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Resumen

En los últimos años, el diseño de las arquitecturas de consumo se ha centrado en
el paralelismo como objetivo principal para el incremento del rendimiento. Por ello,
las mejoras clásicas como el aumento de la frecuencia de reloj se han quedado atrás
en favor de la inclusión de un mayor número de procesadores en la CPU. Por otro
lado, impulsadas por la industria de lo videojuegos, las GPUs han evolucionado
hacia unidades de cómputo altamente paralelas, programables y con un elevado
ancho de banda en memoria. Debido a que en la actualidad la gran mayoría de
los sistemas de cómputo incluyen CPUs, GPUs y otros tipos de procesadores, es
necesario disponer de software que sea capaz de aprovechar el poder de cómputo
presente en estas arquitecturas heterogéneas.

OpenCL es un estándar multiplataforma para la computación en sistemas he-
terogéneos que surge en diciembre de 2008 que ha ido adquiriendo cada vez más
importancia. Esto se debe principalmente a su eficiencia, así como su compatibi-
lidad con la gran mayoría de dispositivos destinados a la programación paralela.
Además, OpenCL está respaldado por el consorcio de empresas que conforman el
grupo Khronos, entre las que se encuentran compañías como NVIDIA, AMD o
Apple, lo que impulsa aún más su expansión.

Sin embargo, OpenCL ha sido desarrollado para ser utilizado desde C/C++,
lo que limita su utilización por parte de desarrolladores no acostumbrados a pro-
gramar en estos lenguajes. Por otra parte, el lenguaje de programación Java se
encuentra entre los lenguajes más utilizados, por lo que resulta de gran interés
acercar a los programadores de Java a tecnologías como OpenCL sin necesidad de
cambiar el lenguaje de programación utilizado. Ésta es la motivación principal de
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este proyecto, crear una API que recubra la especificación oficial de OpenCL con
el lenguaje Java, de manera que cualquier programador de Java pueda programar
arquitecturas heterogéneas sin necesidad de conocer lenguajes como C/C++.
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Capítulo 1

Introducción

En los últimos años, las arquitecturas de consumo están cada vez más orienta-
das a aprovechar el paralelismo para incrementar su rendimiento. Esto es debido
principalmente a lo que se denomina Performance Wall (ver [6]). Este término se
refiere al límite alcanzado por los procesadores utilizando las técnicas tradiciona-
les de aumento de rendimiento, como es el aumento de la frecuencia de reloj del
procesador. El problema de estas técnicas aparece cuando se alcanzan los límites
físicos para el aumento de las prestaciones. Un vez superado dicho límite, es nece-
sario utilizar otra clase de mejoras que permitan continuar con el incremento del
rendimiento de estos dispositivos. Por este motivo, en los últimos años la tendencia
seguida ha pasado del incremento en la frecuencia de reloj de un procesador, a la
inclusión de varios procesadores, restando importancia a la frecuencia de éstos. La
evolución seguida por las GPU ha sido completamente distinta. Las GPUs sur-
gieron como dispositivos de cómputo paralelo, pero destinados a realizar procesos
específicos como el renderizado de gráficos. Sin embargo, en los últimos años han
evolucionado hasta convertirse en procesadores paralelos programables, orientados
hacia la programación de propósito general. Por este motivo surge la necesidad
de herramientas capaces de explotar el poder de cómputo de estas plataformas
heterogéneas.

Crear aplicaciones para plataformas heterogéneas no es sencillo, debido a que
los modelos de programación tradicional y aquellos orientados al desarrollo sobre
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plataformas multi-core y many-core son muy diferentes. Los modelos tradicionales
se basan normalmente en estándares que asumen un espacio de memoria común y
no abarcan de forma explícita las operaciones vectoriales. Sin embargo, los modelos
de programación de propósito general sobre GPU añaden jerarquías complejas de
memoria y operaciones vectoriales, pero son generalmente dependientes del hard-
ware, la plataforma y el fabricante. Estas limitaciones hacen difícil acceder al poder
de cómputo de los diferentes procesadores heterogéneos desde un único código fuen-
te multiplataforma. Además, es necesario tener en cuenta que además de CPU y
GPU, una arquitectura heterogéneas puede constituirse de otros dispositivos como
los DSP (Digital Signal Processor) o el procesador Cell.

Para ello, a lo largo de las últimos años han surgido diferentes herramientas
que proporcionan al desarrollador la posibilidad de aprovechar el rendimiento de
estos nuevos tipos de procesadores. Entre estas herramientas destacan las orienta-
das al cómputo sobre GPUs, como pueden ser CUDA, de NVIDIA, y sobre CPUs
con varios procesadores, como son OpenMP o Ct (Intel). Todas estas herramien-
tas comparten la misma limitación, ser compatibles tan sólo sobre un hardware
determinado.

Debido al aumento del interés en este área, aparece la necesidad de una herra-
mienta multiplataforma, independiente del fabricante del dispositivo, y que no sólo
sea capaz de aprovechar el rendimiento de los dispositivos gráficos, sino también
de los procesadores multinúcleo y otros tipos de dispositivos de cómputo, como
pueden ser los procesadores embebidos (por ejemplo, DSP). Así, surge OpenCL,
un estándar para la programación de propósito general desarrollado por Khronos
Group.

Khronos Group es un consorcio industrial que tiene como objetivo el desarro-
llo de estándares libres centrados en la computación paralela y el procesamiento
de gráficos sobre todo tipo de plataformas. Entre estos estándares se encuentran
OpenCL, OpenGL, WebGl, etc. En la Figura 1.1 aparecen los principales compo-
nentes de dicho grupo.
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Figura 1.1: Miembros del grupo Khronos

Desde su salida, OpenCL ha ido desarrollándose hasta convertirse en el primer
estándar de código abierto para la programación de propósito general sobre ar-
quitecturas heterogéneas, proporcionando a los desarrolladores software un acceso
eficiente e independiente de la plataforma a estos nuevos dispositivos.

Uno de los objetivos de OpenCL es que todos los recursos computacionales del
sistema puedan aprovecharse para realizar cómputo de propósito general. OpenCL
se ha desarrollado para utilizarse con C/C++, un lenguaje que proporciona un
mayor rendimiento, con la penalización de que el código sea dependiente del com-
pilador. De esta limitación surge la necesidad de hacer que OpenCL sea, en la
medida de lo posible, un lenguaje portable a todos los dispositivos sin necesidad
de modificaciones en el código ni de diferentes compilaciones, pero sin perder su
eficiencia. Con esto, un programador sería capaz de desarrollar código que pueda
ser compilado en una sóla máquina, pero ejecutado en cualquier sistema operati-
vo utilizando diferentes tipos de dispositivos (CPUs, GPUs, etc.), aumentando el
alcance original de la herramienta.
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Posición en abril
de 2010

Posición en Abril
de 2009

Lenguaje de
Programación

1 2 C
2 1 Java
3 3 C++
4 4 PHP
5 5 (Visual) Basic

Cuadro 1.1: Lista TIOBE del mes de Abril de 2010. Esta lista presenta los lenguajes
de programación más utilizados, donde Java ocupa un segundo puesto por detrás
de C.

Por este motivo, este proyecto presenta JavaOpenCL, una API que otorga al
desarrollador la posibilidad de utilizar OpenCL en Java, uno de los lenguajes de
programación más comunes (ver tabla 1.1). La unión de Java y OpenCL proporcio-
na todas las ventajas de ambos lenguajes, como pueden ser la eficiencia de OpenCL
unido a la portabilidad de Java, así como su tratamiento de los errores. Además,
gracias a Java, se proporciona al desarrollador una interfaz más simple que la uti-
lizada por OpenCL, facilitando su aprendizaje y posterior uso, y evitando en gran
medida los problemas comunes que puedan surgir a un programador inexperto en
C (gestión de memoria, punteros, etc.).

1.1. Computación paralela

La velocidad de los computadores secuenciales convencionales se ha incremen-
tado continuamente para adaptarse a las necesidades de las aplicaciones, hasta
llegar a encontrarse con los límites físicos (Performance Wall). Pero en diversas
áreas sigue siendo necesario un poder computacional superior, como el modelado
y solución numérica de problemas en ciencias e ingeniería, o los costosos cálculos
iterativos sobre grandes cantidades de datos con fuertes restricciones temporales.
Estos sistemas se vuelven cada vez más complejos requiriendo una mayor capaci-
dad de cómputo. Pero esto no siempre es posible debido a las limitaciones físicas
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que impone el desarrollo de procesadores.

Para hacer frente a estas limitaciones se ha optado por la utilización de varios
procesadores conformando un sistema paralelo. El sistema paralelo proporciona un
gran abanico de opciones para aumentar el rendimiento, entre las que se encuentran
la utilización de un pipeline, el paralelismo a nivel de instrucción, la ejecución fuera
de orden o la especulación, entre otras.

La programación paralela se basa en la utilización de varios procesadores de
manera conjunta para resolver una tarea común. La manera en la que cada proce-
sador va a afrontar el problema es definida por el programador, de forma que cada
procesador trabaja sobre una porción del problema, intercambiando los resultados
que sean necesarios a través de memoria compartida o con el uso de una red de
interconexión.

La computación paralela permite, entre otras cosas, resolver problemas que
de otra manera serían inabordables, ya sea por capacidad de cómputo, o por el
tiempo empleado en resolverlo. En este proyecto existen dos niveles de paralelismo,
los cuales se muestran a continuación:

Programación concurrente: Varios procesos trabajando en la solución de
un problema, puede ser paralela (con varios procesadores)

Computación heterogénea: Varios procesadores de diferentes caracterís-
ticas trabajando en la solución de un mismo problema.

La programación concurrente está presente en todo momento, ya que indepen-
dientemente del dispositivo utilizado para solucionar un problema, va a disponer de
varios núcleos, los cuales van a trabajar sobre un espacio de memoria compartida
en un mismo instante de tiempo.

La computación heterogénea es otra de las bases de este proyecto, ya que es
posible utilizar diferentes dispositivos para resolver un mismo problema, distribu-
yendo la carga de trabajo entre ellos de manera que el problema sea eficiente.
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1.2. OpenCL

OpenCL [4] (Open Computing Language) es el nombre que recibió el estándar
de programación sobre arquitecturas paralelas desarrollado y liberado por Khronos.
Está respaldado por las principales compañías que producen hardware y software
relacionado con la computación paralela, como son AMD, NVIDIA, Apple, IBM,
Intel, etc. Esta tecnología está empezando a cobrar gran importancia en el mundo
de la computación de propósito general sobre GPUs.

Además, al tratarse de un estándar reconocido, ya no es necesario aprender
un lenguaje para programar sobre tarjetas de una compañía concreta y otro com-
pletamente diferente para programar sobre tarjetas una compañía diferente, si no
tan sólo es necesario disponer de drivers compatibles y de las librerías que permi-
ten el desarrollo en OpenCL. Esto ha llevado a OpenCL a un incremento notable
en su uso desde su lanzamiento. En algunos casos, como en el nuevo Mac OS X
Snow Leopard, no es necesaria la instalación por parte del usuario de ninguna
herramienta especial, ya que se encuentra integrada con el sistema operativo.

Por último, lo que ha conseguido que OpenCL siga cobrando más importancia
es su portabilidad. Es importante tener en cuenta que dicha portabilidad es sólo
funcional. Esto es debido a que aunque los resultados obtenidos de la aplicación
sean correctos en diferentes dispositivos, para obtener el mejor rendimiento es
necesario optimizar el código para su utilización en un dispositivo concreto. Por
este motivo, una misma aplicación, aún funcionando en dos dispositivos diferentes,
no obtendrá el mismo rendimiento en ambos.

1.3. Programación de propósito general en GPU
(GPGPU)

Las diferentes SDK disponibles durante la realización de este proyecto tan
sólo ofrecen soporte para la programación de OpenCL sobre dispositivos gráficos
(GPU), no sobre procesadores comunes (CPU), por lo que el principal objetivo de
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este proyecto se ha centrado sobre las GPUs, al carecer de soporte sobre CPU. Por
este motivo, este proyecto se ha centrado en la programación de propósito general
en sobre GPU (GPGPU).

GPGPU son las siglas de General-Purpose computation on Graphics Processing
Units, es decir, computación de propósito general sobre unidades de proceso gráfico
(GPU). Las GPU son procesadores de alto rendimiento formados por múltiples
núcleos capaces de llevar a cabo grandes operaciones sobre diversos datos con un
gran rendimiento.

Aunque en sus comienzos las GPU estaban orientadas principalmente a los
gráficos y eran muy difíciles de programar, en la actualidad se han convertido en
procesadores de propósito general paralelos que soportan interfaces de alto nivel
que permiten su programación bajo lenguajes como C/C++.

