U

Universidad Rey Juan Carlos
Escuela Técnica Superior de Ingenieria Informatica

Departamento de Ciencias de la Computacion

INGENIERIA INFORMATICA
CURSO ACADEMICO 2009/2010

JavaOpenCL
Binding Java para OpenCL

Trabajo Fin de Carrera

— Autor —

Jestis Sanchez-Oro Calvo

—Tutores—
Rail Cabido Valladolid
Micael Gallego Carrillo

19 de mayo de 2010

Agradecimientos

En primer lugar debo agradecer a Rail, Mica y Patxi la confianza depositada
en mi al ofrecerme realizar este proyecto. Y agradecerles también la disponibilidad
que han tenido a lo largo del proyecto y la atencién prestada, asi como el continuo
apoyo recibido en todo momento. He aprendido mas este afio con vosotros que en

varios anos de carrera.

A Leticia, por haber estado apoyandome, animéndome a seguir y ayudandome
en todos los problemas que han surgido desde el inicio de la carrera hasta la
finalizacion de este proyecto, tanto los relacionados con la universidad como con
el exterior. Si no hubieras estado, no sé si habria sido capaz de continuar con la

carrera en algunos momentos.

A mi familia por todo el apoyo recibido en las decisiones tomadas a lo largo del
proyecto, y por facilitarme todos los beneficios que han estado en su mano para

simplificar en la medida de lo posible las dificultades encontradas.

A todos los companeros que han estado ahi, y en especial a David, por haberme
demostrado ser mejor companero y amigo en este tltimo ano de laboratorio que

muchos otros a lo largo de toda la carrera.

Gracias a todos por haber estado ahi en todo momento.

Resumen

En los ultimos anos, el diseno de las arquitecturas de consumo se ha centrado en
el paralelismo como objetivo principal para el incremento del rendimiento. Por ello,
las mejoras clasicas como el aumento de la frecuencia de reloj se han quedado atras
en favor de la inclusiéon de un mayor ntimero de procesadores en la CPU. Por otro
lado, impulsadas por la industria de lo videojuegos, las GPUs han evolucionado
hacia unidades de computo altamente paralelas, programables y con un elevado
ancho de banda en memoria. Debido a que en la actualidad la gran mayoria de
los sistemas de computo incluyen CPUs, GPUs y otros tipos de procesadores, es
necesario disponer de software que sea capaz de aprovechar el poder de computo

presente en estas arquitecturas heterogéneas.

OpenCL es un estandar multiplataforma para la computacion en sistemas he-
terogéneos que surge en diciembre de 2008 que ha ido adquiriendo cada vez més
importancia. Esto se debe principalmente a su eficiencia, asi como su compatibi-
lidad con la gran mayoria de dispositivos destinados a la programaciéon paralela.
Ademas, OpenCL esté respaldado por el consorcio de empresas que conforman el
grupo Khronos, entre las que se encuentran companias como NVIDIA, AMD o

Apple, lo que impulsa atin mas su expansion.

Sin embargo, OpenCL ha sido desarrollado para ser utilizado desde C/C++,
lo que limita su utilizaciéon por parte de desarrolladores no acostumbrados a pro-
gramar en estos lenguajes. Por otra parte, el lenguaje de programacion Java se
encuentra entre los lenguajes més utilizados, por lo que resulta de gran interés
acercar a los programadores de Java a tecnologias como OpenCL sin necesidad de

cambiar el lenguaje de programacion utilizado. Esta es la motivacion principal de

este proyecto, crear una API que recubra la especificacion oficial de OpenCL con
el lenguaje Java, de manera que cualquier programador de Java pueda programar

arquitecturas heterogéneas sin necesidad de conocer lenguajes como C/C-+-+.

Indice general

. Introduccion

1.1. Computacion paralela

1.2. OpenCL

1.3. Programacion de proposito general en GPU (GPGPU)

. Estado del arte

. Objetivo
3.1. Objetivo general

3.2. Objetivos parciales

. Metodologia y tecnologias utilizadas

4.1. Metodologia
4.1.1. Proceso Unificado de Desarrollo
4.1.2. Metodologias Agiles.
4.1.3. Comparativa de metodologias

5

11

14

16

16

19

21

21

21

23

INDICE GENERAL 6

4.1.4. Elecciéon de la metodologiao 25

4.2. Tecnologias 27
421, Java ... 28
4.2.2. Java Native Interface (JNI) 29
4.23. GCC 31
4.24. Eclipse 32
4.2.5. JOGL 32
4.2.6. OpenCLSDK, 33

5. Descripcion Informaéatica 39
5.1. Especificacion de Requisitos 39
5.1.1. Requisitos funcionales 39
5.1.2. Requisitos no funcionales 40

5.2. Diseno e Implementaciono 41
5.2.1. Arquitectura de JavaOpenCL 41
5.2.2. Usode JavaOpenCL 42
5.2.3. Generacion de libreria dindmica 47
5.2.4. Generacion de una APl basica 49
5.2.5. Usode JNI 49
5.2.6. Comunicaciéon con OpenCL 51
5.2.7. Gestion de eventos L 59

INDICE GENERAL 7
5.2.8. SDK de utilidades JavaOpenCL 60

5.3. Ejecucion de JavaOpenCLo 61
5.4. Problemas encontrados 62

6. Resultados Experimentales 65
6.1. Resultados numéricos L. 67

7. Conclusiones 79
7.1. Trabajos futuros 80
Anexos 83
Bibliografia 90

INDICE GENERAL

Indice de figuras

1.1.

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

5.1

d.2.

5.3.

6.1.

6.2.

6.3.

Miembros del grupo Khronos 13
Esquema modelo en espiral 27
Estructurade JNI..o 30
Modelo de plataforma de OpenCL 33

Diferencias entre ejecuciéon en un sélo Thread y en miltiples Threads 34

Modelo de ejecucion de OpenCL 35
Modelo de memoria de OpenCL (Adapatado de [12]) 37
Diagrama UML del proyecto 41
Estructura de los elementos JNIEnv 50
Ejemplo de ejecucion de la funcién clCreateBuffer 63
Ejecucion de una iteracion con gestion de memoria 69
Ejecucion de una iteracion sin gestion de memoria L. 69
Ejecucion de 20 iteraciones sin gestion de memoria 70

9

INDICE DE FIGURAS 10

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

7.1.

7.2.

7.3.

7.4.

Ejecucion de 20 iteraciones con gestion de memoria 71
Ejecucion de 1 iteracion sin gestion de memoria 73
Ejecucion de 1 iteracion con gestion de memoria 73
Ejecucion de 20 iteraciones sin gestion de memoria 74
Ejecucion de 20 iteraciones con gestion de memoria 74
Ejecucion de 1 iteracion sin gestion de memoria 75
Ejecucion de 1 iteracion con gestion de memoria 76
Ejecucion de 20 iteraciones sin gestion de memoria 76
Ejecucion de 20 iteraciones con gestion de memoria 7
Directorios de inclusién necesarios 84
Inclusion de libreria OpenCL 00 0000000 85
Anadir un nuevo simbolo o0 86

Anadir flags al linkero 87

Capitulo 1

Introducciéon

En los tltimos anos, las arquitecturas de consumo estan cada vez més orienta-
das a aprovechar el paralelismo para incrementar su rendimiento. Esto es debido
principalmente a lo que se denomina Performance Wall (ver [0]). Este término se
refiere al limite alcanzado por los procesadores utilizando las técnicas tradiciona-
les de aumento de rendimiento, como es el aumento de la frecuencia de reloj del
procesador. El problema de estas técnicas aparece cuando se alcanzan los limites
fisicos para el aumento de las prestaciones. Un vez superado dicho limite, es nece-
sario utilizar otra clase de mejoras que permitan continuar con el incremento del
rendimiento de estos dispositivos. Por este motivo, en los tltimos anos la tendencia
seguida ha pasado del incremento en la frecuencia de reloj de un procesador, a la
inclusion de varios procesadores, restando importancia a la frecuencia de éstos. La
evolucion seguida por las GPU ha sido completamente distinta. Las GPUs sur-
gieron como dispositivos de computo paralelo, pero destinados a realizar procesos
especificos como el renderizado de graficos. Sin embargo, en los tltimos afios han
evolucionado hasta convertirse en procesadores paralelos programables, orientados
hacia la programacion de propoésito general. Por este motivo surge la necesidad
de herramientas capaces de explotar el poder de computo de estas plataformas

heterogéneas.

Crear aplicaciones para plataformas heterogéneas no es sencillo, debido a que

los modelos de programacion tradicional y aquellos orientados al desarrollo sobre

11

12

plataformas multi-core y many-core son muy diferentes. Los modelos tradicionales
se basan normalmente en estandares que asumen un espacio de memoria comun y
no abarcan de forma explicita las operaciones vectoriales. Sin embargo, los modelos
de programacion de propoésito general sobre GPU anaden jerarquias complejas de
memoria y operaciones vectoriales, pero son generalmente dependientes del hard-
ware, la plataforma y el fabricante. Estas limitaciones hacen dificil acceder al poder
de computo de los diferentes procesadores heterogéneos desde un tnico coédigo fuen-
te multiplataforma. Ademas, es necesario tener en cuenta que ademas de CPU y
GPU, una arquitectura heterogéneas puede constituirse de otros dispositivos como

los DSP (Digital Signal Processor) o el procesador Cell.

Para ello, a lo largo de las ultimos anos han surgido diferentes herramientas
que proporcionan al desarrollador la posibilidad de aprovechar el rendimiento de
estos nuevos tipos de procesadores. Entre estas herramientas destacan las orienta-
das al computo sobre GPUs, como pueden ser CUDA, de NVIDIA, y sobre CPUs
con varios procesadores, como son OpenMP o Ct (Intel). Todas estas herramien-
tas comparten la misma limitaciéon, ser compatibles tan sélo sobre un hardware

determinado.

Debido al aumento del interés en este area, aparece la necesidad de una herra-
mienta multiplataforma, independiente del fabricante del dispositivo, y que no s6lo
sea capaz de aprovechar el rendimiento de los dispositivos graficos, sino también
de los procesadores multintcleo y otros tipos de dispositivos de cémputo, como
pueden ser los procesadores embebidos (por ejemplo, DSP). Asi, surge OpenCL,
un estandar para la programacion de proposito general desarrollado por Khronos

Group.

Khronos Group es un consorcio industrial que tiene como objetivo el desarro-
llo de estandares libres centrados en la computacion paralela y el procesamiento
de graficos sobre todo tipo de plataformas. Entre estos estandares se encuentran
OpenCL, OpenGL, WebGl, etc. En la Figura 1.1 aparecen los principales compo-

nentes de dicho grupo.

13

Licsor B putodesk' e biodIOId® molhoe Weodephy CREATIVE

D&ALL digia H om=% e T FIRSTARS m FUIITSU () rorvmmmmams 'f,ﬂ

=

AMD1 ARM . 3 :
- Apple KH RC\)NG 9§ ERICSSON trescale

intel NOKIA
@ g L’ Over 100 companies creating ...,9“. @

l' (E) | authoring and acceleration standards QSuﬂ NVIDIA.
@ == Imagination Board of Promoters QUALCOMW INSTRUMENTS
GOL)gle g CREMEDY pdeyeafrey ":‘__ (D rusricon r@j HL_FO:JE EEE idPAWOrKS3D!

T T —— ‘n;:u:' JdeTm Gros NEC g% NP #on2 \9955'3&
Panasonic wpacketyideo mm.,;.,r»~_%' Renesas BRMI S35, J SIEMENS
MEama 3? o SWmMGUER == SoftBank ‘ 0 Lﬂ w3 symbian rAxumi
noccngry ~~TE2. TOSHIBA <L ©=e ‘ Yacen- T () virwore v&%n Fvumatsen

Figura 1.1: Miembros del grupo Khronos

Desde su salida, OpenCL ha ido desarrollandose hasta convertirse en el primer
estandar de codigo abierto para la programacion de proposito general sobre ar-
quitecturas heterogéneas, proporcionando a los desarrolladores software un acceso

eficiente e independiente de la plataforma a estos nuevos dispositivos.

Uno de los objetivos de OpenCL es que todos los recursos computacionales del
sistema puedan aprovecharse para realizar computo de propodsito general. OpenCL
se ha desarrollado para utilizarse con C/C++, un lenguaje que proporciona un
mayor rendimiento, con la penalizacion de que el codigo sea dependiente del com-
pilador. De esta limitacion surge la necesidad de hacer que OpenCL sea, en la
medida de lo posible, un lenguaje portable a todos los dispositivos sin necesidad
de modificaciones en el codigo ni de diferentes compilaciones, pero sin perder su
eficiencia. Con esto, un programador seria capaz de desarrollar cédigo que pueda
ser compilado en una séla maquina, pero ejecutado en cualquier sistema operati-
vo utilizando diferentes tipos de dispositivos (CPUs, GPUs, etc.), aumentando el

alcance original de la herramienta.

1.1. COMPUTACION PARALELA

14

Posicion en abril | Posicion en Abril Lenguaje de
de 2010 de 2009 Programacién
1 2 C
2 1 Java
3 3 Ct++
4 4 PHP
5 5 (Visual) Basic

Cuadro 1.1: Lista TIOBFE del mes de Abril de 2010. Esta lista presenta los lenguajes
de programacion més utilizados, donde Java ocupa un segundo puesto por detras
de C.

Por este motivo, este proyecto presenta JavaOpenCL, una API que otorga al
desarrollador la posibilidad de utilizar OpenCL en Java, uno de los lenguajes de
programacion mas comunes (ver tabla 1.1). La unién de Java y OpenCL proporcio-
na todas las ventajas de ambos lenguajes, como pueden ser la eficiencia de OpenCL
unido a la portabilidad de Java, asi como su tratamiento de los errores. Ademas,
gracias a Java, se proporciona al desarrollador una interfaz mas simple que la uti-
lizada por OpenCL, facilitando su aprendizaje y posterior uso, y evitando en gran
medida los problemas comunes que puedan surgir a un programador inexperto en

C (gestion de memoria, punteros, etc.).

1.1. Computacién paralela

La velocidad de los computadores secuenciales convencionales se ha incremen-
tado continuamente para adaptarse a las necesidades de las aplicaciones, hasta
llegar a encontrarse con los limites fisicos (Performance Wall). Pero en diversas
areas sigue siendo necesario un poder computacional superior, como el modelado
y soluciéon numeérica de problemas en ciencias e ingenieria, o los costosos calculos
iterativos sobre grandes cantidades de datos con fuertes restricciones temporales.
Estos sistemas se vuelven cada vez mas complejos requiriendo una mayor capaci-

dad de cémputo. Pero esto no siempre es posible debido a las limitaciones fisicas

1.1. COMPUTACION PARALELA 15

que impone el desarrollo de procesadores.

Para hacer frente a estas limitaciones se ha optado por la utilizacién de varios
procesadores conformando un sistema paralelo. El sistema paralelo proporciona un
gran abanico de opciones para aumentar el rendimiento, entre las que se encuentran
la utilizacion de un pipeline, el paralelismo a nivel de instruccion, la ejecuciéon fuera

de orden o la especulacion, entre otras.

La programacion paralela se basa en la utilizacion de varios procesadores de
manera conjunta para resolver una tarea comun. La manera en la que cada proce-
sador va a afrontar el problema es definida por el programador, de forma que cada
procesador trabaja sobre una porciéon del problema, intercambiando los resultados
que sean necesarios a través de memoria compartida o con el uso de una red de

Interconexion.

La computaciéon paralela permite, entre otras cosas, resolver problemas que
de otra manera serfan inabordables, ya sea por capacidad de computo, o por el
tiempo empleado en resolverlo. En este proyecto existen dos niveles de paralelismo,

los cuales se muestran a continuaciéon:

» Programacién concurrente: Varios procesos trabajando en la soluciéon de

un problema, puede ser paralela (con varios procesadores)

= Computacion heterogénea: Varios procesadores de diferentes caracteris-

ticas trabajando en la solucién de un mismo problema.

