
Las 97 cosas que todo
programador debería saber
Al comenzar en el mundo de la programacióndesconocemos infinidad
de trucos y alternativas que pueden facilitar nuestro trabajo. Aquel que
lleve programando durante mucho tiempo ha experimentado situaciones
difíciles que con el tiempo aprende a solventar. Es por esta razón que
existe un libro en inglés que contiene las 97 cosas que todo programador

debería saber, y hoy quiero compartirles cada uno de
sus consejos traducidos al español.
En mi experiencia los consejos me han sido de mucho ayuda. Algunos de
los conceptos del libro ni siquiera los imaginaba, algunos me habrían
salvado la vida en ciertas situaciones anteriores. En el libro podemos
encontrar consejos para refactorizar, hacer pruebas constantes, código
más limpio, comentarios oportunos, revisiones, trabajo colaborativo entre
otros.
El libro esta dividido en 97 capítulos, cada uno con un consejo especifico y ha
sido escrito por 97 desarrolladores top que compartieron algo de su
experiencia. A continuación voy listar cada uno de los consejos con su
respectivo enlace para que los puedan estudiar y poner en practica.

1. Actúa con prudencia.

Autor: Seb Rose
“En todo lo que emprendas, actúa con prudencia y considera las
consecuencias” Anónimo
No importa qué tan cómoda se vea una agenda de trabajo al comienzo de una iteración, no
podrás evitar sentirte bajo presión en algún momento. Si te encuentras en una situación en la
que tienes que elegir entre “hacerlo bien” o “hacerlo rápido”, suele ser tentador “hacerlo rápido”
y pensar que regresarás a corregirlo más adelante. Cuando te haces esta promesa a ti mismo,
a tu equipo, al cliente, lo haces en serio. Pero a menudo la siguiente iteración trae nuevos
problemas y te debes enfocar en ellos. Este tipo de trabajo aplazado se conoce como deuda
técnica y no es un buen amigo. Martin Fowler, en su taxonomía de la deuda técnica, la llama
específicamente deuda técnica deliberada, la cual no debería confundirse con la deuda técnica
inadvertida.

La deuda técnica es como un préstamo: te trae beneficios en el corto plazo, pero deberás pagar
intereses hasta terminar de saldarla. Tomar atajos a la hora de programar hace que sea más
difícil agregar funcionalidad o refactorizar tu código; las soluciones rápidas son un caldo de
cultivo para defectos y casos de prueba muy frágiles. Mientras más tiempo las abandones, peor
se ponen. Para cuando te decidas a corregir el problema puede que haya toda una pila de malas
decisiones de diseño acumulada encima del problema original, haciendo que el código sea

http://www.ewaldosoft.com/herramientas-programacion-desarrolladores-ebook/
http://97cosas.com/programador/actua-con-prudencia.html
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

mucho más difícil de refactorizar y corregir. De hecho, es sólo cuando las cosas están tan mal
como para tener que arreglarlas, que realmente vuelves y corriges el problema. Pero para
entonces suele ser tan difícil corregirlo que no te puedes permitir el tiempo ni correr el riesgo.

Hay ocasiones en las que debes incurrir en la deuda técnica para cumplir con una fecha límite
o para implementar una pequeña parte de una función. Intenta esquivar esos casos; sólo hazlo
si la situación lo exige. Pero (y éste es un gran pero) debes mantener un ojo sobre la deuda
técnica y pagarla tan pronto como puedas o las cosas se irán rápidamente cuesta abajo. Apenas
te hayas endeudado, escribe una tarjeta o registra el problema en tu sistema de seguimiento
para asegurarte de no olvidarlo.

Si planeas pagar la deuda en la próxima iteración, el costo será mínimo. Pero si la abandonas,
se incrementarán los intereses y esto también deberá registrarse para que el costo permanezca
a la vista. Hacer esto resaltará el impacto que tiene la deuda técnica del proyecto sobre el valor
de la empresa y permitirá una priorización de pago. Cómo calcular y realizar el seguimiento de
los intereses dependerá de cada proyecto, pero deberás hacerlo.

Paga la deuda técnica tan pronto como puedas; sería imprudente no hacerlo.

Traducción: Natán Calzolari

Leer contribución original

2. Adueñate (y Refactoriza) la compilación.

Autor: Steve Berczuk
No es poco común para los equipos que, aunque son altamente disciplinados sobre las prácticas
de codificación, descuiden los scripts de compilación, quizás por la creencia de que son
meramente un detalle de poca importancia o por el miedo de que son complejos y necesitan ser
atendidos por el culto de la ingeniería de la liberación. Los scripts que no son posibles de
mantener, con duplicaciones y errores, causan problemas de la misma magnitud que aquellos
con código pobremente factorizado.

Una de las razones por las que los desarrolladores hábiles y disciplinados tratan la compilación
como algo secundario es que los scripts de compilación son frecuentemente escritos en un
lenguaje diferente al código fuente. Otra es que la compilación no es realmente “código”. Estas
justificaciones van en contra de la realidad de que la mayoría de los desarrolladores de software
disfrutan aprendiendo nuevos lenguajes y que la compilación es lo que crea artefactos
ejecutables para desarrolladores y usuarios finales para probar y ejecutar. El código es inútil si
no ha sido compilado, y la compilación es lo que define el componente de arquitectura de la
aplicación. La compilación es una parte esencial del desarrollo, y las decisiones sobre el proceso
compilado pueden hacer más simples tanto el código como la codificación.

Los scripts para la compilación que son escritos usando modismos erróneos son difíciles de
mantener y, más importante, de mejorar. Vale la pena tomarse tiempo para entender la forma
correcta de realizar un cambio. Los errores pueden aparecen cuando una aplicación se compila
con la versión incorrecta de una dependencia o cuando la configuración del tiempo de
compilador está mal.

Tradicionalmente las pruebas han sido algo que siempre fue dejado al equipo de “Quality
Assurance”. Ahora nos damos cuenta de que hacer pruebas mientras codificamos es necesario
para permitirnos liberar el valor predeciblemente. Del mismo modo, el proceso de compilación
tiene que ser propiedad del equipo de desarrollo.

http://programmer.97things.oreilly.com/wiki/index.php/Act_with_Prudence
http://97cosas.com/programador/aduenate-build.html

Entender la compilación puede simplificar el ciclo de vida completo y reducir costos. Una
compilación simple de ejecutar permite al nuevo desarrollador empezar rápida y fácilmente. La
automatización de la configuración de compilación puede permitirte obtener resultados
consistentes cuando muchas personas están trabajando en un proyecto, evitando el “a mí me
funciona”. Muchas herramientas para compilación te permiten ejecutar reportes de calidad de
código, lo que hace posible detectar problemas potenciales tempranamente. Al entender cómo
hacer tuya la compilación, puedes ayudarte a ti mismo y a los integrantes de tu equipo. Enfócate
en codificar características, en beneficio de las partes interesadas y para hacer tu trabajo más
agradable.

Aprende lo suficiente de tu proceso de compilación para saber cuándo y cómo realizar los
cambios. Los scripts de compilación son código. También son muy importantes para dejárselos
a alguien más, la aplicación no está completa hasta que se compila. El trabajo de programación
no está completo hasta que hayamos liberado software funcionando.

Traducción: Espartaco Palma

3. Antes de Refactorizar.

Autor: Rajith Attapattu
En algún punto todo programador necesitará refactorizar código existente. Pero antes de
hacerlo por favor piensa en lo siguiente, ya que tú y otras personas podrían ahorrar una gran
cantidad de tiempo (y dolor):

 El mejor enfoque para la reestructuración comienza por hacer un balance del código base

existente y las pruebas escritas contra ese código. Esto ayudará a entender las fortalezas

y debilidades del código en su estado actual, por lo que puedes asegurar que retienes los

puntos fuertes, mientras evitas los errores. Todos pensamos que podemos hacerlo mejor

que el sistema actual… hasta que terminamos con algo que no es mejor –o incluso peor–

que la anterior encarnación, debido a que fallamos en aprender de los errores existentes en

el sistema.

 Evita la tentación de volver a escribir todo. Es mejor reusar tanto código como sea posible.

No importa que tan feo sea el código, ya ha sido probado, revisado, etcétera. Desechar el

código viejo –especialmente si está en producción– significa que estás desechando meses

(o años) de pruebas sobre el aguerrido código que podría haber tenido ciertos atajos y

correcciones críticas de errores de los cuales no estás enterado. Si no tomas esto en cuenta,

el nuevo código que se escriba podría terminar mostrando el mismo error misterioso que

fue reparado en el código antiguo. Esto desperdiciará un montón de tiempo, esfuerzo y

conocimiento adquiridos a través de los años.

 Muchos cambios incrementales son mejores que un cambio masivo. Los cambios

incrementales permiten medir el impacto en el sistema más fácilmente a través de la

retroalimentación, como las pruebas. No es divertido ver cientos de pruebas fallidas

después de realizar un cambio. Esto puede conducir a la frustración y presión que puede, a

su vez, dar lugar a malas decisiones. Un par de pruebas fallidas es fácil de manejar y provee

un enfoque más manejable.

http://97cosas.com/programador/antes-de-refactorizar.html

 Después de cada iteración es importante asegurar que las pruebas existentes pasan.

Agrega nuevas pruebas si las pruebas existentes no son suficientes para cubrir los cambios

realizados. No deseches las pruebas del código antiguo sin la debida consideración. En la

superficie algunas de estas pruebas podrían no parecer aplicables a tu nuevo diseño, pero

será de utilidad el esfuerzo de investigación a fondo de las razones por las cuales estas

pruebas en particular fueron añadidas.

 Las preferencias personales y el ego no deben ponerse en el camino. Si algo no está roto,

¿para qué arreglarlo? Que el estilo o la estructura del código no se ajuste a tus preferencias

personales no es una razón válida para reestructurarlo. Pesar que podrías hacer un mejor

trabajo que el programador previo no es una razón válida tampoco.

 La nueva tecnología es razón insuficiente para refactorizar. Una de las peores razones para

refactorizar se debe a que el código actual está muy por detrás de las buenas tecnologías

que tenemos hoy en día, y creemos que un nuevo lenguaje o framework puede hacer las

cosas mucho más elegantemente. A menos que un análisis de costo-beneficio muestre que

el nuevo lenguaje o framework beneficiará la funcionalidad, mantenimiento o productividad,

es mejor dejar las cosas como están.

 Recuerda que los humanos cometen errores. Reestructurar no siempre garantiza que el

nuevo código será mejor o tan bueno como el intento anterior. He visto y sido parte de

muchos intentos de reestructuración fallidos. No fue bonito, pero fue humano.

Traducción: Espartaco Palma

4. Aplica los principios de la programación funcional.

Autor: Edward Garson
Recientemente, la comunidad programadora ha demostrado un renovado interés por la
programación funcional. Parte del motivo es que las propiedades emergentes de este paradigma
las hacen una buena opción para abordar la transición de la industria hacia el desarrollo sobre
arquitecturas multi-core. Sin embargo, aunque es, sin duda, una aplicación importante, no es la
razón por la que este texto te exhorta a que aprendas sobre programación funcional.

Dominar el paradigma funcional puede mejorar enormemente la calidad del código que escribes
en otros contextos. Si lo comprendes y lo aplicas a tus diseños, lograrás un nivel mucho más
alto de transparencia referencial.

La transparencia referencial es una cualidad deseable: implica que las funciones devuelvan
siempre los mismos resultados cuando se les pase el mismo valor, independientemente de
dónde y cuándo se las invoque. Es decir, la evaluación de una función no depende tanto de los
efectos colaterales del estado mutable –idealmente, no depende en absoluto–.

Una de las principales causas de defectos cuando se programa en lenguajes imperativos no es
otra que las variables mutables. Cualquier persona que se encuentre leyendo esto habrá tenido
que investigar alguna vez por qué un valor no es el esperado en una situación particular. La
semántica de visibilidad puede ayudar a mitigar estos errores insidiosos o, al menos, reducir
drásticamente su ubicación; pero es probable que el verdadero culpable de su existencia sea
un desarrollo que hace uso de mutabilidad excesiva.

http://97cosas.com/programador/aplica-programacion-funcional.html

Y la industria no nos ayuda mucho con este problema. La mayoría de la documentación
introductoria sobre orientación a objetos tácitamente promueve este tipo de prácticas, porque a
menudo utilizan como ejemplo una serie de objetos con un tiempo de vida relativamente largo,
invocando métodos mutadores unos sobre otros, lo cual puede ser peligroso. Sin embargo, con
un buen desarrollo guiado por pruebas, particularmente asegurándose de “simular roles, no
objetos“, se puede evitar la mutabilidad excesiva.

El resultado neto será un diseño que generalmente posee una mejor distribución de
responsabilidades con una mayor cantidad de funciones –más pequeñas– que trabajan sobre
los argumentos que se les pasa, en lugar de hacer referencia a miembros mutables. Habrá
menos defectos y también será menos complejo detectarlos, porque es más fácil localizar dónde
se introdujo un valor no deseado que deducir el contexto específico que resulta en una
asignación errónea. Un diseño de este tipo establecerá un nivel mucho más alto de
transparencia referencial; y, de seguro, nada fijará mejor estas ideas en tu cabeza que estudiar
un lenguaje de programación funcional, en el cual este modelo de computación es la norma.

Por supuesto, este enfoque no es la mejor opción para todas las situaciones. Por ejemplo, en
sistemas orientados a objetos de este estilo suele lograr mejores resultados con el desarrollo
del modelo de dominio (es decir, en el cual la interacción de las funciones sirve para
descomponer la complejidad de las reglas de negocio) y no tanto con el desarrollo de la interfaz
de usuario.

Domina el paradigma de la programación funcional y podrás –con criterio– aplicar en otros
contextos las lecciones que aprendas. Tus sistemas orientados a objetos (para empezar) se
llevarán mejor con las bondades de la transparencia referencial y, contrario a lo que muchos te
dirán, estarán más cerca de su contraparte funcional. De hecho, algunos incluso afirman que,
en el fondo, los paradigmas de programación funcional y orientada a objetos no son más que
un mero reflejo el uno del otro, una especie de yin y yang computacional.

Traducción: Natán Calzolari

5. Aprende a decir “Hola, Mundo”.

Autor: Thomas Guest
Paul Lee, nombre de usuario “leep”, comúnmente conocido como Hoppy, tenía la reputación de
experto local en temas de programación. Necesitaba ayuda. Caminé hacia el escritorio de
Hoppy y le pregunté:

— ¿Podrías echar un vistazo al código por mí?

— Seguro —dijo Hoppy—, toma una silla.

Tuve el cuidado de no derribar las latas vacías de soda apiladas en una pirámide detrás de él.

—¿Qué código?

—En una función en un archivo —le dije.

—Echemos un vistazo a esta función.

Hoppy alejó una copia de K&R y deslizó su teclado frente a mí. ¿Dónde está el IDE?
Aparentemente Hoppy no tenía un IDE ejecutándose, sólo algún editor que yo no podía operar.
Tomó de nuevo el teclado. Unos cuantos teclazos después y teníamos el archivo abierto –era
un archivo algo grande– y estamos observando la función –era una función algo grande–. Él
avanzó unas páginas hacia el bloque condicional que quería cuestionarle.

http://www.jmock.org/oopsla2004.pdf
http://www.jmock.org/oopsla2004.pdf
http://97cosas.com/programador/aprende-decir-hola-mundo.html

— ¿Qué haría realmente esta cláusula si x es negativo? —le pregunté—. ¿Sin duda, es un error.

Había estado probando toda la mañana tratando de encontrar una manera de forzar que x fuera
negativo, pero la gran función en un gran archivo era parte de un gran proyecto, y el ciclo de
recompilar y volver a ejecutar mis experimentos me estaba venciendo. ¿No podría un experto
como Hoppy simplemente decirme la respuesta?

Hoppy admitió que estaba seguro. Para mi sorpresa, no buscó en K&R. En vez de ello, copió el
bloque de código en un nuevo buffer del editor, lo reindentó y lo envolvió en una función. Un

poco más tarde codificó una función main y lo cicló, pidiendo al usuario valores de entrada,

pasándolos a la función e imprimiendo el resultado. Guardó el buffer como un nuevo

archivo, tryit.c . Todo esto lo podría haber hecho yo mismo, creo que quizá no tan rápido. Sin

embargo, su siguiente paso fue maravillosamente simple y, para ese tiempo, un poco extraño
para mi manera de trabajar

$ cc tryit.c && ./a.out

¡Mira! Su programa, concebido unos pocos minutos antes, ahora estaba en marcha y
funcionando. Probamos unos cuantos valores y confirmó mis sospechas (¡había tenido razón
sobre algo!) y entonces cotejó la sección correspondiente de K&R. Le agradecí a Hoppy y me
fui, una vez más, teniendo cuidado de no molestar su pirámide de latas de soda.

De regreso a mi escritorio, cerré mi IDE. Me había hecho tan familiar al trabajo con un gran
proyecto con un gran producto que había empezado a pensar qué debía hacer. Una
computadora de propósito general puede realizar pequeñas tareas también. Abrí un editor de
texto y empecé a escribir.

#include <stdio.h>

int main() {

 printf("Hello, World\n");

 return 0;

}

Traducción: Espartaco Palma

6. Aprende a hacer estimaciones.
Como programador debes ser capaz de proporcionar estimaciones a tus directivos, colegas y
usuarios de las tareas que necesitas realizar, así ellos tendrán una idea razonablemente precisa
del tiempo, costo, tecnología y otros recursos necesarios para lograr sus objetivos.

Para poder estimar bien es obvia la importancia aprender algunas técnicas de estimación. En
primer lugar, sin embargo, es fundamental aprender qué son las estimaciones y para qué
deberían ser usadas –por extraño que parezca, muchos desarrolladores y administradores no
conocen esto–.

El siguiente diálogo entre un administrador de proyectos y un programador es nada atípico:

http://97cosas.com/programador/aprende-estimaciones.html

 Administrador de Proyecto: ¿Puedes darme un estimado del tiempo necesario para

desarrollar la característica xyz?

 Programador: Un mes.

 Administrador de Proyecto: ¡Eso es mucho tiempo! Sólo tenemos una semana.

 Programador: Necesito al menos tres.

 Administrador de Proyecto: Puedo darte dos cuando mucho.

 Programador: ¡Es un trato!

Al programador, al final, se le ocurre un “estimado” que concuerda con lo que es aceptable para
el administrador. Pero, ya que es una estimación del programador, el gerente lo hará
responsable de ello. Para entender qué está mal en esta conversación necesitamos tres
definiciones: estimado, fin y compromiso.

 Un estimado es un cálculo aproximado o un juicio de valor, número, cantidad o extensión

de algo. Esta definición implica que un estimado es una medición factual basada en datos

concretos y experiencia previa; la esperanza y los deseos deben ser ignorados cuando se

calcula. La definición también implica que, al ser aproximada, una estimación no pueden

ser precisa, por ejemplo: una tarea de desarrollo no puede ser estimada para durar 234.14

días.

 Un fin es una declaración de un objetivo deseable del negocio, por ejemplo, “el sistema

debe soportar al menos 400 usuarios concurrentes”.

 Un compromiso es una promesa de ofrecer una funcionalidad especificada a una

determinado nivel de calidad en una cierta fecha o evento. Un ejemplo podría ser: “la

funcionalidad de búsqueda estará disponible en la próxima versión del producto”.

Los estimados, fines y compromisos son independientes uno del otro, pero los blancos y
cometidos deberían estar basados en estimados. Como Steve McConnell señala: “El propósito
principal de la estimación de software no es predecir el futuro del proyecto, sino determinar si
los fines son lo suficientemente realistas para que pueda ser controlado hasta lograrlo”. Por lo
tanto, el propósito de una estimación es hacer una administración de proyecto adecuada y una
planificación posible, permitiendo que los interesados hagan compromisos basados en fines
realistas.

Lo que estaba pidiendo el administrador en la conversación anterior al programador era hacer
un compromiso basado en un fin no declarado que el administrador tenía en mente, no dar un
estimado. La próxima vez que te pidan proporcionar un estimado asegúrate que todos los
involucrados sepan de lo que están hablando, y tus proyectos tendrán una mejor oportunidad
de éxito. Ahora es el momento de aprender algunas técnicas…

Traducción: Espartaco Palma

7. Aprende un lenguaje extranjero.

Autor: Klaus Marquardt
Los programadores necesitamos comunicarnos. Mucho.

http://97cosas.com/programador/aprende-lenguaje-extranjero.html

Hay periodos en la vida de un programador cuando mucha de su comunicación parece ser con
la computadora. Más precisamente, con los programas ejecutándose en esa computadora. Esta
comunicación es con respecto a expresar ideas en una forma leíble por la máquina. Sigue
siendo un prospecto emocionante: los programas son ideas convertidas en realidad, con
virtualmente ninguna sustancia física involucrada.

Los programadores deben tener fluidez en el lenguaje de la máquina, ya sea real o virtual, y en
las abstracciones que pueden estar relacionadas con el lenguaje vía herramientas de desarrollo.
Es importante aprender muchas abstracciones diferentes, de otro modo algunas ideas se
vuelven increíblemente difíciles de expresar. Los buenos programadores necesitan ser capaces
de pararse fuera de su rutina diaria, de estar al tanto de otros lenguajes que son expresivos
para otros propósitos. La hora siempre llega cuando éste vale la pena.

Más allá de la comunicación con las máquinas, los programadores necesitan comunicarse con
sus pares. Los grandes proyectos de hoy en día son más emprendimientos sociales que
simplemente una aplicación en el arte de la programación. Es importante entender y expresar
más de lo que pueden las abstracciones de máquina. La mayoría de los mejores programadores
que conozco es muy fluida en su lengua madre y, por lo general, en otros idiomas también. Esto
no es sólo sobre la comunicación con otros: hablar bien un lenguaje nos lleva a una claridad de
pensamiento que es indispensable cuando se abstrae un problema. Y también de eso se trata
la programación.

Más allá de la comunicación con las máquinas, con uno mismo y con los compañeros, un
proyecto tiene muchos stakeholders, la mayoría con una formación diferente o no técnica. Ellos
viven en las áreas de pruebas, calidad y despliegue, en mercadeo y ventas, son usuarios finales
en alguna oficina (o tienda o casa). Necesitas entenderlos y a sus preocupaciones. Esto es casi
imposible si no puedes hablar su lenguaje en su mundo, su dominio. Mientras puedes pensar
que una conversación con ellos salió bien, ellos probablemente no.

Si puedes hablar con contadores, necesitas un conocimiento básico de contabilidad, de centros,
de costos o capital invertido, capital empleado, et al. Si vas a hablar con mercadólogos o
abogados, algo de su jerga y lenguaje (y, por lo tanto, su mente) debería serte familiar. Todos
estos lenguajes específicos del dominio necesitan ser dominados por alguien en el proyecto; de
preferencia los programadores, ya que son los responsables de llevar las ideas a la vida a través
de una computadora.

Y, por supuesto, la vida es más que proyectos de software. Como lo nota Charlemagne, el
conocer otro lenguaje es tener otra alma. Para tus contactos más allá de la industria del software
serás más apreciado al conocer lenguajes extranjeros. Para saber cuándo escucharlos en vez
de hablar. Para saber que la mayor parte del lenguaje es sin palabras.

“De lo que no se puede hablar, hay que callar”. Ludwig Wittgenstein.
Traducción: Espartaco Palma

8. Aprendiendo continuamente.

Autor: Clint Shank
Vivimos en tiempos interesantes. Conforme el desarrollo se distribuye en todo el mundo, se
aprende que hay muchas personas capaces de hacer tu trabajo. Necesitas seguir aprendiendo
para seguir siendo comercializable. De lo contrario, te convertirás en dinosaurio, atrapado en el
mismo trabajo hasta que, un día, no serás necesario o tu trabajo será subcontratado con algún
recurso más barato

http://97cosas.com/programador/aprendiendo-continuamente.html

Entonces, ¿qué hacer al respecto? Algunos empleadores son lo suficientemente generosos
para proveer formación para ampliar tus habilidades. Otros pueden no ser capaces de ahorrar
el tiempo o el dinero para entrenarte. Para jugar a la segura, necesitas tomar responsabilidad
de tu propia educación.

Aquí hay una lista de las ideas para mantenerte en aprendizaje. Muchas de se pueden encontrar
en Internet de forma gratuita:

 Lee libros, revistas, blogs, feeds de twitter y sitios web. Si quieres profundizar en un tema,

considera unirte a una lista de correo o grupos de noticias

 Si realmente quieres estar inmerso en una tecnología, pon las manos en ello y escribe algún

código.

 Trata siempre de trabajar con un mentor, sentirse el mejor puede dificultar tu educación.

Aunque puedes aprender algo de cualquiera, puedes aprender mucho más de alguien más

inteligente o más experimentado que tú. Si no puedes encontrar un mentor, considera seguir

adelante.

 Utiliza mentores virtuales. Encuentra autores y desarrolladores en la web que realmente te

gusten y lee todo lo que han escrito. Inscríbete en sus blogs.

 Conoce sobre los frameworks y bibliotecas que usan. Saber cómo funciona algo te hace

saber cómo usarlo mejor. Si son de software libre, estás de suerte. Usa el depurador para

ir paso a paso por el código para ver qué hay tras el telón. Podrás ver el código escrito y

revisado por personas realmente inteligentes.

 Cada vez que cometas un error, arregles un error o estés en un problema trata de entender

qué pasó. Es probable que alguien más haya tenido el mismo problema y haya escrito sobre

él en algún lugar de la web. Google es útil en este caso.

 Una buena manera de aprender algo es enseñando o hablando sobre eso. Como la gente

está para escucharte y te hará preguntas, estarás motivado a aprender. Intenta un

“almuerza y aprende” en el trabajo, un grupo de usuarios o con conferencias locales.

 Inicia o únete a un grupo de estudio (a la comunidad de patrones) o a un grupo local de

usuarios del lenguaje, tecnología o disciplina en la que estés interesado.

 Asiste a conferencias. Y si no puedes ir, muchas conferencias ponen sus charlas en línea

gratuitamente.

 ¿Tienes un largo trayecto de la casa al trabajo? Escucha podcasts.

 ¿Alguna vez has ejecutado las herramientas de análisis estático sobre tu código base o has

mirado en las advertencias de tu IDE? Comprende qué están reportando y por qué.

 Sigue la recomendación de The Pragmatic Programmer y aprende un nuevo lenguaje cada

año. Al menos aprenderás una nueva tecnología o herramienta. El diversificar te dará ideas

que puedes usar en tu pila tecnológica actual.

 No todo lo que aprendas tiene que ser sobre tecnología. Aprende el dominio de lo que estás

trabajando, así puedes comprender mejor los requerimientos y ayudar a resolver el

problema del negocio. Aprender a ser más productivo – cómo trabajar mejor – es otra buena

opción.

 Vuelve a la escuela.

https://pragprog.com/book/tpp/the-pragmatic-programmer

Sería bueno tener la capacidad que Neo tenía en The Matrix y simplemente descargar en tu
cerebro la información que necesitas. Pero no podemos, por lo que requerirá un compromiso
de tiempo. No tienes que gastar cada hora de vigilia aprendiendo. Un poco de tiempo, por
ejemplo semanalmente, es mejor que nada. Existe (o debería haber) una vida fuera del trabajo.

La tecnología cambia rápidamente. No te quedes atrás.

Traducción: Espartaco Palma

9. Automatiza el estándar de codificación.

Autor: Filip van Laenen
Probablemente a ti también te sucedió. Al comenzar un proyecto todo el mundo tiene buenas
intenciones; las llamaremos “resoluciones de proyecto nuevo”. A menudo, muchas de estas
resoluciones se documentan, y las que tienen que ver con el código terminan en el estándar de
codificación del proyecto. Durante la primera reunión, el jefe de desarrollo revisa la
documentación y, en el mejor de los casos, todos aceptan que intentarán respetarla. Sin
embargo, una vez que el proyecto se pone en marcha, las buenas intenciones se van dejando
de lado, una a una. Para cuando se entrega el proyecto, el código es un desastre y nadie parece
saber por qué.

¿En qué momento salieron mal las cosas? Probablemente desde la reunión inicial. Algunos
miembros no estaban prestando atención; otros no lo consideraron importante. Para peor,
algunos no estuvieron de acuerdo y ya estaban planeando rebelarse en contra del estándar.
Por último, algunos sí lo comprendieron y estuvieron de acuerdo pero, cuando la presión del
proyecto fue demasiada, tuvieron que dejar de lado algunas convenciones. Aplicar un buen
formato al código no te hará ganar puntos con un cliente que desea más funcionalidad. De
hecho, respetar un estándar de codificación puede ser bastante aburrido si la función no está
automatizada: intenta indentar una clase a mano para comprobarlo por tu cuenta.

Pero si es tan problemático, ¿para qué queremos un estándar de codificación? Una de las
razones para darle un formato uniforme al código es que, de este modo, nadie se “adueñará”
del código que escriba utilizando un formato propio. Probablemente queremos evitar que los
programadores utilicen ciertos antipatrones, para así ahorrarnos algunos errores comunes. En
general, un estándar de codificación debería hacer más fácil el trabajo grupal de un proyecto y
mantener la velocidad de desarrollo desde el principio hasta el final. Se deduce entonces que
todos deberían estar de acuerdo con el estándar; no ayuda que un programador utilice tres
espacios para indentar y otro utilice cuatro.

Hay una gran cantidad de herramientas que se pueden usar para producir reportes de calidad
de código, y para documentar y mantener el estándar de codificación, pero ésa no es la solución
completa. El estándar debería automatizarse e imponerse siempre que sea posible. Por
ejemplo, de las siguientes maneras:

 Asegúrate de que parte del proceso de compilación sea darle formato al código, de modo

que todo el mundo lo realice cada vez que se compile la aplicación.

 Utiliza herramientas de análisis de código estático para encontrar antipatrones. Si se

encuentra alguno, detén la compilación.

 Aprende a configurar estas herramientas para que detecten antipatrones definidos por ti

mismo y para tus proyectos específicos.

http://97cosas.com/programador/automatiza-estandar-codificacion.html

 Mide la cobertura del código, pero también evalúa automáticamente los resultados.

Nuevamente, detén la compilación si los resultados son muy bajos.

Intenta aplicar esto en todo lo que consideres de importancia, aunque no te será posible
automatizarlo todo. Las cosas que no puedas marcar o corregir automáticamente podrían
agruparse en un conjunto de directrices suplementarias al estándar automatizado, pero ten en
cuenta que probablemente tú y tus colegas no lo respeten con la misma diligencia.

Por último, el estándar de codificación debería ser dinámico y no estático. A medida que el
proyecto evolucione, sus necesidades también irán cambiando, y lo que quizás pareció
inteligente en un principio, no será necesariamente inteligente algunos meses después.

Traducción: Natán Calzolari

10. Averigua qué haría el usuario (tú no eres un usuario).

Autor: Giles Colborne
Todos tendemos a asumir que los demás piensan como nosotros, pero no es así. Los psicólogos
lo llaman efecto del falso consenso. Cuando la gente piensa o actúa de un modo diferente a
nosotros es muy probable que (subconscientemente) los consideremos defectuosos en cierto
modo.

Este prejuicio explica por qué a los programadores les cuesta tanto ponerse en el lugar de los
usuarios. Los usuarios no piensan como programadores. Para empezar, pasan mucho menos
tiempo usando computadoras y no saben, ni les interesa, cómo funcionan. Esto significa que no
pueden recurrir a ninguna de las pilas de técnicas para resolver problemas que son tan comunes
entre programadores. Los usuarios no saben reconocer los patrones ni indicaciones que los
programadores manejan para trabajar y lidiar con las interfaces.

La mejor manera de entender cómo piensan los usuarios es observándolos. Pídele a un usuario
que realice una tarea utilizando una aplicación similar a la que estás desarrollando. Asegúrate
de que sea una tarea en serio: “agrega una columna de números” está bien; “calcula tus gastos
del mes pasado” es mejor. Evita tareas muy específicas, como “¿puedes seleccionar estas
celdas y agregar una fórmula SUMA debajo?”; es una pregunta algo obvia. Haz que el usuario
te explique en detalle el proceso que realiza. No lo interrumpas. No intentes ayudarlo.
Pregúntate todo el tiempo por qué está haciendo eso.

Lo primero que notarás es que los usuarios realizan una serie de cosas de manera similar.
Intentan completar las tareas en el mismo orden y cometen los mismos errores en los mismos
lugares. Deberías diseñar tu aplicación en torno a esta conducta base. Esto es algo que difiere
de las reuniones de diseño, en las cuales se suelen hacer preguntas como: “¿y si el usuario
quisiera…?”. Estos planteamientos conducen al desarrollo de funciones demasiado complejas
y generan confusión sobre lo que los usuarios realmente desean. Observarlos eliminará esta
confusión.

Verás que los usuarios suelen atascarse. Cuando tú te atascas, buscas una solución. Cuando
los usuarios se atascan, reducen su foco de atención; se les vuelve más complicado ver una
solución al problema en otro lugar de la pantalla. Ésta es una de las razones por las que los
textos de ayuda son una mala solución al mal diseño de interfaces de usuario. Si debes agregar
instrucciones o textos de ayuda, asegúrate de hacerlo justo al lado de las áreas problemáticas.
Esta limitación de los usuarios es el motivo por el que los tooltips son más útiles que los menús
de ayuda.

http://97cosas.com/programador/averigua-que-haria-usuario.html

Los usuarios tienden a salir del paso de alguna manera. Encontrarán algo que funcione y se
aferrarán a ello sin importar lo complejo que sea, pero es mejor proveer un modo obvio de hacer
las cosas que dos o tres atajos.

También te encontrarás con que hay una marcada diferencia entre lo que los usuarios dicen
que quieren y lo que realmente quieren. Lo cual es preocupante, ya que para averiguar los
requerimientos lo normal es preguntarles. Es por esto que el mejor modo de relevar los
requerimientos es observando a los usuarios. Pasar una hora con ellos es mucho más
informativo que pasar un día suponiendo qué quieren.

Traducción: Natán Calzolari

11. La belleza está en la simplicidad.

Autor: Jørn Ølmheim
Hay una gran cita de Platón que es particularmente importante que los programadores sepamos
y recordemos siempre: “La belleza en el estilo, la armonía, la gracia y el buen ritmo dependen
de la simplicidad”. Creo que esta cita resume en una sola oración todos los valores a los que
deberíamos aspirar los desarrolladores de software.

En nuestro código, nos esforzamos por lograr una serie de cosas:

 Legibilidad

 Mantenibilidad

 Velocidad de desarrollo

 La esquiva cualidad de la belleza

Platón nos está diciendo que el factor que nos permitirá alcanzar todas estas cualidades es la
simplicidad.

¿Pero qué hace bello al código? Ésta puede ser una pregunta muy subjetiva. La percepción de
la belleza depende mucho de nuestro trasfondo individual, tal como sucede con cualquier otra
cosa. La gente formada en las artes tiene una percepción (o enfoque) sobre la belleza que es
distinta a la de la gente formada en las ciencias. En el ámbito del arte se tiende a analizar la
belleza del software comparándola con obras de arte, mientras que en el de las ciencias se
habla de la simetría y la proporción áurea; se intenta reducir las cosas a fórmulas. En mi
experiencia, la simplicidad es la base de los argumentos en ambos lados de la moneda.

Piensa en el código que has estudiado. Si no has pasado un buen tiempo leyendo el código de
alguien más, deja de leer esto ahora mismo y ve a buscar algo de software libre para estudiar.
¡En serio, no es broma! Busca en Internet algo de código en tu lenguaje preferido, escrito por
algún experto reconocido.

¿Ya has regresado? Bien. ¿Dónde estábamos? Ah, sí… Me he encontrado con que el código
que me llama la atención y que considero hermoso siempre posee una misma serie de
características. La más importante es la simplicidad. Me encuentro con que, sin importar qué
tan complicada sea la aplicación o sistema en su totalidad, las partes individuales deben
mantenerse simples: los objetos deben ser sencillos, poseer una única responsabilidad y
contener métodos similarmente simples, con una tarea bien definida y nombres descriptivos.
Algunos piensan que la idea de escribir métodos breves, de entre cinco y diez líneas de código

http://97cosas.com/programador/belleza-simplicidad.html

cada uno, es bastante extrema, y algunos lenguajes hacen que sea muy difícil lograr esto, pero
yo creo que esta brevedad es un objetivo deseable.

En resumen, para que el código sea bello debe ser simple. Cada pieza individual debe ser
sencilla, y poseer responsabilidades y relaciones simples con otras partes del sistema. De este
modo se logra que nuestros proyectos puedan mantenerse en el tiempo, con código limpio,
sencillo y verificable, lo cual permite mantener una alta velocidad de desarrollo durante el tiempo
de vida del proyecto.

La belleza nace y se encuentra en la simplicidad.

12. El camino al mejor rendimiento está lleno de sucias bombas de código.

Autor: Kirk Pepperdine
Más frecuentemente que nunca, la optimización de rendimiento en un sistema requiere que
alteres código. Cuando tenemos que alterar código, cada porción intrincadamente compleja o
altamente acoplada es una sucia bomba de código, en espera de descarrilar el esfuerzo. La
primera víctima de código sucio será tu agenda. Si el camino a seguir es suave, será fácil
predecir cuando acabará. Los encuentros inesperados con el código sucio harán que sea muy
difícil hacer una predicción cuerda.

Considera la situación en la que encuentras un punto de ejecución complicado. El curso normal
de acción es reducir la fortaleza del algoritmo en cuestión. Digamos que respondes con “3-4
horas” a un estimado que te pide el gerente. Si aplicas el fix te darás cuenta rápidamente que
has descompuesto una parte dependiente. Debido a que las cosas están relacionadas, a
menudo están necesariamente acopladas, estas descomposturas son esperadas y se cuenta
con ellas. Pero, ¿qué pasa si un arreglo en esa dependencia termina rompiéndose en otra parte
dependiente? Por otro lado, entre más lejos está la dependencia de su origen, menos probable
es reconocerla como tal y tomarla en cuenta en tu estimado. De repente tu estimado de 3-4
horas pueden elevarse fácilmente a 3-4 semanas. Con frecuencia esta inflación inesperada en
la agenda sucede 1 o 2 días, todas al mismo tiempo. No es raro el ver refactorizaciones “rápidas”
que eventualmente toman varios meses en ser completadas. En esos casos, el daño en la
credibilidad y capital político del equipo responsable variará de severo a terminal. Si tan sólo
tuviéramos una herramienta para ayudarnos a identificar y medir estos riesgos.

De hecho, tenemos varias maneras de medir y controlar el grado y profundidad de acoplamiento
y complejidad de nuestro código. Las métricas de software puede ser usadas para contar las
apariciones de característica específicas en nuestro código. Los valores de estos conteos se
correlacionan con la calidad del código. Dos de estas métricas que miden el acoplamiento son
las llamadas fan-in y fan- out. El fan-out está definido como el número de clases referenciadas,
ya sea directa o indirectamente, para una clase en particular. Puedes pensar en esto como un
recuento de todas las clases que deben ser compiladas antes de que tu clase pueda ser
compilada. El fan-in un conteo de todas las clases que depende de una clase en específico.
Conociendo el fan-out y fan-in podemos calcular un factor de inestabilidad usando I = fo / (fi +
fo). Conforme se aproxima a 0, el paquete se vuelve más estable. En cuanto se aproxime a 1,
el paquete se convierte en inestable. Los paquetes que son estables son objetivos de bajo
riesgo, mientras que los paquetes inestables son más propensos a estar llenos de sucias
bombas de códigos. La meta de la refactorización es mover I lo más cercano a 0.

Cuando usamos métricas debemos recordar que sólo son reglas empíricas. Basándose
puramente en las matemáticas puedes ver que el incremento de fi sin cambiar fo moverá I mas
cerca a 0. Sin embargo hay una desventaja en tener el valor fan-in alto, pues estas clases serán

http://97cosas.com/programador/camino-al-rendimiento-bombas-codigo.html

más difíciles de modificar sin romper dependencias. Al no tener en cuenta el fan-out no estás
reduciendo realmente el riesgo, por lo que debe aplicarse algún balance.

Una desventaja de las métricas de software es que la gran cantidad que números que producen
las herramientas pueden ser intimidantes para los no iniciados. Dicho esto, las métricas de
software pueden ser una poderosa herramienta en nuestra lucha por un código limpio. Pueden
ayudar a identificar y eliminar las sucias bombas de código antes de que sean un serio riesgo
al ejercicio de optimización del rendimiento.

Traducción: Espartaco Palma
13. Codificando con la razón.

Autor: Yechiel Kimchi
Trata de averiguar manualmente la correctitud de software resulta en una prueba formal más
larga y propensa a errores que el código mismo. Las herramientas automatizadas son
preferibles, pero no siempre posibles. Lo siguiente describe una ruta intermedia: razonamiento
semi-formal sobre la dicha correctitud.

