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Introduccion

La asignatura de Estadistica esta dirigida a los estudiantes del grado de Infor-

macién y Documentacion.

Los estudios de Informaciéon y Documentacion ofrecen multiples salidas pro-
fesionales desde el trabajo en centros de informacion (bibliotecas, mediatecas,
centros de documentacion, archivos), hasta la gestion de informacién en or-
ganizaciones del sector privado o publico (andlisis de la informaciéon, gestion
documental, gestion de contenidos, arquitectura de la informacién, webmas-

ter) y la gestion de sistemas de informacion.

En general, la estadistica se ha convertido en una herramienta imprescindible
en el campo de las ciencias sociales, en los trabajos de investigacion y a la hora
de desarrollar profesionalmente tareas relacionadas con la gestion, la interpre-

tacion de datos y la toma de decisiones.

En el marco concreto de las competencias que tiene que desarrollar un gestor
de la informacion y de la documentacion, la estadistica es un instrumento

muy util, sea cual sea el campo profesional que se quiere desarrollar.

Estos materiales introducen los conceptos estadisticos mas necesarios para su
formacion, utilizando un enfoque practico y aplicado. En este sentido, se da
prioridad a la adquisicién de conceptos y métodos aplicados, evitando el uso
de un excesivo formalismo matematico. A priori, no se necesitan conoci-
mientos previos de estadistica, ya que esta asignatura se tratara desde cero y

suponiendo que el estudiante no ha trabajado nunca en este campo.
El material didactico esta constituido por cinco modulos:

1. Estadistica descriptiva, que incluye una introduccion a la estadistica y a la
descripcion de datos mediante tablas, graficos y estadisticos, asi como al

concepto de probabilidad y de distribucion de probabilidad.

2. Inferencia de informaciéon para una poblacion, que incluye distribuciones,

intervalos y contrastes.

3. Inferencia de informacién para dos poblaciones, sobre los contrastes de hi-

potesis para dos poblaciones.

4. Relacion entre variables: causalidad, correlacion y regresion, que incluye

modelos de regresion simple (lineales, cuadraticos y ctibicos).

5. Introduccion al disefio y andlisis de encuestas, sobre las aplicaciones esta-

disticas a la seleccion de muestras y al andlisis de cuestionarios.
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Objetivos

El objetivo fundamental es introducir al estudiante en el uso de la metodolo-

gia estadistica para describir y compilar datos, construir muestras aleatorias

validas, comprobar hipoétesis y elaborar modelos estadisticos.

A grandes rasgos, las competencias que se pretenden alcanzar son:

1.

Entender la importancia de la estadistica en la sociedad moderna.

Aprender a organizar y resumir de forma descriptiva un conjunto de datos
de una muestra mediante graficos, tablas de frecuencias y estadisticos.

Comprender el concepto de probabilidad de un acontecimiento y descu-
brir sus principales propiedades y aplicaciones.

Conocer las principales distribuciones estadisticas que se usan para mode-
lar el comportamiento de variables discretas y continuas, y utilizarlas en
pruebas de hipotesis.

Aplicar e interpretar la inferencia estadistica en poblaciones.

Entender la importancia de las encuestas y los cuestionarios en la sociedad
de la informacién y conocer su elaboracion y aplicacién.

. Aprender a usar software estadistico y de andlisis de datos como instru-

mento basico en la aplicacién practica de los conceptos y las técnicas es-
tadisticas.
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Introduccion

Las sociedades modernas son ricas en datos: la prensa escrita, la television y la
radio, Internet y las intranets de las organizaciones ofrecen cantidades inmen-
sas de datos que pueden ser procesados y analizados. Esto convierte a la esta-
distica en una ciencia interesante y util puesto que proporciona estrategias y
herramientas que permiten obtener informaciéon a partir de dichos datos. Ade-
mas, gracias a la evolucion de la tecnologia (ordenadores y software estadisti-
co) hoy en dia es posible automatizar gran parte de los calculos matematicos
asociados al uso de técnicas estadisticas, lo que permite extender su uso a un
gran rango de profesionales en &mbitos tan diversos como la biologia, las cien-

cias empresariales, la sociologia o las ciencias de la informacion.

La préctica de la estadistica requiere aprender a obtener y explorar los datos —tan-
to numéricamente como mediante graficos—, a pensar sobre el contexto de los
datos y el disefio del estudio que los ha generado, a considerar la posible in-
fluencia de observaciones an6émalas en los resultados obtenidos, a discutir la
legitimidad de los supuestos requeridos por cada técnica y, finalmente, a va-
lidar la fiabilidad de las conclusiones derivadas del andlisis. La estadistica requiere
tanto de conocimientos sobre los conceptos y técnicas empleados como de la su-
ficiente capacidad critica que permita evaluar la conveniencia de usar unas u
otras técnicas segn el tipo de datos disponible y el tipo de informaciéon que
se desea obtener.

En este médulo inicial de la asignatura, se examinan los datos procedentes de
una Gnica variable: en primer lugar se explica como organizar y resumir dichos
datos, tanto numeérica como graficamente (estadistica descriptiva); en segun-
do lugar, se introducen los conceptos basicos asociados con la idea de proba-
bilidad; finalmente, se presentan algunos modelos matematicos que permiten
analizar el comportamiento de algunas variables.
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Objetivos

Los objetivos académicos que se plantean en este médulo son los siguientes:
1. Entender la importancia de la estadistica en la sociedad moderna.

2. Aprender a organizar y resumir un conjunto de datos procedentes de una
variable mediante graficos, tablas de frecuencias y estadisticos descriptivos.

3. Comprender el concepto de probabilidad de un suceso y descubrir sus prin-
cipales propiedades y aplicaciones.

4. Conocer las principales distribuciones estadisticas que se usan para mode-
lar el comportamiento de variables discretas y continuas.

5. Saber calcular probabilidades asociadas a cada una de las distribuciones in-
troducidas.

6. Aprender a usar software estadistico o de analisis de datos como instrumen-
to basico en la aplicacion practica de los conceptos y técnicas estadisticas.
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1. Introduccion a la Estadistica

La Estadistica es la ciencia que se ocupa de obtener datos y procesarlos para
transformarlos en informacién. Es, por tanto, un lenguaje universal amplia-
mente utilizado en las ciencias sociales, en las ciencias experimentales, en las
ciencias de la salud y en las ingenierias. Las Tecnologias de la Informacién y
la Comunicacién (TIC) han incrementado notablemente la produccion, dise-
minacion y tratamiento de la informacién estadistica. En particular, Internet
es una fuente inagotable de datos que pueden ofrecer informacién y, a partir
de ella, conocimiento. Por otra parte, la constante evolucién de los ordenado-
res personales y de los programas informaticos de estadistica y analisis de
datos posibilita y facilita el analisis de grandes cantidades de datos mediante
el uso de técnicas estadisticas y de mineria de datos. En la Sociedad de la In-
formacion se hace pues imprescindible disponer de un cierto conocimiento
estadistico incluso para poder comprender e interpretar correctamente los in-
dicadores econémicos (IPC, inflacion, tasa de desempleo, Euribor, etc.), los indi-
cadores bibliomeétricos (factor de impacto de una revista, cuartil en el que se sitta,
vida media de las citas recibidas, etc.) o los indicadores sociales (esperanza de
vida, indice de alfabetizacion, indice de pobreza, indicador social de desarrollo
sostenible, etc.) a los que frecuentemente se hace referencia en los medios de

comunicacion.

El campo de la Estadistica se puede dividir en dos grandes areas: la estadistica

descriptiva y la estadistica inferencial (figura 1).

Figura 1. Estadistica descriptiva y estadistica inferencial

Poblacién de individuos

Muestra
O 0] @ Seleccion
@ aleatoria
© 00 © e o
o o ©°° e ®,
@ @
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" Informacién
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Informacién
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La estadistica descriptiva se ocupa de la obtencion, presentacion y descripcion
de datos procedentes de una muestra o subconjunto de una poblacion de in-

dividuos. Por su parte, la estadistica inferencial usa los resultados obtenidos

Nota

Las agencias gubernamentales,
como el Instituto Nacional de
Estadistica (INE) o el Eurostat

proporcionan datos sobre casi
cualquier ambito socioeconé-
mico.

Software estadistico

En la actualidad existen exce-
lentes programas informati-
cos para el analisis estadistico
de datos. Algunos ejemplos
son: MINITAB, SPSS, MS Excel,
SAS, R, S-Plus, Statgraphics o
Statistica.
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mediante la aplicacion de las técnicas descriptivas a una muestra para inferir

informacion sobre el total de la poblacion a la que pertenece dicha muestra.

Algunos términos basicos

Alo largo de este material se usardn abundantes términos estadisticos, muchos
de ellos bastante conocidos. A continuacion se presentan y revisan algunos de

estos términos basicos que conviene entender bien:

e Poblacién: colecciéon o conjunto de elementos (individuos, objetos o su-
cesos) cuyas propiedades se desean analizar. Ejemplos: (a) los estudiantes
universitarios de un pais; (b) el conjunto de periédicos en Internet; (c) el

conjunto de revistas indexadas en el Science Citation Index (SCI), etc.

e Muestra: cualquier subconjunto de elementos de la poblacion. Ejemplos:
(a) los estudiantes de una determinada universidad; (b) los periddicos en
linea centrados en aspectos econdmicos; (c) las revistas indexadas en el SCI
de una determinada editorial, etc.

e Muestra aleatoria: muestra cuyos elementos han sido escogidos de forma
aleatoria. Ejemplos: (a) un subconjunto de doscientos estudiantes escogi-
dos al azar (mediante el uso de niimeros aleatorios) de entre todos los ma-
triculados en universidades de un pais; (b) un subconjunto de cincuenta
periddicos en linea escogidos al azar; (c) un subconjunto de quince revistas
indexadas en el SCI escogidas al azar, etc.

e Marco del muestreo: lista que contiene aquellos elementos de la poblacion
candidatos a ser seleccionados en la fase de muestreo. No necesariamente co-
incidira con toda la poblacion de interés, ya que en ocasiones no sera posible
identificar a todos los elementos de la poblacion. Ejemplos: (a) lista de todos
los estudiantes matriculados en universidades de un pais en un semestre con-
creto; (b) relacion de periddicos en linea disponibles en un momento dado;

(c) lista de todas las revistas indexadas en el SCI en un afio especifico, etc.

e Variable aleatoria: caracteristica de interés asociada a cada uno de los ele-
mentos de la poblacion o muestra considerada. Ejemplos: (a) la edad de
cada estudiante; (b) el namero de visitas diarias que recibe cada periédico
en linea; (c) el factor de impacto de cada revista, etc.

e Datos u observaciones: conjunto de valores obtenidos para la variable de in-
terés en cada uno de los elementos de la muestra. Ejemplos: (a) las edades re-
gistradas son {25, 23, 19, 28...}; (b) las visitas diarias registradas son {1326,
1792, 578, 982...}; (c) los factores de impacto registrados son {2,3; 1,7; 8,2...}.

e Experimento: estudio en la que el investigador controla o modifica expre-

samente las condiciones del mismo con la finalidad de analizar los distin-
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tos patrones de respuesta en las observaciones. Ejemplos: (a) estudiar como
varian las calificaciones de un grupo de estudiantes segiin dispongan o no
de ordenadores con acceso a Internet en las aulas; (b) estudiar como varia
el namero de visitas a un periodico en linea segin se opte o no por incluir
noticias sensacionalistas en su portada; (c) estudiar como varia el factor de
impacto de un grupo de revistas segin éstas se incluyan o no en una base

de datos de reconocido prestigio, etc.

e Inspeccion o encuesta: estudio en el que el investigador no pretende mo-
dificar las condiciones de la muestra con respecto a la variable de interés
sino simplemente obtener los datos correspondientes a unas condiciones
estandar. Ejemplos: (a) registrar las calificaciones de los estudiantes de un
master determinado; (b) realizar una encuesta a los lectores de un periddico
en linea; (c) obtener el factor de impacto asociado a cada una de las revistas

de una muestra, etc.

e Parametro: valor numérico que sintetiza alguna propiedad determinada
de la poblacién. Los parametros se asocian a toda la poblacién y suelen re-
presentarse con letras del alfabeto griego como p (mu), o (sigma), etc. Ejem-
plos: (a) la edad media de todos los estudiantes universitarios de un pais;
(b) el nimero maximo de visitas diarias recibido por algiin peri6édico en li-
nea; (c) el rango o diferencia entre el mayor y el menor factor de impacto

del conjunto de revistas indexadas en el SCI, etc.

e Estadistico: valor numérico que sintetiza alguna propiedad determinada
de una muestra. Los estadisticos se asocian a una muestra y se suelen repre-
sentar por letras del alfabeto latino como Xx, s, etc. Ejemplos: (a) la edad
media de los estudiantes de una muestra aleatoria; (b) el nimero maximo
de visitas diarias recibidas por algin periédico deportivo en linea; (c) el
rango o diferencia entre el mayor y el menor factor de impacto de las revis-

tas de una editorial, etc.

e Variable cualitativa o categdrica: variable que categoriza o describe cualita-
tivamente un elemento de la poblacion. Suele ser de tipo alfanumérico, pero
incluso en el caso en que sea numeérica no tiene sentido usarla en operaciones
aritméticas. Ejemplos: (a) el teléfono o el correo electrénico de un estudiante;

(b) la direccion IP de un periédico en linea; (c) el ISSN de una revista, etc.

e Variable cuantitativa o numérica: variable que cuantifica alguna propie-
dad de un elemento de la poblacion. Es posible realizar operaciones aritmé-
ticas con ella. Ejemplos: (a) el importe de la beca que recibe un estudiante;
(b) los ingresos que genera un periédico en linea; (c) el namero de revistas

publicadas por una editorial, etc.

e Variable cuantitativa discreta: variable cuantitativa que puede tomar un

numero finito o contable de valores distintos. Ejemplos: (a) edad de un es-



CC-BY-SA » PID_00161058 10

Estadistica descriptiva univariante

tudiante; (b) nimero de enlaces a otras fuentes de informacién que ofrece
un periddico en linea; (c) calificaciébn que obtiene una revista en una escala
enterade 1 a 5, etc.

Variable cuantitativa continua: variable cuantitativa que puede tomar
un namero infinito (no contable) de valores distintos. Ejemplos: (a) altura
o peso de un estudiante; (b) tiempo que transcurre entre la publicacion de
una encuesta en linea y el instante en que ya la han completado un cente-
nar de internautas; (c) factor de impacto (sin redondear) de una revista, etc.

Distribucién de una variable: en sentido amplio, una distribucion es una
tabla, gréafico o funcién matematica que explica cobmo se comportan o dis-
tribuyen los valores de una variable, es decir, qué valores toma la variable
asi como la frecuencia de aparicion de cada uno de ellos. Ejemplo: dada
una muestra aleatoria de revistas, la distribucién de la variable “factor de
impacto de una revista” puede representarse mediante una tabla de fre-
cuencias o mediante una grafica como se aprecia en la figura 2. Se observa
que trescientas cuarenta y dos de las revistas consideradas tienen un factor
de impacto entre 0 y 1, cuatrocientas cincuenta y dos de las revistas tienen
un factor de impacto entre 1y 2, etc.

Figura 2. Distribucién de una variable aleatoria
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2. Descripcion de datos mediante tablas y graficos

Cuando se dispone de un conjunto de observaciones procedentes de una
Datos univariantes

muestra conviene hacer un primer anélisis exploratorio de éstas mediante gra-

Los datos univariantes son los

ficos y tablas que ayuden a interpretar los datos y a extraer informacion de los que provienen de una Gnica

mismos. Existen diferentes tipos de graficos que pueden usarse en esta fase ex- variable. En algunos casos, los
datos pueden proceder de dos
ploratoria y el uso de unos u otros dependera en gran medida del tipo de datos 0 mas variables y, entonces, se
. ipys as . . usa la expresién bivariante
de los que se disponga (cualitativos o cuantitativos), asi como de la informa- (si se t,af; de dos variables)

o multivariante (si se conside-

cidén que se desee visualizar. En este apartado se presentaran algunos de los p
ran mas de dos).

graficos y tablas mas habituales para la descripcioén de datos univariantes.

Graficos y tablas para datos cualitativos o categoricos

Si se dispone de datos cualitativos o categoricos, pueden sintetizarse mediante
una tabla que recoja, para cada categoria: el namero de veces que aparece (fre-
cuencia absoluta), el porcentaje de apariciones sobre el total de observaciones
(frecuencia relativa), asi como los acumulados de ambos valores. La tabla 1
muestra esta informacion para la variable “ntmero de hotspots (conexiones

wi-fi) identificados en cada comunidad auténoma”.

Tabla 1. Ejemplo de tabla de frecuencias para una variable categoérica
Hotspots por comunidad auténoma ota
Comunidad Observad que la frecuencia
auténoma Frecuencia Frecuencia Frecuencia Frec. rel. acumulada se obtiene s6lo-
acumulada relativa acumulada con ir acumulando frecuencias

Andalucia 885 885 11,9% 11,9% anteriores.

Aragén 177 1.062 2,4% 14,2%

Asturias 148 1.210 2,0% 16,2%

Cantabria 164 1.374 2,2% 18,4%

Castilla-La Mancha 144 1.518 1,9% 20,3%

Castilla y Ledn 302 1.820 4,0% 24,4%

Catalufa 1.391 3.211 18,6% 43,0%

C. Valenciana 622 3.833 8,3% 51,3%

Extremadura 137 3.970 1,8% 53,2%

Galicia 516 4.486 6,9% 60,1%

|. Baleares 183 4.669 2,5% 62,5%

I. Canarias 151 4.820 2,0% 64,6%

La Rioja 126 4.946 1,7% 66,3%

Madrid 1.776 6.722 23,8% 90,0%

Murcia 160 6.882 2,1% 92,2%

Navarra 153 7.035 2,0% 94,2%

Pais Vasco 430 7.465 5,8% 100,0%
Totales 7.465 100,0%




CC-BY-SA ¢ PID_00161058 12 Estadistica descriptiva univariante

Ademas de mediante una tabla de frecuencias, suele ser habitual representar
datos categéricos mediante el uso de gréficos circulares (figura 3) o bien me-

diante diagramas de barras (figura 4).

Figura 3. Ejemplo de grafico circular para una variable categérica

Porcentaje de hotspots por comunidades auténomas
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Figura 4. Ejemplo de diagrama de barras para una variable categérica
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Este tipo de graficos pueden crearse facilmente con cualquier programa esta-
distico o de analisis de datos (p. ej.: Minitab, MS Excel, SPSS, etc.). La figura 5
muestra los pasos basicos para generar un grafico circular (pie chart) con Mini-
tab. La generacion de un diagrama de barras (bar chart) se consigue de forma
similar, al igual que ocurre con la mayoria de los graficos que se presentan en

este apartado.
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Figura 5. Pasos a seguir para la generacién de un grafico circular con Minitab

T
4 1T (] 1 Scetterplot..
| ccaa Hotspots| B ot k..
1 |Andalucia 885 & el Pt
2 |Aragdn 177
3 |Asturias 148 dlh Histogram...
| 4 [Cantabria 164 4 Dotpiot...
5§ |Castilla-La Mancha 144 iz stem-and-Leat...
6 |Castilla y Ledn 302 +—1 | Probability Plot...
7 |Catalufia 1391 |* Empirical CDF...
8 |Comunidad Valenciana 622 M\, Probability Distribution Plot...
9 |Extremadura 137 '
10 [Cotinia ca &L’ﬁwﬂd
piechart T U L LU
C2  Hokspats " Chart counts of unique values [x* Individual Value Plot. .
= Chart values from & table [ Line Plot...
Categorical variable: J]ﬂ Bar Chart...
[com Rleechat. |
Summary variables: -
Hotspots | I
| 2
Select | Mukiple Graphs... | Data Options... |
e « | oma |

Un grafico que también suele usarse bastante para describir datos cualita-
tivos es el llamado diagrama de Pareto. Este grafico esta compuesto por: (a)
un diagrama de barras en el que las categorias estan ordenadas de mayor a
menor frecuencia y (b) una linea que representa la frecuencia relativa acu-

mulada (figura 6).

Figura 6. Diagrama de Pareto sobre las causas de abandono de un curso
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Pasos a seguir

Una vez introducidos los datos
en el programa (1), se sigue la
ruta Graph > Pie Chart (2) y se
seleccionan las variables en la
ventana correspondiente (3).

Nota

Las capturas de pantalla de
Minitab corresponden a la ver-
sion 15 de este programa. Es
posible que otras versiones
ofrezcan ligeras diferencias en
los men(s y ventanas, aunque
basicamente el proceso sera el
mismo. Para obtener més deta-
lles sobre las opciones disponi-
bles, siempre es posible
consultar la ayuda en linea del
programa o bien alguno de los
numerosos manuales de uso
que se pueden encontrar en
Internet.

Diagrama de Pareto

Para generar un diagrama de
Pareto en Minitab hay que usar
la ruta Stat > Quality Tools.
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Los diagramas de Pareto son muy utiles para detectar cuando un porcentaje
reducido de categorias (p. ej.: un 20% de las categorias) “acapara” o repre-
senta un porcentaje alto de observaciones (p. ej.: un 80% de los datos). Es-
tos fendmenos de excesiva representatividad por parte de unas pocas
categorias suelen darse con frecuencia en contextos socioeconémicos (p. €j.:
un porcentaje reducido de los ciudadanos de un pais acapara un alto por-
centaje de la renta), educativos (p. ej.: un porcentaje reducido de causas ge-
neran la mayor parte de los abandonos del curso) o de ingenieria de la
calidad (p. ej.: un alto porcentaje de fallos son debidos a un niimero muy
reducido de causas). Identificar aquellas pocas categorias que representan
una gran parte del porcentaje total puede servir para corroborar ciertos des-
equilibrios distributivos —como una distribucién poco equilibrada de las
rentas en un pais o de los sueldos en una empresa—, o para proporcionar
pistas sobre los principales factores de causa de un problema —como el alto
nivel de abandono de un curso o un elevado nivel de fallos en un servicio

o producto-.

Graficos y tablas para datos cuantitativos

En el caso de datos cuantitativos, su representacion grafica o mediante tablas
permite apreciar la forma de su distribucion estadistica, es decir, la forma en
que se comporta la variable de interés (cudles son los valores medios o centra-
les, cudles son los valores mas habituales, como varia, como de dispersos son

los valores, si muestra algtin patrén de comportamiento especial, etc.).

Uno de los graficos mas sencillos de elaborar es el llamado grafico de puntos
(dotplot). Se trata de un grafico en el que cada punto representa una o mas ob-
servaciones. Los puntos se apilan uno sobre otro cuando se repiten los valores

observados (figura 7).