La GPU se muestran como una plataforma adecuada para la ejecución de
tareas que puedan expresarse en forma de cómputo paralelo de datos, lo que la
convierte en un dispositivo muy eficiente para aquellos problemas que puedan ser
paralelizables, perdiendo toda esta efectividad frente a problemas secuenciales.
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Capítulo 2

Estado del arte

Al comienzo de este proyecto no existía ninguna implementación de OpenCL
para Java, pero durante la realización del mismo han ido surgiendo diversas im-
plementaciones, aunque ninguna de ellas recubre OpenCL de manera completa, y
con suficientes ejemplos probados para demostrar su funcionamiento. Las imple-
mentaciones encontradas se detallan a continuación.

NativeLibs4Java [7]: Se trata de un binding desarrollado con JNA, y man-
tiene una interfaz complicada debido a los siguientes problemas:

• El generador automático de JNA crea varias opciones para cada función
recubierta. Es difícil para el programador decidir cuál es la correcta en
cada caso.

• Es necesario que el usuario conozca JNA para utilizarlo, ya que utiliza
clases propias de JNA para ser utilizado.

• Existen pocos ejemplos disponibles.

jocl(1) [2]: Se trata del binding más estable de los actuales. Su problema
principal reside en que jocl es un binging directo, por lo que no sigue la
orientación a objetos de Java, ni respeta los convenios de programación Java.
Es libre tan sólo para proyectos que no sean comerciales, lo que limita su
uso.
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jocl(2) [11]: Presenta el mismo nombre que el anterior, y ha sido desarro-
llado por los creadores de JOGL (implementación de Java para OpenGL)
y JOAL (implementación de java para OpenAL). El código JNI se ha ge-
nerado automáticamente con GlueGen. Al estar desarrollado el código JNI
automáticamente, se complica su depuración.

opencl4j: [7] Muy similar a NativeLibs4Java pero con la diferencia de que
éste posee una interfaz menos compleja para el usuario.

Todos estos bindings tienen una escasa documentación y muy poca cantidad
de ejemplos que demuestren su funcionamiento (apenas dos o tres en los casos más
avanzados).

Por otro lado, es importante destacar la existencia de diversos bindings de
OpenCL para otros lenguajes de programación, entre los que se incluyen los mos-
trados a continuación.

Python::OpenCL [5]: Se encuentra bajo licencia GPL. Permite que el có-
digo OpenCL se implemente de manera directa en el código Python. Para
ello se necesita incluir el código dentro de un objeto de la clase Program
implementada por Python::OpenCL, para después poder ejecutar dicho có-
digo como si de una función de Python se tratase. Es limitado, ya que es
el propio binding el que se encarga de reservar la memoria en el dispositivo
(CPU, GPU, DSP, etc.) y prepararlo para la ejecución, lo que resta libertad
al programador.

Open Toolkit Library [3]: Es una librería de bajo nivel desarrollada en C#
que recubre OpenGL, OpenCL y OpenAL. Puede ser utilizada en cualquier
lenguaje que soporte Mono o .NET, como son C# y VB.Net.



Capítulo 3

Objetivo

3.1. Objetivo general

El objetivo principal de este Proyecto es la generación de una API para Ja-
va que permita la programación de arquitecturas de cómputo heterogéneas bajo
el estándar OpenCL. Además, esta API será multiplataforma, de manera que los
usuarios de los principales sistemas operativos dispongan de las herramientas ne-
cesarias para programar OpenCL desde Java.

Además, esta API deberá ser fiel a la original, a fin de que la curva de apren-
dizaje sea lo más sencilla posible, para facilitar su utilización. Esta fidelidad está
referida sólo a la interfaz de la API, ya que se aprovecharán las ventajas propor-
cionadas por Java de manera que la tarea del programador se simplifique.

3.2. Objetivos parciales

Los objetivos parciales de este proyecto se derivan del objetivo principal y se
enumeran a continuación:
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Realizar un estudio en profundidad del estándar OpenCL así como la es-
pecificación del mismo. Para ello se utilizará la documentación disponible
en la web de Khronos, además de diferentes documentos donde se exponen
técnicas de programación de altas prestaciones.

Estudio del desarrollo de APIs para el lenguaje Java, mediante el estudio de
otras APIs disponibles.

Estudio de los posibles mecanismos de comunicación entre C y Java, y elec-
ción de uno de ellos. Entre los disponibles, se eligen para el estudio JNI y
JNA, por ser los más extendidos.

Desarrollo de la API JavaOpenCL que recubrirá la especificación original de
OpenCL para el lenguaje Java.

Comprobación del correcto funcionamiento de la API, para lo cuál se portará
un conjunto de ejemplos disponibles en la SDK de OpenCL compuesta de
pruebas de rendimiento y de aplicaciones gráficas, abarcando la especificación
completa.

Desarrollo de una web con toda la información relacionada con la API, tanto
de su desarrollo como de su uso, así como un manual de instalación y de
utilización, incluyendo la documentación JavaDoc (http://www.gavab.es/
wiki/JavaOpenCL).

Una vez finalizada la API y probada su funcionalidad, realización de un
modelado orientado a objetos de la misma, de manera que se acerque más al
concepto de programación Java.

http://www.gavab.es/wiki/JavaOpenCL
http://www.gavab.es/wiki/JavaOpenCL


Capítulo 4

Metodología y tecnologías utilizadas

4.1. Metodología

Para la elección de la metodología a utilizar se han tenido en cuenta princi-
palmente dos alternativas: el Proceso Unificado de Desarrollo y las Metodologías
Ágiles.

La elección de ambas alternativas se basa en la utilidad que cada una de ellas
tiene para este proyecto. Desde una primera aproximación, el Proceso Unificado
es útil para tener un control más estricto y mejor documentado de la evolución
del proyecto, mientras que la utilización de una metodología ágil se ajusta mejor
a los cambios que puedan surgir durante el desarrollo del proyecto, muy común en
el desarrollo de este tipo de proyectos, teniendo en cuenta la constante evolución
de OpenCL.

4.1.1. Proceso Unificado de Desarrollo

Es una de las metodologías tradicionales más extendidas, y se caracteriza por
estar dirigido por casos de uso, centrado en la arquitectura y ser iterativo incre-
mental.
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Dirigido por casos de uso: los casos de uso se utilizan para capturar los
requisitos funcionales y para definir el contenido de las iteraciones. Es decir,
cada iteración escoge un conjunto de casos de uso y desarrolla el camino a
través de todas las fases.

Centrado en la arquitectura: se asume que no existe un único modelo que
represente todos los aspectos del sistema. Por eso existen diversos modelos
y vistas que cubren toda la arquitectura software del sistema.

Iterativo e incremental: se compone de cuatro fases claramente diferen-
ciadas: inicio, elaboración, construcción y transición. Cada una de estas fases
se divide en iteraciones, que ofrecerán un incremento al finalizar que añade
o mejora funcionalidades del sistema en desarrollo.

4.1.2. Metodologías Ágiles

Las metodologías ágiles tienen un enfoque más práctico y menos dirigido a
la documentación que las metodologías tradicionales, como el proceso unificado.
Según su manifiesto, se valora:

Al individuo y las interacciones del equipo de desarrollo sobre el
proceso y las herramientas: la gente es el principal factor de éxito de un
proyecto software. Por ello, se considera más importante conseguir un buen
equipo que construir el entorno. Por ello, se elige primero al equipo y después
se deja que sean éstos los que construyan el entorno de desarrollo en base a
sus necesidades.

Desarrollar software que funciona más que conseguir una buena
documentación: sigue la regla de no producir documentos a no ser que sean
necesarios de forma inmediata para tomar una decisión importante. Además,
los documentos generados deben ser cortos y centrarse en lo fundamental.

La colaboración con el cliente más que la negociación de un con-
trato: se propone una interacción constante entre el cliente y el equipo de
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desarrollo. Esta colaboración será la que marque la marcha del proyecto y
asegure su éxito.

Responder a los cambios más que seguir estrictamente un plan:
la habilidad de responder a los cambios que puedan surgir a lo largo del
proyecto también determinan el éxito del mismo. Por ello, la planificación
debe ser flexible y abierta.

4.1.3. Comparativa de metodologías

La tabla 4.1 muestra una comparativa de ambas metodologías, que ayuda a la
elección de la que más se adapta al proyecto actual.

4.1.4. Elección de la metodología

JavaOpenCL es un proyecto en el cual la documentación surge según va sien-
do desarrollado, además de que conlleva cambios continuos, principalmente por la
continua actualización a la que se ve sometida el estándar, así como de nuevas
versiones de los diferentes SDK de los principales desarrolladores. Debido a esto,
la metodología que más se ajusta al desarrollo de este proyecto es la de las meto-
dologías ágiles, por su mejor adaptación a los cambios que puedan surgir, así como
la imposibilidad de adaptación del proyecto a una planificación estricta como la
que nos puede ofrecer el Proceso Unificado. Además, dentro de las metodologías
ágiles, el desarrollo a seguir será iterativo incremental con un modelo en espiral
con prototipos. De esta forma, durante cada iteración se irá incorporando cierta
funcionalidad al proyecto a la vez que se corrigen los posibles errores que vayan
surgiendo durante el desarrollo, ya que de otra manera sería imposible subsanar
los errores con la API completa.

La idea principal es generar un prototipo con la que incluyan las funciones bási-
cas de OpenCL, para luego ir aumentando la funcionalidad hasta conseguir cubrir
toda la especificación. Tras cada iteración se realizarán pruebas para comprobar
el correcto funcionamiento, mediante la utilización de los ejemplos de OpenCL
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Metodologías Ágiles Metodologías Tradicionales
Basadas en heurísticas

provenientes de prácticas de
producción de código.

Basadas en normas provenientes de
estándares seguidos por el entorno

de desarrollo
Especialmente preparadas para
cambios durante el proyecto.

Cierta resistencia a los cambios.

Impuestas internamente (por el
equipo).

Impuestas externamente.

Proceso menos controlado, con
menos principios.

Proceso mucho más controlado, con
numerosas políticas / normas.

No existe contrato tradicional
o al menos es bastante flexible.

Existe un contrato prefijado.

El cliente es parte del equipo
de desarrollo.

El cliente interactúa con el equipo
de desarrollo mediante reuniones.

Grupos pequeños trabajando
en el mismo sitio.

Grupos grandes posiblemente
distribuidos.

Pocos artefactos y roles. Muchos artefactos y roles.
Menos énfasis en la

arquitectura del software.
La arquitectura del software es
esencial y se expresa mediante

modelos.

Cuadro 4.1: Comparativa entre metodologías tradicionales y ágiles

portados a JavaOpenCL. Esto asegura que al finalizar el proyecto se dispondrá de
una librería con un funcionamiento correcto y con ejemplos que lo demuestran.

La metodología elegida consiste en una serie de ciclos que se repiten en forma
de espiral, comenzando por el centro. Cada uno de estos ciclos se compone de las
siguientes actividades:

1. Determinar o fijar objetivos: Se definen los requisitos de forma detallada,
además de las posibles restricciones y los productos a obtener. Se identifican
los riesgos del proyecto y las alternativas para evitarlos.
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2. Análisis de riesgos: Se estudian todos los riesgos potenciales y se seleccio-
nan una o varias alternativas propuestas para reducirlos o evitarlos.

3. Desarrollar, verificar y probar: Se desarrollan las funcionalidades del
proyecto especificadas en los objetivos fijados. Además, se verifican estas
funcionalidades y se desarrollan pruebas para corregir posibles fallos.

4. Planificar: Se revisan los resultados obtenidos , evaluándolos, y decidiendo
si se continúa con la siguiente fase y planificándola.

La Figura 4.1 representa el esquema que sigue el modelo en espiral.

Análisis del riesgo

Desarrollar y probar

Determinar objetivos

Planificación

Figura 4.1: Esquema modelo en espiral

4.2. Tecnologías

Las tecnologías utilizadas durante la realización de este proyecto así como su
utilización en el mismo se resumen a continuación:

Java: Lenguaje de programación en el cual se ha implementado la API
JavaOpenCL.
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Java Native Interface (JNI): Se utiliza para poder realizar a llamadas de
la API original desde JavaOpenCL.

GCC: Compilador utilizado para generar a librería dinámica.

Eclipse: Entorno de desarrollo de JavaOpenCL.

JOGL: API de Java utilizada para renderizar los resultados de los ejemplos
gráficos de JavaOpenCL.

OpenCL SDK: API original de OpenCL que contiene las funciones que
JavaOpenCL recubre en su especificación.

4.2.1. Java

Java es un lenguaje de programación orientada a objetos desarrollado por Sun
Microsystems en los años 90. Su sintaxis es similar a la de lenguajes como C/C++
pero abstrayendo al programador de herramientas de bajo nivel como pueden ser
el acceso directo a la memoria (reserva y liberación) y el manejo de punteros.

Una aplicación Java se ejecuta sobre una Máquina Virtual de Java (JVM), que
se encarga de ejecutar el código generado por la compilación previa de la aplicación.
Ese código generado, denominado bytecode es el obtenido utilizando el compilador
de Java, de manera que cualquier máquina virtual sea capaz de ejecutarlo.