La programacion concurrente esta presente en todo momento, ya que indepen-
dientemente del dispositivo utilizado para solucionar un problema, va a disponer de
varios nucleos, los cuales van a trabajar sobre un espacio de memoria compartida

en un mismo instante de tiempo.

La computacion heterogénea es otra de las bases de este proyecto, ya que es
posible utilizar diferentes dispositivos para resolver un mismo problema, distribu-

yendo la carga de trabajo entre ellos de manera que el problema sea eficiente.

1.2. OPENCL 16

1.2. OpenCL

OpenCL [1] (Open Computing Language) es el nombre que recibio el estandar
de programacion sobre arquitecturas paralelas desarrollado y liberado por Khronos.
Estéa respaldado por las principales companias que producen hardware y software
relacionado con la computaciéon paralela, como son AMD, NVIDIA, Apple, IBM,
Intel, etc. Esta tecnologia estd empezando a cobrar gran importancia en el mundo

de la computaciéon de proposito general sobre GPUs.

Ademés, al tratarse de un estandar reconocido, ya no es necesario aprender
un lenguaje para programar sobre tarjetas de una compania concreta y otro com-
pletamente diferente para programar sobre tarjetas una compania diferente, si no
tan so6lo es necesario disponer de drivers compatibles y de las librerias que permi-
ten el desarrollo en OpenCL. Esto ha llevado a OpenCL a un incremento notable
en su uso desde su lanzamiento. En algunos casos, como en el nuevo Mac OS X
Snow Leopard, no es necesaria la instalaciéon por parte del usuario de ninguna

herramienta especial, ya que se encuentra integrada con el sistema operativo.

Por tltimo, lo que ha conseguido que OpenCL siga cobrando méas importancia
es su portabilidad. Es importante tener en cuenta que dicha portabilidad es s6lo
funcional. Esto es debido a que aunque los resultados obtenidos de la aplicaciéon
sean correctos en diferentes dispositivos, para obtener el mejor rendimiento es
necesario optimizar el codigo para su utilizaciéon en un dispositivo concreto. Por
este motivo, una misma aplicacion, atin funcionando en dos dispositivos diferentes,

no obtendra el mismo rendimiento en ambos.

1.3. Programacién de propoésito general en GPU
(GPGPU)

Las diferentes SDK disponibles durante la realizacion de este proyecto tan
solo ofrecen soporte para la programacion de OpenCL sobre dispositivos graficos

(GPU), no sobre procesadores comunes (CPU), por lo que el principal objetivo de

1.3. PROGRAMACION DE PROPOSITO GENERAL EN GPU (GPGPU) 17

este proyecto se ha centrado sobre las GPUs, al carecer de soporte sobre CPU. Por

este motivo, este proyecto se ha centrado en la programacion de propoésito general

en sobre GPU (GPGPU).

GPGPU son las siglas de General-Purpose computation on Graphics Processing
Units, es decir, computacion de propoésito general sobre unidades de proceso gréfico
(GPU). Las GPU son procesadores de alto rendimiento formados por multiples
nticleos capaces de llevar a cabo grandes operaciones sobre diversos datos con un

gran rendimiento.

Aunque en sus comienzos las GPU estaban orientadas principalmente a los
graficos y eran muy dificiles de programar, en la actualidad se han convertido en
procesadores de proposito general paralelos que soportan interfaces de alto nivel

que permiten su programacion bajo lenguajes como C/C++.

La GPU se muestran como una plataforma adecuada para la ejecucion de
tareas que puedan expresarse en forma de computo paralelo de datos, lo que la
convierte en un dispositivo muy eficiente para aquellos problemas que puedan ser

paralelizables, perdiendo toda esta efectividad frente a problemas secuenciales.

1.3. PROGRAMACION DE PROPOSITO GENERAL EN GPU (GPGPU) 18

Capitulo 2

Estado del arte

Al comienzo de este proyecto no existia ninguna implementacion de OpenCL
para Java, pero durante la realizaciéon del mismo han ido surgiendo diversas im-
plementaciones, aunque ninguna de ellas recubre OpenCL de manera completa, y
con suficientes ejemplos probados para demostrar su funcionamiento. Las imple-

mentaciones encontradas se detallan a continuacion.

» NativeLibs4Java [7]: Se trata de un binding desarrollado con JNA, y man-

tiene una interfaz complicada debido a los siguientes problemas:

e El generador automético de JNA crea varias opciones para cada funcion
recubierta. Es dificil para el programador decidir cuél es la correcta en

cada caso.

e Es necesario que el usuario conozca JNA para utilizarlo, ya que utiliza

clases propias de JNA para ser utilizado.

e Existen pocos ejemplos disponibles.

» jocl(1) [2]: Se trata del binding méas estable de los actuales. Su problema
principal reside en que jocl es un binging directo, por lo que no sigue la
orientaciéon a objetos de Java, ni respeta los convenios de programacion Java.
Es libre tan solo para proyectos que no sean comerciales, lo que limita su
uso.

19

20

= jocl(2) [11]: Presenta el mismo nombre que el anterior, y ha sido desarro-
llado por los creadores de JOGL (implementacion de Java para OpenGL)
y JOAL (implementacion de java para OpenAL). El codigo JNI se ha ge-
nerado automaticamente con GlueGen. Al estar desarrollado el codigo JNI

automaticamente, se complica su depuracién.

» opencl4j: [7] Muy similar a NativeLibs4Java pero con la diferencia de que

éste posee una interfaz menos compleja para el usuario.

Todos estos bindings tienen una escasa documentacion y muy poca cantidad
de ejemplos que demuestren su funcionamiento (apenas dos o tres en los casos més

avanzados).

Por otro lado, es importante destacar la existencia de diversos bindings de
OpenCL para otros lenguajes de programacion, entre los que se incluyen los mos-

trados a continuacion.

» Python::OpenCL [5]: Se encuentra bajo licencia GPL. Permite que el co-
digo OpenCL se implemente de manera directa en el cdédigo Python. Para
ello se necesita incluir el coédigo dentro de un objeto de la clase Program
implementada por Python::OpenCL, para después poder ejecutar dicho co6-
digo como si de una funciéon de Python se tratase. Es limitado, ya que es
el propio binding el que se encarga de reservar la memoria en el dispositivo
(CPU, GPU, DSP, etc.) y prepararlo para la ejecucion, lo que resta libertad

al programador.

» Open Toolkit Library [3]: Es una libreria de bajo nivel desarrollada en C#
que recubre OpenGL, OpenCL y OpenAL. Puede ser utilizada en cualquier
lenguaje que soporte Mono o .NET, como son C# y VB.Net.

Capitulo 3

Objetivo

3.1. Objetivo general

El objetivo principal de este Proyecto es la generacion de una API para Ja-
va que permita la programacion de arquitecturas de computo heterogéneas bajo
el estindar OpenCL. Ademas, esta API sera multiplataforma, de manera que los
usuarios de los principales sistemas operativos dispongan de las herramientas ne-

cesarias para programar OpenCL desde Java.

Ademas, esta API debera ser fiel a la original, a fin de que la curva de apren-
dizaje sea lo mas sencilla posible, para facilitar su utilizacion. Esta fidelidad esta
referida solo a la interfaz de la API, ya que se aprovecharan las ventajas propor-

cionadas por Java de manera que la tarea del programador se simplifique.

3.2. Objetivos parciales

Los objetivos parciales de este proyecto se derivan del objetivo principal y se

enumeran a continuacion:

21

3.2. OBJETIVOS PARCIALES 22

= Realizar un estudio en profundidad del estdndar OpenCL asi como la es-
pecificacion del mismo. Para ello se utilizara la documentacion disponible
en la web de Khronos, ademés de diferentes documentos donde se exponen

técnicas de programacion de altas prestaciones.

= Estudio del desarrollo de APIs para el lenguaje Java, mediante el estudio de

otras APIs disponibles.

= Estudio de los posibles mecanismos de comunicaciéon entre C y Java, y elec-
cion de uno de ellos. Entre los disponibles, se eligen para el estudio JNI y

JNA, por ser los méas extendidos.

= Desarrollo de la API JavaOpenCL que recubriré la especificacion original de

OpenCL para el lenguaje Java.

= Comprobacién del correcto funcionamiento de la API, para lo cual se portara
un conjunto de ejemplos disponibles en la SDK de OpenCL compuesta de
pruebas de rendimiento y de aplicaciones gréficas, abarcando la especificacion

completa.

= Desarrollo de una web con toda la informacion relacionada con la API, tanto
de su desarrollo como de su uso, asi como un manual de instalaciéon y de
utilizacion, incluyendo la documentacion JavaDoc (http://www.gavab.es/
wiki/JavaOpenCL).

= Una vez finalizada la API y probada su funcionalidad, realizacion de un
modelado orientado a objetos de la misma, de manera que se acerque mas al

concepto de programacion Java.

http://www.gavab.es/wiki/JavaOpenCL
http://www.gavab.es/wiki/JavaOpenCL

Capitulo 4

Metodologia y tecnologias utilizadas

4.1. Metodologia

Para la eleccién de la metodologia a utilizar se han tenido en cuenta princi-
palmente dos alternativas: el Proceso Unificado de Desarrollo y las Metodologias

Agiles.

La eleccién de ambas alternativas se basa en la utilidad que cada una de ellas
tiene para este proyecto. Desde una primera aproximacion, el Proceso Unificado
es util para tener un control méas estricto y mejor documentado de la evolucion
del proyecto, mientras que la utilizacion de una metodologia agil se ajusta mejor
a los cambios que puedan surgir durante el desarrollo del proyecto, muy comun en

el desarrollo de este tipo de proyectos, teniendo en cuenta la constante evolucion
de OpenCL.

4.1.1. Proceso Unificado de Desarrollo

Es una de las metodologias tradicionales mas extendidas, y se caracteriza por
estar dirigido por casos de uso, centrado en la arquitectura y ser iterativo incre-

mental.

23

4.1. METODOLOGIA 24

= Dirigido por casos de uso: los casos de uso se utilizan para capturar los
requisitos funcionales y para definir el contenido de las iteraciones. Es decir,
cada iteracion escoge un conjunto de casos de uso y desarrolla el camino a

través de todas las fases.

= Centrado en la arquitectura: se asume que no existe un tinico modelo que
represente todos los aspectos del sistema. Por eso existen diversos modelos

y vistas que cubren toda la arquitectura software del sistema.

s Iterativo e incremental: se compone de cuatro fases claramente diferen-
ciadas: inicio, elaboracién, construccion y transicion. Cada una de estas fases
se divide en iteraciones, que ofreceran un incremento al finalizar que anade

o mejora funcionalidades del sistema en desarrollo.

4.1.2. Metodologias Agiles

Las metodologias agiles tienen un enfoque més practico y menos dirigido a
la documentacion que las metodologias tradicionales, como el proceso unificado.

Segiin su manifiesto, se valora:

= Al individuo y las interacciones del equipo de desarrollo sobre el
proceso y las herramientas: la gente es el principal factor de éxito de un
proyecto software. Por ello, se considera mas importante conseguir un buen
equipo que construir el entorno. Por ello, se elige primero al equipo y después
se deja que sean éstos los que construyan el entorno de desarrollo en base a

sus necesidades.

= Desarrollar software que funciona mas que conseguir una buena
documentacion: sigue la regla de no producir documentos a no ser que sean
necesarios de forma inmediata para tomar una decisiéon importante. Ademas,

los documentos generados deben ser cortos y centrarse en lo fundamental.

= La colaboraciéon con el cliente mas que la negociacion de un con-

trato: se propone una interacciéon constante entre el cliente y el equipo de

4.1. METODOLOGIA 25

desarrollo. Esta colaboracion sera la que marque la marcha del proyecto y

asegure su éxito.

= Responder a los cambios méas que seguir estrictamente un plan:
la habilidad de responder a los cambios que puedan surgir a lo largo del
proyecto también determinan el éxito del mismo. Por ello, la planificacion

debe ser flexible y abierta.

4.1.3. Comparativa de metodologias

La tabla 4.1 muestra una comparativa de ambas metodologias, que ayuda a la

eleccion de la que mas se adapta al proyecto actual.

4.1.4. Eleccién de la metodologia

JavaOpenCL es un proyecto en el cual la documentacion surge segin va sien-
do desarrollado, ademas de que conlleva cambios continuos, principalmente por la
continua actualizacion a la que se ve sometida el estdndar, asi como de nuevas
versiones de los diferentes SDK de los principales desarrolladores. Debido a esto,
la metodologia que mas se ajusta al desarrollo de este proyecto es la de las meto-
dologias agiles, por su mejor adaptacion a los cambios que puedan surgir, asi como
la imposibilidad de adaptacién del proyecto a una planificacion estricta como la
que nos puede ofrecer el Proceso Unificado. Ademas, dentro de las metodologias
agiles, el desarrollo a seguir sera iterativo incremental con un modelo en espiral
con prototipos. De esta forma, durante cada iteracion se ira incorporando cierta
funcionalidad al proyecto a la vez que se corrigen los posibles errores que vayan
surgiendo durante el desarrollo, ya que de otra manera seria imposible subsanar

los errores con la API completa.

La idea principal es generar un prototipo con la que incluyan las funciones basi-
cas de OpenCL, para luego ir aumentando la funcionalidad hasta conseguir cubrir
toda la especificacion. Tras cada iteracion se realizaran pruebas para comprobar

el correcto funcionamiento, mediante la utilizacion de los ejemplos de OpenCL

4.1. METODOLOGIA

26

Metodologias Agiles

Metodologias Tradicionales

Basadas en heuristicas
provenientes de practicas de

producciéon de codigo.

Basadas en normas provenientes de
estandares seguidos por el entorno

de desarrollo

Especialmente preparadas para

cambios durante el proyecto.

Cierta resistencia a los cambios.

Impuestas internamente (por el

equipo).

Impuestas externamente.

Proceso menos controlado, con

menos principios.

Proceso mucho mas controlado, con

numerosas politicas / normas.

No existe contrato tradicional

o al menos es bastante flexible.

Existe un contrato prefijado.

El cliente es parte del equipo

de desarrollo.

El cliente interacttua con el equipo

de desarrollo mediante reuniones.

Grupos pequenos trabajando

en el mismo sitio.

Grupos grandes posiblemente
distribuidos.

Pocos artefactos y roles.

Muchos artefactos y roles.

Menos énfasis en la

arquitectura del software.

La arquitectura del software es
esencial y se expresa mediante

modelos.

Cuadro 4.1: Comparativa entre metodologias tradicionales y agiles

portados a JavaOpenCL. Esto asegura que al finalizar el proyecto se dispondra de

una libreria con un funcionamiento correcto y con ejemplos que lo demuestran.

La metodologia elegida consiste en una serie de ciclos que se repiten en forma

de espiral, comenzando por el centro. Cada uno de estos ciclos se compone de las

siguientes actividades:

1. Determinar o fijar objetivos: Se definen los requisitos de forma detallada,

ademas de las posibles restricciones y los productos a obtener. Se identifican

los riesgos del proyecto y las alternativas para evitarlos.

4.2. TECNOLOGIAS 27

2. Analisis de riesgos: Se estudian todos los riesgos potenciales y se seleccio-

nan una o varias alternativas propuestas para reducirlos o evitarlos.

3. Desarrollar, verificar y probar: Se desarrollan las funcionalidades del
proyecto especificadas en los objetivos fijados. Ademas, se verifican estas

funcionalidades y se desarrollan pruebas para corregir posibles fallos.

4. Planificar: Se revisan los resultados obtenidos , evaluandolos, y decidiendo

si se continta con la siguiente fase y planificaindola.