Figura 7. Gréfico de puntos para las calificaciones de un curso

Calificaciones de un curso
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Calificaciones

Un gréfico similar, aunque algo mas elaborado y con una orientacién trans-
puesta de los ejes, es el llamado diagrama de tallos y hojas (stem-and-leaf).
En €] también se representan los valores observados pero usando los pro-
pios valores numéricos en lugar de puntos, lo que proporciona un mayor
nivel de detalle. La figura 8 muestra un ejemplo de grafico de tallos y hojas
para los mismos datos empleados en la figura 7. Se observa que el grafico

se ha construido a partir de una muestra de cincuenta calificaciones y que
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se ha usado una unidad de hoja (leaf) de 0,1. Esto significa que la segunda
columna del gréafico representa la parte entera de la calificacion, mientras
que cada uno de los nameros situados a su derecha representa la parte de-
cimal de una observacion con dicha parte entera. Asi, se pueden leer las si-
guientes calificaciones por orden de menor a mayor: 1,4, 2,9, 3,0, 3,5, 3,9,
4,0, 4,3, etc.

Figura 8. Grafico de hojas y tallos para las calificaciones de un curso
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Cuando las observaciones generan un ntimero elevado de valores distintos, re-
sulta recomendable agruparlos en clases o intervalos disjuntos de igual tama-
fio. De ese modo, cada observacion se clasifica en una clase o intervalo segiin
su valor. La tabla 2 muestra un ejemplo de tabla de frecuencias en el que se
han agrupado los datos en intervalos. La frecuencia de cada intervalo viene de-
terminada por el nimero de observaciones cuyos valores estan en dicho inter-

valo. La marca de clase representa el valor medio del intervalo.

Tabla 2. Ejemplo de tabla de frecuencias agrupadas usando intervalos

Intervalo Marca de clase Frecuencia Frecuencia relativa
[0, 2) 1 12 8,1%
(2,4) 3 23 15,5%
[4, 6) 5 67 45,3%
[6, 8) 7 31 20,9%
[8, 10) 9 15 10,1%
Totales 148 100,0%

Un grafico que utiliza también intervalos para agrupar los datos a represen-
tar es el histograma. El histograma muestra la frecuencia (absoluta o relati-
va) de cada clase, lo que permite visualizar de forma aproximada la
distribucion de los datos (figura 9). Sin embargo, hay que tener presente
que la forma final del histograma puede variar bastante segin el namero
de intervalos que se definan para agrupar los datos, lo que a veces no per-
mite apreciar correctamente la forma exacta de la distribucion estadistica

que siguen las observaciones.

Atencion

Cabe destacar que en un grafi-
co de tallos y hojas los datos se
apilan de izquierda a derecha
en lugar de arriba abajo como
ocurre con el gréfico de
puntos.

Nota

Una regla habitual es definir

Jn clases o intervalos, siendo

n el ndmero de observaciones
disponibles.
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Figura 9. Histograma de una distribucién aproximadamente normal
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La figura 9 muestra un histograma con forma de campana: es una forma bas-
tante simétrica, que presenta una mayor altura en la parte central y disminuye
paulatinamente en las “colas” o extremos. Esta forma es bastante habitual y
suele caracterizar el comportamiento de muchas variables (p. ej.: notas numeé-
ricas en un examen, peso o altura de individuos, temperaturas diarias, etc.).
Sin embargo, también es habitual encontrarse con variables que muestran pa-
trones de comportamientos completamente distintos. Por ejemplo, la figura
10 muestra un histograma en el que se aprecia una distribucién més “unifor-
me” u homogénea de los datos, mientras que la figura 11 muestra un histogra-

ma en el que se aprecia una distribucién asimétrica o “sesgada” de los mismos.

Figura 10. Histograma de una distribucién aproximadamente uniforme
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Figura 11. Histograma de una distribucién sesgada a la derecha
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3. Descripcion de datos mediante estadisticos

Dado un conjunto de n datos u observaciones, x1, X, ..., X,, asociadas a una va-
riable de interés X, suele ser til sintetizar algunas de sus principales propiedades
en unos pocos valores numeéricos. Los estadisticos descriptivos son, precisamente,
estos valores numéricos capaces de proporcionar informacion a partir del conjun-
to de las observaciones. Estos estadisticos resultan muy dutiles a la hora de enten-
der el comportamiento de los datos, ya que un simple valor numérico es capaz de
describir propiedades tan relevantes como, por ejemplo, el valor promedio del
conjunto de datos, el valor maximo, el valor minimo, el valor que se repite con

mas frecuencia, un indice de dispersion o variabilidad, etc.

Como ya se comento anteriormente, estos estadisticos hacen referencia a una
muestra de observaciones y suelen representarse mediante letras del alfabeto
latino (X, s, etc.), lo que permite distinguirlos claramente de sus parametros
asociados que sintetizan propiedades de toda la poblacion y se representan
mediante letras griegas (u, o, etc.). Basicamente pueden distinguirse dos gru-
pos de estadisticos descriptivos: (a) los de centralizacién, que proporcionan in-
formacion sobre cuales son los valores “centrales” del conjunto de datos (p. ej.:
el valor promedio de los datos) y (b) los de dispersién, que explican cémo se
sitGan y varian los datos con respecto a los valores “centrales” (p. ej.: el rango

o diferencia entre el valor maximo y el valor minimo de los datos).

Estadisticos de centralizacion

A continuacion se presentan los estadisticos de centralizacion mas usados ha-

bitualmente:

e Media (mean): la media (también conocida por valor promedio o valor es-
perado) de un conjunto de observaciones muestrales se representa con el
simbolo x. Intuitivamente, la media simboliza el “centro de masas” o
“punto de equilibrio central” del conjunto de datos considerado. El para-
metro asociado, la media poblacional, se representa por p. Para calcular la

media de un conjunto de datos se usa la siguiente expresion:

XXt Xy :lixi
n i=1
Ejemplo: la media de los cinco datos siguientes {6, 3, 8, 6, 4} es

6+3+8+6+4 27
5 5

X = 5,4

¢ Mediana (median): la mediana de un conjunto de observaciones muestra-

les suele representarse con el simbolo x. En el caso de una poblacion, el

Web

Recordar que la World Wide
Web (p. ej., Wikipedia, etc.)
es una excelente fuente de
consulta para ampliar los
conceptos y definiciones
estadisticas que se
proporcionan en este y otros
modulos. Un recurso
especialmente interesante,
por cuanto ofrece una visién
muy completa de conceptos
y técnicas estadisticas, es el
libro en linea de StatSoft
http://www.statsoft.com/
textbook/.

Nota

Recordar que los simbolos
LY G se pronuncian como
“mu” y “sigma”, respectiva-
mente. La pronunciacién de
otros simbolos del alfabeto
griego se puede consultar,
p. €j., en Wikepedia.

Media muestral

Recordar que la media mues-
tral es un estadistico que hace
referencia al “centro de masas”
de los datos de una muestra
(subconjunto de la poblacién),
mientras que la media pobla-
cional es un parametro que re-
presenta el “centro de masas”
de toda la poblacién.
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parametro mediana se denota con M. Una vez se ordenan todos los datos
de menor a mayor, la mediana es aquel valor que deja a su izquierda la mi-
tad de las observaciones (es decir, es aquel valor tal que el niimero de ob-
servaciones mas pequefias que €l coincide con el namero de observaciones
mayores que €l). Los pasos para calcular la mediana son: (1) ordenar los da-
tos de menor a mayor, (2) calcular la posicién i que ocupa la mediana en

el conjunto ordenado de datos, = ”T” y (3) seleccionar la observacion x;

(Ia que ocupa la posicion determinada en el paso anterior). Cabe observar
que si el nimero de datos n es impar (p. ej.: n=>35), la posicion i serd un valor
entero (p. ej.: i = 3) que corresponderad con un valor concreto, x;, del con-
junto de datos. Sin embargo, si n es par (p. ej.: n = 6), la posicion i serd un
numero no entero (p. ej.: i = 3,5), en cuyo caso la mediana vendra dada por
el promedio de los dos valores que ocupan las posiciones enteras mas cer-
canas a i (en este caso por el promedio de los valores que ocupan las posi-
ciones 3y 4).

Ejemplo: dado el conjunto de ocho datos {5, 11, 7, 8, 10, 9, 6, 9}, lo prime-
ro es ordenarlos de menor a mayor, con lo que se obtiene la serie {5, 6, 7,

8, 9, 9, 10, 11}; ahora, la posicion de la mediana vendrd dada por

. 8+1

i =4,5, es decir, la mediana estara entre los valores que ocupan las

posiciones 4 y 5, por lo que se calcula el promedio de ambos para dar el va-

lor de la mediana, es decir: X = % =8,5.

Es importante destacar que la media es muy sensible a la existencia de va-
lores extremos (outliers), es decir, la inclusién o no de un valor que esté
muy alejado del resto de los datos puede cambiar considerablemente el va-
lor resultante de la media. Por el contrario, la mediana se ve mucho menos
afectada por la presencia de dichos valores, lo que significa que la mediana
es un “centro” mas estable que la media en el sentido de que se ve menos
afectado por la presencia de valores extremos en los datos.

Moda (mode): 1a moda de un conjunto de datos es el valor que mas veces
se repite (el de mayor frecuencia).

Ejemplo: la moda de la serie de datos {6, 3, 4, 8, 9, 6, 6, 3, 4} es 6, puesto

que es el valor que mds veces aparece en la serie.

Estadisticos de dispersion

Se presentan ahora los principales estadisticos de dispersién que, como se ha

comentado anteriormente, proporcionan informacion sobre la variabilidad

del conjunto de datos:
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Rango (range): el rango de un conjunto de datos es la diferencia entre el

valor maximo y el minimo de los mismos.

Ejemplo: dado el conjunto de datos {2, 3, §, 3, 5, 1, -8}, su rango es
8 — (-8) =16

Varianza muestral (sample variance): la varianza de una muestra se repre-
senta por el simbolo s2. En el caso de una poblacién, el pardametro varianza
se representa con el simbolo . La varianza muestral ser4 mayor cuanto
mayor sean las diferencias entre cada una de las observaciones x; y la media

de los datos X, en concreto:

§7 = =
n-1 n-11

5 (xl—i)2+(x2—)_c)z+...+(x,,—i) 1 i(xi_)_()z

Esto significa que la varianza es una medida de la dispersion de los datos
con respecto a su media, es decir, cuando menor sea la varianza, tanto
mas agrupados estardn los datos alrededor de su valor promedio. Por el
contrario, cuanto mayor sea la varianza, tanto més dispersos estaran los
datos.

Ejemplo: la varianza muestral de la serie de 5 datos {6, 3, 8, 5, 3} es:

o (6-5)+(3-5)"+(8-5)"+(5-5)"+(3-5) 4
5-1 '
Desviacion estandar (standard deviation): la desviacion estandar (o tipi-
ca) de una muestra se representa con el simbolo s, mientras que la desvia-
cién estandar de una poblacion se representa con c. La desviacion estandar
es la raiz cuadrada positiva de la varianza, esto es: s = \/572 (o, dicho de otro

modo, la varianza es el cuadrado de la desviacién estandar).
Ejemplo: para los datos del ejemplo anterior, s =4/4,5=2,1

Al igual que ocurria con la varianza, a mayor desviaciéon estandar més dis-

persion en los datos y viceversa.

Cuartiles (quartiles): en un conjunto de n observaciones ordenadas de menor
a mayor valor, se pueden considerar tres valores numéricos concretos llama-
dos cuartiles que dividen el conjunto en cuatro partes, cada una de ellas con-
teniendo una cuarta parte de las observaciones (figura 12). El primer cuartil,
Q, es el valor que deja la cuarta parte de los datos ordenados a su izquierda (es
decir, un 25% de los datos muestran valores inferiores a él y un 75% de los da-
tos muestran valores superiores a él). Por su parte, el segundo cuartil, Q,, es
aquel valor que deja la mitad de los datos ordenados a su izquierda (es decir,
un 50% de los datos muestran valores inferiores a €l y un 50% de los datos
muestran valores superiores a €l). Finalmente, el tercer cuartil, Qs, es aquel va-
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lor que deja tres cuartas partes de los datos ordenados a su izquierda (es decir,
un 75% de los datos muestran valores inferiores a él y un 25% de los datos

muestran valores superiores a €l).

Figura 12. Cuartiles de un conjunto ordenado de datos
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Valor de la variable

Obsérvese que, en realidad, el cuartil segundo o Q, coincide con el con-
cepto de mediana presentado anteriormente. Los cuartiles son muy ti-
les a la hora de clasificar una observacion en una determinada franja del
conjunto de datos, por ejemplo, si la observacion es inferior a Qq signi-
fica que ésta se encuentra situada entre el 25% de valores mas bajos; si
la observacion es superior a Qg significa que esta situada entre el 25%
de valores mas altos, etc.

e Rango intercuartilico (inter-quartilic range): este rango suele repre-
sentarse como IQR y es simplemente la diferencia entre el tercer cuartil
y el primer cuartil, es decir: IQR = Q3 — Q. El rango intercuartilico indi-
ca el espacio que ocupan el 50% de las observaciones “centrales”
(figura 12), por lo que, de forma similar a lo que ocurria con la varianza,
da una medida de la dispersion de los datos (a mayor IQR mayor disper-

sién y viceversa).

Obtencioén de estadisticos descriptivos mediante programas informaticos

En la practica, es habitual utilizar algin programa estadistico o de analisis
de datos para calcular los estadisticos anteriores e incluso algunos estadis-
ticos adicionales que proporcionen informacién sobre el conjunto de da-
tos. En la figura 13 se muestran los pasos basicos necesarios para obtener
los principales estadisticos descriptivos con Minitab. El output del progra-
ma, para un ejemplo con cincuenta observaciones, se muestra en la figura
14. Por su parte, la figura 15 muestra una serie de estadisticos descriptivos
generados con MS Excel para el mismo conjunto de datos (en este caso los
cuartiles se han obtenido usando las férmulas integradas de Excel).



CC-BY-SA » PID_00161058 22

Estadistica descriptiva univariante

Figura 13. Pasos para calcular estadisticos descriptivos con Minitab

Worksheet 2 #+#¥

Pasos a seguir

Stat  Graph Editor  Tools  Window  Help
I R

+ C16
Calificaciones

= sl

Una vez introducidos los datos
en el programa (1), se sigue la
ruta Stat > Basic Statistics > Dis-
play Descriptive Statistics... (2)y
se seleccionan las variables en la
ventana correspondiente (3).

1 6.0 : Begression 4 Es Store Descriptive Statistics. ..
2 47 : ANOVE | D% Graphical Summary. .
3 8.2
4 9.5 1
] 5.8
6 7.2
7 6,7 2
0 6. x
& 6.8 CZ  Hatspaots Wariables:
10 9.8 5 Frecuencia Calficaciones ﬂ
8 Marmal
1 3,0 09 Calidad d
C10  Calificaciones_
11 Datos
C13  Unifi B wariables {optionali;
C14  Weibull
C16  Calificaciones ;I
=
3—»
il Statistics. .. | Graphs... |
Help | ik I Cancel |
Figura 14. Estadisticos descriptivos obtenidos con Minitab
1=
Descriptive Statistics: Calificaciones [ |
Variahle N u* Mean 3SE Mean StDev Minimum 01 HMedian Q03
Calificaciones 50 0 7.41l8 0,239 1.691 0.100 &.675 7.550  8.650
Variahle Maximum
Calificaciones 9.500
[
Ki Y
Figura 15. Estadisticos descriptivos calculados con Excel
R C | D |
1 |Calificaciones
2 B0 Calficaciones
3 47
4 0.2 Media 7416
5 95 Error tipico 0,2392054588
5] tals, Mediana 755
7 72 Moda 72
i 7 Desviacion estandar 1 RE91435224
g BB YWarianza de la muestra | 2 BE09E3265
10 F 3 Curtosis 5 922785035
11 98 Coeficiente de asimettia | -1, 7203249472
12 90 Rango 97
13 77 Minirmo 0,1
14 =g Maxirmo a8
15 58 Suma 3703
16 B4 Cuenta a0
17 95
18 74 Cuartil primero B,725
19 72 Cuartil segunda 705
20 bl Cuartil tercero ta =
21 74

Diferencias en los
métodos de calculos

Cabe destacar que hay ligeras
diferencias entre los valores de
los cuartiles calculados por
Minitab y los correspondientes
valores de Excel. Ello se debe
a que usan métodos de célculo
distintos. Una discusion intere-
sante sobre los diferentes mé-
todos existentes para calcular
los cuartiles se puede encon-
trar en: http://mathforum.org/
library/drmath/view/
60969.html.
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Diagrama de cajas y bigotes (boxplot)

Usando los cuartiles es posible construir un tipo de gréfico, el diagrama de ca-
jas y bigotes (boxplot), que resulta muy Ttil para visualizar la distribucion de
los datos. Este diagrama estd compuesto por una caja central, definida por los
cuartiles primero y tercero, que contiene el 50% “central” de las observacio-
nes, y dos segmentos situados en los respectivos extremos de la caja, represen-
tando cada uno de ellos el 25% de las observaciones extremas (figura 16).

Figura 16. Diagrama de cajas y bigotes (boxplot) y valores extremos (outliers)

Boxplot para la variable “calificaciones”

10 4
______ Q-[ _— - —
8 -
______ Q ---- 7,55
g
s 1 Q-
.G 6 -
o]
v
=
S
4 -
2 -
__—~ Outlier
%014
0 -

El diagrama de cajas y bigotes sirve también para identificar posibles valo-
res anOmalos (outliers), que se encuentran excesivamente alejados del resto
de los datos, es decir: o bien son extremadamente grandes o bien extrema-
damente pequefios en comparacion con el resto de observaciones. Estos va-
lores andémalos se suelen representar mediante un asterisco, y pueden ser
debidos a un error en el registro de los datos o bien a valores que, en reali-
dad, se encuentran extremadamente alejados del resto de observaciones (p. ej.:
el precio de un Ferrari cuando se compara con precios de turismos de gama
media). Identificar valores anémalos en un conjunto de observaciones es
importante, puesto que el analisis de los datos puede dar resultados muy
distintos en funcién de que se consideren o no dichos valores en el estudio
(por ejemplo, la media y la varianza de un conjunto de datos pueden cam-
biar de forma notable segtin se incluya o no uno de estos valores extremos).

La estrecha relacion existente entre el histograma y el boxplot se puede ob-
servar en la figura 17. En cierto sentido, el boxplot se puede interpretar
como un histograma visto desde arriba. En este caso, la zona del boxplot si-
tuada entre los cuartiles primero y tercero corresponderia a la zona central
del histograma. Ademads, en ambos casos queda identificado el valor ano-
malo (outlier) asi como la forma aproximadamente simétrica del resto de la

distribucioén.
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Figura 17. Relacién entre histograma y boxplot

Calificaciones (histograma y boxplot)
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4. El concepto de probabilidad

Un experimento aleatorio es aquel en el que no es posible conocer a priori el - |
jemplo

suceso resultante que acontecerd pero, sin embargo, si es posible observar un

. . . . La probabilidad de un suceso
cierto patron regular en los resultados que van sucediendo cuando el experi- es siempre un ndmero entre 0
y 1. Asi, por ejemplo, una pro-

mento se repite muchas veces. Por ejemplo, cuando se considera el experimento babilidad de 0,25 representa

aleatorio consistente en lanzar una moneda (o un dado) al aire, no es posible un porcentaje de aparicion del
25% o, equivalentemente, una
predecir cudl sera el suceso resultante del experimento, es decir, si saldra cara o proporcion de 1/4.

cruz (o qué ntmero saldra en el caso del dado); sin embargo, si se puede afirmar
que tras muchos lanzamientos el porcentaje o proporcién de sucesos “cara” ob-
tenidos serd muy proximo al 50% o 1/2 (en el caso del dado, el porcentaje o pro-
porcién de sucesos “3” obtenidos serd muy proximo a 0,1667 o 1/6). Este
porcentaje o proporcion de aparicion de un suceso tras muchas repeticiones del

experimento es lo que da lugar a la idea de probabilidad:

Se define la probabilidad de un suceso A, P(A), como el porcentaje o pro-
porcion de aparicion de dicho suceso en una serie extraordinariamente lar-

ga de repeticiones del experimento, todas ellas independientes entre si.

El requisito de independencia entre las distintas repeticiones del experimento
aleatorio significa que el resultado de cada repeticion del experimento no esta
condicionado por los resultados obtenidos en repeticiones anteriores (p. ej.:
cuando se lanza varias veces una moneda al aire, el suceso resultante de cada
nuevo lanzamiento es independiente de los resultados obtenidos en lanza-

mientos previos).
Ejemplo 1 de probabilidades

En el experimento “lanzamiento de una moneda al aire”, es posible considerar
los siguientes sucesos o potenciales resultados: C = {cara}, X = {cruz}, Q = {cara
o cruz} y & = {ni cara ni cruz}. Los dos Gltimos sucesos se conocen, respectiva-
mente, como suceso seguro Q (que incluye todos los resultados posibles) y su-
ceso imposible o conjunto vacio & (que no incluye ningtn resultado derivado
de la ejecucion del experimento). En este caso, parece claro que P(C) = 0,5 (es
decir, si se repitiera el experimento muchas veces, aproximadamente el 50%
de las mismas serian caras), P(X) = 0,5, P(Q) = 1 (es decir, en el 100% de los
lanzamientos saldra o bien cara o bien cruz) y P(&) = 0 (es decir, en el 0% de

los lanzamientos no se obtendra resultado alguno).
Ejemplo 2 de probabilidades

En el experimento aleatorio “lanzamiento de un dado”, es posible considerar

sucesos o potenciales resultados como los siguientes: {1}, {2}, {3}, {4}, {5}, {6},
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Q = {un ntmero entre 1 y 6}, & = {ningn ntmero entre 1 y 6}. En este caso,
P({1}) = 1/6 (tras muchas repeticiones, uno de cada seis lanzamientos acabara
siendo un 1), P({2}) = 1/6, P({3}) = 1/6, P({4}) = 1/6, P({5}) = 1/6, P({6}) = 1/6,
P(Q) =1y P(@)=0.

Observar, ademas, que también es posible considerar sucesos compuestos co-
mo, por ejemplo, par = {2, 4, 6}, impar = {1, 3, 5}, mayor2 = {3, 4, 5, 6}, menor3
= {1, 2}, etc. En este caso, P(par) = 3/6 = 1/2, P(impar) = 1/2, P(mayor2) = 4/6
=2/3, P(menor3) = 2/6 = 1/3.