Los aspectos más importantes de Java son:

Es orientado a objetos. Se trata de un paradigma de programación que
abstrae las estructuras de datos utilizadas por los programadores en objetos,
entidades que se componen de tres partes:

• Estado: Se compone de los atributos, que almacenan la información
referente al objeto, que tendrá unos valores concretos.

• Comportamiento: Está definido por los métodos, que representan las
operaciones que se pueden realizar sobre los objetos.
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• Identidad: Se trata de una propiedad que consigue que cada objeto sea
diferente del resto.

Independencia de la plataforma. La filosofía de Java dice que cualquier
aplicación escrita en Java puede ser ejecutada en cualquier tipo de platafor-
ma, como dice su lema “write once, run everywhere”.

Recolector de basura. En Java no es posible liberar la memoria de los
objetos reservados, de ello se encarga el Recolector de Basura (Garbage Co-
llector - GC). Este recolector libera la memoria de los objetos cuando ya no
quedan referencias a los mismo, señal de que no van a ser utilizados en el
resto del código.

4.2.2. Java Native Interface (JNI)

JNI es un mecanismo que permite ejecutar código nativo desde Java y viceversa.
Llamamos código nativo a las funciones escritas en un lenguaje como C/C++ que
se ejecutan sobre el sistema operativo donde está funcionando la máquina virtual
de Java. JNI tiene un interfaz bidireccional que permite a las aplicaciones Java
llamar a código nativo a la vez que las funciones de código nativo pueden ejecutar
métodos de clases Java. Es decir, JNI nos ofrece dos interfaces:

Métodos nativos: permiten que desde Java se realicen llamadas a funcio-
nes implementadas en las librerías nativas. Es el interfaz utilizado en este
proyecto.

Interfaz de invocación: permite incrustar una Máquina Virtual de Java en
una aplicación nativa. Para ello, la aplicación nativa llama a librerías nativas
de la máquina virtual y con el interfaz de invocación ejecuta métodos Java
en la máquina virtual.

La estructura de JNI puede resumirse en la Figura 4.2.

Para desarrollar aplicaciones Java que utilicen funciones de librerías en C/C++
siempre se siguen los siguientes pasos generales:
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Figura 4.2: Estructura de JNI

1. Declarar el método nativo como miembro de una clase: en el código
Java, se declaran los métodos que vayan a utilizar las funciones de las librerías
nativas con el modificador native. Este código debe incluir una llamada a
un método para cargar la librería. Este método pertenece a la clase System,
y su definición es la siguiente:

void loadlibrary(String libraryName)

Donde libraryName es el nombre de la librería a cargar, sin la extensión
proporcionada por el sistema operativo (.dll, .so, .dynlib), teniendo en cuenta
que se encuentra dentro del PATH o del directorio de trabajo. En caso de no
encontrarse en ese directorio, será necesario modificar la variable de entorno
PATH para que se incluya el directorio de la librería.

2. Crear el fichero de cabecera nativo (.h): el siguiente paso es generar el
fichero .h con las cabeceras de los métodos nativos que se van a implementar.
Esto se puede realizar de una manera sencilla con el comando javah clase-
Java, donde claseJava es clase Java compilada en el que hemos declarado
los métodos nativos.

3. Implementar el método nativo: una vez disponemos del fichero de ca-
beceras, sólo tenemos que implementar las funciones definidas en el mismo.
Para ello, basta con crear un fichero .c donde copiaremos las cabeceras del
fichero .h, e implementaremos las funciones correspondientes. Hay que tener
en cuenta si la implementación de las funciones nativas va a ser en C/C++,
ya que la declaración de los tipos de JNI es diferente para ambos lenguajes.

4. Compilar el fichero nativo: Por último, sólo falta compilar el último fiche-
ro para generar la librería dinámica, que servirá las funciones implementadas
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para ser llamadas desde Java.

JNI proporciona una serie de funciones y tipos que dan cierta transparencia
a la convergencia de tipos entre C y Java. Todas las funciones JNI tienen dos
parámetros comunes. El primero de ellos es el parámetro env, el cual representa una
referencia a una tabla que contiene todas las funciones que pueden ser ejecutadas
con JNI. El segundo es el parámetro jobject, una referencia al objeto Java que
invoca la función JNI. Este último parámetro, en caso de ser invocado por un
método estático, se convierte en una referencia a la clase que realiza la invocación.

Pero utilizar JNI conlleva riesgos. El primero de ellos, y quizás el más evidente,
es que el código nativo no se va a ejecutar sobre la máquina virtual, por lo que
desde el momento que utilizamos JNI debemos tener en cuenta que perdemos la
portabilidad que nos ofrece Java. Esta parte será, por tanto, la única dependiente
del sistema operativo, de manera que se dispondrá de diferentes librerías a utilizar
en función de la plataforma utilizada. Por otro lado, un fallo en la aplicación
de código nativo puede hacer que la aplicación deje de funcionar, en apariencia
sin motivo alguno. Este último aspecto se controlará en la medida de lo posible
mediante la transformación de los posibles fallos en el código nativo en excepciones
de Java.

4.2.3. GCC

GCC son las siglas de GNU Compiler Collection. Se trata de un sistema de
compiladores desarrollado por el GNU Project que soporta diferentes lenguajes de
programación. Se ha convertido en el compilador estándar en la gran mayoría de
sistemas basados en Unix, como pueden ser GNU/Linux o Mac OS X. Además,
ha sido portado a una gran variedad de arquitecturas de procesadores, y es muy
utilizado en el desarrollo de todo tipo de software. También se encuentra disponible
para la gran mayoría de plataformas embebidas, como Symbian.

Aunque en Windows no está disponible la versión original de GCC, se dispone
de una adaptación muy utilizada: MinGW. Se trata del compilador de GCC para
Windows, además de una serie de librerías de libre distribución para la API de
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Windows, permitiendo a los desarrolladores crear aplicaciones nativas para Micro-
soft Windows.

4.2.4. Eclipse

Eclipse es un entorno de desarrollo abierto que en su versión básica permite
desarrollar aplicaciones Java. Su principal ventaja es que por medio de la instala-
ción de plugins es posible desarrollar código para otros tipos de lenguajes, como
C, Haskell e incluso Latex. Por esto ha sido el entorno elegido para desarrollar
JavaOpenCL, porque permite desarrollar el código en C el código en Java de ma-
nera simultánea, sin necesidad de cambiar entre entornos de desarrollo.

EclipseGavab 2.0 es una distribución de Eclipse que contiene todo lo necesario
(plugins y compiladores) para desarrollar software para diversos lenguajes de pro-
gramación, entre los que se incluyen Java, C/C++, FreePascal, Ruby o Haskell.
Además, incluye herramientas destinadas al desarrollo colaborativo, como es Sub-
versive, un cliente de Subversion. Dispone de versiones tanto para Windows como
para Ubuntu, los dos sistemas operativos tratados en el proyecto.

4.2.5. JOGL

JOGL es una API de Java diseñada para proporcionar soporte gráfico 3D sobre
hardware a las aplicaciones escritas en Java. Mediante JOGL es posible acceder
toda la especificación original de OpenGL. Básicamente, JOGL permite que una
aplicación Java pueda utilizar una API gráfica como OpenGL para renderizar
gráficos igual que lo haría una aplicación nativa. En este proyecto es útil para la
visualización de los ejemplos gráficos portados.
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4.2.6. OpenCL SDK

OpenCL SDK es un framework completo para la programación paralela e inclu-
ye un lenguaje, una API y las librerías necesarias para la ejecución de aplicaciones.
El modelo de la plataforma de OpenCL consiste en una máquina (host) conectada
a uno o varios dispositivos que soportan OpenCL. Estos dispositivos se dividen en
una o varias unidades de cómputo (CU - compute units), las cuáles están dividi-
das en elementos de proceso (PE - processing elements). La aplicación OpenCL
ejecuta comandos desde el host para ejecutar cálculos en los elementos de proceso
dentro de un dispositivo. La Figura 4.3 muestra la organización de una plataforma
OpenCL.

Figura 4.3: Modelo de plataforma de OpenCL

Para entender dicho modelo, es necesario conocer qué es un kernel en OpenCL.
Un kernel es una función que se declara en un programa y se ejecuta en un disposi-
tivo OpenCL, de forma paralela. La Figura 4.4 muestra las diferencias de ejecución
de un programa con un sólo hilo de ejecución frente a un programa ejecutando va-
rias instancias de un kernel sobre un mismo conjunto de datos.

El modelo de ejecución de un programa OpenCL se divide en dos grandes
partes: los kernels que se ejecutan en uno o más dispositivos OpenCL y el programa
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Figura 4.4: Diferencias entre ejecución en un sólo Thread y en múltiples Threads

que se ejecuta en el host. Este programa define el contexto para los kernels y
gestiona su ejecución. El núcleo del modelo de ejecución de OpenCL define como
se ejecutan los kernels. Cuando la máquina ordena la ejecución de un kernel, se
define un espacio de índices, llamado NDRange. Una instancia del kernel se ejecuta
para cada punto de este espacio de índices, y se denomina work-item. Cada uno de
esos work-items ejecuta el mismo código pero el camino de ejecución y los datos
modificados pueden ser diferentes para cada uno. Estos work-item se organizan en
work-groups, los cuales proveen una descomposición más abstracta del espacio de
índices. Los work-items dentro de un work-group se ejecutan de manera concurrente
en los elementos de proceso de una unidad de cómputo. La Figura 4.5 muestra la
organización descrita.

La máquina define un contexto para la ejecución de los kernels. Este contexto
incluye los siguientes recursos:

Devices: Los dispositivos OpenCL que van a ser utilizados por la máquina.

Kernels: Las funciones OpenCL que se van a ejecutar en los dispositivos.

Objetos de programa: El código fuente y ejecutable que implementa los
kernels.
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Figura 4.5: Modelo de ejecución de OpenCL

Objetos de memoria: Un conjunto de objetos de memoria que pueden ser
accedidos desde la máquina y los dispositivos OpenCL.

Este contexto se crea y manipula utilizando funciones de la API OpenCL por el
host, el cual además crea una estructura de datos llamada cola de comandos
que gestiona la ejecución de los kernels en los dispositivos. Tras la creación de la
cola de comandos, el host introduce comandos en la cola que van a ser planificados
en los dispositivos dentro del contexto. Los comandos se pueden dividir en tres
grandes grupos:

Comandos de ejecución del kernel : Ejecución de un kernel en los ele-
mentos de proceso de un dispositivo.

Comandos de memoria: Transferencia de datos entre objetos de memoria.

Comandos de sincronización: Gestiona el orden de ejecución de los co-
mandos.

La ejecución de los comandos dentro del dispositivo se produce de manera asín-
crona entre la máquina y el dispositivo. Existen dos modos de ejecución: en orden,
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donde los comandos se lanzan en el orden que aparecen en la cola de comandos y
se completan en ese mismo orden, y fuera de orden, donde los comandos se lanzan
en orden, pero pueden no finalizan en ese orden. La ejecución de los comandos ge-
neran objetos del tipo evento. Estos eventos se utilizan para controlar la ejecución
entre comandos y para coordinar la ejecución entre la máquina y los dispositivos.
Es posible asociar varias colas a un mismo contexto, las cuales se ejecutarán de
manera concurrente e independiente sin tener métodos de sincronización dentro de
OpenCL.

En cuanto a la memoria utilizada por OpenCL, se pueden diferenciar cuatro
tipos diferentes:

Global: Permite lecturas y escrituras a todos los work-items de todos los
work-groups.

Constante: Se mantiene constante durante la ejecución de un kernel. La
máquina es la encargada de reservar e inicializar los objetos en esta memoria.

Local: Es una región local a un work-group. Se puede utilizar para reservar
memoria que van a compartir todos los work-items de un work-group.

Privada: Es una región privada de un work-item determinado.

La Figura 4.6 muestra la organización de la memoria en OpenCL y los diferentes
accesos permitidos desde el dispositivo y desde la máquina que funciona como host.

La programación en OpenCL puede expresarse de dos maneras diferentes: ex-
plotanndo el paralelismo a nivel de datos o a nivel de tareas presentes en la apli-
cación. El paralelismo a nivel datos define una operación como una secuencia de
instrucciones aplicadas a varios elementos de un objeto en memoria. El paralelismo
a nivel tareas define un modelo en el cual una instancia de un kernel se ejecuta sin
tener en cuenta ningún índice de espacios.

Por otro lado, debido al paralelismo y la concurrencia, surge la necesidad de
la sincronización. En OpenCL hay dos dominios que necesitan sincronización: los
work-items dentro de un mismo work-group, y los comandos apilados en las colas
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Figura 4.6: Modelo de memoria de OpenCL (Adapatado de [12])

de comandos de un contexto determinado. Para el primer caso, la solución más
rápida es la utilización de una barrera para todo el work-group, la cual deben
ejecutar todos los elementos del work-group antes de que ninguno de ellos continúe
ejecutando más allá de dicha barrera. No existe la sincronización entre varios work-
groups. Los puntos de sincronización entre colas de comandos son de dos tipos:

Barrera de la cola de comandos: Esta barrera asegura que todos los
comandos apilados antes de ella han sido ejecutados y los resultados son
visibles para todos los comandos que se ejecuten tras la misma. Se utiliza
para sincronizar comandos en una misma barrera.

