De 0 a Python

By Kenkeiras

e

HHHHHHHHHHHHHHHHH

oo
of
0o

,|DE 0

[
. 1
vl i hack =< crack i
I S [
' WL O G lo x aRarc kel 8 -:l'

T sqL INJECTION

|
l,

De 0 a Python

El objetivo de este cuaderno es presentar los conceptos basicos
relacionados con la programacion de software tales como bucles,
variables, funciones e incluso hilos de ejecucion , de forma compacta
(para los que ven un manual de 300 paginas y les da un bajén =D), todo
utilizando el lenguaje de programacion Python como base.

1. Introduccion
1.1 ;Que es Python?

Python es un lenguaje de programacién
multiplataforma e interpretado, esto quiere
decir:

- Que funciona en casi cualquier sistema operativo
sin necesidad de modificar absolutamente nada.

- Que el cédigo del programa se ejecuta
directamente a traves de un programa “intérprete”
(llamado asi porque “interpreta” el cédigo), en vez
de pasar por una fase de compilacion para
convertirlo en un archivo ejecutable (como los
famosos .exe), permitiendo incluso escribir el
cédigo a medida que se ejecuta, de forma
interactiva.

Este lenguaje se programa con un “editor de
texto plano”, es decir, algo tan simple como el
Bloc de notas o Notepad++ en Windows o gEdit
o kWrite en GNU/Linux, el prépio intérprete
incluye un editor alternativo para esta tarea (si,
el WordPad o el MS Word no funcionan aqui).

Es importante saber que Notepad++, gEdit,
kWrite y el editor que incluye el intérprete
facilitan el trabajo coloreando el cédigo para

distinguir mejor las cosas.

2.Instalacion, uso del intérpretey
Hola mundo

Nota: por compatibilidad se utilizara la version
por defecto en debian al momento de escribir
esto (2.6)

2.1 Instalacion

En Windows:

El archivo para instalarlo se puede encontrar en
http://www.python.org/download/releases/2.6.6
mas concretamente,
http://www.python.org/ftp/python/2.6.6/python
-2.6.6.msi (se asume que el lector es capaz de
instalar un programa sencillo ;)

En otros sistemas (Gnu/Linux, *BSD, ...):

Lo mas probable es que ya este instalado, de lo
contrario se puede hacer a través del sistema de
paquetes de la distribucion o a través de las
fuentes en
http://www.python.org/ftp/python/2.6.6/Python
-2.6.6.tgz

Con la instalacion de Windows se incluye un
interfaz grafica para el intérprete, en otros
sistemas hay que buscar el paquete “idle” (en
Synaptic estd en la seccion “Lenguaje de

www.hackxcrack.es

Javall

programacion Python”)
2.2 Uso del intérprete
Una vez abierto el intérprete aparecera algo asi:

Python Shell
File Edit Debug Options Windows

Esto nos

permitird usarlo de dos formas,
introduciendo el cédigo manualmente (como si
fuera una consola de comandos) o ejecutar
archivos que contengan el cédigo.

Para la primera forma (introducir el coédigo
manualmente), solo hay que escribirlo despues
del “>>>"

Si se utliliza la segunda forma, se puede abrir un
archivo a través de “Archivo”(o “File”) y “Abrir”
(o “Open”) para crear un nuevo archivo
utilizaremos “Nueva ventana” (o “New window”
) en vez de “Abrir”, con lo que obtendremos una
ventana en la que podremos editar el archivo, y
finalmente ejecutarlo con “F5”.

Nota: si el cédigo incluye caracteres que no
existen en el estandar ASCIl (como la “R”) se
producira un error, esto se puede solucionar
con este comentario al principio del codigo:

-*— encoding: utf-8 -*-

Lo que hara que se utilice UTF-8, mucho mas
amplio.

2.3 Hola mundo

A modo de ejemplo y para comprobar que todo

D : 2T 3
| i hack =<
£2%

o o

WoOW W o el

funciona bien, escribiremos en un archivo (o en
el intérprete)

print 'Hola Mundo!'

y lo ejecutamos, esto mostrara el mensaje:

Hola mundo!
2.4 Comentarios

Es posible introducir comentarios en archivos de
python, usando el caracter “#” al principio del
comentario, de esta forma el intérprete
simplemente se saltara el resto de la linea (si hay
que comentar varias lineas, se repetira esto en
cada linea), por ejemplo:

#Esto es un ejemplo de hola mundo
print 'Hola mundo!'’
Facil, verdad?

Seguird mostrando:

Hola mundo!