La Figura 4.1 representa el esquema que sigue el modelo en espiral.

Figura 4.1: Esquema modelo en espiral

4.2. Tecnologias

Las tecnologias utilizadas durante la realizaciéon de este proyecto asi como su

utilizacién en el mismo se resumen a continuacion:

= Java: Lenguaje de programacion en el cual se ha implementado la API
JavaOpenCL.

4.2. TECNOLOGIAS 28

» Java Native Interface (JINI): Se utiliza para poder realizar a llamadas de
la API original desde JavaOpenCL.

» GCC: Compilador utilizado para generar a libreria dindmica.
» Eclipse: Entorno de desarrollo de JavaOpenCL.

= JOGL: API de Java utilizada para renderizar los resultados de los ejemplos
graficos de JavaOpenCL.

= OpenCL SDK: API original de OpenCL que contiene las funciones que

JavaOpenCL recubre en su especificacion.

4.2.1. Java

Java es un lenguaje de programacion orientada a objetos desarrollado por Sun
Microsystems en los anos 90. Su sintaxis es similar a la de lenguajes como C/C++
pero abstrayendo al programador de herramientas de bajo nivel como pueden ser

el acceso directo a la memoria (reserva y liberacion) y el manejo de punteros.

Una aplicacion Java se ejecuta sobre una Maquina Virtual de Java (JVM), que
se encarga de ejecutar el codigo generado por la compilacion previa de la aplicacion.
Ese codigo generado, denominado bytecode es el obtenido utilizando el compilador

de Java, de manera que cualquier maquina virtual sea capaz de ejecutarlo.

Los aspectos mas importantes de Java son:

= Es orientado a objetos. Se trata de un paradigma de programaciéon que
abstrae las estructuras de datos utilizadas por los programadores en objetos,

entidades que se componen de tres partes:
e Fstado: Se compone de los atributos, que almacenan la informaciéon
referente al objeto, que tendra unos valores concretos.

o Comportamiento: Esta definido por los métodos, que representan las

operaciones que se pueden realizar sobre los objetos.

4.2. TECNOLOGIAS 29

e [dentidad: Se trata de una propiedad que consigue que cada objeto sea

diferente del resto.

= Independencia de la plataforma. La filosofia de Java dice que cualquier
aplicacion escrita en Java puede ser ejecutada en cualquier tipo de platafor-

ma, como dice su lema “write once, run everywhere”.

= Recolector de basura. En Java no es posible liberar la memoria de los
objetos reservados, de ello se encarga el Recolector de Basura (Garbage Co-
llector - GC). Este recolector libera la memoria de los objetos cuando ya no
quedan referencias a los mismo, senal de que no van a ser utilizados en el

resto del codigo.

4.2.2. Java Native Interface (JINI)

JNI es un mecanismo que permite ejecutar codigo nativo desde Java y viceversa.
Llamamos codigo nativo a las funciones escritas en un lenguaje como C/C++ que
se ejecutan sobre el sistema operativo donde esta funcionando la maquina virtual
de Java. JNI tiene un interfaz bidireccional que permite a las aplicaciones Java
llamar a c6digo nativo a la vez que las funciones de cddigo nativo pueden ejecutar

métodos de clases Java. Es decir, JNI nos ofrece dos interfaces:

= Métodos nativos: permiten que desde Java se realicen llamadas a funcio-
nes implementadas en las librerias nativas. Es el interfaz utilizado en este

proyecto.

= Interfaz de invocacién: permite incrustar una Maquina Virtual de Java en
una aplicacion nativa. Para ello, la aplicacion nativa llama a librerias nativas
de la méquina virtual y con el interfaz de invocacién ejecuta métodos Java

en la maquina virtual.

La estructura de JNI puede resumirse en la Figura 4.2.

Para desarrollar aplicaciones Java que utilicen funciones de librerias en C/C-+-+

siempre se siguen los siguientes pasos generales:

4.2.

TECNOLOGIAS 30

Método nativo

Maquina Entorno

Virtual

del host

<

Interfaz de comunicacién

Figura 4.2: Estructura de JNI

1. Declarar el método nativo como miembro de una clase: en el codigo

Java, se declaran los métodos que vayan a utilizar las funciones de las librerias
nativas con el modificador native. Este codigo debe incluir una llamada a
un método para cargar la libreria. Este método pertenece a la clase System,

y su definicion es la siguiente:
void loadlibrary(String libraryName)

Donde libraryName es el nombre de la libreria a cargar, sin la extension
proporcionada por el sistema operativo (.dll, .so, .dynlib), teniendo en cuenta
que se encuentra dentro del PATH o del directorio de trabajo. En caso de no
encontrarse en ese directorio, sera necesario modificar la variable de entorno

PATH para que se incluya el directorio de la libreria.

. Crear el fichero de cabecera nativo (.h): el siguiente paso es generar el

fichero .h con las cabeceras de los métodos nativos que se van a implementar.
Esto se puede realizar de una manera sencilla con el comando javah clase-
Java, donde claseJava es clase Java compilada en el que hemos declarado

los métodos nativos.

. Implementar el método nativo: una vez disponemos del fichero de ca-

beceras, s6lo tenemos que implementar las funciones definidas en el mismo.
Para ello, basta con crear un fichero .c donde copiaremos las cabeceras del
fichero .h, e implementaremos las funciones correspondientes. Hay que tener
en cuenta si la implementacion de las funciones nativas va a ser en C/C+-+,

ya que la declaracion de los tipos de JNI es diferente para ambos lenguajes.

Compilar el fichero nativo: Por tltimo, sélo falta compilar el dltimo fiche-

ro para generar la libreria dinamica, que servira las funciones implementadas

4.2. TECNOLOGIAS 31

para ser llamadas desde Java.

JNI proporciona una serie de funciones y tipos que dan cierta transparencia
a la convergencia de tipos entre C y Java. Todas las funciones JNI tienen dos
parametros comunes. El primero de ellos es el parametro env, el cual representa una
referencia a una tabla que contiene todas las funciones que pueden ser ejecutadas
con JNI. El segundo es el pardmetro jobject, una referencia al objeto Java que
invoca la funcion JNI. Este tltimo pardmetro, en caso de ser invocado por un

método estatico, se convierte en una referencia a la clase que realiza la invocacion.

Pero utilizar JNI conlleva riesgos. El primero de ellos, y quizas el mas evidente,
es que el codigo nativo no se va a ejecutar sobre la maquina virtual, por lo que
desde el momento que utilizamos JNI debemos tener en cuenta que perdemos la
portabilidad que nos ofrece Java. Esta parte sera, por tanto, la tinica dependiente
del sistema operativo, de manera que se dispondra de diferentes librerias a utilizar
en funcion de la plataforma utilizada. Por otro lado, un fallo en la aplicaciéon
de coédigo nativo puede hacer que la aplicacion deje de funcionar, en apariencia
sin motivo alguno. Este ultimo aspecto se controlara en la medida de lo posible
mediante la transformacion de los posibles fallos en el cédigo nativo en excepciones

de Java.

4.2.3. GCC

GCC son las siglas de GNU Compiler Collection. Se trata de un sistema de
compiladores desarrollado por el GNU Project que soporta diferentes lenguajes de
programacion. Se ha convertido en el compilador estandar en la gran mayoria de
sistemas basados en Unix, como pueden ser GNU/Linux o Mac OS X. Ademés,
ha sido portado a una gran variedad de arquitecturas de procesadores, y es muy
utilizado en el desarrollo de todo tipo de software. También se encuentra disponible

para la gran mayoria de plataformas embebidas, como Symbian.

Aunque en Windows no esta disponible la version original de GCC, se dispone
de una adaptacion muy utilizada: MinGW. Se trata del compilador de GCC para

Windows, ademés de una serie de librerias de libre distribucién para la API de

4.2. TECNOLOGIAS 32

Windows, permitiendo a los desarrolladores crear aplicaciones nativas para Micro-
soft Windows.

4.2.4. Eclipse

Eclipse es un entorno de desarrollo abierto que en su versién bésica permite
desarrollar aplicaciones Java. Su principal ventaja es que por medio de la instala-
cion de plugins es posible desarrollar codigo para otros tipos de lenguajes, como
C, Haskell e incluso Latex. Por esto ha sido el entorno elegido para desarrollar
JavaOpenCL, porque permite desarrollar el codigo en C el cddigo en Java de ma-

nera simultanea, sin necesidad de cambiar entre entornos de desarrollo.

EclipseGavab 2.0 es una distribucion de Eclipse que contiene todo lo necesario
(plugins y compiladores) para desarrollar software para diversos lenguajes de pro-
gramacion, entre los que se incluyen Java, C/C++, FreePascal, Ruby o Haskell.
Ademas, incluye herramientas destinadas al desarrollo colaborativo, como es Sub-
versive, un cliente de Subversion. Dispone de versiones tanto para Windows como

para Ubuntu, los dos sistemas operativos tratados en el proyecto.

4.2.5. JOGL

JOGL es una API de Java diseniada para proporcionar soporte grafico 3D sobre
hardware a las aplicaciones escritas en Java. Mediante JOGL es posible acceder
toda la especificacion original de OpenGL. Basicamente, JOGL permite que una
aplicacion Java pueda utilizar una API grafica como OpenGL para renderizar
graficos igual que lo haria una aplicacién nativa. En este proyecto es ttil para la

visualizacion de los ejemplos graficos portados.

4.2. TECNOLOGIAS 33

4.2.6. OpenCL SDK

OpenCL SDK es un framework completo para la programacion paralela e inclu-
ye un lenguaje, una API y las librerias necesarias para la ejecucion de aplicaciones.
El modelo de la plataforma de OpenCL consiste en una maquina (host) conectada
a uno o varios dispositivos que soportan OpenCL. Estos dispositivos se dividen en
una o varias unidades de computo (CU - compute units), las cudles estan dividi-
das en elementos de proceso (PE - processing elements). La aplicacion OpenCL
ejecuta comandos desde el host para ejecutar calculos en los elementos de proceso
dentro de un dispositivo. La Figura 4.3 muestra la organizacion de una plataforma

OpenCL.

Compute Unit

JUEETE)
buissadold

»
FE
=B
g‘ﬂ.
>
~Q

Figura 4.3: Modelo de plataforma de OpenCL

Para entender dicho modelo, es necesario conocer qué es un kernel en OpenCL.
Un kernel es una funcién que se declara en un programa y se ejecuta en un disposi-
tivo OpenCL, de forma paralela. La Figura 4.4 muestra las diferencias de ejecucion
de un programa con un sé6lo hilo de ejecucion frente a un programa ejecutando va-

rias instancias de un kernel sobre un mismo conjunto de datos.

El modelo de ejecucion de un programa OpenCL se divide en dos grandes

partes: los kernels que se ejecutan en uno o mas dispositivos OpenCL y el programa

4.2. TECNOLOGIAS 34

void VecAdd(a,b,c,n) {
for (int i=0;i<n;++i)

clil = alil + bfil; __kernel void VecAdd(a,b,c,n) {

inti=get_global_id(0);

if (i<n)
clil = a[i] + bl[il;

Ejecucién secuencial por
un Thread en CPU

Ejecucion paralela mediante
multiples work-items

Figura 4.4: Diferencias entre ejecucién en un so6lo Thread y en miltiples Threads

que se ejecuta en el host. Este programa define el contexto para los kernels y
gestiona su ejecucion. El nucleo del modelo de ejecucion de OpenCL define como
se ejecutan los kernels. Cuando la méquina ordena la ejecucién de un kernel, se
define un espacio de indices, llamado NDRange. Una instancia del kernel se ejecuta
para cada punto de este espacio de indices, y se denomina work-item. Cada uno de
esos work-items ejecuta el mismo codigo pero el camino de ejecucion y los datos
modificados pueden ser diferentes para cada uno. Estos work-item se organizan en
work-groups, los cuales proveen una descomposicion mas abstracta del espacio de
indices. Los work-items dentro de un work-group se ejecutan de manera concurrente
en los elementos de proceso de una unidad de computo. La Figura 4.5 muestra la

organizacion descrita.
La méquina define un contexto para la ejecucion de los kernels. Este contexto
incluye los siguientes recursos:
= Devices: Los dispositivos OpenCL que van a ser utilizados por la maquina.
= Kernels: Las funciones OpenCL que se van a ejecutar en los dispositivos.

= Objetos de programa: El codigo fuente y ejecutable que implementa los

kernels.

4.2. TECNOLOGIAS 35

work-item

NDRange

Figura 4.5: Modelo de ejecucion de OpenCL

= Objetos de memoria: Un conjunto de objetos de memoria que pueden ser

accedidos desde la maquina y los dispositivos OpenCL.

Este contexto se crea y manipula utilizando funciones de la API OpenCL por el
host, el cual ademas crea una estructura de datos llamada cola de comandos
que gestiona la ejecucion de los kernels en los dispositivos. Tras la creaciéon de la
cola de comandos, el host introduce comandos en la cola que van a ser planificados
en los dispositivos dentro del contexto. Los comandos se pueden dividir en tres

grandes grupos:
= Comandos de ejecuciéon del kernel: Ejecucion de un kernel en los ele-
mentos de proceso de un dispositivo.
» Comandos de memoria: Transferencia de datos entre objetos de memoria.
= Comandos de sincronizaciéon: Gestiona el orden de ejecucion de los co-

mandos.

La ejecucion de los comandos dentro del dispositivo se produce de manera asin-

crona entre la maquina y el dispositivo. Existen dos modos de ejecucion: en orden,

4.2. TECNOLOGIAS 36

donde los comandos se lanzan en el orden que aparecen en la cola de comandos y
se completan en ese mismo orden, y fuera de orden, donde los comandos se lanzan
en orden, pero pueden no finalizan en ese orden. La ejecuciéon de los comandos ge-
neran objetos del tipo evento. Estos eventos se utilizan para controlar la ejecucion
entre comandos y para coordinar la ejecucion entre la maquina y los dispositivos.
Es posible asociar varias colas a un mismo contexto, las cuales se ejecutaréan de

manera concurrente e independiente sin tener métodos de sincronizaciéon dentro de

OpenCL.

En cuanto a la memoria utilizada por OpenCL, se pueden diferenciar cuatro

tipos diferentes:

= Global: Permite lecturas y escrituras a todos los work-items de todos los

work-groups.

= Constante: Se mantiene constante durante la ejecucion de un kernel. La

méquina es la encargada de reservar e inicializar los objetos en esta memoria.

= Local: Es una region local a un work-group. Se puede utilizar para reservar

memoria que van a compartir todos los work-items de un work-group.

= Privada: Es una regiéon privada de un work-item determinado.

La Figura 4.6 muestra la organizacion de la memoria en OpenCL y los diferentes

accesos permitidos desde el dispositivo y desde la maquina que funciona como host.

La programacion en OpenCL puede expresarse de dos maneras diferentes: ex-
plotanndo el paralelismo a nivel de datos o a nivel de tareas presentes en la apli-
cacion. El paralelismo a nivel datos define una operacion como una secuencia de
instrucciones aplicadas a varios elementos de un objeto en memoria. El paralelismo
a nivel tareas define un modelo en el cual una instancia de un kernel se ejecuta sin

tener en cuenta ningun indice de espacios.

Por otro lado, debido al paralelismo y la concurrencia, surge la necesidad de
la sincronizacion. En OpenCL hay dos dominios que necesitan sincronizacion: los

work-items dentro de un mismo work-group, y los comandos apilados en las colas

4.2. TECNOLOGIAS 37

Memoria = Memoria Memoria = Memoria
privada privada privada privada

work-item | work-item work-item | work-item

Memoria local Memoria local

Workgroup Workgroup

| Memoria Global/Constante I

Dispositivo

Memoria de Host

Figura 4.6: Modelo de memoria de OpenCL (Adapatado de [12])

de comandos de un contexto determinado. Para el primer caso, la soluciéon mas
rapida es la utilizacion de una barrera para todo el work-group, la cual deben
ejecutar todos los elementos del work-group antes de que ninguno de ellos contintie
ejecutando mas alla de dicha barrera. No existe la sincronizacion entre varios work-

groups. Los puntos de sincronizacion entre colas de comandos son de dos tipos:

= Barrera de la cola de comandos: Esta barrera asegura que todos los
comandos apilados antes de ella han sido ejecutados y los resultados son
visibles para todos los comandos que se ejecuten tras la misma. Se utiliza

para sincronizar comandos en una misma barrera.