Espera de eventos: Todas las funciones de la API que apilan comandos de-
vuelven un evento que lo identifica junto con la memoria que actualizan. Por
ello, cada comando ejecutado que espere ese evento se asegura no continuar
ejecutando hasta que termine la función asociada al evento.
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Capítulo 5

Descripción Informática

5.1. Especificación de Requisitos

La funcionalidad de la API, así como todos los detalles de la misma queda
recogidos en los siguientes requisitos.

5.1.1. Requisitos funcionales

Los requisitos referidos al funcionamiento de la API de cara al usuario son los
siguientes:

1. La API generada debe recubrir la especificación de OpenCL 1.0

2. La API generada debe ser compatible con los principales sistemas operativos
soportados por las diferentes SDK.

a) La API generada debe ser compatible con Windows XP 32 bits.

b) La API generada debe ser compatible con Ubuntu 9.10 32 bits.

c) La API generada debe ser compatible con Ubuntu 9.10 64 bits.

39
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3. La API generada debe ser compatible con las SDK de los principales fabri-
cantes.

a) La API generada debe ser compatible con la SDK de NVIDIA.

b) La API generada debe ser compatible con la SDK de ATI.

4. La API generada debe mantener un rendimiento comparable al obtenido con
la SDK original.

5. La API generada debe ser fiel, en la medida de los posible, al estándar original

6. La API generada debe seguir el paradigma de la programación orientada a
objetos en la medida de lo posible.

7. Las interacciones entre OpenCL y Java deben ser transparentes al usuario.

8. La API generada debe controlar los posibles errores producidos en OpenCL.

5.1.2. Requisitos no funcionales

Los requisitos necesarios para el correcto funcionamiento de la API, pero que
no forman parte de su funcionalidad son los siguientes:

1. La API generada debe soportar todos los dispositivos soportados por las
SDK originales.

2. Los requisitos hardware deben ser los mismos que los de las SDK originales.

3. Es necesario disponer de una máquina virtual de Java para poder utilizar la
API.

4. Es necesario disponer de la librería original de OpenCL para poder utilizar
la API.

5. Para la representación de los resultados de manera gráfica, será necesario
disponer de JOGL.
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5.2. Diseño e Implementación

En este capítulo se pasa a describir todos los detalles referentes al diseño e
implementación de la API. Como se ha mencionado, consistirá en un fichero JAR
que permitirá realizar las llamadas a funciones OpenCL, que a su vez recupera
dichas funciones de una librería dinámica. Por tanto, en este apartado se aborda
la generación de la API desde la creación de la librería dinámica hasta la finali-
zación de la implementación de la especificación completa, así como las decisiones
tomadas.

5.2.1. Arquitectura de JavaOpenCL

Figura 5.1: Diagrama UML del proyecto
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La Figura 5.1 muestra el diagrama de clases del proyecto completo así como
las relaciones entre las diferentes clases que lo forman. A continuación se presenta
una breve descripción de cada una de las clases.

CLType: Representa un tipo básico de OpenCL, como puede ser un buffer o
una cola de comandos. Almacena el identificador proporcionado por OpenCL.
Las subclases de CLType tienen la misma funcionalidad, pero diferenciando
entre los tipos disponibles en OpenCL.

CLContextProperties: Representa una lista de propiedades que pueden
recibir los contextos al ser creados. Internamente contiene una lista de pro-
piedades cuyo último elemento es 0 (definido por el estándar OpenCL).

JavaOpenCL: Clase principal de la API. Contiene toda la especificación de
OpenCL implementada en Java. Es la clase encargada de la comunicación
con la librería original mediante JNI.

JavaOpenCLException: Excepción de la API que se lanza en el momento
en el que se produce un error asociado a OpenCL.

ImageFormat: En OpenCL se trata de una estructura que almacena da-
tos sobre el formato de una imagen que se va a procesar, por lo que en
JavaOpenCL se ha transformado en una clase que almacena la misma infor-
mación.

JavaOpenCL: Conjunto de funciones muy comunes implementadas en las
diferentes SDK portadas a fin de que sean compatibles con JavaOpenCL.

Notifier: Interfaz que debe implementar un programador para utilizar un
callback en JavaOpenCL.

5.2.2. Uso de JavaOpenCL

Para que el lector pueda comprender la necesidad de las diferentes fases del
proyecto, a continuación se incluye un ejemplo de JavaOpenCL que muestra su
uso.
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Para ello se ha partido de un código base, cuya funcionalidad es rellenar un
vector con los índices del mismo. El código fuente es el mostrado a continuación:

1 import static es.gavab.javapencl.JavaOpenCL .*;
2 import static es.gavab.javapencl.JavaOpenCLUtils .*;
3 import static es.gavab.javapencl .*;
4 import java.nio.ByteBuffer;
5 import java.nio.ByteOrder;
6
7 public class HelloWorld {
8 public static void main(String [] args) {
9 try {

10 final int arrayLength = 10;
11
12 CLContext context =
13 clCreateContextFromType (0, CL_DEVICE_TYPE_GPU , null);
14 CLMem outCL = clCreateBuffer(context , CL_MEM_WRITE_ONLY ,
15 null , (Integer.SIZE /8)* arrayLength );
16 CLDeviceID [] devices =
17 (CLDeviceID []) clGetDeviceIDs(CL_PLATFORM_NVIDIA , CL_DEVICE_TYPE_ALL );
18 String [] source = new String [1];
19 source [0] = readKernel(".\\ kernels \\ HelloWorld.cl");
20 CLProgram program = clCreateProgramWithSource(context , source );
21 clBuildProgram(program , null , null , new NotifierBuild (){
22 public void notifyBuild () {
23 System.out.println("Este␣es␣el␣callback␣de␣la␣funcion");
24 }
25 });
26 CLKernel kernel = clCreateKernel(program , "hello");
27 clSetKernelArg(kernel , 0, 4, outCL);
28 CLCommandQueue cq = clCreateCommandQueue(context , devices [0], 0);
29 int[] global = new int [1];
30 int[] local = new int [1];
31 global [0] = (Integer.SIZE /8)* arrayLength;
32 local [0] = 1;
33 CLEvent event =
34 clEnqueueNDRangeKernel(cq , kernel , 1, null , global , local , null);
35 CLEvent [] lista = new CLEvent [1];
36 lista [0] = event;
37 ByteBuffer lectura = ByteBuffer.allocateDirect
38 (( Integer.SIZE )/8* arrayLength ).order/ByteOrder.nativeOrder ());
39 clEnqueueReadBuffer(cq , outCL , true , 0,
40 (Integer.SIZE )/8* arrayLength , lectura , lista);
41 clReleaseKernel(kernel );
42 clReleaseProgram(program );
43 clReleaseCommandQueue(cq);
44 clReleaseContext(context );
45 lectura.clear ();
46 for (int i=0;i<arrayLength;i++) {
47 System.out.println("␣"+lectura.getInt ());
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48 }
49 } catch (JavaOpenCLException e) {
50 System.out.println("EXCEPCION");
51 System.out.println("Codigo:␣"+e.getCode ());
52 e.printStackTrace ();
53 }
54 }
55 }

El primer paso para poder desarrollar una aplicación JavaOpenCL es importar
la librería al proyecto actual, de manera que sea posible acceder a la API. Tras esto,
es necesario importar las clases de JavaOpenCL que van a ser utilizadas. Para ma-
yor comodidad, se importan todos los métodos estáticos de las clases JavaOpenCL
y JavaOpenCLUtils, de manera que el acceso a los mismos sea directo, en lugar
de seguir el formato Clase.nombreMetodo().

En la línea 10 se declara una variable arrayLength que se utilizará para definir
la longitud del vector. Tras esto, es necesario crear el contexto, con la sentencia:

1 CLContext context =
2 clCreateContextFromType (0, CL_DEVICE_TYPE_GPU , null);

Con ello se indica que el programa va a ser ejecutado en un dispositivo GPU.
Después es necesario declarar el buffer donde se almacenarán los resultados de la
ejecución:

1 CLMem outCL = clCreateBuffer(context , CL_MEM_WRITE_ONLY ,
2 null , (Integer.SIZE /8)* arrayLength );

La función clCreateBuffer() recibe como argumento el tamaño en bytes del
buffer que será creado. El objetivo es que el código se pueda ejecutar en todas
las versiones de JavaOpenCL, además de que el programador no tiene por qué
saber el tamaño de un entero en bytes en Java. Por eso se utiliza la expresión
Integer.SIZE/8, que devolverá el tamaño que ocupa un entero en bytes en Java.

Tras esto, se ejecuta una sentencia que consulta qué dispositivos GPU se en-
cuentran disponibles para la aplicación. Debido a que se utiliza la SDK de NVIDIA,
ajustamos la búsqueda a dispositivos NVIDIA:
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1 CLDeviceID [] devices =
2 (CLDeviceID []) clGetDeviceIDs(CL_PLATFORM_NVIDIA , CL_DEVICE_TYPE_ALL );

Los identificadores de los dispositivos disponibles quedarán almacenados en la
variable devices. Tras la obtención de los dispositivos, se crea el programa que será
ejecutado, junto con el kernel. Se supone que el fichero con el kernel se encuentra
en una carpeta llamada kernels dentro del directorio de la aplicación.

1 String [] source = new String [1];
2 source [0] = readKernel(".\\ kernels \\ HelloWorld.cl");
3 CLProgram program = clCreateProgramWithSource(context , source );

Es importante destacar que en la variable source estarán almacenados todos
los kernels que se necesiten cargar (en este caso sólamente uno). Tras la obtención
del código fuente del kernel, se pasa a la creación del programa, desde ése código
fuente. El siguiente paso es compilar el programa, con la instrucción:

1 clBuildProgram(program , null , null , new NotifierBuild (){
2 public void notifyBuild () {
3 System.out.println("Este␣es␣el␣callback␣de␣la␣funcion");
4 }
5 });

Esta función, además de compilar el programa, ejecuta la función notifyBuild
durante su propia ejecución, a modo de callback. Es posible insertar null en la
posición de este parámetro si no se necesita dicha función. Para poder definir el
callback en Java, se utiliza una clase anónima que debe implementar una interfaz
que contiene el método notifyBuild.

El siguiente paso es crear el kernel y establecer sus argumentos, en este caso
un único argumento, el vector a rellenar:

1 CLKernel kernel = clCreateKernel(program , "hello");
2 clSetKernelArg(kernel , 0, (Integer.SIZE/8), outCL);

El parámetro hello hace referencia al nombre de la función del kernel que se
va a ejecutar en el dispositivo. El argumento que se va a utilizar es una referencia al
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vector de salida, por lo que su tamaño es el tamaño de una referencia, el equivalente
a un entero.

Es necesario entonces crear la cola de ejecución donde se encolarán los comandos
a ejecutar, en el dispositivo seleccionado:

1 CLCommandQueue cq = clCreateCommandQueue(context , devices [0], 0);

Esta cola de comandos recibirá el contexto sobre el que va a trabajar, así como
el dispositivo donde se van a ejecutar dichos comandos. El siguiente paso es ordenar
la ejecución del kernel en la cola de comandos:

1 int[] global = new int [1];
2 int[] local = new int [1];
3 global [0] = (Integer.SIZE /8)* arrayLength;
4 local [0] = 1;
5 CLEvent event =
6 clEnqueueNDRangeKernel(cq , kernel , 1, null , global , local , null , true);
7 CLEvent [] lista = new CLEvent [1];
8 lista [0] = event;

Es importante remarcar varios aspectos. En primer lugar, las variables global
y local hacen referencia al número de work-items y de work-groups que se van
a utilizar. En este caso, al ser un ejemplo sencillo bastará con un sólo work-group
que contenga un número de work-items igual al tamaño del buffer a procesar. Tras
ello, se ordena la ejecución del kernel, y de esa llamada se recupera un evento que
se va a utilizar para sincronizar la ejecución.

Tras la ejecución del kernel, es necesario leer los resultados obtenidos, y liberar
los recursos reservados en el dispositivo gráfico.

1 clEnqueueReadBuffer(cq , outCL , true , 0,
2 (Integer.SIZE )/8* arrayLength , lectura , lista , false );
3 clReleaseKernel(kernel );
4 clReleaseProgram(program );
5 clReleaseCommandQueue(cq);
6 clReleaseContext(context );

La sentencia clEnqueueReadBuffer recupera el buffer de la memoria del dispo-
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sitivo gráfico para poder leerla desde memoria principal. El penúltimo parámetro
de dicha llamada es la lista de eventos creada anteriormente, por lo que esta fun-
ción no va a ejecutarse hasta que finalicen todas las sentencias acumuladas en la
lista.

Cabe destacar el uso de un bloque try-catch que envuelve el código para com-
probar cualquier posible error que se genere en alguno de los comandos anteriores.