3. Variables y entrada/salida de datos

Para utilizar una variable en python
simplemente hay que asignarle un valor, por
ejemplo:

nombre="'Joe"

Esto creara una variable llamada nombre, a la
gue se le asignara el valor “Joe”, las variables
gue contienen cadenas de caracteres (a partir de
ahora “strings”) deben estar entre “,” 0 '), no
pasa lo mismo con las variables que almacenan

nameros, por ejemplo:
i=10

Ese comando creara una variable llamada i con
el valor 10.

www.hackxcrack.es

|

Nota: Hay que tener en cuenta que introducir
espacios en cualquier parte del cédigo (a
menos que sea dentro de un string) no afecta
a como se ejecutara, por ejemplo.

i=10
esigual a:

i 10
Esto se puede usar para hacer el cédigo menos
compacto y mas legible.

Se pueden reutilizar nombres de variables, por
ejemplo

=200
Haria que el valor de i fuese 200, y
i='xyz'
Cambiaria el valor i por el string “xyz”

Ademads se pueden hacer variables con el valor
de otras, por ejemplo si hacemos

var=i

A la variable var se le asigna el valor de la
variable i.

Se puede crear una variable con cualquier
secuencia de letras , numeros y ciertos
caracteres (como _), siempre que ni empiece
por un numero ni que coincida con el nombre
de una palabra clave, como un comando o una
expresion del lenguaje (l6gicamente no se
puede crear una variable llamada = :P).

Nota: Es importante destacar que los
comandos se acaban con un salto de linea, a
diferencia de otros lenguajes de

programacion, que acaban con un “", que no

e @ 8
[1°2 © Bliighics hack &<
ack =<

- an ®

W AN O C kX

crack

raclk . e s

Lo}

se usa en python.

Pero, si no se puede interactuar con el usuario
no hay diversion, ;verdad?

Para mostrar algo por pantalla usaremos el
comando print y despues lo que queramos
imprimir (variables, numeros o strings),
separados por comas, por ejemplo los comandos

nombre="'Joe"
print 'Hola',nombre

Mostrardn

Hola Joe
(Y el cursor quedaria aqui)

Como se puede ver, el comando print imprime
lo que hayamos introducido en una linea y
después pasa a la siguiente, esto a veces no es lo
gue queremos, en esos momentos acabaremos
el comando con una coma (sin nada después).

Para permitir al usuario introducir datos existen
dos comandos: input y raw_input

Para utilizarlos se usa input(string) siendo el
string lo que quieras que se muestre al usuario
justo antes de que introduzca el dato, por
ejemplo:

nombre=raw_input('Hola, como te
llamas? ')

Esto le dira al usuario “Hola, como te llamas?” y
lo que escriba el usuario lo almacenara en la
variable nombre.

La diferencia entre input y raw_input es que el
primero pasa el valor directamente (asi que si en
el ejemplo anterior usamos input en vez de
raw_input el usuario tendria que introducir el
nombre entre comillas), y raw_input convierte
todo en un string antes de meterlo en la

www.hackxcrack.es

sqL INJECTION
By KINEEIRA

JEDE 0 d P}f

1 thon = =S
Java f: By K ' hac = o=
! e

. c k x

Sa

L INJECTION

variable, esto se tratard& mas afondo en el
siguiente capitulo. Ademas existe una variable “especial” llamada
None (“ninguna”) con su propio tipo (NoneType).

Ejemplo:
Para averiguar el tipo de una variable se usa el
nombre=raw input('Hola, como te comando
llamas?"') a
print 'Hola',nombre type (variable)

Las strings aceptan cadenas de caracteres 4.1 Variables numericas
especiales que permiten darle formato al texto

un

si se definen entre “," (pero no entre ') , van | a5 variables numericas se pueden declarar de
después de un\ varias formas, como enteros normales(int),
hexadecimales (hex) binarios (bin) o con
decimales, punto flotante(float), para pasar de
uno a otro solo hay que hacer lo siguiente. En
\t Tabulador realidad los binarios y hexadecimales se
convierten automdticamente a enteros (la
conversion de enteros a hexadecimales o
\” “ (sin acabar el string, si fuese el caso) binarios en realidad genera strings).

Un ejemplo de la conversidén entre varios tipos
Sin embargo, si el programa se usa desde la e enteros:

consola, y no desde el intérprete con interfaz

grafica se permiten usar algunos mas: # Creamos una variable numerica
decimal
numl=10

Creamos una variable numerica

\b Retorno (el cursor retrocede una posicion) # hexadecimal (hay que afadir “0x”
num2=0x10
4.Tipos de variables # Creamos otra variable con el

valor de numl pasado a
En python existen varios tipos de variables, aqui # hexadecimal,usando hex()

se mostraran los siguientes num3=hex (numl)
-NUmeros # Creamos la ultima variable con
- Strings (cadenas de caracteres) # el valor de gumz pasado 21
- Caracteres individuales # entero, usando int(), o float()
S1 contiene eclmales
- Booleanos i . ‘ d .
. num4=int (num2)
- Listas
- Diccionarios

5 www.hackxcrack.es

hack ¥+

#Mostramos las variables

print 'Numl:',numl
print 'Num2:',num2
print 'Num3:',num3
print 'Num4:',numé

Esto mostrara lo siguiente:

Numl:
Num2 :
Num3:
Num4 :

10
16
Oxa
16

Esto muestra que el valor de una variable
hexadecimal es convertida automaticamente a
entero después de ser creada, por eso la variable
num2 (el valor original) y num4 (el valor
convertido a entero) son iguales, y por eso la
variable num3 se muestra como un string (para
no ser convertida a decimal de nuevo).