Propiedades basicas de las probabilidades

Hay una serie de propiedades basicas que debe satisfacer cualquier proba-
bilidad. Estas propiedades son muy ttiles a la hora de calcular probabilida-
des de sucesos complejos a partir de probabilidades ya conocidas o faciles

de obtener:

1) La probabilidad de cualquier suceso A siempre es un ntmero situado entre

0y 1 (ambos inclusive), es decir 0 < P(A) < 1.

Ejemplo: en los ejemplos anteriores, todas las probabilidades halladas eran va-

lores entre Oy 1.

2) La probabilidad del suceso imposible o conjunto vacio & es siempre O, es
decir, P(0) = 0. En otras palabras, cuando se hace un experimento aleatorio
siempre se obtiene algin resultado y, por tanto, la proporcion de “no-resulta-

dos” es 0.

Ejemplo: en los ejemplos anteriores, P(J) = 0.

3) La suma de las probabilidades de todos los posibles resultados del experi-
mento aleatorio siempre vale 1. En otras palabras, la probabilidad del suceso

seguro es siempre 1.

Ejemplo: En el ejemplo de la moneda, P(Q2) = 1 = P(C) + P(X); en el ejemplo
del dado, P(Q) =1 = P({1}) + P({2}) + P({3}) + P({4}) + P({5}) + P({6}).

4) La probabilidad de que un suceso no ocurra es 1 menos la probabilidad de

que si ocurra, es decir: P(no A) = 1 — P(A).

Ejemplo: en el ejemplo de la moneda, P(C) =0,5=1-Pno C) =1 - P(X); en
el ejemplo del dado, P(par) =0,5 =1 — P(no par) = 1 — P(impar); P(D) =1 - P(QY).

5) Si dos sucesos A y B no tienen resultados comunes (son disjuntos), la pro-
babilidad de que ocurra A U B es la suma de las probabilidades, es decir, si A y
B son disjuntos, P(A U B) = P(A) + P(B).
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Ejemplo: en el ejemplo de la moneda, P(C u X) = P(C) + P(X) = 1; en el ejemplo
del dado, P({1, 2}) = P({1}) + P({2}) =2/6 =1/3; P(Q U &) =P(Q) + P(@) =1+ 0= 1.

6) En general, para cualesquiera dos sucesos A y B se cumplird que P(A U B) =
P(A) + P(B) — P(A ~ B), donde “A n B” es el conjunto de posibles resultados que
satisfacen los sucesos A y B a la vez. Hay que tener en cuenta que cuando A 'y
B son disjuntos (no tienen resultados en comn), “A N B” = &y, por tanto,
P(A U B) =P(A) + P(B) - P(D) = P(A) + P(B) - 0 = P(A) + P(B), que es la expre-
sién vista en la propiedad anterior.

Ejemplo: en el ejemplo del dado, P(par U mayor2) = P(par) + P(mayor2) — P(par
N mayor2) =3/6 + 4/6 — 2/6 = 5/6 (observar que “par N mayor2” = {4, 6}).
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5. Distribuciones de probabilidad discretas

Al inicio de este mo6dulo se defini6 el concepto de variable cuantitativa discre-
ta como aquella variable cuantitativa que podia tomar un ntmero finito o
contable de valores distintos. Asi, un ejemplo de variable discreta seria X = “re-
sultado del lanzamiento de un dado”, ya que dicha variable s6lo puede tomar

seis posibles valores.

Cada uno de los posibles valores de una variable discreta tendra asociada una
Observad

probabilidad de ocurrencia (p. ej., en el caso del dado, la probabilidad de ob-
. . . L Fijaos que si se usara un dado
tener un 2 sera de 1/6), por lo que parece natural estudiar como se distribu- “trucado”, no todas las proba-
bilidades de ocurrencia serian
iguales y, por tanto, la funcién
de probabilidad tomaria valo-
res distintos para distintos va-

creta X su probabilidad de ocurrencia, P(x). Por ejemplo, en el caso de la va- lores posibles de la variable.

yen o comportan dichas probabilidades. En concreto, se puede definir una

“funcion de probabilidad”, f(x), que asocie a cada valor x de la variable dis-

riable anterior, asociada al experimento aleatorio “lanzamiento de un dado
normal”, la correspondiente funcién de probabilidad seria: f(1) = P(X =1) =
1/6,f(2) =P(X=2)=1/6,f(3)=P(X=3)=1/6, f(4) =P(X=4)=1/6, f(5) =P(X
=95)=1/6, f(6) =P(X =6) =1/6.

Dada una variable aleatoria discreta X, resulta util conocer la distribu-
cion de probabilidad de dicha variable, es decir, como se distribuyen
o comportan las probabilidades de ocurrencia de sus posibles valores. A
tal efecto se definen las siguientes funciones:

La funcién de probabilidad de X es aquella funcion f(x) que asigna a
cada posible valor x de X su probabilidad de ocurrencia, es decir: f(x) =
P(X = x) para todo valor posible x de X.

La funcion de distribucion de X es aquella funcion F(x) que asigna a
cada posible valor x de X su probabilidad acumulada de ocurrencia, es
decir F(x) = P( X < x) para todo valor posible x de X.

La tabla 3 muestra la funcion de probabilidad y la funcién de distribucién corres-
pondientes a la variable X anterior pero usando un dado “trucado” que tiene dos
valores 6 y ningtn valor 2. Por su parte, la figura 18 muestra ambas funciones su-
perpuestas en el mismo grafico. Observando detenidamente la tabla 3 y la figura

18 se pueden deducir las siguientes caracteristicas propias de estas funciones:

e Puesto que representan probabilidades, ambas funciones siempre toman

valores en el intervalo [0, 1].

e La suma de todos los valores que toma la funcién de probabilidad siempre

ha de ser 1 (ello se debe a las propiedades de la probabilidad).
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La funcién de distribucién siempre es una funcion creciente que pasa de valor
0 en su extremo izquierdo (F(0) = P(X <0) = 0) a valor 1 en su extremo derecho
(F(6) =P(X<6)=1).

Tabla 3. Funciones de probabilidad y distribucién para una variable discreta

Variable X Funcion de probabilidad Funcion de distribucion
f(x) = P(X = x) F(x) = P(X < x)
1 1/6 1/6
2 0 1/6
3 1/6 2/6
4 1/6 3/6
5 1/6 4/6
6 2/6 1
Total 1

Figura 18. Funciones de probabilidad y distribucién de una variable discreta

Funciones de probabilidad y distribucién

N o mo=rPx=x

g::: B F(x) = P(X < X)

0,71
0,6
0,5
0,4+

0,3

Valor de la funcion

Parametros descriptivos de una distribucion discreta

Mientras que los estadisticos descriptivos y los graficos o tablas de frecuen-
cias se utilizan para analizar el comportamiento (distribuciéon) de una
muestra de observaciones empiricas, las distribuciones de probabilidad son
modelos estadisticos que usan parametros y funciones de distribucién para
describir el comportamiento tedrico (distribucién teérica) de toda una po-
blacién. De forma anéloga a lo que ocurria con las muestras —que se carac-
terizan por estadisticos descriptivos como la media o la varianza muestral-,
las distribuciones de probabilidad asociadas a poblaciones también suelen
caracterizarse por parametros tales como la media o la varianza poblacio-
nal. Ahora bien, puesto que en general no se dispondré de observaciones
sobre toda la poblacién sino s6lo de una funcién de distribucién o de pro-

babilidades, la forma de calcular dichos parametros es algo distinta:
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¢ Media o valor esperado de una variable discreta: la media o valor espe-
rado de una variable discreta X que puede tomar los valores xq, x,, ..., se

representa con p o E[X] y se calcula de la siguiente forma:
n=E[X]=x P(X=x)+x, 'P(X=x2)+...=in f(x)

donde f{x) denota a la funcién de probabilidad de X.

Ejemplo: el caso de un dado equilibrado, el valor esperado o media de
X = “resultado del lanzamiento” seria p = 3; sin embargo, en el caso del

dado “trucado” que se muestra en la tabla 3, la media o valor esperado es:

=1 f()+2:F(2)+3-F(3) +4:F(4)+5 F(5)+6-(6) =

:1~l+2~0+3~l+4-l+5~1+6-2:4,167
6 6 6 6 6

e Varianza y desviacidn estandar de una variable discreta: la varianza de
una variable discreta X que puede tomar los valores x1, x,, ..., se representa

con o y se calcula de la siguiente forma:

2 2 2
o’ =(x,—p) P(X=x)+(x—-pn) -P(X :x2)+...:Z(xi —u) - f(x)
donde f{x) denota a la funcién de probabilidad de X. De forma analoga a
como ocurria con los estadisticos muestrales, la desviacion estandar de una

variable es la raiz cuadrada positiva de su varianza, es decir:

o=vo?

Ejemplo: en el caso del dado “trucado” que se muestra en la tabla 3, la va-

rianza es:

2 1 2

o’ =(1-4,167) -~ +(2-4,167) -0+(3—4,167)2%+

\S}

F(4-4,167) L+ (5-4,1677 -1 1 (6-4,167) -2 =3,139
6 6

o)

Y la correspondiente desviacion estandar: ¢ =./3,139 =1,772
La distribuciéon binomial

Una de las distribuciones discretas més usadas en la practica es la distribucién bi-

nomial. Esta distribucion se usa para contestar a preguntas como las siguientes:

¢ Sicada vez que un sistema informatico es atacado por un virus la probabi-
lidad de que el sistema no falle es de 0,76, jcudl es la probabilidad de que

no se haya producido ningtn fallo en el sistema tras cinco ataques?
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e Sicada vez que se consulta una fuente de informacion la probabilidad de que .
Distribucion de Poisson

y la uniforme discreta

ésta proporcione una respuesta satisfactoria es de 0,85, ;cual es la probabili-

dad de que se obtenga alguna respuesta satisfactoria tras tres consultas?

e Sitras la administracion de un fairmaco a un paciente en estado critico la pro-
babilidad de supervivencia de éste es de 0,99, ;cudl es la probabilidad de que
sobrevivan los catorce pacientes criticos que han recibido el tratamiento?

e Sila probabilidad de obtener una concesioén para un proyecto de investiga-
cién es de 0,20, ;cudl es la probabilidad de obtener al menos una concesién
tras tres intentos?

¢ Sicada vez que se trata de encuestar a un transetunte elegido al azar la pro-
babilidad de que responda es de 0,15, jcudl es la probabilidad de que se
consigan obtener ochenta respuestas o mas a partir de una muestra aleato-

ria de ciento cincuenta transetintes?

La distribucién binomial es un modelo estadistico que permite calcu-
lar probabilidades sobre la variable aleatoria X = “ntimero de éxitos con-
seguidos en n pruebas independientes”. Cada una de estas n pruebas es
una repeticion de un experimento aleatorio cuyo resultado es binario

“A

(éxito o fracaso), siendo p la probabilidad de “éxito” en cada prueba y

q =1 - p la probabilidad de “fracaso”.

Cabe observar que la variable X = “ntimero de éxitos en n pruebas indepen-
dientes” puede tomar cualquier valor k entre O y n (ambos inclusive). Se suele
usar la notacion X ~ B (n, p) para indicar que X se distribuye o se comporta
segin una distribuciéon binomial de pardmetros n (namero de pruebas o repe-

“A

ticiones) y p (probabilidad de “éxito” en cada prueba). En tales condiciones,
las probabilidades asociadas a dicha variable vienen dadas por la expresion

matematica siguiente:

. n n-k n n!
Para cualquier kentreOyn, P(X =k) = ko(1- , donde =
d ym P( ) (kjp (1=p) [kj kli(n-k)!

siendoO!=1l=1ynl=n-(n-1) ... 1 paratodon>1.

Se cumple, ademas, que la media (valor esperado) y la varianza de una distri-

bucién binomial son, respectivamente: p=n-p yc?=n-p- (1 -p).

Ejemplo: la probabilidad de que al introducir datos en un formulario web se
cometa un error es de 0,1. Si diez personas rellenan el formulario de forma
independiente, ;cudl es la probabilidad de que no haya mas de un formula-
rio erréneo?, ;jcudl es el valor esperado y la desviacién estandar de la variable

considerada?

Otras distribuciones discretas
muy habituales son la distribu-
cién de Poisson y la uniforme
discreta. Es posible encontrar
en Internet abundante docu-
mentacién sobre éstas y otras
distribuciones discretas asi
como sobre sus ambitos de
aplicacion.

Resultado “éxito”

No debe confundirse el resulta-
do “éxito” de un experimento
aleatorio con el hecho de que
el resultado sea deseable desde
un punto de vista social o sub-
jetivo. Asi, por ejemplo, se po-
dria considerar “éxito” del
experimento aleatorio el fallo
del sistema informético que su-
fre el ataque de un virus.

Observad

La expresion “nl” se lee como
“factorial de n” o “n factorial”.
Asi, por ejemplo, 4!=4-3.2.1
y6!=6-5-4-3.2-1.Sinem-
bargo, 1'=1y 0!l =1.
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Fijémonos en que, en este caso, X = “namero de formularios erréneos en diez
pruebas” y X ~ B (10, 0,1). Ademas, se pide P(X<1)=P(X=0uUX=1)=P(X=0)
+ P(X = 1) (puesto que son sucesos disjuntos). Ahora bien:

10 0 10 10!
P(X=0)=|  |0,1°-(0,9)'° = = (1)(0,3487) = 0,3487
(X=0) (0] (0.9) = 5o V¢ )

Pasos a seguir

10 10! Se sigue la ruta Calc > Probabi-
P(X = 1) = 0,1 .(() 9)9 =—2(0,1)(0,3874)=0,3874 lity Distributions > Binomial (1)

1 ’ ’ 1191™ ’ ’ y se completan los parametros
en la ventana correspondiente
(2). El resultado se muestra en

Por tantO, P(X < ].) = 0,3874 + 0,3487 = 0,7361 Finalmente, n= 10 - 0,1 =1 y (3) Observar que, sien |ugar
6=410-0,1-0,9 = 0,9487. de escoger la opcién Cumulati-

ve probability en (2) se hubiera
escogido la opcién Probability,
el programa hubiera calculado
En la préactica, los calculos probabilisticos anteriores se suelen automatizar con P(X =1) en lugar de P(X <= 1).
Finalmente, para una probabi-

la ayuda de algGn programa estadistico o de analisis de datos. La figura 19 lidad p dada, la opcion Inverse

muestra como se pueden calcular probabilidades de una binomial con ayuda cumulative probability devuelve
aquel valor cde la variable X tal
de Minitab. La figura 20, por su parte, muestra cobmo obtenerlas usando Excel. que P(X <= ) = p.

Figura 19. Célculo de probabilidades en una binomial con Minitab y Excel

Calc Stat Graph Editor Tools Normal...
i Calculatar. .. F...
ig Colurnn Stakistics. ., k..
=3 Row Statistics. .., Unifarm. .
=0 Standardize... 2
Binomial... 1
Make Patterned Data 4 Geometric. .. : . l ]
Binomial Distribution X
Make Mesh Data... Megative Bino
a1i Make Indicator Yariables. .. Hypergeomety " Probability
. % Curulative probability
Set Base. .. Discrete. ..
= ™ Inverse cumulative probability
Random Data » Integer...
Praobability Distributions Baisson. .. Mumber of trials: I 10
Event probability: 0,1

" Input column: I
Optional storage: I

¢ Input constant: |1
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La figura 20 se muestra la funcién de probabilidad asociada a la binomial del
ejemplo anterior. Se observa que, aunque en teoria los posibles valores de la
variable X irian desde O hasta 10 (namero de pruebas), en la practica los valo-
res mayores de 4 tienen probabilidad de suceso practicamente nula (por ejem-
plo, es muy poco frecuente que se obtengan valores superiores a 4). En efecto,
P(X >4) =1 - P(X <= 4) = {usando Minitab o Excel} =1 -0,9984 = 0,0016.

Figura 20. Funcién de probabilidad de una B (10, 0,1)

Funcién de probabilidad

Binominal, n=10, p=0,1

Probabilidad

Las probabilidades anteriores se pueden obtener también mediante el uso de
tablas estadisticas (sin necesidad de usar ningin software). Asi, siguiendo el
ejemplo anterior, la figura 21 muestra como calcular P(X = 1) usando la tabla
binomial. En este caso, X es una B(10, 0,1) y se quiere hallar P(X = k) siendo
k = 1. Para ello, se busca la seccion de la tabla correspondiente a n = 10, y la
interseccion entre la fila k = 1 y la columna p =0, 1.

Calculo de probabilidades

Resulta facil encontrar en In-
ternet abundantes documen-
tos que explican con todo
detalle el uso de tablas para
calcular probabilidades. En la
medida de lo posible, sin em-
bargo, conviene automatizar
los célculos mediante el uso
de software.
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Figura 21. Célculo de probabilidades binomiales mediante tablas
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6. Distribuciones de probabilidad continuas

Al inicio de este mo6dulo se defini6 el concepto de variable cuantitativa conti-
nua como aquella variable cuantitativa que podia tomar un ntimero infinito
(no contable) de valores distintos. Asi, un ejemplo de variable continua seria
X = “tiempo que se tarda en desarrollar un portal web”, ya que esta variable

puede tomar un valor real cualquiera entre O e infinito.

A diferencia de lo que ocurria con las variables discretas, cuando se trabaja con
variables continuas no es posible definir una funcién de probabilidad que
asigne probabilidades a los distintos valores de la variable: si X es una variable
continua, X puede tomar un namero infinito (no contable) de valores, por lo
que la probabilidad teérica de que la variable X tome un valor concreto x es
siempre 0, es decir: P(X = x) = 0 para cualquier valor x de X. Si es posible, sin
embargo, asignar probabilidades a intervalos de valores. Por ejemplo, si el 51%
de los portales web tardan en desarrollarse entre 240 y 258 horas, entonces
P(240 < X < 258) = 0,51. Para describir la distribucién de probabilidad de una
variable continua se sigue usando la funcién de distribucién (aunque con al-
gan matiz nuevo) y, ademas, se usa también la llamada “funcién de densidad”
en lugar de la funcion de probabilidad tipica de variables discretas:

La funcién de densidad de una variable continua X es una funcién f{x)
tal que la probabilidad de que X tome un valor en un intervalo (a, b) coin-
cide con el area “encerrada” por dicha funcion entre los extremos de dicho
intervalo (figura 22), es decir: P(a < X < b) = area bajo f(x) entre a y b.

La funcién de distribucidn de X es aquella funcién F(x) que asigna a
cada posible valor x de X su probabilidad acumulada de ocurrencia (fi-
gura 23), es decir, F(x) = P( X < x) = area bajo f(x) desde —o (menos infi-
nito) hasta x.

La figura 22 muestra la funcién de densidad de una variable con distribucién
simétrica y centrada en el valor 250 (puesto que la funcion es totalmente si-
meétrica la media y la mediana coinciden en este punto). Se observa también
el drea encerrada bajo funcion de densidad entre los valores a = 240 y b = 258.
Esta area corresponde con la probabilidad siguiente: P(240 < X < 258). Por su
parte, la figura 23 muestra la funcién de distribucion asociada a la misma va-
riable. Nuevamente se aprecia la simetria con respecto al valor central, asi
como el hecho de que la funcién de distribucién va creciendo conforme va
acumulando probabilidades, pasando del valor O en su extremo izquierdo al
valor 1 en su extremo derecho. A partir de esta gréafica se pueden estimar vi-
sualmente probabilidades acumuladas, por ejemplo: P(X <= 260) sera un valor
muy cercano a 0,8.

Nota

En variables continuas, puesto
que P(X = x) = 0 para cualquier
valor x de X, se cumplira que:
a) P(X<x)=P(X<x)
b) P(X > x) = P(X > x)

Nota

La funcién de densidad f(x)
siempre es positiva y “encie-
rra” un érea total de 1.

Atencion

Observar la equivalencia entre
los conceptos de “probabili-

dad” y “area”.
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Figura 22. Funcién de densidad de una variable continua y area encerrada

Funcién de densidad f(x) y area encerrada entre 240 y 258

0,030

- P(240 < X < 258)

&
0,025+
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Densidad

0,015+
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0,005 -

0,000

240 250 258
X

Figura 23. Funcién de distribucién de una variable continua

Funcion de distribuciéon

SRS Gl STE AR La funcién de distribucién es
una funcién acumulativa de
probabilidades y, por tanto, es
siempre creciente, pasando de
0 (extremo izquierdo) a 1 (ex-
tremo derecho).

Probabilidad

Parametros descriptivos de una distribucion continua

En el caso de distribuciones continuas, la forma de calcular los parametros es

Atencion
similar a la empleada para distribuciones discretas, si bien ahora los sumato-
. . . . .. L. L. Aunque en la practica se hara
rios se sustituyen por areas (integrales definidas en términos matematicos) en- uso de programas estadisticos
para hacer los célculos, es im-
tre dos extremos:

portante conocer qué concep-
tos se usan para definir cada

¢ Media o valor esperado de una variable continua: la media o valor espe- tipo de parametro.

rado de una variable continua X se representa por p o E[X] y se calcula de
la siguiente forma:

u = E[X] = area total bajo “x - f (x)" = _E:X “f(x)dx

donde f(x) denota a la funcion de densidad de X.
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e Varianzay desviacion estandar de una variable continua: la varianza
de una variable continua X se representa por o2 y se calcula de la si-
guiente forma:

2 _ 4 s 2. n_ ™ Y
c“ = area total bajo “(x - W* - f(x)” = L (x—p) - f(x)dx
donde f{x) denota a la funcion de densidad de X. Como siempre, la des-

viacioén estandar de una variable es la raiz cuadrada positiva de su va-

rianza, es decir:
o= GZ

La distribucién normal o gaussiana

La distribucién normal o gaussiana es la distribucién tedrica més importante.
Muchas variables continuas siguen una distribucién normal o aproximada-
mente normal. Otras variables continuas y discretas también pueden, en de-
terminadas circunstancias, ser aproximadas mediante una distribucién
normal. La normal, ademas, es una distribucién clave en la estadistica inferen-
cial ya que algunas de sus propiedades se utilizan para obtener informacién
sobre toda la poblacién a partir de informacién sobre una muestra.

La forma concreta de una distribucién normal viene caracterizada por dos pa-
rametros: la media, pu, que define donde se sittia el centro de la funcién de den-
sidad, y la desviacion estandar, o, que define la amplitud de la funcién de
densidad. Cuando una variable continua X sigue una distribucién normal, se
suele representar por X ~ N (i, o).