Por último, aunque no resulte significativo para el desarrollo de la API, se
incluye el código del kernel para una mejor comprensión del ejemplo:

1 __kernel void hello(__global int * out)
2 {
3 size_t tid = get_global_id (0);
4 out[tid] = tid +1;
5 }

5.2.3. Generación de librería dinámica

El primer paso para generar la API es disponer de una librería dinámica con
la cual se puedan realizar las llamadas a las funciones del estándar de OpenCL.
Para ello es necesario crear un proyecto en C que genere la librería dinámica, y un
proyecto Java que contenga la declaración de los métodos a incluir en la librería. En
este caso se ha utilizado EclipseGavab 2.0, por su integración con ambos lenguajes,
utilizando el compilador GCC en Ubuntu y MinGW en Windows, ambos software
libre. La configuración de los proyectos está incluida en el Anexo 1 (7.1).

Para generar dicha librería es necesario conocer cuáles van a ser las funciones
que se van a incluir en la misma. Para ello, se declara el método que va a estar
incluido en la librería con el modificador native. Esto hace que el intérprete de
Java detecte que esa función va a estar declarada dentro de una librería, por lo que
no hay que implementarla. Tras esto, hay que generar el fichero de cabeceras que
contiene la declaración de esa librería, pero en código C. Esto es posible realizarlo
de manera sencilla utilizando la herramienta javah proporcionada con el JDK. El
comando para generar este fichero es el siguiente:
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javah -jni -d Directorio/Proyecto/C ClaseJava

Cabe destacar que Directorio/Proyecto/C será el directorio del proyecto C
que va a generar la librería, y ClaseJava será la clase Java compilada que contiene
el método nativo. De esta manera se generará en el directorio del proyecto C un
fichero .h que contendrá la cabecera de la función. El siguiente paso es implementar
dicha función.

Para ello se crea un fichero .c donde es necesario copiar la cabecera generada.
Para la implementación de esta función no se va a utilizar JNI, por lo que no
es necesario conocer el significado de los parámetros JNIEnv ni jclass aún. Tras
tener la función implementada, se pasa a la compilación del proyecto C, que en
caso de ser correcta, genera la librería dinámica (fichero .dll para Windows, .so
para Ubuntu). Para que el proyecto Java pueda cargar esta librería, existen dos
opciones. La primera de ellas es copiarla a un directorio incluido en el path de las
librerías del sistema operativo, como puede ser WINDOWS\SYSTEM32 en Windows.
La otra forma, que es la que se corresponde con la utilizada en este proyecto, es la
inclusión de la librería en el directorio del proyecto Java.

Con la librería disponible en el proyecto, es posible utilizar desde una clase
Java las funciones nativas implementadas. Para ello, se carga la librería desde
Java mediante el siguiente comando:

1 static {
2 System.loadLibrary("libreria");
3 }

Este bloque es necesario situarlo al comienzo de la clase Java que va a invocar
los métodos nativos, de manera que cada vez que se ejecute la aplicación Java
se cargue la librería. En el código, libreria debe ser sustituido por el nombre
de la librería generada. A partir de este punto la aplicación Java está preparada
para invocar los métodos nativos. Para ello, sólo es necesario invocarlos como si
de métodos normales de Java se tratara, ya que será el compilador el encargado
de obtener ése método de la librería.
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5.2.4. Generación de una API básica

Con la librería generada, el siguiente paso es crear una API que haga uso de la
misma. Con esta finalidad se crea una clase Java similar a la anterior, en la que se
encuentre incluida la carga de la librería, así como un recubrimiento de todos los
métodos presentes en la misma. Para este recubrimiento sólo es necesario imple-
mentar un método que llame al método nativo, que también debe estar declarado
en la clase Java. Por último, se necesita exportar este proyecto Java en forma de
fichero JAR, que contendrá a la API anterior.

Una vez generado el fichero JAR, se incluye en un nuevo proyecto Java, el
cual utilizará la API. Además, es necesario importar los métodos de la librería,
de manera que sean visibles en el nuevo proyecto. Esto se puede realizar mediante
el comando import de Java, sin ninguna configuración adicional. Para una mayor
comodidad a la hora de programar, se han declarado los métodos que recubren a
los nativos como estáticos, de manera que no es necesaria la creación de ningún
objeto para invocarlos, además de simplificar su uso, importando dichos métodos
de la siguiente manera:

1 import static es.gavab.javaopencl.JavaOpenCL .*;

Así, para invocar a los métodos ya no será necesario utilizar el nombre del
paquete (JavaOpenCL.metodo()), sino que bastará con el nombre del método
(metodo()). Así, se dispone de la estructura básica del proyecto, una API que
el usuario debe importar y que se encarga de la gestión de información entre Java
y C.

5.2.5. Uso de JNI

Para el uso de JNI es necesario tener en cuenta diversos aspectos, ya que la
sintaxis del código C va a cambiar ligeramente. Estos cambios se van a situar
principalmente en las cabeceras de las funciones y en las llamadas a funciones JNI.

Aunque las cabeceras las produce javah automáticamente, es importante en-
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tender el significado de las mismas para poder implementar el código. Las cabeceras
de las funciones nativas siguen el siguiente esquema:

1 JNIEXPORT tipo_retorno JNICALL Java_NombreClase_NombreMetodo
2 (JNIEnv * env , jobject object , ...);

Siempre van precedidas de JNIEXPORT tipo_retorno JNICALL, donde tipo_-
retorno es el tipo de datos que va a recibir Java al invocar el método nativo, por
ejemplo jint. NombreClase y NombreMetodo son los nombres de la clase Java y
del método nativo respectivamente, tal como aparecen en el código Java. La parte
más importante corresponde a los parámetros que recibe siempre cualquier función
nativa. Estos parámetros son:

JNIEnv * env: Se trata de un puntero a una tabla que almacena re-
ferencias a todas las funciones proporcionadas por JNI. Éstas son to-
das las funciones que se necesitan para interactuar con la máquina vir-
tual y trabajar con objetos y métodos Java. Cabe destacar que en todas
las funciones se debe pasar como parámetro el propio env. Por ejemplo,
(*env)->GetStringUTFChars(env, javaString, 0); convierte un String
de Java en una cadena de caracteres de C. La Figura 5.2 muestra la repre-
sentación de un elemento de este tipo:

JNIenv* env

Puntero

Datos
internos

de la
máquina

virtual

Puntero fn

Puntero fn

Puntero fn

.   .   .

Arrays de punteros 
a funciones JNI

Función

Función

Función

Figura 5.2: Estructura de los elementos JNIEnv
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jobject object: Este argumento tiene dos significados. Si se trata de un
método de instancia, actúa como un puntero this al objeto Java. Si es un
método de clase, se trata de una referencia jclass a un objeto que repre-
senta la clase en la que están definidos los métodos estáticos. En el caso de
JavaOpenCL no se va a utilizar, debido a que la clase que va a invocar los
métodos va a ser siempre la misma, y no tiene que participar en el código
nativo.

Los cambios referentes a las llamadas en JNI se deben principalmente a que hay
que tener en cuenta que los datos recibidos vienen de Java, no desde otra función
en C. Por ello, hay que realizar diferentes conversiones, como por ejemplo la de un
String de Java a una cadena de caracteres en C, y estas conversiones se realizan
a través de las funciones que presenta JNI.

5.2.6. Comunicación con OpenCL

El siguiente paso es la comunicación de Java con OpenCL. Para ello, es muy
importante saber como se va a gestionar el intercambio de datos entre OpenCL
y Java, ya que en OpenCL se dispone de tipos, como los punteros, que no tienen
correspondencia directa con Java. La Figura 5.1 muestra la comparativa de los
principales cambios en ambos lenguajes:

Punteros

La gestión de los punteros desde Java es una decisión de diseño imprescindible
para la interacción con OpenCL. Una primera aproximación ha sido la utilización
de los tipos básicos de Java para representarlos. Para los sistemas de 32 bits, se
ha utilizado el tipo int de Java para representarlos, y el tipo long para los de
64 bits. Esta decisión viene dada por el tamaño de los punteros en el lenguaje
C en cada uno de los tipos de sistemas operativos, que se corresponden con los
tipos elegidos en Java. Tras comprobar el correcto funcionamiento del uso de estos
tipos, es conveniente ofrecer una capa de abstracción que haga la utilización de
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Tipo en OpenCL / C Tipo en Java
Punteros int (32 bits) ó long (64 bits)

Buffers de datos ByteBuffer
Callbacks Clase Notifier
Errores Excepciones

CL_TRUE, CL_FALSE booleanos
SDK de utilidades OpenCL SDK de utilidades JavaOpenCL

Uso de OpenGL para representar
gráficos

Uso de JOGL para representar
gráficos

Cuadro 5.1: Tabla correspondencia de tipos OpenCL - Java

estos tipos transparente al usuario.

Aprovechando las ventajas de Java, se ha considerado la creación de una clase
Java por cada uno de los tipos de OpenCL que representan un puntero, las cuales
heredarán de una superclase CLType que encapsula el elemento común a todos los
tipos, que será el valor del puntero. Además, la clase CLType implementa el método
equals para comparar si dos elementos son iguales a través de su identificador, así
como el método hashCode para que el código hash de cada objeto de esta clase se
genere a partir del identificador.

El uso de una clase de este tipo debe ser simple para el programador. Con este
motivo, la librería dinámica obtiene el valor del identificador a partir de la llamada
correspondiente a OpenCL. Tras obtener dicho identificador, será la API Java la
encargada de encapsular el valor obtenido dentro de un objeto de JavaOpenCL.
Todas las clases incluyen un constructor para crearlas que reciben como parámetro
el identificador. El usuario no va a ser el que utilice estos constructores, ya que será
la clase que gestiona la comunicación con OpenCL la encargada de obtener el valor
del puntero, crear el objeto pertinente y devolver la referencia al objeto creado.
De esta forma, el usuario tan sólo deberá declarar un objeto del tipo necesario y
asignarle el resultado de la llamada JavaOpenCL, sin preocuparse de la reserva de
memoria del mismo.
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Buffers de datos

En OpenCL, los buffers de datos utilizados generalmente se crean e inicializan
desde el código C, no desde el kernel. Por eso es necesario presentar la funcionalidad
de la creación de estos buffers de datos de la manera más similar a la realizada en
OpenCL. Una primera aproximación puede consistir en utilizar arrays de Java, la
manera más sencilla. En este caso los arrays no son una buena solución debido a su
bajo rendimiento, ya que para poder utilizarlos desde JNI sería necesario realizar
una copia del array. Esta copia, teniendo en cuenta los tamaños de los arrays
que se suelen utilizar en OpenCL, reduce el rendimiento e incluso imposibilita
la ejecución en algunos casos. Utilizando arrays la copia es necesaria ya que son
reservados en la memoria de la Máquina Virtual de Java, y para poder acceder a
ellos desde C se necesita que estén almacenados en memoria nativa.

Por este motivo en este proyecto se propone el uso de ByteBuffers, presentes
en el paquete java.nio. La utilidad de estos buffers reside principalmente en la
reserva de memoria que nos permiten. Hay dos tipos de ByteBuffer, los directos
(creados con el método allocateDirect()), o los no directos (creados con el mé-
todo allocate()). La creación de los dos tipos siempre necesita como argumento
el tamaño del buffer en bytes, pero con una diferencia. Cuando se utiliza un buffer
directo, la máquina virtual ejecutará las operaciones nativas de entrada salida so-
bre ese buffer directamente sobre él, mientras que con los no directos, se realizará
una copia del mismo. Por esto, en JavaOpenCL se deben utilizar buffers directos
para un mejor rendimiento.

Otra de las ventajas de los buffers directos es que la memoria se reserva
directamente en memoria nativa, lo que facilita su acceso desde JNI. Este es
el motivo por el cual se utilizarán ByteBuffers para gestionar buffers de da-
tos en JavaOpenCL, que desde el código C serán gestionados a través de las
funciones que presenta JNI para este propósito (GetDirectBufferAddress(),
GetDirectBufferCapacity(), etc.). Estas funciones permiten traducir el
ByteBuffer a un array de tipos básicos en C.

También resulta interesante su método slice(), que puede ser de gran utilidad
en caso de necesitar realizar aritmética de punteros desde Java. Este método crea
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un buffer con el contenido del buffer que lo invoca. Además, tiene la particularidad
de que los cambios realizados sobre este nuevo buffer se verán reflejados en el
original. Aunque no recibe argumentos, la creación se realiza a partir de la posición
indicada por el atributo position del buffer original. Por ello, para acceder a una
posición concreta basta con modificar el atributo position con el desplazamiento
buscado e invocar al método slice().

Callbacks

En OpenCL hay varias funciones que incluyen callbacks, esto es, punteros a
funciones que se van a ejecutar al llamar a las funciones que los incluyen. En un
principio esto puede parecer imposible de realizar desde Java, debido a la ausencia
de punteros, y mucho menos de punteros a funciones. Además, debe ser un método
de alguna manera intuitivo para los usuarios de Java, de manera que no sea nece-
saria la gestión de punteros o similares. Por esto, la opción elegida es la expuesta
a continuación.