El planteamiento de fondo es dividir todo el código en cuestión de secciones cortas –desde una
sola línea, como invocar a una función, hasta bloques de menos de 10 líneas– y discutir acerca
de su exactitud. Los argumentos sólo necesitan ser suficientemente fuertes para convencer al
compañero del diablo como tu pareja de programación.

Una sección debería ser elegida de modo que en cada terminal el estado del programa (léase:
el conteo del programa y los valores de todos los objetos “vivos”) satisface una propiedad
fácilmente descrita y que la funcionalidad de esa sección (transformación de estado) sea fácil
de describir como una sola tarea –estos harán el razonamiento más sencillo–. Tales
propiedades terminales generalizan conceptos como precondinción y poscondición de
funciones, e invariantes para ciclos y clases (con respecto a sus instancias). La lucha para que
las secciones sean independientes de las otras tanto como sea posible simplifica el
razonamiento y es indispensable cuando estas secciones son modificadas.

Muchas de las prácticas de codificación que son bien conocidas (aunque quizás menos
seguidas) y consideradas “buenas” hacen el razonamiento más fácil. Por lo tanto, sólo con la
intención de razonar sobre tu código ya estás comenzando a pensar acerca de un mejor estilo
y estructura. Como era de esperarse, la mayoría de estas prácticas pueden ser revisadas por
analizadores de código estático:

1. Evita usar sentencias goto , ya que hacen las secciones remotas altamente

interdependientes

2. Evita usar variables globales modificables, debido a que hacen dependientes a todas las

secciones que las usan.

3. Cada variable debería tener el mínimo alcance posible. Por ejemplo, un objeto local puede

ser declarado justo antes de su primer uso.

4. Haz los objetos inmutables cuando sea relevante.

5. Haz al código leíble usando espacios, tanto horizontales como verticales. Por ejemplo,

alineando estructuras relacionadas y usando una línea vacía para separar dos secciones.

6. Haz al código semi-documentable escogiendo nombres descriptivos (pero relativamente

cortos) para los objetos, tipos, funciones, etc.

7. Si necesitas una sección anidada, crea una función.

http://97cosas.com/programador/codifica-con-la-razon.html

8. Crea tus funciones cortas y enfocadas en una sola tarea. El viejo límite de 24 líneas aún

aplica. A pesar que los tamaños de las pantallas han cambiado, nada ha cambiado en la

cognición humana desde la década de los sesenta.

9. Las funciones deben tener pocos parámetros (cuatro es buen límite superior). Esto no

restringe los datos comunicados a las funciones: agrupando parámetros relacionados en un

objeto beneficia desde sus invariantes y ahorra razonamiento, tales como su coherencia y

consistencia.

10. En general, cada unidad de código, desde un bloque hasta una biblioteca, debería tener

una interface rala. Menos comunicación reduce el razonamiento requerido. Esto significa

que los getters que regresan estados internos son una responsabilidad –no pidas a un

objeto la información que ya tiene–. En otras palabras, la encapsulación es todo sobre

interfaces limitadas.

11. Para poder preservar las clases invariantes, el uso de setters no debería ser recomendada,

debido a que los setters tienden a permitir invariantes que gobiernan el estado de un objeto

hacia su ruptura.

Conforme se razone sobre la correctitud, argumentar sobre tu código te ofrece entendimiento
sobre él. Comunica sus descubrimientos para el beneficio de todos.

Traducción: Espartaco Palma

14. Codifica en el lenguaje del dominio.

Autor: Dan North
Imagínate dos códigos bases. En uno te encuentras esto:

if (portfolioIdsByTraderId.get(trader.getId())

 .containsKey(portfolio.getId())) {...}

Te rascas la cabeza imaginándote para que podría servir este código. Parece que está
obteniendo un ID desde un objeto comerciante (“trader”), usándolo para obtener aparentemente
un mapa de mapas y, entonces, está viendo si otro ID desde un objeto portafolio (“portfolio”)
existe en el mapa interior. Te rascas la cabeza un poco más. Ves la declaración del

método portfolioIdsByTraderId y descubres esto:

Map<int, Map<int, int>> portfolioIdsByTraderId;

Poco a poco te das cuenta que podría tener algo que ver con que un comerciante tenga acceso
a un portafolio en particular. Y, por supuesto, encontrarás el mismo fragmento de búsqueda –o
un similar-pero- ligeramente-diferente fragmento de código– en el momento en que a alguien le
importa si un comerciante tiene acceso a un portafolio en particular.

En el otro código base te encuentras con esto:

if (trader.canView(portfolio)) {...}

No hay rascado de cabeza. No necesitas saber cómo lo sabe un comerciante. Quizás es uno
de esos mapas de mapas escondidos dentro. Pero es un asunto del comerciante, no tuyo.

http://97cosas.com/programador/codifica-en-lenguaje-del-dominio.html

Ahora, ¿en cuál de estos códigos te gustaría estar trabajando?

Hubo un tiempo en que sólo teníamos unas muy básicas estructuras de datos: bit, bytes y
caracteres (realmente sólo bytes que pretendíamos que fueran letras y puntuaciones). Tener
decimales eran un poco truculento porque nuestros números de base 10 no trabajan muy bien
en binario, así que teníamos varios tamaños de tipos de punto flotante. Entonces vinieron las
matrices y las cadenas (realmente sólo matrices distintas). Teníamos pilas, colas, hashes, listas
ligadas y listas salteadas y muchas otras excitantes estructuras de datos que no existían en el
mundo real. La “Ciencia Computacional” se trataba de gastar mucho esfuerzo mapeando el
mundo real en nuestras estructuras de datos restrictivas. Los verdaderos gurús podrían incluso
recordar cómo lo habían logrado.

¡Entonces tuvimos los tipos definidos por el usuario! Está bien, esto no es noticia, pero fue un
cambio en el juego, de alguna manera. Si tu dominio contiene conceptos como negociantes y
portafolios, podías modelarlos con tipos llamados, digamos, Comerciantes y Portafolio. Pero,
más importante que esto, también puedes modelar relaciones entre ellos usando términos de
dominio.

Si no codificas usando términos del dominio estás creando un entendimiento tácito (léase:
secreto) de que este valor de tipo entero que está por ahí significa la manera de identificar a un
comerciante, donde ese valor de tipo entero por allá es la manera de identificar un portafolio.
(¡Mejor no confundirlos!) Y si representas un concepto de negocio (“a algunos comerciantes no
les está permitido ver algunos portafolios –es ilegal–”) con un algoritmo, digamos la existencia
de relaciones en un mapa de claves, no le estás haciendo ningún favor a los chicos de auditoría
y quejas.

El programador de junto quizás no sepa el secreto, así que ¿porqué no hacerlo explícito? Usar
una llave como el término de búsqueda de otra llave que realiza la revisión de una llave existente
no es terriblemente obvio. ¿Cómo se supone que alguien intuya que ahí están implementadas
las reglas de negocio que previenen conflictos de interés?

Realizar conceptos explícitos del dominio en tu código significa que otros programadores
pueden adquirir la intención del código mucho más fácilmente que intentar meter un algoritmo
en lo que entienden sobre el dominio. Esto también significa que cuando el modelo del dominio
evoluciona –es decir, que tu entendimiento se incrementa– estés en una buena posición para
evolucionar el código. En conjunto con una buena encapsulación, aumenta la oportunidad de
que la regla exista sólo en un lugar y que puedes cambiarla sin que el código dependiente se
dé cuenta.

El programador que venga unos cuantos meses después a trabajar con el código te lo
agradecerá y quizás ese programador seas tú.

Traducción: Espartaco Palma

15. Codificación Ubuntu para tus amigos.

Autor: Aslam Khan
A menudo escribimos código en el aislamiento y refleja nuestra interpretación personal de un
problema, así como una solución personalizada. Podemos ser parte de un equipo y aun así
estar aislados. Olvidamos todo tan fácilmente que este código creado en el aislamiento será
ejecutado, usado, extendido y ha confiado a otros. Es fácil pasar por alto el aspecto social de la
creación de software. Crear software es un ejercicio técnico mezclado con un ejercicio social.
Sólo necesitamos levantar nuestra cabeza para darnos cuenta de que no estamos trabajado

http://97cosas.com/programador/codificacion-ubuntu.html

aisladamente y tenemos responsabilidades compartidas con respecto a incrementar la
probabilidad de éxito de todos, no sólo del equipo de desarrollo.

Podemos escribir código de buena calidad en el aislamiento, mientras nos perdemos en
nosotros mismos. Desde alguna perspectiva, eso es un enfoque egocéntrico (no ego como en
arrogante, sino ego como en lo personal). También es una visión Zen y es sobre ti, en ese
momento de la creación de código. Siempre intento vivir en el momento porque ayuda a estar
más cerca de la calidad, pero entonces vivo en mi momento. ¿Qué pasa con el momento de mi
equipo? ¿Es mi momento el mismo que el del equipo?

En Zulu, la filosofía de Ubuntu se resume en “Umuntu ngumuntu ngabantu”, que se podría
traducir como “una persona es una persona a través de (otras) personas”. Me siento mejor
porque tú me haces mejor a través de tus buenas acciones. La otra cara es que eres peor en lo
que haces cuando soy malo en lo que hago. Entre desarrolladores, podemos reducirlo a “un
desarrollador es un desarrollador a través de (otros) desarrolladores”. Si lo llevamos hasta el
metal, entonces “el código es código a través de código (de los otros)”.

La calidad del código que escribo afecta la calidad del código que tu escribes. ¿Qué pasa si mi
código es de baja calidad? Incluso si escribes un código muy limpio, los puntos donde usas mi
código es donde la calidad de tu código se degrada. Puedes aplicar muchos patrones y técnicas
para limitar el daño, pero el daño ya está hecho. He causado que tú hagas más de lo que
necesitas hacer simplemente porque no pensé en ti cuando estaba viviendo mi momento.

Puede que considere mi código como limpio, pero puedo aún hacerlo mejor sólo codificando
Ubuntu. ¿A que se parece el código Ubuntu? Se ve como un buen código limpio. No se trata del
código, el artefacto. Se trata del acto de crear ese artefacto. Codificar para tus amigos con
Ubuntu ayudará a que tu equipo viva tus valores y refuerce sus principios. La siguiente persona
que toque tu código, en cualquier forma, será una mejor persona y un mejor desarrollador.

El Zen se trata de lo individual. Ubuntu es acerca del Zen para un grupo de personas. Muy, muy
raramente creamos código para nosotros mismos.

Traducción: Espartaco Palma

16. El código es diseño.

Autor: Ryan Brush
Imagínate despertar mañana y saber que la industria de la construcción ha hecho el avance del
siglo. Millones de robots baratos e increíblemente rápidos pueden fabricar materiales de la nada,
tener gasto energético cercano a cero y se pueden reparar a sí mismos. Y se pone mejor: al
darle un no-ambiguo plano para un proyecto de construcción, el robot puede construirlo sin la
intervención humana, todo ello a un costo insignificante.

Uno puede imaginar el impacto en la industria de la construcción, pero ¿qué pasaría más
adelante? ¿Cómo cambiaría el comportamiento de los arquitectos y diseñadores si los costos
de construcción fueran insignificantes? Hoy en día modelos físicos y computacionales son
creados y rigorosamente probados antes de invertir en la construcción. ¿Nos preocuparíamos
si la construcción fuera esencialmente gratis? Si un diseño se colapsa, no hay problema, sólo
encuentra qué estuvo mal y pon a nuestros robots mágicos a construir otro. Hay otras
implicaciones. Con modelos obsoletos, los diseños sin terminar evolucionan mediante la
construcción y mejoran en repetidas ocasiones hacia una aproximación de la meta final. Un
observador casual podría tener problemas distinguiendo un diseño inacabado y un producto
terminado.

http://97cosas.com/programador/codigo-es-disenno.html

Nuestra capacidad para predecir líneas de tiempo se esfumaría. Los costos de construcción son
calculados más fácilmente que los costos de diseño –sabemos el costo aproximado de instalar
una viga y cuántas vigas necesitamos–. Como las tareas predecibles se reducen a cero, la
época del diseño menos predecible empieza a dominar. Los resultados se producen con mayor
rapidez, pero los plazos fiables escapan.

Por supuesto, se sigue aplicando la presión de una economía competitiva. Con los costos de
construcción eliminados, una empresa puede completar rápidamente un diseño ganando una
esquina en el mercado. El tener pronto los diseños terminados se convierte en el empuje central
de las firmas de ingeniería. Inevitablemente, alguien no familiarizado con el diseño verá una
versión invalidada, ve una ventaja del mercado al liberar temprano y dice “esto parece lo
suficientemente bien”.

Algunos proyectos de vida o muerte serán más diligentes, pero en muchos casos los
consumidores aprende a sufrir el diseño incompleto. Las empresas siempre puede mandar
robots mágicos a “parchar” los edificios y vehículos rotos que venden. Todo esto apunta a una
conclusión intuitiva: nuestra única premisa era una dramática reducción en los costos de
construcción, con el resultado de que la calidad ha empeorado.

No debería sorprendernos que la historia de arriba fuera ejecutada por el software. Si aceptamos
que el código es diseño –un proceso creativo en vez de uno mecánico– la crisis del software se
explica. Ahora tenemos una crisis de diseño: la demanda de diseños validados y de calidad
excede nuestra capacidad de crearlos. La presión por usar diseños incompletos es fuerte.

Afortunadamente, este modelo también ofrece pistas de cómo mejorar. Las simulaciones físicas
equivalen a pruebas automatizadas; el diseño de software no está completo hasta que es
validado con una batería de pruebas brutal. Para hacer tales pruebas más efectivas estamos
encontrando maneras de frenar en el gran espacio de estados de los grandes sistemas. Los
lenguajes mejorados y las prácticas de diseño nos dan esperanza. Finalmente, hay un hecho
ineludible: los grandes diseños son producidos por grandes diseñadores dedicados a la
maestría de su oficio. El código no es diferente.

Traducción: Espartaco Palma

17. Comenta sólo lo que el código no dice.

Autor: Kevlin Henney
La diferencia entre teoría y práctica es más grande en la práctica que en la teoría –una
observación que aplica a los comentarios–. En teoría, la idea general de comentar código suena
como algo útil: ofrece al lector detalles, una explicación de lo que está pasando. ¿Qué podría
ser más útil que ser útil? En la práctica, sin embargo, los comentarios frecuentemente se
convierten en una plaga. Así como otras formas de escritura, existen habilidades para escribir
buenos comentarios. Mucho de esa habilidad es saber cuándo no escribirlos.

Cuando el código está mal formado, los compiladores, intérpretes y otras herramientas se
aseguran de objetar. Si el código es, de algún modo, funcionalmente incorrecto, las revisiones,
los análisis estáticos, las pruebas y el uso diario en un ambiente de producción eliminará muchos
de los errores. ¿Qué me dices de los comentarios? En The Elements of Programming Style,
Kernighan y Plauger notaron que “un comentario tiene valor de cero (o negativo) si es erróneo”.
Y, sin embargo, tales comentarios ofrecen poco y sobreviven en un código base de una manera
que los errores de codificación nunca pueden. Proporcionan una fuente constante de distracción
y desinformación, un lastre sutil pero constante en el pensamiento de un programador.

http://97cosas.com/programador/comenta-codigo-no-dice.html

¿Qué hay con los comentarios que no están técnicamente mal, pero no agregan valor al código?
Son ruido. Los comentarios que parlotean el código no ofrecen algo extra al lector –decir algo
una vez en código y otra vez en lenguaje natural no lo hace más verdadero o más real–. El
código comentado no es código ejecutable, por lo que no tiene un efecto útil para el lector, ni en
tiempo de ejecución. También se vuelve rancio fácilmente. Los comentarios relacionados a la
versión y el código comentado tratan de abordar preguntas sobre las versiones y la historia.
Estas preguntan ya han sido respondidas, de forma más eficiente, por las herramientas de
control de versiones.

Una prevalencia de comentarios ruidosos e inconsistentes en el código base anima a los
programadores a ignorar todos los comentarios, ya sea saltándolos o tomando medidas activas
para ocultarlos. Los programadores tienen muchos recursos y le darán vuelta a cualquier cosa
que se perciba como dañino: plegando los comentarios; cambiando el esquema de color, así
los comentarios y el color de fondo se igualan; creando scripts para filtrar comentarios. Para
salvar el código base de las malas aplicaciones de la ingenuidad del programador, y reducir el
riesgo de pasar por alto cualquier comentario de valor genuino, los comentarios deberían ser
tratados como si fueran código. Cada comentario debería agregar algo de valor al lector, de otro
modo es un desperdicio que debería ser removido o reescrito.

¿Qué lo califica como valioso? Los comentarios deberían decir algo que ¿el código no hace y
no puede decir. Un comentario que explica lo que ¿una pieza de código ya debería decir es una
invitación para cambiar la ¿estructura del código o las convenciones de codificación para que
hable ¿por sí mismo. En vez de compensar la pobreza en el nombre de los ¿métodos o de las
clases, renómbralos. En vez de comentar secciones en ¿funciones largas, extrae las funciones
pequeñas cuyos nombres capturen ¿las intenciones de las anteriores partes. Intenta expresar
tanto como ¿sea posible a través del código. Cualquier déficit entre lo que puedes ¿expresar
en código y lo que deseas expresar en su totalidad se ¿convierte en un candidato plausible para
un comentario útil. Comenta lo ¿que el código no puede decir, no lo que el código no dice.

Traducción: Espartaco Palma

18. Un comentario acerca de los comentarios.

Autor: Cal Evans
En mi primera clase de programación en la universidad, el profesor nos entregó dos hojas de
codificación BASIC. En el pizarrón, se leía la asignatura: “Escribir un programa para ingresar y
promediar 10 puntuaciones de bolos”. A continuación, el profesor salió de la habitación. ¿Qué
tan difícil puede ser? No recuerdo mi solución final, pero estoy seguro que tenía un bucle
FOR/NEXT en él y no podía haber sido de más de 15 líneas de longitud en total. Las hojas de
codificación –para los niños que leen esto, sí, solíamos escribir el código a mano antes de
ingresarlo a la computadora– permitían alrededor de 70 líneas de código cada una. Estaba
confundido sobre por qué el maestro nos había dado dos hojas. Debido a que mi manuscrito
había sido atroz, usé la segunda en transcribir mi código muy cuidadosamente, esperando
obtener un par de puntos extras por el estilo.

Para mi sorpresa, cuando me regresaron la asignatura, al inicio de la siguiente clase, obtuve
una calificación apenas aprobatoria. (Sería un presagio para mí el resto del tiempo en la
universidad). Garabateado en la parte superior de mi cuidadosamente copiado código: “¿Sin
comentarios?”.

http://97cosas.com/programador/comentario-acerca-de-comentarios.html

No era suficiente que el profesor y yo supiéramos lo que se suponía haría el programa. Parte
de los puntos de la asignatura era enseñarme que mi código debía explicarse por sí mismo al
programador después de mí. Es una lección que no he olvidado.

Los comentarios no son malignos. Son necesarios en la programación tanto como los
constructos más básicos de ramificaciones o ciclos. Los lenguajes más modernos tienen una
herramienta similar a javadocs que analiza comentarios con el formato adecuado para construir
automáticamente la documentación del API. Esto es un buen comienzo, pero no es suficiente.
Dentro de tu código debería haber explicaciones acerca de lo que se supone que está haciendo.
Codificar con el viejo adagio: “Si fue difícil de escribir, debe ser difícil de leer”, hace un pobre
favor a tu cliente, tu empleador, tus colegas o tu propio futuro.

Por otro lado, puedes irte demasiado lejos con tus comentarios. Asegúrate de que clarifican el
código, pero no lo obscurecen. Espolvorea tu código con comentarios relevantes explicando
qué debe realizar. El comentario principal debería darle a cualquier programador suficiente
información para usarlo sin tener que leerlo, mientras que los comentarios en línea deberían
asistir al siguiente desarrollador que lo arregle o lo extienda.

En un trabajo estuve en desacuerdo con una decisión de diseño hecha por mis superiores. Por
intentar ser sarcástico, como suelen ser los programadores jóvenes, copié el texto del correo en
el cual se me instruía a usar su diseño en el bloque del comentario principal del archivo. Sucedió
que los administradores de esta tienda en particular revisaron el código cuando lo envié. Fue mi
primera introducción al término “despido por límite de profesión”.

Traducción: Espartaco Palma

19. ¿Cómo usar un Gestor de Errores?.

Autor: Matt Doar
Como sea que lo llames: bug, defecto o incluso “efecto del lado de diseño”, no hay manera de
alejarse de ellos. Saber enviar un buen reporte de error y lo que se debe buscar son habilidades
para mantener un proyecto que se lleve bien.

Un buen reporte de error necesita tres cosas:

 Cómo reproducir el error, lo más preciso posible, y la frecuencia con que esto hará que

aparezca el error.

 ¿Qué debería haber ocurrido? Al menos en tu opinión.

 ¿Qué ocurrió realmente? Toda la información que has registrado.

La cantidad y calidad de la información reportada dice mucho acerca de quién reporta y del error
mismo. Los errores con enojo o tensión (“¡esta función apesta!”) nos dice que los
desarrolladores estaban teniendo un mal momento, pero no más. Un error con gran cantidad de
contexto para que sea más fácil reproducirlo gana el respeto de todo el mundo, incluso si detiene
una liberación.

Los errores son como un conversación, con toda la historia ahí en frente de todos. No culpes a
otros o niegues la existencia del error. En vez de eso pide más información o considera qué
pudiste haber olvidado.

Cambiar el estatus de un error, por ejemplo, de Abierto a Cerrado, es una declaración pública
de lo que se piensa del error. Tomarse el tiempo de explicar por qué crees que el error debería

http://97cosas.com/programador/como-usar-bug-tracker.html

estar cerrado ahorrará horas de tedio en justificarlo a directores y clientes frustrados. Cambiar
la prioridad de un error es similar a las declaraciones públicas, y sólo porque es trivial no significa
que alguien está dejando de usar el producto.

No sobrecargues los campos del error para tu propio propósito. Agregar “VITAL:” al campo de
título de error puede hacer que sea fácil ordenar los resultados en algún informe, pero hará que
eventualmente sea copiado por otros e inevitablemente será mal escrito o necesitará ser
removido para su uso en algún otro informe. En vez de eso usa un nuevo valor o un nuevo
campo, y documenta cómo el campo se supone debe ser usado, así otras personas no tienen
que repetirlo.

Asegúrate que todos sepan cómo encontrar el error en el que se supone está trabajando el
equipo. Esto se puede hacer mediante una consulta pública con un nombre obvio. Asegúrate
que todos están usando la misma consulta, y no la actualices sin primero informar al equipo que
estás cambiando algo en lo que todos están trabajando.

Recuerda, un error no es una unidad estándar de trabajo, como tampoco una línea de código
es una unidad precisa de esfuerzo.

Traducción: Espartaco Palma

20. Conoce bien más de dos lenguajes de programación.

Autor: Kevlin Henney
La diferencia entre teoría y práctica es más grande en la práctica que en la teoría –una
observación que aplica a los comentarios–. En teoría, la idea general de comentar código suena
como algo útil: ofrece al lector detalles, una explicación de lo que está pasando. ¿Qué podría
ser más útil que ser útil? En la práctica, sin embargo, los comentarios frecuentemente se
convierten en una plaga. Así como otras formas de escritura, existen habilidades para escribir
buenos comentarios. Mucho de esa habilidad es saber cuándo no escribirlos.

Cuando el código está mal formado, los compiladores, intérpretes y otras herramientas se
aseguran de objetar. Si el código es, de algún modo, funcionalmente incorrecto, las revisiones,
los análisis estáticos, las pruebas y el uso diario en un ambiente de producción eliminará muchos
de los errores. ¿Qué me dices de los comentarios? En The Elements of Programming Style,
Kernighan y Plauger notaron que “un comentario tiene valor de cero (o negativo) si es erróneo”.
Y, sin embargo, tales comentarios ofrecen poco y sobreviven en un código base de una manera
que los errores de codificación nunca pueden. Proporcionan una fuente constante de distracción
y desinformación, un lastre sutil pero constante en el pensamiento de un programador.

¿Qué hay con los comentarios que no están técnicamente mal, pero no agregan valor al código?
Son ruido. Los comentarios que parlotean el código no ofrecen algo extra al lector –decir algo
una vez en código y otra vez en lenguaje natural no lo hace más verdadero o más real–. El
código comentado no es código ejecutable, por lo que no tiene un efecto útil para el lector, ni en
tiempo de ejecución. También se vuelve rancio fácilmente. Los comentarios relacionados a la
versión y el código comentado tratan de abordar preguntas sobre las versiones y la historia.
Estas preguntan ya han sido respondidas, de forma más eficiente, por las herramientas de
control de versiones.

Una prevalencia de comentarios ruidosos e inconsistentes en el código base anima a los
programadores a ignorar todos los comentarios, ya sea saltándolos o tomando medidas activas
para ocultarlos. Los programadores tienen muchos recursos y le darán vuelta a cualquier cosa
que se perciba como dañino: plegando los comentarios; cambiando el esquema de color, así

http://97cosas.com/programador/conoce-bien-dos-lenguajes.html

los comentarios y el color de fondo se igualan; creando scripts para filtrar comentarios. Para
salvar el código base de las malas aplicaciones de la ingenuidad del programador, y reducir el
riesgo de pasar por alto cualquier comentario de valor genuino, los comentarios deberían ser
tratados como si fueran código. Cada comentario debería agregar algo de valor al lector, de otro
modo es un desperdicio que debería ser removido o reescrito.

¿Qué lo califica como valioso? Los comentarios deberían decir algo que ¿el código no hace y
no puede decir. Un comentario que explica lo que ¿una pieza de código ya debería decir es una
invitación para cambiar la ¿estructura del código o las convenciones de codificación para que
hable ¿por sí mismo. En vez de compensar la pobreza en el nombre de los ¿métodos o de las
clases, renómbralos. En vez de comentar secciones en ¿funciones largas, extrae las funciones
pequeñas cuyos nombres capturen ¿las intenciones de las anteriores partes. Intenta expresar
tanto como ¿sea posible a través del código. Cualquier déficit entre lo que puedes ¿expresar
en código y lo que deseas expresar en su totalidad se ¿convierte en un candidato plausible para
un comentario útil. Comenta lo ¿que el código no puede decir, no lo que el código no dice.

Traducción: Espartaco Palma

21. Conoce cómo usar las herramientas de línea de comandos.
Hoy en día, muchas herramientas de desarrollo de software se empaquetan como

Entornos Integrados de Desarrollo (IDE, Integrated Development Environments).

Microsoft Visual Studio y el proyecto de software libre Eclipse son dos ejemplos

populares, aunque hay muchos otros. Hay muchas razones por las cuales nos gustan

los IDE. No sólo porque son fáciles de usar, sino que también alivian al programador

de pensar en un montón de pequeños detalles que involucran el proceso de

construcción.

La facilidad de uso, sin embargo, tiene su lado negativo. Por lo general, cuando una

herramienta es fácil de usar, es debido a que está tomando decisiones por ti y

haciendo un montón de cosas automáticamente detrás de la escena. Por lo tanto, si

un IDE es el único entorno de programación que siempre has usado, quizás nunca

entiendas completamente lo que tus herramientas están haciendo. Haces clic en un

botón, algo de magia ocurre, y un archivo ejecutable aparece en la carpeta del

proyecto.

Al trabajar con las herramientas de línea de comandos vas a aprender mucho más

sobre lo que están haciendo cuando se está construyendo el proyecto. Escribir tus

propios archivos make te ayudará al entendimiento de todos los pasos (compilar,

ensamblar, enlazar, etcétera) que están en la construcción de un archivo ejecutable.

Experimentar con las muchas opciones de la línea de comandos de esas herramientas

también es una experiencia educacional valiosa. Para empezar con el uso de las

herramientas de construcción en línea de comandos, puedes usar las de software

libre, como GCC, o las proporcionadas por tu IDE propietario. Después de todo, un

IDE bien diseñado es sólo una interface gráfica para un conjunto de herramientas de

línea de comandos.

http://97cosas.com/programador/conoce-como-usar-linea-comando.html

Además de mejorar tu entendimiento del proceso de construcción, hay algunas

tareas que pueden ser realizadas de forma más fácil o eficiente con las herramientas

de línea de comandos que con un IDE. Por ejemplo, las capacidades de buscar y

reemplazar provistas por las utilerías grep y sed son más poderosas que aquellas que

encuentras en IDEs. Las herramientas de línea de comandos inherentemente

soportan secuencias de comandos (scripting), lo cuál permite la automatización de

tareas, como calendarizar builds diarios, crear múltiples versiones de un proyecto y

la ejecución de conjuntos de pruebas. En un IDE este tipo de automatización puede

ser más difícil (si no imposible) de realizar debido a que las opciones de construcción

son usualmente especificadas usando cajas de diálogo del GUI (Interface Gráfica de

Usuario) y el proceso de construcción es invocado con el clic del ratón. Si nunca has

dado un paso fuera de un IDE, quizá nunca te diste cuenta de que estos tipos de

tareas automatizadas son posibles.

Pero, espera. ¿Acaso el IDE no existe para hacer el desarrollo más fácil y para mejorar

la productividad del programador? Bueno, sí. La propuesta presentada aquí no es

que debes dejar de usar un IDE. La propuesta es que deberías “mirar debajo de la

cortina” y entender lo que el IDE está haciendo por ti. La mejor manera de hacerlo

es aprender a usar las herramienta de línea de comandos. Luego, cuando vuelvas a

usar tu IDE, tendrás un mucho mejor entendimiento de qué es lo que está haciendo

por ti y cómo puedes controlar el proceso de construcción. Por otra parte, una vez

que domines el uso de las herramientas de línea de comandos y experimentes el

poder y flexibilidad que ofrecen, quizás podrías encontrar que prefieres la línea de

comando sobre el IDE.

22. Conoce tu próximo Commit.
Toqué a tres programadores en su hombro y les pregunté qué estaban haciendo. “Estoy
refactorizando este método”, respondió el primero. “Estoy agregando algunos parámetros a esta
actividad web”, respondió el segundo. El tercero respondió: “estoy trabajando en esta historia
de usuario”.

Podría ser que los primeros dos estaban dedicados en el detalle de su trabajo mientras el tercero
estaba viendo la escena completa y tenía un mejor enfoque. Sin embargo, cuando pregunté
sobre cuándo y a qué le harían commit, la escena cambió dramáticamente. Los primeros dos
estaban bastante claros sobre qué archivos estarían involucrados y que esto estaría terminado
en una hora o dos. El tercer programador respondió: “oh, creo que estaré listo en unos días.
Probablemente agregaré unas cuantas clases y quizás cambie de algún modo estos servicios”.

Los primeros dos no carecían de una visión de la meta general. Habían seleccionado tareas
que pensaron que los llevaría a una dirección productiva, y que podrían terminar en un par de
horas. Una vez que hubieran terminado con esas tareas, seleccionarían una nueva
característica o refactorización en la cual trabajar. Todo el código escrito era, por lo tanto,
realizado con un propósito claro y limitado, con una meta realizable en mente.

El tercer programador no había sido capaz de descomponer el problema y había trabajado en
todos los aspectos al mismo tiempo. No tenía idea de cuánto le tomaría, básicamente estaba

http://97cosas.com/programador/conoce-proximo-commit.html

haciendo programación especulativa, esperando llegar a algún punto donde podría ser posible
hacer un commit. Probablemente, el código escrito al inicio de su larga sesión fue pobremente
igualado a la solución que salió al final.

¿Qué harían los primeros dos programadores si sus tareas tomaran más de dos horas?
Después de darse cuenta de que habían tardado mucho, lo más probable es que desecharan
sus cambios, definieran tareas más pequeñas y volvieran a empezar. El mantenerse trabajando
sería una carencia de concentración y llevaría el código especulativo al repositorio. Los cambios
serían desechados, pero mantendrían su visión.

El tercer programador podría seguir adivinando y tratando desesperadamente de realizar sus
parches dentro de algo a lo que pudiera hacerle commit. Después de todo, no puedes tirar los
cambios de código que has hecho –eso sería trabajo perdido, ¿no es así?–.
Desafortunadamente, no desechar el código lleva a un código un poco extraño que carece de
un propósito claro al entrar al repositorio.

En algún momento, incluso los programadores enfocados en el commit, podrían no encontrar
algo útil que pueda ser terminado en dos horas. Entonces, irían directamente al modo
especulativo, jugueteando con el código y, por supuesto, desechando los cambios en el
momento en que alguna idea los lleve a ese camino. Incluso esas sesiones de hacking
aparentemente no estructuradas tienen un propósito: aprender sobre el código y ser capaces
de definir una tarea que sería constitutiva de un paso productivo.

Conoce tu próximo commit. Si no puedes terminar, tira tus cambios, define una nueva tarea en
la que creas, con las ideas que has ganado. Haz experimentación especulativa donde sea
necesario, pero no caigas en el modo especulativo sin darte cuenta. No mandes commit de
conjeturas a tu repositorio.

Traducción: Espartaco Palma

23. Conoce tu IDE.
En la década de los ochenta nuestros entornos de programación eran, por lo general, nada
mejor que editores de texto glorificados… si teníamos suerte. El resaltado de sintaxis, que
damos por sentado hoy en día, era un lujo que ciertamente no estaba disponible para todos.
Los Pretty Printers para formatear bien nuestro código eran usualmente herramientas externas
que tenían que ser ejecutadas para corregir nuestro espaciamiento. Los depuradores eran
también programas separados ejecutándose paso a paso a través de nuestro código, pero con
un montón de teclazos crípticos.

Durante la década de los noventa las compañías comenzaron a reconocer el potencial de
ingresos que pudieran derivarse de equipar a los programadores con mejores y más útiles
herramientas. El Entorno Integrado de Desarrollo (IDE, por sus siglas en inglés) combinaba las
características de edición previas con un compilador, un depurador, Pretty Printer y otras
herramientas. Durante ese tiempo, los menús y el ratón también se volvieron populares, lo cuál
significaba que los desarrolladores ya no necesitaban aprender combinaciones de teclas
crípticos para usar sus editores. Podían simplemente seleccionar su comando en el menú.

En el siglo XXI los IDE se convirtieron en un lugar tan común que eran regalados por las
compañías que deseaban ganar un segmento del mercado en otras áreas. El IDE moderno está
equipado con una increíble variedad de características. Mi favorita es la refactorización
automatizada, particularmente la Extracción de Método, en el cual puedo seleccionar y convertir
un fragmento de código en un método. La herramienta de refactorización recogerá todos los
parámetros que deben ser transferidos al método, lo cuál hace extremadamente fácil modificar
código. Mi IDE detectará incluso otro fragmento de código que podría también ser reemplazado
por este método y preguntarme si deseo reemplazarlo también.

http://97cosas.com/programador/conoce-tu-ide.html

Otra característica sorprendente en los IDE modernos es la capacidad de hacer cumplir las
reglas de estilo dentro de una empresa. Por ejemplo, en Java, algunos programadores han

empezado a hacer todos los parámetros como final (lo cual, en mi opinión, es una pérdida de

tiempo). Sin embargo, como ellos lo tienen como una regla de estilo, todo lo que necesitaría
hacer a continuación es configurarlo en mi IDE: obtendría algunas advertencias por cada

parámetro que no fuese final . Las reglas de estilo también pueden ser utilizadas para

encontrar errores probables, tales como comparar objetos autoboxed para la igualdad de
referencia, por ejemplo, usando == en los valores primitivos que están autoboxed en referencias
a objetos.

Desafortunadamente, los IDE modernos no requieren de invertir esfuerzo para aprender a
usarlos. Cuando programé por primera vez en C bajo Unix tuve que pasar un poco de tiempo
aprendiendo cómo trabajaba el editor vi, debido a su curva de aprendizaje. Este tiempo gastado
pagó por adelantando bellamente al paso de los años. Incluso he escrito el borrador de este
artículo con vi. Los IDE modernos tienen una curva de aprendizaje muy gradual, la cual puede
tener como consecuencia que nunca progresamos más allá del uso básico de la herramienta.

Mis primeros pasos al aprender un IDE es memorizar los atajos de teclado. Ya a que mis dedos
están en el teclado cuando estoy escribiendo mi código, presionar Ctrl+Shift+I para alinear una
variable me ahorra tener que romper mi flujo, navegar por el menú con el ratón interrumpe este
flujo. Estas interrupciones lleva a cambios de contexto innecesarios, haciéndome mucho menos
productivo si trato de hacer todo por el camino perezoso. La misma regla también aplica a las
habilidades del teclado: aprende a teclear, no te arrepentirás del tiempo invertido por
adelantado.

Por último, como programadores tenemos herramientas de flujo Unix que pueden ayudarnos a
manipular el código. Como si durante una revisión de código me doy cuenta de que los
programadores han nombrado muchas de sus clases de la misma forma, puedo encontrarlas
fácilmente usando las herramientas find, sed, sort, uniq y grep, por ejemplo:

find . -name "*.java" | sed 's/.*\///' | sort | uniq -c | grep -v "^ *1 " | sort -r

Esperamos que un plomero que llega a nuestra casa sea capaz de usar su soplete. Pasemos
un poco de tiempo estudiando cómo ser más efectivos con nuestro IDE.

24. Conoce tus límites.

“Man’s got to know his limitations.” — Dirty Harry

Tus recursos son limitados. Sólo tienes cierto tiempo y dinero para hacer tu trabajo, incluyendo
el tiempo y dinero necesario para mantener al día tus conocimiento, habilidades y herramientas.
Sólo se puede trabajar duro, rápido e inteligentemente por cierto tiempo. Tus herramientas son
poderosas. Tus máquinas destino son poderosas. Tienes que respetar los límites de tus
recursos.

¿Cómo respetar estos límites? Conócete a ti mismo, conoce a tu gente, tu presupuesto y tus
cosas. Especialmente, como ingeniero de software, conoce el espacio y tiempo de la
complejidad de tus estructuras de datos y algoritmos, así como las características y rendimiento
de tus sistemas. Tu trabajo es crear el enlace óptimo de software y sistemas.

La complejidad del espacio y tiempo están dadas como la función O(f(n)) donde n es igual al
tamaño de las entradas en el espacio asintótico o el tiempo requerido conforme n incrementa
hacia infinito. Las clases de complejidad importantes para f(n) incluyen ln(n), n, n ln(n), ne y en.
Al graficar estas funciones se muestra claramente cómo conforme n se incrementa, O(ln(n)) es

http://97cosas.com/programador/conoce-tus-limites.html
http://www.youtube.com/watch?v=t2JnCXvm_Qc)

siempre mucho más pequeña que O(n) y O(n ln(n)), las cuales son cada vez más pequeñas
que O(ne) y O(en). Como decía Sean Parent, para lograr ntodas las clases de complejidad se
acumulan casi constantemente, casi lineal o casi al infinito.

El análisis de complejidad está en términos de una máquina abstracta, pero el software se
ejecuta en máquinas reales. Las sistemas modernos de computadoras están organizados como
jerarquías de máquinas físicas y virtuales, incluyendo lenguajes en tiempo de ejecución,
sistemas operativos, CPU, memoria caché, memoria de acceso aleatorio, manejadores de disco
y redes. La primera tabla muestra los límites en el tiempo de acceso aleatorio y la capacidad de
almacenamiento para un servidor en red típico.

http://97cosas.com/programador/assets/img/complexity_classes.jpeg

 Tiempo de Acceso Capacidad

register < 1 ms 64b

cache line 64B

L1 cache 1 ms 64 KB

L2 cache 4 ns 8 MB

RAM 20 ns 32 GB

disk 10 ms 10 TB

LAN 20 ms > 1 PB

internet 100 ms > 1 ZB

Toma en cuenta que la capacidad y velocidad difiere en varios órdenes de magnitud. El
almacenamiento en caché y el lookahead son usados ampliamente en cada nivel de nuestro
sistema para ocultar esta variación, pero sólo funcionan cuando el acceso es predecible.
Cuando el caché falla es frecuente que el sistema esté arrastrándose. Por ejemplo, inspeccionar
aleatoriamente cada byte en un disco duro podría tomar hasta 32 años. Incluso inspeccionar
aleatoriamente cada byte en la RAM podría tomar 11 minutos. El acceso aleatorio no es
predecible. ¿Qué lo es? Eso depende del sistema, pero volver a acceder a elementos
recientemente usados y acceder a elementos secuencialmente suele ser una victoria.

Los algoritmos y las estructuras de datos varían en qué tan efectivamente usan el caché. Por
ejemplo:

 La búsqueda lineal hace buen uso del lookahead, pero requiere O(n) comparaciones.

 La búsqueda binaria de una matriz ordenada requiere sólo O(log(n)) comparaciones.

 La búsqueda en un árbol van Emde Boas es O(log(n)) y es ajeno al caché.

¿Cuál elegir? Como en el pasado análisis, midiéndolo. La segunda tabla muestra el tiempo
requerido para buscar en matrices de enteros de 64 bits vía estos tres métodos. En mi
computadora:

 La búsqueda lineal es competitiva para matrices pequeñas, pero pierde exponencialmente

para matrices grandes

 van Emde Boas gana sin usar las manos, gracias a su patrones de acceso predecible.