Los numeros se operan como se harian
naturalmente, enteros y flotantes pueden
operar entre ellos sin ningun problema, pero
dado que operar dos enteros da como resultado
un entero, (si al menos uno de los dos es
flotante el resultado también lo serd), esto se
nota especialmente en las divisiones:

>>> 10/3

3

>>> 10/3. # Un 3 de punto flotante
3.3333333333333335

>>> 1+1

2
>>>
2.0
>>>

1+1.

2/2

>>> 1/2

>>>

0.5
>>>

10
>>>

-1

1/2.

2*5

1-2

4.2 Strings

Los strings son cadenas de caracteres, para
pasar una variable cualquiera a string se utiliza

str(variable)

Esto es util para crear cadenas de texto, para
concatenar varias cadenas de texto se hace:

Creamos una cadena
cadenal="'abcdef"

Creamos otra cadena
cadena2='ghijklm'

Juntamos las dos en otra
cadena3=cadenal + cadena?2

print cadena3

Mostrara

abcdefghijklm

Para saber si el string contiene a otro se hace asi:
cadenal='gwertyuiop'

cadena2='er'

contenida=cadenal in cadena2

print contenida

Mostrara

True

Es decir, “verdad”, en caso de que la segunda
cadena no este en la primera mostraria False

Otra cosa importante sobre los strings es
conocer su longitud, esto se hace con
len(cadena)

cadena='123456789"

longitud=len(cadena)

www.hackxcrack.es

fIIDE ° 8 Pyt£:1-c:.r:...,-,. haCk

wWoOWwW W

= p
o]

print longitud

También se puede repetir una cadena varias
veces haciendo cadena * veces ,por ejemplo:

cadena = 'bla’
print cadena * 3

Mostrard

blablabla

Ademds se puede extraer una subcadena con
cadenalinicio : fin] (hay que considerar que la
primera posicién es la 0) por ejemplo:

cadena = 'abcde'
subcadena = cadena [1:3]
print subcadena

Mostrard
bc
4.3 Caracteres

Los caracteres strings de longitud 1, para extraer
uno se utiliza cadena[posicién] :

cadena="'abcdefg'
caracter=cadena[0]
print caracter ,
caracter=cadenal[l]
print caracter ,
caracter=cadenal[-1]
print caracter ,

Esto mostraria:
abg

Por que las cadenas se leen desde la posicion
numero 0, que es la primera, y se leen al revés
(del final al principio) si se hace con numeros
negativos

I"“
l'ﬂn

o l|'
oy l.
* ot

Para obtener el cédigo asignado a un caracter se
utiliza ord(caracter), por ejemplo

cadena=raw_input ('Introduce una
letra: ')

caracter=cadena[0]
numero=ord(caracter)

print 'El caracter',caracter,
numero',numero

'es el

Para hacer la operacion al revés (obtener un
caracter a partir de su numero), se utiliza
chr(nimero), por ejemplo:

cadena=raw_input ('Introduce un
numero: ')

numero=int (cadena)
caracter=chr (numero)

print 'El
numero',numero,
caracter'

'corresponde al
,caracter

4.4 Booleanos

Este tipo de variables solo tiene dos valores
posibles: Verdadero (True) o falso (False) y se
utilizan ampliamente con los condicionales (asi
que se explicara su uso con ellos, mas tarde).

4.5 Listas

Las listas son (como su nombre indica) listas
donde se pueden almacenar valores de
cualquier tipo (incluso otras listas), se accede a
los valores que hay dentro de ellas de la misma
forma que los caracteres lo hacen con los strings
listafinicio : fin] , lista[posicion], de hecho la
funcion len() tiene el mismo efecto en los dos.

Nota: La primera posicion sigue siendo la
numero 0, no la 1, como se podria esperar

Para crear un nuevo elemento al final de la lista
se hace listal.append(valor), para quitar un valor
se hace listal.pop(posicion) (listal seria el

www.hackxcrack.es

=
[=]

o

hack

wWoOwW W .

= p
o]

nombre de la variable lista)

Una forma sencilla de construir listas de
ndmeros es con range(numl,num2), que
construiria una con todos los valores de num1
hasta num2 (excluyendo al ultimo).

Por ejemplo:

lista = range(0, 10)

print lista

Mostrara:

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

4.6 Diccionarios

Los diccionarios son estructuras que relacionan
un objeto (string, numero ..) con otro
cualquiera, para visualizarlo mejor:

Crea un diccionario vacio
d ejemplo {}

Ahade una entrada para 1

d ejemplo[1] 'Blah!’