Primero se ha creado una interfaz Java que representa una clase que va a
contener el callback. Esta interfaz incluye un método notifyCall que es el que se
va a ejecutar mediante el callback, de manera que es este método el que debe
implementar el usuario. En el código nativo, se ha implementado una función que
recibe como parámetro el objeto que implementa la interfaz anterior. Esta función,
utilizando la API proporcionada por JNI, realiza las siguientes operaciones:

1. Extrae el identificador de la clase a la que pertenece el objeto, para conocer el
tipo de función. Esta extracción se realiza mediante la función FindClass(),
que recibe como parámetro la signatura de la clase buscada. La signatura de
una clase o un método es una cadena de caracteres que identifica unívoca-
mente a esa clase o método.

2. Extrae el identificador del método que va a ser invocado. Esta extracción se
realiza mediante la función GetMethodID(), que recibe como parámetro el
nombre del método y su signatura de tipos.
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3. Invoca el método extraído anteriormente, utilizando la función
CallVoidMethod(), que recibe como parámetro al objeto que contiene
el método a invocar y el método que se va a invocar.

4. Elimina la referencia creada, ya que no va a volver a ser utilizada. Esto es
importante, ya que de otra manera esta referencia no podría ser eliminada,
quedando alojada en memoria. En aplicaciones con varios callbacks, esto
puede influir en el rendimiento de la aplicación.

Ahora es necesario especificar como va a utilizar el usuario estos callbacks.
La forma más sencilla es con el uso de clases anónimas. Para esto, lo único que
debe hacer el usuario es, a la hora de introducir un callback, declarar en ese mismo
instante la clase a la que va a pertenecer (implementando la interfaz correspon-
diente), e implementar el método notify incluido en dicha clase. De esta manera
se instancia en el mismo momento de la invocación el objeto que va a contener la
información del callback que debe ejecutarse.

Por último, es necesario permitir el uso de parámetros de la aplicación dentro de
esos callbacks. Para conseguir dicha funcionalidad, hay que declarar previamente
constantes que almacenen el valor de dichos parámetros. Es decir, si queremos
utilizar como parámetro el identificador del programa, declaramos la constante:

final int programID = program.getId();

En el fragmento anterior se puede suponer que program es un objeto de la clase
CLProgram creado anteriormente. De esta manera, dentro del método notifyCall
podremos utilizar esta constante para obtener la información deseada.

Dentro de la colección de ejemplos existe una clase llamada EjemploError que
contiene una de estas funciones. La función es la que se muestra en el siguiente
fragmento de código:

1 clBuildProgram(program , null , null ,
2 new Notifier () {
3 @Override
4 public void notifyCall () {



5.2. DISEÑO E IMPLEMENTACIÓN 56

5 System.out.println("Program␣=␣"+progConst );
6 }
7 })

En ese ejemplo se muestra como se debe incluir un callback en cualquier función
de JavaOpenCL que lo acepte. De esta forma, al ejecutar la función clBuildProgram
se mostrará por pantalla el mensaje indicado en el callback. Esto puede ser útil
en caso de necesitar información a la que sólo se tiene acceso desde dentro de la
llamada a la función.

Tratamiento de excepciones

En OpenCL, para poder comprobar si una función se ha ejecutado correctamen-
te o no, es necesario comparar el valor devuelto por las funciones con la constante
CL_SUCCESS que indica que la ejecución ha sido correcta. Esta comparación, si se
porta directamente a Java, puede generar un código engorroso además de que en
Java los errores no deben comprobarse con el tipo de retorno de la función, para
eso existen las excepciones.

Para aprovechar la potencia de Java, lo natural es utilizar las excepciones que
presenta el lenguaje, de manera que para el usuario, cualquier método JavaOpenCL
no ejecutado correctamente generará una excepción, y será el usuario el que decida
si desea o no tratarla. En caso de ignorarla, se detendrá la ejecución del programa,
ya que la ejecución incorrecta de un sólo comando OpenCL lleva a la obtención de
resultados erróneos en la gran mayoría de los casos.

El lanzamiento de dichas excepciones se produce en el momento en que se
detecta el error, esto es, en el código nativo. Para ello ha sido necesaria la im-
plementación de una función que lance la excepción con un código de error y un
mensaje determinado. Además, es necesario crear una clase Java encargada del
lanzamiento de la excepción, la clase JavaOpenCLException. Esta clase hereda de
RuntimeException y tiene como atributo el código de error. La función que ges-
tiona la excepción desde C es throwException, y su funcionalidad es la siguiente:
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Obtiene una referencia a la clase JavaOpenCLException con la función
FindClass(), sólo si es la primera vez que se lanza una excepción, en caso
contrario ya tiene la referencia.

Obtiene una referencia al constructor de la excepción, con la función
GetMethodID(), sólo si es la primera vez, en caso contrario ya tiene la refe-
rencia.

Crea un objeto de tipo JavaOpenCLException utilizando la función
AllocObject().

Invoca al constructor de la clase JavaOpenCLException con la función
CallNonvirtualVoidMethod().

Declara una variable de tipo jthrowable, que representa las excepciones
desde JNI, y le asigna el objeto creado anteriormente.

Lanza la excepción con la función Throw().

Como se puede observar, no se eliminan las referencias creadas. Esto es principal-
mente para que en el caso de que el usuario maneje las excepciones no sea necesario
obtener una referencia cada vez, ya que va a ser siempre la misma. De esta manera
se mejora el rendimiento de la gestión de excepciones.

Así, al producirse una excepción en JavaOpenCL, el usuario obtendrá un código
de error, así como la descripción de la especificación original del motivo de la
excepción, para poder comprobarlo en la especificación, en caso de no conocer el
motivo de la misma.

Booleanos

En OpenCL para simular los valores booleanos se utilizan dos constantes, CL_-
TRUE y CL_FALSE, que simulan los valores verdadero y falso. Para portar esto a
Java, la elección ha sido utilizar los valores booleanos que proporciona Java, true
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y false, y que sea la API la encargada de traducir dichos valores a los proporcio-
nados por OpenCL, mediante dos funciones diferentes, una para transformar de
booleano de OpenCL a booleano de Java y otra para el sentido contrario.

Lectura de kernels

La especificación de OpenCL no proporciona ninguna funcionalidad para la
lectura de los kernels, por lo que es el usuario el encargado de abrir los ficheros co-
rrespondientes, leer el contenido y cargarlo al programa OpenCL. En las diferentes
SDK, esto ha sido solucionado mediante el uso de funciones que proporciona la
propia SDK para cargar estos kernels.

Para poder realizar algo similar en Java, se ha implementado una función
readKernel() que recibe como argumento la ruta (absoluta o relativa) donde
se encuentra el fichero del kernel que se desea leer. De esta manera, para cargar el
código de un kernel, tan sólo es necesario utilizar dicha función, que lo almacenará
en un String a través del valor de retorno de la misma. Esta función se encuentra
dentro de la clase JavaOpenCLUtils.

Representación de gráficos

Para representar gráficos en OpenCL se utiliza OpenGL, aunque aún no es-
tá disponible la interoperabilidad directa (acceder desde OpenCL a los datos de
OpenGL y viceversa). Por eso, se utiliza la copia interna de los datos, de manera
que no perjudique al rendimiento. Esta copia implica que un mismo buffer reserva-
do en memoria principal puede ser utilizado tanto en OpenCL como en OpenGL.
En Java existe JOGL, una API de OpenGL para Java, que proporciona la misma
funcionalidad que OpenGL. Debido a que la relación entre JavaOpenCL y JOGL
es similar a la existente entre OpenCL y OpenGL se ha decidido utilizar JOGL
como API para representar gráficos desde JavaOpenCL.
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5.2.7. Gestión de eventos

En OpenCL se pueden considerar dos tipos de sincronización: la sincronización
entre los diferentes work-items de un mismo work-group y la sincronización entre
diferentes comandos encolados en colas de comandos de un mismo contexto. Para
la sincronización entre work-items se utiliza sincronización por barrera, de manera
que ningún work-item continúa ejecutando tras la barrera hasta que el resto hayan
llegado a ella. Por lo tanto, para este caso no es necesario añadir nada especial a
JavaOpenCL.

Sin embargo, para la sincronización de comandos existen dos formas de sin-
cronización: por barrera, que funciona igual que el caso anterior, y por eventos.
La sincronización por eventos se basa en que cada comando encolado puede retor-
nar un evento, de manera que el usuario puede hacer que los siguientes comandos
esperen la finalización del evento para continuar ejecutando. En OpenCL esto se
realiza de manera que si el usuario quiere obtener ese evento para sincronizar, debe
pasar la dirección de memoria de un elemento cl_event, y en caso contrario, debe
pasar NULL.

En OpenCL estas funciones necesitaban que el evento se recibiera como un
parámetro ya que el valor de retorno indicaba que la función se ha ejecutado
correctamente o no. Ya que en Java este problema está solucionado con el uso
de excepciones, lo más sencillo es utilizar el valor de retorno de la función en
JavaOpenCL para devolver el evento, y que sea el usuario el que decida si utilizarlo
o no, dependiendo de si es necesario sincronizar diferentes comandos.

Esta primera aproximación a priori parece totalmente válida, pero tiene un
grave problema. Utilizando este método, aunque el usuario no vaya a utilizar los
eventos, siempre van a ser creados. En OpenCL la creación de los eventos implica
que el usuario se va a encargar de controlarlos, lo que incluye su liberación, me-
diante la función clReleaseEvent. En JavaOpenCL el usuario puede ignorar este
evento, lo que en principio no causa ningún problema, debido a la escasa cantidad
de memoria utilizada por un objeto CLEvent, la cual puede ser gestionada por el
recolector de Java.
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Pero existe un problema más grave, ya que en OpenCL si se crea un even-
to pero no se libera, todos los elementos que puedan estar asociados a ese evento,
como pueden ser buffers, que suelen tener un tamaño considerable, quedan sin libe-
rar, aunque el usuario explícitamente elimine sus referencias mediante su función
clReleaseMemObject. Es decir, de esta manera un buffer asociado a un evento
liberar que se libere explícitamente, quedará inútil para el usuario pero ocupan-
do memoria en el dispositivo en el que se haya creado. Por lo tanto, aparece la
necesidad de obligar al usuario a liberar los eventos en caso de que se creen.

Por ello la solución elegida es la de utilizar un parámetro de tipo boolean donde
el usuario puede indicar si quiere crear (true) o no (false) el evento asociado.
En caso de querer crear dicho evento, debe hacerse resposable de su liberación, y
en caso de no crear el evento, debe ignorarlo, ya que el tipo de retorno será un
valor que no tiene ninguna información. Por tanto, todas las funciones que puedan
generar eventos, recibirán un último parámetro booleano donde el programador
indicará si quiere o no gestionar el evento generado.

Así se consigue una solución cercana a Java, al aprovechar el tipo de retorno, a la
vez que la gestión de la memoria queda gestionada de la manera más transparente
al usuario.

5.2.8. SDK de utilidades JavaOpenCL

Debido a que todas las SDK disponibles para OpenCL proporcionan una li-
brería que contiene las funciones más utilizadas, se ha desarrollado una biblioteca
similar adaptada a JavaOpenCL, para que sea lo más similar posible a la inclui-
da en la SDK original. En este conjunto de funciones se incluyen, entre otras, la
inicialización de un ByteBuffer con valores aleatorios, así como la comparación de
los resultados obtenidos en dos ByteBuffer diferentes.

Esta librería está implementada en la clase JavaOpenCLUtils que contiene
todos sus métodos estáticos, al igual que JavaOpenCL, para que no se necesaria la
instanciación de ningún objeto para utilizarlo. La lista completa de las funciones
que se pueden encontrar es la que se muestra a continuación:
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int diffArray(ByteBuffer buffer1, ByteBuffer buffer2, int
iNumElements): Función utilizada para comparar dos ByteBuffers
tras realizar operaciones sobre ellos en OpenCL y Java.

int diffArray(ByteBuffer buffer1, ByteBuffer buffer2, int
iNumElements, float range): Tiene la misma funcionalidad que la
anterior, sólo que en este caso no se comparan que sean exactamente iguales,
si no que sean similares dentro de un rango.

void fillArray(ByteBuffer buffer, int iNumElements): Inicializa un
ByteBuffer con números aleatorios

int roundUp(iNumElements, int szLocalWorkSize): Obtiene el múltiplo
de szLocalWorkSize inmediatamente superior a iNumElements. Es útil
cuando el número de elementos a tratar no coincide con el szLocalWorkSize
elegido.

int iDivUp(int dividend, int divisor): Obtiene la división entera de
dos elementos, redondeada al entero mayor.

String readKernel(String pathKernel): Lee un fichero que contiene el
código de un kernel de OpenCL y lo convierte a String para utilizarlo para
construir el programa.