= Espera de eventos: Todas las funciones de la API que apilan comandos de-
vuelven un evento que lo identifica junto con la memoria que actualizan. Por
ello, cada comando ejecutado que espere ese evento se asegura no continuar

ejecutando hasta que termine la funciéon asociada al evento.

4.2. TECNOLOGIAS

38

Capitulo 5

Descripcion Informatica

5.1. Especificacién de Requisitos

La funcionalidad de la API, asi como todos los detalles de la misma queda

recogidos en los siguientes requisitos.

5.1.1. Requisitos funcionales

Los requisitos referidos al funcionamiento de la API de cara al usuario son los
siguientes:
1. La API generada debe recubrir la especificaciéon de OpenCL 1.0

2. La API generada debe ser compatible con los principales sistemas operativos

soportados por las diferentes SDK.

a) La API generada debe ser compatible con Windows XP 32 bits.
b) La API generada debe ser compatible con Ubuntu 9.10 32 bits.
c) La API generada debe ser compatible con Ubuntu 9.10 64 bits.

39

5.1. ESPECIFICACION DE REQUISITOS 40

3. La API generada debe ser compatible con las SDK de los principales fabri-

cantes.

a) La API generada debe ser compatible con la SDK de NVIDIA.
b) La API generada debe ser compatible con la SDK de ATI.

4. La API generada debe mantener un rendimiento comparable al obtenido con
la SDK original.

5. La API generada debe ser fiel, en la medida de los posible, al estandar original

6. La API generada debe seguir el paradigma de la programacion orientada a

objetos en la medida de lo posible.
7. Las interacciones entre OpenCL y Java deben ser transparentes al usuario.

8. La API generada debe controlar los posibles errores producidos en OpenCL.

5.1.2. Requisitos no funcionales

Los requisitos necesarios para el correcto funcionamiento de la API, pero que

no forman parte de su funcionalidad son los siguientes:
1. La API generada debe soportar todos los dispositivos soportados por las
SDK originales.
2. Los requisitos hardware deben ser los mismos que los de las SDK originales.

3. Es necesario disponer de una maquina virtual de Java para poder utilizar la
APL

4. Es necesario disponer de la librerfa original de OpenCL para poder utilizar
la API.

5. Para la representacion de los resultados de manera grafica, serda necesario
disponer de JOGL.

5.2. DISENO E IMPLEMENTACION 41

5.2. Diseno e Implementaciéon

En este capitulo se pasa a describir todos los detalles referentes al diseno e
implementacion de la API. Como se ha mencionado, consistira en un fichero JAR
que permitird realizar las llamadas a funciones OpenCL, que a su vez recupera
dichas funciones de una libreria dinamica. Por tanto, en este apartado se aborda
la generacion de la API desde la creacion de la libreria dindamica hasta la finali-
zacion de la implementacion de la especificacion completa, asi como las decisiones

tomadas.

5.2.1. Arquitectura de JavaOpenCL

CLCommandQueue CLContext
CLPlatformID + CLCommandQueue(id : int)| + CLContext(id : int) CLSampler
+ CLPlatformID(id : int) + CLSampler(id : int)
/ CLProgram
CLKernel CLType + CLProgram(id : int)|
- id :int
id i CLMem
+ CLKernel(id : int) \D ¥ ClTypetd - inD e

+ getld() : int + CLMem(id : int)|

/ + hashCode() : int
CLEvent + equals(obj : Object) : boolean CLDevicelD

+ toString() : string

+ CLEvent(id : int) r\ + CLDevicelD(id : int)

CLContextProperties JavaOpenCL
- properties : List<Integer>
+ CLContextProperties()
+ addProperty(name : int, value : Object)|

+ clGetPlatformIDs() : CLPlatformID[]
+ clGetPlatformInfo(platform : CLPlatformID, paramName : int) : string|

+ getProperties() : int[] % alt)
/ ImageFormat
JavaOpenCLException - channel_order : int
- code : int - channel_type : int
+ JavaOpenCLException(code : int, message : string)| + ImageFormat(channel_order : int, channel_type : int)

JavaOpenCLUtils

- r:Random

+ diffArray(bufferl : ByteBuffer, buffer2 : ByteBuffer, iNumElements : int) : in
+ fillArray(buffer : ByteBuffer, iNumElements : int)

+ roundUp(iNumElements : int, szLocalWorkSize : int) : int

+ iDivUp(dividend : int, divisor : int) : int

+ readKernel(pathKernel : string) : string

<<@interface>>
Notifier

+ notifyCall()

Figura 5.1: Diagrama UML del proyecto

5.2. DISENO E IMPLEMENTACION 42

La Figura 5.1 muestra el diagrama de clases del proyecto completo asi como
las relaciones entre las diferentes clases que lo forman. A continuacién se presenta

una breve descripcion de cada una de las clases.

s CLType: Representa un tipo basico de OpenCL, como puede ser un buffer o
una cola de comandos. Almacena el identificador proporcionado por OpenCL.
Las subclases de CLType tienen la misma funcionalidad, pero diferenciando

entre los tipos disponibles en OpenCL.

= CLContextProperties: Representa una lista de propiedades que pueden
recibir los contextos al ser creados. Internamente contiene una lista de pro-

piedades cuyo tltimo elemento es 0 (definido por el estandar OpenCL).

» JavaOpenCL: Clase principal de la API. Contiene toda la especificacion de
OpenCL implementada en Java. Es la clase encargada de la comunicacion

con la librerfa original mediante JNI.

» JavaOpenCLException: Excepcion de la API que se lanza en el momento

en el que se produce un error asociado a OpenCL.

= ImageFormat: En OpenCL se trata de una estructura que almacena da-
tos sobre el formato de una imagen que se va a procesar, por lo que en
JavaOpenCL se ha transformado en una clase que almacena la misma infor-

macion.

» JavaOpenCL: Conjunto de funciones muy comunes implementadas en las

diferentes SDK portadas a fin de que sean compatibles con JavaOpenCL.

= Notifier: Interfaz que debe implementar un programador para utilizar un
callback en JavaOpenCL.

5.2.2. Uso de JavaOpenCL

Para que el lector pueda comprender la necesidad de las diferentes fases del
proyecto, a continuaciéon se incluye un ejemplo de JavaOpenCL que muestra su

uso.

© 00 O U e W NN

AR R R R R R R 0 W W W W W W W W WRNNKDNNNDNNDLKE 2R e e e e e e
IOk UL, O OISO E DR, OO DI E WD RO ©OW-N O U e WK~ O

5.2. DISENO E IMPLEMENTACION

43

Para ello se ha partido de un cédigo base, cuya funcionalidad es rellenar un

vector con los indices del mismo. El codigo fuente es el mostrado a continuacién:

import
import
import
import

import

public

static es.gavab. javapencl.JavaOpenCL.x*;
static es.gavab. javapencl.JavaOpenCLUtils.*;
static es.gavab. javapencl.*;
java.nio.ByteBuffer;

java.nio.ByteOrder;

class HelloWorld {

public static void main(String[] args) {

try {

final int arrayLength = 10;

CLContext context =
clCreateContextFromType (0, CL_DEVICE_TYPE_GPU, null);
CLMem outCL = clCreateBuffer (context, CL_MEM_WRITE_ONLY,
null, (Integer.SIZE/8)*arraylength);
CLDeviceID[] devices =
(CLDeviceID[]) clGetDeviceIDs (CL_PLATFORM_NVIDIA, CL_DEVICE_TYPE_ALL);
String[] source = new String[1];
source [0] = readKernel (".\\kernels\\HelloWorld.cl");
CLProgram program = clCreateProgramWithSource (context, source);
clBuildProgram(program, null, null, new NotifierBuild (){
public void notifyBuild () {
System.out.println("Esteges el callback dela, funcion");
}
1
CLKernel kernel = clCreateKernel (program, "hello");
clSetKernelArg (kernel, 0, 4, outCL);
CLCommandQueue cq = clCreateCommandQueue (context, devices[0], 0);
int [1 global = new int[1];
int [] local = new int[1];
global [0] = (Integer.SIZE/8)*arraylLength;
locall[0] = 1;
CLEvent event =
clEnqueueNDRangeKernel (cq, kernel, 1, null, global, local, null);
CLEvent [] lista = new CLEvent[1];
lista[0] = event;
ByteBuffer lectura = ByteBuffer.allocateDirect
((Integer.SIZE)/8*arraylLength).order/ByteOrder.nativeOrder ());
clEnqueueReadBuffer (cq, outCL, true, O,
(Integer .SIZE)/8*arraylLength, lectura, lista);
clReleaseKernel (kernel);
clReleaseProgram(program);
clReleaseCommandQueue (cq);
clReleaseContext (context);
lectura.clear ();
for (int i=0;i<arraylength;i++) {
System.out.println(" "+lectura.getInt ());

48
49
50
51
52
53
54
55

5.2. DISENO E IMPLEMENTACION 44

}

} catch (JavaOpenCLException e) {
System.out.println ("EXCEPCION");
System.out.println("Codigo: "+e.getCode ());
e.printStackTrace ();

El primer paso para poder desarrollar una aplicacion JavaOpenCL es importar
la libreria al proyecto actual, de manera que sea posible acceder a la API. Tras esto,
es necesario importar las clases de JavaOpenCL que van a ser utilizadas. Para ma-
yor comodidad, se importan todos los métodos estaticos de las clases JavaOpenCL
y JavaOpenCLUtils, de manera que el acceso a los mismos sea directo, en lugar

de seguir el formato Clase.nombreMetodo ().

En la linea 10 se declara una variable arrayLength que se utilizara para definir

la longitud del vector. Tras esto, es necesario crear el contexto, con la sentencia:

CLContext context =
clCreateContextFromType (0, CL_DEVICE_TYPE_GPU, null);

Con ello se indica que el programa va a ser ejecutado en un dispositivo GPU.
Después es necesario declarar el buffer donde se almacenaran los resultados de la

ejecucion:

CLMem outCL = clCreateBuffer (context, CL_MEM_WRITE_ONLY,
null, (Integer.SIZE/8)*arraylength);

La funcién clCreateBuffer () recibe como argumento el tamano en bytes del
buffer que sera creado. El objetivo es que el codigo se pueda ejecutar en todas
las versiones de JavaOpenCL, ademés de que el programador no tiene por qué
saber el tamano de un entero en bytes en Java. Por eso se utiliza la expresion

Integer.SIZE/8, que devolvera el tamano que ocupa un entero en bytes en Java.

Tras esto, se ejecuta una sentencia que consulta qué dispositivos GPU se en-
cuentran disponibles para la aplicacion. Debido a que se utiliza la SDK de NVIDIA,
ajustamos la busqueda a dispositivos NVIDIA:

U W N =

5.2. DISENO E IMPLEMENTACION 45

CLDeviceID[] devices =
(CLDeviceID[]) clGetDeviceIDs (CL_PLATFORM_NVIDIA, CL_DEVICE_TYPE_ALL);

Los identificadores de los dispositivos disponibles quedaran almacenados en la
variable devices. Tras la obtencion de los dispositivos, se crea el programa que sera
ejecutado, junto con el kernel. Se supone que el fichero con el kernel se encuentra

en una carpeta llamada kernels dentro del directorio de la aplicacion.

String[] source = new Stringl([1];
source [0] = readKernel (".\\kernels\\HelloWorld.cl");

CLProgram program = clCreateProgramWithSource (context, source);

Es importante destacar que en la variable source estaran almacenados todos
los kernels que se necesiten cargar (en este caso sblamente uno). Tras la obtencion
del codigo fuente del kernel, se pasa a la creacion del programa, desde ése codigo

fuente. El siguiente paso es compilar el programa, con la instruccion:

clBuildProgram(program, null, null, new NotifierBuild (){
public void notifyBuild () {

System.out.println("Estegesgelcallback de la funcion");

B

Esta funcion, ademas de compilar el programa, ejecuta la funcién notifyBuild
durante su propia ejecucion, a modo de callback. Es posible insertar null en la
posiciéon de este parametro si no se necesita dicha funciéon. Para poder definir el
callback en Java, se utiliza una clase anénima que debe implementar una interfaz

que contiene el método notifyBuild.

El siguiente paso es crear el kernel y establecer sus argumentos, en este caso

un dnico argumento, el vector a rellenar:

CLKernel kernel = clCreateKernel (program, "hello");
clSetKernelArg(kernel, 0, (Integer.SIZE/8), outCL);

El pardmetro hello hace referencia al nombre de la funcion del kernel que se

va a ejecutar en el dispositivo. El argumento que se va a utilizar es una referencia al

0 N O U W N

S TR W N =

5.2. DISENO E IMPLEMENTACION 46

vector de salida, por lo que su tamano es el tamano de una referencia, el equivalente

a un entero.

Es necesario entonces crear la cola de ejecucion donde se encolaran los comandos

a ejecutar, en el dispositivo seleccionado:

CLCommandQueue cq = clCreateCommandQueue (context, devices[0], 0);

Esta cola de comandos recibira el contexto sobre el que va a trabajar, asi como
el dispositivo donde se van a ejecutar dichos comandos. El siguiente paso es ordenar

la ejecucion del kernel en la cola de comandos:

int[] global = new int[1];
int [] local = new int[1];
global [0] = (Integer.SIZE/8)*arraylLength;
local[0] = 1;
CLEvent event =
clEnqueueNDRangeKernel (cq, kernel, 1, null, global, local, null, true);
CLEvent [] lista = new CLEvent[1];
lista[0] = event;

Es importante remarcar varios aspectos. En primer lugar, las variables global
y local hacen referencia al nimero de work-items y de work-groups que se van
a utilizar. En este caso, al ser un ejemplo sencillo bastara con un sélo work-group
que contenga un nimero de work-items igual al tamano del buffer a procesar. Tras
ello, se ordena la ejecucion del kernel, y de esa llamada se recupera un evento que

se va a utilizar para sincronizar la ejecucion.

Tras la ejecucion del kernel, es necesario leer los resultados obtenidos, y liberar

los recursos reservados en el dispositivo grafico.

clEnqueueReadBuffer (cq, outCL, true, O,
(Integer .SIZE)/8xarraylength, lectura, lista, false);
clReleaseKernel (kernel);
clReleaseProgram(program);
clReleaseCommandQueue (cq);
clReleaseContext (context);

La sentencia c1EnqueueReadBuffer recupera el buffer de la memoria del dispo-

U W N =

5.2. DISENO E IMPLEMENTACION 47

sitivo grafico para poder leerla desde memoria principal. El penultimo parametro
de dicha llamada es la lista de eventos creada anteriormente, por lo que esta fun-
cion no va a ejecutarse hasta que finalicen todas las sentencias acumuladas en la

lista.

Cabe destacar el uso de un bloque try-catch que envuelve el codigo para com-

probar cualquier posible error que se genere en alguno de los comandos anteriores.

Por ultimo, aunque no resulte significativo para el desarrollo de la API, se

incluye el codigo del kernel para una mejor comprension del ejemplo:

__kernel void hello(__global int * out)
{

size_t tid = get_global_id (0);

out [tid] = tid+1;

5.2.3. Generacion de libreria dinamica

El primer paso para generar la API es disponer de una libreria dindmica con
la cual se puedan realizar las llamadas a las funciones del estdndar de OpenCL.
Para ello es necesario crear un proyecto en C que genere la librerfa dinamica, y un
proyecto Java que contenga la declaracion de los métodos a incluir en la libreria. En
este caso se ha utilizado EclipseGavab 2.0, por su integraciéon con ambos lenguajes,
utilizando el compilador GCC en Ubuntu y MinGW en Windows, ambos software

libre. La configuracion de los proyectos esté incluida en el Anexo 1 (7.1).