Las figuras 22 y 23 muestran, respectivamente, la funcién de densidad y la
funcién de distribucién de una normal con media p = 250 y desviacién estan-
dar ¢ = 13. La figura 24 muestra las funciones de densidad para dos distribu-
ciones de tipo normal con pardmetros {u = 5, 6 = 3} y {u = 10, o = 5}
respectivamente. Se observa que la funcién de densidad de la normal tiene for-
ma de “campana de Gauss”, elevada en el centro (el valor medio o esperado)
y con dos colas simétricas en los extremos. Es de destacar, ademés, como cada
una de las curvas esta centrada en su media, asi como el hecho de que la curva
es mas ancha cuanto mayor es la desviacion estandar.
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Figura 24. Funciones de densidad asociadas a sendas normales

Funcion de densidad
Normal

Media Desv. est.
—5 3

0,12 - —_—10 5

0,08

Densidad

0,06 -

0,04 -

0,02 -

0,00

Como en cualquier otra funcién de densidad, el area total encerrada bajo
la curva es de 1. En la practica eso significa que para cualquier valor x de X,
P(X > x) =1 - P(X < x), es decir, el area a la derecha de un valor es el area
total (que vale 1) menos el 4rea a su izquierda y viceversa (figura 25). Ade-
maés, puesto que la normal es una distribucién simétrica con respecto a su
media, el drea “encerrada” por una cola es igual al area “encerrada” por la
cola opuesta (figura 26).

Figura 25. El area total de una funcién de densidad es 1

Funcion de densidad
Normal, media = 250, desv. est. = 13
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Cualquier distribucién normal cumple ademas la llamada regla 68-95-99,7
segln la cual el intervalo (u - o, u + o) contiene aproximadamente el 68% de
las observaciones, el intervalo (u - 20, u + 26) contiene aproximadamente el
95% de las observaciones y el intervalo (u - 3o, 1 + 30) contiene aproximada-
mente el 99,7% de las observaciones. Asi, por ejemplo, si X ~ N (250,13) se
puede afirmar que un 68% de las observaciones de X estaran en el intervalo
(237, 263), un 95% de las observaciones estaran en el intervalo (224, 276) y
un 99,7% de las observaciones estaran en el intervalo (211, 289). Observad,
por tanto, que serd altamente improbable encontrar valores de X fuera de este
altimo intervalo.

Figura 26. Dos colas simétricas “encierran” la misma area

Funcion de densidad
Normal, media = 250, desv. est. =13

250
I
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De entre las infinitas distribuciones normales que se pueden considerar va-
riando los pardmetros u y o conviene citar la llamada normal estandar, que
tiene por parametros u = 0y o = 1. En otras palabras, una variable continua Z
se distribuird segiin una normal estandar, Z ~ N (0,1), si su funcién de densi-
dad es la de una normal centrada en el origen y con desviacién estandar uni-
taria. Esta distribucion normal estandar se suele usar bastante en estadistica
inferencial y también cuando se desean calcular probabilidades de una normal
cualquiera mediante el uso de tablas de probabilidades ya calculadas.

En efecto, dada una variable normal cualquiera, X ~ N (u, ©), es posible apli-
carle un proceso de estandarizacidn para obtener una normal estandar Z.
Esto se consigue restando a la variable X su media p (con lo que la funcion
de densidad se desplaza a lo largo del eje x hasta que queda centrada en el
origen) y dividiendo el resultado por su desviacién estandar ¢ (con lo que
la nueva variable tendra una desviacién estandar unitaria), es decir:
Z= Xow N(0,1). Este proceso de estandarizacion permite, entre otras co-
c
sas, calcular probabilidades para una normal cualquiera a partir de las ta-
blas de probabilidades precalculadas que existen para la distribucion
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normal estdndar, lo que evita el tener que resolver integrales cada vez que
se desea obtener una nueva probabilidad. Supongamos, por ejemplo, que
X sigue una N(1.500, 100) y se desea obtener P(X < 1.400) mediante el uso
de tablas. El primer paso consiste en estandarizar los valores:

P(X<1.4OO):P(X_X < 1'400‘Xj:p(z<w
(o)

s 100 ):P(R_l)

En otras palabras, se desea calcular el area a la izquierda del valor -1 en una
normal tipificada o estdindar. Normalmente, la tabla de la normal estandar, Z,
ofrece areas (probabilidades) a la izquierda de valores positivos, por lo que re-
sultard necesario hacer una pequefia transformacién teniendo en cuenta que:
(a) por simetria de la normal estdndar, el area (probabilidad) a la izquierda de
un valor negativo k es igual al area (probabilidad) a la derecha del correspon-
diente valor positivo, k| (p. €j., P(Z<-1)=P(Z > 1)), y (b) el rea (probabilidad)
total encerrada bajo la curva es 1 (p. ej., el 4rea a la izquierda de un valor més
el area a su derecha suma 1, por ejemplo: P(Z < 1) + P(Z > 1) = 1). Teniendo en
cuenta lo anterior, se deduce que P(Z<-1)=P(Z>1)=1-P(Z < 1) = {ver tabla
figura 27} =1-0,8413 = 0,1587.

Figura 27. Célculo de probabilidades en una normal mediante tablas

,00 ,01 ,02 ,03 ,04 ,05
0,5 0,6915| 0,6950 0,6985 0,7019 0,7054 0,7088
0,6 0,7257 0,7291 0,7324 0,7357 0,7389 0,7422
0,7 0,7580( 0,7611 0,7642 0,7673 0,7704 0,7734
0,8 0,7881( 0,7910 0,7939 0,7967 0,7995 0,8023
0,9 0,8159| 0,8186 0,8212 0,8238 0,8264 0,8289
1,0 0,8413| 0,8438 0,8461 0,8485 0,8508 0,8531
1,1 0,8643 | 0,8665 0,8686 0,8708 0,8729 0,8749
1,2 0,8849 | 0,8869 0,8883 0,8907 0,8925 0,8944
1,3 0,9032 | 0,9049 0,9066 (,9082 0,9099 0,9115
1,4 0,9192| 0,9207 0,9222 09236 0,9251 0,9265

Por otra parte, también es posible automatizar el calculo de probabilidades de
una normal cualquiera mediante el uso de programas estadisticos, con lo que
se elimina asi la necesidad de resolver manualmente las integrales indefinidas
o de tener que usar tablas de probabilidades precalculadas. La figura 28 mues-
tra como obtener probabilidades de una normal con Minitab. En concreto,
para una normal con media p = 1.500 y desviacion estandar o = 100, se obtiene
que P(X < 1.400) = 0,158655. Asimismo, la figura 28 muestra como se han ob-
tenido con Minitab y Excel algunas probabilidades para la misma variable. Es
preciso observar que P(X < 1.500) = 0,5, lo cual es logico puesto que 1.500 es

la media y, a la vez, la mediana de la distribucién normal.

Nota

Notar que para hallar P(Z <
1,00) usando la tabla se ha de
buscar el valor interseccién en-
trelafila1,0y la columna 0,00
(dado que 1,00 = 1,0 + 0,00).
Si se pidiese P(Z < 1,24), en-
tonces habria que buscar la in-
terseccién entre la fila 1,2 y la
columna 0,04 (dado que 1,24
=1,2+0,04), con lo que se ob-
tendria el valor 0,8925.
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Figura 28. Célculo de probabilidades en una normal con Minitab y Excel
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Ejemplos de aplicacion de una normal

Segin un estudio realizado por el Ministerio de Educacion, el namero de
horas anuales que dedican los nifios espafioles a ver la television es una va-
riable aleatoria que sigue una distribucion normal de media 1.500 horas y
desviaciéon estandar de 100 horas. ;Qué porcentaje de nifios dedican entre
1.400 y 1.600 horas anuales?

En este caso, X ~ N (1.500,100) y se pide P(1.400 < X < 1.600). Por la regla
68-95-99,7, se tiene que la probabilidad anterior sera, aproximadamente, del
68% (yaque p—o=1.400y p + o =1.600). Para calcular de forma mas exacta
dicha probabilidad, conviene notar que P(1.400 < X < 1.600) = P(X < 1.600)
— P(X < 1.400), es decir: el area entre 1.400 y 1.600 coincide con el area a la
izquierda de 1.600 menos el area a la izquierda de 1.400. Las probabilidades
anteriores se pueden calcular usando cualquier programa estadistico (p. €j.:
Minitab o Excel), y resultan: P(X < 1.600) = 0,8413 y P(X < 1.400) = 0,1587,
por lo que la probabilidad buscada es de 0,6827, es decir, un 68,27% de los

nifios dedican entre 1.400 y 1.600 horas anuales a ver la television.

Pasos a seguir

Se sigue la ruta Calc > Probabi-
lity Distributions > Normal (1) y
se completan los parametros en
la ventana correspondiente (2).
El resultado se muestra en (3).
Observar que, si en lugar de es-
coger la opcién Cumulative pro-
bability en (2) se hubiera
escogido la opcién Probability
density, el programa hubiera
calculado el valor de la funcién
de densidad en x = 1.400 en lu-
gar de P(X < 1.400). Finalmen-
te, para una probabilidad p
dada, la opcién Inverse cumula-
tive probability devuelve aquel
valor ¢ de la variable X tal que
P(X <) =p.
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¢ En base a los datos del Instituto Nacional de Estadistica (INE), el sueldo me-
dio anual de un trabajador es de 26.362 euros. Suponiendo que dichos suel-
dos sigan una distribucién normal con una desviaciéon estdndar de 6.500

euros, ;cudl sera el porcentaje de trabajadores que superen los 40.000 euros?

En este caso, X ~ N (26.362,6.500) y se pide P(X > 40.000). Observar que,
puesto que el drea total bajo la curva normal es 1, P(X > 40.000) =1 - P(X
< 40.000) = {Minitab o Excel} =1 -0,9821 = 0,0179, es decir, s6lo un 1,8%
de los trabajadores superarian la cifra de los 40.000 euros anuales.

¢ El tiempo que se emplea en rellenar un cuestionario en linea sigue una dis-
tribucion aproximadamente normal con una media de 3,7 minutos y una
desviacion estandar de 1,4 minutos. ;Cudl es la probabilidad de que se tar-
de menos de 2 minutos en responder a dicho cuestionario? ;Y de que se
tarde mas de 6 minutos? Hallad el valor ¢ tal que P(X < ¢) = 0,75 (percentil
75 de la variable).

En este caso, X ~ N (3,7, 1,4). En primer lugar, P(X < 2) = {Minitab o Excel}
=0,1131, es decir: un 11,31% de los individuos que respondan el cuestio-
nario emplearan menos de 2 minutos en hacerlo. Por otra parte, P(X > 6) =
1 - P(X < 6) = {Minitab o Excel} = 0,0505, es decir, un 5% de los individuos
tardardn mas de 6 minutos en responder el cuestionario. Finalmente, para
hallar el valor ¢ tal que P(X < ¢) = 0,75 se debe usar la opcion Inverse cumu-
lative probability de Minitab (o su equivalente en Excel), con lo que se ob-
tiene un valor aproximado de 4,64 minutos, es decir el 75% de los
individuos tardan menos de 4,64 minutos en completar el cuestionario (o,

dicho de otro modo, el 25% tardan mas de 4,64 minutos en hacerlo).
Las distribuciones t-Student y F-Snedecor

Ademaés de la normal, hay muchas otras distribuciones de probabilidad conti-
nuas que se suelen usar en estadistica inferencial. Una de ellas es la llamada
distribucién t-Student, y otra es la llamada F-Snedecor. Ambas se presentan a

continuacion:

La distribucién t-Student es una distribucion simétrica y centrada en el origen
(es decir, su media y su mediana son 0). Esta distribucién se caracteriza por un
parametro llamado grados de libertad o df (degrees of freedom), siendo df > 2.
En la practica, df =n — 1, donde n es el tamafio de la muestra que se esté ana-
lizando. La figura 29 muestra diversas funciones de densidad de las ¢-Student,
cada una de ellas asociadas a un valor concreto del parametro df. Se observa
como la t-Student se asemeja cada vez mas a una normal estindar conforme

se va incrementando el pardmetro grados de libertad.

Grados de libertad

En estadistica, el concepto de grados de libertad asociados a un conjunto de datos se puede
interpretar como el nimero minimo de valores que se necesitaria conocer para determinar
dichos datos. Asi, por ejemplo, en el caso de un muestra aleatoria de tamario N, habria N gra-
dos de libertad (no se puede determinar el valor de ninguno de los datos incluso aunque se
conociese el valor de los N — 1 restantes). Sin embargo, un conjunto de N datos de los cuales
se conozcan N — 1, la media muestral tendria N — 1 grados de libertad (fijados los valores de
los N -1 datos y de la media, quedaria ya fijado el valor desconocido restante). Asi, si tenemos
un conjunto de 3 observaciones de la variable X, x; =2, x, =-2 y x3 = a (desconocido), y sa-
bemos que la media de los tres valores es 0, necesariamente a = 0.
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Figura 29. Funciones de densidad de t-Student segln df

Funciones de densidad para t-Student (3), t-Student (10) y N(0,1)

0,4 - Variable
—ff = 3
— df=10
Normal (0,1)
0,3 1
S
= 02+
>
0,1 4
0,04
1 1 I I I
-5,0 -2,5 0,0 2,5 5,0
X

Por su parte, la distribucién F-Snedecor es otra distribucién continua. La
F-Snedecor siempre toma valores no negativos (es decir, una variable que siga
dicha distribucion s6lo puede tomar valores iguales o mayores a 0, nunca va-
lores negativos). Ademas, esta distribucién no es simétrica, sino que esta ses-
gada a la derecha (figura 30). Asi como la normal venia caracterizada por dos
parametros, p (media) y o (desviacion estandar), la F-Snedecor también se ca-
racteriza por dos pardmetros: los grados de libertad del numerador, df1 y los
grados de libertad del denominador, df2. Al igual que ocurria con la t-Stu-
dent, para cada valor de estos parametros se obtiene una funcién de densidad

distinta y, por tanto, una distribucion F-Snedecor distinta.

Figura 30. Funciones de densidad de t-Student segin df1 y df2

Funciones de densidad para varias F-Snedecor

F
1,2 -
dfl  df2
A0 —_— 5 50
s 20) 8
0,8 20 50
°
[}
2
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U
(=]
0,4
0,2 -
0,0 T T T 1
0 1 2 3 4 5 6



CC-BY-SA » PID_00161058 44

Estadistica descriptiva univariante

Para calcular probabilidades asociadas a una t-Student o a una F-Snedecor,
pueden usarse programas estadisticos o de andlisis de datos (Minitab, Excel,
etc.) de forma analoga a como se hacia en el caso de la normal. Asi, por ejem-
plo, si X es una variable aleatoria que sigue una distribucién ¢t-Student con diez
grados de libertad, P(-1,74 < X < 1,74) = P(X < 1,74) - P(X < -1,74) = {Minitab
o Excel} = 0,9438 - 0,0562 = 0,8876 (figura 31).

Figura 31. Probabilidades en una t-Student

P(-1,74) < X < 1,74)
T, df=10

0,888

Densidad

1,74 0 1,74

Finalmente, si X es una variable aleatoria que sigue una distribucién F-Snede-
cor con nueve grados de libertad en el numerador y siete grados de libertad en
el denominador, entonces P(X > 2,5) =1 - P(X < 2,5) = {Minitab o Excel} =1 -
0,8797 = 0,1203 (figura 32).

Figura 32. Probabilidades en una F-Snedecor

P(X > 2,5)
Fdf1=9,df2=7

0,7 4

0,6 -

0,5 -

0,4

Densidad

0,3 -

0,2 -

0,1 -

0,0

Nota

Notar que P(-1,74 < X< 1,74)
viene representada por el area
marcada en la figura 31

(esto es, el area comprendida
entre los valores 1,74y 1,74).
Para calcular dicha area, se cal-
cula P(X <1,74) (p. €j., el area
alaizquierda del 1,74) y

al valor obtenido se le resta
P(X <=1,74) (p. €j., el area

a la izquierda del -1,74). Para
calcular P(X < 1,74) con Mini-
tab se usa el mend Calc >
Probability Distributions > t...,
especificando los grados de li-
bertad (10 en este ejemplo)

y el valor de la constante (1,74
en este caso). Andlogamente
se obtendria el valor de

P(X <-1,74).

Nota

De forma analoga a como
ocurria en el caso de las distri-
buciones binomial y normal,
también existen tablas que
permiten calcular, sin necesi-
dad de utilizar software

como Minitab o Excel, las pro-
babilidades asociadas a una
distribucién t-Student o
F-Snedecor (ver, p. €j.,
http://www.statsoft.com/
textbook/distribution-tables).
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Resumen

En este mo6dulo se han presentado las técnicas bésicas de la estadistica descrip-
tiva univariante: representacion grafica de datos discretos y continuos, orga-
nizacion de los datos mediante tablas de frecuencias y uso de estadisticos
descriptivos para resumir datos. Conviene recordar que el tipo de grafico, tabla
o estadistico a usar dependera siempre del tipo de variable considerada (cate-
gobrica, cuantitativa discreta o cuantitativa continua), asi como del tipo de in-
formacién que se desee obtener.

Ademas, se ha explicado también el concepto de probabilidad de un suceso,
que desempefia una funcion relevante en el analisis y predicciéon del compor-

tamiento de las variables aleatorias asociadas a fendmenos cotidianos.

Finalmente, se han presentado algunos de los principales modelos matematicos
que se usan para describir, de forma tedrica, el comportamiento de variables
aleatorias: la distribucién binomial, la normal, la t-Student y la F-Snedecor son
algunos ejemplos de dichos modelos. El cilculo de probabilidades asociadas a va-
riables que se comportan segin alguno de estos modelos permite entender mejor
su comportamiento y realizar estimaciones sobre la poblacién de individuos de la

que provienen los datos.
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Ejercicios de autoevaluacion

1) La tabla siguiente resume las respuestas ofrecidas por doscientos usuarios de un portal web
a la pregunta “el nivel de usabilidad del portal es adecuado”:

Respuesta Frecuencia
Totalmente de acuerdo 50
De acuerdo 75
Ligeramente de acuerdo 25
Ligeramente en desacuerdo 15
En desacuerdo 15
Totalmente en desacuerdo 20

Se pide que hagdis lo siguiente:

a) Construir un diagrama de barras que permita visualizar las respuestas obtenidas.

b) Calcular la frecuencia relativa de aparicién de cada respuesta y construir un diagrama cir-
cular para ilustrar dichos valores.

2) La tabla siguiente contiene cuarenta observaciones para el tiempo transcurrido (en horas)
entre el envio de un mensaje a un foro en linea y su correspondiente respuesta.

4,0 3,5 3,1 6,0 5,6 3,1 2,9 3,8
4,3 3,8 4,5 3,5 4,5 6,1 2,8 5,0
5,4 3,8 6,8 4,9 3,6 3,6 3,8 3,7
4,1 2,0 3,7 5,7 7,8 4,6 4,8 2,8
5,0 5,2 4,0 5,4 4,6 3,8 4,0 2,9

A partir de estos datos, debéis hacer lo siguiente:

a) Construir un diagrama de tallos y hojas. Usad 1,0 como unidad de incremento.

b) Construir un histograma.

c) ;/Se observa en los datos algin patrén claro? ;Cudl es la moda de la distribucién de los da-
tos?

3) La tabla siguiente muestra veinte observaciones de la variable aleatoria “ntimero de co-
rreos electronicos recibidos en un dia”.

3,9 3,4 5,1 2,7 4,4
7,0 5,6 2,6 4,8 5,6
7,0 4,8 5,0 6,8 4,8
3,7 58 3,6 4,0 5,6

Se pide que hagéis lo siguiente:

a) Hallar los estadisticos descriptivos de esta muestra. ;Cudnto vale el rango intercuartilico?
(Entre qué dos valores estdn comprendidos el 50% de los datos centrales de la muestra?

b) Construir un diagrama de cajas y bigotes (boxplot). ;Hay algin valor anémalo (outlier) en-
tre las observaciones?

4) Cuando se efecttia un control antidopaje a un atleta que no ha tomado sustancia alguna,
la probabilidad de que el test dé un falso positivo es de 0,006. Si durante una competicién se
efectta el test a un total de 1.000 atletas que estan libres de sustancias, ;cual serd el namero
esperado (promedio) de falsos positivos?, ;cudl es la probabilidad de que el namero de falsos
positivos sea superior a quince?, jqué cabria pensar si aparecen més de quince positivos?

5) De acuerdo con el Instituto Nacional de Estadistica, el 9,96% de los adultos residentes en
Espafia son extranjeros. Con el fin de realizar una encuesta, se pretende contactar con una
muestra aleatoria de mil doscientos adultos residentes en Espafia. ;Cual sera el nimero espe-
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rado (promedio) de extranjeros que contendrd dicha muestra?, jcudl es la probabilidad de
que la muestra contenga menos de cien extranjeros?

6) El tiempo de duracion de un embarazo es una variable aleatoria que se distribuye de forma
aproximadamente normal con una media de doscientos sesenta y seis dias y una desviacién
estandar de dieciséis dias. ;Qué porcentaje de embarazos duran menos de doscientos cuaren-
ta dias (unos ocho meses)?, ;qué porcentaje de embarazos duran entre doscientos cuarenta
y doscientos setenta dias (entre unos ocho y nueve meses)?, ;a partir de cuantos dias se sitdan
el 20% de los embarazos més largos?
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Solucionario

1

a)

Totalmente de acuerdo 50 25,0%
De acuerdo 75 37,5%
Ligeramente de acuerdo 25 12,5%
Ligeramente en desacuerdo 15 7,5%
En desacuerdo 15 7,5%
Totalmente en desacuerdo 20 10,0%
Totales 200 100%
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2)

a)

Stem-and-Leaf Display: precios

Stem-and-leaf of precioz N = 40
Leaf Tnit = 0.10

a & 03ges
13 3 1155667788888
(1l) 4 000135566859
11 3 00244457
4 g 013
1 708
b)
Histograma de precios
9 4
8 -
7
6 -
S 5
s
-1
2 41
2
L 3_
2 -
1 A
0 T T T T T T 1
2 2} 4 5 6 7 8

Precios

c) Aunque no parece haber ningin patrén claro en los datos, si se aprecia —tanto en el histo-
grama como en el grafico de tallos y hojas— una cierta forma de campana, con la parte central
maés elevada y unos extremos o colas mas bajas. La moda de este conjunto de datos es 3,8 ya
que, como se aprecia en el diagrama de tallos y hojas, es el valor que més aparece.