5.3. Ejecución de JavaOpenCL

La ejecución de una función en JavaOpenCL puede dividirse en tres etapas
principales:

1. Llamada a una función por parte del usuario: Esta etapa abarca desde
que el usuario realiza una llamada a una función de JavaOpenCL hasta que
esta llamada es transformada por la API. La función de esta etapa es la de
transformar todos los tipos y clases propios de Java a tipos más cercanos al
lenguaje C, para obtener una mayor eficiencia.
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2. Llamada a la función por parte de la API: Tras realizar dicha transfor-
mación, se realiza una llamada a la función nativa implementada en la .dll
con los argumentos ya transformados en un formato válido para la librería.

3. Llamada a la función OpenCL por parte de la librería: Por último,
en la librería se realiza una última conversión de los datos entrantes a tipos
primitivos de C y de OpenCL, para finalmente realizar la llamada original
de OpenCL.

El retorno al usuario se realiza de la forma inversa.

1. Resultados OpenCL: Se obtienen los resultados proporcionados por la
llamada a OpenCL y se transforman en tipos primitivos de Java dentro de
la librería.

2. Conversión de datos: Tras obtener los datos en forma de tipos primitivos
de Java en la API, se crean los objetos necesarios dependiendo de la llamada,
transformando esos datos en los tipos de JavaOpenCL.

3. Resultados finales: El usuario recoge los datos en el formato de
JavaOpenCL tras realizar la llamada correspondiente.

Un posible ejemplo de ejecución que implica la creación de un buffer en
JavaOpenCL es la que aparece en la Figura 5.3. Como se puede ver en dicha
figura, las dos primeras etapas, encargadas de transformar la función desde Java
a C, se ejecutan sobre la máquina virtual, y una vez los datos están preparados
para pasar a memoria nativa, se ejecuta la última etapa en el host.

5.4. Problemas encontrados

A lo largo del proyecto han surgido diversos problemas que finalmente han
sido solucionados. Los siguientes problemas representan aquellos que más trabajo
y tiempo han requerido para ser solucionados, debido a su complejidad:
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clCreateBu�er(CLContext, int, ByteBu�er, int);

_clCreateBu�er(int, int, ByteBu�er, int);

clCreateBu�er(cl_context,cl_mem_�ags,size_t,void *,cl_int *)

Usuario

JavaOpenCL

OpenCL

Máquina
Virtual

de
Java

Host

Figura 5.3: Ejemplo de ejecución de la función clCreateBuffer

Compatibilidad con la SDK de AMD

Al comienzo del proyecto AMD no disponía de una SDK para programar
OpenCL bajo estos dispositivos. Con la salida de la versión beta de dicha SDK en
Diciembre de 2009, se realizaron las pruebas correspondientes, obteniendo resulta-
dos erróneos en todos los ejemplos. El problema residía en que AMD liberó su SDK
dando soporte tan sólo al compilador de Microsoft Visual Studio para Windows,
con un gran número de bugs conocidos pero no solucionados. Por este motivo no
fue posible la portabilidad del proyecto a la SDK de AMD.

Mediante la utilización de los foros de desarrolladores, se solicitó a la compañía
soporte para el compilador GCC, muy utilizado en la actualidad por un gran núme-
ro de desarrolladores, lo que quedó reflejado mediante el apoyo a dicha propuesta
por parte de otros desarrolladores.

En Enero de 2009 se liberó la versión final de la SDK, pero con otro problema:
el driver necesario para utilizar la SDK no era totalmente compatible con todos
los dispositivos, además de ser una versión beta. Aunque el soporte a GCC seguía
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sin estar disponible, se realizaron las mismas pruebas que la versión anterior, ob-
teniendo exactamente los mismos resultados, por lo que no ha sido posible portar
el proyecto para el uso de la SDK de ATI hasta el momento.

Gestión de la memoria

La experimentación realizada puede dividirse en dos pruebas diferentes. En la
primera de ellas se realiza la experimentación ejecutando cada uno de los ejemplos
seleccionados una sola vez, mientras que en la segunda se ejecuta cada ejemplo 20
veces, para comprobar la influencia de la carga de trabajo en JavaOpenCL.

Al realizar la segunda prueba apareció un problema con la gestión de memoria
que Java realiza con los ByteBuffer, que hacía que Java lanzara una excepción del
tipo OutOfMemoryException cuando en realidad debería llamar al recolector de
basura, encargado de liberar la memoria antes de lanzar una excepción de este
tipo.

Este problema aparece reflejado en la base de datos de bugs de Java (bug
id=4857305), en el que se indica que eventualmente es posible que al reservar
una gran cantidad de memoria en un ByteBuffer que sobrepase la memoria dispo-
nible, se lance la excepción previamente indicada, terminando la ejecución de la
aplicación.

Para solucionar este problema de una manera transparente al usuario, se ha
optado por incluir una llamada al recolector de basura en cada método clRelease de
la API, ya que en el momento de liberar un buffer de OpenCL, no va a ser utilizado
más veces, por lo que puede ser liberado también de la memoria principal.
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Resultados Experimentales

La experimentación realizada con la API JavaOpenCL comienza por la adap-
tación de una colección de ejemplos de la SDK de NVIDIA a JavaOpenCL, para
realizar una comparativa frente a OpenCL. Se ha seleccionado un conjunto de la
SDK original debido a que estos ejemplos ya se encuentran en un estado estable
y optimizado. Debido a esto, sólo es necesario portar los ejemplos literalmente,
sabiendo que éstos se encuentran ya optimizados.

Además, la SDK de NVIDIA proporciona ejemplos con diferentes finalidades,
desde la comprobación del funcionamiento hasta la demostración de las ventajas
y desventajas de OpenCL, pasando por algunos ejemplos gráficos que demuestran
su sencilla comunicación con OpenGL (JOGL en el caso de JavaOpenCL).

Debido a la gran cantidad de ejemplos disponibles en la SDK y a sus conti-
nuas actualizaciones, se ha elegido un conjunto que incluya código con diferentes
objetivos. Entre estos objetivos se encuentran la comprobación de un correcto fun-
cionamiento de OpenCL/JavaOpenCL, el cálculo de la mejora obtenida al utilizar
OpenCL/JavaOpenCL frente a C/Java, o la representación de gráficos cuyo origen
proviene de ciertos cálculos realizados en OpenCL/JavaOpenCL.

La colección de ejemplos portados se enumera a continuación:
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BitonicSort: Implementación del algoritmo Bitonic Mergesort. Este algo-
ritmo se utiliza principalmente para crear una red de ordenación, un modelo
matemático abstracto de cables y módulos de comparación que se utiliza
para ordenar una secuencia de números.

Black-Scholes: El modelo Black-Scholes se emplea para estimar el valor de
una opción europea para la compra o venta de acciones en una fecha futura.
Este ejemplo realiza dichos cálculos sobre un conjunto de opciones europeas.

DCT8x8: Implementación de la Transformada de coseno discreta. Expresa
una secuencia finita de varios puntos como resultado de la suma de distintas
señales sinusoidales. Se suele utilizar para la compresión de datos, como por
ejemplo compresión de vídeo (MPEG-4) o imágenes (JPEG)

DeviceQuery: Es el ejemplo más sencillo. Tan sólo consulta información
del dispositivo gráfico a través de JavaOpenCL.

DotProduct: Realiza el producto escalar a un conjunto de pares de vectores
de entrada.

MatrixMul: Realiza la multiplicación de matrices. Este ejemplo es muy
significativo, ya que está orientado hacia una configuración multi-gpu, es
decir, un dispositivo gráfico que incluye dos GPU en lugar de uno sólo para
aumentar la potencia del dispositivo.

MatrixTranspose: Calcula de manera eficiente la traspuesta de una matriz.

MatVecMul: Realiza la multiplicación de un vector y una matriz.

Scan: Dado un array de números, calcula un nuevo array donde cada ele-
mento es la suma de todos los elementos anteriores del vector original.

SimpleGLJOGL: Este ejemplo demuestra la compatibilidad de
JavaOpenCL con JOGL, calculando en JavaOpenCL una gráfica 3D
de la curva del seno y representándola mediante JOGL.

SimpleMandelbrot: Mediante JavaOpenCL se crea un fractal de Mandel-
brot, que posteriormente es renderizado por JOGL.
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Para medir el rendimiento de los distintos ejemplos se han realizado dos tipos
de pruebas:

La primera basada en una únicas ejecución de cada ejemplo.

Debido a que los tiempos obtenidos en la primera prueba no son significativos
(menores de 1 segundo en todos los casos), se ha tomado la decisión de
realizar una segunda prueba que ejecuta 20 veces cada ejemplo, para medir
cómo afecta la continua ejecución de código a JavaOpenCL frente a OpenCL.

Además, cada tipo de prueba se ha ejecutado dos veces. En una de ellas se
han incluido las reservas de memoria principal y de vídeo y en la otra tan sólo el
fragmento de código correspondiente a trabajo sobre la GPU (memoria de vídeo).
Gracias a estas ejecuciones es posible comprobar como puede influir el trabajo en
CPU por parte de Java frente al trabajo de CPU por parte de C, incluyendo las
reservas de memoria e inicialización de los datos en ambos lenguajes.

Es importante destacar que el objetivo de estas pruebas es comprobar el ren-
dimiento de JavaOpenCL frente a OpenCL, y comprobar la posible pérdida de
rendimiento de JavaOpenCL frente a OpenCL al igual que el de Java frente a C.
Es por este motivo por lo que en los resultados en varios casos se puede comprobar
que los resultados en C son más rápidos. Esto es debido a que los ejemplos tienen
como finalidad comprobar el correcto funcionamiento de JavaOpenCL y OpenCL,
por lo que habrá algunos de ellos que no conllevan una cantidad de cómputo sufi-
ciente para superar a C o incluso a Java.

6.1. Resultados numéricos

En la tabla 6.1 pueden verse los resultados obtenidos cuando se incluyen los
tiempos de reserva e inicialización de memoria, tanto de vídeo como principal.
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JavaOpenCL OpenCL Java C
1 it. 20 it. 1 it. 20 it. 1 it. 20 it. 1 it. 20 it.

Black Scholes 1062 20344 828 17077 2078 41437 1140 22999
DCT8x8 609 11547 515 9687 719 10577 140 2796

DotProduct 2047 39077 1187 23546 2813 50235 921 17859
MatrixTranspose 1828 36234 1812 35640 78 1469 31 531

MatVecMul 484 9094 484 9046 500 46 15 31
VectorAdd 1500 29652 843 16484 1656 32109 437 8750

Cuadro 6.1: Tabla comparativa incluyendo las reservas de memoria

En la tabla 6.2 aparecen reflejados los resultados que se han obtenido al ejecutar
los ejemplos portados excluyendo de los mismos la reserva e inicialización de los
datos en memoria principal.

JavaOpenCL OpenCL Java C
1 it. 20 it. 1 it. 20 it. 1 it. 20 it. 1 it. 20 it.

Black Scholes 500 8406 484 9578 1469 29249 781 15719
DCT8x8 453 8047 453 7813 281 5500 47 781

DotProduct 390 7015 485 9031 906 17687 47 812
MatrixTranspose 1843 36140 1797 35156 31 500 16 140

MatVecMul 468 8953 453 9062 0 0 0 0
VectorAdd 453 8515 453 8204 563 10203 31 640

Cuadro 6.2: Tabla comparativa sin incluir las reservas de memoria
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Figura 6.1: Ejecución de una iteración con gestión de memoria
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Figura 6.2: Ejecución de una iteración sin gestión de memoria

En un primer análisis, se puede comprobar que la API de JavaOpenCL ha
cumplido el objetivo principal, el cual se basa en obtener un rendimiento similar
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al de OpenCl, de manera que el usuario no sea capaz de detectar una gran pérdida
de rendimiento al utilizar JavaOpenCL.

Tras este análisis inicial, es necesario comprobar los resultados más directos,
que son aquellos que va a percibir el usuario, en los que cada ejemplo se ejecuta
una vez por completo, esto es, incluyendo las reservas previas de memoria y su ini-
cialización, realizada con Java y C, respectivamente. Para ello es necesario referirse
a la gráfica 6.1. En estos resultados, se puede comprobar que por regla general,
el tiempo empleado por JavaOpenCL es mayor que el empleado por OpenCL. Sin
embargo, es posible que esto sea debido a la reserva e inicialización de memoria en
Java (la cual no ha sido optimizada de ninguna manera, para mantenerse fiel al
ejemplo original en C), que sea más ineficiente que la reserva e inicialización en C.

Para poder comprobar esto, es necesario analizar la gráfica correspondiente a
los resultados de la ejecución de una sola iteración de cada ejemplo, de manera que
se puedan comparar las pérdidas de rendimiento debidas a la ejecución en CPU. Al
analizar dicha gráfica (6.2), se puede confirmar que la hipótesis es correcta, ya que
en la misma el tiempo de ejecución de JavaOpenCL es muy similar al de OpenCL
en todos los casos, sin grandes variaciones.
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Figura 6.3: Ejecución de 20 iteraciones sin gestión de memoria
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Figura 6.4: Ejecución de 20 iteraciones con gestión de memoria

Es posible también comprobar que una continua ejecución no afecta al rendi-
miento de JavaOpenCL frente a OpenCL. Esto se puede comprobar en las gráficas
6.3 y 6.4. En dichas gráficas se puede comprobar que los resultados se mantienen
respecto a los obtenidos en la primera prueba.