Elementos lineal binario vEB

8 50 90 40

64 180 150 70

512 1200 230 100

4096 17000 320 160

“Pagas tu dinero y te llevas tu elección”. — Punch

Traducción: Espartaco Palma

Leer contribución original

25. La conveniencia no es una -bilidad.

http://www.nytimes.com/1988/02/28/magazine/on-language-you-pays-yer-money.html?pagewanted=all
http://programmer.97things.oreilly.com/wiki/index.php/Know_Your_Limits
http://97cosas.com/programador/conveniencia.html

Autor: Gregor Hohpe
Mucho se ha dicho acerca de la importancia y desafíos al diseñar una buena API. Es difícil
hacerlo bien la primera vez y es incluso más difícil cambiarlo después. Algo así como la crianza
de niños. La mayoría de los programadores experimentados han aprendido que una buena API
sigue un nivel consistente de abstracción, exhibe consistencia y simetría, y forma el vocabulario
para un lenguaje expresivo. Por lo tanto, estar consciente de los principios guía no se traduce
automáticamente en un comportamiento adecuado. Comer dulces es malo para ti.

En vez de predicar desde las alturas, quiero tomar una “estrategia” específica de diseño de API,
una que me encuentro una y otra vez: el argumento de conveniencia. Comienza típicamente
con los siguientes “puntos de vista”:

 No quiero que otras clases tengan que hacer dos llamadas separadas para hacer una cosa.

 ¿Por qué debería hacer otro método si es casi igual que éste? Sólo agregaré un switch

sencillo.

 Mira, es muy fácil: si el segundo parámetro de cadena termina con “.txt”, el método

automáticamente asume que el primer parámetro es el nombre de archivo, por lo que no

necesito realmente dos métodos.

Aunque sea bien intencionado, tales argumentos son propensos a disminuir la legibilidad del
código al usar el API. Una invocación de método como esta:

parser.processNodes(text, false);

no tiene virtualmente algún significado si no sabemos la implementación, o al menos consultar
la documentación. Este método fue probablemente diseñado para la comodidad del
implementador como un opuesto de la conveniencia de quien llama. “No quiero que quien hace
la llamada tenga que hacer dos llamadas separadas” se traduce en: “no quería codificar dos
métodos separados”. No hay nada fundamentalmente malo con la conveniencia si tiene
intención de ser el antídoto del tedio, falta de idea o incomodidad. Sin embargo, si pensamos
más cuidadosamente en ello, el antídoto para esos síntomas es la eficiencia, consistencia y
elegancia, no necesariamente la conveniencia. Se supone que el API oculta la complejidad
subyacente, podemos esperar de manera realista que un buen diseño de API requiere algo de
esfuerzo. Un solo método largo podría ser ciertamente más conveniente de escribir que un bien
pensado conjunto de operaciones, pero ¿sería fácil de usar?

La metáfora del API como un lenguaje puede guiarnos hacia mejores decisiones de diseño en
estas situaciones. Un API debe proporcionar un lenguaje expresivo, lo cual nos da en el
siguiente nivel suficiente de vocabulario para preguntar y responder preguntas útiles. Esto no
implica que debería proveer exactamente un método o verbo por cada pregunta que valga la
pena. Un vocabulario diverso nos permite expresar matices de significado. Por ejemplo,

preferimos decir correr en vez de caminar(true) , a pesar de que podría ser visto como

esencialmente la misma operación, sólo ejecutada en una velocidad distinta. Un vocabulario
API consistente y bien pensado hace expresivo y fácil de entender el código del siguiente nivel.
Más importante aún, un vocabulario que pueda ser mejorado permite a otros programadores
usar el API de formas que quizás no habías anticipado –¡de hecho, una gran conveniencia para
los usuarios del API!–. La próxima vez que estés tentado a agrupar unas cuantas cosas en un
método API, recuerda que el idioma inglés no tiene una palabra para
MakeUpYourRoomBeQuietAndDoYourHomeWork (LimpiaTuCuartoSeCalladoyHazTuTarea), a
pesar de que parece muy conveniente para una operación tan frecuentemente solicitada.

Traducción: Espartaco Palma

26. Cuando Programadores y Testers colaboran.

Autor: Janet Gregory
Algo mágico sucede cuando los testers y programadores empiezan a colaborar. Hay menos
tiempo perdido mandando bugs de ida y de regreso a través del sistema de rastreo de defectos.
Menos tiempo se desperdicia intentando imaginar si algo es realmente un error o una nueva
característica, y más tiempo es usado desarrollando buen software para satisfacer las
expectativas de los clientes. Hay muchas oportunidades para comenzar a colaborar, incluso
antes de que la codificación inicie.

Los testers pueden ayudar a los clientes a escribir y automatizar las pruebas de aceptación
usando el lenguaje de su dominio con herramientas tales como Fit (Framework for Integrated
Test). Cuando estas prueban son entregadas a los programadores antes de que la codificación
inicie, el equipo está practicando el Desarrollo Conducido por Pruebas de Aceptación
(Acceptance Test Driven Development, ATDD). Los programadores escriben sus arreglos para
ejecutar las pruebas, y entonces codifican para hacer que las pruebas pasen. Estas pruebas se
convierten en parte de la suite de regresión. Cuando esta colaboración ocurre, las pruebas
funcionales se completan de manera temprana, lo que da tiempo para las pruebas exploratorias
en condiciones extremas o a través de flujos de trabajo con un rango más amplio.

odemos dar un paso más adelante. Como tester puedo suministrar la mayoría de mis ideas de
prueba antes de que los programadores codifiquen una nueva característica. Cuando le
pregunto a los programadores si tienen alguna sugerencia, ellos casi siempre me proveen la
información que me ayuda con una mejor cobertura de pruebas, o me ayuda a evitar gastar
mucho tiempo en pruebas innecesarias. Frecuentemente hemos prevenido defectos porque las
pruebas clarifican muchas de las ideas iniciales. Por ejemplo, en un proyecto en el que estaba,
la prueba Fit que le di al programado mostraba los resultados esperados de una consulta que
respondía a una búsqueda con comodines. El programador pretendía codificar sólo búsquedas
de palabras completas. Pudimos hablar con el cliente y determinar la interpretación correcta
antes de que la codificación iniciara. Al colaborar prevenimos el defecto, lo cual nos ahorró a
ambos un montón de tiempo.

Los programadores pueden colaborar con los testers para crear también una automatización
exitosa. Ellos entienden las buenas prácticas de codificación y pueden ayudar a los testers a
configurar una robusta suitede automatización de pruebas que funcione para todo el equipo.
Muchas veces he visto proyectos de automatización que fallan porque las pruebas están mal
diseñadas. Las pruebas intentan probar mucho o los testers no han entendido lo suficiente
acerca de la tecnología para ser capaces de mantener las pruebas independientes. Los testers
son frecuentemente el cuello de botella, así que tiene sentido para los programadores el trabajar
con ellos en las tareas como la automatización. Al trabajar con los testers para entender qué
puede ser probado tempranamente, quizás al proporcionar una herramienta sencilla, dará a los
programadores otro ciclo de retroalimentación que les ayudará, a largo plazo, a entregar mejor
código.

Cuando los testers dejan de pensar que su único trabajo es romper el software y buscar errores
en el código de los programadores, los programadores dejan de pensar que los testers “van por
ellos” y están más abiertos a la colaboración. Cuando los programadores empiezan a darse
cuenta de que son responsables de construir calidad dentro de su código, el realizar pruebas
es algo natural para el producto y el equipo puede automatizar más pruebas de regresión juntos.
La magia del trabajo en equipo comienza.

http://97cosas.com/programador/cuando-programadores-testers-colaboran.html

Traducción: Espartaco Palma

27. Ten cuidado al compartir.

Autor: Udi Dahan
Era mi primer proyecto en la compañía. Había terminado mi carrera y estaba ansioso por
probarme a mí mismo, me quedaba tarde cada día a revisar el código existente. Conforme
trabajaba en mi primera característica tomaba cuidados adicionales para poner en marcha cada
cosa que había aprendido: comentarios, bitácoras, sacando código compartido a bibliotecas de
ser posible, el trabajo. La revisión de código de la que había sentido tan listo vino como una
sorpresa desagradable: ¡el reúso estaba mal visto! ¿Cómo podía ser eso posible? En toda la
universidad el reúso era tomado como el epítome de la ingeniería de calidad de software. Todos
los artículos que había leído, los libros de textos, lo que me habían enseñado los profesionales
de software con experiencia. ¿Estaba todo mal?

Resulta que había olvidado algo crítico.

Contexto.

El hecho de que dos partes muy diferentes del sistema realizaran la misma lógica de la misma
manera significaba menos de lo que pensaba. Hasta que saqué esas bibliotecas de código
compartido, esas partes no eran dependientes una de otra. Cada una podían evolucionar
independientemente. Cada una podía cambiar su lógica para satisfacer las necesidades de los
cambios en el entorno empresarial del sistema. Esas cuatro líneas de código similar fueron
accidentales, una anomalía temporal, una coincidencia. Es decir, hasta que llegué.

Las bibliotecas de código compartido que había creado ataban los cordones de cada zapato de
cada pie entre ellos. Los pasos por un dominio de negocio no podrían ser hechos sin primero
sincronizarlos. Los costos de mantenimiento en estas funciones independientes solían ser
insignificantes, pero la biblioteca común requería un orden de magnitud de más pruebas.

A pesar de que había disminuido el número absoluto de líneas de código en el sistema, había
incrementado el número de dependencias. El contexto de esas dependencias es crítico, si
hubieran sido localizadas, podían haber sido justificadas y tendrían algún valor positivo. Cuando
estas dependencias no se mantienen bajo control, sus tentáculos se enredan en las más
grandes preocupaciones del sistema, a pesar de que el código en sí se ve muy bien.

Estos errores son insidiosos por eso, en esencia, suenan como una buena idea. Cuando se
aplican en el contexto adecuado, estas técnicas son valiosas. En el contexto equivocado,
incrementan el costo en vez del valor. Hoy en día soy mucho más cuidadoso en los temas de
compartir cuando entro en un código base existente sin el conocimiento del contexto en el que
se utilizan las distintas partes.

Cuidado al compartir. Revisa tu contexto. Sólo entonces, procede.

Traducción: Espartaco Palma

28. Cumple tus ambiciones con Código Abierto.
Hay una alta probabilidad de que no estés desarrollando software en tu trabajo para

cumplir tus más ambiciosos sueños. Quizás estás desarrollando software para una

gran compañía de seguros cuando te gustaría estar trabajando en Google, Apple,

http://97cosas.com/programador/cuidado-al-compartir.html
http://97cosas.com/programador/cumple-ambiciones-con-codigo-abierto.html

Microsoft o tu propia start-up, desarrollando la próxima “gran cosa”. Nunca vas a

llegar a donde quieres desarrollando software para sistemas que no te importan.

Afortunadamente, hay una respuesta a tus problemas: software libre. Hay miles de

proyectos de software libre por ahí, muchos de ellos muy activos, los cuales ofrecen

cualquier tipo de experiencia de desarrollo de software que puedas desear. Si amas

la idea de desarrollar un sistema operativo, ve y ayuda con alguno. Si deseas trabajar

con software de música, animación, criptografía, robótica, juegos de PC, juegos

masivos en línea, teléfonos móviles o lo que sea, puedes estar casi seguro de que

encontrarás, al menos, un proyecto de software libre dedicado a ese interés.

Por supuesto que no hay almuerzos gratis. Tienes que estar dispuesto a dar tu

tiempo libre porque probablemente no puedas trabajar en el un videojuego de

software libre en tu trabajo, aún tienes responsabilidad con tu empleador.

Adicionalmente, muy pocas personas hacen dinero contribuyendo con proyectos de

software libre. Debes estar dispuesto a renunciar a una parte de tu tiempo libre

(menos tiempo jugando videojuegos y mirando TV no te matará). Cuanto más

trabajes en un proyecto de software libre, más rápido te darás cuenta de tus

verdaderas ambiciones como programador. También es importante considerar tu

contrato de empleado, algunos empleadores pueden restringir contribuciones,

incluso en tu propio tiempo. Además, es necesario tener cuidado con las violaciones

de las leyes de propiedad intelectual que tienen que ver con derechos de autor,

patentes, marcas registradas y secretos comerciales.

El software libre provee enormes oportunidades para el programador motivado. En

primer lugar, se llega a ver cómo alguien más implementa una solución que te

interesa –puedes aprender mucho leyendo el código de otras personas–. En segundo

lugar, se llega a contribuir con tu propio código e ideas al proyecto –no todas las

ideas brillantes que tengas serán aceptadas, pero algunas podrían serlo, y

aprenderás algo nuevo con sólo trabajar en soluciones y contribuir con el código–.

En tercer lugar, conocerás a personas grandiosas con la misma pasión que tú por el

mismo tipo de software –estas amistades pueden duran toda la vida–. En cuarto

lugar, asumiendo que eres un contribuidor competente, estarás en disposición de

agregar la experiencia del mundo real en la tecnología que actualmente te interesa.

Iniciar con el software libre es bastante fácil. Hay plena documentación en las

herramientas que necesitas (por ejemplo, administración de código fuente, editores,

lenguajes de programación, sistemas de construcción, etcétera). Primero, encuentra

el proyecto en el que deseas trabajar y aprende acerca de las herramientas que

utiliza. La documentación en proyectos por sí misma será una luz en muchos casos,

pero esto quizás importe menos debido a que la mejor manera de aprender es

investigar el código por ti mismo. Si deseas estar involucrado, puedes ofrecer tu

ayuda con la documentación. O puedes comenzar como voluntario para escribir las

pruebas de código. A pesar de que esto podría no sonar excitante, la verdad es que

aprendes mucho más rápido escribiendo pruebas de código para el software de otra

persona como casi cualquier otra actividad en software. Escribe pruebas de código,

realmente buenas pruebas de código; encuentra errores; sugiere correcciones; haz

amigos; trabaja en el software que te gusta y cumple tus ambiciones.

29. Los grandes datos interconectados pertenecen a una base de datos.

Autor: Diomidis Spinellis
Si tu aplicación está manejando un conjunto de elementos de datos grandes, persistentes e
interconectados, no dudes en almacenarlos en una base de datos relacional. En el pasado los
Sistemas de Administración de Bases de Datos Relacionales (RDBMS, por sus siglas en inglés)
solían ser caros, escasos, complejos y unas bestias indomables. Ya no es el caso. Hoy en día
los RDBMS son fáciles de encontrar, lo más probable es que el sistema que estás usando ya
tenga uno o dos instalados. Algunos RDBMS muy capaces, como MySQL y PostgreSQL, están
disponibles como software libre, por lo que el costo de compra ya no es un tema. Aún mejor, los
llamados sistemas de bases de datos embebidos se pueden vincular como bibliotecas
directamente en tu aplicación, requiriendo casi ninguna configuración o administración; dos
notables proyectos de software libre son SQLite y HSQLDB. Estos sistemas son
extremadamente eficientes.

Si los datos de tu aplicación son más grandes que la RAM del sistema, una tabla indexada del
RBDMS tendrá un rendimiento de órdenes de magnitud más rápida que la colección de mapas
de tu biblioteca, que gastará páginas de memoria virtual. Los productos de bases de datos
modernos pueden crecer fácilmente con tus necesidades. Con el cuidado adecuado, puedes
ampliar una base de datos embebida a un sistema más grande cuando sea requerido. Después,
puedes cambiar de un producto de software libre a uno mejor soportado o un sistema propietario
más poderoso.

Una vez que sepas los trucos de SQL, la creación de aplicaciones centradas en bases de datos
es una alegría. Después de que hayas almacenado tus datos correctamente normalizados en
la base de datos es fácil extraer eficientemente los hechos con una consulta SQL legible; no
hay necesidad de escribir ningún código complejo. Un solo comando SQL puede realizar
cambios de datos complejos. Para modificaciones únicas, digamos, un cambio en la forma en
que organizas los datos, ni siquiera necesitas escribir código: sólo lanza la interface directa de
SQL. Esta misma interface también te permite experimentar con consultas, dejando a un lado
el ciclo de compilación-edición de un lenguaje de programación regular.

Otra de las ventajas de basar tu código en un RDBMS implica manejar las relaciones entre los
elementos de tus datos. Puedes describir las limitaciones de consistencia en los datos en una
manera declarativa, evitando el riesgo de que los apuntadores se cuelguen si olvidas actualizar
los datos en un caso extremo. Por ejemplo, puedes especificar que en caso de que un usuario
sea eliminado, entonces los mensajes enviados por ese usuario deberían ser eliminados
también.

También puedes crear enlaces eficientes entre tus entidades almacenadas en la base de datos
en el momento que lo desees, simplemente creando un índice. No hay necesidad de realizar

http://97cosas.com/programador/datos-interconectados-pertenecen-base-de-datos.html

caras y extensas refactorizaciones de campos de clases. Además, codificar en torno a una base
de datos permite que varias aplicaciones accedan a tus datos en manera segura. Esto hace fácil
actualizar tu aplicación para el uso concurrente y también permite codificar cada parte de tu
aplicación usando el lenguaje y plataforma más adecuada. Por ejemplo, puedes escribir el back-
end XML de una aplicación web en Java, algunos scripts de autoría en Ruby y una interfaz de
visualización en Processing.

Finalmente, recuerda que el RDBMS sudará duro para optimizar los comandos SQL, lo que te
permitirá concentrarte en la funcionalidad de tu aplicación en vez de la refinación de algoritmos.
Los sistemas avanzados de bases de datos incluso tomarán ventaja de los procesadores multi-
core a tus espaldas. Y, conforme la tecnología mejora, también el rendimiento de tu aplicación

Traducción: Espartaco Palma

30. Deja que tu proyecto hable por sí mismo.
Tu proyecto probablemente tenga un sistema de control de versiones . Quizás está conectado
a un servidor de Integración Continua que verifica la correctitud por medio de pruebas
automatizadas. Eso es genial.

Puedes incluir herramientas para el análisis estático de código en tu servidor de Integración
Continua y así recopilar métricas de código. Estas métricas proveen retroalimentación sobre
aspectos específicos, así como la evolución en el tiempo. Al instalar métricas de código, siempre
habrá una línea roja que no querrás cruzar. Supongamos que inicias con un 20% de cobertura
de pruebas y nunca caes por debajo del 15%. La Integración Continua ayuda a mantener un
registro de todos estos números, pero todavía tienes que revisarlos regularmente. Imagina que
puedes delegar estas tareas al proyecto mismo y confiarle el reportar cuando las cosas se ponen
peor.

Necesitas darle a tu proyecto una voz. Esto puede ser realizado por email o mensajería
instantánea, informando a los desarrolladores sobre la última caída o mejora en los números.
Pero esto es incluso más efectivo de llevar usando un Dispositivo de Retroalimentación Extrema
(XFD, por sus siglas en inglés, Extreme Feedback Device).

La idea del XFD es manejar un dispositivo físico como una lámpara, una fuente portátil, un robot
de juguete o incluso un lanza cohetes USB, basado en el resultado del análisis automático.
Cada vez que tus límites se rompan, el instrumento altera su estado. En el caso de la lámpara,
ésta se enciende, brillante y clara. No puedes olvidar el mensaje, incluso si estás cruzando la
puerta para irte a casa.

Dependiendo del tipo de dispositivo de retroalimentación extrema, puedes oír la ruptura del
compilado, ver las señales rojas de advertencia en tu código, incluso oler tu código. Los
instrumentos pueden ser replicados en distintos lugares si trabajas en un equipo distribuido.
Puedes colocar un semáforo en la oficina de tu director de proyecto, indicando el estado general
de salud. El director del proyecto te lo agradecerá.

Deja que tu creatividad te guíe al escoger el dispositivo apropiado. Si tu cultura es
bastante geek, podrías buscar la manera de equipar a la mascota de tu equipo con juguetes de
radio control. Si deseas una apariencia más profesional, invierte en lámparas más estilizadas.
Busca más inspiración en Internet. Cualquier cosa con un enchufe de alimentación o un control
remoto tiene el potencial de ser usado como un dispositivo de retroalimentación extrema.

El dispositivo de retroalimentación extrema actúa como la caja de voz de tu proyecto. El proyecto
ahora se encuentra físicamente con los desarrolladores, quejándose o alabando, de acuerdo a
las reglas que el equipo haya escogido. Puedes llevar esta personificación más allá aplicando

http://97cosas.com/programador/deja-proyecto-hable-por-si-mismo.html

software de síntesis de voz y un par de altavoces. Ahora tu proyecto realmente habla por sí
mismo.

Traducción: Espartaco Palma

31. El diseño del código sí importa.

Autor: Steve Freeman
Hace muchos años trabajaba en un sistema en Cobol, en el cual no se le permitía al personal
cambiar la sangría a menos que tuvieran una razón para cambiar el código, debido a que
alguien, alguna vez, descompuso algo al dejar un trozo de línea en una de las columnas
especiales al inicio de una línea. Esto aplicaba incluso si el diseño estaba equivocado, lo cual
sucedía algunas veces, así que teníamos que leer el código muy cuidadosamente porque no
podíamos confiar en él. La política debió costar una fortuna en fricción de programador.

Hay una investigación que muestra que todos pasamos más de nuestro tiempo de programación
navegando y leyendo código –encontrando dónde hacer el cambio– que escribiendo, así que
esto es lo que queremos optimizar.

 Fácil de escanear. La gente es buena en la comparación de patrones visuales (una

reminiscencia de la época en la que teníamos que observar leones en la sabana), así que

puedo ayudarme al hacer todo lo que no es directamente relevante al dominio, toda la

“complejidad accidental” que viene con muchos lenguajes comerciales, ocultarlo en el fondo

de pantalla para estandarizarlo. Si el código que se comporta igual luce igual, entonces mi

sistema perceptual me ayudará a escoger las diferencias. Es por eso que también observo

las convenciones sobre cómo diseñar las partes de una clase dentro de una unidad de

compilación: constantes, campos, métodos públicos, métodos privados.

 Diseño expresivo. Todos hemos aprendido que toma su tiempo encontrar los nombres

adecuados para que nuestro código exprese, tan claramente como es posible, lo que hace;

en lugar de sólo listar los pasos, ¿está bien? El diseño de código también es parte de esta

expresividad. Un primer corte es tener el acuerdo del equipo en un formateo automático

para lo básico, entonces podemos hacer ajustes manuales mientras estamos codificando.

A menos que haya un disensión activa, el equipo convergerá rápidamente en un estilo de

“acabado manual” común. Un formateador no puede entender mis intenciones (debería

saberlo, una vez codifiqué uno), y es más importante para mí que los saltos de línea y los

agrupadores reflejen la intención de mi código, no sólo la sintaxis del lenguaje (Ken McGuire

me liberó de mi esclavitud a los formateadores automáticos de código).

 Formato compacto. Mientras más puedo conseguir en una pantalla, más puedo ver si se

rompe el contexto al desplazarme o al cambiar de archivo, lo que significa que puedo dejar

menos estados en mi cabeza. Los comentarios del procedimiento largos y los espacios en

blanco tienen sentido para nombres de 8 caracteres e impresoras, pero ahora vivo en un

IDE que hace el coloreo de sintaxis y el enlace cruzado. Los pixeles son mi factor limitante,

así que quiero que cada uno contribuya hacia mi entendimiento del código. Quiero que el

diseño me ayude a entender el código, pero no más que eso.

http://97cosas.com/programador/diseno-en-codigo-importa.html

Un amigo no programador comentó alguna vez que el código se parece a la poesía. Tengo esa
sensación en el código bueno, que todo en el texto tiene un propósito y está ahí para ayudarme
a entender la idea. Desafortunadamente, escribir código no tiene la misma imagen romántica
que escribir poesía.

Traducción: Espartaco Palma

32. Distingue excepciones de Negocio de las excepciones Técnicas.

Autor: Dan Bergh Johnsson
Hay básicamente dos razones por las que las cosas van mal en tiempo de ejecución: problemas
técnicos que impiden el uso de la aplicación y la lógica del negocio que evita hacer mal uso de
la aplicación. La mayoría de los lenguajes modernos, como LISP, Java, Smalltalk y C#, usan
excepciones para señalar ambas situaciones. Sin embargo, las dos situaciones son tan
diferentes que deberían ser tomadas por separado. Es una fuente potencial de confusión
representar ambas usando la misma jerarquía de excepciones, sin mencionar la misma clase
de excepciones.

Un problema técnico irresoluble puede ocurrir cuando hay un error de programación. Por
ejemplo, si tratas de acceder al elemento 83 de una matriz de tamaño 17, entonces el programa
está claramente fuera de control, y debería resultar en alguna excepción. La versión más sutil
es llamar a alguna biblioteca de código con argumentos inapropiados, causando la misma
situación dentro de la biblioteca.

Sería un error intentar resolver tú mismo estas situaciones que causaste. En vez de dejar que
la excepción se eleve al nivel arquitectónico más alto y dejar que algún mecanismo general de
manejo de excepciones haga lo que pueda para asegurar que el sistema está en un estado
seguro, tales como deshacer una transacción, registrar en la bitácora y alertar a la gerencia, e
informar (educadamente) al usuario.

Una variante de esta situación es cuando te encuentras en la “situación de biblioteca” y quien
hace el llamado rompió el contrato de tu método, por ejemplo, pasando un argumento extraño
o sin tener un objeto dependiente configurado correctamente. Esto va a la par con el acceso al
83vo elemento de 17: quien hace la llamada debería haber comprobado; no hacerlo es un error
del programador en el lado del cliente. La respuesta correcta es lanzar una excepción técnica.

Una diferente, pero aún situación técnica, es cuando el programa no puede continuar debido a
un problema en el ambiente de producción, como una base de datos que no responde. En esta
situación debes asumir que la infraestructura hizo lo que pudo para resolver la situación –reparar
conexiones, reintentar un número razonable de veces– y falló. Incluso si la causa es diferente,
la situación para el código es similar: hay poco que puedas al respecto. Así que señalamos la
situación a través de una excepción que subiremos hacia un mecanismo general de manejo de
excepciones.

En contraste a esas situaciones, tenemos la situación en la cual no puedes completar la llamada
por una razón de dominio lógico. En este caso nos hemos encontrado una situación que es una
excepción, es decir, una inusual e indeseable, pero no un error extraño o programático. Por
ejemplo, tratar de retirar dinero de una cuenta con fondos insuficientes. En otras palabras, este
tipo de situaciones es una parte del contrato, y lanzar una excepción es sólo una vía de retorno
alternativa que es parte del modelo y que el cliente debería tener en cuenta y estar preparado
para manejarlo. Para estas situaciones es apropiado crear una excepción específica o una
jerarquía de excepción por separado, así el cliente puede manejar la situación en sus propios
términos.

http://97cosas.com/programador/distingue-excepciones-negocio-tecnicas.html

Mezclar excepciones técnicas y excepciones de negocios en la misma jerarquía desdibuja la
distinción y confunde a quien hace la llamada sobre qué método del contrato es, qué
condiciones se requiere asegurar antes de ejecutarlas y qué situaciones se supone debe
manejar. Separar los casos ofrece claridad e incrementa la oportunidad de que las excepciones
técnicas sean manejadas por algún framework de aplicaciones, mientras que las excepciones
de dominio del negocio son consideradas y manejadas por el código del cliente.

Traducción: Espartaco Palma

33. Dos cabezas son a menudo mejores que una.

Autor: Adrian Wible
La programación requiere pensamiento profundo, y los pensamientos profundos requieren
soledad. Así va el estereotipo del programador.

Este enfoque de “lobo solitario” de la programación está dando paso a un enfoque colaborativo,
el cuál, puedo decir, mejora la calidad, productividad y satisfacción laboral de los
programadores. Este enfoque tiene a los desarrolladores trabajando más cerca entre sí y
también con los no desarrolladores –analistas de negocio y sistemas, profesionales de control
de calidad y usuarios–.

¿Qué significa esto para los desarrolladores? Ser el experto técnico ya no es suficiente. Debes
ser más efectivo trabajando con otros.

La colaboración no se trata de preguntar y responder, o sentarse en reuniones. Se trata de
arremangarse con alguien más para atacar conjuntamente el trabajo.

Soy un gran admirador de la programación en pareja. Puedes llamar a esto “colaboración
extrema”. Como desarrollador, mis habilidades crecen cuando hago pareja. Si soy más débil
que mi compañero en el dominio o tecnología, claramente aprendo de su experiencia. Cuando
soy más fuerte en algún aspecto, aprendo más sobre lo que conozco y no conozco al tener que
explicarme. Invariablemente, ambos traemos algo a la mesa y aprendemos mutuamente.

En pareja, cada uno de nosotros llevamos nuestras experiencias de programación colectiva –
tanto de dominio como técnica– al problema en cuestión y podemos aportar agudeza y
experiencias únicas al escribir software efectiva y eficientemente. Incluso en caso de
desequilibrio extremo en el dominio o conocimiento técnico, el participante más experimentado
invariablemente aprende algo del otro –quizás un nuevo atajo del teclado o exposición a una
nueva herramienta o biblioteca–. Para los miembros menos experimentados del par, es una
gran manera de ponerse al día.

La programación en pareja es popular con, pero no exclusivamente a, promotores del desarrollo
ágil del software. Alguien que se opone a la pareja sugiere: “¿porqué debería pagar a dos
programadores para hacer el trabajo de uno?”. Mi respuesta es que, en efecto, no debería.
Argumento que el emparejamiento incrementa la calidad, el entendimiento del dominio y
tecnología, técnicas (como los trucos del IDE) y mitiga el impacto del riesgo de lotería (uno de
tus desarrolladores expertos se gana la lotería y renuncia al siguiente día).

¿Cuál es el valor a largo plazo de aprender un nuevo atajo del teclado? ¿Cómo medimos la
mejora global de la calidad del producto resultante del emparejamiento? ¿Cómo medimos el
impacto de que tu compañero no te permita adoptar un enfoque sin salida en la solución de un
problema difícil? Un estudio cita un incremento del 40% en eficacia y velocidad (J T Nosek, “The

http://97cosas.com/programador/dos-cabezas-mejor-una.html

Case for Collaborative Programming”, Communications of the ACM, Marzo de 1998). ¿Cuál es
el valor de mitigar tu “lotería de riesgo”? Muchas de estas ganancias son difíciles de medir.

¿Quién debería hacer pareja con quién? Si eres nuevo, es importante encontrar un miembro del
equipo que tenga conocimientos. Tan importante como encontrar quien tenga buenas
habilidades interpersonales y de entrenador. Si no tienes mucha experiencia del dominio,
emparéjate con un experto.

Si no estás convencido, experimenta: colabora con tus colegas. Haz pareja en un problema
retorcido e interesante. Ve cómo se siente. Inténtalo unas cuantas veces.

Traducción: Espartaco Palma

34. Dos fallos pueden hacer un acierto (y es difícil de arreglar).

Autor: Allan Kelly
El código nunca miente, pero puede contradecirse. Algunas contradicciones llevan a esos
momentos de: “¿cómo es posible que esto funcione?”.

En una entrevista, el diseñador principal del software del módulo lunar Apolo 11, Allan Klumpp,
reveló que el software que controlaba los motores tenía un error que hacía el módulo de
aterrizaje inestable. Sin embargo, otro error fue compensado por el primero y el software fue
usado por los aterrizajes lunares del Apolo 11 y 12 antes de que el error fuera encontrado y
arreglado.

Considera una función que retorna un estatus de finalización. Imagina que

retorna false cuando debería regresar un true . Ahora imagina que la llamada de función

olvida comprobar el valor de retorno. Todo funciona bien hasta que un día alguien nota la falta
de verificación y la inserta.

O considera una aplicación que almacena su estado en un documento XML. Imagina que uno
de los nodos está escrito incorrectamente como “TimeToLive” en vez de “TimeToDie”, como la
documentación dice que debería. Todo parece estar bien mientras el código de escritura y el
código de lectura contienen ambos el mismo error. Pero arregla uno, o agrega una nueva
aplicación de lectura del mismo documento, y la simetría se rompe, al igual que el código.

Cuando dos defectos en el código crean un defecto visible, el enfoque metodológico para
arreglar la falla puede, por sí mismo, romperlo. El desarrollador recibe un reporte de error,
encuentra el defecto, lo arregla y lo vuelve a probar. Sin embargo, el fallo reportado aún ocurre,
debido a que un segundo defecto está en funcionamiento. Así que el primer arreglo se quita, el
código es inspeccionado hasta que el segundo defecto es encontrado, y un arreglo se aplica.
Pero el primer defecto ha regresado, el fallo reportado aún se ve, así que se deshace el segundo
arreglo. El proceso se repite, pero ahora el desarrollador ha desestimado dos posibles
soluciones y está buscando una tercera, que nunca va a funcionar.

La interacción entre dos defectos de código que aparecen como un defecto visible no sólo hace
difícil arreglar el problema, además, lleva a los desarrolladores a callejones sin salida, sólo para
descubrir que intentaron la respuesta correcta desde el inicio.

Esto no pasa sólo en el código: el problema también existe en los documentos de requerimientos
escritos. Y puede extenderse, viralmente, de un lugar a otro. Un error en el código compensa
un error en la descripción escrita.

http://97cosas.com/programador/dos-fallos-pueden-hacer-acierto.html
http://www.netjeff.com/humor/item.cgi?file=ApolloComputer

Puede extenderse a la gente también: los usuarios aprenden que cuando la aplicación dice
“Izquierda” se refiere a la “Derecha”, así que ajustan su comportamiento, incluso lo pasan al
nuevo usuario: “recuerda que la aplicación dice que hagas clic al botón izquierdo cuando
realmente se refiere al botón derecho”. Arregla ese error y, de repente, los usuarios necesitan
reentrenamiento.

Fallos sencillos pueden ser fáciles de ver y de arreglar. Son los problemas con múltiples causas,
que necesitan múltiples cambios, los que son difíciles de resolver. En parte es porque los
problemas fáciles tienden a ser arreglarlos con relativa rapidez y se quedan los más difíciles
para una fecha posterior.

No hay un consejo simple que se pueda dar en cómo localizar fallos surgidos de defectos
simpatéticos. Es necesario darse cuenta de la posibilidad, una cabeza clara y voluntad de
considerar todas las posibilidades.

Traducción: Espartaco Palma

35. Lenguajes Específicos del Dominio (DSL).

Autor: Michael Hunger
Cada vez que escuches una discusión de expertos de cualquier dominio, ya sean jugadores de
ajedrez, maestros de jardín de niños o agentes de seguros, notarás que su vocabulario es un
poco diferente del lenguaje diario. Es parte de los Lenguajes Específicos del Dominio (DSL). Un
dominio específico tiene un vocabulario especializado para describir cosas que son particulares
de ese dominio.

En el mundo del software, los DSL tratan sobre expresiones ejecutables en un lenguaje
específico de un dominio con un limitado vocabulario y gramática que es legible, entendible y –
afortunadamente– escribible por expertos del dominio. Los DSL dirigidos a desarrolladores de
software o científicos han estado por aquí desde hace un largo tiempo. Por ejemplo, el “pequeño
lenguaje” de Unix encontrado en archivos de configuración y los lenguajes creados con el poder
de macros de LISP son de los más viejos ejemplos.

Los DSL son comúnmente clasificados como internos o externos:

 Los DSL internos son escritos en un lenguaje de programación de propósito general, cuya

sintaxis se ha inclinado a parecerse más al lenguaje natural. Es más fácil para los lenguajes

que ofrecen azúcar sintáctica y posibilidades de formato (ej. Ruby y Scala) que para otros

que no lo hacen (ej. Java). Muchos DSL internos envuelven API existentes, bibliotecas o

código de negocio para proveer un contenedor con un acceso más alucinante a sus

funcionalidades. Son ejecutados con sólo correrlos. Dependiendo en la implementación y el

dominio, son usados para construir estructuras de datos, definir dependencias, ejecutar

procesos o tareas, comunicarse con otros sistemas o validar entradas de usuario. La

sintaxis de un DSL interno están contenidas en el lenguaje anfitrión. Hay muchos patrones

–por ejemplo, constructores de expresiones, encadenadores de métodos y anotaciones–

que pueden ayudarte a doblar el lenguaje anfitrión de tu DSL. Si el lenguaje anfitrión no

requiere recompilación, entonces un DSL interno puede ser desarrollado rápidamente

trabajando lado a lado con los expertos del dominio.

http://97cosas.com/programador/dsl.html

 Los DSL externos son expresiones gráficas o textuales de un lenguaje, aunque los DSL

textuales tienden a ser más comunes que los gráficos. Las expresiones textuales pueden

ser procesadas por una cadena de herramientas que incluyen léxico, un analizador, un

transformador de modelo, generadores, y cualquier otro tipo de posprocesamiento. Los DSL

externos son frecuentemente leídos en modelos internos, los cuales forman los

fundamentos para su posterior procesamiento. Es útil definir una gramática (por ejemplo,

en EBNF). Una gramática provee un punto de partida para la generación de partes de la

cadena de herramientas (por ejemplo, editor, visualizador, generador de analizadores). Para

los DSL sencillos, un analizador hecho a mano podría ser suficiente; usando, por ejemplo,

expresiones regulares. Los analizadores personalizados pueden llegar a ser difíciles de

manejar si se espera mucho de ellos, así que tiene sentido mirar las herramientas diseñadas

específicamente para trabajar con gramáticas del lenguaje; por ejemplo,

openArchitectureWare, ANTlr, SableCC y AndroMDA. Es también común el definir DSL

externos como los dialectos XML, aunque la legibilidad es frecuentemente un problema;

sobre todo para los lectores no técnicos.

Siempre debes tomar en cuenta la audiencia objetivo de tu DSL. ¿Son desarrolladores,
administradores, clientes de negocio o usuarios finales? Tienes que adaptar el nivel técnico del
lenguaje, las herramientas disponibles, ayuda de sintaxis (por ejemplo, intellisense), validación
temprana, visualización y representación a tu audiencia prevista. Al ocultar detalles técnicos, los
DSL pueden empoderar a los usuarios, dándoles la habilidad para adaptar los sistemas a sus
necesidades sin requerir la ayuda de los desarrolladores. También puede acelerar el desarrollo
debido al potencial de distribución de trabajo después de que el framework inicial está en su
sitio. El lenguaje puede evolucionar gradualmente. Hay también disponibles diferentes rutas de
migración para expresiones existentes y gramática.

Traducción: Espartaco Palma

36. El mito del Gurú.

Autor: Ryan Brush
Cualquiera que haya trabajado en el software el tiempo suficiente ha escuchado preguntas como
éstas: “estoy obteniendo una excepción XYZ. ¿Sabes cuál es el problema?”.

Aquellos que hacen la pregunta rara vez se molestan en incluir la pila de rastreo, registros de
error o algún contexto que nos conduzca al problema. Al parecer creen que operas en un plano
distinto, que las soluciones se te aparecen sin ningún análisis basado en evidencia. Piensan
que eres un gurú.

Esperamos dichas preguntas de quienes no tienen familiaridad con el software: para ellos los
sistemas pueden verse como algo mágico. Lo que me preocupa es estar viendo esto en la
comunidad del software. Preguntas similares surgen en el diseño de programas, tales como:
“estoy construyendo un gestor de inventarios. ¿Debo utilizar el bloqueo optimista?”.
Irónicamente, la gente que hace la pregunta está mejor calificada para resolverla que el
destinatario. Los interrogadores presumiblemente conocen el contexto, los requisitos y pueden
leer acerca de las ventajas y desventajas de las diferentes estrategias. Sin embargo, esperan
que les des una respuesta inteligente sin un contexto. Esperan magia.

http://97cosas.com/programador/el-mito-del-guru.html

Es tiempo de que la industria del software disipe este mito del gurú. Los “gurús” son humanos.
Ellos aplican la lógica y el análisis sistemático de los problemas, como el resto de nosotros.
Aprovechan los atajos mentales y la intuición. Considera al mejor programador que hayas
conocido: en algún momento esa persona sabía menos acerca del software de lo que tú ahora
mismo. Si alguien parece ser un gurú, es debido a sus años dedicados al aprendizaje y al
perfeccionamiento de los procesos de pensamiento. Un “gurú” es simplemente una persona
inteligente con curiosidad incesante.

Por supuesto, sigue habiendo una gran variabilidad en la aptitud natural. Muchos hackers son
más inteligentes, informados y productivos de lo que alguna día puedo llegar a ser. Aun así, el
desmitificar el mito del gurú tiene un impacto positivo. Por ejemplo, si trabajo con una persona
más inteligente que yo, me aseguro de hacer el trabajo de campo, proveer el suficiente contexto
para que esa persona pueda aplicar eficazmente sus habilidades. Quitar el mito del gurú
también significa eliminar una barrera en la percepción de mejora. En vez de una barrera
mágica, veo continuidad y puedo avanzar.