Para generar dicha libreria es necesario conocer cuales van a ser las funciones
que se van a incluir en la misma. Para ello, se declara el método que va a estar
incluido en la librerfa con el modificador native. Esto hace que el intérprete de
Java detecte que esa funcion va a estar declarada dentro de una libreria, por lo que
no hay que implementarla. Tras esto, hay que generar el fichero de cabeceras que
contiene la declaraciéon de esa libreria, pero en codigo C. Esto es posible realizarlo
de manera sencilla utilizando la herramienta javah proporcionada con el JDK. El

comando para generar este fichero es el siguiente:

5.2. DISENO E IMPLEMENTACION 48

javah -jni -d Directorio/Proyecto/C ClaseJava

Cabe destacar que Directorio/Proyecto/C sera el directorio del proyecto C
que va a generar la libreria, y ClaseJava sera la clase Java compilada que contiene
el método nativo. De esta manera se generara en el directorio del proyecto C un
fichero .h que contendra la cabecera de la funcién. El siguiente paso es implementar

dicha funcion.

Para ello se crea un fichero .c donde es necesario copiar la cabecera generada.
Para la implementacion de esta funcién no se va a utilizar JNI, por lo que no
es necesario conocer el significado de los parametros JNIEnv ni jclass atn. Tras
tener la funcion implementada, se pasa a la compilacion del proyecto C, que en
caso de ser correcta, genera la libreria dindmica (fichero .d11 para Windows, .so
para Ubuntu). Para que el proyecto Java pueda cargar esta libreria, existen dos
opciones. La primera de ellas es copiarla a un directorio incluido en el path de las
librerfas del sistema operativo, como puede ser WINDOWS\SYSTEM32 en Windows.
La otra forma, que es la que se corresponde con la utilizada en este proyecto, es la

inclusion de la libreria en el directorio del proyecto Java.

Con la libreria disponible en el proyecto, es posible utilizar desde una clase
Java las funciones nativas implementadas. Para ello, se carga la libreria desde

Java mediante el siguiente comando:

static {
System.loadLibrary ("libreria");

}

Este bloque es necesario situarlo al comienzo de la clase Java que va a invocar
los métodos nativos, de manera que cada vez que se ejecute la aplicacion Java
se cargue la libreria. En el codigo, 1libreria debe ser sustituido por el nombre
de la libreria generada. A partir de este punto la aplicacion Java esta preparada
para invocar los métodos nativos. Para ello, s6lo es necesario invocarlos como si
de métodos normales de Java se tratara, ya que seréd el compilador el encargado

de obtener ése método de la libreria.

5.2. DISENO E IMPLEMENTACION 49

5.2.4. Generacion de una API basica

Con la libreria generada, el siguiente paso es crear una API que haga uso de la
misma. Con esta finalidad se crea una clase Java similar a la anterior, en la que se
encuentre incluida la carga de la libreria, asi como un recubrimiento de todos los
métodos presentes en la misma. Para este recubrimiento sélo es necesario imple-
mentar un método que llame al método nativo, que también debe estar declarado
en la clase Java. Por tltimo, se necesita exportar este proyecto Java en forma de

fichero JAR, que contendra a la API anterior.

Una vez generado el fichero JAR, se incluye en un nuevo proyecto Java, el
cual utilizara la API. Ademas, es necesario importar los métodos de la libreria,
de manera que sean visibles en el nuevo proyecto. Esto se puede realizar mediante
el comando import de Java, sin ninguna configuracion adicional. Para una mayor
comodidad a la hora de programar, se han declarado los métodos que recubren a
los nativos como estéticos, de manera que no es necesaria la creaciéon de ningtin
objeto para invocarlos, ademés de simplificar su uso, importando dichos métodos

de la siguiente manera:

import static es.gavab.javaopencl.JavaOpenCL.*;

Asi, para invocar a los métodos ya no serd necesario utilizar el nombre del
paquete (JavaOpenCL.metodo()), sino que bastard con el nombre del método
(metodo()). Asi, se dispone de la estructura bésica del proyecto, una API que

el usuario debe importar y que se encarga de la gestiéon de informacién entre Java

y C.

5.2.5. Uso de JNI

Para el uso de JNI es necesario tener en cuenta diversos aspectos, ya que la
sintaxis del codigo C va a cambiar ligeramente. Estos cambios se van a situar

principalmente en las cabeceras de las funciones y en las llamadas a funciones JNI.

Aunque las cabeceras las produce javah automaticamente, es importante en-

5.2. DISENO E IMPLEMENTACION 20

tender el significado de las mismas para poder implementar el codigo. Las cabeceras

de las funciones nativas siguen el siguiente esquema:

JNIEXPORT tipo_retorno JNICALL Java_NombreClase_NombreMetodo
(JNIEnv * env, jobject object, ...);

Siempre van precedidas de JNIEXPORT tipo_retorno JNICALL, donde tipo_-
retorno es el tipo de datos que va a recibir Java al invocar el método nativo, por
ejemplo jint. NombreClase y NombreMetodo son los nombres de la clase Java y
del método nativo respectivamente, tal como aparecen en el codigo Java. La parte
més importante corresponde a los parametros que recibe siempre cualquier funciéon

nativa. Estos parametros son:

» JNIEnv * env: Se trata de un puntero a una tabla que almacena re-
ferencias a todas las funciones proporcionadas por JNI. Estas son to-
das las funciones que se necesitan para interactuar con la maquina vir-
tual y trabajar con objetos y métodos Java. Cabe destacar que en todas
las funciones se debe pasar como parametro el propio env. Por ejemplo,
(*env) ->GetStringUTFChars (env, javaString, 0); convierte un String
de Java en una cadena de caracteres de C. La Figura 5.2 muestra la repre-

sentacion de un elemento de este tipo:

JNIenv* env
Arrays de punteros

a funciones JNI

Puntero |——— | Puntero fn —}
Datos Puntero fn \
dela \

maquina
virtual

Figura 5.2: Estructura de los elementos JNIEnv

5.2. DISENO E IMPLEMENTACION 51

= jobject object: Este argumento tiene dos significados. Si se trata de un
método de instancia, actiia como un puntero this al objeto Java. Si es un
método de clase, se trata de una referencia jclass a un objeto que repre-
senta la clase en la que estan definidos los métodos estaticos. En el caso de
JavaOpenCL no se va a utilizar, debido a que la clase que va a invocar los
métodos va a ser siempre la misma, y no tiene que participar en el codigo

nativo.

Los cambios referentes a las llamadas en JNI se deben principalmente a que hay
que tener en cuenta que los datos recibidos vienen de Java, no desde otra funciéon
en C. Por ello, hay que realizar diferentes conversiones, como por ejemplo la de un
String de Java a una cadena de caracteres en C, y estas conversiones se realizan

a través de las funciones que presenta JNI.

5.2.6. Comunicacién con OpenCL

El siguiente paso es la comunicacién de Java con OpenCL. Para ello, es muy
importante saber como se va a gestionar el intercambio de datos entre OpenCL
y Java, ya que en OpenCL se dispone de tipos, como los punteros, que no tienen
correspondencia directa con Java. La Figura 5.1 muestra la comparativa de los

principales cambios en ambos lenguajes:

Punteros

La gestion de los punteros desde Java es una decision de diseno imprescindible
para la interaccion con OpenCL. Una primera aproximaciéon ha sido la utilizacion
de los tipos basicos de Java para representarlos. Para los sistemas de 32 bits, se
ha utilizado el tipo int de Java para representarlos, y el tipo long para los de
64 bits. Esta decision viene dada por el tamanio de los punteros en el lenguaje
C en cada uno de los tipos de sistemas operativos, que se corresponden con los
tipos elegidos en Java. Tras comprobar el correcto funcionamiento del uso de estos

tipos, es conveniente ofrecer una capa de abstracciéon que haga la utilizacion de

5.2. DISENO E IMPLEMENTACION 52

Tipo en OpenCL / C Tipo en Java
Punteros int (32 bits) 6 long (64 bits)
Buffers de datos ByteBuffer
Callbacks Clase Notifier
Errores Excepciones
CL_TRUE, CL_FALSE booleanos
SDK de utilidades OpenCL SDK de utilidades JavaOpenCL
Uso de OpenGL para representar | Uso de JOGL para representar
graficos graficos

Cuadro 5.1: Tabla correspondencia de tipos OpenCL - Java

estos tipos transparente al usuario.

Aprovechando las ventajas de Java, se ha considerado la creacion de una clase
Java por cada uno de los tipos de OpenCL que representan un puntero, las cuales
heredaran de una superclase CLType que encapsula el elemento comun a todos los
tipos, que sera el valor del puntero. Ademés, la clase CLType implementa el método
equals para comparar si dos elementos son iguales a través de su identificador, asi
como el método hashCode para que el codigo hash de cada objeto de esta clase se

genere a partir del identificador.

El uso de una clase de este tipo debe ser simple para el programador. Con este
motivo, la libreria dinamica obtiene el valor del identificador a partir de la llamada
correspondiente a OpenCL. Tras obtener dicho identificador, sera la API Java la
encargada de encapsular el valor obtenido dentro de un objeto de JavaOpenCL.
Todas las clases incluyen un constructor para crearlas que reciben como parametro
el identificador. El usuario no va a ser el que utilice estos constructores, ya que sera
la clase que gestiona la comunicacion con OpenCL la encargada de obtener el valor
del puntero, crear el objeto pertinente y devolver la referencia al objeto creado.
De esta forma, el usuario tan sélo debera declarar un objeto del tipo necesario y
asignarle el resultado de la llamada JavaOpenCL, sin preocuparse de la reserva de

memoria del mismo.

5.2. DISENO E IMPLEMENTACION 93

Buffers de datos

En OpenCL, los buffers de datos utilizados generalmente se crean e inicializan
desde el codigo C, no desde el kernel. Por eso es necesario presentar la funcionalidad
de la creacion de estos buffers de datos de la manera mas similar a la realizada en
OpenCL. Una primera aproximaciéon puede consistir en utilizar arrays de Java, la
manera mas sencilla. En este caso los arrays no son una buena solucién debido a su
bajo rendimiento, ya que para poder utilizarlos desde JNI seria necesario realizar
una copia del array. Esta copia, teniendo en cuenta los tamanos de los arrays
que se suelen utilizar en OpenCL, reduce el rendimiento e incluso imposibilita
la ejecucion en algunos casos. Utilizando arrays la copia es necesaria ya que son
reservados en la memoria de la Maquina Virtual de Java, y para poder acceder a

ellos desde C se necesita que estén almacenados en memoria nativa.

Por este motivo en este proyecto se propone el uso de ByteBuffers, presentes
en el paquete java.nio. La utilidad de estos buffers reside principalmente en la
reserva de memoria que nos permiten. Hay dos tipos de ByteBuffer, los directos
(creados con el método allocateDirect()), o los no directos (creados con el mé-
todo allocate()). La creacion de los dos tipos siempre necesita como argumento
el tamano del buffer en bytes, pero con una diferencia. Cuando se utiliza un buffer
directo, la méquina virtual ejecutaré las operaciones nativas de entrada salida so-
bre ese buffer directamente sobre él, mientras que con los no directos, se realizara
una copia del mismo. Por esto, en JavaOpenCL se deben utilizar buffers directos

para un mejor rendimiento.

Otra de las ventajas de los buffers directos es que la memoria se reserva
directamente en memoria nativa, lo que facilita su acceso desde JNI. Este es
el motivo por el cual se utilizaran ByteBuffers para gestionar buffers de da-
tos en JavaOpenCL, que desde el codigo C seran gestionados a través de las
funciones que presenta JNI para este propoésito (GetDirectBufferAddress(),
GetDirectBufferCapacity(), etc.). Estas funciones permiten traducir el

ByteBuffer a un array de tipos basicos en C.

También resulta interesante su método slice (), que puede ser de gran utilidad

en caso de necesitar realizar aritmética de punteros desde Java. Este método crea

5.2. DISENO E IMPLEMENTACION o4

un buffer con el contenido del buffer que lo invoca. Ademas, tiene la particularidad
de que los cambios realizados sobre este nuevo buffer se veran reflejados en el
original. Aunque no recibe argumentos, la creacién se realiza a partir de la posicion
indicada por el atributo position del buffer original. Por ello, para acceder a una
posicién concreta basta con modificar el atributo position con el desplazamiento

buscado e invocar al método slice().

Callbacks

En OpenCL hay varias funciones que incluyen callbacks, esto es, punteros a
funciones que se van a ejecutar al llamar a las funciones que los incluyen. En un
principio esto puede parecer imposible de realizar desde Java, debido a la ausencia
de punteros, y mucho menos de punteros a funciones. Ademas, debe ser un método
de alguna manera intuitivo para los usuarios de Java, de manera que no sea nece-
saria la gestion de punteros o similares. Por esto, la opcion elegida es la expuesta

a continuacion.

Primero se ha creado una interfaz Java que representa una clase que va a
contener el callback. Esta interfaz incluye un método notifyCall que es el que se
va a ejecutar mediante el callback, de manera que es este método el que debe
implementar el usuario. En el c6digo nativo, se ha implementado una funciéon que
recibe como parametro el objeto que implementa la interfaz anterior. Esta funcion,

utilizando la API proporcionada por JNI, realiza las siguientes operaciones:

1. Extrae el identificador de la clase a la que pertenece el objeto, para conocer el
tipo de funcion. Esta extraccion se realiza mediante la funciéon FindClass (),
que recibe como parametro la signatura de la clase buscada. La signatura de
una clase o un método es una cadena de caracteres que identifica univoca-

mente a esa clase o método.

2. Extrae el identificador del método que va a ser invocado. Esta extraccion se
realiza mediante la funcién GetMethodID(), que recibe como parametro el

nombre del método y su signatura de tipos.

B~ W N~

5.2. DISENO E IMPLEMENTACION %)

3. Invoca el método extraido anteriormente, utilizando la funcién
CallVoidMethod (), que recibe como parametro al objeto que contiene

el método a invocar y el método que se va a invocar.

4. Elimina la referencia creada, ya que no va a volver a ser utilizada. Esto es
importante, ya que de otra manera esta referencia no podria ser eliminada,
quedando alojada en memoria. En aplicaciones con varios callbacks, esto

puede influir en el rendimiento de la aplicacion.

Ahora es necesario especificar como va a utilizar el usuario estos callbacks.
La forma més sencilla es con el uso de clases anoénimas. Para esto, lo tinico que
debe hacer el usuario es, a la hora de introducir un callback, declarar en ese mismo
instante la clase a la que va a pertenecer (implementando la interfaz correspon-
diente), e implementar el método notify incluido en dicha clase. De esta manera
se instancia en el mismo momento de la invocacion el objeto que va a contener la

informacion del callback que debe ejecutarse.

Por ultimo, es necesario permitir el uso de parametros de la aplicacion dentro de
esos callbacks. Para conseguir dicha funcionalidad, hay que declarar previamente
constantes que almacenen el valor de dichos pardmetros. Es decir, si queremos

utilizar como parametro el identificador del programa, declaramos la constante:

final int programID = program.getId();

En el fragmento anterior se puede suponer que program es un objeto de la clase
CLProgram creado anteriormente. De esta manera, dentro del método notifyCall

podremos utilizar esta constante para obtener la informacion deseada.