3)

a)

Descriptive Statistics: N_e-mails

Variahle N N* Mean S3E Mean StDev HMinimum Ol HMedian
N _e-mails Z0 0 4.310 0.291 1.302 Z2.600 3.750 4. 500

Variahle Maximum
N _e-mails 7.000

3
S.600

El rango intercuartilico es Q3 - Q1 = 5,60 - 3,75 = 1,85. Entre Q1 = 3,75 y Q3 = 5,60 estan
comprendidos el 50% de los datos centrales.
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b)

Boxplot of N_correos electrénicos

N_correos electrénicos

No se observa, en este caso, ningtn valor anémalo (outlier), ya que el grafico no muestra nin-
gan simbolo “*”.

4) En este caso, puesto que el resultado de cada test puede ser “positivo” (con probabilidad 0,006)
0 “no positivo” (con probabilidad 1 — 0,006 = 0,994), la variable aleatoria X = “namero de falsos
positivos en 1.000 pruebas a atletas limpios” sigue una distribuciéon binomial de pardme-
tros n = 1.000 y p = 0,006. En el caso de la binomial, la media o valor esperadoesu=n-p =6, es
decir, cabe esperar que al aplicar el test a 1.000 atletas “limpios” haya seis falsos positivos.

Por otra parte, P(X > 15) = 1 — P(X <= 15) = {Minitab o Excel} = 1 - 0,9995 = 0,0005. Por tanto, si
aparecen mas de quince positivos cabria pensar que muy probablemente no todos ellos sean fal-
SOS.

5) En este caso, la variable aleatoria X = “ntimero de extranjeros en la muestra” sigue una
distribucién binomial de pardmetros n = 1.200 y p = 0,0996. Por tanto, el valor esperado de
extranjeros en la muestraes p=n-p = 119,52, es decir el promedio de extranjeros para las
muestras de esas caracteristicas es de, aproximadamente, 120.

Por otro lado, P(X < 100) = P(X <= 99) = {Minitab o Excel} = 0,0245, es decir, es muy poco
probable que una muestra contenga menos de 100 extranjeros si ésta es realmente aleatoria.

6) Se considera la variable aleatoria X = “dias que dura un embarazo”. Cabe tener en cuenta
que X ~ N (266,16).

P(X < 240) = {Minitab o Excel} = 0,0521, es decir, el 5,2% de los embarazos duran menos de
ocho meses.

P(240 < X < 270) = P(X < 270) - P(X < 240) = {Minitab o Excel} = 0,5987 - 0,0521 = 0,5466,
es decir, el 55% de los embarazos duran entre ocho y nueve meses.

Finalmente, se pide el valor c tal que P(X > ¢) = 0,20, es decir: P(X <¢c)=1-P(X >¢) =0,80 >
¢ = {Minitab o Excel} = 279,47, es decir, el 20% de los embarazos supera los doscientos setenta
y nueve dias.
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Introduccion

El objetivo de la inferencia estadistica es obtener informacioén acerca de una
poblacién, partiendo de la informacién que contiene la muestra. La seleccion
de la muestra debe garantizar su representatividad, lo que se consigue eligién-
dola al azar mediante diferentes procedimientos de muestreo que se estudian
en el modulo 5.

Una vez seleccionada una muestra, se dispone de un conjunto de valores, en
cuyo caso los métodos descriptivos estudiados en el modulo 1 facilitan el analisis
de estos valores muestrales. El problema que ahora se aborda es la extension
de estos resultados al conjunto de la poblacion o, en otras palabras, dar res-
puesta al siguiente interrogante: Dada cierta informacién muestral ;qué pode-
mos afirmar de la poblacién?

La solucion de este problema sera el objetivo de la inferencia estadistica.

Hasta ahora se habia supuesto que los valores de los parametros de las distri-
buciones de probabilidad eran conocidos. Pero esto casi nunca ocurre, de ma-
nera que tenemos que usar los datos muestrales para estimarlos. Los

estimadores proveen valores a esos parametros.

Cuando las inferencias que se realizan se refieren a caracteristicas poblaciona-
les concretas, es necesaria una etapa de disefio de estimadores. En este m6dulo
se presentan los conceptos basicos para la estimacion de la proporcion, de la

media y de la varianza de la poblacion respectivamente.

Un enfoque alternativo es indicar un rango de valores, entre los cuales tiene
que estar el pardmetro con una determinada precisién: esta es la idea de un
intervalo de confianza.

A continuacién se plantea en este modulo el problema del contraste de hi-
potesis, desarrollando métodos que permiten contrastar la validez de una
conjetura o de una afirmacién utilizando datos muestrales. El proceso co-
mienza cuando un investigador formula una hipoétesis sobre la naturaleza de
una poblacién. La formulacion de esta hipotesis implica claramente la elec-
cién entre dos opciones; a continuacién, el investigador selecciona una op-
cién basandose en los resultados de un estadistico calculado a partir de una
muestra aleatoria de datos.
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Objetivos

Los objetivos académicos del presente modulo se describen a continuacién:

1. Explorar las distribuciones de la media, de la proporcién y de la varianza mues-
tral.

2. Aplicar el Teorema central del limite.
3. Crear intervalos de confianza.
4. Usar la distribucion t en una prueba de hipoétesis.

5. Utilizar la distribucion chi-cuadrado ( Xz) en una prueba de hipotesis.
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1. Distribuciones muestrales y Teorema central
del limite

Una muestra aleatoria permite hacer inferencia sobre ciertas caracteristicas de la
distribucion de la poblacién. Esta inferencia estara basada en algtn estadistico,
es decir, alguna funcién particular de la informaciéon muestral. La distribucion
muestral de este estadistico es la distribucion de probabilidades de los valores
que puede tomar el estadistico a lo largo de todas las posibles muestras con el

mismo namero de observaciones, que pueden ser extraidas de la poblacion.

Por ejemplo, en la distribucion normal, los dos parametros son la media de la
poblacién py la desviacidon estandar poblacional c. Se puede estimar el valor p
calculando el promedio muestral o media muestral, x, y el valor de c median-
te el célculo de la desviacion tipica muestral, s. En este caso la media muestral,
X y la desviacion tipica muestral, s, son los estadisticos. En el caso de la distri-
bucién binomial, los pardmetros son n y p. Para estimar el parametro propor-
cién poblacional, p, se utiliza el estadistico proporcién muestral, f)

El estudio de las distribuciones muestrales se puede ilustrar mediante la crea-
cién con Minitab de 100 muestras de datos aleatorios normales con media 80
y desviacion tipica 5, con 9 observaciones de cada muestra (figura 1). A partir
de datos aleatorios se crea una columna de datos que contenga el promedio de
cada muestra o media muestral.

Figura 1. Pasos a seguir para estudiar una distribucién muestral

Minitab - Untitled 5ample Fram Calumns. ., Pasos a seguir

File Edit Data| Calc Stat Graph Editor  Tools

é = | =) | ¥ i Calculator,..

I gg Column Statistics. ..

Chi-Sguare. ..

Se sigue la ruta Calc > Random
Data > Normal: (1). Se rellenan
s los campos en la ventana co-

- Row Statistics. .. .
s it E.. rrespondiente: (2).
i’ Session £19 Standardize. .. -

Make Patterned Data » Unifarm, ..
Make Mesh Data. ..

Multivariake Mormal. ..

2
Bernmoulli. .

Welcome to Mi: 808 Make Indicator Variables.., Biromil. ..

Set Base Geametric. ..

Negative Binomial. ..

Probability Distributions 4 Hypergeometric...
Discrete... «—1
Matrices 3
Integer...
Boissan.... Normal Distribution [Xl
Beta... Mumber of rows of datato generate: | oo
MR o Store in columnngs):
Exponential. .. c1-co
GAMma. .,
Laplace. .. «— 2
1 Largest Extreme Value, ..
2 Logiskic. ..
i Loglogistic. . . Mean: (g0
L Lognormal... Standard deviation: 5
L Smallest Extreme Yalue, .. Select |
6 :
T Triangular. .. TR ,TI T
5 weibull, ..
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Se ha generado asi una matriz de nueve columnas y cien filas (figura 2). Cada

componente de esta matriz es una observacion aleatoria proveniente de

una distribucién normal de media 80 y desviacion estandar 5.

Figura 2. Resultado de una matriz

= Minitab - Untitled - [Worksheet 1, **]

@ File Edit Data Calc Stat Graph Editor Tools  Window Help

SH & % i 07 ABEE O 3 E g | Gl
| [ | =l %
+ C1 2 c3 C4 ] C6 c7 c8 c9 c10
1 | 8621 18 73 8202 833841 B85 2706| 843577 733733 792915 797839 859532
2 | 779605 77OF49| 798217 TEA465 802022 FTEI4 TBIETE 7H.2VET) 81,7320
3 | 794466 81,7029 79BSS1 B4 8797 772991 833234 894473 V45262 884057
4 | 752041 798637 794250 FBB203 77 B463| 748025 919961 81,1118 78,1692
5 | B03288) 806675 9160815 77 6024 717536 8945731 956013 78,1734 7846703
6 | 728596 752371 8952919 B9 2655 B3 4426 B9 4642 826151 749094 835735
7 | 83,4955 790853 805709 742571 BOG703| 534584 782343 76,5349 84,1050
8 | 777052 TS0 747272 0242250 844440 7343850 THE91Y B3 6371 81,2470
9 | 834490 81,1309 76095926 855929 B42463| 782026 §7 5054 | 837920 B5B216
10 | 81,0768 856596 540062 635531 VOB466 7BE77G 5829853 708620 7938056
11 | 73,5304 772005 633529 91.9047| 760708 735186 §4.3317 758071 74 4023
91 | 657335 7359428| 96,7601 8571700 835731 8941641 791928 796062 §1.4380
92 | VB0597 | 830876 7758049 7173920 839294 D02161| VB 4043 Y45141) 78,1746
93 | 85,8218 835000 7058513 824729 850008 754355 773336 796959 7955596
94 | 747113 B35013| 798273 7648099 YO7165| 96,8965 703262 B©1,5301 82,6092
95 | 84,2597 703432 821207 819862 BO0O716| 791272 832123 80,0331 749672
96 | 795742 784663 805376 755732 B39279 B0O55YY| 812435 80,2280 VIBZ79
97 | 81,5282 81,0184 | 773914 77764 732830 V65476 OF 2r48 B66303 55,1380
98 | 51,8135 827231 81,0083 841466 732423 B10257 781474 843158 745273
99 | V37441 T9BB40| 742215 855686 759545 B1E7E7| 77 BA95| 77,1299 85,1886
100 | 77,0603 804039 73,1897 737991 7273458 75,8393 749260 692976 7746513

Se considera que cada una de las filas obtenidas es una muestra, y se calcula la

media asociada a cada una de estas cien muestras (figura 3):

Figura 3. Pasos a seguir para calcular las medias

Row Statistics

Select |
Help |

Skakiskic

{~ Sum {~ Median

* Mean " Sum of squares
{~ Standard deviation = M kotal

£ Minirnum = M nonmissing
" Maxirmum M missing

= Range

Inpuk variables:

X

C1-C9

Skore resultin: | 011

(0] I Cancel

Pasos a seguir

Una vez generados los datos se
sigue la ruta Calc > Row Statis-
tics y se rellenan los campos en
la ventana correspondiente:

A3).
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En la columna C11 de la figura 4 hay cien nuevos valores (las medias). En la

figura 5 se muestran los dotplot asociados a las columnas C1 (que representan cien

valores aleatorios obtenidos de una normal 80-5) y C11:

Figura 4. Resultado del analisis

i 1 c2 c3 Cc4 C3
g6,2119
77 9609
79 4466
75,2041
80,3295
72 Ba96
g3 4955
777092
g3 4490
g1 0765
78 5354

70,0951

7983202
77 3749
81,7029
79 8637
80 BE7T5
75,2371
79,0583
76,8970
91,1309
g atate o
77 2005
78,7096

83,3841
e 97
79 6951
79 4250
81,6815
85,2919
50,5709
747272
78,9926
84,0082
83,3529
77,3602

85,2706
76 5400
B4 85797
76,5203
77 6024
B9 2655
74,2571
82 4228
85,5929
B3,5531
91,9047
82 55639

84,3977
80,2022
77,2981
77 5463
71,7586
853 4426
80,5703
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Figura 5. Pasos a seguir para crear el grafico de puntos de los dotplot

]
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oee |__#e9 ooe
LN N -] '\(22 .== YEDD..
Help QK Cancel

La salida de Minitab de la figura 6 muestra que
la distribucién de la variable aleatoria inicial X
(columna C1) era normal y, segin el grafico
de puntos, parece que también la distribucion
de la v.a. X-barra (x) es normal, de media
muy similar y desviacion estdndar menor (los
puntos de la x estdn menos “dispersos” que
los de la x).

También podemos hacer un histograma de fre-
cuencias de la distribucién de las medias mues-
trales (x), como se aprecia en la figura 7.

c8

79,7538
78 27a7
74 5262
81,1118
78,1734
74 9094
76,5345
83 6371
83,7920
70 5620
758071
85 7643

co c10 Cc11 Cc12
x-barra
85 0532 81,9429
81,7320 7T Far2
a5 4057 79,8583
78,1692 79,4488
78,8703 799175
835735 79 B0ES
84,1050 80,1016
a1 2270 799103
B5 0216 80,7571
79,8056 77,8031
74 4023 79,5042
75 4986 78,7350

Pasos a seguir

Se sigue la ruta Graph > Dotplot
y se rellenan los campos en la
ventana correspondiente: (4).

Figura 6. Grafico de puntos de valores de los dotplot

3k Dotplot of C1; x-barra

Dotplot of C1; x-barra

(B(=1[Ed)

c1l e e

y-barra

70,0

87,5 91,0
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Figura 7. Histograma de frecuencias absolutas de valores de x a partir de nueve muestras
aleatorias simples, cada una de tamafo cien

Histogram of x-barra
Mormal

18 4
— Mean 79,96
16 - StDev 1,582
N 100

14

N —/ ﬂl\_

Frequency
[+-]
L
N\
/

75,0 76,5 78,0 79,5 81,0 82,5

x-barra

Finalmente, en la figura 8 se obtienen los estadisticos que describen la distri-
bucion de las medias muestrales.

Figura 8. Resultado del andlisis de X-barra
Pasos a seguir

Descriptive Statistics: x-barra

Se sigue la ruta Stat > Basic
Variable N ur Meann SE Mean StDev Minimum ol Statistics > Display Descriptive
Median s Statistics y se selecciona la va-
x-barra 100 0 79,962 0,158 1,582 75,192 78,514 riable CT7 (x-barra) en la ven-
80,146 &l,000 tana correspondiente.

Variable Maximum
x-barra §3,154

La media de los cien valores contenidos de la columna C11 (y que es una
aproximacion a la media de la v.a. X-barra) es de 79,962, valor muy similar a
la media de X (que era de 80). Esto es coherente con lo que la teoria nos indica:

¢ La media muestral coincide con la media de la poblacién, pg = p.

La desviacion estandar de los cien valores de la columna C11 (que serd una
aproximacion a la desviacion estandar de X-barra) es de 1,582. Si tomamos la
desviacion estandar de X (que era de 5) y la dividimos por 3 (raiz de 9, el ta-
mafio de la muestra), obtenemos el valor 1,667.

e Ambos valores son muy parecidos, tal y como la teoria predice:

%=

Es interesante sefialar que si no se hubiera tomado inicialmente una variable
normalmente distribuida, las conclusiones obtenidas serian semejantes siem-
pre que el tamafio muestral n fuera lo suficientemente grande tal y como pre-
dice el Teorema central del limite.
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Teorema central del limite

El anélisis anterior se aplica so0lo a la distribucién normal. ;Qué ocurre si nues-
tros datos provienen de otra distribucion de probabilidad? ;Podemos decir
algo acerca de la distribucion muestral de la media en ese caso? Para ello se uti-
liza el Teorema central del limite, el cual expresa que si tenemos una muestra
tomada de una distribucion de probabilidad con media pn y desviacion tipica
de o, la distribuciéon muestral de X es aproximadamente normal con media p
y desviacion tipica de, c;/ Jn que es el error estandar. Lo notable acerca del
teorema central del limite es que la distribucién de la media muestral de X es
mas o menos normal, sea cual sea la distribucion original de probabilidad. A
medida que aumenta el tamafio de la muestra, la aproximacion a la distribu-

cién normal se acerca cada vez mas.

Una consecuencia de este teorema es:

Dada cualquier variable aleatoria con esperanza p y para n suficiente-
mente grande, la distribucion de la variable:

X-—p

VA

es una normal estandar N(O,1).

Un caso particular es la aproximacion de la binomial a la normal:

Sea X una variable aleatoria con distribucion B(n, p) binomial con n suficien-
temente grande. Entonces, X es aproximadamente normal con esperanza np y

varianza np(1-p).

En este caso, n grande significa que np y np(1-p) son los dos mayores que 5 o

bien que n > 30.

Por tanto, cuando el tamarno de la muestra, n, es grande, la distribucion
de la proporcién es aproximadamente una distribucién normal de es-

peranza p y desviacion tipica y/p(1— p)/n. En este caso /p(1-p)/n, co-

p-p)

rresponde al error estandar N| p, . [—/—= |.
n

Ejemplo: se hace una encuesta sobre un determinado tema que tiene dos op-
ciones, A y B. La probabilidad de que un individuo concreto opine Aespyn
es el nimero de encuestas hechas. Hemos preguntado a cuatrocientos habi-

Nota

Consideraremos que nes lo
bastante grande cuando,
como minimo, n> 30.

Calculo del error estandar

Recordemos que si la variable
tiene una desviacién tipica co-
nocida o, el error estandar se

puede calcular como o/\n.

Cuando o es desconocida,
calculamos el error estandar

como s/+/n, siendo s la desvia-
cion tipica de la muestra.

Recordatorio

Si X sigue una distribucién

binomial de parametros ny p,
entonces:

P(X = K) = [:ka (1-p)"*

para los k € {0, ..., n}
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tantes y encontramos que el 30% opina A, es decir, que podemos establecer
que p =0,3. Entonces, la distribucién de la proporcion de habitantes que opina
A sigue una distribucién normal, cuya media es 0,3, que coincide con la pro-
porcion del 30% de los habitantes de la poblaciéon que opinan A4, y la desvia-
cion estandar es 0,0229, que corresponde a la desviacion tipica de la poblacion
dividida por la raiz cuadrada del tamafio de la muestra.

N|0,3, /M =N(0,3;0,0229)
400
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2. Distribucion de la media muestral

Se deben considerar dos casos para la distribucion de la media muestral.
Caso de desviacion tipica poblacional conocida

Si la variable que estudiamos sigue una distribucién normal con media py
desviacion tipica o conocidas, entonces la media muestral es también nor-
mal con la misma media p y desviacién tipica o/\/ﬁ, donde n es el tamafo
de la muestra.

Siempre que la distribucién de las medias muestrales sea una distribucién nor-
mal, se puede calcular una variable aleatoria normal estandarizada, Z, que

tiene una media O y una varianza 1:

Si la distribucién de la poblacidon no es normal pero el tamafio muestral n es
suficientemente grande, entonces se usara el teorema central del limite y la va-
riable media muestral se aproxima a una normal estandar a medida que el ta-
mario de la muestra aumenta. En general, dicha aproximacion se considera

véalida para tamarfios muestrales superiores a treinta.

En el apartado anterior se vio que la variable aleatoria binomial sigue una dis-

tribucién normal aproximada cuando aumenta el tamafio de la muestra.

Ejemplo: en la asignatura de Archivistica de una licenciatura de Documen-
tacion se sabe que las calificaciones siguen una distribucién normal de me-
dia 7,4 y desviacion estandar 0,78. Se desea conocer el porcentaje de
estudiantes con nota superior a 6,5 e inferior a 8,5. ;Con qué nota se va a
calificar como "excelente” (A), si esta es la calificacién del 5% de estudian-
tes con mejor nota?

Solucion:

La variable sigue una distribucién N(7,4; 0,78). Primero se calcula el estadistico
Z normal estandarizado:

P(6,5§X§8,5)=P(6’5_7’4< X—7,4<8,5—7,4J:

0,78 ~ 0,78 ~ 0,78
=P(-1,15<Z <1,41) =
= P(Z<1,41)- P(Z <-1,15)=0,9207 -0,1251 = 0,7956

Nota

Si o es ladesviacién tipica de la
poblacién y n el tamafo de
la muestra, se define el error
estandar de la media mues-
tral como:

o/

Observad

El error estandar es cada vez
menor cuanto mayor es el ta-
mafio de la muestra.
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Los valores de probabilidad se buscan en la tabla N(0,1) o calculandose con
cualquier programa estadistico como se muestra en el ejemplo desarrollado en

el moédulo 1.

A la vista del resultado, se puede decir que el porcentaje de estudiantes con
nota superior a 6,5 e inferior a 8,5 es de 79,56%.

Para calcular la nota a partir de la cual se califica como excelente, se calcula el
estadistico Z normal estandarizado:

X-7,4_ A-7,4
0,78 ~ 0,78

P(XZA):P( j=P(Z2ZA)=0,05

En las tablas de la N(0,1) o mediante cualquier programa estadistico se busca
un valor z que deje a la derecha un area de 0,05, aproximadamente el valor es:
z, =1,645, de manera que:

A-7,4

=1,645 =  A=7,4+1,645-0,78=8,683
0,78

A partir de una nota de 8,6 se califica como “excelente”(A).
Caso de desviacion tipica poblacional desconocida

Cuando la desviacion poblacional es desconocida y el tamafio de la muestra es pe-
quefio, deberemos hacer una estimacién de la desviacion tipica con la llamada
desviacion tipica muestral. Para ello es necesario presentar una nueva distribucion
de probabilidad. Esta nueva distribucion se conoce con el nombre de t de Student
cuyas caracteristicas se explicaron en el moédulo 1.

Para determinar la distribucién de la media muestral cuando la desviacién po-

blacional es desconocida, se debe calcular la desviacion tipica muestral:

Si la variable estudiada sigue una distribucién normal con media p y desvia- Not
ota

cion tipica desconocida, entonces el estadistico media muestral sigue una dis-

. .. . . En este caso se define el error
tribucion t,,_;, es decir, una t de Student con n-1 grados de libertad. estandar de la media mues.
tral como:
7
ty g =" Jn
S
Jn

Los grados de libertad asociados con el valor de t son n—1(tamafio de la mues-

tra menos uno).
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Ejemplo: el tiempo que han tardado en infectarse de virus cada uno de los or-
denadores de una editorial ha sido: 2,5; 7,4; 8,0; 4,5; 7,4 y 9,2 segundos.

Suponemos que el tiempo que tarda un ordenador de esa editorial en infectar-
se sigue la distribucién normal de media 6,5 y se desconoce la varianza pobla-
cional. Se desea calcular la probabilidad de que un ordenador tarde entre 5y
10 segundos en infectarse.

Solucion:

Como se desconoce la varianza de la poblacién, la media muestral seguira una
distribucién t de Student con 5 grados de libertad.