Resulta interesante también mostrar las ventajas y desventajas de la utilización
de JavaOpenCL en lugar de Java. Si se tiene en cuenta la motivación del uso de
OpenCL, se puede suponer que será recomendable utilizar JavaOpenCL en lugar de
Java en los casos en los que se vayan a realizar cálculos intensivos y paralelizables,
y se utilizará Java en los casos de pequeños volúmenes de datos que vayan a
realizar operaciones ligeras. Además, si tan sólo se tiene en cuenta el cálculo de los
resultados, ignorando la previa reserva de la memoria en el host, los resultados son
aún más favorables hacia JavaOpenCL. Esto se puede comprobar en las gráficas
6.1, 6.2, 6.3 y 6.4.

Como se puede comprobar, ejemplos como BlackScholes o DotProduct, los cuá-
les implican una gran cantidad de datos, obtienen resultados en JavaOpenCL que
mejoran en gran proporción los obtenidos con Java. Sin embargo, si se analizan
los resultados obtenidos por JavaOpenCL en ejemplos como MatrixTranspose(el
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más notable) o MatVecMul, los cuáles no implican cálculo sobre una cantidad
considerable de datos de entrada, se comprueba que el rendimiento es mayor uti-
lizando Java. Los mismos resultados se pueden obtener al comparar los resultados
de OpenCL frente a los de C.

El siguiente paso es comparar los resultados obtenidos utilizando varios dis-
positivos gráficos con diferentes prestaciones. Para esta experimentación se han
utilizado los siguientes dispositivos:

NVIDIA GeForce GTX260: 896 MB de memoria DDR3

NVIDIA GeForce 9800: 2 x 512 MB de memoria DDR3

NVIDIA GeForce 8600 GTS: 256 MB de memoria DDR3

NVIDIA GeForce FX 5600: 256 MB de memoria DDR

NVIDIA GeForce 8800 GTX: 768 MB de memoria DDR3

Para realizar esta comparación se ha utilizado el ejemplo que más cantidad
de datos procesa (BlackScholes), para comprobar qué rendimiento ofrece cada
dispositivo en casos extremos.
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Figura 6.5: Ejecución de 1 iteración sin gestión de memoria
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Figura 6.6: Ejecución de 1 iteración con gestión de memoria

Las gráficas 6.5 y 6.6 muestran los resultados obtenidos tras realizar la primera
prueba, que implica una sola ejecución de cada ejemplo. En estos resultados es
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posible comprobar que la gestión de la memoria en Java afecta a todos los disposi-
tivos por igual. También se puede comprobar que JavaOpenCL no ofrece pérdida
de rendimiento frente a OpenCL en la gráfica 6.5, que no incluye la gestión de
memoria por Java.
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Figura 6.7: Ejecución de 20 iteraciones sin gestión de memoria
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Figura 6.8: Ejecución de 20 iteraciones con gestión de memoria
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La segunda prueba (20 iteraciones) realizada sobre los diferentes dispositivos
(ver gráficas 6.7 y 6.8) proporciona unos resultados que confirman la eficiencia de
JavaOpenCL frente a OpenCL, además de la influencia de la gestión de memoria
por parte de Java (gráfica 6.8).

Por último, queda comparar el ejemplo multi-gpu para JavaOpenCL, que es
aquél en el que se tiene un código que divide el trabajo entre los dispositivos.
En este caso, se ha probado un ejemplo de multiplicación matricial ejecutándose
sobre una tarjeta gráfica GeForce 9800 GX2, que cuenta con dos núcleos de proce-
samiento, frente al código correspondiente ejecutado sobre un único núcleo de un
procesador E8400 Intel Core 2 Duo.

Si se analizan las gráficas 6.9 y 6.10 se puede comprobar que JavaOpenCL
obtiene un rendimiento 25 veces mayor que Java, sin importar si se tiene en cuenta
la gestión de memoria en Java o no. Es necesario comprobar que estos resultados
se mantienen en la segunda prueba, con 20 iteraciones.
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Figura 6.9: Ejecución de 1 iteración sin gestión de memoria
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Figura 6.10: Ejecución de 1 iteración con gestión de memoria

0

100000

200000

300000

400000

500000

600000

MATRIXMUL

JavaOpenCL Java

Figura 6.11: Ejecución de 20 iteraciones sin gestión de memoria

A la vista de los resultados obtenidos en la segunda prueba (ver gráficas 6.11 y
6.12) el speedup de JavaOpenCL frente a Java se mantiene en la misma proporción,
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lo que hace que JavaOpenCL se una elección óptima para problemas con una gran
cantidad de datos, que sean altamente paralelizables.
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Figura 6.12: Ejecución de 20 iteraciones con gestión de memoria

Otro aspecto que se puede tener en cuenta en las comparativas es la pérdida
de rendimiento con el paso de OpenCL a JavaOpenCL frente al paso de C a
Java. Como se puede comparar en las gráficas anteriores la pérdida de rendimiento
entre JavaOpenCL y OpenCL es prácticamente inexistente, por lo que portar una
aplicación de OpenCL a JavaOpenCL no debe suponer ningún tipo de problema.
Sin embargo, si se comprueba la pérdida obtenida al portar uno de los ejemplos
de C a Java, se llega a la conclusión de que las pérdidas son considerables.
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Capítulo 7

Conclusiones

Teniendo en cuenta los objetivos presentados en el Capítulo 6, se puede concluir
que la API de JavaOpenCL cumple el requisito principal, basado en la generación
de una API para Java que permita la programación sobre OpenCL. Gracias a la
API de JavaOpenCL es posible desarrollar aplicaciones Java que se ejecuten sobre
dispositivos gráficos con un rendimiento similar al obtenido con la plataforma
original.

Además, esta API se ha hecho compatible con las principales plataformas uti-
lizadas en la actualidad (Windows XP 32 bits, Ubuntu 9.10 32 y 64 bits), por lo
que se consigue una cierta independencia del sistema operativo.

El segundo objetivo principal indica que la API debe ser fiel a la original, pa-
ra evitar necesitar un tiempo prolongado de aprendizaje. Este objetivo ha sido
cumplido, simplificando todo lo posible la API aprovechando las ventajas propor-
cionadas por Java. Esto se puede comprobar, por ejemplo, en que no es necesario
indicar a una función JavaOpenCL el tamaño de los parámetros, ya que es la pro-
pia API la encargada de calcularlos, lo que simplifica en gran medida algunas de
las funciones de OpenCL.

También se han realizado una serie de experimentaciones que prueban el correc-
to funcionamiento de la API JavaOpenCL, las cuales cumplían una doble función.

79
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Por un lado, se utilizan para comprobar el correcto funcionamiento, tanto en ren-
dimiento como en resultados, y además son muy útiles para familiarizarse con el
entorno, ya que abarcan toda la API, de manera que siempre se pueden tener en
cuenta a la hora de consultar referencias durante el desarrollo.

Durante el desarrollo del conjunto de pruebas, surgió la necesidad de disponer
de un motor gráfico que sirviera para representar los resultados obtenidos por
JavaOpenCL. Además, esto debía realizarse también en Java, de manera que el
usuario no necesitara cambiar de plataforma para ello. Esta necesidad fue cubierta
con la utilización de JOGL, el binding de OpenGL para Java.

Por último, cabe destacar la ausencia en el momento del desarrollo de una
SDK completa por parte de AMD, de forma que no ha sido posible probar su co-
rrecto funcionamiento. Sin embargo, las decisiones de diseño de la API hacen que
en el momento de disponer de una SDK estable de AMD, la compatibilidad con
JavaOpenCL será inmediata. Esto es debido a que JavaOpenCL ha sido desarrolla-
do basándose en el estándar, en lugar de en SDK proporcionada por una compañía
concreta, por lo que futuras SDK liberadas por diferentes compañías deben ser so-
portadas por JavaOpenCL sin ningún problema, siempre y cuando cumplan con
el estándar liberado por Khronos Group.

7.1. Trabajos futuros

Tras la obtención de una API que recubre todos los aspectos de la especifi-
cación original de OpenCL, se proponen los siguientes trabajos para su mejora y
actualización:

Modelado Orientado a Objetos: Una vez se dispone de una API que ofre-
ce la misma funcionalidad que el original, se podrá proporcionar un modelo
orientado a objetos de JavaOpenCL que la haga más cercana al paradigma
utilizado por Java. Este modelado se llevaría a cabo organizando los méto-
dos de la API actual en clases de manera que al final se disponga de dos
API diferentes: una destinada a la programación imperativa, muy similar al
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OpenCL original, y otra destinada a la programación orientada a objetos.
De esta manera, un desarrollador Java sin conocimientos previos de OpenCL
quizá esté más interesado en el modelado orientado a objetos, mientras que
un desarrollador C acostumbrado al uso de OpenCL estará más interesado
en la API imperativa.

Interoperabilidad OpenGL: En la actual versión de OpenCL no se en-
cuentra activa la interoperabilidad con OpenGL que permite que ambas he-
rramientas puedan compartir memoria directamente, de manera que se eli-
minan transferencias entre memoria principal y memoria de vídeo. Por eso
resulta interesante que cuando esta funcionalidad se encuentre disponible, se
recubran las nuevas funciones para que JavaOpenCL también permita dicha
interoperabilidad con APIs como JOGL.

Compatibilidad con AMD Stream SDK: Debido a que en el momento
de terminar el proyecto no había disponible una versión estable de la SDK
propuesta por AMD no ha sido posible la comprobación del correcto funcio-
namiento de JavaOpenCL con la misma, por lo que en futuro será necesario
comprobar, y adaptar en caso de ser necesario, la API de JavaOpenCL, au-
mentando así su portabilidad en cuanto al número de dispositivos soportados.
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Anexos

Anexo 1: Configuración de Eclipse para desarrollar
JavaOpenCL

En este anexo se expone la configuración de EclipseGavab 2.0 para continuar el
desarrollo de JavaOpenCL. Esta configuración no es necesario realizarla para uti-
lizar JavaOpenCL, pero es imprescindible para continuar su desarrollo en trabajos
futuros o para corregir bug que puedan surgir.

Añadir directorios a GNU C

Lo primero que se necesita es añadir los directorios de los ficheros de inclusión
del JDK al compilador. Para ello, se accede a las propiedades del proyecto C/C++,
apartado C/C++ General, y en el subapartado Paths and Symbols, en la pestaña
Includes, se añaden los directorios correspondientes a los ficheros de cabeceras
necesarios de JNI. Estos directorios son /ruta_hasta_JDK/include y /ruta_-
hasta_JDK/include/win32 (deben aparecer en este orden en la lista de Include
directories). La Figura 7.1 muestra como debe quedar la pestaña Includes.
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Figura 7.1: Directorios de inclusión necesarios

Incluir librerías OpenCL

Es necesario que el compilador sea capaz de enlazar las librerías de OpenCL al
generar el proyecto, por lo que en la configuración del proyecto, dentro de C/C++
Build → Settings, en la pestaña Tool Settings, dentro del apartado MinGW C
Linker → Libraries, debemos realizar dos cambios. Primero, en la parte superior,
en Libraries (-l), es necesario añadir la librería OpenCL32, y en la parte inferior,
en Library search path (-L), será necesario añadir el directorio donde se encuentre
dicha librería. En la Figura 7.2 aparecen reflejados estos cambios a realizar.
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Figura 7.2: Inclusión de librería OpenCL

Declaración de variables dentro de un bucle for

Aunque no forma parte estrictamente de JavaOpenCL, si está función no está
activa, no será posible compilar el proyecto. Para activarla, dentro de la configura-
ción del proyecto, en el apartado C/C++ Build → Settings → Miscellaneous será
necesario añadir en el apartado Other flags la línea -std=c99.

Símbolos necesarios

Es necesario definir un nuevo símbolo dentro del proyecto. Para ello, en la con-
figuración del proyecto, dentro de C/C++ Build → Settings → GCC C Compiler
→ Symbols, en el apartado Defined symbols (-D) se añade el símbolo _JNI_IM-
PLEMENTATION_. La Figura 7.3 muestra el resultado de esta operación.
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Figura 7.3: Añadir un nuevo símbolo

Opciones del linker

Por último, el linker necesita tener activados algunos flags para realizar la
generación del proyecto correctamente. Estos flags se añaden en la configuración
del proyecto, dentro del apartado C/C++ Build → Settings → MinGW Linker →
Miscellaneous, en la opción Linker flags será necesario añadir la siguiente línea:
-Wl, –kill-at. La Figura 7.4 muestra el resultado de esta configuración.
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Figura 7.4: Añadir flags al linker
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