Dentro de la coleccion de ejemplos existe una clase llamada EjemploError que
contiene una de estas funciones. La funcién es la que se muestra en el siguiente

fragmento de codigo:

clBuildProgram(program, null, null,
new Notifier () {
@0verride
public void notifyCall () {

5.2. DISENO E IMPLEMENTACION 26

System.out.println("Program,=,"+progConst);

b

En ese ejemplo se muestra como se debe incluir un callback en cualquier funcion
de JavaOpenCL que lo acepte. De esta forma, al ejecutar la funcion clBuildProgram
se mostrara por pantalla el mensaje indicado en el callback. Esto puede ser tutil
en caso de necesitar informacion a la que so6lo se tiene acceso desde dentro de la

llamada a la funcion.

Tratamiento de excepciones

En OpenCL, para poder comprobar si una funcion se ha ejecutado correctamen-
te o no, es necesario comparar el valor devuelto por las funciones con la constante
CL_SUCCESS que indica que la ejecucion ha sido correcta. Esta comparacion, si se
porta directamente a Java, puede generar un coédigo engorroso ademés de que en
Java los errores no deben comprobarse con el tipo de retorno de la funcion, para

eso existen las excepciones.

Para aprovechar la potencia de Java, lo natural es utilizar las excepciones que
presenta el lenguaje, de manera que para el usuario, cualquier método JavaOpenCL
no ejecutado correctamente generara una excepcion, y sera el usuario el que decida
si desea o no tratarla. En caso de ignorarla, se detendré la ejecucion del programa,
ya que la ejecucion incorrecta de un soélo comando OpenCL lleva a la obtenciéon de

resultados erréoneos en la gran mayoria de los casos.

El lanzamiento de dichas excepciones se produce en el momento en que se
detecta el error, esto es, en el codigo nativo. Para ello ha sido necesaria la im-
plementacion de una funciéon que lance la excepcién con un codigo de error y un
mensaje determinado. Ademads, es necesario crear una clase Java encargada del
lanzamiento de la excepcion, la clase JavaOpenCLException. Esta clase hereda de
RuntimeException y tiene como atributo el codigo de error. La funcién que ges-

tiona la excepcion desde C es throwException, y su funcionalidad es la siguiente:

5.2. DISENO E IMPLEMENTACION 57

= Obtiene una referencia a la clase JavaOpenCLException con la funcién
FindClass (), soélo si es la primera vez que se lanza una excepcién, en caso

contrario ya tiene la referencia.

= Obtiene una referencia al constructor de la excepcidon, con la funciéon
GetMethodID(), sblo si es la primera vez, en caso contrario ya tiene la refe-

rencia.

» Crea un objeto de tipo JavaOpenCLException utilizando la funcion
AllocObject().

= Invoca al constructor de la clase JavaOpenCLException con la funcién
CallNonvirtualVoidMethod ().

» Declara una variable de tipo jthrowable, que representa las excepciones

desde JNI, y le asigna el objeto creado anteriormente.

» Lanza la excepcion con la funciéon Throw().

Como se puede observar, no se eliminan las referencias creadas. Esto es principal-
mente para que en el caso de que el usuario maneje las excepciones no sea necesario
obtener una referencia cada vez, ya que va a ser siempre la misma. De esta manera

se mejora el rendimiento de la gestion de excepciones.

Asi, al producirse una excepcion en JavaOpenCL, el usuario obtendra un coédigo
de error, asi como la descripcion de la especificacion original del motivo de la
excepcion, para poder comprobarlo en la especificacion, en caso de no conocer el

motivo de la misma.

Booleanos

En OpenCL para simular los valores booleanos se utilizan dos constantes, CL_-
TRUE y CL_FALSE, que simulan los valores wverdadero y falso. Para portar esto a

Java, la elecciéon ha sido utilizar los valores booleanos que proporciona Java, true

5.2. DISENO E IMPLEMENTACION o8

y false, y que sea la API la encargada de traducir dichos valores a los proporcio-
nados por OpenCL, mediante dos funciones diferentes, una para transformar de

booleano de OpenCL a booleano de Java y otra para el sentido contrario.

Lectura de kernels

La especificacion de OpenCL no proporciona ninguna funcionalidad para la
lectura de los kernels, por lo que es el usuario el encargado de abrir los ficheros co-
rrespondientes, leer el contenido y cargarlo al programa OpenCL. En las diferentes
SDK, esto ha sido solucionado mediante el uso de funciones que proporciona la

propia SDK para cargar estos kernels.

Para poder realizar algo similar en Java, se ha implementado una funcion
readKernel () que recibe como argumento la ruta (absoluta o relativa) donde
se encuentra el fichero del kernel que se desea leer. De esta manera, para cargar el
c6digo de un kernel, tan s6lo es necesario utilizar dicha funcién, que lo almacenaré
en un String a través del valor de retorno de la misma. Esta funciéon se encuentra

dentro de la clase JavaOpenCLUtils.

Representacion de graficos

Para representar gréaficos en OpenCL se utiliza OpenGL, aunque atin no es-
ta disponible la interoperabilidad directa (acceder desde OpenCL a los datos de
OpenGL y viceversa). Por eso, se utiliza la copia interna de los datos, de manera
que no perjudique al rendimiento. Esta copia implica que un mismo buffer reserva-
do en memoria principal puede ser utilizado tanto en OpenCL como en OpenGL.
En Java existe JOGL, una API de OpenGL para Java, que proporciona la misma
funcionalidad que OpenGL. Debido a que la relaciéon entre JavaOpenCL y JOGL
es similar a la existente entre OpenCL y OpenGL se ha decidido utilizar JOGL

como API para representar graficos desde JavaOpenCL.

5.2. DISENO E IMPLEMENTACION 99

5.2.7. Gestion de eventos

En OpenCL se pueden considerar dos tipos de sincronizacion: la sincronizacion
entre los diferentes work-items de un mismo work-group y la sincronizacion entre
diferentes comandos encolados en colas de comandos de un mismo contexto. Para
la sincronizaciéon entre work-items se utiliza sincronizacion por barrera, de manera
que ningun work-item continda ejecutando tras la barrera hasta que el resto hayan
llegado a ella. Por lo tanto, para este caso no es necesario anadir nada especial a
JavaOpenCL.

Sin embargo, para la sincronizaciéon de comandos existen dos formas de sin-
cronizacion: por barrera, que funciona igual que el caso anterior, y por eventos.
La sincronizacion por eventos se basa en que cada comando encolado puede retor-
nar un evento, de manera que el usuario puede hacer que los siguientes comandos
esperen la finalizacion del evento para continuar ejecutando. En OpenCL esto se
realiza de manera que si el usuario quiere obtener ese evento para sincronizar, debe
pasar la direccion de memoria de un elemento ¢l event, y en caso contrario, debe
pasar NULL.

En OpenCL estas funciones necesitaban que el evento se recibiera como un
parametro ya que el valor de retorno indicaba que la funcién se ha ejecutado
correctamente o no. Ya que en Java este problema esta solucionado con el uso
de excepciones, lo mas sencillo es utilizar el valor de retorno de la funciéon en
JavaOpenCL para devolver el evento, y que sea el usuario el que decida si utilizarlo

o no, dependiendo de si es necesario sincronizar diferentes comandos.

Esta primera aproximacion a priori parece totalmente valida, pero tiene un
grave problema. Utilizando este método, aunque el usuario no vaya a utilizar los
eventos, siempre van a ser creados. En OpenCL la creacion de los eventos implica
que el usuario se va a encargar de controlarlos, lo que incluye su liberacién, me-
diante la funcién c1ReleaseEvent. En JavaOpenCL el usuario puede ignorar este
evento, lo que en principio no causa ningtn problema, debido a la escasa cantidad
de memoria utilizada por un objeto CLEvent, la cual puede ser gestionada por el

recolector de Java.

5.2. DISENO E IMPLEMENTACION 60

Pero existe un problema mas grave, ya que en OpenCL si se crea un even-
to pero no se libera, todos los elementos que puedan estar asociados a ese evento,
como pueden ser buffers, que suelen tener un tamano considerable, quedan sin libe-
rar, aunque el usuario explicitamente elimine sus referencias mediante su funciéon
clReleaseMemObject. Es decir, de esta manera un buffer asociado a un evento
liberar que se libere explicitamente, quedaré inutil para el usuario pero ocupan-
do memoria en el dispositivo en el que se haya creado. Por lo tanto, aparece la

necesidad de obligar al usuario a liberar los eventos en caso de que se creen.

Por ello la solucion elegida es la de utilizar un parametro de tipo boolean donde
el usuario puede indicar si quiere crear (true) o no (false) el evento asociado.
En caso de querer crear dicho evento, debe hacerse resposable de su liberacion, y
en caso de no crear el evento, debe ignorarlo, ya que el tipo de retorno sera un
valor que no tiene ninguna informaciéon. Por tanto, todas las funciones que puedan
generar eventos, recibirdn un ultimo parametro booleano donde el programador

indicaré si quiere o no gestionar el evento generado.

Asi se consigue una solucion cercana a Java, al aprovechar el tipo de retorno, a la
vez que la gestion de la memoria queda gestionada de la manera mas transparente

al usuario.

5.2.8. SDK de utilidades JavaOpenCL

Debido a que todas las SDK disponibles para OpenCL proporcionan una li-
breria que contiene las funciones més utilizadas, se ha desarrollado una biblioteca
similar adaptada a JavaOpenCL, para que sea lo mas similar posible a la inclui-
da en la SDK original. En este conjunto de funciones se incluyen, entre otras, la
inicializacion de un ByteBuffer con valores aleatorios, asi como la comparacion de

los resultados obtenidos en dos ByteBuffer diferentes.

Esta libreria estd implementada en la clase JavaOpenCLUtils que contiene
todos sus métodos estaticos, al igual que JavaOpenCL, para que no se necesaria la
instanciacion de ningun objeto para utilizarlo. La lista completa de las funciones

que se pueden encontrar es la que se muestra a continuacion:

5.3. EJECUCION DE JAVAOPENCL 61

» int diffArray(ByteBuffer bufferl, ByteBuffer buffer2, int
iNumElements): Funciéon utilizada para comparar dos ByteBuffers

tras realizar operaciones sobre ellos en OpenCL y Java.

» int diffArray(ByteBuffer bufferl, ByteBuffer buffer2, int
iNumElements, float range): Tiene la misma funcionalidad que la
anterior, s6lo que en este caso no se comparan que sean exactamente iguales,

si no que sean similares dentro de un rango.

» void fillArray(ByteBuffer buffer, int iNumElements): Inicializa un

ByteBuffer con numeros aleatorios

= int roundUp(iNumElements, int szLocalWorkSize): Obtiene el miltiplo
de szLocalWorkSize inmediatamente superior a iNumElements. Es ttil
cuando el nimero de elementos a tratar no coincide con el szLocalWorkSize

elegido.

» int iDivUp(int dividend, int divisor): Obtiene la divisién entera de

dos elementos, redondeada al entero mayor.

» String readKernel (String pathKernel): Lee un fichero que contiene el
codigo de un kernel de OpenCL y lo convierte a String para utilizarlo para

construir el programa.

5.3. Ejecuciéon de JavaOpenCL

La ejecuciéon de una funcién en JavaOpenCL puede dividirse en tres etapas

principales:

1. Llamada a una funcién por parte del usuario: Esta etapa abarca desde
que el usuario realiza una llamada a una funcion de JavaOpenCL hasta que
esta llamada es transformada por la API. La funcion de esta etapa es la de
transformar todos los tipos y clases propios de Java a tipos mas cercanos al

lenguaje C, para obtener una mayor eficiencia.

5.4. PROBLEMAS ENCONTRADOS 62

2. Llamada a la funcién por parte de la API: Tras realizar dicha transfor-
macion, se realiza una llamada a la funcién nativa implementada en la .dll

con los argumentos ya transformados en un formato vélido para la libreria.

3. Llamada a la funcién OpenCL por parte de la libreria: Por ultimo,
en la libreria se realiza una tltima conversion de los datos entrantes a tipos

primitivos de C y de OpenCL, para finalmente realizar la llamada original
de OpenCL.

El retorno al usuario se realiza de la forma inversa.

1. Resultados OpenCL: Se obtienen los resultados proporcionados por la
llamada a OpenCL y se transforman en tipos primitivos de Java dentro de
la libreria.

2. Conversion de datos: Tras obtener los datos en forma de tipos primitivos
de Java en la API, se crean los objetos necesarios dependiendo de la llamada,

transformando esos datos en los tipos de JavaOpenCL.

3. Resultados finales: El usuario recoge los datos en el formato de

JavaOpenCL tras realizar la llamada correspondiente.

Un posible ejemplo de ejecucion que implica la creacion de un buffer en
JavaOpenCL es la que aparece en la Figura 5.3. Como se puede ver en dicha
figura, las dos primeras etapas, encargadas de transformar la funcion desde Java
a C, se ejecutan sobre la méquina virtual, y una vez los datos estan preparados

para pasar a memoria nativa, se ejecuta la ultima etapa en el host.

5.4. Problemas encontrados

A lo largo del proyecto han surgido diversos problemas que finalmente han
sido solucionados. Los siguientes problemas representan aquellos que mas trabajo

y tiempo han requerido para ser solucionados, debido a su complejidad:

5.4. PROBLEMAS ENCONTRADOS 63

Usuario
Maquina
Virtual
de
Java
JavaOpenCL

Host (OpenCL

Figura 5.3: Ejemplo de ejecucion de la funcion clCreateBuffer

Compatibilidad con la SDK de AMD

Al comienzo del proyecto AMD no disponia de una SDK para programar
OpenCL bajo estos dispositivos. Con la salida de la version beta de dicha SDK en
Diciembre de 2009, se realizaron las pruebas correspondientes, obteniendo resulta-
dos erréneos en todos los ejemplos. El problema residia en que AMD liber6 su SDK
dando soporte tan sblo al compilador de Microsoft Visual Studio para Windows,
con un gran nimero de bugs conocidos pero no solucionados. Por este motivo no
fue posible la portabilidad del proyecto a la SDK de AMD.

Mediante la utilizacion de los foros de desarrolladores, se solicité a la compania
soporte para el compilador GCC, muy utilizado en la actualidad por un gran nime-
ro de desarrolladores, lo que quedé reflejado mediante el apoyo a dicha propuesta

por parte de otros desarrolladores.

En Enero de 2009 se liber¢ la versién final de la SDK, pero con otro problema:
el driver necesario para utilizar la SDK no era totalmente compatible con todos

los dispositivos, ademas de ser una version beta. Aunque el soporte a GCC seguia

5.4. PROBLEMAS ENCONTRADOS 64

sin estar disponible, se realizaron las mismas pruebas que la version anterior, ob-
teniendo exactamente los mismos resultados, por lo que no ha sido posible portar

el proyecto para el uso de la SDK de ATI hasta el momento.

Gestion de la memoria

La experimentacion realizada puede dividirse en dos pruebas diferentes. En la
primera de ellas se realiza la experimentacion ejecutando cada uno de los ejemplos
seleccionados una sola vez, mientras que en la segunda se ejecuta cada ejemplo 20

veces, para comprobar la influencia de la carga de trabajo en JavaOpenCL.

Al realizar la segunda prueba aparecié un problema con la gestiéon de memoria
que Java realiza con los ByteBuffer, que hacia que Java lanzara una excepcion del
tipo OutOfMemoryEzception cuando en realidad deberia llamar al recolector de
basura, encargado de liberar la memoria antes de lanzar una excepcion de este

tipo.

Este problema aparece reflejado en la base de datos de bugs de Java (bug
id=4857305), en el que se indica que eventualmente es posible que al reservar
una gran cantidad de memoria en un ByteBuffer que sobrepase la memoria dispo-
nible, se lance la excepciéon previamente indicada, terminando la ejecucion de la

aplicacion.

Para solucionar este problema de una manera transparente al usuario, se ha
optado por incluir una llamada al recolector de basura en cada método clRelease de
la API, ya que en el momento de liberar un buffer de OpenCL, no va a ser utilizado

mas veces, por lo que puede ser liberado también de la memoria principal.