Para calcular el valor del estadistico t, se debe calcular la desviacion tipica
muestral. El valor obtenido es S = 2,5:

La probabilidad solicitada sera:

5-6,5 10-6,5

5<T<10)= R <to< '
M ) p(z,S/JE >~ 2,5/\/6
Plts <3,43) - p(ts <—1,47)=0,99 - 0,1 = 0,89

Jz}K—L47St5s3A3)=

Para calcular la probabilidad se utiliza la tabla ¢t o un programa estadistico (fi-
gura 9).

Figura 9. Resultado de Minitab
Cumulative Distribution Function

Pasos a seguir

Para calcular las probabilidades

Ftudent's t© distribution with 5 DF de una distribucién t de Stu-
dent se sigue la ruta Calc > Pro-

¥ P X <=u]) bability Distributions > ty se

5,43 0,990652 completan los parametros en

la ventana correspondiente. El
resultado se muestra en la figu-

Cumulative Distribution Function rag.

Student's t© distribution with 5 DF

¥ P X =% )
-1,47 0,100755
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3. Distribucion de la proporcion muestral

En el apartado 5 del mé6dulo 1 se dijo que la distribucién binomial era la suma
de n variables aleatorias independientes, cada una de las cuales tiene una pro-
babilidad de éxito p. Para caracterizar la distribucion se necesita conocer el va-
lor de p, que es la proporcion de miembros de la poblaciéon que tienen una
caracteristica de interés. La proporcion muestral de éxitos en una muestra

aleatoria extraida de una poblacién en la que la proporcion de éxitos p sera:

~ X
pP=—
n
Por lo tanto f) es la media de un conjunto de variables aleatorias independien-
tes. Ademas puede utilizarse el teorema central del limite para sostener que la

distribucién de probabilidad de f) puede considerarse una distribucién nor-

mal si el tamafio de la muestra es grande.

N(p, p(l—p)}

n

Igual que en el caso de la media muestral, siempre que la distribucién de la
proporcién muestral sea una distribucién normal, se puede calcular una va-
riable aleatoria normal estandarizada, Z, que tiene una media cero y una va-

rianza uno.

La proporcién muestral tiene muchas aplicaciones, entre las cuales se encuen-
tra el estudio de los resultados de encuestas, la estimacién de la cuota porcen-
tual del mercado, el porcentaje de inversiones empresariales que tiene éxito y

los resultados electorales entre otros.

Ejemplo: el 22% de los discos se venden por la Red en formato MP3 y el resto
se vende en tiendas en formato CD. Se consideran las ventas de los proximos
5.000 discos. Se desea saber jqué distribucion sigue la proporciéon muestral
de discos vendidos por la Red? ;Cudl es el namero esperado de discos que se
venderan por la Red? ;Cual es la probabilidad de que se vendan por la Red
mas de 1.500 discos?

Solucion:

En este ejercicio se tiene que p = 0,22 y n = 5.000.

Distribucion de la
proporcion muestral

Es una aplicacién del Teorema
central del limite.

Nota

La distribucién de p tiene
una media igual a la propor-
cién poblacional p.

La desviacion estandar de

f) es el error estandar de la
media muestral como:

. = [p(1-p)
P n

Observad

El error estandar es cada vez
menor cuanto mayor es el ta-
mafio de la muestra.
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Para determinar la distribucion de la proporcién muestral, dado que el tamafio
de la muestra es grande n = 5.000, se aplica el teorema central del limite. La
distribucion serd aproximadamente normal, el valor de la media es el de la

proporcién poblacional (0,22).

Se calculara el error estandar s~ = /w =0,00586
p 5.000

El valor esperado de discos vendidos por la Red sera del 22% de los 5.000 que

se venden en total, es decir, 1.100 discos en formato MP3.

La probabilidad de que se vendan menos de 1.500 discos por la Red sera igual
a la probabilidad de que la proporcidén muestral sea superior o igual al 30%.
Para obtener esta probabilidad, primero se calculara el estadistico Z normal es-

tandarizado:

7 0,30-0,22

P(p>30%) =P
(p>30%) [ 0,00586

]:P(Z >13,41)=0

La probabilidad de Z se obtiene en la tabla N(0,1). En la practica, los calculos
probabilisticos anteriores se suelen automatizar con la ayuda de algtn soft-
ware estadistico o de anélisis de datos. La figura 10 muestra como se pueden

calcular probabilidades de una normal con ayuda de Minitab.

Figura 10. Célculo de probabilidades con Minitab

3 Minitab - Untitled Chi-Square...
| He et Daa|Coe 3ot Goph Edtor ook

W & o B couson. e

; o 1 Column seatisics... b..
% i i
- ,___ 3% Row Statistics... Uniform...
J 521 Standardize... Binomil... 1
- = (e Make Patterned Diata » Geometric. .
B Session Make Mesh Data.., Megative Binomial.. .
112 Make Indicator Yaribles... Hypergeometric...
i Discrete. ..
Cumulative D Set Base... Drscre
Random Data Ml et
m
Normal with m = B

Probabdity Destributions
¥ Pl ¥« -

Mormal Distribution

" Probabilty density
% Cumulative probability
" Irverse cumulakive probabibty

Mesn: [0

Standard deviation: 1,0

€ Inpuk column: |

et Optional storage: |
Help oK I Cancel | 13’4:; PlX <= = 1

Pasos a seguir

Optianal starage: | Bl Session
& Input constant: |13,4| Chrnulntive Distribution Function

Normal with mean = 0 and standard deviation = 1

Se sigue la ruta Calc > Proba-
bility Distributions > normal
(1) y se completan los para-
metros en la ventana corres-
pondiente (2). El resultado se
muestra en (3). El programa
calcula P(Z < =13,41).

— 3
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El valor obtenido con Minitab es P(Z <=13,41). Por lo tanto, para obtener
la probabilidad deseada calcularemos la probabilidad complementaria
P(Z>13,41)=1-P(Z<=13,41)=1-1=0.
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4. Distribucion de la varianza muestral

Una vez analizadas las distribuciones de las medias muestrales y las proporcio-
nes muestrales, se examinaran las distribuciones de las varianzas muestrales.
A medida que las empresas y la industria ponen mas énfasis en la produccién
de productos que satisfagan los criterios de calidad, es mayor la necesidad de
calcular y reducir la varianza poblacional. Cuando la varianza es alta en un
proceso, algunas caracteristicas de los productos pueden tener una gama mas
alta de valores, como consecuencia de la cual hay mas productos que no tie-
nen un nivel de calidad aceptable. Se pueden obtener productos de calidad si
el proceso de produccion tiene una varianza baja, de manera que es menor el
numero de unidades que tienen un nivel de calidad inferior al deseado. Com-
prendiendo la distribucion de las varianzas muestrales podemos hacer inferen-

cias sobre la varianza poblacional.

Si se estudia una muestra aleatoria de tamafio n y varianza muestral s2 obteni-
da de una poblacién normal de media py varianza o desconocidas, en-
tonces la varianza muestral se distribuye como una 151 con n-1 grados
de libertad:

2
2 _ (n — 1) Sx
An-1==—"7
Ox
Por lo tanto, se pueden hacer inferencias sobre la varianza poblacional *
utilizando s? y la distribucién chi-cuadrado. Este proceso se muestra en el

siguiente ejemplo.

Ejemplo: en una gran ciudad se ha observado que durante el verano las factu-
ras del consumo de electricidad siguen una distribucion normal que tiene una
desviacion tipica del 100 euros. Se ha tomado una muestra aleatoria de 25 fac-
turas. Se desea calcular la probabilidad de que la desviacion tipica muestral sea

inferior a 75 euros.
Solucion:

En este ejercicio se tiene que n = 25 y 6 = (100)2. Utilizando la distribucién
chi-cuadrado se puede establecer que:

(25-1)75*  ,

P(s? <75%) =P (1007 <Wags |=P(13,5<13agu)

Los valores de la distribucion chi-cuadrado pueden obtenerse en la tabla de di-

cha distribucion con 24 grados de libertad:
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1Bagi =12,401; 1344, =13,848

El valor de probabilidad estara entre 0,025 y 0,05 (0,0428) exactamente.
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5. Intervalos de confianza para una poblacion

En los apartados anteriores hemos considerado la estimaciéon puntual de
un parametro desconocido de la poblacién, es decir, el calculo de un Gnico
nimero que sea una buena aproximacion. En la mayoria de los problemas
précticos, un estimador puntual por si solo es inadecuado. Por ejemplo, su-
pongamos que un control hecho sobre una muestra aleatoria de manuales
procedentes de un gran envio de una editorial nos lleva a estimar que el 10%
de todos los manuales son defectuosos. Un gerente que se enfrenta a este dato
posiblemente se hara preguntas del tipo: ;puede estar totalmente seguro de
que el verdadero valor del porcentaje de manuales defectuosos esta entre el 5%
y el 15%? O ;es muy posible que entre el 9% y el 11% de los manuales sean
defectuosos? Esta clase de preguntas requieren informacion que va maés alla de
la contenida en una simple estimacién puntual; son preguntas que buscan la
fiabilidad de dicho estimador. En otras palabras, se trata de la bsqueda de un
estimador por intervalos, un rango de valores entre los que posiblemente se

encuentre la cantidad que se estima.

Debemos medir de alguna manera la confianza que podemos tener en el inter-
Nivel de confianza

valo. Este porcentaje de muestras que dan lugar a intervalos que contienen el

Ly . . . El nivel de confianza también
auténtico valor del parametro es el llamado nivel de confianza. se denota por (1 — c) 100%

normalmente consideraremos
(1 - ), igual a 90%, 95%
Asi pues, un intervalo de confianza para cierto pardametro con un nivel de con- 099%.

fianza de C% es un intervalo calculado a partir de una muestra de manera que
el procedimiento de calculo garantiza que el C% de las muestras dé lugar a un

intervalo que contenga el valor real del parametro.

La expresion confianza del 95% indica confianza en el método utilizado, de
manera que el 95% de las veces que apliquemos el método a la misma po-
blacién obtendremos intervalos que si contienen el valor del parametro po-

blacional.

Intervalo de confianza para la media cuando la poblacién es normal

y conocemos la desviacion estandar
La variable que queremos estudiar sigue una ley normal de media p (desco-
nocida) y desviacién estandar ¢ conocida. Disponemos de una muestra aleato-

ria simple de tamafio n y el valor de la media de la muestra es x.

Se calculan los intervalos de confianza al nivel de confianza (1 — a)% median-

te la siguiente expresion:

(media de la muestra — ME, media de la muestra + ME)
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donde ME es el margen de error que tenemos que calcular, de manera que
el (1 -a) % de las muestras produzca un intervalo que contenga el verda-
dero valor de p.

El procedimiento que describimos sirve también para variables que no sigan
una distribucién normal, siempre que la desviacion tipica sea conocida y que

el tamario de la muestra sea n > 30.

Fijamos el nivel de confianza: se acostumbra a considerar (1 — ) igual a 90%,
95% 0 99%.

Calculamos el error estandar de la media como o3 = c/ Jn.
Obtenemos el valor critico, que es aquel valor Z% que hace que:
P(Z > Z%) =a/2

en el que Z es una variable aleatoria normal N(0,1). Se muestra graficamente
en la figura 11.

Figura 11. Gréfico de intervalo de confianza para p con desviacion tipica conocida

af2 of2

Para los niveles de confianza usuales, los valores criticos correspondientes son:

o (1-q)=90%=0,9,a=0,1y Zy2 = 2905 = 1,645
o (1-q)=95%=0,95a=0,05y Zy2 = zy 5 = 1,96
o (1-q)=99%=0,99, a=0,01y Zy2 = 20005 = 2,575

Calculamos el denominado margen de error (también denominado precision
de la estimacion) como Zy/> para el error estandar, es decir, como:

()

Za/Zﬁ

Nota

Por tanto, el margen de error
es la mitad de la longitud del
intervalo de confianza.
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El intervalo de confianza obtenido con la muestra de partida es:

( )_(iZOL/Zi )=(E—Za/zi, )_(+Za/zij
N N T

o lo que es lo mismo, x + ME.

Es necesario interpretar exactamente los intervalos de confianza. Si se extraen
repetida e independientemente muestras aleatorias de n observaciones de la
poblacion, entonces el 100(1 — a)% de estos intervalos contendra el verdadero

valor de la media poblacional.

El efecto del tamaiio de la muestra

En muchas ocasiones, una vez fijado el nivel de confianza nos marcaremos
Tamaiio de la muestra

como objetivo dar el valor del pardmetro p con cierta precision. La inica ma-

‘oz . . Es facil ver que si queremos re-
nera de obtener la precision deseada consiste en modificar de forma adecuada ducir el anc?]o deﬂntervab de

confianza a la mitad, debere-
mos tomar una muestra cuatro

de error ME; puesto que sabemos que: veces mayor.

el tamafio de la muestra. Supongamos que deseamos una precision o margen

ME =Zq/zi
n

In

Se obtiene el tamarfio deseado de la muestra para dicha precision:

62

ME?

()

Intervalo de confianza para la media cuando la poblacion es normal

y desconocemos la desviacion estandar

La variable que queremos estudiar sigue una ley normal de media u (desconoci-
da) y desviacion estandar también desconocida. Disponemos de una muestra

aleatoria simple de tamario n y el valor de la media de la muestra es x. Entonces:

Calculamos los intervalos de confianza al nivel de confianza (1 — )%, median-
te la siguiente expresion se fija el nivel de confianza, que habitualmente se

escribe como (1 - a)%.

Calculamos la desviacion tipica muestral S para obtener el error estandar de

la media como:

Sy =
¥ n
Calculamos el valor critico, que es aquel valor £/, tal que:
P(t,_1 2 ) )=o/2

en el que t,,_; es una variable aleatoria de Student con n — 1 grados de libertad.
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Como el margen de error es:

S
ME = tn—l,a/Z T
n

N

El intervalo de confianza obtenido con la muestra es el siguiente:

X+ ME

Intervalo de confianza para la proporciéon

Interesa conocer la proporcion de miembros de la poblacion que poseen una
caracteristica especifica. Si se toma una muestra aleatoria simple de tamario n,
la proporcién muestral es un buen estimador de la proporcién poblacional. En

este apartado se desarrollan intervalos de confianza para la proporcion.

Cuando el tamafio de la muestra sea bastante grande, en concreto siempre que
el tamafio sea superior a cien, se aplicard el teorema centra del limite, y, como
se ha visto en apartados anteriores, la distribucién de la proporciéon muestral

sigue una distribucién normal estandar N(O,1).

Igual que en los intervalos anteriores se calcula el margen de error como Zy)2
multiplicado por el error estandar, es decir:
p-p)

ME = Za/zsi; = Z(x/Z T

El intervalo de confianza obtenido con la muestra de partida sera:

p+ME

- 2 pd-p)

El tamafio de la muestra es n= (Z(x/Z) W

Ejemplo: un servidor de correo ha recibido 2.000 mensajes, de los cuales 250
son “SPAM”. Construid un intervalo de confianza del 96% para la proporcion
de mensajes “SPAM”, ;cuantos correos se han de estudiar en el servidor para
poder afirmar que el error entre la proporcion de mensajes “SPAM” recibidos
y la probabilidad de que el servidor reciba un “SPAM” sea menor que 0,03 con
una probabilidad del 95%?

Solucion:

El intervalo de confianza del 96% para la proporcion de la poblacion se obtie-

ne por medio de la ecuacion:

Nota

El parametro es p.

El estadistico es p.
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[f,_za/z [ /M]
n n

Se deduce que p = % =0,125, n=2000, z, ;5 = Zg o2 = 2,054.

Por lo tanto, el intervalo de confianza de la proporcién poblacional al 96% es

0,125-2,054 /M, 0,125+2,054 /M =(0,1098; 0,1402).
2000 2000

Se podria decir que la proporcién de todos los mensajes Spam recibidos de la
poblacion estaran entre el 10,98% y el 14,02% (con un margen de error del
1,52% al nivel de confianza del 96%).

Se calculara el minimo tamafio de la muestra necesario para que el error sea

menor que 0,03 con una probabilidad del 95% es:

) —Zp):(z )20,125-02875:1962_0,109

p-a-p) — 466,75
ME 0,0009

I’lZ(Z(X/Z)

’
’

Por tanto, se deben estudiar 467 mensajes.

Ejemplo con Minitab: en el ejemplo anterior se comparan los intervalos
de confianza al 90 y el 99%, manteniendo constante el tamafio de la mues-
tra, para contestar a la siguiente pregunta: Conforme aumenta la amplitud
de un intervalo de confianza, ;jaumenta o disminuye el nivel de confianza
asociado? En las figuras 12 y 13 utilizamos Minitab para analizar ambos es-

cenarios.

Figura 12. Resultado del Intervalo de confianza del 90% con Minitab

Test and Cl for One Proportion

Test of p = 0,125 w5 p not = 0,125

Sample x N Sample p a0 CI Z-Value P-Value
1 Z50 2000 0,125000 (0,11283A; 0O,137164) 0,00 1,000

Using the normal approximation.

Figura 13. Resultado del Intervalo de confianza del 99% con Minitab

Test and Cl for One Proportion

Test of p = 0,125 w3 p not = 0,125

Sample x N Sample p 99% CI Z-Walue P-Value
1 250 2000 0,125000 (0,105951; 0,144049) 0,00 1,000

Using the normal approximation.

Notar que al aumentar el nivel de confianza, deberemos ampliar la amplitud
del intervalo a fin de “abarcar” un rango mayor para el pardmetro poblacio-

nal estimado.
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Intervalo de confianza para la varianza

¢{Como se puede construir un intervalo de confianza para la varianza pobla-
cional?

Primero se fijara el nivel de confianza 1 — a.. Se calcular el estadistico.

es una observacién de una variable aleatoria x> con 1 — 1 grados de libertad.

Donde s2 es la varianza muestral de una muestra aleatoria de tamafo n to-

mada de una poblacién normal de varianza 2.

. C e .. 2
La figura 14 muestra los valores de la distribucion X -1 que cortan una pro-

babilidad de o/2 en las dos colas, es decir, los puntos criticos xznfl,a/z y

2
X n-1, 1-0/2-

Figura 14. Gréfico de intervalo de confianza de la varianza

2 2
X af2n-1 X 1-a/2,0-1

Ejemplo de intervalo de confianza para la varianza

Una empresa de autobuses urbanos espera que las horas de llegada en diversas
paradas tengan poca variabilidad. La varianza de la muestra de 10 tiempos de
llegada de autobus fue s2 = 4,8 minutos?. Suponiendo que la poblaciéon de
tiempos de llegada tiene una distribucién normal, se desea determinar un in-
tervalo de confianza del 95% para la varianza poblacional de los tiempos de
llegada.

2
n-1)s
El estadistico de prueba: 1 =% tiene una distribucién chi-cuadrado
[}

con n— 1 =9 grados de libertad. Determinamos los valores X%'01975 =16,0471

y 130,025 = 45,7222.
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El intervalo de confianza para la varianza de la poblacién sera:

2 2 . .
(2”—1)5 ;(’12—1)5 _ { 9-48 . 9:48 }=[0,94;2,69]minut05
S vwn Tvas | 4572227160471

La raiz cuadrada de esos valores sera el intervalo de confianza de 95% para la
desviacion estandar: 0,97 <c<1,64.
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6. Contrastes de hipotesis para una poblacion

En este apartado se desarrollan métodos para contrastar hip6tesis que permi-
ten comparar la validez de una conjetura o afirmacién utilizando datos mues-
trales. El proceso comienza cuando un investigador formula una hipétesis
sobre la naturaleza de una poblacion. La formulacion de esta hipotesis implica
la eleccién entre dos opciones; a continuacion, el investigador selecciona una
opcién basdndose en los resultados de un estadistico calculado a partir de una
muestra aleatoria de datos.

He aqui algunos ejemplos de problemas representativos:

1) Un investigador quiere saber si una propuesta de reforma fiscal es acogida
de igual forma por hombres y mujeres. Para analizar si es asi, recoge las opi-
niones de una muestra aleatoria de hombres y mujeres.

2) Una compariia recibe un cargamento de piezas. S6lo puede aceptar el envio
si no hay mas de un 5% de piezas defectuosas. La decision de si aceptar la re-
mesa puede basarse en el examen de una muestra aleatoria de piezas.

3) Una profesora estd interesada en valorar la utilidad de hacer controles re-
gularmente en un curso de estadistica. El curso consta de dos partes y la pro-
fesora realiza estos controles s6lo en una de ellas. Cuando acaba el curso,
compara los conocimientos de los estudiantes en las dos partes del curso me-
diante un examen final y analiza la hip6tesis de que los controles aumentan

el nivel medio de conocimientos.

Los ejemplos propuestos tienen algo en comun. La hipoétesis se formula so-
bre la poblacion y las conclusiones sobre la validez de esta hip6tesis se ba-
san en la informacién muestral. El test o contraste sera la herramienta que
nos permitird extraer conclusiones a partir de la diferencia entre las obser-
vaciones y los resultados que se deberian obtener si la hipotesis de partida
fuese cierta.

Planteamiento del contraste de hipotesis

En la prueba de hipétesis se comienza proponiendo una hipoétesis de partida

Hipotesis

acerca de un parametro poblacional. Esta hipotesis se llama hipotesis nula y

. .. . Y e s . Con la misma hipétesis nula
se representa como Hj,. A continuacién se define otra hipétesis, la hip6tesis podemos estudiar varias hip-

alternativa, que es la opuesta de lo que se afirma en la hipotesis nula. La hi- tesis alternativas.

potesis alternativa se representa como Hj. El procedimiento para probar una
hipotesis comprende el uso de datos de una muestra para probar las dos ase-
veraciones representadas por Hy y Hj.

Las hipotesis expresan una afirmacién sobre el valor del pardmetro. Podemos

tener una hipoétesis nula del tipo Hy: 6 = 6.
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La hipétesis alternativa puede ser unilateral, como Hy: 6 > 65 0 H: 8 < 8, 0
bilateral, como Hjy: 6 # 6.

Una vez planteadas las hip6tesis nula y alternativa, debemos tomar una decision
a partir de las observaciones. Por otro lado, existen dos decisiones posibles:

1) Aceptar la hipoétesis nula.

2) Rechazar la hipotesis nula.