Por último, uno de los mayores obstáculos en el software es la gente inteligente que propaga el
mito del gurú a propósito. Esto podría hacerse por ego, o como una estrategia para incrementar
el valor percibido por un cliente o por su empleador. Irónicamente, esta actitud puede hacer que
las personas inteligentes sean menos valiosas debido a que no contribuyen al crecimiento de
sus compañeros. No necesitamos gurús. Necesitamos expertos que estén dispuestos a
desarrollar a otros expertos en su campo. Hay espacio para todos nosotros.

Traducción: Espartaco Palma

37. El Programador Profesional.

Autor: Uncle Bob

¿Qué es un programador profesional?
El rasgo más importante de un programador profesional es la responsabilidad personal. Los
programadores profesionales se responsabilizan por su carrera, sus estimaciones, el
compromiso con su agenda, sus errores y su mano de obra. Un programador profesional no le
pasa la responsabilidad a los demás.

 Si eres profesional, entonces eres responsable de tu propia carrera. Eres responsable de

leer y aprender. Eres responsable de mantenerte actualizado con la industria y la tecnología.

Muchos programadores piensan que es trabajo de sus patrones entrenarlos. Lo siento,

están tremendamente equivocados. ¿Crees que los médicos se comportan de esa manera?

¿Crees que los abogados se comportan de esa manera? No, ellos se entrenan en su propio

horario, y con su propio dinero. Ellos gastan muchas de sus horas libres leyendo revistas y

tomando decisiones. Se mantienen al día. Y así debemos hacerlo nosotros. La relación

entre tú y tu empleador está escrita claramente en tu contrato. En breve: prometen pagarte

y tú prometes hacer un buen trabajo.

 Los profesionales asumen la responsabilidad del código que escriben. No liberan código a

menos que sepan que funciona. Piensa en esto por un minuto. ¿Cómo puedes considerar

llamarte profesional, si estás esperando liberar código del cuál no estás seguro? Los

http://97cosas.com/programador/el-programador-profesional.html

programadores profesionales esperan que QA no encuentre algo porque no liberan su

código hasta que se ha probado completamente. Por supuesto, QA encontrará algunos

problemas, debido a que nadie es perfecto. Pero, como profesionales, nuestra actitud debe

ser: dejar nada para QA.

 Los profesionales son jugadores de equipo. Asumen responsabilidad de la salida de todo el

equipo, no sólo de su propio trabajo. Se ayudan unos a otros, enseñan a los demás,

aprenden unos de otros e, incluso, cubren a los demás, si es necesario. Cuando un

compañero cae, los demás intervienen, sabiendo que algún día ellos van a ser los que

necesiten cobertura.

 Los profesionales no toleran grandes listas de errores. Tener una lista así es ser

descuidado. Los sistemas con cientos de issues en la base de datos de seguimiento de

problemas son tragedias por la falta de cuidado. De hecho, en muchos proyectos, la propia

necesidad de un sistema de seguimiento de problemas es un síntoma de descuido. Sólo los

sistemas muy grandes deberían tener una lista de errores tan larga que sea necesario la

automatización para manejarla.

 Los profesionales no hacen un desastre. Se enorgullecen de su mano de obra. Mantienen

el código limpio, bien estructurado y fácil de leer. Siguen estándares acordados y las

mejores prácticas. Ellos nunca, jamás se apresuran. Imagina que estás teniendo una

experiencia “fuera de tu cuerpo” y miras a un cirujano realizar una cirugía a corazón abierto

en ti. Este médico tiene un hora límite (en sentido literal). Debe terminar antes de que la

máquina de derivación corazón-pulmón dañe muchas de las células sanguíneas. ¿Cómo

quieres que se comporte? ¿Quieres que se comporte como el típico desarrollador de

software, apresurado y haciendo un lío? ¿Quieres que diga: “regreso y lo arreglo luego”?

¿O quieres que se aferre cuidadosamente a sus disciplinas, tomándose su tiempo, seguro

de que su enfoque es el mejor? ¿Quieres un desastre o profesionalidad?

Los profesionales son responsables. Asumen la responsabilidad por sus propias carreras.
Asumen la responsabilidad de asegurarse de que su código funciona correctamente. Asumen
la responsabilidad de la calidad de su mano de obra. No abandonan sus principios cuando los
plazos se ciernen. De hecho, cuando la presión aumenta, los profesionales se aferran a las
disciplinas que saben que son correctas.

Traducción: Espartaco Palma

38. El trabajo duro no paga.

Autor: Olve Maudal
Como programador, trabajar duro muchas veces no da frutos. Puedes engañarte a ti mismo y a
unos pocos colegas al creer que estás contribuyendo mucho al proyecto al pasar largas horas
en la oficina. Pero, la verdad, es que trabajando menos puedes lograr más, a veces mucho más.
Si tratas de estar centrado y ser “productivo” por más de treinta horas a la semana, entonces
probablemente estás trabajando demasiado duro. Debes considerar reducir la carga de trabajo
para ser más eficaz y hacer más cosas.

http://97cosas.com/programador/el-trabajo-duro-no-paga.html

Esta frase puede parecer contraria a la intuición e incluso controversial, pero es una
consecuencia directa del hecho de que la programación y el desarrollo de software, en conjunto,
implican un proceso de aprendizaje continuo. A medida en que trabajas en un proyecto
entenderás más sobre el dominio del problema y, con suerte, encontrarás la manera más eficaz
de alcanzar tu meta. Para evitar el desperdicio de trabajo, debes permitirte tiempo para observar
los efectos de lo que estás haciendo, reflexionar sobre las cosas que se ven y cambiar el
comportamiento en consecuencia.

La programación profesional no suele ser como correr duro durante unos cuantos kilómetros,
donde la meta puede ser vista al final de un camino pavimentado. Muchos proyectos de software
son más como un largo maratón orientado; en la oscuridad, con sólo un mapa esquemático
como guía. Si acabas de salir hacia una dirección, corriendo tan rápido como puedas, podrías
impresionar a algunos, pero no es probable que tengas éxito. Necesitas mantener un ritmo
sostenido y ajustar el curso cuando se aprende más sobre dónde te encuentras y hacia dónde
te diriges.

Adicionalmente, siempre necesitarás aprender más sobre el desarrollo de software, en general,
y técnicas de programación, en lo particular. Probablemente tengas que leer libros, ir a
conferencias, comunicarte con otros profesionales, experimentar con nuevas técnicas de
implementación y aprender acerca de potentes herramientas que simplificarán el trabajo. Como
un programador profesional debes mantenerte actualizado en tu campo de especialización; al
igual que se espera que los neurocirujanos y los pilotos se mantengan actualizados en sus
propios campos de experiencia. Necesitas pasar tardes, fines de semana y días festivos
educándote, por lo tanto, no puedes pasar tus tardes, fines de semana y días festivos trabajando
tiempo extra en tu proyecto actual. ¿Realmente esperas que los neurocirujanos realicen cirugías
60 horas a la semana o que los pilotos vuelen 60 horas semanalmente? Por supuesto que no,
la preparación y educación son parte esencial de su profesión.

Enfócate en el proyecto, contribuye tanto como puedas encontrando soluciones inteligentes,
mejora tus habilidades, reflexiona sobre lo que estás haciendo y adapta tu comportamiento.
Evitar avergonzarte, y a nuestra profesión, al comportarte como un hámster en una jaula
corriendo en la rueda. Como programador profesional debes saber que tratar de estar
concentrado y ser “productivo” 60 horas a la semana no es lo más sensato. Actúa como un
profesional: prepárate, sé eficaz, observa, reflexiona y cambia.

Traducción: Espartaco Palma

39. Encapsula Comportamiento, no sólo Estado.

Encapsula Comportamiento, no sólo

Estado

Autor: Einar Landre
En la teoría de sistemas, el contenimiento es uno de los más útiles constructos cuando se está
tratando con sistemas de estructuras muy grandes y complejas. En la industria de software el
valor del contenimiento o encapsulación es bien entendido.

Los módulos y paquetes resuelven las necesidades a gran escala de la encapsulación, mientras
que las clases, subrutinas y funciones resuelven los aspectos más granulares en la materia. A
través de los años he descubierto que las clases parecen ser uno de los constructos de

http://97cosas.com/programador/encapsula-comportamiento.html

encapsulación más difíciles que los desarrolladores entiendan. Es común encontrar una clase
con sólo un método principal con 3 mil líneas de código, o una clase con sólo

método set y get para sus atributos primitivos. Estos ejemplos demuestran que el

desarrollador involucrado no ha entendido por completo el pensamiento orientado a objetos,
fallando en tomar ventaja del poder de los objetos como constructos de modelaje. Para los
desarrolladores familiarizados con los términos POJO (Plain Old Java Object) y POCO (Plain
Old C# Object o Plain Old CLR Object), éste fue el intento para regresar a lo más básico de OO
como el paradigma modelo, los objetos son planos y sencillos, pero no tontos.

Un objeto encapsula ambos; estado y comportamiento, donde el comportamiento es definido
por el estado actual. Considera un objeto puerta. Éste tiene 4 estados: cerrado, abierto,
cerrando, abriendo. Ofrece dos operaciones: abrir y cerrar. Dependiendo del estado, las
operaciones de abrir y cerrar se comportarán de forma diferente. Esta propiedad inherente de
un objeto hace que el proceso de diseño conceptualmente simple. Esto se resume en dos tareas
sencillas: localización y delegación de responsabilidad a los diferentes objetos, incluyendo los
protocolos de la interacción entre objetos.

Cómo funciona en la práctica se ilustra mejor con un ejemplo. Digamos que tienes tres
clases: Customer(Cliente), Order (Orden) e Item. El objeto Customer es marcador de posición
natural para el límite de crédito y las reglas de validación. Un objeto Order sabe sobre su

Customer asociado, y su operación addItem delega la validación del crédito actual llamando al

método Customer.validaCredito(item.precio()) . Si la poscondición del método falla, una

excepción puede ser enviada y la compra cancelada.

Los desarrolladores menos experimentados en orientación a objetos podrían decidirse a
envolver todas las reglas de negocio en un objeto frecuentemente referido
como orderManager u OrderService. En este diseño, Order, Customer e Item son tratados
como algo más que tipos de registros. Toda la lógica es factorizada desde las clases y unidas

en un método largo y procedural con un montón de constructos internos if-the-else . Estos

métodos se rompen con facilidad y son casi imposibles de mantener. ¿La razón? La
encapsulación está rota.

Así que, al final, no rompas la encapsulación y usa el poder de tu lenguaje de programación
para mantenerla.

Traducción: Espartaco Palma

40. Escoge tus herramientas con cuidado.

Autor: Giovanni Asproni
Las aplicaciones modernas rara vez son construidas desde cero. Se ensamblan usando
herramientas existentes –componentes, bibliotecas y frameworks– por una serie de buenas
razones:

 Las aplicaciones crecen en tamaño, complejidad y sofisticación, mientras el tiempo para

desarrollarlas decrece. Se hace un mejor uso del tiempo e inteligencia del desarrollador, si

pueden concentrarse en escribir más código del dominio del negocio y menos código de

infraestructura

http://97cosas.com/programador/escoge-herramientas-con-cuidado.html

 Los componentes y frameworks ampliamente utilizados con frecuencia tienen menos

errores que aquellos desarrollados en casa.

 Hay un montón de software de alta calidad disponible en la red de forma gratuita, lo cual

significa menores costos de desarrollo y mayor probabilidad de encontrar desarrolladores

con el interés y experiencia necesaria.

 La producción y mantenimiento de software es un trabajo humanamente intensivo, por lo

que comprarlo podría ser más barato que construirlo.

Sin embargo, escoger la mezcla completa de herramientas para tu aplicación puede ser un
negocio riesgoso que requiere pensarlo un poco. De hecho, hay unas cuantas cosas que
deberías tener en mente mientras estás haciendo la elección:

 Las diferentes herramientas pueden estar basadas en distintos supuestos sobre su contexto

–por ejemplo, la infraestructura circundante, modelo de control, modelo de datos, protocolos

de comunicación, etcétera – lo cual puede llevar a un diferencial de arquitectura entre la

aplicación y las herramientas. Dichas diferencias conducen a hacks y workarounds que

harán el código más complejo de lo necesario.

 Las diferentes herramientas tienen diferentes ciclos de vida, y actualizar una de ellas podría

convertirse en algo extremadamente difícil y una tarea que consume tiempo en cada nueva

funcionalidad, cambios de diseño o incluso correcciones de errores que podrían causar

incompatibilidades con las otras herramientas. Entre más grande sea el número de

herramientas, peor es el problema en el que puede convertirse.

 Algunas herramientas requieren configuraciones, lo que frecuentemente significa uno o más

archivos XML, lo cual se sale de control muy rápido. La aplicación puede terminar como si

fuese escrita toda en XML más unas cuántas líneas de código en algún lenguaje de

programación. La complejidad en la configuración hará la aplicación difícil de mantener y de

extender.

 Ocurre un vendor-lock cuando el código que depende en gran medida en un proveedor

específico termina siendo arriesgado por él en varias formas: mantenimiento, rendimiento,

habilidad para evolucionar, precio, etc.

 Si planeas usar software libre, puedes descubrir que no es tan libre después de todo. Quizás

necesites comprar soporte comercial, lo cual no necesariamente va a ser barato.

 Los términos de licenciamiento importan, incluso para el software libre. Por ejemplo, en

algunas compañías no es aceptable usar software licenciado bajo los términos de la licencia

GNU, debido a su naturaleza viral, es decir, el software desarrollado con él debe ser

distribuido junto con su código fuente.

Mi estrategia personal para mitigar estos problemas es comenzar poco a poco, usando sólo las
herramientas que son absolutamente necesarias. Usualmente el enfoque inicial está en quitar
la necesidad de participar en la programación (y los problemas) de infraestructura de bajo nivel,
por ejemplo, usando algún middleware en vez de usar sockets para aplicaciones distribuidas. Y
entonces agregar más si es necesario. También tiendo a aislar las herramientas externas de
mis objetos de dominio del negocio con respecto a interfaces y capas de presentación, así
puedo cambiar la herramienta, si lo tengo que hacer, con sólo una pequeña dosis de dolor. Un

lado positivo de este enfoque es que generalmente termino con una aplicación más pequeña
que usa menos herramientas externas de lo que originalmente se pronosticó.

Traducción: Espartaco Palma

41. Escribe código como si tuvieras que mantenerlo por el resto de tu vida.

Autor: Yuriy Zubarev
Puedes preguntarle a 97 personas lo que todo programador debería saber y hacer, y podrás
escuchar 97 respuestas distintas. Esto podría ser abrumador e intimidante al mismo tiempo.
Todo consejo es bueno, todos los principios son sólidos y todas las historias son convincentes,
pero ¿por dónde empezar? Más importante aún, una vez que has comenzado, ¿cómo te
mantienes al día con todas las mejores prácticas que has aprendido para hacer de ellas una
parte integral de tus prácticas de programación?

Creo que la respuesta reside en tu estado de ánimo o, más claramente, en tu actitud. Si no te
preocupas por tus compañeros desarrolladores, testers, administradores, personal de venta y
mercadotecnia, así como los usuarios finales, entonces no estarás dispuesto a emplear el
Desarrollo basado en Pruebas (Test-Driven Development) o escribir comentarios claros en tu
código, por ejemplo. Hay una manera sencilla de ajustar tu actitud y siempre estar dispuesto a
entregar productos de la mejor calidad::

Escribe código como si tuvieras que mantenerlo por el resto de tu vida.
Eso es todo. Si aceptas esta idea, sucederán muchas cosas maravillosas. Si vas aceptar que
ninguno de tus empleadores previos o actuales tiene derecho a llamarte a la mitad de la noche
pidiéndote que expliques las decisiones que tomaste mientras escribías el método fooBar,
entonces deberías mejorar gradualmente para convertirte en un programador experto.
Naturalmente querrías llegar a mejores nombres de variables y métodos. Te alejarías de
bloques de código que contienen cientos de líneas. Buscarías, aprenderías y usarías patrones
de diseño. Escribirías comentarios, probarías tu código y refactorarías continuamente. Mantener
todo el código que has escrito por el resto de tu vida será también un esfuerzo escalable. Por lo
tanto, no tendrías más opción que convertirte en alguien mejor, más listo y más eficiente.

Si lo reflexionas, el código que escribiste hace muchos años todavía influye en tu carrera, te
guste o no. Dejas un rastro de tu conocimiento, actitud, tenacidad, profesionalismo, nivel de
compromiso y grado de disfrute con cada método, clase y módulo que diseñas y escribes. La
gente se formará opiniones de ti con base en el código que ven. Si esas opiniones son
constantemente negativas, entonces obtendrás menos de tu carrera de lo que esperabas.
Preocúpate por tu carrera, tus clientes y todos los usuarios con cada línea de código; escribe
código como si tuvieras que mantenerlo por el resto de tu vida.

Traducción: Espartaco Palma

42. Escribe pequeñas funciones usando ejemplos.

Autor: Keith Braithwaite
Nos gustaría escribir código que fuese correcto y tener evidencia en mano de que es correcto.
Puede ayudar con ambos temas pensar en el “tamaño” de una función. No en el sentido de la

http://97cosas.com/programador/escribe-codigo-mantenerlo-por-vida.html
http://97cosas.com/programador/escribe-funciones-con-ejemplos.html

cantidad de código que implementa una función, a pesar de que es interesante; sino, más bien,
del tamaño como una función matemática que nuestro código manifiesta.

Por ejemplo, en el juego de Go hay una condición llamada atari, en la cual la piedra del jugador
puede ser capturada por su oponente: una piedra con dos o más espacios libres adyacentes a
él (llamados liberties) no está en atari. Puede ser difícil de contar cuántas liberties tiene una
piedra, pero determinar el atari es fácil si se sabe. Podrías empezar escribiendo una función
como esta:

boolean atari(int libertyCount) libertyCount < 2

Esto es más grande de lo que parece. Una función matemática puede ser entendida como un
conjunto, algún subconjunto del producto Cartesiano del conjunto que son su dominio (en este
caso, un entero) y rango (en este caso, un booleano). Si esos conjuntos de valores fueran del

mismo tamaño, como en Java, entonces sería 2L*(Integer.MAX_VALUE+(-

1L*Integer.MIN_VALUE)+1L) o 8,589,934,592 miembros en el conjunto int × boolean. La mitad

son miembros de un conjunto que es nuestra función, así que para proveer una evidencia
completa de que nuestra función es correcta necesitaríamos revisar al rededor de 4.3 ×
109ejemplos.

Ésta es la esencia de la afirmación de que las pruebas no pueden probar la ausencia de errores.
Sin embargo, las pruebas pueden demostrar la presencia de características. Pero aún tenemos
este tema del tamaño.

El dominio del problema nos ayuda. La naturaleza de Go significa que el número de liberties de

una piedra no es cualquier entero, pero exactamente uno de {1,2,3,4} . Así pues, podríamos

escribir alternativamente:

LibertyCount = {1,2,3,4} boolean atari(LibertyCount libertyCount)

libertyCount == 1

Esto es mucho más manejable: la función calculada es ahora un conjunto con, cuando mucho,
ocho miembros. De hecho, cuatro ejemplos seleccionados constituirían la evidencia de la
certeza completa de que la función es correcta. Ésta es la razón por la cual es una buena idea
usar tipos estrechamente relacionados al dominio del problema para escribir programas, en vez
de tipos nativos. Usar tipos inspirados en dominios a menudo puede hacer que nuestras
funciones sean mucho más pequeñas. Una forma de encontrar qué tipo sería es encontrar los
ejemplos para comprobar en términos del dominio del problema, antes de escribir la función.

Traducción: Espartaco Palma

43. Escribe las pruebas para las personas.

Autor: Gerard Meszaros
Estás escribiendo pruebas automatizadas para una parte o todo tu código de producción.
¡Felicidades! ¿Estás escribiendo tus pruebas antes de que escribas el código? ¡¡Mucho mejor!!
El sólo hacerlo te convierte en uno de los primeros adoptantes de las más avanzadas prácticas
de la ingeniería de software. Pero, ¿estás escribiendo buenas pruebas? ¿Cómo saberlo? Una
manera es preguntar: “¿para quién estoy escribiendo estas pruebas?”. Si la respuesta es “para
mí, para ahorrarme el esfuerzo de corregir errores” o “para el compilador, con eso puede ser
ejecutado”, entonces las apuestas están en que no estás escribiendo las mejores pruebas

http://97cosas.com/programador/escribe-pruebas-para-personas.html

posibles. Así que, ¿para quién deberías estar escribiendo las pruebas? Para las personas que
tratan de entender tu código.

Las buenas pruebas actúan como documentación para el código que estás probando. Describen
cómo funciona el código. Por cada escenario de uso la(s) prueba(s): Describe el contexto, un
punto inicial o precondiciones que deben ser satisfechas; ilustra cómo el software es invocado;
describe los resultados esperados o poscondiciones a ser verificadas.

Los diferentes escenarios de uso tendrán una versión distinta de cada una de ellas. Las
personas que tratan de entender tu código deberían poder mirar unas cuantas pruebas y, al
comparar estas tres partes de las pruebas en cuestión, ver qué causa que el código se comporte
diferente. Cada prueba debería ilustrar claramente la relación de causa y efecto entre estas tres
partes. Esto implica que lo que no es visible en las pruebas es tan importante como lo que es
visible. Mucho código en las pruebas distrae al lector con trivialidades sin importancia. Cuando
sea posible oculta dichas trivialidades detrás de llamados a métodos con significado; la
refactorización “Extraer Método” es tu mejor amigo. Y asegúrate de darle a cada prueba un
nombre con significado que describa el escenario de uso particular, con esto el lector de la
prueba no tiene que hacer ingeniería inversa de cada prueba para entender de qué se tratan
los distintos escenarios. Entre ellos, el nombre de las clases de prueba y los métodos de clases
deben incluir, al menos, el punto inicial y cómo el software está siendo invocado. Esto permite
que la cobertura de prueba sea verificada vía un rápido escaneo de los nombres de los métodos.
También puede ser útil incluir los resultados esperados en el nombre del método de prueba,
mientras esto no cause que el nombre sea demasiado largo para ver o leer.

También es buena idea poner a prueba tus pruebas. Puedes verificar que detectan el error al
incluir dicho error en el código de producción (por supuesto, en una copia privada que
desecharás). Asegúrate que reporte los errores de manera significativa. También debes verificar
que tus pruebas hablan claramente a una persona que trata de entender tu código. La única
manera de hacerlo es tener a alguien que no está familiarizado con tu código para que lea tus
pruebas y te diga qué ha aprendido. Escucha cuidadosamente lo que te diga. Si no entendió
algo no es porque no sea muy brillante. Es más probable que tú no fueras muy claro. (¡Continúa
e invierte los roles, lee sus pruebas!).

Traducción: Espartaco Palma

44. Evita errores.

Autor: Giles Colborne
Los mensajes de error son la interacción más crítica entre el usuario y el resto del sistema.
Suceden cuando la comunicación, entre el usuario y el sistema, está cerca del punto de quiebre.

Es fácil pensar que un error está siendo causado por una mala entrada de datos del usuario.
Pero la gente comete errores de forma predecible y sistemática. Así que es posible depurar la
comunicación entre el usuario y el resto del sistema así como lo harías con otros componentes
del sistema.

Por ejemplo, digamos que quieres que el usuario introduzca una fecha en un rango permitido.
En vez de dejar que el usuario introduzca cualquier fecha es mejor ofrecer un dispositivo, como
una lista o calendario, mostrando sólo las fechas permitidas. Esto elimina cualquier oportunidad
de que el usuario introduzca una fecha fuera del rango.

El formato del error es otro problema común. Por ejemplo, si a un usuario se le presenta un
campo de texto como fecha e introduce una fecha ambigua como “Julio 29, 2012” es razonable

http://97cosas.com/programador/evita-errores.html

el rechazarlo simplemente porque no es uno de los formatos preferidos (como “DD/MM/AAAA”).
Es peor aún rechazar “29 / 07 / 2012” sólo porque contiene espacios extra; este tipo de problema
es particularmente difícil de entender para usuarios porque la fecha parece estar en el formato
deseado.

Este error ocurre porque es más fácil rechazar una fecha que analizar los tres o cuatro formatos
de fecha más comunes. Este tipo de errores insignificantes llevan al usuarios a la frustración,
que a su vez conduce a errores adicionales conforme el usuario pierde su concentración. En
cambio, respeta las preferencias del usuario al entrar información, no los datos.

Otra forma de evitar errores de formato es ofrecer señales, por ejemplo, con una etiqueta dentro
del campo mostrar el formato deseado (“DD/MM/AAAA”). Otra pista podría ser dividir el campo
en tres cajas de texto de dos, dos y cuatro caracteres.

Las señales son diferentes de las instrucciones: las señales tienden a ser indicios; las
instrucciones son detalladas; las señales ocurren en el punto de interacción; las instrucciones
aparecen antes del punto de interacción. Las señales proveen contexto; las instrucciones dictan
el uso.

En general, las instrucciones son ineficientes para prevenir errores. Los usuarios tienden a
asumir que las interfaces trabajarán en la línea con su pasada experiencia (“¿seguramente
todos saben el significado de ‘Julio 29, 2012’?”). Así que las instrucción no son leídas. Las
señales dan un suave codazo alejando a los usuarios del error.

Otra forma de evitar errores es ofrecer valores predeterminados. Por ejemplo, los usuarios
típicamente introducen valores que corresponden al hoy, mañana, mi cumpleaños, mi fecha
límite o la fecha que introduje la última vez que usé este formulario. Dependiendo del contexto,
es probable que uno de ellos sea una buena opción de un valor predeterminado inteligente.

Sin importar la causa, los sistemas deberían ser tolerantes a errores. Puedes hacer esto
proveyendo niveles múltiples de “deshacer” para todas las acciones y en especial las acciones
que tenga el potencial de destruir o enmendar los datos del usuario.

El registro y análisis de las acciones de “deshacer” puede también ser un punto a destacar, en
el cual la interfaz está atrayendo a los usuarios a errores inconscientes, tales como hacer clic
persistentemente en un botón “equivocado”. Estos errores son, a menudo, causados por
señales engañosas o secuencias de interacción que puedes rediseñar para prevenir más
errores.

Cualquiera que sea el enfoque que tomes, la mayoría de los errores son sistemáticos, el
resultado de malentendidos entre el usuario y el software. Entender cómo los usuarios piensan,
interpretan información, toman decisiones e introducen datos, de entrada, te ayudará a depurar
las interacciones entre el software y tus usuarios.

Traducción: Espartaco Palma

45. Haz lo invisible más visible.

Autor: Jon Jagger
Muchos aspectos de la invisibilidad son correctamente dichos como principios a usar. Nuestra
terminología es rica en metáforas de invisibilidad, mecanismos de transparencia y ocultamiento
de información, para mencionar sólo dos. El software y el proceso de desarrollo pueden ser,
para parafrasear a Douglas Adams, casi invisibles:

http://97cosas.com/programador/haz-lo-invisible-mas-visible.html

 El código fuente no tiene una innata presencia o comportamiento, y no obedece las leyes

de la física. Es visible cuando lo cargas en un editor, pero cierra el editor y se ha ido. Piensa

sobre eso un rato y, como el árbol cayendo cuando nadie lo escucha, empieza a preguntarte

si en realidad existe.

 Una aplicación en ejecución tiene presencia y comportamiento, pero no revela nada del

código fuente con el que fue construido. La página principal de Google es placenteramente

minimalista; lo que pasa detrás es lo realmente sustancial.

 Si has terminado el 90% y estás eternamente atorado tratando de debugear el último 10%

entonces no has acabado el 90%, ¿o sí? Corregir errores no es progresar. No te pagan por

debugear. El debugging es un derroche. Es bueno hacer una pérdida más visible así puedes

ver qué es y empezar a pensar en no crearla, en primer lugar.

 Si tu proyecto está aparentemente en camino y una semana después está seis meses

atrasado, tienes problemas, el más grande de ellos probablemente no sea que estás seis

meses tarde, ¡sino que el campo de invisibilidad es lo suficientemente poderoso como para

ocultar seis meses de retraso! La falta de progreso visible es sinónimo de la falta de

progreso.

La invisibilidad puede ser peligrosa. Piensas más claramente cuando tienes algo concreto a qué
amarrar tu pensamiento. Administras mejor las cosas cuando puedes verlas y verlas cambiar
constantemente:

 Escribir pruebas unitarias provee evidencia sobre qué tan fácil es el código unitario con

respecto a la prueba unitaria. Ayuda a revelar la presencia (o ausencia) de cualidades de

desarrollo que te gustaría que el código exhiba; cualidades como bajo acoplamiento y alta

cohesión.

 Ejecutar pruebas unitarias provee evidencia sobre el comportamiento del código. Ayuda a

revelar la presencia (o ausencia) de cualidades en tiempo de ejecución que te gustaría que

la aplicación exhiba; cualidades como la fortaleza y la correctitud.

 El usar tableros de boletines y tarjetas hace el progreso más visible y concreto. Las tareas

pueden ser vistas como “No iniciadas”, “En progreso” o “Terminadas” sin la referencia a una

herramienta de administración de proyectos y sin tener que perseguir a los programadores

para que entreguen reportes de estatus ficticios.

 Realizar desarrollo incremental aumenta la visibilidad del progreso del desarrollo (o la falta

de él) al incrementar la frecuencia de la evidencia del desarrollo. El completar la liberación

del software revela realidad; los estimados no.

Es mejor desarrollar software con una gran cantidad de evidencia visible habitual. La visibilidad
otorga confianza de que el progreso es genuino y no una ilusión, deliberado y no involuntario,
repetible y no accidental.

Traducción: Espartaco Palma

46. Haz mucha práctica deliberada.

http://97cosas.com/programador/haz-mucha-practica-deliberada.html

Autor: Jon Jagger
La práctica deliberada no es simplemente realizar una tarea. Si te preguntas “¿porqué estoy
realizando esta tarea?” y tu respuesta es “para completar la tarea”, entonces no estás haciendo
práctica deliberada.

Haces práctica deliberada para mejorar tu habilidad de realizar una tarea. Se trata de habilidad
y técnica. La práctica deliberada significa repetición. Significa realizar la tarea con el ánimo de
incrementar tu dominio de uno o más aspectos de la tarea. Significa repetir la repetición.
Lentamente, una y otra vez. Hasta lograr el nivel deseado de dominio. Haces práctica deliberada
para dominar la tarea, no para terminar la tarea.

El propósito principal de pagar a los desarrolladores es terminar un producto, mientras que el
propósito de la práctica deliberada es mejorar tu rendimiento. No es lo mismo. Pregúntate:
¿cuánto tiempo inviertes desarrollando el producto de alguien más? ¿Cuánto desarrollándote?

¿Cuánta práctica deliberada toma el adquirir experiencia?

 Peter Norving escribe “Puede que sean 10,000 horas […] es el número mágico”.

 En “Leading Lean Software Development”, Mary Poppendieck señala que: “A los

practicantes de elite les toma un mínimo de 10 mil horas de práctica enfocada para

convertirse en expertos”.

La experiencia llega gradualmente con el tiempo, ¡no toda en la hora 10 mil! Sin embargo, 10
mil horas es mucho: cerca de 20 horas a la semana durante 10 años. Dado este nivel de
compromiso podrías estar preocupado de no ser material experto. Lo eres. La grandeza es, en
gran medida, una cuestión de elección consciente. Tu elección. Las investigaciones realizadas
durante las dos últimas décadas han demostrado que el factor principal de adquisición de
experiencia es el tiempo dedicado a realizar práctica deliberada. La habilidad innata no es el
factor principal.

 Mary: “Hay un consenso general entre investigadores de rendimiento experto de que el

talento natural no cuenta más que el esfuerzo; puedes tener una mínima cantidad de

habilidad natural para iniciar en un deporte o profesión. Después de eso, la gente que es

excelente es la que trabaja más duro”.

No tiene mucho sentido la práctica deliberada en algo ya eres un experto. La práctica deliberada
significa practicar algo en lo que no eres bueno.

 Peter: “La clave [para desarrollar experiencia] es la práctica deliberada: no sólo haciéndolo

una y otra vez, pero sí retándote a ti mismo con una tarea que está más allá de tu capacidad

actual, intentándolo, analizando tu rendimiento mientras y después de hacerlo, y corrigiendo

cualquier error”.

 Mary: “La práctica deliberada no significa hacer algo en lo que ya eres bueno; significa

retarte a ti mismo, haciendo algo en lo que no eres bueno. Esto no es necesariamente

divertido”.

La práctica deliberada es acerca del aprendizaje. Acerca del aprendizaje que te cambia; del
aprendizaje que cambia tu comportamiento. Buena suerte.

http://norvig.com/21-days.html

Traducción: Espartaco Palma

47. Las herramientas Unix son tus amigas.

Autor: Diomidis Spinellis
Si en mi camino al exilio en una isla desierta tuviera que escoger entre un IDE y un conjunto de
herramientas Unix, yo escogería las herramientas Unix sin pensarlo dos veces. Aquí están las
razones por las cuáles deberías dominar las herramientas Unix.

Primero, los IDE se enfocan en lenguajes específicos, mientras las herramientas Unix pueden
trabajar con cualquier cosa que aparezca en modo textual. En los ambientes de desarrollo de
hoy en día, donde los nuevos lenguajes y notaciones florecen cada año, aprender a trabajar de
la forma Unix es una inversión que se pagará con el tiempo una y otra vez.

Además, mientras los IDE ofrecen sólo los comandos que sus desarrolladores concibieron, con
las herramientas Unix puedes realizar cualquier tarea imaginable. Piensa en ello como (los
clásico pre- Biónico) bloques Lego: creas tus propios comandos combinando las pequeñas pero
versátiles herramientas Unix. Por ejemplo, la siguiente secuencia es una implementación
basada en texto del análisis de firmas de Cunningam; una secuencia de cada punto y coma,
llaves y comillas que puede revelar mucho sobre el contenido del archivo:

for i in *.java; do echo -n "$i: " sed 's/[^"{};]//g' $i | tr -d

'\n' echo done

En suma, cada operación del IDE que aprendes es específica a esa tarea; por ejemplo, agregar
un nuevo paso de depuración en la configuración de construcción del proyecto. En contraste,
afilar tus habilidades con las herramientas Unix te hace más efectivo en cualquier tarea. Como
un ejemplo, he empleado la herramienta sed en la secuencia de comandos precedentes para
modificar la construcción de un proyecto para la compilación cruzada en múltiples arquitecturas
de procesador.

Las herramientas Unix fueron desarrolladas en una época en la que una computadora
multiusuario tenía 128kB de RAM. El ingenio que tuvo su diseño significa que en estos días
pueden manejar enormes conjuntos de datos con extremada eficiencia. La mayoría de las
herramientas trabajan como filtros, procesando sólo una línea a la vez, significando que no hay
límite superior en la cantidad de datos que pueden manejar. ¿Quieres buscar un número de
ediciones almacenadas en medio terabyte del respaldo de la Wikipedia en inglés? La simple
invocación de

grep '<revision>' | wc –l

te dará la respuesta sin siquiera sudar. Si encuentras una secuencia de comandos útil, puedes
empacarla fácilmente en un script de shell, usando algunos poderosos constructos de
programación, tales como hacer piping de datos en ciclos y condicionales. Más impresionante
aún, los comandos Unix ejecutados como pipelines, como el arriba descrito, distribuirá su carga
con naturalidad a través de las muchas unidades de procesamiento de los CPU multi-core
modernos.

Su génesis en “pequeño es bello” y las implementaciones de software libre de las herramientas
Unix las hacen disponibles ubicuamente, incluso en plataformas de recursos restringidos, como
mi reproductor multimedia de la sala o el router DSL. Es poco probable que tales dispositivos
ofrezcan una poderosa interface gráfica, pero frecuentemente incluyen la aplicación BusyBox,

http://97cosas.com/programador/herramientas-unix-amigas.html

la cual provee la mayoría de las herramientas comúnmente usadas. Y si estás desarrollando en
Windows, el ambiente cygwin te ofrece todas las herramientas Unix imaginables, en forma de
ejecutable y código fuente.

Por último, si ninguna de las herramientas disponibles se adecua a tus necesidades, es muy
fácil extender el mundo de las herramientas Unix. Sólo escribe un programa (en cualquier
lenguaje que elijas) que juegue con unas pocas y sencillas reglas: tu programa debe realizar
sólo una tarea sencilla; debe leer datos como líneas de texto de su entrada estándar y debe
mostrar los resultados sin adornos, encabezados ni otros ruidos en su salida estándar. Los
parámetros que afectan la operación de la herramienta se dan en la línea de comandos. Sigue
estas reglas y “tuya será la Tierra y todo lo que hay en ella”.

Traducción: Espartaco Palma

48. Implementa rápido y con frecuencia.

Autor: Steve Berczuk
Depurar el proceso de implementación e instalación suele posponerse hasta que se acerca el
final del proyecto. En algunos proyectos, la escritura de herramientas de instalación es delegada
a un ingeniero de entrega, quien asume la tarea como un “mal necesario”. Las revisiones y
demostraciones son realizadas a partir de un ambiente hecho a mano para asegurarse de que
todo funciona. El resultado es que el equipo no obtiene la experiencia en el proceso de
implementación o sobre el ambiente de implementación hasta que quizás es demasiado tarde
para hacer los cambios.

El proceso de instalación/implementación es lo primero que ve el cliente, y un proceso simple
de instalación/implementación es el primer paso para tener un ambiente de producción fiable
(o, al menos, fácil de depurar). El software implementado es lo que el cliente usará. El no
garantizar que la implementación configura la aplicación correctamente hará que el cliente tenga
preguntas antes de que use tu software exhaustivamente.

Iniciar tu proyecto con un proceso de instalación te dará tiempo para evolucionar el proceso
conforme se vaya moviendo en el ciclo de desarrollo del producto y la posibilidad para realizar
cambios al código de la aplicación para que la instalación sea más fácil. Ejecutar y probar el
proceso de instalación en un ambiente limpio periódicamente también provee un chequeo en el
que no tendrás suposiciones en el código que se base en los ambientes de desarrollo o de
prueba.

Poner la implementación al último significa que el proceso de implementación puede necesitar
ser más complicado para evitar las suposiciones en el código. Lo que parece una buena idea
en un IDE, en el cual tienes el control total de un entorno, puede hacer que un proceso de
implementación sea mucho más complicado. Es mejor saber todas las ventajas y desventajas
más temprano que tarde.

A pesar de que “ser capaz de implementar” desde el principio, no parece tener mucho más valor
de negocio comparado con ver una aplicación ejecutándose en la computadora portátil del
desarrollador, la verdad es que mientras no puedas demostrar tu aplicación en entorno final
habrá un montón de trabajo que hacer antes de que puedas ofrecer un valor empresarial. Si el
fundamento de poner en marcha el proceso de implementación es que es algo trivial, entonces
hazlo de todos modos, ya que es a bajo costo. Si es demasiado complicado, o si hay
demasiadas incertidumbres, haz lo que harías con el código de una aplicación: experimenta,
evalúa y refactoriza el proceso de implementación conforme avances.

http://97cosas.com/programador/implementa-rapido-y-con-frecuencia.html

El proceso de instalación/implementación es esencial para la productividad de los clientes o de
su equipo de servicio profesionales, por lo que deberías hacer pruebas y refactorizar este
proceso sobre la marcha. Probamos y refactorizamos el código fuente de todo el proyecto. La
implementación no se merece menos.

Traducción: Espartaco Palma

49. Inicia con un Sí.

Autor: Alex Miller
Recientemente fui a la tienda buscando arriba y abajo “edaname” (el cuál sólo sabía vagamente
que era algún tipo de vegetal). No estaba seguro si era algo que podría encontrar en la sección
de vegetales, la sección de congelados o en enlatados. Me rendí y busqué a una empleada para
que me ayudara. ¡Ella tampoco sabía!

La empleada pudo haber respondido de muchas maneras distintas. Pudo haberme hecho sentir
ignorante por no saber dónde buscar, darme vagas posibilidades o simplemente decirme que
no lo tenían. Pero en vez de ello, usó el pedido como una oportunidad de encontrar una solución
y ayudar al cliente. Llamó a otro empleado y en minutos me habían guiado al artículo deseado,
ubicado en la sección de congelados.

La empleada en este caso miró en un pedido e inició con la premisa de que debería resolver el
problema y satisfacer la petición. Inició con un sí, en vez de empezar con un no.

La primera vez que fui colocado en un rol de líder técnico, sentí que mi trabajo era proteger mi
precioso software del ridículo flujo de demandas de los gestores de producto y analistas de
negocio. Iniciaba muchas conversaciones viendo un pedido como algo que tenía que vencer,
no algo que debía conceder.

En cierto punto, tuve una epifanía: quizás había una manera distinta de trabajar al cambiar mi
perspectiva de iniciar con un no, iniciando con un sí. De hecho, he empezado a creer que iniciar
con un sí es parte esencial de ser un líder tecnológico.