Capitulo 6

Resultados Experimentales

La experimentacion realizada con la API JavaOpenCL comienza por la adap-
tacion de una colecciéon de ejemplos de la SDK de NVIDIA a JavaOpenCL, para
realizar una comparativa frente a OpenCL. Se ha seleccionado un conjunto de la
SDK original debido a que estos ejemplos ya se encuentran en un estado estable
y optimizado. Debido a esto, s6lo es necesario portar los ejemplos literalmente,

sabiendo que éstos se encuentran ya optimizados.

Ademas, la SDK de NVIDIA proporciona ejemplos con diferentes finalidades,
desde la comprobacion del funcionamiento hasta la demostracion de las ventajas
y desventajas de OpenCL, pasando por algunos ejemplos graficos que demuestran

su sencilla comunicacién con OpenGL (JOGL en el caso de JavaOpenCL).

Debido a la gran cantidad de ejemplos disponibles en la SDK y a sus conti-
nuas actualizaciones, se ha elegido un conjunto que incluya coédigo con diferentes
objetivos. Entre estos objetivos se encuentran la comprobacion de un correcto fun-
cionamiento de OpenCL/JavaOpenCL, el calculo de la mejora obtenida al utilizar
OpenCL/JavaOpenCL frente a C/Java, o la representacion de graficos cuyo origen

proviene de ciertos célculos realizados en OpenCL/JavaOpenCL.

La coleccion de ejemplos portados se enumera a continuacion:

65

66

BitonicSort: Implementacion del algoritmo Bitonic Mergesort. Este algo-
ritmo se utiliza principalmente para crear una red de ordenacién, un modelo
matemaético abstracto de cables y modulos de comparacion que se utiliza

para ordenar una secuencia de nimeros.

Black-Scholes: El modelo Black-Scholes se emplea para estimar el valor de
una opcién europea para la compra o venta de acciones en una fecha futura.

Este ejemplo realiza dichos calculos sobre un conjunto de opciones europeas.

DCT8x8: Implementacion de la Transformada de coseno discreta. Expresa
una secuencia finita de varios puntos como resultado de la suma de distintas
senales sinusoidales. Se suele utilizar para la compresion de datos, como por

ejemplo compresion de video (MPEG-4) o imagenes (JPEG)

DeviceQuery: Es el ejemplo méas sencillo. Tan sélo consulta informacion

del dispositivo grafico a través de JavaOpenCL.

DotProduct: Realiza el producto escalar a un conjunto de pares de vectores

de entrada.

MatrixMul: Realiza la multiplicaciéon de matrices. Este ejemplo es muy
significativo, ya que esta orientado hacia una configuracion multi-gpu, es
decir, un dispositivo grafico que incluye dos GPU en lugar de uno so6lo para

aumentar la potencia del dispositivo.
MatrixTranspose: Calcula de manera eficiente la traspuesta de una matriz.
MatVecMul: Realiza la multiplicacion de un vector y una matriz.

Scan: Dado un array de nimeros, calcula un nuevo array donde cada ele-

mento es la suma de todos los elementos anteriores del vector original.

SimpleGLJOGL: Este ejemplo demuestra la compatibilidad de
JavaOpenCL con JOGL, calculando en JavaOpenCL una grafica 3D

de la curva del seno y representandola mediante JOGL.

SimpleMandelbrot: Mediante JavaOpenCL se crea un fractal de Mandel-

brot, que posteriormente es renderizado por JOGL.

6.1. RESULTADOS NUMERICOS 67

Para medir el rendimiento de los distintos ejemplos se han realizado dos tipos

de pruebas:

= La primera basada en una tnicas ejecucion de cada ejemplo.

= Debido a que los tiempos obtenidos en la primera prueba no son significativos
(menores de 1 segundo en todos los casos), se ha tomado la decision de
realizar una segunda prueba que ejecuta 20 veces cada ejemplo, para medir

como afecta la continua ejecucion de codigo a JavaOpenCL frente a OpenCL.

Ademaés, cada tipo de prueba se ha ejecutado dos veces. En una de ellas se
han incluido las reservas de memoria principal y de video y en la otra tan sélo el
fragmento de codigo correspondiente a trabajo sobre la GPU (memoria de video).
Gracias a estas ejecuciones es posible comprobar como puede influir el trabajo en
CPU por parte de Java frente al trabajo de CPU por parte de C, incluyendo las

reservas de memoria e inicializacion de los datos en ambos lenguajes.

Es importante destacar que el objetivo de estas pruebas es comprobar el ren-
dimiento de JavaOpenCL frente a OpenCL, y comprobar la posible pérdida de
rendimiento de JavaOpenCL frente a OpenCL al igual que el de Java frente a C.
Es por este motivo por lo que en los resultados en varios casos se puede comprobar
que los resultados en C son més rapidos. Esto es debido a que los ejemplos tienen
como finalidad comprobar el correcto funcionamiento de JavaOpenCL y OpenCL,
por lo que habra algunos de ellos que no conllevan una cantidad de computo sufi-

ciente para superar a C o incluso a Java.

6.1. Resultados numéricos

En la tabla 6.1 pueden verse los resultados obtenidos cuando se incluyen los

tiempos de reserva e inicializaciéon de memoria, tanto de video como principal.

6.1. RESULTADOS NUMERICOS 68

JavaOpenCL OpenCL Java C

1it. | 2046, || 11it. | 201t. || 1it. | 201t. || 1it. | 20 it.

Black Scholes 1062 | 20344 || 828 | 17077 || 2078 | 41437 || 1140 | 22999
DCT8x8 609 | 11547 || 515 | 9687 | 719 | 10577 || 140 | 2796
DotProduct 2047 | 39077 || 1187 | 23546 || 2813 | 50235 || 921 | 17839
MatrixTranspose || 1828 | 36234 || 1812 | 35640 || 78 1469 31 531
MatVecMul 484 | 9094 484 | 9046 | 500 46 15 31
VectorAdd 1500 | 29652 || 843 | 16484 || 1656 | 32109 || 437 | 8750

Cuadro 6.1: Tabla comparativa incluyendo las reservas de memoria

En la tabla 6.2 aparecen reflejados los resultados que se han obtenido al ejecutar
los ejemplos portados excluyendo de los mismos la reserva e inicializacion de los

datos en memoria principal.

JavaOpenCL OpenCL Java C
lit. | 20it. || 1it. | 20it. || 1it. | 201it. || 1it. | 20 it.

Black Scholes 500 | 8406 || 484 | 9578 || 1469 | 29249 || 781 | 15719
DCT8x8 453 | 8047 | 453 | 7813 || 281 | 5500 47 781
DotProduct 390 | 7015 485 | 9031 || 906 | 17687 || 47 812
MatrixTranspose || 1843 | 36140 || 1797 | 35156 || 31 200 16 140
MatVecMul 468 | 8953 || 453 | 9062 0 0 0 0
VectorAdd 453 | 8515 453 | 8204 || 563 | 10203 | 31 640

Cuadro 6.2: Tabla comparativa sin incluir las reservas de memoria

6.1. RESULTADOS NUMERICOS 69

m JavaOpenCL m OpenCL mJava mC

3000

2500

2000

1500

1000 -

500 -

BLACK SCHOLES DCT8x8 DOTPRODUCT MATRIXTRANSPOSE MATVECMUL VECTORADD

Figura 6.1: Ejecucién de una iteracion con gestion de memoria

m JavaOpenCL m OpenCL mJava mC
2000

1800

1600

1400

1200

1000

800

600

400 -

200 -

BLACK SCHOLES DCT8x8 DOTPRODUCT MATRIXTRANSPOSE MATVECMUL VECTORADD

Figura 6.2: Ejecucion de una iteracion sin gestion de memoria

En un primer analisis, se puede comprobar que la API de JavaOpenCL ha

cumplido el objetivo principal, el cual se basa en obtener un rendimiento similar

6.1. RESULTADOS NUMERICOS 70

al de OpenCl, de manera que el usuario no sea capaz de detectar una gran pérdida

de rendimiento al utilizar JavaOpenCL.

Tras este analisis inicial, es necesario comprobar los resultados mas directos,
que son aquellos que va a percibir el usuario, en los que cada ejemplo se ejecuta
una vez por completo, esto es, incluyendo las reservas previas de memoria y su ini-
cializacion, realizada con Java y C, respectivamente. Para ello es necesario referirse
a la grafica 6.1. En estos resultados, se puede comprobar que por regla general,
el tiempo empleado por JavaOpenCL es mayor que el empleado por OpenCL. Sin
embargo, es posible que esto sea debido a la reserva e inicializaciéon de memoria en
Java (la cual no ha sido optimizada de ninguna manera, para mantenerse fiel al

ejemplo original en C), que sea mas ineficiente que la reserva e inicializacion en C.

Para poder comprobar esto, es necesario analizar la gréafica correspondiente a
los resultados de la ejecucion de una sola iteracion de cada ejemplo, de manera que
se puedan comparar las pérdidas de rendimiento debidas a la ejecucion en CPU. Al
analizar dicha grafica (6.2), se puede confirmar que la hipotesis es correcta, ya que
en la misma el tiempo de ejecucién de JavaOpenCL es muy similar al de OpenCL

en todos los casos, sin grandes variaciones.

m JavaOpenCL m OpenCL mJava mC

40000

35000

30000

25000

20000

15000

10000

5000 - I l —
0 - : :

BLACK SCHOLES DCT8x8 DOTPRODUCT MATRIXTRANSPOSE MATVECMUL VECTORADD

Figura 6.3: Ejecucion de 20 iteraciones sin gestiéon de memoria

6.1. RESULTADOS NUMERICOS 71

m JavaOpenCL m OpenCL m Java mC
60000

50000

40000

30000

20000 -

10000 -

BLACK SCHOLES DCT8x8 DOTPRODUCT MATRIXTRANSPOSE MATVECMUL VECTORADD

Figura 6.4: Ejecucion de 20 iteraciones con gestion de memoria

Es posible también comprobar que una continua ejecucion no afecta al rendi-
miento de JavaOpenCL frente a OpenCL. Esto se puede comprobar en las graficas
6.3 y 6.4. En dichas gréficas se puede comprobar que los resultados se mantienen

respecto a los obtenidos en la primera prueba.

Resulta interesante también mostrar las ventajas y desventajas de la utilizacion
de JavaOpenCL en lugar de Java. Si se tiene en cuenta la motivacion del uso de
OpenCL, se puede suponer que sera recomendable utilizar JavaOpenCL en lugar de
Java en los casos en los que se vayan a realizar célculos intensivos y paralelizables,
y se utilizara Java en los casos de pequenos volimenes de datos que vayan a
realizar operaciones ligeras. Ademas, si tan solo se tiene en cuenta el calculo de los
resultados, ignorando la previa reserva de la memoria en el host, los resultados son
ain mas favorables hacia JavaOpenCL. Esto se puede comprobar en las graficas
6.1, 6.2, 6.3 y 6.4.

Como se puede comprobar, ejemplos como BlackScholes o DotProduct, los cua-
les implican una gran cantidad de datos, obtienen resultados en JavaOpenCL que
mejoran en gran proporcion los obtenidos con Java. Sin embargo, si se analizan

los resultados obtenidos por JavaOpenCL en ejemplos como MatrixTranspose(el

6.1. RESULTADOS NUMERICOS 72

més notable) o MatVecMul, los cudles no implican calculo sobre una cantidad
considerable de datos de entrada, se comprueba que el rendimiento es mayor uti-

lizando Java. Los mismos resultados se pueden obtener al comparar los resultados
de OpenCL frente a los de C.

El siguiente paso es comparar los resultados obtenidos utilizando varios dis-
positivos graficos con diferentes prestaciones. Para esta experimentacion se han

utilizado los siguientes dispositivos:

NVIDIA GeForce GTX260: 896 MB de memoria DDR3

NVIDIA GeForce 9800: 2 x 512 MB de memoria DDR3

NVIDIA GeForce 8600 GTS: 256 MB de memoria DDR3

NVIDIA GeForce FX 5600: 256 MB de memoria DDR

NVIDIA GeForce 8300 GTX: 768 MB de memoria DDR3

Para realizar esta comparacion se ha utilizado el ejemplo que més cantidad
de datos procesa (BlackScholes), para comprobar qué rendimiento ofrece cada

dispositivo en casos extremos.

6.1. RESULTADOS NUMERICOS 73

m JavaOpenCL m OpenCL
1200

1000

800

600

400 -

200 |

GeForce GTX260 GeForce 9800 GTX2 GeForce 8600 GTS Quadro FX 5600 GeForce 8800 GTX

Figura 6.5: Ejecucion de 1 iteracion sin gestion de memoria

m JavaOpenCL m OpenCL

1800

1600

1400

1200 -

1000 -

800 -

600 -|

400 -

200 -

GeForce GTX260 GeForce 9800 GTX2 GeForce 8600 GTS Quadro FX 5600 GeForce 8800 GTX

Figura 6.6: Ejecucion de 1 iteracion con gestion de memoria

Las graficas 6.5 y 6.6 muestran los resultados obtenidos tras realizar la primera

prueba, que implica una sola ejecucion de cada ejemplo. En estos resultados es

6.1. RESULTADOS NUMERICOS 74

posible comprobar que la gestién de la memoria en Java afecta a todos los disposi-
tivos por igual. También se puede comprobar que JavaOpenCL no ofrece pérdida
de rendimiento frente a OpenCL en la gréafica 6.5, que no incluye la gestion de

memoria por Java.

m JavaOpenCL m OpenCL
20000

18000
16000
14000
12000
10000
8000 -
6000 -
4000 -
2000 -
04 - -

GeForce GTX260 GeForce 9800 GTX2 GeForce 8600 GTS Quadro FX 5600 GeForce 8800 GTX

Figura 6.7: Ejecucion de 20 iteraciones sin gestiéon de memoria

m JavaOpenCL m OpenCL
35000

30000

25000
20000 -
15000 -
10000 -
5000 -
04 - - - -

GeForce GTX260 GeForce 9800 GTX2 GeForce 8600 GTS Quadro FX 5600 GeForce 8800 GTX

Figura 6.8: Ejecucion de 20 iteraciones con gestion de memoria

6.1. RESULTADOS NUMERICOS 75

La segunda prueba (20 iteraciones) realizada sobre los diferentes dispositivos
(ver graficas 6.7 y 6.8) proporciona unos resultados que confirman la eficiencia de
JavaOpenCL frente a OpenCL, ademés de la influencia de la gestion de memoria

por parte de Java (grafica 6.8).

Por ultimo, queda comparar el ejemplo multi-gpu para JavaOpenCL, que es
aquél en el que se tiene un codigo que divide el trabajo entre los dispositivos.
En este caso, se ha probado un ejemplo de multiplicacién matricial ejecutandose
sobre una tarjeta grafica GeForce 9800 GX2, que cuenta con dos niicleos de proce-
samiento, frente al codigo correspondiente ejecutado sobre un tnico nucleo de un
procesador E8400 Intel Core 2 Duo.