Errores en el contraste

Con el fin de llegar a una de estas dos conclusiones, se adopta una regla de
decision basada en la evidencia muestral. Por consiguiente, no se puede saber
con seguridad si la hipotesis nula es cierta o falsa. Por tanto, cualquier regla de
decision adoptada tiene cierta probabilidad de llegar a una conclusion falsa.
Como se indica en la tabla 1, pueden cometerse dos tipos de errores. Un error
que se puede cometer, llamado error de tipo I, es rechazar una hipétesis nula
cierta. Si la regla de decision es tal que la probabilidad de rechazar la hip6tesis
nula cuando es cierta es a, entonces a se llama nivel de significacion del con-
traste. La probabilidad de aceptar la hip6tesis nula cuando es cierta es (1 — o).
El otro error posible, llamado error de tipo II, ocurre cuando se acepta una
hipoétesis nula falsa. La probabilidad de cometer este tipo de error, cuando la
hipétesis nula es falsa, se denota por . Entonces, la probabilidad de rechazar
una hipoétesis nula falsa es (1 — B), y se denomina potencia del contraste.

Tabla 1. Errores y decisiones correctas en contrastes de hipétesis

Condicion de la poblacion

Hg verdadera Hy falsa

Aceptar H Decision correcta | Error de tipo Il

Decision

Rechazar H, Error de tipo | Decisién correcta

Para plantear y resolver un contraste de hipotesis, es necesario:

1) Fijar las hipotesis nula y alternativa.

2) Fijar un nivel de significacion.

3) Determinar el estadistico de contraste y su ley.

4) A partir de aqui, tenemos dos métodos posibles:

4a) Calcular el p-valor asociado a nuestro estadistico de contraste calcula-
do. Comparar el p-valor con el nivel de significaciéon y tomar una decision.
4b) Calcular el valor critico. Comparar el valor critico con el estadistico

de contraste y tomar una decision.

Zona de aceptacidon y zona de rechazo de la hipotesis nula

Ejemplo 1. “Contraste bilateral”

La parte del grafico (figura 15) sombreada en rojo corresponde a la zona en la
que rechazamos la hip6tesis nula. La zona sin sombrear corresponde a la re-

gion de aceptacion de la hipotesis nula.

Regla de decision

Error de tipo I: rechazar una
hipétesis nula cierta.

Error de tipo Il: aceptar una
hipétesis nula falsa.

Nivel de significacion: la pro-
babilidad de rechazar una hi-
pdtesis nula que es cierta (esta
probabilidad a veces se expre-
sa en %, con lo que nos referi-
mos a un contraste de
significacién a. como un con-
traste al nivel 100 0.%).

Potencia: la probabilidad de
rechazar una hipétesis nula
que es falsa.

Atencion

Un nivel a = 0,05 significa que
aunque la hipétesis nula sea
cierta, los datos de cinco de
cada cien muestras nos la ha-
ran rechazar. Es decir, acepta-
mos que podemos rechazar la
hipétesis nula equivocadamen-
te cinco de cada cien veces.
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Figura 15. Grafico que muestra la zona de aceptacién y de rechazo de la hipétesis
nula en un contraste bilateral

of2

~Zy2 Zor2

Zona de rechazo Zona de aceptacion Zona de rechazo

Para determinar el valor z,,,, s6lo hay que imponer que el error de tipo I
(probabilidad de rechazar H cuando es cierta) sea menor o igual que el ni-

vel de significacién a. Por ejemplo, para a = 0,05 encontramos (por ejem-

plo, en las tablas de la normal) que z,,, = 1,96.

Para decidir si rechazamos la hip6tesis nula o no, usaremos el llamado esta-
distico de contraste. Un estadistico de contraste es una funcién de la muestra

cuya distribucién conocemos bajo la hipotesis nula.

e Aceptaremos Hy, si lz]< Zyjo
e Rechazaremos Hy si |z|> Zy2

Ejemplo 2. “Contraste unilateral inferior”

La parte del grafico (figura 16) sombreada corresponde a la zona de rechazo de
la hipétesis nula. La zona sin sombrear corresponde a la regién de aceptacion

de la hipétesis nula.

Figura 16. Gréfico que muestra la zona de rechazo de la hipétesis nula en un contraste

unilateral inferior

Zona de rechazo Zona de aceptacion

Recordad

Si tenemos una muestra de ta-
mafo n de una distribucion
N(p, 02), entonces

X—p
Z= O
Jn
sigue una distribucién normal
estandar.

Validez del método

El método es el mismo para

cualquier distribucién simétri-
ca, asi que también sirve si el
estadistico de contraste sigue
una distribucioén t de Student.
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Para o= 0,05 encontramos que —z, = —1,65. En este contraste unilateral se dice

que la probabilidad de la cola de la izquierda debe ser a.

e Aceptaremos Hy si Z > -z,
e Rechazaremos Hy si Z < -z,

Ejemplo 3. “Contraste unilateral superior”

La parte del grafico (figura 17) sombreada en rojo corresponde a la zona en la
que rechazamos la hipotesis nula. La zona sin sombrear corresponde a la re-
gion de aceptacion de la hipotesis nula.

Figura 17. Gréfico que muestra la aceptacioén o no de la hipétesis nula en un
contraste unilateral superior

Zona de aceptacion Zona de rechazo

Para o = 0,05 encontramos que z, = 1,65. En este contraste unilateral se dice que

la probabilidad de la cola de la derecha debe ser a.

e Aceptaremos Hysi Z< z,

* Rechazaremos HysiZ> z,

El p-valor

Existe otro método para examinar el contraste de la hipotesis nula. Obsérvese
que si se utiliza un nivel de significacion bajo se reduce la probabilidad de re-
chazar una hipétesis nula verdadera. Eso modificaria la regla de decisioén para
que fuera menos probable que se rechazara la hipétesis nula, independiente-
mente de que fuera verdadera o no. Evidentemente, cuanto menor es el nivel
de significacion al que se rechaza una hipétesis nula mayores son las dudas so-
bre su veracidad. En lugar de contrastar hip6tesis a los niveles preasignados de
significacion, los investigadores a menudo hallan el nivel menor de significa-

cion al que se puede rechazar una hipoétesis nula.

El p-valor es el menor nivel de significacion al que puede rechazarse una
hipotesis nula.

El criterio del p-valor es: rechazar Hj, si el p-valor < a.
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Interpretacion del p-valor

Se considera una muestra aleatoria de n observaciones procedentes de una po-
blacion que sigue una distribucién normal de media p y desviacion estandar
oy la media muestral calculada x. Se ha contrastado la hipoétesis nula

Hp :p=pgp frente ala alternativa Hy:p> g

El p-valor del contraste es:

X—p
p-valor = P| —

0>z, |Ho:1=no

Jn
donde Zp es el valor normal estandar correspondiente al menor valor de
significacién al que puede rechazarse la hipoétesis nula. La mayoria de los
programas informdticos estadisticos calculan el p-valor, este suministra
mas informacion sobre el contraste basdndose en la media muestral obser-
vada, por lo que se utiliza frecuentemente en muchas aplicaciones estadis-

ticas.

Ejemplo de aplicacion del p-valor: un grupo editorial emite un periédico es-
pecializado en informacioén econdémica. El director del periddico desea saber si
el niimero medio de ejemplares diarios producidos y no vendidos es menor de
400. Para dar respuesta a esta pregunta, se toma una muestra formada por los
resultados correspondientes a 172 dias elegidos de forma aleatoria. La media
de dicha muestra es de 407 ejemplares no vendidos, con una desviacién estan-
dar de 38.

Utilizando un nivel de significacién de 0,05, realizad un contraste de hipotesis

para responder razonadamente a la pregunta del director del periodico.

Solucion:

1) Si se hace el contraste Hy: media poblacional = 400 contra H;: media po-
blacional = 400.

Primero se calcula el estadistico de contraste para decidir si rechazamos la hi-

potesis nula o no.

S 38
La desviacion estandar de la muestra es: — = ——=2,89.
Jn 172
407 - 400
El estadistico sera Z = 589 =2,42 este valor es una observacion de una

distribucién N(0,1).

En este caso, por ser un contraste bilateral se divide el nivel de significaciéon
a por igual entre las dos colas de la distribucién normal. Por lo tanto, la pro-

babilidad de que Z sea superior Zz,/, o inferiora —Z¢/2 es a. En este caso, el
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p-valor es la suma de las probabilidades de la cola superior y la cola inferior.

El p-valor correspondiente al contraste de dos colas es:

XG— Mol Zq)2
7

P(Z>|2,42|)=P(Z >2,42)+ P(Z <~-2,42) =2-0,00776 = 0,01552

p —valor =2P

Como 0,01552 es menor que el nivel de significacion propuesto (a = 0,05), se
rechaza la hipétesis nula. No se puede afirmar que el niimero medio de ejem-
plares diarios producidos y no vendidos sea de 400. Se acepta que es distinto
de 400.

2) Si se hace el contraste Hy: media poblacional = 400 contra Hy: media pobla-

cional > 400, entonces el p-valor es la probabilidad “es la cola de la derecha”:

p—valor=P(Z)> z,
P(Z>2,42)=0,00776 <o = Se rechaza la hipotesis nula.

Se acepta la hipoétesis alternativa, por lo tanto, se acepta que el niimero medio

de ejemplares diarios producidos y no vendidos es mayor de 400.

3) Si se realiza el contraste Hy: media poblacional = 400 contra Hy: media
poblacional < 400, entonces el p-valor es la probabilidad “es la cola de la

izquierda”:
p—valor=P(Z)<z,

P(Z<2,42)=1-0,00776 =0,99224 > o = No se puede rechazar la hipotesis

nula.

Se rechazaré la hipotesis alternativa, luego el namero medio de ejemplares dia-

rios producidos y no vendidos no es menor de 400.

Por tanto, a la vista de los resultados de los tres contrastes, la contestacion a la

pregunta del director seria:

“El nimero medio de ejemplares diarios producidos y no vendidos es mayor
de 400”.

Para calcular el p-valor se suele utilizar un software estadistico, como se vera

en ejemplos resueltos con Minitab.

Otro procedimiento: para resolver contrastes bilaterales utilizando intervalos
de confianza.

Ejemplo: supongamos que se plantea el siguiente contraste bilateral:

Hy: n =280, Hy: p = 280
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Para probar esta hipoétesis con un nivel de significacién o = 0,05, el tamafio de
la muestra es 36 y se determiné que la media muestral x =278,5 y la desvia-
cion estandar de las muestras s=12. Sustituyendo estos resultados con
20,025 = 1,96, vemos que el intervalo de confianza del 95% para la media de la

poblacion es:

_ s 12
X+1,96—— : 278,5x+1,96—— ; 278,5 + 3,92
Jn J36

El intervalo sera: (274,58; 282,42).

El resultado permite llegar a la conclusioén de que, con un 95% de confianza,
la media para la poblacién esté entre 274,58 y 282,42. Como el valor supuesto
de la media de la poblacion p= 280 esta en el intervalo de confianza, la con-
clusion del contraste es que no se puede rechazar la hipoétesis nula, por tanto,
aceptamos la hipotesis de que: Hy: p =280.

Ejemplo de inferencia para una poblacion (utilizando Minitab)

Una caracteristica importante en el disefio de una pagina web es el tiempo que
el usuario tardara en abrir la pagina, que se considera una variable normal.
Con el objetivo de estimar el tiempo medio, se seleccionan al azar 101 paginas,
entre las que ha disefiado una empresa el altimo afio, obteniéndose los datos

siguientes (en centésimas de segundo):

Tabla 2. Tiempo de descarga de paginas web

Tiempo de descarga 55 60 62 64 65 69

Numero de paginas 11 21 26 19 15 9

Observacion: se crea un fichero de datos en la hoja de Minitab, introduciendo
los datos de forma unitaria.

a) Se comprueba que la coleccion de datos sigue una distribucién aproxima-
damente normal.

b) Puede considerarse que el tiempo medio de apertura de las paginas de esta
empresa es de 62 centésimas de segundo, con un nivel de confianza del 90%.
{Qué resultado se obtiene? Razdénese la respuesta del contraste a través del p-

valor.

c) Calctlese un intervalo de confianza a nivel del 90% para el tiempo medio

y comeéntese si el resultado obtenido es coherente con el resultado esperado.

d) Finalmente, se realizara el mismo contraste que en el apartado b), pero su-

poniendo esta vez que no se conoce la desviacion estandar.
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Solucion:

a) Para comprobar la normalidad de los datos, se selecciona Stat > Basic Sta-
tistics > Normality Test. Asi se obtiene el gréafico de la figura 18.

Figura 18. Gréfico de normalidad

Probability Plot of tiempo de descarga (centésimas)
Normal

Mean 62,27
° StDev 3,561
® N 101
AD 3,088
954 P-Value  <0,005
a0 <
m -
?0 -
m -
5{] E
qﬂ -
m -
20 -
10

5 -

Por cien

01-5 T T T T T
50 55 60 65 70 75

Tiempo de descarga (centésimas)

Observando el p-valor se puede concluir que los datos siguen una distribucién
normal. Pudiendo asegurar que X sigue una distribucién normal, la media

muestral también sigue una distribuciéon normal.

b) El contraste de hipotesis serd Hy: p =62 vs. Hy: p # 62. Es un contraste bi-
lateral a un nivel de confianza de 0,90 (figura 19).

Figura 19. Pasos a seguir para realizar el contraste de hipétesis

1-Sample Z (Test and Confidence Interval) |X

{* Samples in columns:

‘tiernpo de descarga {centésimas)

" Summatized data

Sample size; I

Mearn:

Standard deviation: I 3,061

¥ Perfarm hypothesis best

Hypothesized mean: I 62

Select | Graphs... | Cptions. .. |
Help | QK I Cancel |
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Los resultados de Minitab son los que muestra la figura 20.

Figura 20. Resultados del contraste de hipdtesis e intervalo de confianza del 90% (desviacion
tipica poblacién conocida)

One-Sample Z: tiempo de descarga (centésimas)

Test of mu = 62 w3 hot = 62
The aszumed standard dewiation = 3,561

Variable N Mean StDev 3SE Mean 90% CI Z
tiempo 101 62,267 3,561 0,354 (61,6585; 6Z,350) 0,75
Variable P

tiempo de descarga (cent.) 0,451

Se observa que el p-valor es 0,451, por lo tanto, como p-valor > o = 0,10, no se
puede rechazar la hipo6tesis nula, luego se acepta que el tiempo medio es de 62
centésimas por segundo.

c) El intervalo de confianza para el tiempo medio es (61,685; 62,850), es co-
herente con los resultados esperados, ya que contiene al valor medio de 62
centésimas de segundo.

d) Analogamente se realiza el contraste de hip6tesis para la media de la pobla-
cién con desviacion tipica desconocida, se selecciona Stat > Basic Statistic >

1-Sample t, obteniéndose los resultados de la figura 21.

Figura 21. Resultados del contraste de hipétesis e intervalo de confianza del 90% (desviacién
tipica poblacién desconocida)

One-Sample T: tiempo de descarga (centésimas)

Test of mu = 62 w3 not = 62

Variable N Mean StDev 3SE Mean 90% CI T
tiempo 101 62,267 3,561 0,354 (6l,679; 6Z,8536) 0,75
Variable P

tiempo de descarga [(cent.) 0,452

El p-valor es 0,452 > 0,10, nos indica que se puede aceptar la hipotesis de que
el tiempo medio es de 62 centésimas por segundo.

Continuando con el mismo ejemplo, se va a considerar que una pagina no es
satisfactoria cuando tarde en ser descargada mas de 68 centésimas. Los progra-
madores afirman que el porcentaje de paginas para las que el tiempo de des-
carga no es satisfactorio no supera el 10%.

e) Se calcularad un intervalo de confianza para la proporcién de paginas no sa-
tisfactorias, a un nivel de confianza del 95%.

f) ;Hay evidencias, al nivel 0,05, para rechazar la afirmacion de los programa-
dores? Se plantearan las hipotesis que se deben contrastar y se efectuara el con-
traste.

e) Para calcular el intervalo de confianza de la proporcion de paginas no sa-
tisfactorias, a un nivel de confianza del 95%, se selecciona Stat > Basic Statis-
tics >1 Proportion (figura 22).
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Observando la figura 23 de datos, se ve que inicamente hay 9 paginas que su-
peran las 68 centésimas de segundo, o lo que es lo mismo, 9 paginas de las 101
se considera el tiempo de descarga no satisfactorio.

Figura 22. Pasos a seguir para obtener un intervalo de confianza del 95% para la proporcién

1 Proportion (Test and Confidence Interval)

" Samples in columns: 1 Proportion - Options

‘tiempo de descarga (centésimas)
Confidence level: | S

& Summarized data Alternative:

MNumber of events: I 9

MNumnber of trials: 101

Inot equal - l

¥ Use test and interval based on normal distribution

[o]4 I Cancel

W Perform hypothesis test
Hypothesized proportion: 0,1 Help |

Select | Options. .. |
Help | OF | Cancel |

Figura 23. Resultados del intervalo de confianza del 95% para la proporcién de paginas no
satisfactorias

Test and Cl for One Proportion

Test of p = 0,1 w2 p ot = 0,1

Sample x W
1 9 10l

955 CI
{0,033546; 0,144671)

Z-Value
-0,36

F-Value
0,715

Sample p
0,089108

Uzing the normal approximation.

El intervalo de confianza obtenido con un nivel de confianza del 95% es
(0,033546; 0,144671).

f) Debemos plantear un contraste unilateral para la proporcién de paginas no
satisfactorias:

Hy:p=0,1,

Hy:p> 0’1'}, donde p representa la proporciéon de paginas para las que el

tiempo de descarga no es satisfactorio (figura 24).

Figura 24. Pasos a seguir para realizar el contraste de hipdtesis

1 Proportion (Test and Confidence Interval)

= Samples in columns:

1 Proportion - Options

Confidence level: I
Igreater than -

‘tiempo de descarga (centésimas)

' Summarized data Alcernative:

MNumber of events: I 9

Number of trials: 101 [¥ Use test and interval based on narmal distribution

[o]4 I Cancel

¥ Perform hypothesis test
Hypothesized proportion: 0,1 Help |

Options. .. |

Cancel |

Select |
Help | OF |
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Figura 25. Resultados del contraste de hipdtesis para la proporcion de paginas

Test and Cl for One Proportion

Test of p = 0,1l w=p = 0,1

95% Lower
Sample X N Sample p Eound
1 % 10l 0,08%109 0,04z475

Using the normal approximation.

Z-Walue
-0,36

P-Value
0,642

Seglin se muestra en la figura 25, el p-valor del contraste vale lo siguiente: p-

valor = 0,642. Como es mayor que 0,05, se acepta la hip6tesis nula, luego se

acepta la afirmacion de los programadores de que el porcentaje de paginas no

supera el 10%.
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Resumen

En este mo6dulo se presentan las distribuciones muestrales. Se analiza cémo se-
leccionar una muestra aleatoria simple, como se pueden emplear los datos ob-
tenidos con ella para desarrollar estimaciones puntuales de los pardmetros de
poblacién. La distribucién de probabilidad de estas variables aleatorias se lla-
ma distribucion muestral. En particular, se describen las distribuciones de la me-
dia de la muestra x, de la proporcién muestral f) y de la varianza muestral
s2. Después de desarrollar las férmulas de la desviacion tipica o error estandar
para esos estimadores, se indica que el teorema central del limite es la base
para usar una distribucién normal de probabilidades y aproximar esas distri-

buciones muestrales en el caso de muestra grande.

Ademas, también se desarrollan estimaciones de intervalos de confianza de
parametros de una poblacion. En este médulo se han utilizado la distribucién
Z normal estandar, la t de Student y la chi-cuadrado 1 para construir interva-
los de confianza. Se determina el tamafio de muestra necesario para que los

estimadores de intervalo de p 'y de p tengan un nivel especificado de precision.

Finalmente, en este médulo se ha presentado la metodologia para realizar
contrastes clasicos de hipoétesis, comenzando con los argumentos para tomar
decisiones en condiciones de incertidumbre. Las decisiones se toman recha-
zando una hipétesis nula si hay pruebas contundentes a favor de la hipotesis
alternativa. Pueden cometerse dos tipos de error: un error de tipo I, que se co-
mete cuando se rechaza la hipoétesis nula, cuando es verdadera, y un error de
tipo 1I, que se comete cuando no se rechaza la hipétesis nula, cuando no es
verdadera, presentando diversos métodos y reglas de decision especificos para
realizar contrastes. La regla de rechazo para todos los procedimientos implica
comparar el valor del estadistico con un valor critico y también utilizando el
p-valor para pruebas de hipétesis, la regla es rechazar la hipo6tesis nula siempre
que el p-valor sea menor que a.
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Ejercicios de autoevaluacion

1) Una biblioteca presta un promedio de p =320 libros por dia, con desviacién estdndar ¢ =
75 libros. Se tiene una muestra de 30 dias de funcionamiento, y x es la cantidad de la media
de la muestra de libros prestados en un dia.

a) Presente la distribucién muestral de X.

b) ;Cual es la distribucion estandar de x?

c) (Cuadl es la probabilidad de que la media de una muestra de 30 dias sea entre 300 y 400
libros?

d) ;Cudl es la probabilidad de que la media de una muestra sea de 325 o més prestamos dia-
riamente?

2) Un investigador informa los resultados de una encuesta diciendo que el error estdndar de
la media es de 20.La desviacion estandar de la poblacién es de 500.

a) ;De qué tamario fue la muestra que se usd en esta encuesta?
b) ;Cual es la probabilidad de que el error estimado quede a 25 o menos de la media de la
poblacién?

3) Cada curso escolar, una prestigiosa universidad oferta becas a sus estudiantes para ampliar
estudios en el extranjero. De la experiencia recogida en anteriores convocatorias, se observa
que las calificaciones medias de los expedientes aspirantes a obtener una beca se distribuyen
segiin una normal de media 6,9 puntos y desviacioén estandar 0,7 puntos. Para entender la
aplicacion del teorema central del limite, generar con Minitab 50 muestras aleatorias de 100
observaciones cada una, que corresponden a la poblacién normal anterior N(6,9, 0,7).

a) Calcular en una nueva columna la media de las 50 muestras anteriores.

b) Comentar los resultados haciendo referencia al teorema central del limite.

c) Realiza el dotplot asociado a una de las muestras.

d) Compara estos resultados con la media de la poblacién, y el valor de la desviacién estandar
de la media muestral con la desviacién estandar de la poblacién y explica la relacién entre
ambos valores.

4) Un estudio previo nos dice que el servicio de préstamo diario de libros de las bibliotecas
de una ciudad sigue una distribucién normal con una media de 300 ejemplares prestados,
con una desviacion estdndar de 10. Una inspeccidn quiere verificar si estos datos son correc-
tos. Para hacerlo, coge una muestra de los préstamos diarios de 10 bibliotecas y obtiene una
media de 285 ejemplares prestados.

a) ;Cudl es la probabilidad de que si la media es verdaderamente de 300 ejemplares prestados
se obtenga una media de préstamos igual o inferior a los 285 ejemplares en las 10 bibliotecas
que componen la muestra?

b) Determinar un intervalo de confianza del 90% para la media de préstamos teniendo en
cuenta los datos de la muestra.