Ahade una entrada para 'nombre’
d ejemplo['nombre'] = 'Joe'

Ahade otra entrada més

d ejemplo['numero’'] = 42

Ahora muestra lo que hay

Muestra 'Blah!’

print d ejemplo[1]

Muestra 'Joe'

print d ejemplo['nombre’]
Muestra 42

print d ejemplo['numero’]

Se crea un diccionario con dos
entradas
d ej2 {1:
32}

print d ej2[1] # Muestra 'Blah*#*2!"'

= 'Blah**2!', 'numero’:

llﬂn

ol'l
?._l.
* ot

Ahora veamos que pasa si no existe
print d ej2['no existe']
Produce un error

5. Condicionales, bucles y funciones

Para modificar el orden de ejecucion de un
programa se utilizan condicionales (que
permiten hacer cosas distintas segun se dé una
condicién o no) y los bucles (en los que se repite
varias veces una parte del c6digo)

En python el cédigo que pertenece a un
condicional, bucle, etc.. debe seguir esta
estructura

condicional
cbédigo
cbédigo
condicional
cédigo
cbédigo
cédigo

Es decir, que los espacios antes de algun
comando sirven para determinar a donde
corresponde (las lineas en blanco se usan para
hacer el cédigo mas legible)

5.1 Condicionales

Para decidir si una parte del programa se
ejecuta o no se utiliza las funciones if (si), elif (o-
si)y else (sino)

Ejemplo:

numero=raw_input('Cuanto es 1+1? ')

Posibilidad 1: El usuario ha
pulsado directamente Enter
if (len(numero)==0):
print 'No has introducido nada'

www.hackxcrack.es

oo
of
Boo

=
hack =5 crack
e oS
wWOW W S o clciy Ol ol o
Posibilidad 2: El usuario se ha ejecuta su codigo.
equivocado
elif(numero!='2"): Para comprobar las condiciones existen las

print 'No, te has equivocado siguientes operaciones:

Posibilidad 3: El usuario ha
acertado

else:

print 'Si, has acertado' Dos variables distintas variablel != variable2

Unavarisblemayorqueota varieblel > varisblez |

Este CédIgO hace lo siguiente: pregunta al Una variable mayor o igual que otra variablel >= variable2
usuario cuanto es 1+1, si el usuario no dice
nada, el programa sigue por print “No has unavariable menor oigual que otra variablel <= variable?
introducido nada”, si no se da la condicién, se _
prueba con lo sigiente, si la condicidon se cumple Aimenos una condicién (condiciénl) or (condicién2)

y el usuario se ha equivocado, el programa
ejecuta print “No, te has equivocado”, sino solo

queda una posibilidad y el programa muestra o . _
“Si has acertado” Las condiciones son en realidad variables de
I

tipo booleano, asi que las operaciones se

Nota: cualquier operador en python se puede aplican a los booleanos también.
agrupar en paréntesis para cambiar el orden

de prioridades, de la misma forma que se hace -2 Bucles

con las matematicas convencionales.

Hay dos tipos de bucles: bucles while y bucles for

El funcionamiento es asi: _ ' _ _
Los bucles while (mientras en inglés) ejecutan

if (condicién): un codigo mientras se dé la condicidén, por
ejemplo:
elif (condicién):
.o i=10
elif (condicién): while i>=0:
cee print i
“es i=i-1
else: print 'Despegue!’

Mostrara nUmeros mientras i sea mayor o igual a
El if (si en inglés) ejecuta el cédigo que contiene 0
si la condiciéon resulta verdadera, sino, si a
continuacion hay algun elif (o-si en inglés) se 10
comprueba si se da condicién (si es asi se
ejecuta el c6digo), sino se vuelve a comprobar si
hay otro elif, asi hasta que se encuentre alguno
verdadero o hasta que no quede ninguno,
después, si no se ha cumplido ninguno, se ve si
hay algun else (sino en inglés), y si lo hay se

B> U1 OV 000

9 www. hackxcrack.es

hack ¥+

3
2
1
0

Despegue!

Asi que para hacer que algo se ejecute
continuamente hariamos algo asi:

while True:
print 'Falta mucho?'

Que mostrara continuamente:

Falta
Falta
Falta
Falta
Falta

mucho?
mucho?
mucho?
mucho?
mucho?

Esto pasa por que la condicién es siempre True
(o Verdad)

Los bucles for, ejecutan el cédigo por cada
elemento en una lista (o string), por ejemplo:

for elemento in lista:
print elemento

Que ejecutara el cédigo con cada posicion de la
lista (o del string), poniendo lo que haya en esa
posicion en la variable, por ejemplo:

Mostrar todas las letras de una

palabra
palabra=raw_input('Introduce una
palabra: ')
for letra in palabra:

print 'Letra',letra
Mostrard una letra de la palabra que se

introduzca en cada linea, de la primera a la
ultima.