Este simple cambio radical alteró el cómo abordé mi trabajo. Como resultado, hay un montón
de maneras de decir sí. Cuando alguien te dice: “Hey, esta aplicación sería mejor si hacemos
todas las ventanas redondeadas y traslúcidas”, puedes rechazarlo por ridículo. Pero
frecuentemente es mejor iniciar con un “¿por qué?”. En primer lugar, usualmente existe una
actual e irresistible razón de por qué esa persona está pidiendo ventanas redondeadas y
traslúcidas. Por ejemplo, quizás ustedes están a punto de firmar con un nuevo cliente muy
grande con un comité de estándares que obliga a tener ventanas redondeadas y traslúcidas.

Constantemente encontrarás que cuando sabes el contexto de la petición, se abren nuevas
posibilidades. Es común para la petición estar cumpliendo con el producto existente en alguna
otra forma que permita decir sí sin trabajar: “De hecho, en las preferencias de usuario puedes
descargar las cubiertas con ventanas traslúcidas y activarlas”.

Algunas veces la otra persona simplemente no tendrá idea que lo encuentras incompatible con
tu visión del producto. Me parece que es generalmente útil revertir ese “¿por qué?” hacia ti.
Algunas veces el acto de expresar la razón hará más claro que tu primera reacción no tiene
sentido. De lo contrario, quizá necesites elevarlo a un nivel superior de tomadores de decisiones.
Recuerda, la meta de todo esto es decir sí a la otra persona e intentar hacerlo funcionar, no sólo
por él, sino también por ti y tu equipo.

http://97cosas.com/programador/inicia-con-un-si.html

Si puedes expresar una irresistible explicación de por qué esa característica es incompatible
con el producto existente, entonces es probable tener una conversación productiva sobre si
están construyendo el producto correcto. Sin importar cómo concluya esa conversación, todos
se enfocarán más en qué es el producto y qué no lo es.

Iniciar con un sí significa trabajar con tus colegas, no contra ellos.

Traducción: Espartaco Palma

50. Instalame.

Autor: Marcus Baker
No tengo el menor interés en tu programa.

Estoy rodeado de problemas y tengo una lista de cosas por hacer tan larga como mi brazo. La
única razón por la que estoy en tu sitio web ahora mismo es porque he oído un poco probable
rumor de que cada uno de mis problemas será eliminado por tu software. Perdóname si soy
escéptico.

Si los estudios de seguimiento del globo ocular son correctos, ya he leído el título y estoy
buscando un texto subrayado con color azul marcado como “descargar ahora”. Como anotación
al margen, si llegué a esta página con un navegador de Linux con una IP del Reino Unido, es
probable que me gustaría una versión Linux desde un espejo en Europa, así que por favor no
preguntes. Asumiendo que el diálogo de archivo se abre directamente, llevo la cosa a mi carpeta
de descargas y sigo leyendo.

Todos nosotros realizamos constantemente análisis de costo-beneficio de lo que hacemos. Si
tu proyecto cae debajo de mi umbral por un segundo, me desharé de él e iré a otra cosa. La
gratificación instantánea es mejor.

El primer obstáculo es instalar. ¿No crees que sea mucho problema? Ahora ve a tu carpeta de
descargas y mira alrededor. ¿Lleno de archivos .tar y .zip, verdad? ¿Qué porcentaje de esos
han sido desempacados? ¿Cuántos has instalado? Si eres como yo, sólo un tercio está
haciendo algo más que actuar como relleno en el disco duro.

Podría querer conveniencia a la puerta, pero no quiero que entres a mi casa sin invitación. Antes
de escribir install querría saber exactamente dónde estás poniendo cosas. Es mi computadora
y quiero mantenerla ordenada cuando pueda. También quiero ser capaz de eliminar tu programa
al instante en el que me desencante de él. Si sospecho que eso es imposible no lo instalaré en
primer lugar. Mi máquina es estable ahora y quiero que siga así.

Si tu programa se basa en GUI entonces quiero hacer algo simple y ver un resultado.
Los Asistentes no ayudan, porque ellos hacen cosas que no entiendo. Hay probabilidad de que
quiera leer o escribir un archivo. No quiero crear proyectos, importar directorios o decirte mi
correo electrónico. Si todo está funcionando, ir al tutorial

Si tu software es una biblioteca, entonces seguiré leyendo tu página web buscando una guía
rápida de inicio. Quiero el equivalente de un “hola, mundo” en cinco líneas sin mucho pensar
con la salida descrita por tu sitio web. No quiero llenar un gran archivo XML o plantillas, sólo un
script. Recuerda, también he descargado tu framework rival. Ya sabes, ¿el que siempre clama
ser mucho mejor que el tuyo en los foros? Si todo está trabajando, al tutorial.

Hay un tutorial, ¿no? ¿Uno que me habla en un lenguaje que pueda entender?

http://97cosas.com/programador/instalame.html

Y si el tutorial menciona mi problema, me animaré. Ahora estoy leyendo sobre las cosas que
puede hacer para que comience a ponerse interesante, incluso divertido. Me reclinaré y tomaré
mi té –¿mencioné que soy del Reino Unido?– y jugaré con tus ejemplos y aprenderé a usar tu
creación. Si resuelve mi problema, te enviaré un correo de agradecimiento. Enviaré reportes de
error cuando colapse y sugerencias de características también. Incluso le diré a todos mis
amigos que es mejor tu software, aunque nunca probé el de tu rival. Y todo porque cuidaste mis
primeros pasos tentativos.

¿Cómo pude haber dudado de ti?

Traducción: Espartaco Palma

51. Haz las Interfaces fáciles de usar correctamente y difíciles de usar
incorrectamente.

Autor: Scott Meyers
Una de las tareas más comunes en el desarrollo de software es la especificación de la interfaz.
Las interfaces ocurren al más alto nivel de abstracción (interfaces de usuario), en la más baja
(interfaces de función) y en los niveles intermedios (interfaces de clases, de bibliotecas,
etcétera). Independientemente de que estés trabajando con el usuario final para especificar
cómo estará interactuando con un sistema, colaborando con desarrolladores para especificar
un API o declarando funciones privadas para una clase, el diseño de interfaz es una parte
importante de tu trabajo. Si lo haces bien, será un placer usar tus interfaces y aumentará la
productividad de los demás. Si lo haces pobremente, tus interfaces serán la fuente de
frustraciones y errores.

Las buenas interfaces son:

 Fáciles de usar correctamente. La gente que usa una interfaz bien diseñada casi siempre

usa la interfaz correctamente, porque es la ruta de menor resistencia. En una Interfaz

Gráfica de Usuario (GUI) siempre hacen clic en el ícono, botón o entrada de menú correcta,

debido a que es obvio y algo fácil de hacer. En una API casi siempre pasan los parámetros

correctos con el valor correcto, debido a que es la manera más natural. Con interfaces que

son fáciles de usar correctamente, la cosas funcionan.

 Difíciles de usar incorrectamente. Las buenas interfaces se anticipan a los errores que la

gente comete y hace que sea difícil –idealmente imposible– realizarlos. Una GUI debería

deshabilitar o remover comandos que no tengan sentido en el contexto actual, por ejemplo,

o una API debería eliminar la secuencia de argumentos al permitir que los parámetros sean

pasados en cualquier orden.

Una buena manera de diseñar interfaces que son fáciles de usar correctamente es hacer
ejercicios antes de que existan. Simula una GUI –en un pizarrón o usando fichas en una mesa–
y juega con ellos antes de que cualquier código haya sido creado. Escribe llamadas a la API
antes de que las funciones hayan sido declaradas. Revisa los casos de uso comunes y
especifica cómo quieres que se comporten las interfaces. ¿En qué quieres que puedan hacer
clic? ¿Qué quieres pasarle? Las interfaces fáciles de usar parecen naturales, debido a que te
dejan hacer lo que quieres hacer. Es más frecuente dar con esas interfaces si las desarrollas

http://97cosas.com/programador/interfaces-faciles-usar.html
http://97cosas.com/programador/interfaces-faciles-usar.html

desde el punto de vista de los usuarios (esta perspectiva es una de las fortalezas de la
programación test-first).

Hacer las interfaces difíciles de usar incorrectamente requiere dos cosas. Primero, debes
anticiparte a los errores que los usuarios podrían hacer y encontrar la manera de prevenirlos.
Segundo, debes observar cómo una interfaz es usada erróneamente durante las primeras
liberaciones y modifica la interfaz –¡sí, modificar la interfaz!– para prevenir tales errores. La
mejor manera de prevenir el uso incorrecto es hacer tal uso imposible. Si los usuarios siguen
queriendo hacer un “deshacer” en una acción irrevocable, intenta hacer la acción revocable. Si
ellos siguen pasando un valor erróneo a la API, mejor modifica la API para tomar los valores
que el usuario quiere pasar.

Sobre todo, recuerda que las interfaces existen para la conveniencia de sus usuarios, no la de
sus implementadores.

Traducción: Espartaco Palma

52. La comunicación entre procesos afecta el tiempo de respuesta de la
aplicación.

Autor: Randy Stafford
El tiempo de respuesta es crítico en la usabilidad del software. Pocas cosas son tan frustrantes
como esperar a que responda algún sistema de software, especialmente cuando nuestra
interacción involucra ciclos repetidos de estímulos y respuestas. Nos sentimos como si el
software estuviera desperdiciando nuestro tiempo y afectando nuestra productividad. Sin
embargo, las causas del pobre tiempo de respuesta son poco apreciadas, especialmente en las
aplicaciones modernas. Mucha literatura de administración de rendimiento aún se enfoca en
estructuras de datos y algoritmos, temas que pueden hacer una diferencia en algunos casos,
pero que son mucho menos propensos a dominar el rendimiento en las modernas aplicaciones
empresariales multicapa.

Cuando el rendimiento es un problema en tales aplicaciones, mi experiencia ha sido que
examinar estructuras de datos y algoritmos no es el lugar adecuado para buscar mejoras. Los
tiempo de respuesta dependen más del número de comunicaciones remotas entre procesos
(IPC, inter- process communications) conducidas en respuesta a un estímulo. Aunque puede
haber otros cuellos de botella locales, el número de IPC remotas domina usualmente. Cada IPC
remota contribuye a latencia no-despreciable para el tiempo de respuesta global, y estas
contribuciones remotas se suman, especialmente cuando incurren en secuencia.

Un buen ejemplo es la carga ondular en una aplicación usando mapeo objeto-relación
(ORM, object-relational mapping). La carga ondular describe la ejecución secuencial de muchas
llamadas a la base de datos para seleccionar los datos necesarios para construir un objeto
gráfico (vea: “Lazy Load”, del libro de Martin Fowler: Patterns of Enterprise Application
Architecture). Cuando el cliente de la base de datos es un servidor de aplicaciones de capa
intermedia renderizando una página web, estas llamadas a la base de datos son ejecutadas
usualmente en secuencia en un solo hilo. Sus latencias individuales se acumulan, lo que
contribuye al tiempo de respuesta global. Incluso si cada llamada a la base de datos toma sólo
10 minutos, una página que requiera mil llamadas (que no es poco común) exhibirá al menos
un tiempo de respuesta de 10 segundos. Otros ejemplos incluyen la invocación de servicios
web, respuestas HTTP desde un navegador web, invocación de objetos distribuidos, mensajería
de petición-respuesta (reply-request) e interacción con redes de datos en protocolos de red

http://97cosas.com/programador/ipc-afecta.html
http://97cosas.com/programador/ipc-afecta.html

personalizados. Entre más IPC remotas se necesiten para responder a un estímulo, mayor será
el tiempo de respuesta.

Hay algunas estrategias relativamente obvias y bien conocidas para reducir el número de IPC
remotas por estímulo. Una estrategia es aplicar el principio de parsimonia, optimizando la
interfaz entre procesos, así el número exacto de datos para el propósito a mano es
intercambiado con la mínima cantidad de interacciones. Otra estrategia es paralelizar las IPC
donde sea posible, así el tiempo de respuesta global es llevado principalmente por la latencia
de IPC más larga. Una tercera estrategia es almacenar en caché los resultados de IPC previos,
así los futuros IPC pueden ser evitados al usar caché local en su lugar.

Cuando estés diseñando una aplicación, ten en cuenta el número de IPC en respuesta a cada
estímulo. Al analizar aplicaciones que sufren de un rendimiento pobre, a menudo me he
encontrado radios de IPC-estímulo de miles a 1. La reducción de este radio, ya sea mediante
caché, paralelizando o alguna otra técnica, vale mucho más la pena que cambiar la selección
de estructuras de datos o ajustar un algoritmo de ordenamiento.

Traducción: Espartaco Palma

53. Lee el código.

Autor: Karianne Berg
Nosotros, los programadores, somos criaturas raras. Amamos escribir código. Pero cuando toca
leerlo usualmente nos asustamos. Después de todo, escribir código es más divertido y leerlo es
difícil, algunas veces casi imposible. Leer el código de otras personas es particularmente difícil.
No porque el código de las demás personas sea malo, sino porque piensan y solucionan
problemas de una manera diferente a la tuya. ¿Alguna vez consideraste que leer el código de
alguien más podría mejorar el tuyo?

La próxima vez que leas algún código, detente y piensa un momento. ¿El código es fácil o difícil
de leer? Si es difícil de leer, ¿por qué lo es? ¿Su formato es pobre? ¿Está nombrado
inconsistente o ilógicamente? ¿Mezcla muchas preocupaciones en la misma pieza de código?
¿Quizá la elección del lenguaje impide que el código sea legible? Trata de aprender de los
errores de la gente, así tu código no contendrá los mismos. Puedes recibir unas cuantas
sorpresas. Por ejemplo, las técnicas de ruptura de dependencias puede ser buenas para bajos
acoplamientos, pero a veces puede hacer que el código sea difícil de leer. Lo que algunas
personas llaman código elegante, otros lo llaman ilegible.

Si el código es fácil de leer, detente para ver si hay algo útil que puedas aprender. Quizás hay
un patrón de diseño en uso que no conocías o que habías luchado para poder implementar. Tal
vez los métodos son más cortos y sus nombres más expresivos que los tuyos. Algunos
proyectos de código abierto están llenos de buenos ejemplos de cómo escribir código brillante
y legible, ¡mientras otros sirven de ejemplo de todo lo contrario! Revisa un poco de su código y
da un vistazo.

Leer código antiguo de algún proyecto que no estás trabajando actualmente también puede ser
una experiencia enriquecedora. Inicia con algunos de tus más viejos programas y avanza hacia
el código presente. Probablemente encontrarás que no es del todo fácil leerlo como cuando lo
escribiste. Tu código de un principio podría también tener un cierto valor de entretenimiento
embarazoso, como cuando se te recuerdan todas las cosas que dijiste mientras estabas
bebiendo en la cantina la noche anterior. Mirar cómo has desarrollado tus habilidades a lo largo
de los años puede ser realmente motivador. Observa qué áreas del código son difíciles de leer
y considera si todavía estás escribiendo código del mismo modo hoy en día.

https://es.wikipedia.org/wiki/Navaja_de_Ockham
http://97cosas.com/programador/lee-el-codigo.html

Así que la próxima vez que sientas la necesidad de mejorar tus habilidades de programación,
no leas otro libro. Lee el código.

Traducción: Espartaco Palma

54. Lee las humanidades.

Autor: Keith Braithwaite
En todo y hasta en el proyecto más pequeño de desarrollo, las personas trabajan con personas.
En todos y hasta en el campo más abstracto de investigación, las personas escriben software
para las personas a las que ayudan en alguna de sus metas. La gente escribe software con
gente para la gente. Es un negocio de personas. Desafortunadamente, lo que se enseña a
programadores, a menudo, los equipa muy mal para hacer frente a las personas con las que
trabajan. Afortunadamente hay un completo campo de estudio que puede ayudar.

Por ejemplo, Ludwig Wittgenstein plantea un buen caso en “Philosophical Investigations” (y
donde sea): cualquier lenguaje que usamos para hablarnos no es, no puede ser, una formato
de serialización para llevar un pensamiento o idea o imagen de la cabeza de una persona a
otra. Ya deberíamos estar en guardia en contra del malentendido cuando “obtenemos
requerimientos”. Wittgenstein también muestra que nuestra habilidad para entendernos del todo
no surge de definiciones compartidas, surge de una experiencia compartida, de una forma de
vida. Esto puede ser una razón por la cuál los programadores que están inmersos en su dominio
del problema tienden a hacerlo mejor que aquellos que están fuera de ello.

Lakoff y Johnson nos presentan un catálogo de “Metáforas por la que vivimos”, sugiriendo que
el lenguaje es ampliamente metafórico, y que esas metáforas ofrecen una percepción de cómo
podemos entender el mundo. Incluso los términos aparentemente concretos, como “flujo de
efectivo”, que podríamos encontrar en una plática sobre el sistema de finanzas, pueden ser
vistos como metafóricos: “el dinero es un fluido”. ¿Cómo se hace que la metáfora influya en la
forma en que pensamos sobre los sistemas que manejan dinero? O podríamos hablar acerca
de capas en una pila de protocolos, como algunos de alto nivel y otros de bajo nivel. Algo
poderosamente metafórico: el usuario está “arriba” y la tecnología está “caída”. Esto expone
nuestro pensamiento acerca de la estructura de los sistemas que construimos. Esto puede
también marcar un flojo hábito de pensamiento del que nosotros deberíamos beneficiarnos de
vez en cuando.

Martin Heidegger estudió de cerca la manera en que la gente experimenta herramientas. Los
programadores construyen y usan herramientas, pensamos en ello y creamos, modificamos y
recreamos la herramienta. Las herramientas son objeto de interés para nosotros. Pero para sus
usuarios, como Heidegger muestra en “Being and Time”, una herramienta se convierte en una
cosa invisible entendida sólo en su uso. Para los usuarios las herramientas sólo se convierten
en objetos de interés cuando no funcionan. Esta diferencia en énfasis es útil para tomar en
cuenta cuando la usabilidad está a discusión.

Eleanor Rosch anuló el modelo aristotélico de las categorías en las que organizamos nuestra
comprensión del mundo. Cuando los programadores preguntan a los usuarios sobre su deseos
para con un sistema, ellos tienden a preguntar las definiciones a través de predicados. Esto es
muy conveniente para nosotros. Los términos en predicado pueden ser convertidos fácilmente
en atributos de una clase o columnas en una table. Este tipo de categorías son difíciles de
entender, disjuntas y ordenas. Desafortunadamente, tal y como Rosh mostró en “Natural
Categories” y trabajos posteriores, la gente no entiende el mundo, en general, de esta forma.
Ellos lo entienden en formas basadas en ejemplos. Algunos ejemplos, como los tan llamados

http://97cosas.com/programador/lee-humanidades.html
https://en.wikipedia.org/wiki/Ludwig_Wittgenstein
https://en.wikipedia.org/wiki/Martin_Heidegger
https://en.wikipedia.org/wiki/Eleanor_Rosch

prototipos, son mejores que otros y, por lo tanto, las categorías resultantes son difusas, se
superponen y pueden tener una rica estructura interna. Mientras sigamos insistiendo en
respuestas Aristotélicas seremos incapaces de preguntar a los usuarios las preguntas correctas
sobre su mundo, y estaremos luchando por llegar al común entendimiento que necesitamos.

Traducción: Espartaco Palma

55. El linker no es un programa mágico.

Autor: Walter Bright
Con una frecuencia depresiva (me sucedió otra vez justo antes de escribir esto), la visión que
tienen muchos programadores sobre el proceso de pasar de código fuente a un ejecutable
estáticamente enlazado en un lenguaje compilado es:

1. Editar código fuente

2. Compilar el código fuente en archivos objeto

3. Algo mágico sucede

4. Ejecutar ejecutable

El paso 3 es, por supuesto, el paso de enlazado. ¿Por qué diría una cosa tan atroz? He estado
en soporte técnico por décadas, y tengo las siguientes preguntas una y otra vez:

1. El linker dice “def está definido más de una vez”.

2. El linker dice “abc es un símbolo sin resolver

3. ¿Por qué el ejecutable es tan grande?

Seguido de “¿ahora qué hago?”, usualmente mezclado junto con las frases “parece que” y “de
alguna manera”, y un aura de total desconcierto. Son los “parece que” y “de alguna manera” los
que indican que el proceso de enlace es visto como un proceso mágico, presumiblemente
entendible sólo por magos y brujos. El proceso de compilado no provoca este tipo de frases,
implicando que los programadores generalmente entienden cómo funcionan los compiladores
o, al menos, qué hacen.

Un linker es un programa muy estúpido, ordinario y directo. Todo lo que hace es concatenar el
código y las secciones de datos de los archivos objeto, conectar las referencias a los símbolos
con sus definiciones, empujar símbolos sin resolver fuera de la biblioteca y escribir un
ejecutable. Eso es todo. ¡Sin hechizos! ¡Sin magia! Lo tedioso de escribir un linker es
usualmente decodificar y generar formatos de archivo ridículamente complicados, pero eso no
cambia la esencia natural de un linker.

Digamos que el linker está diciendo “def está definido más de una vez”. Muchos lenguajes de
programación, tales como C, C++, y D, tienen ambos, declaraciones y definiciones. Las
declaraciones normalmente van en archivos de encabezados, tales como:

extern int iii;

lo cual genera una referencia externa al símbolo iii . Una definición, por otro lado, en realidad

establece el almacenamiento para el símbolo, usualmente aparece en el archivo de
implementación, y luce así:

http://97cosas.com/programador/linker-no-magico.html

int iii = 3;

¿Cuántas definiciones puede haber por cada símbolo? Como en la película Highlander, sólo

puede haber una. Así que, ¿qué tal si una definición de iii aparece en más de un archivo de

implementación?

// Archivo a.c

int iii = 3;

// Archivo b.c

double iii(int x) { return 3.7; }

El linker se quejará porque iii está siendo definido varias veces.

No sólo puede haber uno, debe haber uno. Si iii sólo aparece como una declaración, pero

nunca en una definición, el linkers se quejará sobre iii por ser un símbolo no resuelto.

Para determinar por qué un ejecutable es del tamaño que es, dale un vistazo al archivo de mapa
que los linkers generan opcionalmente. Un archivo de mapa es una lista de todos los símbolos
en el ejecutable junto con sus direcciones. Te dice qué módulos fueron enlazados desde la
biblioteca y el tamaño de cada módulo. Ahora puedes ver de dónde viene tanta hinchazón.
Frecuentemente habrá módulos de biblioteca que no tendrás idea por qué fueron enlazados.
Para saberlo, quita temporalmente el módulo sospechoso de la biblioteca y vuelve a enlazar. El
error de “símbolo no definido” generado indicará quién está referenciando ese módulo.

Aunque no siempre es obvio por qué aparece un mensaje del linker en particular, no hay nada
mágico sobre los linkers. La mecánica es directa: son los detalles lo que tienes que averiguar
en cada caso.

Traducción: Espartaco Palma

56. La longevidad de las soluciones provisionales.

Autor: Klaus Marquardt
¿Por qué creamos soluciones provisionales?

Típicamente hay algún problema inmediato que resolver. Puede ser provisional para el equipo
de desarrollo, algunas herramientas que llenan un vacío en la cadena de herramientas. Puede
ser externo, visible al usuario final, como un solución que aborda la funcionalidad faltante.

En muchos sistemas y equipos encontrarás algún software que está algo desintegrado del
sistema, que es considerado un borrador para ser cambiado en algún momento, que no sigue
el estándar y las guías que dan forma al resto del código. Inevitablemente oirás a
desarrolladores quejándose sobre esto. Las razones para su creación son muchas y variadas,
pero la clave para el éxito de una solución provisional es simple: es útil.

Las soluciones interinas, sin embargo, adquieren inercia (o momentum, dependiendo de tu
punto de vista) debido a que están ahí, útiles y ampliamente aceptadas, no hay necesidad
inmediata para hacer algo más. Sin embargo, cuando la parte interesada tiene que decidir qué

http://97cosas.com/programador/longevidad-soluciones-provisionales.html

acción agrega más valor, habrá muchos cosas que ranqueen más algo que la instalación
apropiada de una solución provisional. ¿Por qué? Porque está ahí, funciona y es aceptada. El
único lado malo perceptible es que no sigue los estándares seleccionados y directrices elegidas,
excepto en un pequeño nicho del mercado, esto no es considerado como una fuerza
significativa.

Así que la solución provisional se mantiene en su lugar. Por siempre.

Y si un problema surge con esa solución provisional, es poco probable que se provea una
actualización que esté en línea con la calidad de producción aceptable. ¿Qué hacer? Una rápida
actualización en esa solución provisional a menudo hace el trabajo. Y será más común que sea
bien recibida. Exhibe las mismas fortalezas que la solución provisional inicial… Sólo está más
actualizada.

¿Es esto un problema?

La respuesta depende de tu proyecto, y de su interés personal en las normas del código de
producción. Cuando los sistemas contienen muchas soluciones provisionales, su entropía o
complejidad interna crece y su mantenibilidad disminuye. Sin embargo, quizás de inicio nuestra
pregunta sea la equivocada. Recuerda que estamos hablando sobre una solución. Podría no
ser tu solución preferida –es poco probable que sea la solución preferida de alguien–, pero es
débil la motivación para rehacer esta solución.

¿Qué podríamos hacer si vemos un problema??

1. Evitar crear una solución provisional en primer lugar.

2. Cambiar las fuerzas que influencian la decisión del Administrador de Proyecto.

3. Dejarlo como está.

Vamos a examinar estas opciones más de cerca.

1. Eludir no funciona en la mayoría de los casos. Hay un problema a resolver y los estándares

pasan a ser muy restrictivos. Puedes gastar energía para cambiar los estándares. Una

honorable aunque tediosa tarea… y ese cambio no será efectivo a tiempo para el problema

actual.

2. Las fuerzas están arraigadas en la cultura del proyecto, la cuál se resiste a cambios

voluntarios. Podría tener éxito en proyectos pequeños –especialmente si sólo eres tú– y

acabas de limpiar el desorden sin preguntar antes. También podría tener éxito si el proyecto

es tan confuso que se ha estancado visiblemente y tomarse algún tiempo para la limpieza

suele ser aceptado.

3. El estatus quo automáticamente aplica si la opción no lo hace.

Crearás muchas soluciones, algunas serán provisionales, muchas serán útiles. La mejor manera
de superar las soluciones provisionales es hacerlas superfluas, proveer una más elegante y útil
solución. Podrías recibir la serenidad de aceptar las cosas que no puedes cambiar, coraje para
cambiar las cosas que puedes y sabiduría para saber la diferencia.

Traducción: Espartaco Palma

57. Mantén limpia la compilación.

http://97cosas.com/programador/manten-limpia-compilacion.html

Autor: Johannes Brodwall
¿Alguna vez has visto una lista de advertencias de compilación del largo de un ensayo sobre
mala codificación y pensado: “debería hacer algo al respecto, pero ahora no tengo tiempo”? Por
otro lado, ¿alguna vez has visto esa solitaria advertencia que acaba de aparecer en una
compilación y simplemente la arreglaste?

Cuando inicio un nuevo proyecto desde cero no hay advertencias, no hay desorden, no hay
problemas. Pero conforme crece la base de código, si no pongo atención, el desorden, las
costras, las advertencias y los problemas pueden empezar a apilarse. Cuando hay mucho ruido,
es más difícil encontrar la advertencia que realmente quiero leer entre los cientos de
advertencias que no me importan.

Para hacer las advertencias útiles de nuevo, trato de usar una política de tolerancia cero a
advertencias desde la compilación. Incluso si la advertencia no es importante, le hago frente. Si
no es crítica, pero aún relevante, la arreglo. Si el compilador advierte sobre una potencial
excepción de puntero nulo, arreglo la causa, incluso si “sé” que el problema nunca se presentará
en producción. Si la documentación embebida (Javadoc o similar) hace referencia a parámetros
que han sido quitados o renombrados, limpio la documentación.

Si es algo que realmente no me importa, pregunto al equipo si podemos cambiar nuestra política
de advertencias. Por ejemplo, encontré que documentando los parámetros y un valor de retorno
de un método en muchos casos no agrega ningún valor, así que no debería ser una advertencia
si faltan. O al actualizar una nueva versión del lenguaje de programación el código que
anteriormente estaba bien ahora emita advertencias. Por ejemplo, cuando Java 5

introdujo generics todo el código antiguo que no especificaba el parámetro de tipo generic nos

daba una advertencia. Éste es el tipo de advertencias por las que no quiero ser molestado (al
menos, todavía no). Tener un conjunto de advertencias que está fuera del camino de la realidad
no le sirve a nadie.

Al asegurarme de que la compilación está siempre limpia no tendré que decidir si una
advertencia es irrelevante cada vez que me la encuentro. Ignorar cosas es un trabajo mental y
necesito deshacerme de todo el trabajo mental innecesario que pueda. Tener una compilación
limpia también hace fácil para alguien más hacerse cargo de mi trabajo. Si dejo las advertencias,
alguien más tendrá que encontrar qué es relevante y qué no lo es. O simplemente ignorar todas
las advertencias, incluyendo las importantes.

Las advertencias de tu compilador son útiles. Sólo necesitas deshacerte del ruido para empezar
a notarlas. No esperes hacer esa “gran limpieza”. Cuando alguna aparece y no la quieres ver,
hazle frente de inmediato. También corrige la fuente de la advertencia, suprime esa advertencia
o corrige las políticas de advertencia de tu herramienta. Mantener limpia la compilación no se
trata sólo de mantenerla limpia de errores de compilación o fallos de pruebas: las advertencias
son también una parte importante y fundamental de la higiene del código.

Traducción: Espartaco Palma

58. Mejora el código quitándolo.

Autor: Pete Goodliffe
Menos es más. Es una máxima un poco trillada, pero algunas veces es cierto.

http://97cosas.com/programador/mejora-codigo-quitandolo.html

Una de las mejoras que he hecho en nuestro código base en las últimas semanas es eliminar
trozos de él.

Hemos escrito el software siguiendo los principios de XP, incluyendo YAGNI (You Aren’t Gonna
Need It [No vas a necesitarlo]). La naturaleza humana es así, inevitablemente nos quedamos
cortos en unos pocos lugares.

Observé que el producto estaba tomando demasiado tiempo para ejecutar ciertas tareas, tareas
sencillas que deberían ser casi instantáneas. Esto era porque estaban sobreimplementadas;
adornadas con campanas y silbatos adicionales que no eran requeridos, pero que en ese
momento parecían una buena idea.

Simplifiqué el código, mejorando el rendimiento del producto y reduciendo el nivel de entropía
global del código al quitar las características infractoras del código base. Afortunadamente, mis
Pruebas Unitarias me dijeron que no había roto nada durante la operación.

Una experiencia sencilla y completamente satisfactoria.

Así que ¿por qué terminó ahí ese código innecesario? ¿Por qué un programador sintió la
necesidad de escribir código adicional y cómo pasó la última revisión o el proceso entre pares?
Es casi seguro que sucedió algo como esto:

 Era un poco de diversión extra y el programador quería escribirlo. (Sugerencia: escribir

código porque agrega valor, no porque te divierte).

 Alguien pensó que podría ser necesario en el futuro, así que sintió que era mejor escribirlo

ahora. (Sugerencia: esto no es YAGNI. Si no lo necesitas en este momento, no lo escribas

ahora mismo).

 No parecía ser un gran “extra”, así que era más fácil implementarlo en vez de regresar con

el cliente para ver si era requerido. (Sugerencia: siempre toma más tiempo escribir y

mantener código adicional. Y el cliente siempre está disponible. Una partecita extra de

código se vuelve una bola de nieve en descenso con el paso del tiempo, convirtiéndose en

una gran parte de trabajo que necesita ser mantenido).

 El programador inventó requisitos adicionales que no fueron documentados, ni discutidos

para justificar la función adicional. El requerimiento era en realidad falso. (Sugerencia: los

programadores no establecen los requerimientos del sistema; el cliente sí).

¿En qué trabajas ahora mismo? ¿Es todo necesario?

Traducción: Espartaco Palma

59. Mensaje al futuro.

Autor: Linda Rising
Quizás sea porque la mayoría de ellos son personas inteligentes, pero en todos estos años he
enseñado y trabajado codo a codo con programadores, parece que muchos piensan que debido
a que los problemas con que estuvieron luchando eran difíciles, entonces las soluciones deben
ser difíciles de entender y mantener para todos (quizás incluso para ellos mismos unos cuantos
meses después de que el código haya sido escrito

http://97cosas.com/programador/mensaje-al-futuro.html

Recuerdo un incidente con Joe, un estudiante en mi clase de estructuras de datos, quien había
venido a mostrarme lo que él había escrito.

—¡Te apuesto que no puedes adivinar qué hace! —gritó. —Estás en lo correcto —estuve de
acuerdo, sin gastar mucho tiempo en su ejemplo e imaginándome cómo conseguir un importante
mensaje de esto—. Estoy segura de que has estado trabajando duro en esto. Me imagino, sin
embargo, que no has olvidado nada importante. Dime, Joe, ¿tienes un hermano menor? —Sí.
¡Claro que sí! ¡Phil! Él está en tu clase de introducción. ¡Está aprendiendo a programar también!
—anunció Joe orgullosamente. —Eso está muy bien —repliqué—. Me imagino que él pudo leer
este código. —¡De ninguna manera! —dijo Joe—. ¡Esto es algo difícil! —Sólo supón —sugerí—
que éste es un código de trabajo real y que en unos pocos años Phil será contratado para hacer
una actualización de mantenimiento. ¿Qué has hecho con él?

Joe me miró parpadeando.

—Sabemos que Phil es realmente inteligente, ¿verdad? —Joe asintió—. Y odio decirlo, pero
¡soy bastante inteligente también! —Joe sonrió—. Así que si no puedo entender fácilmente lo
que has hecho aquí y tu muy inteligente hermano menor probablemente se rompa la cabeza
con esto, ¿qué significa eso de lo que has escrito?

Joe miró su código un poco diferentemente, me pareció.

—¿Qué tal esto? —sugerí con mi mejor voz de “soy tu amigable mentor”—. Piensa en cada
línea de código que has escrito como un mensaje para alguien en el futuro, alguien que podría
ser tu hermano menor. Pretende que estás explicándole a esta persona inteligente cómo
resolver el difícil problema. ¿Es esto lo que te gustaría imaginar? Que un programador
inteligente en el futuro vea tu código y diga: “¡Wow! ¡Esto es genial! Puedo entender
perfectamente qué ha hecho aquí y estoy impresionado, qué elegante, no, espera, qué hermosa
pieza de código es ésta. Voy a mostrárselo a los otros muchachos de mi equipo. ¡Ésta es una
obra maestra!. Joe, ¿crees que podrías escribir un código que resuelva este difícil problema,
pero sea tan bello que cantaría? Sí, igual que una melodía inquietante. Creo que cualquiera que
pueda llegar con la muy difícil solución que tienes aquí también podría escribir algo hermoso.
Hmmm… me pregunto si debería empezar a calificar la belleza. ¿Tú qué crees, Joe?

Joe tomó su trabajo y me miró, una pequeña sonrisa se asomó en su cara.

—Lo entiendo, prof, me retiro a hacer un mundo mejor para Phil. Gracias.

Traducción: Espartaco Palma

60. No sólo aprendas el lenguaje, entiende su cultura.
En preparatoria tuve que aprender un idioma extranjero. En ese momento pensé que siendo
bueno en inglés podría arreglármelas, así que escogí dormir por tres años en las clases de
francés. Unos años más tarde fui a Túnez de vacaciones. El árabe es la lengua oficial ahí y, al
ser una antigua colonia francesa, el francés es también de uso general. El inglés se habla sólo
en zonas turísticas. Debido a mi ignorancia lingüística, me encontraba confinado en la piscina
leyendo Finnegans Wake, de James Joyce, un tour de formas y lenguaje. Una mezcla lúdica de
más de cuarenta idiomas, fue sorprendente, aunque una agotadora experiencia. Darme cuenta
de cómo mezclar palabras y frases extranjeras le dio al autor nuevas formas de expresarse es
algo que he mantenido conmigo en mi carrera como programador.

En su libro, The Pragmatic Programmer (El Programador Pragmático), Andy Hunt y Dave
Thomas nos animan a aprender un nuevo lenguaje de programación cada año. He intentado
vivir de acuerdo con su consejo y a lo largo de los años he tenido la experiencia de programar
en muchos lenguajes. La lección más importante de mis aventuras como políglota es que se
necesita algo más que sólo aprender la sintaxis para aprender por completo el lenguaje:

http://97cosas.com/programador/no-aprendas-lenguaje-entiende-su-cultura.html

necesitas entender su cultura. Puedes escribir Fortran en cualquier lenguaje, pero para aprender
un lenguaje tienes que adoptarlo. No pongas excusas si tu código en C# es un largo método
Main con muchos métodos de ayuda, en vez de ello, aprende por qué las clases tienen sentido.
No te apenes si la pasas difícil entendiendo las expresiones lambda usadas en lenguajes
funcionales, oblígate a usarlas

Una vez que hayas aprendido las trabas de un nuevo lenguaje, te sorprenderás al empezar a
usar lenguajes que ya sabías de nuevas maneras. Aprendí cómo usar eficazmente

los delegates en C# programando en Ruby, liberar todo el potencial de los generics de .NET

me dio ideas de cómo podría hacer más útiles los generics de Java y LINQ hizo fácil

enseñarme Scala.

También tendrás un mejor entendimiento de diseño de patrones al moverte entre diferentes
lenguajes. Los programadores de C encuentran que C# y Java han más comercial el patrón
iterador. En Ruby y otros lenguajes dinámicos es posible seguir utilizando el patrón visitor, pero
tu implementación no se parecerá al ejemplo del libro de La Banda de los 4.

Algunos podrían argumentar que Finnegans Wake es imposible de leer, mientras que otros lo
aplaudirán por su belleza estilística. Para hacer el libro una lectura un poco menos temible, hay
traducciones disponibles en un lenguaje único. Irónicamente, la primera traducción fue en
francés. Con la codificación es similar en muchos sentidos. Si escribes código Wake con un
poco de Python, algo de Java y un toque de Erlang, tus proyectos serán un desastre. Si exploras
un nuevo lenguaje para expandir tu mente y obtener ideas frescas sobre cómo puedes
solucionar las cosas de manera diferente, entonces encontrarás que el código que escribes en
tu tan confiable lenguaje se hace más hermoso por cada nuevo lenguaje que has aprendido.

Traducción: Espartaco Palma

61. No claves tu programa en la posición vertical.
Una vez escribí una parodia de un test de C++ y satíricamente sugería la siguiente estrategia
de manejo de excepciones:

Al realizar un montón de constructos try…catch a través de tu código base,

podemos, algunas veces, prevenir que nuestra aplicación aborte. Creemos
que el estado resultante es “clavar el cuerpo en posición vertical”.

Dejando a un lado la frivolidad, realmente estaba resumiendo una lección que recibí de Doña
Amarga Experiencia. Era una clase base de nuestra aplicación, una biblioteca de C++ hecha en
casa. El código había sido manoseado por muchos programadores en los últimos años.
Contenían código para lidiar con todas las excepciones de escape de todo lo demás. Tomando
el ejemplo de Yossarian de Catch-22, decidimos o, mejor dicho, sentimos (decidir implicaba,
más bien, pensarlo que estar en la construcción de este monstruo) que una instancia de esta
clase debería vivir para siempre o morir en el intento.

Al final, interconectamos múltiples manejadores de excepciones. Mezclamos excepciones

estructuradas de Windows con las nativas (¿recuerdas try…catch en C++? Yo tampoco).

Cuando las cosas se caían inesperadamente, tratábamos de llamarlas de nuevo, presionando
los parámetros cada vez más fuerte. Mirando atrás, me gustaría pensar que al escribir un
manejador interno de try…catch dentro de una cláusula catch de otra, una especie de conciencia
se apoderó de mí para haber tomado accidentalmente la ruda ruta de las buenas prácticas en
la aromática pero insalubre vía de la locura. De cualquier modo, probablemente es sabiduría
retrospectiva.

https://es.wikipedia.org/wiki/Iterador_%28patr%C3%B3n_de_dise%C3%B1o%29
https://es.wikipedia.org/wiki/Iterador_%28patr%C3%B3n_de_dise%C3%B1o%29
https://es.wikipedia.org/wiki/Visitor_%28patr%C3%B3n_de_dise%C3%B1o%29
http://www.amazon.com/Design-patterns-elements-reusable-object-oriented/dp/0201633612
http://97cosas.com/programador/no-claves-programa.html
http://en.wikipedia.org/wiki/Yossarian

No necesito decir que cualquier cosa que estuviera mal en las aplicaciones basadas en esta
clase se desvanecía como víctimas de la Mafia en el muelle, sin dejar atrás algún rastro útil en
las burbujas que indicara qué demonios había sucedido, a pesar de las rutinas de volcado que
supuestamente grabarían el desastre. Eventualmente –un largo eventualmente– hicimos un
balance de lo que habíamos hecho, y experimentamos vergüenza. Reemplazamos todo el lío
con un mecanismo de informe mínimo y robusto. Pero esto fue como ver muchos accidentes en
la carretera.

