palma

97. El WET dispersa los cuellos de botella en el rendimiento.

Autor: Kirk Pepperdine

La importancia del principio DRY (No te repitas) es que codifica la idea de que cada pieza del
conocimiento en un sistema deberia tener una representacién Unica. En otras palabras, el
conocimiento deberia estar contenido en una implementacion Unica. La antitesis de DRY es
WET (Write Every Time, escribelo todas las veces). Nuestro cédigo es WET cuando el
conocimiento es codificado en varias distintas implementaciones. Las implicaciones de
rendimiento de DRY versus WET quedan claras cuando consideras los numerosos efectos en
un perfil de rendimiento.

Comenzamos considerando una caracteristica en nuestro sistema, digamos X, que es un cuello
de botella de CPU. Digamos que la caracteristica X consume el 30% del CPU. Ahora digamos
que la caracteristica X tiene diez diferentes implementaciones. En promedio, cada
implementacion consume 3% del CPU. En este nivel de uso de CPU no es util preocuparse si
estamos buscando una victoria rapida, es comin que olvidemos que esta caracteristica es
nuestro cuello de botella. Sin embargo, digamos que, de alguna manera, reconocimos la
caracteristica X como un cuello de botella. Ahora estamos con el problema de encontrar un
arreglo en cada implementaciéon. Con WET tenemos diez diferentes implementaciones que
necesitamos buscar y reparar. Con DRY veriamos claramente el 30% de uso de CPU y
tendriamos una décima parte de cédigo que arreglar. ¢Mencioné que no tenemos tiempo que
perder buscando cada implementacion?

Hay un caso de uso en el cual frecuentemente nos sentimos culpables de violar el principio
DRY: nuestro uso de colecciones. Una técnica comun de implementar una consulta seria el
iterar sobre una coleccién y entonces aplicar la consulta para cada elemento:

public class UsageExample {
private ArrayList<Customer> allCustomers = new ArraylList<Customer>();
7 ooo
public ArrayList<Customer> findCustomersThatSpendAtLeast(Money amount) {
ArrayList<Customer> customersOfInterest = new ArrayList<Customer>();
for (Customer customer: allCustomers) {
if (customer.spendsAtLeast(amount))

customersOfInterest.add(customer);

http://97cosas.com/programador/wet-dispersa-cuellos-de-botella.html
http://97cosas.com/programador/no-te-repitas.html

return customersOfInterest;

}

Al exponer esta coleccién en bruto a los clientes, hemos violado la encapsulacién. Esto no sélo
limita nuestra habilidad para refactorizar, obliga a los usuarios de nuestro codigo a violar el
principio DRY al tener cada uno de ellos que reimplementar potencialmente la misma consulta.
Esta situacion se puede evitar facilmente al quitar la coleccién en bruto del API. En este ejemplo

podemos introducir un nuevo tipo de coleccidon de dominio especifico llamado CustomerList .

Esta nueva clase es mas semantica en la linea de nuestro dominio. Actuard como una casa
natural para todas nuestras consultas.

Tener esta nueva coleccion nos permitird ver de forma sencilla si esta consulta es un cuello de
botella en el rendimiento. Al incorporar las consultas en la clase eliminamos la necesidad de

exponer las elecciones de representacion, tales como Arraylist, a nuestros clientes. Esto nos
da la libertad de alterar esta implementacion sin el miedo de violar los contratos de los clientes:

public class CustomerlList {
private ArraylList<Customer> customers = new ArraylList<Customer>();

private SortedList<Customer> customersSortedBySpendinglLevel = new SortedList<Customer

>();
/] ocoo
public CustomerList findCustomersThatSpendAtLeast(Money amount) {

return new CustomerList(customersSortedBySpendinglLevel.elementsLargerThan(amount)

)5

public class UsageExample {
public static void main(String[] args) {
CustomerList customers = new CustomerList();
7l oo

CustomerList customersOfInterest = customers.findCustomersThatSpendAtLeast(someMi

nimalAmount);

70 ooc

En este ejemplo, la adherencia a DRY nos permite introducir un esquema de indice alterno
con sortedList usando una llave en el nivel de gasto de nuestros clientes. Mas importante que

los detalles especificos de este ejemplo, en particular, seguir el principio DRY nos ayuda a
encontrar y reparar cuellos de botella en el rendimiento que habrian sido mas dificiles de
encontrar si el cédigo fuera WET.

Traduccién: Espartaco Palma

Leer contribucion original

Espero que estos consejos sean de ayuda, no olviden compartir
este post con aquellos a quienes crean que les puede servir. jHasta

pronto!
Fuente: https://www.maestrodelacomputacion.net/

http://programmer.97things.oreilly.com/wiki/index.php/WET_Dilutes_Performance_Bottlenecks
https://www.maestrodelacomputacion.net/97-cosas-programador-deberia-saber/