Mostrar todos los numeros del 10

al 0

for numero in

[10,9,8,7,6,5,4,3,2,1,0]:
print numero

Mostrara:
10

O NWI®KB U GOSN OV

Como se puede ver sigue el orden presente en
la lista 0 en la cadena.

Hay dos expresiones que permiten modificar el
comportamiento dentro de los bucles (siempre
con respecto al mas interno), break, que sale del
bucle y continue que salta al final.

Por ejemplo:

i 0]

while i < 10:
print i
i i+1

Podria ser substituido por

i 0
while True:
if (i >= 10):
break
print i
i i+ 1

www.hackxcrack.es

I"“
l'ﬂn

P hack =< crack

= [—}
e aS
WoOW W o clicix cilEENaic | o '| QL INJECTION
By KinsEiRA
5.3 Funciones # Un ejemplo de su uso seria
numerol=2
Se puede extender el lenguaje Python numero2=7

definiendo funciones propias funciones propias,
esto se hace asi:

def nombre de_ la funcidn
(parametrol,parametro2,...):
cédigo

Los parametros son variables que puede utilizar
la funcion, se puede hacer que algunos sean
opcionales dandoles una valor por defecto, por
ejemplo:

def funcidén de ejemplo
(parémetrol,parémetro2=24):
cédigo
cédigo

La estructura del cédigo de una funcién es igual
a la de los condicionales:

def funciédn():

cédigo

cédigo

cédigo

condicional:
cédigo_del condicional
cédigo_del condicional
cédigo_del condicional
cédigo_del condicional

cédigo

coédigo

Las funciones pueden devolver algun valor,
usando return , sequido por el valor a devolver,
por ejemplo la siguiente funcién hace la suma
de dos numeros:

def suma (numl,num2):
resultado=numl+num?2
return resultado

numero3=suma (numerol,numero?2)
print 'La suma es',numero3

Mostrarialasumade 2y 7:

La suma es 9

6. Uso de librerias

Las librerias son archivos que contienen
conjuntos de funciones, por ejemplo hay
algunas que permiten hacer interfaces graficas,
otras que permiten manejar conexiones de red y
otras que permiten usar funciones matematicas
mas complejas.

Para usar una libreria hay que “importarla”, esto
se hace de esta forma:

import math

Esto importa la libreria “math”, que contiene
funciones matematicas, pero para llamar a una
funcién hay que hacerlo de esta forma:
libreria.funcién()

Esto puede resultar incomodo si la funcién se
utiliza muchas veces, para esto se utiliza el
siguiente cédigo:

from libreria import funcidn

Asi se puede llamar a funcién directamente, otra
opcién es importar de una vez todas las
funciones de la libreria:

from libreria import *

Un@ puede hacer su propia libreria guardando

el cédigo (funciones y demas) en un archivo y
dejandolo en el directorio en el que estd el que

11

www.hackxcrack.es

0o
of
000

|DE 0 a Py

! thﬂn [—1]
vl g hack ==
S
WoOW W o el

lo importa, si el archivo es lib1.py, se importaria
con import lib1

Aprovecho para comentar algunas funciones y
librerias basicas:

6.1 Libreria os

Para lanzar un comando de systema (uno de la
shell) se hace de esta forma:

import os
os.system('comando')

Por ejemplo:

import os
os.system('echo Hola')

Ill

Lanzara el comando de shell “echo Hola”

Esto es util cuando se quieren hacer programas
que puedan ser lanzados desde scripts de
consola, para evitar que el usuario tenga que
introducir los datos a mano, por ejemplo:

import sys
argc=len(sys.argv)
print 'Hay', argc,
for i in sys.argv:
print i

'argumentos’'

Esto mostraria el nimero de argumentos y estos.
Ademas da el control de 3 archivos, el de
entrada (sys.stdin), que muestra lo que se
introduce por el teclado, el de salida (sys.stdout)
donde se escribe lo que saldra por pantalla y el
de errores (sys.stderr), ahora mismo se hablara
de como manejar los archivos.

7. Manejo de archivos

Para saber el directorio actual se utiliza Empezamos con open, esta funcion sirve para

os.getcwd(),por ejemplo: abrir un archivo, se le pasan dos parametros, el
nombre del archivo 'y las opciones

import os (dependiendo de si solo puede leer ,si puede

print os.getcwd() escribir,...)

Y para cambiar de directorio

os.chdir(“directorio”)

import os
os.chdir('directorio')

6.2 La libreria sys

La caracteristica mas destacable de la libreria sys
es la posibilidad de manejar los parametros del
programa en el comando que los lanzo, por

ejemplo:

import sys
print sys.argv[O0]

Mostrara el nombre del archivo (el parametro 0).

Anadir a continuacion a

La opcion de lectura nunca crea un archivo
nuevo.

La opcion de afadir a continuacion crea un
archivo nuevo si no hay ninguno.

La opcion de escribir crea un archivo nuevo (y
borra antes el otro si habia alguno).