No te molestaré más con esto –seguramente nadie más podría haber sido tan estúpido como
nosotros lo fuimos–, excepto una discusión en línea que tuve recientemente con un individuo,
cuyo título académico declaró que debía saberlo mejor. Estábamos discutiendo código Java en
una transacción remota. Si el código fallaba, él argumentaba, debería capturar y bloquear la
excepción in situ. (“¿Y entonces qué haría con ello?”, pregunté. “¿Cocinarlo para la cena?”).

Citó la regla del diseñador de UI: NUNCA DEJES QUE EL USUARIO VEA UN REPORTE DE
EXCEPCIÓN, como si esto resolviera el asunto, poniéndolo en mayúsculas y todo lo demás.
Me preguntaba si era el responsable del código de una de esas pantallas azules de los cajeros
automáticos, cuyas fotos decoran los blogs más endebles, y había sido traumatizado
permanentemente.

De cualquier modo, si llegas a verlo, asienta con la cabeza y sonríe, no le hagas caso, mientras
te deslizas hacia la puerta.

Traducción: Espartaco Palma

62. No confíes en el “Aquí sucede la magia”.

Autor: AlanGriffiths
Si nos fijamos en cualquier actividad, proceso o disciplina, desde lo lejano parece simple. Los
gerentes sin experiencia en el desarrollo piensan que lo que hacen los programadores es
sencillo, y los programadores sin experiencia en administración piensan lo mismo sobre lo que
hacen los gerentes.

La programación es algo que algunas personas hacen, por algún tiempo. Y la parte difícil –
pensar– es la menos visible y la menos apreciada por los no iniciados. Durante décadas ha
habido muchos intentos de quitar la necesidad de esta habilidad cognoscitiva. Uno de los
primeros y más memorables es el esfuerzo de Grace Hopper por hacer los lenguajes de
programación menos crípticos; algunos predijeron que quitaría la necesidad de programadores
especializados. El resultado (COBOL) ha contribuido a los ingresos de muchos programadores
especializados durante las décadas siguientes.

La visión persistente de que el desarrollo de software se puede simplificar al quitar la
programación es, para el programador que entiende de lo que se trata, obviamente ingenua. Sin
embargo, el proceso mental que conduce a este error es parte de la naturaleza humana y los
programadores son tan propensos a realizarlo como cualquiera.

En cualquier proyecto hay muchas cosas en las que un programador no está involucrado
activamente: obtener requerimientos de los usuarios, conseguir la aprobación del presupuesto,
configurar el servidor de producción, implementar la aplicación a los ambientes de QA y
producción, migrar el negocio desde los viejos procesos o programas, etc.

Cuando no estás involucrado activamente en estas cosas existe una tendencia inconsciente a
asumir que son sencillas y que las cosas suceden “por arte de magia”. Mientras la magia siga

http://97cosas.com/programador/no-confies-magia.html

ocurriendo todo está bien. Pero cuando –esto sucede “cuando” y no “si”– la magia se detiene,
el proyecto está en problemas.

He conocido proyectos que pierden semanas de desarrollo porque nadie entiende cómo se
confía en la versión “correcta” de un DLL que está siendo cargado. Cuando las cosas
empezaron a fallar intermitentemente los miembros del equipo miraban a cualquier otra parte
antes de que alguien notara que una versión “equivocada” del DLL había sido cargada.

Otro departamento estaba funcionando sin problemas, proyectos enviados a tiempo, no más
sesiones de depuración nocturna, no arreglos de emergencia. Tan tranquilamente, de hecho,
que la Alta Gerencia decidió que las cosas “corrían por sí mismas” y lo podría hacer sin el
administrador de proyectos. En los siguientes seis meses los proyectos en el departamento se
veían tan bien como en el resto de la organización: retrasados, con errores y siendo parchados
continuamente.

No tienes que entender toda la magia que sucede en tu proyecto, pero no está de más entender
algo de ella, o apreciar a aquellos que entienden las partes que tú no.

Más importante, asegúrate de que cuando la magia se detenga, pueda ser iniciada de nuevo.

Traducción: Espartaco Palma

63. ¡No ignores ese error!.

Autor: Pete Goodliffe
Una tarde, estaba caminando por la calle para verme con unos amigos en un bar. No habíamos
compartido una cerveza en algún tiempo y quería verlos de nuevo. Con las prisas, no miré por
dónde iba. Tropecé con el borde de una esquina y caí de bruces . Bueno, me lo merecía por no
poner atención, supongo.

Me dolía la pierna, pero tenía prisa por ver a mis amigos. Así que me levanté y seguí. Conforme
caminaba el dolor se ponía cada vez peor. A pesar de que al inicio lo desestimaba como una
conmoción, me di cuenta rápidamente de que había algo mal.

Pero me apresuré hacia el bar de todos modos. Estaba en agonía en el momento en que llegué.
No tuve una gran noche, porque estaba terriblemente distraído. En la mañana fui al médico y
me enteré de que me había fracturado el hueso de la espinilla. De haberme detenido cuando
sentí el dolor, habría prevenido un montón del daño adicional que me causé por seguir
caminando. Probablemente fue el peor día-después de mi vida.

Muchos programadores escriben código como mi desastrosa salida en la noche.

¿Error, cuál error? No va a ser grave. Honestamente. Puedo ignorarlo. Esta no es una estrategia
ganadora para un código sólido. De hecho, es pura flojera (de la mala). No importa que tan poco
probable creas que es un error en tu código, siempre debes revisarlo y tomarlo en cuenta. Todas
las veces. No estás ahorrando tiempo si no lo haces: estás almacenando problemas potenciales
en el futuro.

Reportamos errores en nuestro código de distintas formas, incluyendo:

 Códigos de Retorno. Pueden ser usados como valores resultantes de una función para

significar “no funcionó”. Los códigos de error son bastante fáciles de ignorar. No verás nada

en el código que resalte el problema. De hecho, se ha convertido en una práctica estándar

http://97cosas.com/programador/no-ignores-error.html

ignorar algunos retornos de valores de las funciones estándares de C. ¿Qué tan

frecuentemente revisas el valor de retorno de printf ?

 errno. Es una curiosa aberración de C, un conjunto de variables globales para señalar

errores. Es fácil ignorarlas, difíciles de usar y da lugar a todo tipo de problemas

desagradables; por ejemplo, ¿qué pasa cuando tienes múltiples hilos llamando a la misma

función? Algunas plataformas te aíslan del dolor aquí; otras no.

 Excepciones. Son una forma más soportada por los lenguajes estructurados para señalar

y manipular errores. Y puedes ignorarlos. ¿O no? He visto muchos códigos como estos:

 try {

 // ...do something...

 }

 catch (...) {} // ignore errors

La salvación en este horrible constructo es que resalta el hecho de que estás haciendo algo
moralmente dudoso.

Si ignoras un error, te haces de la vista gorda y haces de cuenta que nada ha pasado, corres
un gran riesgo; así como mi pierna terminó en un peor estado por no haber dejado de caminar
inmediatamente, a pesar de que conduce a una falla muy compleja, enfrenta los problemas lo
antes posible. Mantén una cuenta breve.

No manejar errores conduce a:

 Código frágil. Código que se llena con errores excitantes y difíciles de encontrar.

 Código inseguro. Los crackers frecuentemente explotan los pobres manejos de errores para

irrumpir en los sistemas de software.

 Estructura pobre. Si es un tedio enfrentar continuamente los errores que hay en tu código,

probablemente tengas una pobre interfaz. Expresa tu interfaz de tal manera que los errores

sean menos intrusivos y su manejo sea menos oneroso.

Al igual que debes comprobar todos los posibles errores en tu código, necesitas exponer todas
las condiciones potenciales de error en tus interfaces. No ocultarlos, pretendiendo que tus
servicios siempre funcionarán.

¿Por qué no comprobamos si hay errores? Hay un serie de excusas comunes. ¿Con cuál de
ellas estás de acuerdo? ¿Cómo contrarrestar cada una?

 El manejo de errores estorba el flujo del código, haciéndolo difícil de leer y difícil de detectar

en el flujo “normal” de ejecución.

 Es un trabajo extra y tengo la fecha de entrega inminente.

 Sé que esa llamada de función nunca retornará un error (printf siempre

funciona, malloc siempre retorna nueva memoria); si falla tenemos problemas mayores.

 Es sólo un programa de juguete y no necesita ser escrito con un nivel digno de producción.

Traducción: Espartaco Palma

64. No seas lindo con tus datos de prueba.

Autor: Rod Begbie
Se estaba haciendo tarde. Estaba tirando cosas en un repositorio de datos para probar el diseño
de página en el que estaba trabajando.

Me apropié de los miembros de The Clash para los nombres de usuario. ¿Nombres de
empresas? Los títulos de las canciones de Sex Pistols servirían. Ahora necesito algunos
símbolos de la bolsa de valores, sólo cuatro letras en mayúsculas.

Usé las palabras de cuatro letras.

Parecía inofensivo. Sólo algo para divertirme, y quizás también a los otros desarrolladores el
día siguiente antes de enlazarlo a fuentes de datos reales. La mañana siguiente un gerente de
proyecto tomó algunas capturas de pantallas para una presentación.

La historia de la programación está llena de este tipo de cuentos de guerra. Cosas que los
desarrolladores y diseñadores hicieron “y que nadie más vería”, las cuales inesperadamente se
vuelven visibles.

El tipo de fuga puede variar, pero, cuando sucede, puede ser mortal para la persona, equipo o
compañía responsables. Los ejemplos incluyen:

 Durante una junta para revisión de estatus, un cliente hace clic en un botón que todavía no

ha sido implementado. El mensaje dice: “No hagas clic en eso de nuevo, idiota”. .

 A un programador de mantenimiento de un sistema heredado se le había dicho que añadiera

un mensaje de error y decidió usar la salida de registros “detrás de la escena” existentes

para lograrlo. Los usuarios repentinamente se enfrentaban con mensajes como: “¡Santos

errores de base de datos, Batman!”, cuando algo se descomponía.

 Alguien confundió las pruebas con la interfaz de administración en vivo y hace una entrada

de datos “graciosos”. Los clientes detectaron un “Masajeador personal con forma de Bill

Gates” de $1 millón de dólares a la venta en su tienda en línea.

Como para apropiarnos del viejo adagio de “una mentira puede viajar por la mitad del mundo
mientras la verdad se está poniendo los zapatos”, en estas fechas y épocas una metedura de
pata puede ser tuiteada y facebookeada antes de que cualquiera de los desarrolladores de la
zona horaria esté despierto para hacer algo al respecto.

Incluso tu código fuente no está necesariamente libre del escrutinio. En 2004, cuando un
comprimido del código fuente de Windows 2000 se abrió camino en las redes de intercambio
de archivos, algunos muchachos lo revisaron en busca de profanidad, insultos y otros
comentarios graciosos (el comentario // TERRIBLE HORRIBLE NO DIOS QUE MAL HACK,
debo admitir, ¡se vuelve adecuado para mí de vez en cuando desde entonces!).

En resumen, cuando escribas cualquier texto en tu código –ya sea comentarios, registros,
mensajes o datos de prueba– siempre pregúntate a ti mismo cómo se verá si se convierte en
algo público. Esto te ahorrará, todo el tiempo, algunas caras rojas.

Traducción: Espartaco Palma

http://97cosas.com/programador/no-seas-lindo-pruebas.html

65. No te repitas.

Autor: Steve Smith
De todos los principios de programación, No te Repitas (Don’t Repeat Yourself, DRY) es quizás
uno de los fundamentales. El principio fue formulado por Andy Hunt y Dave Thomas en The
Pragmatic Programmer y subyace a muchas otras bien conocidas buenas prácticas y diseños
de patrones en software. El desarrollador que aprende a reconocer la duplicación y entiende
cómo eliminarla, a través de una abstracción práctica y apropiada, puede producir código mucho
más limpio que quien infecta continuamente la aplicación con repetición innecesaria.

La duplicidad es un desperdicio
Cada línea de código que va en una aplicación se debe mantener y es una fuente potencial de
futuros errores. La duplicación infla innecesariamente el código base, dando lugar a más
oportunidades para los errores y agregando complejidad accidental al sistema. El atasco que la
duplicación agrega al sistema también hace más difícil para los desarrolladores que trabajan
con el sistema el completo entendimiento del sistema entero, o de tener la certeza de que los
cambios realizados en un lugar no necesitan también ser hechos en otros lugares que duplican
la lógica de lo que se está trabajando. DRY requiere que “cada pieza de conocimiento debe
tener una representación única, inequívoca y autorizada en el sistema”.

Cambiar repetición en llamadas de

procedimiento por automatización
Muchos de los procesos en el desarrollo del software son repetitivos y fácilmente automatizados.
El principio DRY se aplica en estos contextos tan bien como en el código fuente de la aplicación.
Las pruebas manuales son lentas, propensas al error y difíciles de repetir, por lo que, si es
posible, deberían usarse los conjuntos de pruebas automatizadas. Integrar software puede
tomar mucho tiempo y ser propenso al error si se hace manualmente, por lo que el proceso de
construcción deberá ser ejecutado tan frecuente como sea posible, idealmente en cada check-
in. Donde sea que existan esos dolorosos procesos que puedan ser automatizados, deben ser
automatizados y estandarizados. La meta es asegurarse de que sólo hay una manera de llevar
a cabo la tarea, y que ésta sea lo menos dolorosa posible.

Cambiar repetición en la lógica por

abstracción
La repetición en la lógica puede tomar muchas formas. Copiar-pegar lógica de un if-

then o switch-case es uno de los casos más comunes de detectar y corregir. Muchos patrones

de diseño tiene la meta específica de reducir o eliminar la duplicación en la lógica de una
aplicación. Si un objeto usualmente requiere que varias cosas sucedan antes de que pueda ser

utilizado, esto se puede lograr con una Abstract Factory o Method Factory . Si un objeto tiene

muchas variaciones posibles en su comportamiento, estos comportamientos pueden ser

inyectados con el patrón de Estrategia en vez de largas estructuras if- then . De hecho, la

formulación de patrones de diseño es un intento de reducir la duplicación del esfuerzo necesario

http://97cosas.com/programador/no-te-repitas.html

para resolver problemas comunes y discutir dichas soluciones. Adicionalmente, DRY puede ser
aplicado a estructuras, tales como esquemas de base de datos, resultando en la normalización.

Una cuestión de principio
Otros principios de software también están relacionados con DRY. El principio “Uno y Sólo Uno”,
el cuál aplica al comportamiento funcional del código, puede ser pensado como un subconjunto
de DRY. El principio “Abierto/Cerrado”, el cual estipula que “las entidades de software deben
estar abiertas para la extensión, pero cerradas para la modificación”, sólo funciona en la práctica
cuando se sigue el DRY. Del mismo modo, el bien conocido Principio de la Responsabilidad
Única (SPR), que requiere que una clase tenga “una única razón para cambiar”, se basa en
DRY.

Cuando se sigue en estructura, lógica, procesos y funciones, el principio provee una guía
fundamental para los desarrolladores de software y ayuda a la creación de aplicaciones más
simples, más fáciles de mantener y de alta calidad. Si bien hay escenarios en los cuales la
repetición puede ser necesaria para cumplir con el índice de rendimiento u otros requerimientos
(por ejemplo, desnormalización en base de datos), esto debería ser usado sólo donde aplique
directamente un problema real en vez de uno imaginario.

Traducción: Espartaco Palma

66. No tengas miedo de romper cosas.

Autor: Mike Lewis
Todos los que tiene experiencia en el sector indudablemente han trabajado en un proyecto en
el que el código base era, en el mejor de los casos, precario. El sistema es factorizado
pobremente y cambiar alguna cosa siempre lleva a descomponer otra característica no
relacionada. Cada vez que se añade un módulo, la meta del programador es cambiar lo menos
que sea posible, y contener la respiración durante cada lanzamiento. Esto es el equivalente de
jugar Jenga con vigas de acero en un rascacielos, y se dirige a un desastre.

La razón por la que realizar cambios es tan destroza-nervios se debe a que el sistema está
enfermo. Necesita un médico, de lo contrario su condición sólo empeorará. Ya sabes lo que
está mal en tu sistema, pero tienes miedo de romper los huevos para hacer tu omelet. Un
cirujano experto sabe que deben hacerse cortes para operar, pero también sabe que esos cortes
son temporales y se curan. El resultado final de la operación bien vale el dolor inicial y el paciente
debe sanar y estar en un mejor estado del que tenía antes de la operación.

No tengas miedo de tu código. ¿A quién le importa si algo se rompe temporalmente mientras
mueves las cosas? Un miedo paralizante a los cambios es lo que tiene a tu proyecto en este
estado, de entrada. Invertir el tiempo para refactorizar se pagará por sí mismo varias veces
durante el tiempo de vida de tu proyecto. Un beneficio adicional es que la experiencia de tu
equipo al lidiar con el sistema enfermo los hace expertos en saber cómo debería funcionar.
Aplica este conocimiento en vez de resentirte. Trabajar con un sistema que odias es algo en lo
que nadie debería gastar su tiempo.

Redefine las interfases internas, reestructura módulos, refactoriza código copiado-pegado y
simplifica tu diseño reduciendo dependencias. Puedes reducir significativamente la complejidad
del código eliminando “casos límite”, que, a menudo, resultan de características incorrectamente
acopladas. Realiza lentamente la transición de la vieja estructura a la nueva, haciendo pruebas

http://97cosas.com/programador/no-tengas-miedo-de-romper-cosas.html

en el camino. Tratar de realizar una larga refactorización en “un gran golpe” causará suficientes
problemas como para hacerte considerar abandonar todo el esfuerzo a la mitad del camino.

Sé el cirujano que no tiene miedo a cortar las partes enfermas para hacer espacio a la cura. La
actitud es contagiosa e inspirará a otros a empezar en los proyecto de limpieza que han estado
posponiendo. Mantén una lista de “higiene” de las tareas que el equipo siente que valen la pena
para el bien general del proyecto. Convence a la administración de que, a pesar de que estas
tareas podrían no producir resultados visibles, reducirán los gastos y agilizarán las futuras
versiones. Nunca dejes de preocuparte por la “salud” general del código.

Traducción: Espartaco Palma

67. ¡No toques ese código!.

Autor: Cal Evans
Nos ha pasado a todos en algún momento. Tu código fue llevado al servidor de staging para las
pruebas del sistema y el director de pruebas te lo regresa diciendo que tiene un problema. Tu
primera reacción es “rápido, déjame arreglarlo, sé qué está mal”.

En un sentido más amplio, sin embargo, lo que está mal es que como desarrollador creas que
deberías tener acceso al servidor de staging.

En la mayoría de los ambientes de desarrollo basado en web la arquitectura puede fragmentarse
así:

 Desarrollo local y pruebas unitarias en la máquina del desarrollador.

 Servidor de desarrollo, en el que se realizan las pruebas de integración, manuales o

automáticas.

 Servidores de staging, en el cual el equipo de Control de Calidad y los usuarios realizan las

pruebas de aceptación.

 Servidor de producción.

Sí, hay otros servidores y servicios salpicados por ahí, como el control de código fuente
(SCC, Source Code Control) y el sistema de tickets, pero tienes la idea. Usando este modelo,
un desarrollador –incluso un desarrollador experimentado– nunca debería tener acceso más
allá del servidor de desarrollo. La mayor parte del desarrollo es hecho en la máquina del
desarrollador usando su mezcla favorita de IDE, máquinas virtuales y una apropiada cantidad
de magia negra para la buena suerte.

Una vez que el código se envía al SCC, ya sea automática o manualmente, debería ser pasado
al servidor de desarrollo, en el cual puede ser probado y ajustado, si es necesario, para
asegurarse de que todo funciona. A partir de este momento, sin embargo, el desarrollador es
un espectador en el proceso.

El director de staging debería empaquetar y desplegar el código al servidor de staging del
equipo de Control de Calidad. Así como los desarrolladores deberían no tener acceso a nada
más allá del servidor de desarrollo, el equipo de Control de Calidad y los usuarios no tienen
necesidad de tocar nada en el servidor de desarrollo. Si está listo para las pruebas de

http://97cosas.com/programador/no-toques-ese-codigo.html

aceptación, libéralo y envíalo, no pidas al usuario “mirar algo muy rápido” en el servidor de
desarrollo. Recuerda, a menos que estés codificando el proyecto tú solo, que otras personas
tienen código ahí y podría no estar listo para lo mire el usuario. El encargado de liberaciones es
la única persona que debería tener acceso a ambos.

Bajo ninguna circunstancia –nunca, en lo absoluto– debe un desarrollador tener acceso al
servidor de producción. Si hay algún problema, el personal de soporte debería solucionarlo o
requerir que lo arreglen. Después de enviarlo al SCC, ellos pasarán un parche desde ahí.
Algunos de los mayores desastres de programación de los que he sido parte han tenido lugar
porque alguien ejeeemmmyoeejeeemm violó esta última regla. Si está descompuesto,
producción no es el lugar para arreglarlo..

Traducción: Espartaco Palma

68. Los números de punto flotante no son reales.

Autor: Chuck Allison
Los números de punto flotante no son “números reales” en el sentido matemático, a pesar de
que son llamados reales en algunos lenguajes de programación, como Pascal y Fortran. Los
números reales tienen una precisión infinita y son, por lo tanto, continuos y sin pérdidas; los
números de punto flotante tiene precisión limitada, por lo que son finitos, y son recordados como
enteros “con mal comportamiento”, porque no son están espaciados uniformemente a través de
su espacio de distribución.

Para ilustrarlo, asigna 2147483647 (el número más grande en un entero de 32 bits) a una

variable float de 32 bits (digamos x) e imprímelo. Verás 2147483648. Ahora imprime x - 64 .

Aún 2147483648. Ahora calcula x - 65 y ¡obtendrás 2147483520! ¿Por qué? Porque la

separación entre flotantes adyacentes en ese rango es de 128 y las operaciones de punto
flotante se redondean al punto flotante más cercano.

Los números de punto de flotante de la IEEE son números de precisión fija basados en notación

científica de base 2: 1.d1d2…dp-1 x 2e, donde p es la precisión (24 para float , 53 para double).

El espaciamiento entre dos números consecutivos es 21-p+e, lo cual puede ser aproximado con
seguridad a ε|x|, donde ε es el épsilon de la máquina (21-p).

Conocer el espaciamiento en los vecinos de un número de punto flotante puede ayudarte a
evitar errores numéricos clásicos. Por ejemplo, si estás realizando un cálculo iterativo, como
buscar la raíz de una ecuación, no tiene sentido buscar una precisión más grande que el sistema
numérico puede darte en la cercanía de la respuesta. Asegúrate que la tolerancia que pides no
es menor que el espaciado ahí; de otro modo harás un bucle infinito.

Debido a que los números de punto flotante son aproximaciones de los números reales,
inevitablemente hay un pequeño error presente. Este error, llamado redondeo, puede llevarnos
a errores sorpresivos. Por ejemplo, cuando sustraes números cercanamente iguales, los dígitos
más significativos se cancelan entre sí, entonces lo que era el dígito menos significativo (donde
reside el error de redondeo) es promovido a la posición más significativa en el resultado de
punto flotante, contaminando esencialmente cualquier cómputo relacionado (un fenómeno
conocido como smearing). Necesitas mirar muy de cerca tus algoritmos para prevenir esa
cancelación catastrófica. Para ilustrarlo, considera resolver la ecuación x2 - 100000x + 1 = 0con
la fórmula cuadrática. Como los operandos en la expresión -b + sqrt(b2 - 4) son cercanamente

http://97cosas.com/programador/numeros-punto-flotante.html

iguales en magnitud, puedes en su lugar computar la raíz r1 = -b - sqrt(b2 -4), y entonces
obtener r2 = 1/r1, como en cualquier ecuación cuadrática, ax2 + bx + c = 0, entonces la raíz
satisface r1r2 = c /a.

El smearing puede ocurrir incluso en formas más sutiles. Supón una librería que ingenuamente
computa excon la fórmula 1 + x + x2/2 + x3/3! + … Esto funciona bien para una x positiva, pero
considera qué pasa cuando x es un número negativo grande. Los términos impares potenciados
resultan en un número positivo grande y sustrayendo las magnitudes de pares potenciados ni
se verán afectados en el resultado. El problema aquí es que el redondeo en los grandes términos
positivos está a un dígito de posición de la más grande significancia que la verdadera respuesta.
¡La respuesta difiere hacia positivo infinitamente! La solución aquí también es simple: para una
x negativa, computa ex = 1/ e|x|.

No podemos irnos sin decir que no deberías usar números de punto flotante para aplicaciones
financieras, para eso son las clases decimales en lenguajes como Python y C#. Los números
de punto flotante son para un cómputo científico eficiente. Pero la eficiencia es inútil sin
precisión, ¡así que recuerda la fuente de los errores de redondeo y codifica en consecuencia!

Traducción: Espartaco Palma

69. Oportunidades perdidas del Poliformismo.

Autor: Kirk Pepperdine
El polimorfismo es una de las grandes ideas fundamentales de la Orientación a Objetos (OO).
La palabra, tomada del griego, significa muchas (poli) formas (morfos). En el contexto de
programación el polimorfismo se refiere a las muchas formas de una clase particular de objetos
o métodos. Pero el polimorfismo no es simplemente sobre implementaciones alternativas.
Usado con cuidado, crea diminutos contextos de ejecución que nos dejan trabajar sin la
necesidad de detallados bloques if-then-else. Estar en un contexto nos permite hacer lo correcto
directamente, mientras que estar fuera del contexto nos obliga a reconstruirlo para entonces
poder hacer lo correcto. Con el uso cuidadoso de implementaciones alternadas podemos
capturar el contexto que nos ayude a producir menos código que sea más leíble. Esto se
demuestra mejor con algo de código, como el siguiente (e irreal) carrito de compras:

public class ShoppingCart {

 private ArrayList<Item> cart = new ArrayList<Item>();

 public void add(Item item) { cart.add(item); }

 public Item takeNext() { return cart.remove(0); }

 public boolean isEmpty() { return cart.isEmpty(); }

}

Digamos que nuestra compra en línea ofrece elementos que pueden ser descargados y
elementos que necesitan ser enviados. Vamos a construir otro objeto que soporte estas
operaciones:

public class Shipping {

 public boolean ship(Item item, SurfaceAddress address) { ... }

http://97cosas.com/programador/oportunidades-perdidas-polimorfismo.html

 public boolean ship(Item item, EMailAddress address { ... }

}

Cuando un cliente ha completado la compra, necesitamos enviar los bienes:

while (!cart.isEmpty()) {

 shipping.ship(cart.takeNext(), ???);

}

El parámetro ??? no es algún nuevo operador Elvis, está preguntado si debería enviar correo

electrónico o correo normal. El contexto necesario para responder la pregunta ya no existe.
Pudimos haber capturado el método de envío en un boleano o en un enum y entonces usar

un if-then- else para llenar el parámetro faltante. Otra solución sería crear dos clases, en las

cuales ambas extiendan Item . Llamémosle DownloableItem y SurfaceItem .Ahora vamos a

escribir algo de código. Promoveré Item para que sea una interfaz que soporte un único

método: ship . Para enviar el contenido del carrito haremos una llamada a item.ship(shipper) .

Ambas clases DownloadbleItem y SurfaceItem implementarán ship .

public class DownloadableItem implements Item {

 public boolean ship(Shipping shipper) {

 shipper.ship(this, customer.getEmailAddress());

 }

}

public class SurfaceItem implements Item {

 public boolean ship(Shipping shipper) {

 shipper.ship(this, customer.getSurfaceAddress());

 }

}

En este ejemplo hemos delegado la responsabilidad de trabajar con Shipping en cada Item .

Debido a que cada item sabe cómo es mejor que sea enviado, este arreglo nos permite estar

con él sin la necesidad de un if-then-else . El código también demuestra un uso de dos

patrones que frecuentemente actúan juntos: Command y Double Dispatch. El uso efectivo de
estos patrones reside en un uso cuidadoso del polimorfismo. Cuando esto suceda habrá una
reducción del número de bloques if-then-else en nuestro código.

Si bien hay casos en los que es mucho más práctico utilizar if-then- else en vez del

polimorfismo, es más frecuente el caso en el cual un estilo de código más polimórfico dará lugar

https://en.wikipedia.org/wiki/Command_pattern
https://en.wikipedia.org/wiki/Double_dispatch

a un código base más pequeño, más fácil de leer y menos frágil. El número de oportunidades

perdidas es un simple conteo de declaraciones if-then-else en nuestro código.

Traducción: Espartaco Palma

70. El paso de mensajes lleva a una mejor escalabilidad en sistemas
paralelos.

Autor: Russel Winder
A los programadores se les enseña desde el primer momento de sus estudios en computación
que la concurrencia –y especialmente el paralelismo, un subconjunto especial de la
concurrencia– es difícil, que sólo los mejores pueden tener la esperanzas de hacerlo bien y que
incluso se equivocan. Siempre hay una gran atención a threads, semáforos, monitores y lo difícil
que es obtener el acceso simultáneo a variables para ser seguro en threads.

Es cierto, hay muchos problemas difíciles, y pueden ser muy difíciles de resolver. Pero, ¿cuál
es la raíz del problema? Memoria compartida. Casi todos los problemas de concurrencia que la
gente tiene una y otra vez se relacionan con el uso de memoria compartida mutable: race
conditions, deadlocks, livelock, etcétera. La respuesta parece obvia: ¡renunciar a la
concurrencia o abstenerse de la memoria compartida!

Olvidar la concurrencia casi seguramente no es una opción. Las computadoras tienen más y
más núcleos de manera casi trimestral, por lo que el aprovechamiento de cierto paralelismo se
hace más y más importante. No nos podemos confiar tanto en cada incremento de la velocidad
del procesador para mejorar el rendimiento de nuestra aplicación. Obviamente, no mejorar el
rendimiento es una opción, pero es poco probable que sea aceptable para los usuarios.

Entonces, ¿podemos evitar la memoria compartida? Definitivamente.

En vez de usar threads y memoria compartida como nuestro modelo de programación, podemos
usar procesos y el paso de mensajes. Los procesos aquí sólo significan un estado protegido e
independiente con código ejecutándose, no necesariamente un proceso del sistema operativo.
Lenguajes como Erlang (y Occam antes de él) han mostrado que los procesos son un exitoso
mecanismo para la programación de sistemas concurrentes y paralelos. Tales sistemas no
tienen todo el estrés de sincronización que la memoria compartida y los sistemas de multi-
thread tienen. Más aún, hay un modelo formal –Proceso de Comunicación Secuencial (CSP,
por sus siglas en inglés [Communicating Sequential Processes])– que puede ser aplicado como
parte de la ingeniería de tales sistemas.

Podemos ir más allá e introducir sistemas de flujo de datos como una forma de computación.
En un sistema de flujo de datos no hay un flujo de control explícitamente programado. En vez
de eso se configura un grafo directo de operadores conectados por rutas de datos y entonces
los datos son alimentados al sistema. La evaluación es controlada por la disponibilidad de los
datos dentro del sistema. Definitivamente sin problemas de sincronización.

Dicho todo esto, lenguajes como C, C++, Java, Python y Groovy son el principal lenguaje del
desarrollo de sistemas y todos ellos son presentados a los programadores como lenguajes para
desarrollo de memoria compartida, sistemas de multi-thread. Entonces, ¿qué se puede hacer?
La respuesta es utilizar –o, si no existen, crear– bibliotecas y frameworks que proporcionan
modelos de procesos y paso de mensajes, evitando todo el uso de memoria compartida
mutable.

http://97cosas.com/programador/paso-mensajes-mejor-escalabilidad.html
http://97cosas.com/programador/paso-mensajes-mejor-escalabilidad.html

Después de todo, no programar con memoria compartida y usar en vez de eso paso de
mensajes es probablemente la forma más exitosa de implementar sistemas que aprovechan el
paralelismo que es ahora endémico en el hardware de computación. Quizás extrañamente, pero
a pesar de que los procesos son anteriores a los threads como unidad de concurrencia, el futuro
parece estar en usar threads para implementar procesos.

Traducción: Espartaco Palma

71. Pensando en estados.

Autor: Niclas Nilsson
La gente en el mundo real tiene una rara relación con los estados. Esta mañana me paré en la
tienda local preparándome para otro día de convertir cafeína en código. Debido a que mi forma
favorita de hacerlo es tomando un latte, al no encontrar leche me dijo la empleada:

—Disculpa, estamos super-dupe mega faltos de leche.

Para un programador, eso es una sentencia rara. Puedes tener leche o no. No hay escalas
cuando se trata de estar sin el lácteo. Quizás ella estaba tratando de decirme que les faltará
leche por una semana, pero el resultado era el mismo: día de espresso para mí.

En muchas situaciones del mundo real, la actitud relajada de la gente con los estados no es un
problema. Sin embargo, desafortunadamente, muchos programadores son también algo
despistados con respecto a los estados y eso sí es un problema.

Considere una tienda de ventas en línea que sólo acepta tarjetas de crédito y que no factura a

los clientes, tiene una clase Orden conteniendo este método:

public boolean isComplete() {

 return isPaid() && hasShipped();

}

Razonable, ¿no es así? Bueno, incluso si la expresión es amablemente extraída en un método
en vez de copiar-pegar en todos lados, la expresión no debería existir del todo. El hecho es que
sí resalta un problema. ¿Por qué? La orden no puede ser enviada antes de que sea pagada.

Por lo tanto, hasShipped no puede ser verdadero a menos que isPaid sea verdadero, lo cual

hace parte de la expresión redundante. Por cuestiones de claridad puedes querer aún

el isComplete en el código, pero entonces debería verse como esto:

public boolean isComplete() {

 return hasShipped();

}

En mi trabajo veo todo el tiempo ambas: revisiones faltantes y revisiones redundantes. Este
ejemplo es pequeño, pero cuando agregas cancelaciones y reembolso, esto se vuelve más
complejo y la necesidad de un buen manejo de estados se incrementa. En este caso, una orden
puede estar sólo en uno de tres distintos estados:

 En progreso: puede agregar o remover elementos. No se puede enviar.

http://97cosas.com/programador/pensando-en-estados.html

 Pagado: no puede agregar o remover elementos. Puede ser enviado.

 Enviado: Terminado. No se aceptan más cambios.

Estos estados son importantes y necesitas revisar que estés en el estado esperado antes de
realizar operaciones, y que tú sólo puedas moverte a un estado legal desde donde estás. En
resumen, tienes que proteger tus objetos cuidadosamente, en los lugares correctos.

Sin embargo, ¿cómo empezar a pensar en estados? Extrayendo expresiones significativas a
los métodos es un buen inicio, pero es sólo un comienzo. Las bases están en entender
las máquinas de estados. Se que puedes tener malos recuerdos de tus clases de Ciencias
Computacionales, pero déjalos atrás. Las máquinas de estados no son especialmente difíciles.
Visualízalas para hacerlas simples de entender y fáciles de hablar de ellas. Haz tu código Test-
drive para desentrañar los estados válidos e inválidos, las transiciones y mantenlas correctas.
Estudia el patrón State. Cuando te sientas cómodo, lee sobre Diseño por Contrato. Esto ayuda
a asegurarte un estado apropiado al validar los datos de entrada y los objetos por sí mismos al
entrar y salir de cada método público.

Si tu estado no es correcto, hay un bug y estás en riesgo de tirar a la basura datos si no abortas.
Si encuentras que las revisiones de estado son ruidosas, aprende cómo usar una herramienta
de generación de código, weaving o aspectos para ocultarlos. Independientemente del enfoque
que elijas, pensar en estados hará que tu código sea más simple y más robusto.

Traducción: Espartaco Palma

72. Pon todo bajo Control de Versiones.

Autor: Diomidis Spinellis
Pon todo lo que tienen tus proyectos bajo control de versiones. Los recursos que necesitas
están ahí: herramientas libres como Subversion, Git, Mercurial y CVS; abundante espacio en
disco; servidores baratos y poderosos; una red ubicua; e incluso servicios de hospedaje de
proyectos. Después de instalar el software de control de versiones todo lo que necesitas para
poner tu trabajo en su repositorio es ejecutar el comando apropiado en un directorio limpio que
contenga tu código. Y sólo hay dos nuevas operaciones básicas por aprender: enviar el cambio
en tus códigos al repositorio y actualizar tu directorio de trabajo a la versión del repositorio.

Una vez que el proyecto está bajo el control de versiones es obvio que puedes rastrear su
historia, ver quién ha escrito qué código, y referir una versión del archivo o proyecto a través de
un identificador único. Más importante, puedes hacer grandes cambios sin miedo; no más
código comentado, sólo en caso de que lo necesites en el futuro, porque la versión anterior vive
de manera segura en el repositorio. Puedes (y deberías) etiquetar una versión de software con
un nombre simbólico, así podrás revisitarlo en el futuro en la versión exacta del software que tu
cliente ejecuta. Puedes crear ramificaciones de desarrollo paralelo: la mayoría de los proyectos
tienen una rama de desarrollo activo y una o varias más de mantenimiento de versiones
publicadas que son apoyadas activamente.

Un sistema de control de versión minimiza la fricción entre desarrolladores. Cuando los
programadores trabajan en partes diferentes del software esto se integra casi por arte de magia;
cuando se empalma el código el sistema lo nota y permite que resuelvan los conflictos. Con un
poco de configuración adicional el sistema puede notificar a todos los desarrolladores de cada
cambio enviado, estableciendo un entendimiento común sobre el progreso del proyecto.

https://es.wikipedia.org/wiki/Aut%C3%B3mata_finito
https://en.wikipedia.org/wiki/State_pattern
https://en.wikipedia.org/wiki/Design_by_Contract
https://en.wikipedia.org/wiki/Program_transformation
http://97cosas.com/programador/pon-todo-bajo-control-de-versiones.html

Al configurar el proyecto no seas tacaño: coloca todos los activos del proyecto bajo control de
versiones. Además del código fuente, incluye la documentación, herramientas, scripts de
creación, casos de prueba, obras de arte, e incluso bibliotecas. Con el proyecto completo y
seguro en el repositorio (respaldado regularmente) se reduce al mínimo el daño de perder tu
disco o datos. Configurar el ambiente de desarrollo en una máquina nueva consiste simplemente
en traerse el proyecto desde el repositorio. Esto simplifica la distribución, construcción y las
pruebas de código en diferentes plataformas: en cada máquina un simple comando de
actualización se asegurará que el software está en la versión actual.

Una vez que ha visto la belleza de trabajar con un sistema de control de versiones, seguir unas
cuantas reglas hará que tú y tu equipo sean más eficaces:

 Enviar cada cambio lógico en una operación separada. Agrupar muchos cambios hará difícil

desenredarlo en el futuro. Esto es especialmente importante al hacer una refactorización en

todo el proyecto o cambios de estilo, los cuales pueden oscurecer otras modificaciones.

 Acompañar cada envío con un mensaje explicativo. Como mínimo describir brevemente lo

que ha cambiado, pero si también deseas grabar la justificación del cambio, entonces éste

es el mejor lugar para almacenarlo.

 Por último, no enviar código que rompa la construcción de un proyecto, de lo contrario se

volverá impopular con los otros desarrolladores del proyecto.

La vida bajo un control de versión es demasiado buena como para arruinarla con errores
fácilmente evitables.

Traducción: Espartaco Palma

73. Da preferencia a tipos de Dominio Específico que los tipos primitivos.

Autor: Einar Landre
El 23 de septiembre de 1999 el Mars Climate Orbiter de U$327.6 millones se perdió mientras
entraba a la órbita alrededor de Marte, debido a un error del software aquí en la Tierra. Error
que más tarde fue llamado de “métrica mixta”. El software de la estación en tierra estaba
trabajando en libras, mientras que la nave esperaba newtons, llevando a la estación a
subestimar el poder de los propulsores de la nave en un factor de 4.45.

Éste es uno de los muchos ejemplos de fallas de software que se pudo haber prevenido, si se
hubiera aplicado un tipado más fuerte y de dominio específico. Es también un ejemplo del
razonamiento detrás de muchas características del lenguaje Ada, uno de sus principales metas
de diseño era implementar software de seguridad crítica embebida. Ada estaba
fuertemente tipado con revisiones estáticas de ambos: tipos primitivos y tipos definidos por el
usuario.

type Velocity_In_Knots is new Float range 0.0 .. 500.00;

type Distance_In_Nautical_Miles is new Float range 0.0 .. 3000.00;

http://97cosas.com/programador/preferencia-tipos-dominio-especifico.html

Velocity: Velocity_In_Knots;

Distance: Distance_In_Nautical_Miles;

Some_Number: Float;

Some_Number:= Distance + Velocity; -- Será capturado por el compilador como un error de t

ipos.