Si se analizan las graficas 6.9 y 6.10 se puede comprobar que JavaOpenCL
obtiene un rendimiento 25 veces mayor que Java, sin importar si se tiene en cuenta
la gestion de memoria en Java o no. Es necesario comprobar que estos resultados

se mantienen en la segunda prueba, con 20 iteraciones.

m JavaOpenCL m Java

30000

25000

20000

15000

10000

5000

MATRIXMUL

Figura 6.9: Ejecucion de 1 iteracion sin gestion de memoria

6.1. RESULTADOS NUMERICOS 76

m JavaOpenCL m Java
30000

25000

20000

15000

10000

5000

MATRIXMUL

Figura 6.10: Ejecucion de 1 iteraciéon con gestion de memoria

m JavaOpenCL m Java
600000

500000

400000

300000

200000

100000

MATRIXMUL

Figura 6.11: Ejecucion de 20 iteraciones sin gestion de memoria

A la vista de los resultados obtenidos en la segunda prueba (ver graficas 6.11 y

6.12) el speedup de JavaOpenCL frente a Java se mantiene en la misma proporcion,

6.1. RESULTADOS NUMERICOS 7

lo que hace que JavaOpenCL se una elecciéon éptima para problemas con una gran

cantidad de datos, que sean altamente paralelizables.

m JavaOpenCL m Java
600000

500000

400000

300000

200000

100000

MATRIXMUL

Figura 6.12: Ejecucion de 20 iteraciones con gestion de memoria

Otro aspecto que se puede tener en cuenta en las comparativas es la pérdida
de rendimiento con el paso de OpenCL a JavaOpenCL frente al paso de C a
Java. Como se puede comparar en las graficas anteriores la pérdida de rendimiento
entre JavaOpenCL y OpenCL es practicamente inexistente, por lo que portar una
aplicacion de OpenCL a JavaOpenCL no debe suponer ningtn tipo de problema.
Sin embargo, si se comprueba la pérdida obtenida al portar uno de los ejemplos

de C a Java, se llega a la conclusion de que las pérdidas son considerables.

6.1. RESULTADOS NUMERICOS

78

Capitulo 7

Conclusiones

Teniendo en cuenta los objetivos presentados en el Capitulo 6, se puede concluir
que la API de JavaOpenCL cumple el requisito principal, basado en la generacion
de una API para Java que permita la programacion sobre OpenCL. Gracias a la
API de JavaOpenCL es posible desarrollar aplicaciones Java que se ejecuten sobre
dispositivos graficos con un rendimiento similar al obtenido con la plataforma

original.

Ademas, esta API se ha hecho compatible con las principales plataformas uti-
lizadas en la actualidad (Windows XP 32 bits, Ubuntu 9.10 32 y 64 bits), por lo

que se consigue una cierta independencia del sistema operativo.

El segundo objetivo principal indica que la API debe ser fiel a la original, pa-
ra evitar necesitar un tiempo prolongado de aprendizaje. Este objetivo ha sido
cumplido, simplificando todo lo posible la API aprovechando las ventajas propor-
cionadas por Java. Esto se puede comprobar, por ejemplo, en que no es necesario
indicar a una funcién JavaOpenCL el tamano de los pardmetros, ya que es la pro-
pia API la encargada de calcularlos, lo que simplifica en gran medida algunas de

las funciones de OpenCL.

También se han realizado una serie de experimentaciones que prueban el correc-

to funcionamiento de la API JavaOpenCL, las cuales cumplian una doble funcion.

79

7.1. TRABAJOS FUTUROS 80

Por un lado, se utilizan para comprobar el correcto funcionamiento, tanto en ren-
dimiento como en resultados, y ademéas son muy tutiles para familiarizarse con el
entorno, ya que abarcan toda la API, de manera que siempre se pueden tener en

cuenta a la hora de consultar referencias durante el desarrollo.

Durante el desarrollo del conjunto de pruebas, surgié la necesidad de disponer
de un motor grafico que sirviera para representar los resultados obtenidos por
JavaOpenCL. Ademas, esto debia realizarse también en Java, de manera que el
usuario no necesitara cambiar de plataforma para ello. Esta necesidad fue cubierta

con la utilizacion de JOGL, el binding de OpenGL para Java.

Por tltimo, cabe destacar la ausencia en el momento del desarrollo de una
SDK completa por parte de AMD, de forma que no ha sido posible probar su co-
rrecto funcionamiento. Sin embargo, las decisiones de disenio de la API hacen que
en el momento de disponer de una SDK estable de AMD, la compatibilidad con
JavaOpenCL serd inmediata. Esto es debido a que JavaOpenCL ha sido desarrolla-
do basandose en el estandar, en lugar de en SDK proporcionada por una compania
concreta, por lo que futuras SDK liberadas por diferentes companias deben ser so-
portadas por JavaOpenCL sin ningin problema, siempre y cuando cumplan con

el estandar liberado por Khronos Group.

7.1. Trabajos futuros

Tras la obtencion de una API que recubre todos los aspectos de la especifi-
cacion original de OpenCL, se proponen los siguientes trabajos para su mejora y

actualizacion:

= Modelado Orientado a Objetos: Una vez se dispone de una API que ofre-
ce la misma funcionalidad que el original, se podra proporcionar un modelo
orientado a objetos de JavaOpenCL que la haga méas cercana al paradigma
utilizado por Java. Este modelado se llevaria a cabo organizando los méto-
dos de la API actual en clases de manera que al final se disponga de dos

API diferentes: una destinada a la programacién imperativa, muy similar al

7.1. TRABAJOS FUTUROS 81

OpenCL original, y otra destinada a la programacion orientada a objetos.
De esta manera, un desarrollador Java sin conocimientos previos de OpenCL
quizé esté mas interesado en el modelado orientado a objetos, mientras que
un desarrollador C acostumbrado al uso de OpenCL estard mas interesado

en la API imperativa.

» Interoperabilidad OpenGL: En la actual version de OpenCL no se en-
cuentra activa la interoperabilidad con OpenGL que permite que ambas he-
rramientas puedan compartir memoria directamente, de manera que se eli-
minan transferencias entre memoria principal y memoria de video. Por eso
resulta interesante que cuando esta funcionalidad se encuentre disponible, se
recubran las nuevas funciones para que JavaOpenCL también permita dicha
interoperabilidad con APIs como JOGL.

= Compatibilidad con AMD Stream SDK: Debido a que en el momento
de terminar el proyecto no habia disponible una version estable de la SDK
propuesta por AMD no ha sido posible la comprobacion del correcto funcio-
namiento de JavaOpenCL con la misma, por lo que en futuro sera necesario
comprobar, y adaptar en caso de ser necesario, la API de JavaOpenCL, au-

mentando asi su portabilidad en cuanto al niimero de dispositivos soportados.

7.1. TRABAJOS FUTUROS

82

Anexos

Anexo 1: Configuraciéon de Eclipse para desarrollar
JavaOpenCL

En este anexo se expone la configuracion de EclipseGavab 2.0 para continuar el
desarrollo de JavaOpenCL. Esta configuracion no es necesario realizarla para uti-
lizar JavaOpenCL, pero es imprescindible para continuar su desarrollo en trabajos

futuros o para corregir bug que puedan surgir.

Anadir directorios a GNU C

Lo primero que se necesita es anadir los directorios de los ficheros de inclusion
del JDK al compilador. Para ello, se accede a las propiedades del proyecto C/C++,
apartado C/C++ General, y en el subapartado Paths and Symbols, en la pestana
Includes, se anaden los directorios correspondientes a los ficheros de cabeceras
necesarios de JNI. Estos directorios son /ruta_hasta_JDK/include y /ruta_-
hasta_JDK/include/win32 (deben aparecer en este orden en la lista de Include

directories). La Figura 7.1 muestra como debe quedar la pestana Includes.

83

7.1. TRABAJOS FUTUROS 84

& Properties for JOpenCLC

|bvpe fiker text Paths and Symbuols G -
ReEsnLFCe
Euilzers I
[CfC++ Ruild Configuration: _D=|-'\-_U ¥ | | Manage Configurations...
(= QT4+ GeEnera
Code Sode
G U= incldes | Symbois | (% Lbrary Patns | [2] Reberences | (5 Source Locazon
& Tvpes
Tndezer -m
e e Lar:::::;:f Saurce Fla J:C‘I:us::;?me‘: ' Javajdlel 6.0 14 includ,
Faths and SymbolE o &L ivos de programat Java 5. indude
© FrocPazcal Bul:l - £ Charchivos de progranat Javah jdikd 6.0_1 4 indide’ win3z
Projod: References £ CijArchivos de peograma/EcipseGavab 2. 0fmisgwfinchude
Refactoring Hitory & Cyjarchivos de programa)Eckpsstaab 2 Oimingwliby oo ming 322,45 indude
Funjpsbug setings
¥ Task Repository
Tk Tage
‘alization
[#] =hew buik-n valees
Festoes Cobauks | | Apply
® -_O< -_Cance

Figura 7.1: Directorios de inclusién necesarios

Incluir librerias OpenCL

Es necesario que el compilador sea capaz de enlazar las librerias de OpenCL al
generar el proyecto, por lo que en la configuracion del proyecto, dentro de C/C++
Build — Settings, en la pestana Tool Settings, dentro del apartado MinGW C
Linker — Libraries, debemos realizar dos cambios. Primero, en la parte superior,
en Libraries (-1), es necesario anadir la libreria OpenCL32, y en la parte inferior,
en Library search path (-L), serd necesario anadir el directorio donde se encuentre

dicha libreria. En la Figura 7.2 aparecen reflejados estos cambios a realizar.

7.1. TRABAJOS FUTUROS

85

E Properties for JOpenCLC

bpefeerme | Settings o =
Resourcs
Buldere_ I
B CICHBuld D Configuration: | ety
B Taniales
Liscovery Cptiors
f'_:.;-u—m?t 0 Tocl Settings | 2 suidsteps | | Buld arcfact | [} Bnary Parssrs | @ Error Parsers |
L ngs
~Tanl Crain Ediece e i : ==
[B lgr_.:m.-...l.p.r TREETh e
Cade S:vle @ Ganeeel
o =B 500 C Compler
Flz Types (2 Preprocessor
Indese (5 symizals
Language Mappngs LEE Cirectores
Pakts and Symbals (£ Optinizaticn
(& FreePascel uild (# pebuzgrg
Projec: Refarances @ Wearrings

Librery s=arch path (-1

Refactaring Hisbory
Pun/Dsbug S=tdngs

ks @ Miszzllaneous
= B MG CLinker

€8 8

" iDocuments and Sekbngstal UsersiDzkos de programaiivIDLG CosporationiiYIDDL GRU Comp:
(1 Task Repositary e
Task Tags €= b
walidation (B picslierienus
(5 Shared Library Settings
|.& %
=0 .
Com)

Figura 7.2: Inclusion de libreria OpenCL

Declaracion de variables dentro de un bucle for

Aunque no forma parte estrictamente de JavaOpenCL, si estd funciéon no estéa

activa, no sera posible compilar el proyecto. Para activarla, dentro de la configura-
cion del proyecto, en el apartado C/C++ Build — Settings — Miscellaneous sera

necesario anadir en el apartado Other flags la linea -std=c99.

Simbolos necesarios

Es necesario definir un nuevo simbolo dentro del proyecto. Para ello, en la con-
figuracion del proyecto, dentro de C/C++ Build — Settings — GCC C Compiler
— Symbols, en el apartado Defined symbols (-D) se anade el simbolo JNI IM-
PLEMENTATION . La Figura 7.3 muestra el resultado de esta operacion.

7.1.

TRABAJOS FUTUROS

86

& Properties for JOpenCLC

bpofiertest | | settings e s
Resourcs
Bulers b
5 i+ Buld Configuration: |Detug | | manage configurations.,..
R Varisbl=
Diseewvary Options
- 'E;;-u—mrlt D Tocl Settings | suid steps | Buld arzfact || [l Bnary Parssrs | @ Error Parsers|
el
Tool Thaim Edizor = = = —
= i+ Genecd - éﬁ;ﬂ:;hh Defnad symhals (-01 288
Code 52de L el
Pocumertation FREECL Compler
Fle Types =2 Pragrocessor
Indeer % > -
Language Mappngs = Directores
Patfs and Symbels (2 Optinizaticn
& Fre=pascal Auld (# Debuzgrg
Project Referenzes @ Warings
Refactaring Histary (5 Miszellanesus

Uit sy (-11)

&
Run|Debug Settings =B MInGW o Linker
[Tash Repoditory (2 General
Task Tags (8 Lbraries
welization (2 Miscallznecus

(2 Shared Library Settings

o)

Figura 7.3: Anadir un nuevo simbolo

Opciones del linker

Por ultimo, el linker necesita tener activados algunos flags para realizar la
generacion del proyecto correctamente. Estos flags se anaden en la configuracion
del proyecto, dentro del apartado C/C++ Build — Settings — MinGW Linker —
Miscellaneous, en la opcion Linker flags seré necesario anadir la siguiente linea:

-W1l, -kill-at. La Figura 7.4 muestra el resultado de esta configuracion.

7.1. TRABAJOS FUTUROS

87

Ciscowery Options
Frrviccr
g
Toal Chain Edicor
= O+ GEnerd
Code 52de
- Documenkation
Rl I'vpas
Indeser
- Language Mzppngs
Pzths and Symbals
& FresPaszl Buld
Project Refarances
Refactoring Hisbory
Pun/Dzbug s=tings
[+ TaskRepository
- Tesh Tags
“alication

menk

®

Configuration: | Detug

8 Tool Settings | # suid steps | I

Buld Arzfact | [Bnary Parssrs i @ Error Parsers |

=B &0 Assembler
[9 eneral
=B 3o C Compler
(2 Preprmcessor
(5 symials
l.:'—b, Cirectories
(2 Optimizaticn
(% pebuzarg
(2 Wearrings
@ Miszzllzneous
=B mInEw o Linker
(i Generdl
Lbrarizs_
¥

Srared LErary Settings

| Linker fags | -, -kil-at

Ccher ochions (- Kinker [opbon])

i
x,

oither ohjecks

.

Figura 7.4: Anadir flags al linker

7.1. TRABAJOS FUTUROS

88

Bibliografia

1]

2l
13l

[5]
6]

17l

9]

[10]
[11]

12|

Introduccion a la computacion paralela
ww.saber.ula.ve/bitstream/123456789/15969/1/com_ par.pdf.

Jocl - http://www.jocl.org.

Open toolkit library - http://www.opentk.com.

Opencl - http://www.khronos.org/opencl.
Python::opencl - http://python-opencl.next-touch.com.

K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K.Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The Landscape of Parallel Computing Research: A View from Berkelev. Te-
chnical report, EECS Department, University of California, Berkeley, 2006.

O. Chafik. Nativelibs4java - http://code.google.com/p/nativelibsdjava/.

S. Damaris, A. Calderon, and J. C. V. Rebaza. Metodologias Agiles. page 37,
2007.

Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendelson, and Uri C. Weiser.
Many Core vs. Many Thread Machines: Stay away from the valley.

F. L. Hernadndez. Introduccion a jni. MacProgramadores, 2007.
Project Kenai. http://kenai.com/projects/jocl/pages/home.

Khronos Group. OpenCL Overview.

89

BIBLIOGRAFIA

90

[13] A. Munshi. Especificacion opencl 1.0
http://www.khronos.org/registry/cl/specs/opencl-1.0.48.pdf
, Octubre 2009.

	Introducción
	Computación paralela
	OpenCL
	Programación de propósito general en GPU (GPGPU)

	Estado del arte
	Objetivo
	Objetivo general
	Objetivos parciales

	Metodología y tecnologías utilizadas
	Metodología
	Proceso Unificado de Desarrollo
	Metodologías Ágiles
	Comparativa de metodologías
	Elección de la metodología

	Tecnologías
	Java
	Java Native Interface (JNI)
	GCC
	Eclipse
	JOGL
	OpenCL SDK

	Descripción Informática
	Especificación de Requisitos
	Requisitos funcionales
	Requisitos no funcionales

	Diseño e Implementación
	Arquitectura de JavaOpenCL
	Uso de JavaOpenCL
	Generación de librería dinámica
	Generación de una API básica
	Uso de JNI
	Comunicación con OpenCL
	Gestión de eventos
	SDK de utilidades JavaOpenCL

	Ejecución de JavaOpenCL
	Problemas encontrados

	Resultados Experimentales
	Resultados numéricos

	Conclusiones
	Trabajos futuros

	Anexos
	Bibliografia