Archivo de texto (se adaptaran los
saltos de linea a los del SO)

Estas dos se combinan para elegir distintas

12

www.hackxcrack.es

@ @
hon &°

ack =<

e aS

W AN O C kX

opciones, por ejemplo “rb” significa que es de
lectura y es binario.

Si después de las opciones hay un +, el archivo
se puede manejar de todas las formas (leer y
escribir)

Ejemplo:

archivo=open('archivol', 'at+"')

Abre un archivo Ilamado “archivol” con
permisos para todo y si no existe lo crea.

Para leer algo de un archivo se hace
archivo.read(numero_de carateres_a_leer) si no
se especifica la cantidad de caracteres a leer, se
lee todo el archivo, una alternativa es
archivo.readline(),que lee una linea del archivo.

Nota: si archivo.read() o archivo.readline()
devuelve un string de longitud 0, es que se
acabo el archivo.

Para escribir algo en un archivo se hace
archivo.write(“string de ejemplo”), que escribe
string de ejemplo en el archivo.

Por ultimo, para cerrar un archivo se utiliza
archivo.close().

Adicionalmente existe archivo.flush() que hace
que los cambios en el archivo se guarden, esto
es especialmente util si se manejan los archivos
sys.stdout y sys.stderr a mano, ya que de otra
forma no muestran los cambios hasta que se
acabe la linea.

Ejemplo (Un programa que copia un archivo):

Debe ser binario por si acaso

inp=open('archivol', 'rb"')

Lo mismo con este

outp=open('archivo2','wb"')

string=inp.read(1)

while len(string)>0:
outp.write(string)
string=inp.read(1)

l'ﬂn

crack

ac e s

Lo}
=

inp.close()
outp.close()
print 'Archivo copiado! :)'

8. Manejo de errores

A veces hay partes del cdodigo que puden
generar errores, al importar librerias que no son
estandar, o al intentar leer un archivo que no
existe, en esos momentos habrd que tener
algunas precauciones para evitar que el cédigo
falle sin recuperacion posible, para eso se
utilizan las funciones try, exception y raise

Las funciones try y exception funcionan de una
forma parecida a if y else:

try:
f=open('archivo','r")

except:
print
el archivo'

'No se ha podido abrir

Esto hara que python intente abrir el archivo y
en caso de error imprima “No se ha podido abrir
el archivo”.

Pueden utilizarse varias lineas dentro del try o
del exception, para hacer el cédigo mas corto
por ejemplo:

try:
import libreria no estandar
a=input('Introduce un numero
del 1 al 10')

except:
print
error'

'Se ha producido un

Aqui hay dos lineas que puden causar el error,
importar una libreria que no siempre esta
disponible o usar input, que produce un error si
el usuario introduce caracteres alfabeticos, en
los dos casos se mostrara por pantalla <<Se ha
producido un error>>

13

www.hackxcrack.es

IIIDE °& Pyt£:1-c:.r:...,-,. haCk

WoOW W

=
=]

Por ultimo esta raise(tipo de error,”Descripcion
del error”) que sirve para avisar de un error, el
tipo de error mas frecuente es el Exception,por
ejemplo supongamos que queremos hacer una
funcion de suma que no acepte numeros
negativos:

def suma(a,b):
if (a<0) or (b<0):
raise(Exception, 'No se
permiten numeros negativos')
else:
return a+b

En algunos casos conviene conocer una
operacioén relativamente poco comun, pass que
no hace nada, su objetivo es evitar errores
cuando no hay nada que se deba poner en el
except.

try:

import psycho.full
except:

pass

En este caso se intenta importar la libreria
psycho.full (que hace que el cédigo se ejecute
mas rapidamente por explicarlo de forma
rapida) pero no hace nada sino falla, ya que no
hace falta.

9, Conexiones de red

Ahora veremos como realizar conexiones a
través de internet y como enviar y recibir datos a
través de ellas, concretamente a través de
conexiones TCP por ser los mas comunes y
sencillos de utilizar.

El primer paso es importar la libreria socket y
crear el objeto que nos permitird comunicarnos.

import socket
sock = socket.socket()

I"“
l'ﬂn

0 I|'
o l.
* ot

A partir de aqui hay dos opciones, conectarnos a

una direcciéon identificada con una IP o un
dominio y un puerto, o esperar a que alguien se
conecte a nosotros, primero veremos como
conectarnos, para hacer esto simplemente hay
que invocar la funciéon connect del socket que
hemos creado.

Nos conectaremos al puerto 80 de
www.google.es
sock.connect(('www.google.es', 80))
Hay que prestar atencién a los

paréntesis, ihay dos pares!

Y ya tenemos una conexion con el servidor web
de www.google.es. Si queremos enviar una
cadena hay que usar la funcién send del objeto
gue se conecto, por ejemplo, vamos a perdirle al
servidor que nos envie la pagina web.