Los desarrolladores en dominios menos demandantes también se deberían beneficiar aplicando
más tipadode dominio específico, en el que pudieran, de otro modo, continuar usando tipos de
datos primitivos ofrecidos por el lenguaje y sus librerías, tales como cadenas y flotantes. En
Java, C++, Python y otros lenguajes modernos, los tipos de datos abstractos son conocidos

como clases. Usar clases como Velocity_In_Knots y Distance_In_Nautical_Miles agrega

mucho valor con respecto a la calidad del código:

 El código se vuelve más legible conforme expresa conceptos de un dominio, no sólo

flotantes o cadenas.

 El código se vuelve más testeable conforme encapsula su comportamiento, así es

fácilmente probado.

 El código facilita la reutilización a través de aplicaciones y sistemas.

El enfoque es igualmente válido para usuarios de ambos lenguajes de tipo estático y dinámico.
La única diferencia es que los desarrolladores que usan lenguajes de tipado estático obtienen
más ayuda desde el compilados, mientras aquellos que adoptan lenguajes de tipado dinámico
es más común que confíen en sus pruebas unitarias. El estilo de revisión podría ser diferente,
pero la motivación y estilo de expresión no.

La moraleja es iniciar explorando los tipos de dominio específico con el fin de desarrollar
software de calidad.

Traducción: Espartaco Palma

74. Preocúpate por el código.

Autor: Pete Goodliffe
No hace falta ser Sherlock Holmes para saber que los buenos programadores escriben buen
código. Los malos programadores… no. Ellos producen monstruosidades que el resto de
nosotros tenemos que limpiar. ¿Tú quieres escribir las cosas buenas, verdad? Quieres ser un
buen programador.

El buen código no rebota en el aire. No es algo que pasa por suerte cuando los planetas se
alinean. El buen código tiene que ser trabajado, duramente. Y sólo obtendrás buen código si te
preocupas por un buen código.

http://97cosas.com/programador/preocupate-por-el-codigo.html

La buena programación no nace de la mera competencia técnica. He visto programadores
altamente intelectuales que pueden producir intensos e impresionantes algoritmos, que conocen
su lenguaje estándar de corazón, pero que escriben el código más horrible. Es doloroso de leer,
doloroso de usar y doloroso de modificar. He visto programadores más humildes que se
adhieren a un código muy sencillo, pero que escriben programas elegantes y expresivos, y es
placentero trabajar con ellos.

Basado en mis años de experiencia en la fábrica de software, he concluido que la verdadera
diferencia entre programadores adecuados y grandes programadores es esta: actitud. Los
buenos programadores se dedican a tomar un enfoque profesional y quieren escribir el mejor
software que puedan, aún con las limitaciones y presiones de la fábrica de software del mundo
real.

El código del infierno está empedrado de buenas intenciones. Para ser un excelente
programador tienes que estar más arriba de las buenas intenciones y realmente preocuparte
por el código, fomentar perspectivas positivas y desarrollar actitudes sanas. El gran código es
cuidadosamente confeccionado por maestros artesanos, no hackeado irreflexivamente por
programadores flojos o erigido misteriosamente por autoproclamados gurús del código.

Tú quieres escribir buen código. Quieres ser un buen programador. Entonces, te preocupas por
el código:

 En cualquier situación de codificación, te rehúsas a hackear algo que sólo parece que

funciona. Te esfuerzas para elaborar un código elegante que es claramente correcto (y

tienes buenas pruebas para mostrar que es correcto).

 Escribes código que es descubrible (que otros programadores pueden tomarlo y entenderlo

fácilmente), que es mantenible (que tú u otros programadores serán capaz de modificarlo

fácilmente en el futuro) y que es correcto (tomas todas las medidas posibles para determinar

que has solucionado el problema, no sólo hacer que parezca que el programa funciona).

 Trabajas bien junto con otros programadores. Ningún programador es una isla. Pocos

programadores trabajan solos; la mayoría trabaja en un equipo de programadores, ya sea

en un entorno empresarial o en un proyecto de código abierto. Consideras a los otros

programadores y construyes código que otros pueden leer. Deseas que el equipo escriba

el mejor software posible, en lugar de hacerte lucir inteligente.

 Cada vez que tocas una pieza de código te esfuerzas en dejarlo mejor que como lo

encontraste (ya sea mejor estructurado, mejor probado, más entendible).

 Te preocupas por el código y la programación, así que estás aprendiendo constantemente

nuevos lenguajes, idiomas y técnicas. Pero sólo los aplicas cuando es apropiado.

Afortunadamente, estás leyendo esta colección de consejos porque te preocupas por el código,
te interesa, es tu pasión. Te diviertes programando. Disfrutas cortar código para solucionar
problemas difíciles. Produces software que te hace sentir orgulloso.

Traducción: Espartaco Palma

75. El Principio de Responsabilidad Única.

http://97cosas.com/programador/el-mito-del-guru.html
http://97cosas.com/programador/pruebas-son-rigor-ingenieril.html
http://97cosas.com/programador/escribe-codigo-mantenerlo-por-vida.html
http://97cosas.com/programador/regla-boy-scout.html
http://97cosas.com/programador/regla-boy-scout.html
http://97cosas.com/programador/no-aprendas-lenguaje-entiende-su-cultura.html
http://97cosas.com/programador/no-aprendas-lenguaje-entiende-su-cultura.html
http://97cosas.com/programador/aprende-lenguaje-extranjero.html
http://97cosas.com/programador/principio-responsabilidad-unica.html

Autor: Uncle Bob
Uno de los principios fundamentales de un buen diseño es: reúna las cosas que cambian por la
misma razón y separe aquellas cosas que cambian por diferentes razones.

Este principio es conocido también como el Principio de la Responsabilidad Única o SRP (por
sus siglas en inglés). En definitiva, se dice que un subsistema, módulo, clase o incluso una
función no debe tener más de una razón para cambiar. El ejemplo clásico es una clase que tiene
métodos relacionados con reglas de negocio, reportes y base de datos:

public class Empleado {

 public Money calculaPago() ...

 public String reportaHoras() ...

 public void guardar() ...

}

Algunos programadores podrían pensar que poner estas tres funciones en la misma clase es
perfectamente apropiado. Después de todo, se supone que las clases son colecciones de
funciones que operan sobre las variables comunes. Sin embargo, el problema es que las tres

funciones cambian por razones totalmente distintas. La función calculaPago cambiará cada vez

que las reglas de negocio para calcular el pago cambien. La función reportaHoras cambiará

cada vez que alguien quiera otro formato para el informe. La función guardar cambiará cada

vez que los DBA cambien el esquema de base de datos. Estas tres razones de cambio se

combinan para hacer a Empleado muy volátil. Cambiará por alguna de estas razones. Más

importante aún, las clase que depende de Empleado será afectadas por estos cambios.

El buen diseño de sistemas significa que separamos el sistema en componentes que pueden
ser implementados de forma independientemente. La implementación independiente significa
que si cambiamos un componente no tenemos que volver a implementar alguno de los otros.

Sin embargo, si Empleado es muy utilizado por muchas otras clases en otros componentes,

entonces es probable que cada cambio a Empleado cause que los otros componentes tengan

que volverse a implementar; negando así el mayor beneficio del diseño de componentes (o
SOA, si se prefiere un nombre más de moda).

public class Empleado {

 public Money calculaPago() ...

}

public class ReporteadorEmpleado {

 public String reportHora(Empleado e) ...

}

public class RepositorioEmpleado {

 public void guardar(Empleado e) ...

}

La simple división mostrada arriba resuelve estos problemas. Cada una de estas clases se
puede colocar en un componente para sí mismas. O, mejor dicho, todos las clases de reporteo
pueden ir en el componente de reporteo. Todas las clases relacionadas con base de datos
pueden estar en el componente de repositorios. Y todas las reglas de negocios pueden entrar
en el componente de reglas de negocio.

El lector astuto verá que aún existen dependencias en la solución anterior. Ese Empleado aún

depende de las otras clases. Si se modifica Empleado , es probable que las otras clases se

tengan que volver a compilar e implementar. Por lo tanto Empleado no se puede modificar y

después implementar independientemente. Sin embargo, las otras clases pueden ser
modificadas e implementadas independientemente. Ninguna modificación de alguna clase
puede forzar a cualquiera de los otras a ser recompiladas o reimplementadas.

Incluso Empleado podría ser implementada independientemente a través de un uso cuidadoso

del Principio de Inversión de Dependencias (DIP), pero eso es un tema para otro libro.

La aplicación cuidadosa del SRP, separando las cosas que cambian por diferentes razones, es
una de las claves para la creación de diseños que tienen una estructura de componentes de
implementación independientemente.

Traducción: Espartaco Palma

76. Programa en pareja y siente el flujo.

Autor: Gudny Hauknes, Ann Katrin Gagnat, y Kari Røssland
Imagina que estás totalmente absorto en lo que estás haciendo, enfocado, dedicado e
involucrado. Pudiste haber perdido el rastro del tiempo. Probablemente te sientas feliz. Estás
experimentando el flujo. Es difícil alcanzar y mantener el flujo de todo el equipo de
desarrolladores debido a que hay tantas interrupciones, interacciones y otras distracciones que
puede ser roto fácilmente.

Si ya has practicado la programación en pareja, probablemente estás familiarizado con cómo el
emparejamiento contribuye al flujo. Si no lo estás, ¡queremos usar nuestras experiencias para
motivarte a comenzar ahora mismo! Para tener éxito con la programación en pares tanto los
miembros individuales del equipo y el equipo como un todo tienen que poner algo de esfuerzo.

Como miembro de un equipo, sé paciente con los desarrolladores menos experimentados que
tú. Enfrenta tus miedos de ser intimidado por desarrolladores más hábiles. Date cuenta de que
la gente es diferente y valóralo. Sé consciente de tus propias fortalezas y debilidades, así como
las de los otros miembros del equipo. Podrías sorprenderte de cuánto puedes aprender de tus
colegas.

Como equipo, introduce la programación en pareja para promover la distribución de habilidades
y conocimiento a través del proyecto. Deberás solucionar tus tareas en parejas y rotar las
parejas y tareas frecuentemente. Acordar una regla de rotación. Pongan la regla a un lado o
ajústenla cuando sea necesario. Nuestra experiencia es que no necesariamente tienen que

http://www.amazon.com/dp/0135974445/
http://97cosas.com/programador/programa-en-pareja-siente-flujo.html

completar una tarea antes de rotarla a otro par. Interrumpir las tareas para pasarla a otra pareja
puede sonar contradictorio, pero hemos descubierto que funciona.

Existen numerosas situaciones en las que el flujo se puede romper, pero aquí es donde la
programación en pareja ayuda a mantenerlo:

 Reduce el “factor camión”: es un experimento mental ligeramente mórbido, pero ¿cuántos

de tus miembros del equipo tendrían que ser golpeados por un camión antes de que el

equipo sea incapaz de completar la entrega final? En otras palabras, ¿qué tan dependiente

es tu entrega de ciertos miembros del equipo? ¿El conocimiento se privilegia o se comparte?

Si has estado rotando las tareas entre las parejas, siempre hay alguien más que tiene el

conocimiento y puede completar el trabajo. El flujo del equipo no es afectado por el “factor

camión”.

 Soluciona problemas efectivamente: si estás programando en pareja y entras en un

problema difícil, siempre tendrás a alguien con quién discutirlo. Este diálogo puede abrir

más posibilidades que si estás atorado tú solo. Conforme el trabajo se rota, tu solución será

revisitada y reconsiderada por el siguiente par, así que no importa si inicialmente no elegiste

la solución óptima.

 Integra sin problemas: si tu tarea actual consiste en llamar otro fragmento de código,

esperas que los nombres de los métodos, los documentos y las pruebas sean lo

suficientemente descriptivas para darte una idea de lo que hacen. Si no, hacer pareja con

un desarrollador que estaba involucrado en escribir ese código te dará una mejor vista

general e integración rápida con tu propio código. Adicionalmente, puedes usar la discusión

como una oportunidad para mejorar la nomenclatura, documentos y pruebas.

 Mitiga interrupciones: si alguien viene a preguntar algo, o suena tu teléfono, o tienes que

contestar un correo urgente, o tienes que atender una reunión, tu socio de programación en

pareja puede quedarse codificando. Cuando regreses, tu socio estará aún en el flujo y

rápidamente lo alcanzarás y te incorporarás a él.

 Los nuevos miembros de equipo aceleran rápidamente: con la programación en parejas,

y con una adecuada rotación de pares y tareas, los recién llegados conocerán rápidamente

tanto el código como a los otros miembros del equipo.

El flujo te hace increíblemente productivo. Pero también es vulnerable. Haz lo que puedas para
obtenerlo y aférrate a él cuando lo tengas.

Traducción: Espartaco Palma

77. Prueba el comportamiento requerido, no el comportamiento incidental.

Autor: Kevlin Henney
Una trampa común en las pruebas es asumir que lo que hace una implementación es
precisamente lo que quieres probar. De primera instancia suena más como una virtud que una
trampa. Sin embargo, expresado de otra manera, el tema se vuelve más obvio: una trampa

http://97cosas.com/programador/prueba-comportamiento-requerido-no-incidental.html

común es escribir las pruebas para las especificaciones de una implementación, en las cuales
estas especificaciones son incidentales y no tienen nada que ver con la funcionalidad deseada.

Cuando las pruebas están amarradas a las implementaciones incidentales, los cambios en la
implementación son compatibles con el comportamiento requerido y pueden provocar que las
pruebas fallen, conduciéndonos a falsos positivos. Los programadores frecuentemente
responden ya sea reescribiendo los test o reescribiendo el código. Asumir que un falso positivo
es realmente un verdadero positivo es frecuentemente una consecuencia de miedo,
incertidumbre o duda. Al reescribir una prueba, los programadores o reenfocan la prueba al
comportamiento requerido (bien) o simplemente lo amarran a la nueva implementación (mal).
Las pruebas necesitan ser lo suficientemente precisas, pero también necesitan ser exactas.

Por ejemplo, en una comparación de tres vías, tales como el strcpm de C o

el String.compareTo de Java, el requerimiento en el resultado es que es negativo si el lado

izquierdo es menor que el derecho, positivo si el lado izquierdo es mayor que el derecho y cero
si son considerados iguales. Este estilo de comparación es usado en muchas API, incluido el

comparador de la función qsort de C y el compareTo en la interfaz Comparable de Java. Aunque

los valores específicos -1 y +1 son comúnmente usados en la implementación para significar
menor-que y mayor-que, respectivamente, los programadores a menudo asumen erróneamente
que estos valores representan el requerimiento actual y consecuentemente escriben pruebas
que clavan esta suposición en público.

Un tema similar surge cuando las pruebas que hacen asserts en el espaciado, texto exacto y
otros aspectos del formato de texto y representación son incidentales. A menos que estés
escribiendo, por ejemplo, un generador XML que ofrece un formateo configurable, el espaciado
no debería ser significativo en la salida. Del mismo modo, amarrar el posicionamiento de
botones y etiquetas en controles de Interfaz de Usuario (UI) reduce la opción de cambio y refina
estas incidencias en el futuro. Los cambios menores en la implementación, así como los
cambios insignificantes en el formato se convierten de repente en cosas que rompen la
compilación.

Las pruebas sobre-especificadas son frecuentemente un problema con enfoques de “caja
blanca” en las pruebas unitarias. Las pruebas de “cajas blanca” usan la estructura del código
para determinar los casos de prueba necesarios. La típica falla en las pruebas de “caja blanca”
es que las pruebas terminan afirmando que el código hace lo que tiene que hacer. El sólo reiterar
lo obvio no agrega valor y conduce a una falsa sensación de progreso y seguridad.

Para ser eficaces, las pruebas necesitan establecer obligaciones contractuales en lugar de
parlotear la implementación. Necesitan tomar una visión de “caja negra” en las pruebas unitarias
a probar, esbozando los contratos de la interfaz de manera ejecutable. Y, así, alinear el
comportamiento probado con el comportamiento requerido.

78. Prueba precisa y concretamente.

Autor: Kevlin Henney
Es importante probar el comportamiento deseado y esencial de una unidad de código, en vez
de probar el comportamiento incidental de su implementación en particular. Pero esto no
debería ser tomado, o mal tomado, como una excusa para las pruebas vagas. Las pruebas
necesitan ser exactas y precisas.

Como ejemplo ilustrativo podemos tomar el caso intentado y probado múltiples veces, siendo
ya todo un clásico: las rutinas de ordenamiento. Implementar un algoritmo de ordenamiento no

http://es.wikipedia.org/wiki/FUD
http://es.wikipedia.org/wiki/FUD
http://97cosas.com/programador/prueba-precisa-concretamente.html
http://97cosas.com/programador/prueba-comportamiento-requerido-no-incidental.html

es necesariamente una tarea diaria de un programador, pero el ordenamiento es una idea tan
familiar que mucha gente cree saber qué esperar de ello. Esta familiaridad casual, sin embargo,
puede hacer difícil ver más allá de ciertos supuestos.

Cuando se le pregunta a los programadores “¿qué es lo que probarías?”, la respuesta más
común y, por mucho, es “el resultado del ordenamiento es una secuencia ordenada de
elementos”. A pesar de que es verdad, no es toda la verdad. Cuando se les pide una condición
más precisa, muchos programadores agregan que la frecuencia resultante debe ser de la misma
longitud que el original. A pesar de que es correcto, aún no es suficiente. Por ejemplo, dada la
siguiente secuencia:

3 1 4 1 5 9
La siguiente secuencia satisface una poscondición de estar ordenado de manera no-
descendiente y teniendo la misma longitud que la secuencia original:

3 3 3 3 3 3
A pesar de que satisface las especificaciones, ¡esto es también algo a lo que ciertamente no
nos referíamos! Este ejemplo está basado en un error tomado de un código de producción real
(afortunadamente capturado antes de que fuera liberado), en el cual un simple desliz de un
teclazo o un lapso momentáneo del razonamiento nos lleva a un elaborado mecanismo de llenar
el resultado entero con el primer elemento de alguna matriz.

La poscondición completa es que el resultado esté ordenado y que tenga una permutación de
los valores originales. Esto restringe apropiadamente el comportamiento requerido. Que la
longitud del resultado sea el mismo que el de la longitud de la entrada viene con ello y no
necesita ser reiniciado.

Aún estipular la poscondición en la manera descrita no es suficiente para darte una buena
prueba. Una buena prueba debe ser leíble. Debe ser comprensible y suficiente como para que
leyéndola puedas ver si es correcta (o no). A menos que ya tengas código por ahí para checar
que una secuencia se ordena y que esa secuencia contiene una permutación de valores en otra,
es muy probable que el código de prueba sea más complejo que el código a probar. Como Tony
Hoare observa: “Hay dos manera de construir un diseño de software: una manera es hacerlo
tan simple que obviamente no hay deficiencias y la otra es construirlo tan complicado que no
hay deficiencias obvias”.

Usando ejemplos concretos eliminamos esta complejidad accidental y oportunamente por
accidente. Por ejemplo, dada la siguiente secuencia:

3 1 4 1 5 9
El resultado del ordenamiento es el siguiente:

1 1 3 4 5 9
Ninguna otra respuesta lo será. No aceptes sustitutos.

Los ejemplos concretos ayudan a ilustrar el comportamiento general de una manera accesible
y no ambigua. El resultado de agregar un item a una colección vacía no es simplemente que no
esté vacía: es que la colección ahora tiene un elemento y que ese elemento es el item agregado.
Dos o más elementos calificarían como no vacío. Y estaría mal. Un sólo elemento de un valor
diferente también estaría mal. El resultado de agregar una fila a una tabla no es simplemente
que la tabla es una fila más grande. Esto también implica que la llave para la fila puede ser
usada para recuperar la fila agregada. Y así por el estilo.

Al especificar el comportamiento, las pruebas deberían ser simplemente exactas: también
deben ser precisas.

Traducción: Espartaco Palma

79. Haz pruebas mientras duermes (y los fines de semana).

Autor: Rajith Attapattu
Tranquilo. No me refiero a centros de desarrollo a larga distancia, horas extra en fin de semana
o trabajar de noche. En vez de ello, quiero llamar tu atención sobre la cantidad de poder de
cómputo que tenemos a disposición. Específicamente, cuánto no estamos aprovechando para
hacer nuestras vidas como programadores un poco más fáciles. ¿Constantemente estás
teniendo dificultades para tener suficiente poder de cómputo durante la jornada de trabajo? Si
es así, ¿qué están haciendo tus servidores de prueba fuera de las horas de trabajo normal? A
menudo están sin carga durante la noche y los fines de semana. Puedes usar eso a tu favor.

 ¿Te has sentido culpable de confirmar un cambio sin ejecutar todas las pruebas? Una de

las razones principales de que los programadores no ejecutan los conjuntos de pruebas

antes de hacer commit al código se debe a la cantidad de tiempo que puede tomar. Cuando

las fechas límite se avecinan y la presión acecha, los humanos naturalmente empezamos a

tomar atajos. Una forma de abordar esto es romper los largos conjuntos de pruebas en dos

o más perfiles. Uno pequeño, un perfil de pruebas obligatorio que sea rápido de ejecutar, te

ayudará a asegurarte de que las pruebas se ejecuten antes de cada commit. El total de lo

perfiles (incluyendo el perfil obligatorio, sólo para estar seguros) puede ser automatizado

para ejecutarse durante la noche, listo para reportar los resultados en la mañana.

 ¿Has tenido suficiente oportunidad de poner a prueba la estabilidad de tu producto? Las

pruebas de más larga duración son vitales para identificar fugas de memoria y otros

problemas de estabilidad. Rara vez se ejecutan durante el día, ya que consumen tiempo y

recursos. Puedes automatizar una carga de prueba durante la noche y una un poco más

larga durante el fin de semana. Del viernes 6.00 PM hasta las 6.00 AM del siguiente lunes

hay 60 horas de tiempo potencial para las pruebas.

 ¿Estás obteniendo tiempo de calidad en tu entorno de pruebas de rendimiento? He visto

altercados entre equipos para tener tiempo en estos entornos. En la mayoría de los casos

ningún equipo obtiene tiempo de calidad durante el día, mientras que el ambiente está

virtualmente inactivo durante las horas posteriores. Los servidores y la red no está ocupados

durante la noche o los fines de semana. Es el momento ideal para ejecutar algunas pruebas

de rendimiento de calidad.

 ¿Hay demasiadas permutaciones de pruebas manuales? En muchos casos tu producto está

destinado a ser ejecutado en una variedad de plataformas. Por ejemplo, en 32 y 64 bits, en

Linux, Solaris y Windows, o simplemente en diferentes versiones del mismo sistema

operativo. Para empeorar las cosas, muchas aplicaciones modernas son expuestas a una

plétora de mecanismos de transporte y protocolos (HTTP, AMQP, SOAP, CORBA,

etcétera). Probar manualmente todas estas permutaciones consume mucho tiempo y

comúnmente se realizan cerca de una fecha de liberación debido a la presión de recursos.

Por desgracia, puede ser demasiado tarde en el ciclo para capturar desagradables errores.

http://97cosas.com/programador/pruebas-fin-de-semana.html

Las pruebas automatizadas que se ejecutan durante la noche o fin de semana asegurarán que
todas estas permutaciones son puestas a prueba con mayor frecuencia. Con un poco de
pensamiento y algo de conocimiento de secuencias de comandos (scripting) puedes programar
unos cuantos trabajos cron para poner en marcha algunas pruebas durante la noche y los fines
de semana. Hay también muchas herramientas de prueba por ahí que podrían ser útiles.
Algunas organizaciones incluso tienen granjas de servidores que turnan servidores a través de
diferentes departamentos y equipos para asegurar que los recursos son utilizados
eficientemente. Si esto está disponible en tu empresa, puedes enviar las pruebas para que sean
ejecutadas en la noche o durante los fines de semana.

Traducción: Espartaco Palma

80. Las pruebas son el rigor ingenieril del desarrollo de software.

Autor: Neal Ford
Los desarrolladores aman usar metáforas torturadoras cuando se trata de explicar a los
miembros de su familia, esposas y otros no técnicos qué es lo que hacen. Con frecuencia
recurrimos a la construcción de puentes y otras disciplinas de ingenierías “duras”. Todas estas
metáforas caen rápidamente, sin embargo, cuando intentas presionar hacia a ellas demasiado
duro. Resulta que el desarrollo de software no es como muchas de las otras disciplinas de la
ingeniería, “duras” en muchos aspectos importantes.

Comparado con las ingenierías “duras”, el mundo del desarrollo de software está en el mismo
lugar donde los constructores de puentes estaban cuando la estrategia común era construir el
puente y lanzar algo pesado sobre él. Si se mantenía de pie, era un buen puente. Si no, bueno,
era tiempo de regresar a la mesa de dibujo. Durante los últimos miles de años, los ingenieros
han desarrollado las matemáticas y física que usan para una solución estructural sin tener que
construirlo para ver lo que hace. No tenemos nada como eso en el software, y quizás nunca lo
tendremos, porque el software es, de hecho, algo muy diferente. Para una exploración profunda
de la comparación entre “ingeniería” de software y la ingeniería normal, lee el libro “What’s
Software Design”, escrito por Jack Reeves en C++ Journal en 1992, es un clásico. A pesar de
que fue escrito hace casi dos décadas, es aún remarcablemente exacto. Él pintó un panorama
sombrío en esta comparación, pero lo que faltaba en 1992 era una fuerte prueba Ethos para el
software.

Probar cosas “duras” es difícil porque tienes que construirlo para probarlo, lo cual desalienta la
construcción especulativa sólo para ver qué pasará. Pero el proceso de construcción de
software es ridículamente barato. Hemos desarrollado todo un ecosistema de herramientas que
hacen que sea fácil hacer precisamente eso: pruebas unitarias, objetos de imitación, arneses
de pruebas y un montón de otras cosas. A otros ingenieros les encantaría ser capaces de hacer
algo y probarlo bajo condiciones realistas. Como desarrolladores de software debemos abrazar
las pruebas como la verificación primaria (pero no la única) para el software. En lugar de esperar
por algún tipo de cálculo de software, ya tenemos las herramientas a nuestra disposición para
asegurar buenas prácticas de ingeniería. Visto de esta manera, ahora tenemos municiones
contra los directivos que dicen: “No tenemos tiempo para pruebas”. Un constructor de puentes
nunca escuchará de su jefe: “No te molestes en hacer el análisis estructural para esa
construcción, tenemos un plazo muy corto”. El reconocimiento de que la prueba es, de hecho,
el camino para la reproducción y la calidad de software nos permite, como desarrolladores,
regresar los argumentos contra su irresponsabilidad profesional.

Las pruebas toman su tiempo, al igual que el análisis estructural lleva su tiempo. Ambas
actividades garantizan la calidad del producto final. Es hora de que los desarrolladores tomen

http://97cosas.com/programador/pruebas-son-rigor-ingenieril.html
http://www.developerdotstar.com/mag/articles/reeves_design.html
http://www.developerdotstar.com/mag/articles/reeves_design.html

el mando de la responsabilidad de lo que producen. Las pruebas por sí mismas no son
suficientes, pero son necesarias. Probar es el rigor ingenieril del desarrollo de software.

Traducción: Espartaco Palma

Leer contribución original

81. Los registros detallados perturbarán tu sueño.

Autor: Johannes Brodwall
Cuando me encuentro un sistema que ya ha estado en desarrollo o producción por un tiempo,
la primera señal de un verdadero problema es siempre un registro sucio. Sabes a lo que me
refiero. Cuando al hacer clic en un link de flujo normal de una página web, resulta en un diluvio
de mensajes en el único registro que el sistema provee. Demasiados registros pueden ser
inútiles como ninguno.

Si tus sistemas son como los míos, cuando se termina tu trabajo empieza el trabajo de alguien
más. Después de que el sistema ha sido desarrollado, es de esperar que vivirá una larga y
próspera vida de servicio a los clientes. Si tienes suerte. ¿Cómo sabrás si algo va mal cuando
el sistema está en producción y cómo lidiar con él?

Quizás alguien más lo monitoreará por ti o lo monitorearás tú mismo. De cualquier forma, los
registros probablemente serán parte del monitoreo. Si algo sucede y tienes que estar despierto
para lidiar con él, entonces quieres estar seguro que hay una buena razón en ello. Si el sistema
está muriendo, quiero saberlo. Pero si es sólo hipo, preferiría disfrutar de mi bello sueño.

Para muchos sistemas, el primer indicador de que algo está mal es un mensaje de registro
escrito en alguna bitácora. Generalmente, éste será un registro de error. Así que hazte un favor:
asegúrate desde el día uno de que si registras algo en la bitácora de errores, estás dispuesto a
tener a alguien llamando y despertándote a la mitad de la noche por ello. Si puedes simular
carga en tu sistema durante las pruebas, mirar en una bitácora de errores libre de ruido es
también una buena primera indicación de que tu sistema es razonablemente robusto. O una
alerta temprana si no lo es.

Los sistemas distribuidos agregan otro nivel de complejidad. Tienes que decidir cómo hacer
frente a uno de dependencia externa. Si tu sistema está muy distribuido, esto será una
ocurrencia común. Asegúrate de que tu política de registro lo tome en cuenta.

En general, la mejor señal de que todo está bien es que los mensajes de menor prioridad están
tildando felizmente. Deseo algo así como un mensaje de registro de nivel INFO por cada evento
importante de la aplicación.

Una bitácora desordenada es un indicador de que el sistema será difícil de controlar una vez
que llegue a producción. Si no esperas que nada se muestre en la bitácora de error, será mucho
más fácil saber qué hacer cuando algo aparezca.

Traducción: Espartaco Palma

82. La Regla Boy Scout.
Los Boy Scout tienen una regla: “Siempre deja el lugar de acampamento más limpio que como
lo encontraste”. Si encuentras un desastre en el piso, lo limpias sin importar quién pudo haber

http://programmer.97things.oreilly.com/wiki/index.php/Testing_Is_the_Engineering_Rigor_of_Software_Development
http://97cosas.com/programador/registros-detallados-quitaran-sueno.html
http://97cosas.com/programador/regla-boy-scout.html

hecho el desastre. Mejoras intencionalmente el ambiente para el siguiente grupo de campistas.
En realidad, la forma original de la regla, escrita por Robert Stephenson Smyth Baden-Powell,
el padre del Scoutismo, era “Intenta y deja el mundo un poco mejor que como lo encontraste”.

Que tal si seguimos una regla similar con nuestro código: “siempre deja un módulo más limpio
que cuando lo revisaste”. No importa quién fue el autor original, qué tal si siempre hacemos
algún esfuerzo, sin importar lo pequeño, para mejorar el módulo. ¿Cuál sería el resultado?

Creo que si todos seguimos esa simple regla, podría ser el final del implacable deterioro en
nuestros sistemas. En vez de ello, nuestros sistemas serían gradualmente mejores y mejores
en cuanto evolucionaran. También veríamos equipos que cuidan el sistema como un todo, en
vez de individualistas cuidando su pequeña partecita.

No creo que esta regla sea mucho pedir. No tienes que hacer cada módulo perfecto antes de
dejarlo. Simplemente tienes que hacerlo un poco mejor cuando lo dejes. Claro, esto significa
que cualquier código que agregues al módulo debe estar limpio. Esto también significa que
limpies, al menos, alguna otra cosa antes de que regreses el módulo. Podrías simplemente
mejorar el nombre de una variable o separar una larga función en dos pequeñas. Podrías romper
una dependencia circular o agregar una interfaz para desacoplar la política del detalle.

Francamente, esto me suena como decencia común, como lavarte las manos después de usar
el baño o poner la basura en el bote en vez de tirarla en el suelo. De hecho, el acto de dejar un
desastre en el código debería ser socialmente inaceptable, como tirar basura. Esto debería ser
algo que simplemente no se hace.

Pero es más que eso. El cuidado de nuestro propio código es una cosa. Tener cuidado del
código del equipo es otra muy distinta. Los equipos se ayudan entre sí, y después se limpian
entre ellos. Siguen la regla Boy Scout, porque es bueno para todos, no sólo para ellos.

Traducción: Espartaco Palma

83. La regla de oro del diseño de API.
El diseño de API es difícil, particularmente los grandes. Si estás diseñando una API que va a
tener cientos o miles de usuarios, tienes que pensar qué podrías cambiar en el futuro y si los
cambios pueden romper el código de tu cliente. Más allá de esto, tienes que pensar cómo te
afectan los usuarios de tu API. Si unas de tus clases API usa uno de sus métodos internamente,
tienes que recordar que un usuario podría hacer una subclase de tu clase y sobrescribirla, y eso
puede ser desastroso. No podrías ser capaz de cambiar ese método porque alguno de tus
usuarios le ha dado un significado diferente. Tus futuras opciones de implementación interna
están a merced de tus usuarios..

Los desarrolladores de API solucionan este problema de varias formas, pero la más fácil es

bloquear el API. Si estás trabajando en Java quizás estés tentado a hacer final a la mayoría

de tus clases y métodos. En C# podrías hacer sealed tus clases y métodos.

Independientemente del lenguaje que estés usando, podrías estar tentado a presentar tu API a
través de un singleton o usar métodos factory estáticos, así puedes defenderte de la gente que
podría sobrescribir el comportamiento y usar tu código de formas que podrían restringir tus
opciones más adelante. Todo esto parece razonable, pero ¿lo es realmente?

En la última década nos hemos dado cuenta gradualmente de que las pruebas unitarias son
una parte importante de la práctica, pero esa lección no ha penetrado completamente la
industria. La evidencia está a nuestro alrededor. Toma arbitrariamente una clase que no ha sido
probada y que use un API de terceros e intenta escribir una prueba unitaria para él. La mayoría
de las veces encontrarás problemas. Encontrarás que el código usando el API se pega a él
como con pegamento. No hay manera de impersonalizar las clases del API para que puedas

http://97cosas.com/programador/regla-oro-api.html

detectar las interacciones de tu código con ellos o proporcionar valores de retorno para la
prueba.

Con el tiempo, esto va a mejorar, pero sólo si empezamos a ver las pruebas como un caso de
uso real cuando diseñamos API. Desafortunadamente, es un poco más complicado que sólo
probar nuestro código. Es aquí donde encaja la Regla de Oro del diseño de API: no es suficiente
escribir pruebas del API que desarrollas; tienes que escribir pruebas unitarias para el código
que usa tu API. Cuando lo haces aprendes de primera mano los obstáculos que tus usuarios
tendrán que superar cuando intenten probar su código independientemente.

Cuando no hay una forma única de hacer fácil para los desarrolladores el probar el código que

usa tu API, ni static , final o sealed son inherentemente malos constructos. A veces pueden

ser útiles, pero es importante tener en cuenta el tema de las pruebas y, para lograrlo, tienes que
experimentarlo tú mismo. Una vez que lo haces, puedes enfocarlo como lo harías con cualquier
otro reto de diseño.

Traducción: Espartaco Palma

84. Reinventa la rueda frecuentemente.

Autor: Jason P Sage
“Sólo tienes que utilizar algo existente, es una tontería reinventar la rueda…”
¿Alguna vez has oído esto o alguna variación? ¡Seguro que sí! Todos los desarrolladores y
estudiantes probablemente han escuchado un comentario como éste con frecuencia. ¿Por qué
pensarlo? ¿Por qué reinventar la rueda es tan mal visto? Porque, con frecuencia o no, el código
existente es código en funcionamiento. Ya ha pasado por algún tipo de control de calidad,
pruebas rigurosas y se está utilizando con éxito. Adicionalmente, el tiempo y esfuerzo invertido
en la reinvención es poco probable que pague tan bien como usar producto o código base
existente. ¿Deberías preocuparte por reinventar la rueda? ¿Por qué? ¿Cuándo?

Quizá has visto publicaciones sobre patrones en el desarrollo de software o libros sobre diseño
de software. Estos libros pueden ser aburridos independientemente de la maravillosa
información contenida en ellos. Del mismo modo en que ver una película sobre navegación es
muy diferente a salir a navegar, así también es usar código existente frente a diseñar tu propio
software desde cero, probándolo, rompiéndolo, reparándolo y mejorándolo a lo largo del camino.

Reinventar la rueda no es sólo un ejercicio en dónde colocar constructos de código: se trata de
cómo conseguir un conocimiento profundo del funcionamiento interno de varios componentes
que ya existen. ¿Sabes cómo funcionan los gestores de memoria? ¿La paginación virtual?
¿Podrías implementarlo por ti mismo? ¿Qué tal las listas doblemente enlazadas? ¿Clases de
matrices dinámicas? ¿Clientes ODBC? ¿Podrías escribir una interfaz gráfica de usuario que
funcione como alguna otra muy popular que conozcas o te guste? ¿Puedes crear tu
propios widgets de navegador web? ¿Sabes cuándo escribir un sistema multiplexado contra
uno multihilo? ¿Cómo decidir entre una base de datos basada en archivos o en memoria? La
mayoría de los desarrolladores nunca han creado estas implementaciones de software central
por sí mismos y, por lo tanto, no tienen un conocimiento profundo de cómo funcionan. Como
consecuencia, todo este tipo de software es visto como misteriosas cajas negras que
simplemente funcionan. Comprender sólo la superficie del agua no es suficiente para revelarnos
los peligros ocultos debajo de ella. No saber las cosas más profundas en el desarrollo de
software limitará tu habilidad para crear trabajo estelar.

http://97cosas.com/programador/reinventa-rueda-frecuentemente.html

Reinventar la rueda y hacerlo mal es más valioso que equivocarse la primera vez. ¡Hay lecciones
aprendidas en la prueba y error que tienen un componente emocional que la lectura de un libro
técnico no te puede ofrecer!

Los hechos aprendidos y la información en los libros son cruciales, pero convertirse en un gran
programador es mucho más sobre adquirir experiencia que la recolección de hechos. Reinventar
la rueda es tan importante para la educación y habilidades de un desarrollador como lo es el
levantamiento de pesas para el fisicoculturista.

Traducción: Espartaco Palma

85. Resiste la tentación del patrón Singleton.

Autor: Sam Saariste
El patrón Singleton resuelve muchos de tus problemas. Sabes que sólo necesitas una sola
instancia. Tienes una garantía de que esta instancia fue inicializada antes de ser usada.
Mantiene tu diseño simple y con un sólo punto de acceso global. Todo está bien. ¿Qué es lo
que no me gusta de este clásico patrón de diseño?

Pues mucho, resulta ser. Puede ser tentador, pero la experiencia me mostró que la mayoría de
los Singletonhacen realmente más daño que bien. Dificultan las pruebas y dañan la capacidad
de mantenimiento. Desafortunadamente, esta sabiduría adicional no está tan propagada como
debería y los Singletons continúan siendo irresistibles para la mayoría de los programadores.
Pero vale la pena resistirse:

 El requisito de instancia única es con frecuencia imaginado. En muchos casos es pura

especulación de que no se necesitarán instancias adicionales en el futuro. Difundir tales

propiedades especulativas, a través del diseño de la aplicación, está destinado a causar

dolor en algún momento. Los requerimientos cambiarán. El buen diseño lo adopta.

Los Singleton no.

 Los Singleton causan dependencia implícita entre unidades de código conceptualmente

independientes. Esto es problemático porque están ocultos e introducen acoplamiento

innecesario entre las unidades. Este olor del código se pudre cuando intentas escribir

pruebas unitarias, las cuales dependen de soltar el acoplamiento y de la habilidad de

sustituir selectivamente una implementación simulada (mock) de una real.

Los Singleton previenen la simulación directa.

 Los Singleton también llevan estado persistente implícito, lo que dificulta más las pruebas

unitarias. Las pruebas unitarias dependen de que sean independientes entre sí, así las

pruebas pueden ser ejecutadas en cualquier orden y el programa puede ser configurado a

un estado conocido antes de la ejecución de cada prueba unitaria. Una vez que hayas

introducido Singleton con estado mutable, esto puede ser más difícil de llevar a cabo.

Además, dicho estado globalmente accesible hace más difícil razonar sobre el código,

especialmente en ambientes multihilos.

 Los multihilos introducen futuras fallas en el patrón Singleton. El bloqueo directo al acceso

no es muy eficiente, así es como el llamado patrón de doble revisión de bloqueo (DCLP) ha

ganado popularidad. Desafortunadamente, esto puede llevar una forma adicional de

http://97cosas.com/programador/resiste-tentacion-singleton.html
https://es.wikipedia.org/wiki/Singleton

atracción fatal. Resulta ser que muchos lenguajes DCLP no son thread-safe e, incluso

cuando lo son, aún hay oportunidades de sutiles errores.

El limpiado de Singleton puede presentar un reto final:

 No hay soporte para matar explícitamente a un Singleton, lo cuál puede ser un problema

delicado en algunos contextos. Por ejemplo, en una arquitectura de plug-ins en la que

un plug-in sólo puede ser descargado de forma segura después de que todos sus objetos

han sido limpiados.

 No hay orden implícito de limpieza de Singleton al salir del programa. Esto puede ser

problemático para aplicaciones que contienen Singleton con interdependencias. Cuando se

cierra dicha aplicación, un Singleton puede acceder a otra que ya ha sido destruida.