Le pedimos la pagina “/"
se usa por defecto)
sock.send(“GET / HTTP/1.1\r\n")

Y le decimos es de www.google.es,
para evitar errores
sock.send(“HOST:
www.google.es\r\n\r\n")

(la que

Ahora necesitamos leer lo que el servidor nos
envié, para esto se usa la funcion recv
indicandole cuantos caracteres queremos leer.

data = sock.recv(1024)
Le pedimos 1024 caracteres
print data

Cuando ya no necesitemos la conexién la
cerramos con la funcién close, como se hace con
los archivos.

sock.close()

Para recibir conexiones primero tenemos que
asociar el socket a un puerto, con bind , con los
parametros direccion donde se aceptara (' ' para
cualquiera) y puerto de la misma forma que se

14

www.hackxcrack.es

IIIDE ° & Pyti:j-c:.r:...,,. haCk

WoOWOW

o
=]

hace con connect.

escucha = socket.socket()
escucha.bind(('',1234))
Escuchamos en el puerto 1234
en cualquier interfaz

Ahora hay que decidir cuantas conexiones
pueden estar a la espera de que sean aceptadas
por nuestro script, esto se hace con listen ,
indicandole el numero de conexiones, por
ejemplo 10 (si hay wun firewall activo,
probablemente este sea el momento donde se
produzca el aviso).

escucha.listen(10)

Por ultimo solo queda aceptar las conexiones,
esto se hace con accept, devuelve 2 parametros,
un nuevo socket para la conexién y la direccion
desde donde viene la conexidn, el socket que se
utilizd6 para aceptar se puede (de hecho se
deberia) reutilizar para aceptar conexiones al
mismo puerto, volviendo a llamar a accept. El
socket que se obtiene de accept ya esta
conectado, se puede enviar y recibir datos
directamente, por ejemplo, si lo que queremos
es que envie “Hola mundo!” a quién se conecte,
y después cierre la conexion.

while True:
Se aceptan conexiones
conn, addr = escucha.accept()
Se envia el mensaje
conn.send('Hola mundo! ')
Y se cierra la conexidn
conn.close()

10. Programacion orientada a objetos

Python nos permite crear nuevos tipos de
variables, a las que Illama clases (class)
permitiendo asi practicar lo que se llama la
programacion orientada a objetos (OOP).

I"“
l'ﬂn

o I|'
o l.
* ofl

Las clases se declaran de forma similar a las
funciones, la “palabra clave” es class, que va
seguida de el nombre de la clasey '

class contador : # Clase de ejemplo
Una vez hecho esto, podemos incluir las
variables y funciones que contendrd la clase,
supongamos que queremos hacer un contador
que nos muestre las veces que se llamo a una
funcién, necesitamos una variable para llevar las
cuentas

veces = 0

Y una funcién a la que llamar, que incrementara
el contador y mostrara las veces, para acceder a
las variables comunes a todo el objeto se
precede con self. , entonces la funciéon quedaria
asi.
Siempre se pasard como primer
parametro self
def cuenta(self):
Incrementa el
contador
self.veces = self.veces + 1
print self.veces

En nuestro ejemplo,
funcionaria

la clase contador ya

c = contador()
c.cuenta()
c.cuenta()

Mostrara

N

15

www.hackxcrack.es

jDe 0 a Python hac = -
BY Kengi =
o =

wWoOW W hnackx

Eso todo lo necesario para clases basicas, pero
hay unas cuantas funciones que permiten hacer

Pide la conversion a string de la clase (suele
str (self) .
— — usarse cuando se usa con print)

_ float__ (self)

a las clases hacer mas cosas:

Pide la conversién a punto flotante de la
clase

Ademas hay otra posibilidad Unica de la
programacion orientada a objetos, la herencia,
que permite crear una nueva clase que parte de
una anterior, esto se hace anadiendo la clase
“base” entre paréntesis en la declaracién de la
nueva clase, después del nombre de esta y antes
de los "', veamos por ejemplo como extender el
contador para que soporte las funciones como
_init__, __str__,..

class nuevo contador (contador):
def init (self, base = 0):
inicializa el contador
self.veces = int(base)

def str (self):
Devuelve la representacidén en
cadena

return str(self.veces)
def int (self):
Devuelve la representacidén en
nUmero entero

return self.veces

def float (self):

Devuelve la representacidén en

nimero de punto flotante
return float(self.veces)

g0
of
Boo

def
Compara con otro valor

__cmp_ (self, otro):

Negativo
0 si son
Positivo

return

si el otro es mayor,
iguales.

si el otro es menor.
self.veces - otro

Nota: No hay ningun problema en reescribir
métodos que existieran en la clase inicial, a esto
se le Ilama sobrecarga de método.