Algunas de estas deficiencias pueden ser superadas mediante la introducción de mecanismos
adicionales. Sin embargo, esto viene con el costo de complejidad adicional en código que se
podría haber evitado escogiendo un diseño alternativo.

Por lo tanto, restringe el uso del patrón Singleton a las clases que realmente nunca deber ser
instanciadas más de una vez. No uses un Singleton como punto de acceso global desde código
arbitrario. En vez de ello, el acceso directo al Singleton debería ser desde sólo unos pocos
lugares definidos, donde pueda dársele vuelta vía una interfaz hacia otro código. Este otro
código no lo sabe y así no depende de si un Singleton o cualquier otro tipo de clase implementa
la interfaz. Esto rompe la dependencia que impide las pruebas unitarias y mejora la capacidad
de mantenimiento. Así que, la próxima vez que estés pensando en implementar o acceder a
un Singleton espero que hagas una pausa y lo pienses de nuevo.

Traducción: Espartaco Palma

86. Retrocede y Automatiza, Automatiza, Automatiza.

Autor: Cay Horstmann
Trabajé con programadores que, cuando se les pidió un conteo del número de líneas de código
de un módulo, copiaban los archivos en un procesador de texto y usaban la característica de
“número de líneas”. Y lo hicieron de nuevo la siguiente semana y la semana siguiente. Fue malo.

Trabajé en un proyecto que tenía un proceso de implementación engorroso, implicaba la firma
de código y mover el resultado a un servidor, requiriendo muchos clics con el ratón. Alguien lo
automatizó y el script se ejecutó cientos de veces durante la prueba final, mucho más
frecuentemente de lo previsto. Fue bueno.

Entonces, ¿por qué la gente realiza la misma tarea una y otra vez, en vez de retroceder y
tomarse el tiempo de automatizarla?

Concepto erróneo común #1: La automatización es sólo para las pruebas

Seguro, la automatización en las pruebas es genial, pero ¿por qué detenerse ahí? Las tareas
repetitivas están en cualquier proyecto: control de versiones, compilación, construcción de
archivos JAR, generación de documentación, implementación y presentación de informes. Para
muchas de estas tareas, el script es más poderoso que el ratón. Ejecutar tareas tediosas se
convierte en algo más rápido y más fiable.

http://97cosas.com/programador/retrocede-automatiza.html

Concepto erróneo común #2: Tengo un IDE, así que no necesito automatizar

¿Alguna vez has tenido una discusión con un “pero (lo revisé | compila | pasa las pruebas) en
mi máquina” con alguno de tus compañeros de equipo? Los IDE modernos tienen miles de
configuraciones posibles y es prácticamente imposible asegurar que todos los miembros del
equipo tienen configuraciones idénticas. Los sistemas de compilación automática, tales como
Ant o Autotools, te proporcionan control y repetitividad.

Concepto erróneo común #3: Necesito aprender exóticas herramientas con el fin de
automatizar

Puedes seguir con un lenguaje de shell decente (tales como bash o Powershell) y un sistema
de automatización de compilación. Si necesitas interactuar con un sitio web, usa herramientas
como iMacros o Selenium.

Concepto erróneo común #4: No puedo automatizar esta tarea porque no puedo manejar
este tipo de formato

Si una parte de tu proceso requiere documentos Word, hojas de cálculo o imágenes, es cierto
que puede ser un reto para la automatización, pero ¿es realmente necesario? ¿Puedes usar
texto plano? ¿Valores separados por coma? ¿XML? ¿Alguna herramienta que genere un dibujo
a partir de un archivo de texto? Con frecuencia, unos ligeros arreglos en el proceso puede llevar
a un buen resultado con una dramática reducción del tedio.

Concepto erróneo común #5: No tengo el tiempo para averiguarlo

No tienes que aprender todo sobre bash o Ant para empezar. Aprende sobre la marcha. Cuando
tengas una tarea que crees que pueda y deba ser automatizada, aprende sólo lo necesario
acerca de la herramienta para hacerlo. Hazlo al inicio del proyecto cuando el tiempo es más fácil
de encontrar. Una vez que has tenido éxito, tú y tu jefe verán que tiene sentido invertir en
automatización.

Traducción: Espartaco Palma

87. Primero revisa tu código antes de buscar culpar a otros.

Autor: Allan Kelly
Los desarrolladores –¡todos nosotros!– frecuentemente tenemos problemas creyendo que
nuestro propio código está roto. Es tan improbable que, por una sola vez, debe ser el compilador
el que no funciona.

Aunque la verdad es muy (muy) inusual que el código no funcione debido a un bug en el
compilador, intérprete, sistema operativo (SO), servidor de aplicaciones, base de datos, gestor
de memoria o cualquier otra parte del software del sistema. Sí, esos bugs existen, pero son
mucho menos comunes de lo que quisieras creer.

Una vez tuve un genuino problema con un error en el compilador al optimizar un ciclo variable,
pero he imaginado que mi compilador o SO ha tenido un bug muchas más veces. He
desperdiciado un montón de tiempo, horas de soporte y tiempo de gestión en el proceso sólo
para sentirme un poco tonto cada vez que resultó ser mi error después de todo.

Asumiendo que las herramientas son ampliamente usadas, maduras y empleadas en varias
pilas de tecnología, hay muy pocas razones para dudar de la calidad. Por supuesto, si la
herramienta es un “early release”, o usada sólo por una pocas personas en todo el mundo, o
una pieza raramente usada, versión 0.1, Software Libre (Open Source) puede haber buenas

http://97cosas.com/programador/revisa-tu-codigo.html

razones para sospechar del software (igualmente, una versión alfa de un software comercial
podría ser sospechosa).

Teniendo en cuenta qué tan raros son los errores del compilador, estás mucho mejor poniendo
tu tiempo y energía en encontrar el error en tu código que probando que el compilador está mal.
Todos los consejos comunes en la depuración aplican, así que aísla el problema, apaga las
llamadas, rodéalo con pruebas; revisa convenciones de llamada, bibliotecas compartidas y
números de versión; explícalo a alguien más; busca corrupciones de pilas y tipos de variables
que no coinciden; prueba el código en diferentes máquinas y con diferentes configuraciones de
compilación, como el debug y la liberación.

Cuestiona tu propias suposiciones y las suposiciones de otros. Las herramientas de diferentes
proveedores pueden tener diferentes suposiciones dentro de ellas, así también podrían diferir
las herramientas del mismo proveedor.

Cuando alguien más está reportando un problema que no puedes duplicar, ve y mira qué está
haciendo. Ellos podrían estar haciendo algo que nunca pensaste o están haciendo algo en
diferente orden.

Como una regla personal, si tengo un error que no puedo precisar, y empiezo a pensar que es
el compilador, entonces es tiempo de mirar daños en la pila. Esto es especialmente cierto si la
adición de rastreo de código hace que el problema se vaya..

Los problemas multihilo son otra fuente de errores que convierte el cabello en gris e induce
gritarle a la máquina. Todas las recomendaciones para favorecer el código simple se multiplican
cuando un sistema es multihilo. No se puede confiar en la revisión de errores y las pruebas
unitarias para encontrar tales errores con cierta coherencia, así que la simplicidad de diseño es
fundamental.

Así que antes de apresurarte en culpar al compilador, recuerda el consejo de Sherlock Holmes:
“Una vez que elimines lo imposible, lo que quede, sin importar que tan improbable parezca,
debe ser verdad”, aunque yo prefiero el consejo de Drik Gently: “Una vez que eliminas lo
improbable, lo que quede, sin importar que tan imposible sea, debe ser verdad”.

Traducción: Espartaco Palma

88. Revisiones de código.

Autor: Mattias Karlsson
Deberías hacer revisiones de código. ¿Por qué? Porque incrementan la calidad del código y
reducen la tasa de defectos. Pero no necesariamente por las razones que podrías pensar.

Debido a que pudieron haber tenido algunas malas experiencias con las revisiones, muchos
programadores tienden a rechazar las revisiones de código. He visto organizaciones que
requieren que todo el código pase por una revisión formal antes de enviar a producción. Con
frecuencia es el arquitecto o el líder de desarrollo quien hace esta revisión, una práctica que
puede ser descrita como arquitecto revisando todo. Está escrito en el manual del proceso de
desarrollo de software, así que los programadores deben acatar. Puede ser que algunas
organizaciones necesiten tal rigidez y procesos formales, pero muchas no. En la mayoría de las
organizaciones ese enfoque no es productivo. Los revisados pueden sentirse como que están
siendo juzgados por una junta de libertad condicional. Los revisores necesitan tanto el tiempo
para leer el código como el tiempo para estar al día con todos los detalles del sistema. Los

http://97cosas.com/programador/revisiones-codigo.html

revisores se pueden convertir rápidamente en cuellos de botella en este proceso, y el proceso
se degenera pronto.

En vez de limitarse a corregir errores en el código, el propósito de las revisiones de código
debería ser compartir conocimiento y establecer guías comunes de codificación. Compartir tu
código con otros programadores habilita la propiedad colectiva de código. No limites su flujo,
deja que cualquier miembro del equipo revise el código con el resto del equipo. En vez de buscar
errores deberías revisar el código tratando de aprenderlo y entenderlo.

Sé gentil durante las revisiones de código. Asegúrate de que los comentarios sean
constructivos, no cáusticos. Introduce diferentes roles en la junta de revisión, evitar tener a los
más viejos dentro del equipo afecta las revisiones de código. Los ejemplos de roles pueden
incluir algún revisor enfocado en la documentación, otro en excepciones y un tercero en busca
de funcionalidad. Este enfoque ayuda a distribuir la carga de las revisiones a través de los
miembros del equipo.

Haz la revisión de código con regularidad, un día a la semana. Usa un par de horas en la junta
de revisión. Rota a los que tuvieron revisión semanalmente en un patrón simple de round-robin.
Recuerda también cambiar roles entre los miembros del equipo en cada junta de revisión.
Involucra a los novatos en las revisiones de código. Puede que sean inexpertos, pero su
conocimiento universitario reciente puede proveer una perspectiva diferente. Involucra expertos
por su experiencia y conocimiento; identificarán código propenso a errores más rápido y con
mayor precisión. Las revisiones de código fluirán más fácilmente si el equipo tiene convenciones
de codificación que se comprueban mediante herramientas. De este modo, el formato del código
nunca será discutido durante la junta de revisión de código.

Hacer las revisiones de código divertidas es quizás el factor más importante para el éxito. Las
revisiones se tratan de la gente en revisión. Si la junta de revisión es dolorosa o aburrida será
más difícil motivar a cualquiera. Que sea una revisión de código informal, cuyo propósito
principal sea compartir conocimiento entre los miembros del equipo. Deja los comentarios
sarcásticos fuera y trae un pastel o almuerzo en bolsa café en su lugar.

Traducción: Espartaco Palma

89. La Simplicidad viene de la Reducción.

Autor: Paul W. Homer
“Hazlo de nuevo…”, me dijo el jefe mientras su dedo presionaba con fuerza la tecla de borrado.
Miré la pantalla de la computadora con una sensación de vacío muy familiar, mientras mi código
–línea tras línea– desparecía en el olvido.

Mi jefe, Stefan, no siempre fue el más vocal de las personas, pero él sabía que era un mal
código cuando lo veía. Y sabía exactamente qué hacer con él.

Había llegado a mi puesto actual como un programador estudiante con mucha energía, mucho
entusiasmo y sin la menor idea de cómo codificar. Tenía esa horrible tendencia a pensar que la
solución a cada problema era agregar otra variable en algún lugar. O escribir otra línea. En un
mal día, en vez de que la lógica fuera haciéndose mejor con cada revisión, mi código se hacía
gradualmente más grande, más complejo y mucho más lejos del trabajo consistente.

Es natural, sobre todo cuando estás apresurado, que sólo quieres hacer los menores cambios
a un bloque de código existente, aunque sea horrible. Muchos programadores preservan mal
código, temen que iniciar de nuevo requerirá mucho más esfuerzo que continuar donde se

http://97cosas.com/programador/simplicidad-reduccion.html

quedaron. Esto puede ser cierto para el código que está cerca de ser funcional, pero hay algunos
códigos que están más allá de toda ayuda.

Se desperdicia más tiempo en tratar de salvar un mal código del que se debería. Una vez que
algo se vuelve un sumidero de recursos, necesita ser descartado. Rápidamente

No es que debas tirar todo lo que has escrito, nombrado y formateado tan fácilmente. La
reacción de mi jefe fue extrema, pero me obligó a repensar el código en el segundo (u
ocasionalmente tercer) intento. Aún así, la mejor estrategia para arreglar un mal código es
cambiándolo de tal modo que el código sea refactorizado sin misericordia, cambiado de lugar o
borrado.

El código debería ser simple. Debería ser un mínimo de variables, funciones, declaraciones y
otras necesidades sintácticas del lenguaje. Las líneas, variables adicionales… nada de
adicional, en realidad, eso debería ser purgado. Removido inmediatamente. Lo que está ahí, lo
que queda, sólo debería ser lo suficiente para realizar el trabajo, completar el algoritmo o realizar
los cálculos. Cualquier otra cosa y todo lo demás es sólo ruido adicional no deseado, introducido
accidentalmente y que obscurece el flujo. Ocultando las cosas importantes.

Por supuesto, si no lo logra, entonces sólo borra todo y escríbelo una vez más. Iniciar el diseño
desde lo recordado a menudo puede ayudar a cortar una gran cantidad de desorden
innecesario.

Traducción: Espartaco Palma

90. Sólo el código dice la verdad.

Autor: Peter Sommerlad
La semántica final de un programa está dada por el código que se ejecuta. ¡Si esto es
únicamente en formato binario, será una lectura difícil! El código fuente debe, sin embargo, estar
disponible si se trata de tu programa, cualquier desarrollo de software comercial típico, un
proyecto de software libre o código en un lenguaje interpretado de forma dinámica. Al mirar el
código fuente, el significado del programa debería ser evidente. Para saber qué hace el
programa, el código es, en última instancia, de lo que puedes estar seguro. Hasta el documento
de requisitos más preciso no dice toda la verdad: no contiene el relato detallado de lo que el
programa está haciendo, sólo las intenciones de más alto nivel del analista de requerimientos.
Un documento de diseño podría capturar un diseño planeado, pero carece del nivel necesario
de detalle de la implementación. Estos documento pueden perder sincronía con la
implementación actual… o simplemente se han perdido. O nunca fueron escritos, en primer
lugar. El código fuente puede ser lo único que queda.

Con esto en mente, pregúntate: ¿qué tan claro es tu código al decirte a ti o a cualquier otro
programador qué es lo que está haciendo?

Podrías decir: “Oh, mis comentarios te dirán todo lo que necesitas saber”. Pero recuerda que
los comentarios no son código en ejecución. Pueden ser tan malos como cualquier otra forma
de documentación. Existe una tradición que dice que los comentarios son incondicionalmente
algo bueno, así que algunos programadores escriben más y más comentarios, incluso
reiniciando y explicando trivialidades que son obvias en el código. Ésa es la forma errónea de
clarificar tu código. Si tu código tiene comentarios, considera refactorizar para que no los tenga.
Los comentarios extensos pueden saturar el espacio en la pantalla e incluso pueden ser
ocultados automáticamente por tu IDE. Si necesitas explicar un cambio, hazlo en el mensaje de
confirmación del sistema de control de versiones, no en el código.

http://97cosas.com/programador/solo-codigo-dice-verdad.html

¿Qué se puede hacer para hacer que tu código diga la verdad lo más claro posible? Lucha por
buenos nombres. Estructura tu código con respecto a la funcionalidad cohesiva, que también
facilita la nomenclatura. Desacopla el código para conseguir ortogonalidad. Escribe pruebas
automatizadas explicando el comportamiento previsto y comprueba las interfaces. Refactoriza
sin piedad cuando aprendas cómo codificar una solución mejor y más sencilla. Haz que tu
código sea tan sencillo como sea posible para leer y entender.

Trata a tu código como a cualquier otra composición, como un poema, un ensayo, un blog
público o un email importante. Elabora lo que expresas con cuidado, de modo que haga lo que
debe y comunique tan directamente como sea posible lo que está haciendo, para que
comunique tus intenciones cuando no estés. Recuerda que el código útil se usa mucho más
tiempo de lo previsto. Los programadores de mantenimiento te lo agradecerán. Y, si eres un
programador de mantenimiento y el código en el que estás trabajando no dice la verdad
fácilmente, aplica las directrices anteriores de manera proactiva. Establece algo de cordura en
el código y mantén tu propia cordura.

Traducción: Espartaco Palma

91. Suelta el ratón y aléjate del teclado.

Autor: Cay Horstmann
Te has enfocado por horas en algún raro problema y no hay solución a la vista. Así que te
levantas para estirar las piernas o para llegar a la máquina expendedora y, en el camino de
vuelta, la respuesta repentinamente se vuelve evidente.

¿Te suena familiar este escenario? ¿Alguna vez te preguntaste por qué sucede? El truco está
en que mientras estás codificando, la parte lógica de tu cerebro está activa y el lado creativo se
bloquea. No puede presentarte nada hasta que tu lado lógico tome un descanso.

Aquí está un ejemplo de la vida real: estaba limpiando un código heredado y me encontré con
un método “interesante”. Estaba diseñado para verificar que una cadena contenía una hora
válida usando el formatohh:mm:ss xx, donde hh representa la hora, mm representa los
minutos, ss representa segundos y xx podría ser AM o PM.

El método utilizaba el siguiente código para convertir dos caracteres (representando la hora) en
un número y verificando que estuviera en el rango adecuado: :

try {

 Integer.parseInt(time.substring(0, 2));

} catch (Exception x) {

 return false;

}

if (Integer.parseInt(time.substring(0, 2)) > 12) {

 return false;

}

http://97cosas.com/programador/suelta-raton-alejate-teclado.html

El mismo código aparecía dos veces más, con cambios apropiados para el carácter y el límite
superior, para poner a prueba los minutos y segundos. El método terminaba con estas líneas
para comprobar AM y PM.

if (!time.substring(9, 11).equals("AM") &

 !time.substring(9, 11).equals("PM")) {

 return false;

}

Si ninguna de esta serie de comparaciones fallaba, regresando false , el método

regresaba true .

Si el código anterior se ve confuso y difícil de seguir, no te preocupes. Yo también lo creía, lo
que significaba que había encontrado algo digno de limpieza. Lo refactoricé y escribí unas
cuantas pruebas unitarias, sólo para estar seguro de que aún funcionaba

Cuando terminé, me sentía satisfecho con el resultado. La nueva versión era fácil de leer, de la
mitad del tamaño y más precisa debido a que el código original sólo probaba los límites
superiores de las horas, minutos y segundos.

Mientras me preparaba para trabajar al día siguiente, una idea surgió en mi cabeza: ¿por qué
no validar la cadena usando una expresión regular? Después de unos minutos escribiendo,
tenía una implementación funcional de sólo una línea de código. Aquí está:

public static boolean validateTime(String time) {

 return time.matches("(0[1-9]|1[0-2]):[0-5][0-9]:[0-5][0-9] ([AP]M)");

}

El punto de esta historia no es que eventualmente reemplacé cerca de 30 líneas de código con
sólo una. El punto es que hasta que me alejé de la computadora pensaba que mi primer intento
era la mejor solución al problema.

Así que la próxima vez que estés ante un problema desagradable, hazte un favor: una vez que
realmente entiendas el problema ve a hacer algo que involucre el lado creativo de tu cerebro;
esboza el problema, escucha algo de música o da un paseo al aire libre. A veces la mejor cosa
que puedes hacer para resolver un problema es soltar el ratón y alejarte del teclado.

Traducción: Espartaco Palma

92. Noticias raras – Los testers son tus amigos.

Autor: Burk Hufnagel
Ya sea que se llamen ellos mismos Aseguramiento de Calidad (QC, Quality Check) o Control
de Calidad, muchos programadores los llaman problemas. En mi experiencia, los
programadores tienen frecuentemente una relación de confrontación con la gente que prueba

http://97cosas.com/programador/testers-amigos.html

su software. “Son demasiado exigentes” y “quieren todo perfecto” son las quejas comunes. ¿Te
suena familiar?

No estoy seguro del porqué, pero siempre he tenido una visión diferente de los testers. Quizás
es porque el “tester” en mi primer trabajo era la secretaria de la empresa. Margaret era una
señora muy agradable que mantenía la oficina funcionando e intentaba enseñar a un par de
jóvenes programadores cómo comportarse profesionalmente frente a los clientes. Ella también
tenía el don de encontrar cualquier error, no importa lo oscuro, en cuestión de minutos.

En ese entonces estaba trabajando en un programa escrito por un contador que pensaba que
era un programador. No es necesario decirlo, tenía algunos problemas serios. Cuando pensaba
que tenía una pieza sólida, Margaret intentaría usarlo y, más frecuentemente que nunca, fallaría
en alguna forma justo después de algunos teclazos. A veces era frustrante y embarazoso, pero
ella era una persona agradable a quien nunca pensé en culpar por hacerme ver mal.
Eventualmente llegó el día cuando Margaret fue capaz de iniciar limpiamente el programa,
introducir una factura, imprimirla y cerrarlo. Estaba muy emocionado. Aún mejor, cuando lo
instalamos en una de las computadoras de nuestros clientes, todo funcionaba. Ellos nunca
vieron ningún problema porque Margaret me había ayudado a encontrarlos y arreglarlos
primero.

Es por eso que digo que los testers son tus amigos. Puedes pensar que te hacen ver mal al
reportar cuestiones triviales. Pero cuando los clientes están emocionados por no ser molestados
con todas esas “pequeñas cosas” que QC te hizo corregir, entonces te verás bien. ¿Ves a lo
que me refiero?

Imagínate esto: estás revisando una utilería que usa “los más prometedores algoritmos de
inteligencia artificial” para encontrar y solucionar problemas de concurrencia. Lo inicias e
inmediatamente notas que han escrito mal “inteligencia” en la pantalla de inicio. Un poco
optimista, pensarás: es sólo un error de dedo, ¿verdad? Entonces notas que la pantalla de
configuración usa varias casillas que deberían ser botones de radio y algunos de los atajos de
teclado no funcionan. Ahora bien, ninguno de estos son un gran problema, pero conforme los
errores se van sumando empiezas a preguntarte sobre los programadores. Si no pueden tener
las cosas sencillas bien, ¿cuáles son las probabilidades de que su IA pueda realmente encontrar
y solucionar algo tan complicado como los problemas de concurrencia?

Puede que sean genios quienes estaban tan enfocados a hacer la IA increíblemente mejor como
para no notar esas pequeñas cosas triviales. Y sin esos “testers exigentes” apuntando los
problemas, terminaste encontrándolos. Ahora te estás cuestionando la competencia de los
programadores.

Así que por extraño que suene, estos testers, quienes parecen determinados a exponer cada
pequeño error en tu código, son realmente tus amigos.

Traducción: Espartaco Palma

93. Toma ventaja de las herramientas de análisis de código.

Autor: Nate Jackson
Nunca he conocido a un cliente que no estuviera muy feliz de decirme qué es lo que quería,
usualmente con gran detalle. El problema es que los clientes no siempre dicen toda la verdad.
Generalmente no mienten, pero hablan en idioma cliente, no en idioma desarrollador. Usan sus

http://97cosas.com/programador/toma-ventaja-analisis-codigo.html

términos y contextos. Dejan fuera detalles importantes. Suponen que has estado en su
compañía por 20 años, igual que ellos. ¡Esto se agrava con el hecho de que muchos clientes
realmente no saben lo que quieren en primer lugar! Algunos pueden tener un rasgo de la “visión
global”, pero rara vez son capaces de comunicar los detalles de sus visiones con efectividad.
Otros podrían ser un poco claros en la visión completa, pero saben lo que no quieren. Entonces,
¿cómo es posible que puedas entregar un proyecto de software a alguien que no está diciendo
toda la verdad acerca de lo que quiere? Es bastante simple. Sólo interactúa más.

Reta a tus clientes tempranamente y rétalos seguido. No te limites a repetir lo que dijeron que
querían en sus palabras. Recuerda: ellos no quieren decir lo que te dijeron. Frecuentemente
hago esto intercambiando palabras en conversaciones con ellos y juzgando sus reacciones.
Estarás sorprendido de cuántas veces el término cliente tiene un significado completamente
diferente al término comprador. Sin embargo, el hombre diciéndote qué quiere en su proyecto
de software usará los términos indistintamente y espera que sigas el rastro de a cuál se refiere.
Te confundirás y el software que escribas sufrirá.

Discute los temas numerosas veces con tus clientes antes de que decidas que has entendido
lo que quieren. Intenta reformular el problema dos o tres veces con ellos. Háblales acerca de
las cosas que suceden justo antes o justo después del tópico del que están hablando para
obtener un mejor contexto. Si es posible, ten a varias personas hablándote del mismo tema en
conversaciones separadas. Casi siempre te dirán historias diferentes, las cuales descubrirán
hechos separados pero relacionados. Dos personas hablándote sobre el mismo tema se
contradicen frecuentemente. Tu mayor oportunidad de éxito es discutir a fondo las diferencias
antes de comenzar la elaboración de tu ultracomplejo software.

Haz uso de ayudas visuales en tus conversaciones. Esto podría ser tan sencillo como usar una
pizarra en una reunión, tan fácil como crear un maqueta visual en la fase de diseño o tan
complejo como elaborar un prototipo funcional. Es conocido que usar ayudas visuales durante
una conversación ayuda a prolongar nuestro periodo de atención e incrementa la tasa de
retención de la información. Toma ventaja de este hecho y configura tu proyecto para el éxito.

En una vida anterior era un “programador multimedia” en un equipo que producía proyectos
ostentosos. Un cliente nuestro describió sus pensamientos con el look & feel del proyecto con
gran detalle. El esquema general de colores discutido en las reuniones de diseño indicaba un
fondo negro para la presentación. Pensábamos que lo teníamos hecho. Los equipos de
diseñadores gráficos comenzaron a producir cientos de capas de archivos gráficos. Un montón
de tiempo fue invertido moldeando el producto final. Una sorprendente revelación fue hecha el
día en que mostramos al cliente el fruto de nuestra labor. Al ver el producto, las palabras exactas
sobre el color de fondo fueron: “Cuando dije negro, me refería a blanco”. Así que, ya ves, nunca
es tan claro como el blanco y negro.

Traducción: Espartaco Palma

94. Tus clientes no quieren decir lo que dicen.

Autor: Nate Jackson
Nunca he conocido a un cliente que no estuviera muy feliz de decirme qué es lo que quería,
usualmente con gran detalle. El problema es que los clientes no siempre dicen toda la verdad.
Generalmente no mienten, pero hablan en idioma cliente, no en idioma desarrollador. Usan sus
términos y contextos. Dejan fuera detalles importantes. Suponen que has estado en su

http://97cosas.com/programador/tus-clientes.html

compañía por 20 años, igual que ellos. ¡Esto se agrava con el hecho de que muchos clientes
realmente no saben lo que quieren en primer lugar! Algunos pueden tener un rasgo de la “visión
global”, pero rara vez son capaces de comunicar los detalles de sus visiones con efectividad.
Otros podrían ser un poco claros en la visión completa, pero saben lo que no quieren. Entonces,
¿cómo es posible que puedas entregar un proyecto de software a alguien que no está diciendo
toda la verdad acerca de lo que quiere? Es bastante simple. Sólo interactúa más.

Reta a tus clientes tempranamente y rétalos seguido. No te limites a repetir lo que dijeron que
querían en sus palabras. Recuerda: ellos no quieren decir lo que te dijeron. Frecuentemente
hago esto intercambiando palabras en conversaciones con ellos y juzgando sus reacciones.
Estarás sorprendido de cuántas veces el término cliente tiene un significado completamente
diferente al término comprador. Sin embargo, el hombre diciéndote qué quiere en su proyecto
de software usará los términos indistintamente y espera que sigas el rastro de a cuál se refiere.
Te confundirás y el software que escribas sufrirá.

Discute los temas numerosas veces con tus clientes antes de que decidas que has entendido
lo que quieren. Intenta reformular el problema dos o tres veces con ellos. Háblales acerca de
las cosas que suceden justo antes o justo después del tópico del que están hablando para
obtener un mejor contexto. Si es posible, ten a varias personas hablándote del mismo tema en
conversaciones separadas. Casi siempre te dirán historias diferentes, las cuales descubrirán
hechos separados pero relacionados. Dos personas hablándote sobre el mismo tema se
contradicen frecuentemente. Tu mayor oportunidad de éxito es discutir a fondo las diferencias
antes de comenzar la elaboración de tu ultracomplejo software.

Haz uso de ayudas visuales en tus conversaciones. Esto podría ser tan sencillo como usar una
pizarra en una reunión, tan fácil como crear un maqueta visual en la fase de diseño o tan
complejo como elaborar un prototipo funcional. Es conocido que usar ayudas visuales durante
una conversación ayuda a prolongar nuestro periodo de atención e incrementa la tasa de
retención de la información. Toma ventaja de este hecho y configura tu proyecto para el éxito.

En una vida anterior era un “programador multimedia” en un equipo que producía proyectos
ostentosos. Un cliente nuestro describió sus pensamientos con el look & feel del proyecto con
gran detalle. El esquema general de colores discutido en las reuniones de diseño indicaba un
fondo negro para la presentación. Pensábamos que lo teníamos hecho. Los equipos de
diseñadores gráficos comenzaron a producir cientos de capas de archivos gráficos. Un montón
de tiempo fue invertido moldeando el producto final. Una sorprendente revelación fue hecha el
día en que mostramos al cliente el fruto de nuestra labor. Al ver el producto, las palabras exactas
sobre el color de fondo fueron: “Cuando dije negro, me refería a blanco”. Así que, ya ves, nunca
es tan claro como el blanco y negro.

Traducción: Espartaco Palma

95. Un binario.

Autor: Steve Freeman
He visto muchos proyectos en los cuales la compilación reescribe alguna parte del código para
generar un binario personalizado para cada ambiente destino. Esto siempre hace las cosas más
complicadas de lo que deberían ser, e introduce el riesgo de que el equipo podría no tener
versiones consistentes en cada instalación. Como mínimo involucra la compilación de múltiples,
casi idénticas copias de software, cada una tiene que ser desplegada en el lugar correcto.

http://97cosas.com/programador/un-binario.html

Significa más partes movibles de lo necesario, lo que significa más oportunidad de cometer un
error.

Una vez trabajé en un equipo en el cual cada cambio tenía que ser revisado en cada ciclo de
compilación, por los que los testers se quedaban esperando cada que se necesitaba un ajuste
menor (¿mencioné que la compilación tomaba también mucho tiempo?). También trabajé en un
equipo en el que los administradores de sistemas insistían en reconstruir desde cero en
producción (usando el mismo script que hicimos), lo que significaba que no teníamos pruebas
de que la versión en producción era la misma que había estado bajo prueba. Y así por el estilo.

La regla es sencilla: compila un sólo binario que puedas identificar y promover a través de todas
las etapas en la línea de liberación. Mantén detalles específicos del entorno en el ambiente.
Esto podría significar, por ejemplo, mantenerlos en el contenedor de componentes, en un
archivo conocido o en la ruta.

Si tu equipo tiene un revoltijo de código para compilar o almacenar todas las configuraciones
destino en el código, esto sugiere que nadie ha pensado el diseño con el suficiente cuidado para
separar estas características, que son fundamentales de la aplicación, de aquellas que son
específicas de las plataforma. O podría ser peor: el equipo sabe qué hacer, pero no puede
priorizar el esfuerzo para hacer el cambio.

Por supuesto, hay excepciones: podrías estar compilando para algún destino que tiene
importantes restricciones de recursos, pero esto no aplica para la mayoría de nosotros que
estamos escribiendo aplicaciones de “bases de datos a pantalla y de regreso”. Alternativamente,
podrías estar viviendo con algún desorden heredado que es muy difícil de corregir ahora mismo.
En tales casos, tienes que mover gradualmente, pero empezar tan pronto como sea posible.

Una cosa más: mantén la información del entorno con algún control de versiones. No hay nada
peor que romper una configuración de entorno y no ser capaz de imaginarte qué cambió. La
información de entorno debería ser versionada separadamente del código, ya que cambiará a
diferentes periodos y por diferentes razones. Algunos equipos usan sistemas de control de
versiones distribuidos para esto (como bazaar y git), ya que hacen más fácil de enviar cambios
hechos en ambientes de producción –como sucede inevitablemente– de vuelta al repositorio.

Traducción: Espartaco Palma

96. Usa el algoritmo y estructura de datos correcto.

Autor: JC van Winkel
Un gran banco con muchas sucursales se quejó de que las nuevas computadoras que había
comprado para los cajeros eran muy lentas. Esto era antes de que todos usaran la banca
electrónica y los cajeros automáticos no estaban tan extendidos como lo están ahora. La gente
visitaba el banco mucho más frecuentemente y se hacían largas filas debido a las computadoras
lentas. En consecuencia, el banco amenazó con romper su contrato con el proveedor.

El proveedor envió un especialista en análisis y tuning para determinar la causa de los retrasos.
Pronto encontró un programa específico ejecutándose en la terminal consumiendo casi toda la

http://97cosas.com/programador/pon-todo-bajo-control-de-versiones
http://97cosas.com/programador/usa-algoritmo-estructura-de-datos-correcto.html

capacidad del CPU. Usando una herramienta de perfilado se enfocó en el programa y pudo ver
la función culpable. El código se leía:

for (i=0; i<strlen(s); ++i) {

 if (... s[i] ...) ...

}

La cadena s tenía, en promedio, miles de caracteres de longitud. El código (escrito por el

banco) fue rápidamente cambiado y los cajeros vivieron felices por siempre…

¿No debía el programador haberlo hecho mejor que un código que innecesariamente escalaba
cuadráticamente?

Cada llamada a strlen recorría cada uno de los miles de caracteres en la cadena para

encontrar su carácter de terminación nula. La cadena, sin embargo, nunca cambiaba. Al
determinar su longitud por adelantado, el programador podía haber ahorrado cientos de

llamadas a strlen (y millones de ejecuciones del bucle):

n=strlen(s);

for (i=0; i<n; ++i) {

 if (... s[i] ...) ...

}

Todos conocen el viejo dicho “primero haz que funcione, luego haz que funcione rápido” para
evitar las trampas de la micro-optimización. Pero el ejemplo de arriba casi nos hace creer que
el programador siguió el maquiavélico adagio “primero haz que funcione lentamente”.

Este tipo de descuido es algo con lo podrías cruzarte más de una vez. Y no es sólo un “no
reinventes la rueda”. Algunas veces los programadores novatos sólo empiezan a escribir sin
realmente pensar y de repente han “inventado” el ordenamiento por burbuja. Incluso podrían
estar alardeando sobre eso.

El otro lado de elegir el algoritmo correcto es la elección de la estructura de datos. Puede hacer
una gran diferencia: usar una lista enlazada para una colección de millones de elementos por
las que quieres buscar –comparada con una estructura de datos de hash– va a tener un gran
impacto en la apreciación del usuario de tu programación.

Los programadores no deberían reinventar la rueda y deberían usar bibliotecas existente
cuando fuera posible. Pero, para ser capaces de evitar problemas como el del banco, deberían
también ser educados acerca de los algoritmos y cómo escalan. ¿Es sólo la vistosidad en los
editores lo que hace que sean tan lentos como los anticuados programas como WordStar en la
década de los ochenta? Muchos dicen que el reúso en la programación es de gran importancia.
Por encima de todo, sin embargo, los programadores deben saber cuándo, qué y cómo
reutilizar. Para poder hacer eso deben tener el dominio del problema y los algoritmos y
estructuras de datos.

Un buen programador debería también saber cuándo usar un algoritmo abominable. Por
ejemplo, si el dominio del problema dicta que nunca puede haber más de cinco elementos (como
el número del dado en el juego Yahtzee) y sabes que siempre tendrás que ordenar, al menos,

cinco elementos. En este caso, el ordenamiento por burbuja puede ser la más eficiente forma
de ordenar los elementos. Cada perro tiene su día.

Entonces, lee algunos buenos libros y asegúrate de que los entiendas. Si realmente lees bien
El arte de la programación, de Donald Knuth, podrías incluso ser afortunado: encuentra una
equivocación del autor y gana uno de los cheques de dólares hexadecimales ($2.56).

Traducción: Espartaco Palma

97. El WET dispersa los cuellos de botella en el rendimiento.

Autor: Kirk Pepperdine
La importancia del principio DRY (No te repitas) es que codifica la idea de que cada pieza del
conocimiento en un sistema debería tener una representación única. En otras palabras, el
conocimiento debería estar contenido en una implementación única. La antítesis de DRY es
WET (Write Every Time, escríbelo todas las veces). Nuestro código es WET cuando el
conocimiento es codificado en varias distintas implementaciones. Las implicaciones de
rendimiento de DRY versus WET quedan claras cuando consideras los numerosos efectos en
un perfil de rendimiento.

Comenzamos considerando una característica en nuestro sistema, digamos X, que es un cuello
de botella de CPU. Digamos que la característica X consume el 30% del CPU. Ahora digamos
que la característica X tiene diez diferentes implementaciones. En promedio, cada
implementación consume 3% del CPU. En este nivel de uso de CPU no es útil preocuparse si
estamos buscando una victoria rápida, es común que olvidemos que esta característica es
nuestro cuello de botella. Sin embargo, digamos que, de alguna manera, reconocimos la
característica X como un cuello de botella. Ahora estamos con el problema de encontrar un
arreglo en cada implementación. Con WET tenemos diez diferentes implementaciones que
necesitamos buscar y reparar. Con DRY veríamos claramente el 30% de uso de CPU y
tendríamos una décima parte de código que arreglar. ¿Mencioné que no tenemos tiempo que
perder buscando cada implementación?

Hay un caso de uso en el cual frecuentemente nos sentimos culpables de violar el principio
DRY: nuestro uso de colecciones. Una técnica común de implementar una consulta sería el
iterar sobre una colección y entonces aplicar la consulta para cada elemento:

public class UsageExample {

 private ArrayList<Customer> allCustomers = new ArrayList<Customer>();

 // ...

 public ArrayList<Customer> findCustomersThatSpendAtLeast(Money amount) {

 ArrayList<Customer> customersOfInterest = new ArrayList<Customer>();

 for (Customer customer: allCustomers) {

 if (customer.spendsAtLeast(amount))

 customersOfInterest.add(customer);

 }

http://97cosas.com/programador/wet-dispersa-cuellos-de-botella.html
http://97cosas.com/programador/no-te-repitas.html

 return customersOfInterest;

 }

}

Al exponer esta colección en bruto a los clientes, hemos violado la encapsulación. Esto no sólo
limita nuestra habilidad para refactorizar, obliga a los usuarios de nuestro código a violar el
principio DRY al tener cada uno de ellos que reimplementar potencialmente la misma consulta.
Esta situación se puede evitar fácilmente al quitar la colección en bruto del API. En este ejemplo

podemos introducir un nuevo tipo de colección de dominio específico llamado CustomerList .

Esta nueva clase es más semántica en la línea de nuestro dominio. Actuará como una casa
natural para todas nuestras consultas.

Tener esta nueva colección nos permitirá ver de forma sencilla si esta consulta es un cuello de
botella en el rendimiento. Al incorporar las consultas en la clase eliminamos la necesidad de

exponer las elecciones de representación, tales como Arraylist , a nuestros clientes. Esto nos

da la libertad de alterar esta implementación sin el miedo de violar los contratos de los clientes:

public class CustomerList {

 private ArrayList<Customer> customers = new ArrayList<Customer>();

 private SortedList<Customer> customersSortedBySpendingLevel = new SortedList<Customer

>();

 // ...

 public CustomerList findCustomersThatSpendAtLeast(Money amount) {

 return new CustomerList(customersSortedBySpendingLevel.elementsLargerThan(amount)

);

 }

}

public class UsageExample {

 public static void main(String[] args) {

 CustomerList customers = new CustomerList();

 // ...

 CustomerList customersOfInterest = customers.findCustomersThatSpendAtLeast(someMi

nimalAmount);

 // ...

 }

}

En este ejemplo, la adherencia a DRY nos permite introducir un esquema de índice alterno

con SortedList usando una llave en el nivel de gasto de nuestros clientes. Más importante que

los detalles específicos de este ejemplo, en particular, seguir el principio DRY nos ayuda a
encontrar y reparar cuellos de botella en el rendimiento que habrían sido más difíciles de
encontrar si el código fuera WET.

Traducción: Espartaco Palma

Leer contribución original

Espero que estos consejos sean de ayuda, no olviden compartir
este post con aquellos a quienes crean que les puede servir. ¡Hasta
pronto!
Fuente: https://www.maestrodelacomputacion.net/

http://programmer.97things.oreilly.com/wiki/index.php/WET_Dilutes_Performance_Bottlenecks
https://www.maestrodelacomputacion.net/97-cosas-programador-deberia-saber/