>>> ¢ = nuevo_contador(10)
>>> c.cuenta()
11

>>> print c

11

>>> ¢ == 11
True

>>> c.cuenta()
12

>>> ¢ == 11
False

11. Programacién multihilo basica

La programacion multihilo permite que un
script ejecute varias cosas a la vez
especialmente util cuando hay cuellos de
botella importantes, como las conexiones de
red, si por ejemplo queremos hacer un escaner
de puertos es mucho mas eficiente lanzar unos
cuantos hilos para realizar varias conexiones a la
vez, con lo que el tiempo se reduce bastante.
Sobre la coordinacién de codigo en paralelo
(categoria donde se engloba la multihilo) se dice

-iPor que cruzé la gallina paralela la calle?
-cruzar la calle Para

-iPor que cruzé la gallina paralela la calle?
-Para calle la cruzar

iQue se quiere decir con esto?, que la
programacion en paralelo implica que mucho

16

www.hackxcrack.as

codigo se va a invertir solamente en coordinar el
programa... y bueno, a quien le guste esa parte,
pues bien, pero a quien no...

La programacion en paralelo en un mundo en si
mismo, asi que apenas rasgaré la superficie
explicando como crear un hilo de ejecucion
independiente en Python. Por otro lado no
puedo dejar sin comentar que cada hilo es un
objeto distinto j!, asi que si no comprendiste
bien el capitulo anterior, toca volver.

Para crear un hilo de ejecucién necesitaremos
una clase nueva, que se base en (herede) la clase
que se puede encontrar en threading.Thread

from threading import Thread
class nuevo hilo(Thread):

Si se sobreescribe (técnicamente, se sobrecarga)
el __init__ de la clase, en la nueva funcién hay
que llamar al __init__ original antes de nada,
por ejemplo, si queremos que el hilo cuente
hasta un nimero que digamos, y que se defina
en el __init__ tendremos que hacer.

def init (self, tope):
Thread. init (self)
self.tope = tope

Pero aun no es un hilo de ejecucion separado,
para esto hay que definir otra funcion, run:

def run(self):

print 'Ya soy un hilo
independiente’
i=0
while i < self.tope:
print i

i =i+l

Para iniciar el hilo independiente hay que llamar
a la funcién start del objeto (si, no run), y ya esta.

>>> h = nuevo hilo(20)

|De 0 . 8T8
120 a Python *°S
’ hack ==
2%

WorwSavlEaen o o k' ox

crack

GOl e

>>> h.start()
Ya soy un hilo independiente
>>> # Aqui ya se separd el hilo

WoOoNouUu b WDNERDO

==
= O

=
N

13
14
15
16
17
18
19

-1: Anexo

En estos momentos es posible que audn
habiendo comprendido todo lo que se detalla
aqui te preguntes como hacer algunas cosas, y
es que esto no se escribid para ser una guia
extensa sino como introduccion a la
programacion, Python permite hacer casi
cualquier cosa que se te ocurra:

Manipulacion de paquetes a bajo nivel, graficos
2D y 3D, cifrado y descifrado de datos,
bluetooth entre las librerias estandar hay
incluso unas para manejar facilmente FTP,
SMTP, archivos ZIP, archivos GZIP...

En
[http://docs.python.org/release/2.6.6/library/ind
ex.html] se puede encontrar casi todo lo que se
necesita saber sobre Python, pero a
continuacion dejo una lista de las cosas que
creo que pueden resultar mas interesantes:

17

www.hackxcrack.es

http://docs.python.org/release/2.6.6/library/mat
h.html: Libreria matematica
http://docs.python.org/release/2.6.6/library/rand
om.html: Generacion de numeros pseudo-
aleatorios
http://docs.python.org/release/2.6.6/library/os.h
tml: Para hacer scripts mas portables
http://docs.python.org/release/2.6.6/library/sys.
html: Ejecutar otros programas y demas
golosinas
http://docs.python.org/release/2.6.6/library/time
.html: Esperas y medicion de tiempo (j muy util !)

http://docs.python.org/release/2.6.6/library/sock
et.html: Mas conexiones de red
http://docs.python.org/release/2.6.6/library/ssl.h
tml: Para conexiones cifradas :D
http://docs.python.org/release/2.6.6/library/sim
plehttpserver.html: Monta un servidor web en 6
lineas
http://docs.python.org/release/2.6.6/library/sele
ct.html: Para esperar a varios sockets

http://docs.python.org/release/2.6.6/library/sqlit
e3.html: Para usar bases de datos Sqlite3
http://docs.python.org/release/2.6.6/library/zipfi
le.html: Archivos ZIP
http://docs.python.org/release/2.6.6/library/gzip
.html: Archivos GZIP
http://docs.python.org/release/2.6.6/library/has
hlib.html: Funciones hash

http://docs.python.org/release/2.6.6/library/tkint
er.html: Interfaces gréficas simples

http://docs.python.org/release/2.6.6/library/turtl
e.html: Graficos de tortuga (para pasar el rato =P

)

~)

8

E
o ||||||n
l'mn

?._l.
* ol

18

www.hackxcrack.es