¢) {Qué decisién légica deberia tomar el inspector?

5) En la pagina web de una editorial aparecen dos nimeros de teléfono. Hemos comprobado,
después de analizar 400 llamadas del teléfono, que el intervalo entre llamadas tiene una va-
rianza de 2.

Suponiendo normalidad, indicad si podemos considerar, a un nivel de confianza del 90%,
que la varianza del intervalo entre llamadas del primer ntmero es inferior a 1,7.

6) El responsable de comunicaciones de un centro de documentacién afirma que la media
del tiempo de transferencia de un fichero de tamafio 2Mb es superior a 30 segundos. Para
comprobar esta afirmacién se tom6 una muestra de tiempos de transferencia de 12 fiche-
ros de 2Mb, obteniendo que la media y la desviacién estdndar muestrales valen
x=30,2, s=1,833 (en segundos).

a) Suponiendo que el tiempo de transferencia se distribuye normalmente a partir de los datos
muestrales obtenidos, ;tenemos suficientes evidencias para aceptar la afirmacién del respon-
sable? (Tomad a = 0,05). Encontrad el p-valor del contraste.

Si ademas de disponer de estas observaciones nos hubiesen dado como informacién adicio-
nal (obtenida de experiencias previas) que la varianza del tiempo de transferencia es de
6>=9,2 segundos?, ;hubiéramos llegado a la misma conclusién que en el apartado anterior?
Encontrad el p-valor del contraste (Tomad a = 0,05).
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Solucionario

1

a) Normal con p = 320y desviacion tipica 13,69
b) 13,69

c) 0,8558

d) 0,3557

2)

a) 625
b) 0,7888

3)
De esta manera obtenemos las 50 muestras con 100 observaciones cada una.

(ol x]
+ c1 c2 o} c4 ch C6 [or) CB A 10 c1 c12 13 C14 C15 C1ﬁﬂ

1 | 602255 751039 756941 673114 689504 | 727531 6459352 707449 772782 801131 651824 | 731135 570901 718919 623128 7 59060

2 | 582796 723382 BE30M4| 7E7923| 682915 7501583 680251 683211 608951 | 708834 7 44647 736977 624125 BR85S 503839 B0Vt

3 | 582460 619736 748944 716782 730042 523994 555838 5592865 BRS836| 720623 529604 650873 742008 BE3113| FR4ESS 7 VT

4 | 791373 BB3574| 6889584 774717 775320 693165 616663 | 594975 704482 735052 6BZ743) 761428| 631124 B58L73| 666213 5852

5 | 696531 B54096| 783281 671421| 576998 648673 647134 687821 757085| 696200 726595 765586 | 780420 822074 728683 5476

6 | 635379 B8/14155| 526726 728067 | 689716 626790 712535 582249 681010| 749986 699193 576598 732813 552918 705477 5853

¥ | 698679 7580850 706138 730100 661602 7208200 800421 649912 802260 728351 536631 6293591 784171 651069 650505 6263

§ | 525150 855209 520722 729343 B51880 774509 698875 | 7AGY06| 7 E5387 | 782200 722971 712365 703662 BD1653| 823156 659570

9 | 585308 642670 724762 750395 6546682 732013 642494 589820 613376| 679857 | 7.15083| 640466 635444 624552 605964 6 QTILI
Al

Current Workshest: Worksheet 1 [ [tar1a

a) En la columna C101 se muestran las medias maestrales.

+ 98 99 C100 C101

1 | 549495 733352 649861 634032
2 | 727693 557569 513667 690402
3 | 686654 BSE175| 7 56928 657066
4 | 7085986 610283 709721 657309
5 | 763002 452515 713723| 689323
6 | 651449 578576 718556 681035
7 | 746053 BE7470| 589895 657570
8 | 541243 705719 7BOB37 | 698557

9 | 586552 703953 755058 | 685254

Current Worksheet: Worksheet 1

b)

dotplot: C1; C101
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c) Tras haber generado 50 muestras de datos provenientes de una distribucién normal de me-
dia 6,9 y desviacién estandar 0,7, observamos que el primer dotplot parece corresponder a una
distribucién normal.

Asimismo, el segundo dotplot corresponde a la distribucién de las medias de las muestras y
también corresponde a una distribucién normal.

Esto indica que las medias de estas muestras siguen una distribucién normal. Esta propiedad
es la que enuncia el TCL, sea cual sea la distribucion de los datos, la media muestral (con un
tamarfio de muestra n suficientemente grande) de una coleccién de datos sigue una distribu-
cién normal.

d) Estudiaremos la distribucién de estas medias muestrales:

Descriptive Statistics: C101

Wariahle N Mean Median TrHMean 3tDevw 3E Mean
clol E0 B,9035 6,5914 65,9015 0,0560 0,0093
Wariahle Minimuam Maxinum 11 03

Clol &, 7837 7,0412 G,8507 65,9603

Histogram of €101, with Normal Curve

Frequency

6,75 6,85 6,95 7,05
c101

El histograma de frecuencias se aproxima a la curva normal, es simétrica.
La media muestral coincide con la media de la poblacién, p =X =6,9.
La desviacién estandar de la media muestral sera aproximadamente el error estandar.

Si la variable tiene desviacién estdndar conocida s (en la poblacidn), el error estandar se pue-
de calcular como:

c
Jn
Como consecuencia, podemos decir que la media muestral sigue una distribucién normal

%), que se puede aproximar a una N(0,1), realizando un cambio de variable (tipifica-
n

N("‘l’l T

cion): Z = XK

T
4)

a) Si estandarizamos la puntuacién de 285, resulta un valor z de —4,74, lo que supone (mi-
rando las tablas de la normal) aproximadamente que el 0% es la probabilidad de obtener di-
cha puntuacion.

p(X <285 =p(Z< 285-300) —pz<4,74)~0

Vs
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b) El intervalo de confianza es:

Za/Z, = 1,64
1=285 +1,64- 10 _2851517 [279,83; 290,19]
J10

c) 300 esta fuera del intervalo y, por lo tanto, con un nivel de confianza del 90%, podremos
afirmar que la media no llega a 300 ejemplares, sino que estd por debajo.

5) La hipoétesis nula es o* =1,7 y la alternativa es o* < 1,7.

_ 2
Fl estadistico de contraste es: y* = w, donde s? es la varianza muestral. Entonces

%’ = 469,412 y su distribucién es la de x* la con 400-1 = 399 grados de libertad.

En este caso, el p-valor vale P(XZ< 469,412) = 0,991406 y por lo tanto, no rechazamos la hi-
potesis nula: no podemos afirmar que sea inferior a 1,7. El valor critico es 363,253.

6)

a) Hemos de hacer el contraste de una media con varianza desconocida. Las hipotesis nula y
H,:p=30

H, :p>30

alternativa son: , donde p representa la media del tiempo de transferencia de un

fichero de 2Mb. El estadistico de contraste es t =0,378. El valor critico valdra: t,,s,, =1,80.
Como que £ <t ,,, aceptamos la hip6tesis nula y concluimos que la afirmacién del respon-

sable es cierta. Si quisiéramos hallar el p-valor, éste seria: p = p(t,, > 0,378) ~ 0,36. Como es
un p-valor alto, mayor que 0,05, aceptamos la hipoétesis nula tal y como hemos hecho antes.

b) Hemos de hacer el contraste de una media con varianza conocida.

H,:p=30

La hipétesis nula y la alternativa son:
H, :p>30

, donde p representa la media del tiempo

de transferencia de un fichero de 2Mb.

El estadistico de contraste es: z = donde X eslamedia muestraly o es la desviaciéon

x-30

o/\12’
estandar poblacional. La distribucion de z es la de una normal N(0,1). La media y la desvia-
cién estandar poblacionales valen respectivamente: X =30,2, 6 =4/9,2 ~ 3,03. El valor del

estadistico de contraste es: z ~0,228.

El valor critico valdra: z,,; ~1,645. Como z<z,,, volvemos a aceptar la hipotesis nula y
concluimos que la afirmacién del responsable no es cierta. Si quisiéramos hallar el p-valor,
éste serfa: p = p(z>0,228)~0,41. Como es un p-valor alto, mayor que 0,05, aceptamos la

hipotesis nula como hemos hecho anteriormente. Por tanto, hemos llegado a la misma con-
clusiéon que en el apartado anterior.
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Introduccion

En los mo6dulos anteriores se introdujeron los conceptos bésicos de estimacion
y de contraste de hipotesis relacionados con una poblacién. En la practica co-
tidiana, sin embargo, es facil encontrarse con situaciones en las que se dispone
de dos o0 mas grupos de individuos o poblaciones y, en tal caso, el interés ra-
dica a menudo en ser capaz de discernir si dichos grupos o poblaciones se pue-
den considerar como semejantes —desde un punto de vista estadistico- o si,
por el contrario, son grupos o poblaciones que muestran diferencias significa-
tivas entre ellos. Asi, por ejemplo, puede ser conveniente comparar las califi-
caciones medias de dos grupos de estudiantes en funcion de si han hecho o no
uso de una metodologia docente innovadora, comparar los porcentajes de re-
cuperaciéon de dos o mas grupos de enfermos segin el tratamiento recibido,
comparar las calidades medias de diferentes accesos a Internet en funcién de
la empresa proveedora, comparar los precios medios de los servicios de obten-

cion de documentos en funcion de la institucion que los ofrezca, etc.

Cuando se consideran dos grupos o poblaciones, las técnicas que se usan para
comparar las respectivas medias o proporciones son muy similares a las utili-
zadas en el caso de una poblacion: contrastes de hipotesis basados en el uso de
la distribucion normal (cuando se comparan dos proporciones) o de la t-Stu-
dent (cuando se comparan dos medias). En el caso de la comparacién entre
dos medias de grupos distintos, hay que distinguir si se trata de dos grupos in-
dependientes (por ejemplo, cuando se comparan los resultados de un test rea-
lizados a dos grupos distintos de individuos) o bien si se trata de dos grupos
dependientes (por ejemplo, cuando se estan considerando los resultados de un
test previo con los resultados de un test posterior, ambos realizados al mismo

grupo de individuos).

Finalmente, en el caso de que se deseen comparar mas de dos grupos o pobla-
ciones, los contrastes anteriores ya no sirven y resulta necesario recurrir a las
técnicas ANOVA basadas en la distribucion F-Snedecor. El uso de estas técnicas
posibilita discernir si las medias correspondientes a un conjunto de tres o mas
grupos son todas aproximadamente iguales o si, por el contrario, se puede es-
tablecer que existen diferencias significativas entre algunas de ellas (y, por
consiguiente, entre los grupos asociados).
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Objetivos

Los objetivos académicos del presente modulo se describen a continuacién:

1. Comparar dos poblaciones utilizando procedimientos similares a los vistos
para una sola poblacion.

2. Aprender a formular una hipétesis sobre la naturaleza de las dos poblacio-
nes y la diferencia entre sus medias o proporciones.

3. Conocer el método para comparar las varianzas de dos poblaciones. Para
realizar estos contrastes se introduce la distribucion F.

4. Entender la importancia practica de las técnicas ANOVA a la hora de dis-
cernir si existen diferencias significativas entre mas de dos grupos o pobla-

ciones.

5. Aprender a usar los tests F de ANOVA vy saber interpretar adecuadamente
los resultados que ofrecen.

6. Comprender la l6gica que subyace a la metodologia ANOVA.

7. Conocer las hipotesis que se han de satisfacer para poder aplicar las técni-
cas ANOVA con garantias.

8. Aprender a usar software estadistico y/o de analisis de datos como instru-
mento basico en la aplicacion practica de los conceptos y técnicas estadis-
ticas.
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1. Contrastes de hipodtesis para dos poblaciones

En este modulo se presentan métodos para contrastar las diferencias entre las
medias o proporciones de dos poblaciones y para contrastar varianzas.

Para comparar las medias o las proporciones poblacionales, se extrae una muestra
aleatoria de las dos poblaciones y la inferencia sobre la diferencia entre ambas me-
dias o proporciones se basa en los resultados muestrales. El método apropiado
para analizar la informacién depende del procedimiento empleado al seleccionar
las muestras. Consideramos las dos posibilidades siguientes:

a) Muestras dependientes (datos pareados): en este procedimiento, las mues-
tras se eligen por pares, una de cada poblacion. La idea es que aparte de la carac-
teristica objeto del estudio, los elementos de cada uno de estos pares deben estar
relacionados, de manera que la comparacion pueda establecerse directamente.
Por ejemplo, supongamos que queremos medir la eficacia de un curso de lectura
rapida. Una manera de abordar el problema seria tomar nota de las palabras leidas
por minuto por una muestra de alumnos antes de tomar el curso y compararlas
con los resultados obtenidos por los mismos alumnos una vez completado el curso.
En este caso, cada par consistiria en medidas de velocidad de un mismo alumno
realizadas antes y después del curso, se podria averiguar si existen pruebas contun-
dentes de la eficacia del curso de lectura rapida.

b) Muestras independientes: en este método se extraen muestras indepen-
dientes de cada una de las dos poblaciones, de manera que los miembros de
una muestra no tienen necesariamente relacion con los miembros de la otra.
Por ejemplo, se realiza un estudio para evaluar las diferencias en los niveles
educativos entre dos centros de capacitacion, se aplica un examen comuan a
personas que asisten a cada centro. Las calificaciones del examen son uno de

los factores principales para evaluar diferencias de calidad entre los centros.

1.1. Contrastes de hipotesis para la diferencia de medias

Contraste de hipétesis para la diferencia entre las medias de dos poblaciones:

muestras independientes.

En este apartado presentaremos los procedimientos para contrastar las hipote-
sis acerca de la diferencia de medias de dos poblaciones.

Se supone que se dispone de muestras aleatorias independientes de n; y n,, Not
ota

observaciones procedentes de dos poblaciones normales con medias pyy pyy
A veces en lugar de:
) i ) i Ho: p1 —pp=0
sis nula (Hp) que afirma que los valores de las medias de las dos poblaciones escribiremos:

varianzas conocidas 6% y o3 respectivamente. Se desea contrastar la hip6te-

son iguales: Hy: mp —pp = O frente a cualquiera de las hipotesis alternativas: Ho: w1 = 1p
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Hy:pp-p2#0, Hi:pg —py <0, Hy: pq —pp > 0. Se fija un nivel de significacion

o para realizar el contraste.

El estadistico de contraste sera:

7% = M , Recordad
o7 o3 _
74_7 Xl_>N(P-1/G1) y
1 M2 =
X, > N(Hz; 62)
donde |°L ;92 es el error estandar. La variable diferencia de me-

dias muestrales:

(%= X) > N1, =0l +3 )

=0y _v
oo X1-X2

Es una observacion de una distribucién N(O,1).

En el caso de que no se pueda asegurar que las muestras provienen de
poblaciones normales, s6lo podremos contrastar la diferencia de medias

si los tamafios de las muestras son superiores a treinta.

El teorema central del limite dice que si tenemos un grupo numeroso
de variables independientes y todas ellas siguen el mismo modelo de
distribucién (cualquiera que éste sea), la suma de ellas se distribuye se-
gan una distribucién normal estandar.

Por lo tanto el estadistico de contraste:

(X1 -%)
st 55
m N

7 =

es una observacion de una variable aleatoria que se distribuye aproxi-
madamente como una N(0,1).



CC-BY-SA « PID_00161060 9

Inferencia de informacién para dos o més poblaciones

Regla de decision del contraste de hipotesis

Las regiones de rechazo de la hipo6tesis nula Hy: 1y — p = 0 son:

Figura 1. Regiones de rechazo para contrastes de las diferencias de medias

Se puede actuar de dos mane-
ras:

1) A partir del p-valor segin
sea Hq:

. p—valor:P(|Z| > |z*|)

e p-valor=P(Z< z¥)

e p-valor=P(Z> z¥)

2) Si p-valor < o se rechaza Hy
a partir de los valores criticos
seguin sea Hy:

o Silz > Z4/p serechaza Hy
e Siz*< -z, serechaza Hy

e Siz*> -z, serechaza Hy
donde

Z,estalque P(Z>z,)=ay
Zyjpestalque P(Z>2z,) = /2
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Una vez que se ha calculado el valor del estadistico de contraste, se debe de-
terminar el p-valor. El p-valor depende de la hipotesis alternativa planteada.

* SiHj:pg_py#0, entonces p=2P(Z<|z|)
* SiHj:p-uy<0, entonces p=P(Z<z)
* SiHj:p;-pp>0,entonces p=P(Z>z)

Los p-valores de estos contrastes son la probabilidad de obtener un valor al me-
nos tan extremo como el estadistico de contraste obtenido.

Si el p-valor es significativo se rechaza la hip6tesis nula si es menor que

el nivel de significacion a fijado.

Ejemplo 1. “Comparacion de las medias del tiempo de respuesta de dos
servidores”.

Figura 2. Estimacién de la diferencia entre las medias de dos poblaciones

Poblacién A Poblacién B
Clientes que utilizan el servidor TA Clientes que utilizan el servidor T8
M4 = media de tiempo de espera de los ug = media de tiempo de espera de los
clientes que utilizan el servidor TA clientes que utilizan el servidor TB

ua - Hp = diferencia de las medias
del tiempo de espera
Dos muestras aleatorias simples
independientes

Muestra aleatoria simple de Muestra aleatoria simple de
ny clientes del servidor TA ng clientes del servidor TB
X, = media de la muestra del tiempo Xg = media de la muestra del tiempo
de espera de los clientes del servidor TA de espera de los clientes del servidor TB

X, — Xg = Estimador de pj — g

En una empresa informatica se desea medir la eficiencia de dos servidores web.
Para ello, miden el tiempo de espera del cliente entre la peticion que hace y la
respuesta que le da el servidor. En la tabla 1 vemos los tiempos de espera (en
milisegundos) de ambos servidores (TA y TB) para cincuenta peticiones son:

Tabla 1. Datos del ejemplo 1. “Comparacién de las medias del tiempo de respuesta de dos servidores”

Tiempo de espera para el servidor A Tiempo de espera para el servidor B
9,67 10,01 8,08 10,01 6,45 6,94 12,11 10,31
9,62 10,55 9,98 9,96 9,64 10,47 12,55 10,83

9,50 11,26 10,30 9,28 8,53 8,47 7,98 8,41
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Tiempo de espera para el servidor A Tiempo de espera para el servidor B

10,88 10,64 7,05 10,30 9,20 7,42 10,20 9,15
8,94 10,23 11,79 11,08 4,55 7,48 11,28 7,06

10,59 11,63 9,59 10,05 8,51 11,01 6,53 8,04
9,81 8,91 10,88 9,74 12,11 9,56 8,14 11,70
9,46 10,27 9,83 11,14 7,65 6,80 8,99 10,56
9,26 9,49 10,92 9,44 8,85 8,99 10,01 7,82
9,02 8,99 10,98 9,17 8,45 7,48 8,14 6,01
8,61 10,09 9,54 10,86 8,80 12,57 9,69 8,82
9,42 9,11 10,17 8,82 7,97 7,03

10,86 9,47 10,32 9,85 8,62 8,59

Supongamos que las muestras aleatorias de los tiempos de espera son indepen-
dientes. La empresa quiere saber si el servidor A es menos eficiente (mas lento)
que el servidor B con un nivel de confianza del 99%.

Para contestar a estas preguntas se hard un contraste para comparar dos me-
dias. Dado que el enunciado nos pregunta “si el servidor A es menos eficiente
que el servidor B”, considerando que un servidor es menos eficiente si es mas
lento, entonces hemos de contrastar si la media del tiempo de espera del ser-
vidor A es mas grande que la media del tiempo de espera del servidor B. Asi

pues, tenemos que plantear una hipotesis alternativa unilateral.

Hp:pp—pp=0

e Las hipotesis nula y alternativa son:
Hy:pp—pp>0

¢ Fijamos a = 0,01.

¢ No podemos asegurar que las poblaciones sean normales, pero como he-
mos mencionado anteriormente, al tratarse de muestras grandes (superio-
res a treinta observaciones) el estadistico de contraste sera:

(X1 -%)

2 2
51,52

m ny

z* =

Es una observacion de una variable aleatoria que se distribuye aproximada-

mente como una N(0,1).

Para resolverlo manualmente calcularemos primero los valores muestrales
como hemos expuesto en los moédulos anteriores:
Tiempo de espera para el servidor A Tiempo de espera para el servidor B
ny= 50 ng= 50
X4=9,94 Xxg = 8,90

SA =O,9O Sp= 1,75
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Las varianzas muestrales sf‘ y 512; para estimar las varianzas poblacionales y
calcular el estadistico z*:

(9,94 -8,90)
=2 27 375
0,902 . 1,75%

50 50
Ahora se puede calcular el p-valor p=P(Z>3,75) = 0,00

Puesto que el p-valor es menor que o = 0,01, se rechaza la hip6tesis nula a favor
de la alternativa. Asi, el tiempo medio de espera del servidor A es mayor que
el del B. Luego el servidor A es menos eficiente que el B.

Ejemplo con Minitab: si el ejemplo anterior se resuelve con Minitab, se ob-
serva que el programa no ofrece la opcién de usar la distribucién normal. De
todas formas, dado que las muestras son muy grandes, sabemos que la distri-
bucién t de Student se acerca a la normal a medida que aumenta el namero de
grados de libertad. Por tanto, los resultados que da Minitab no seran similares
por la aproximacién a lo normal.

Los resultados de la figura 3 muestran el p-valor = 0,000 < 0,001. Esto indica
que podemos rechazar la hipoétesis nula concluyendo que las medias de tiem-
pos de espera del servidor A es mayor que las del B. Luego el servidor A es me-
nos eficiente que el B.

Los grados de libertad (DF) del estadistico t aumentan si las poblaciones tienen
distribucién aproximadamente normal pero las varianzas poblacionales no

son iguales.
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Figura 3. Pasos para realizar un contraste de hipétesis para la diferencia de medias para muestras

independentes

= Minitab - Untitled - [SERVIDORES.MTW ***]

J@ File Edit Data Calc | Stat Graph Edtor  Tools

Wiindow  Help
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Multivariate »
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2z TB Samples:

" Summarized data
Sarmple size: [MEar:

Skandard
deviation:

First: | |

Second: I I

I~ &ssume equal variances

Select |

Graphs...

| Options. .. |

Help |

o]

Cancel |

2-5ample t - Options |z|

Confidence level: | a9,0

Test difference: I o,0

Alternative:

greater than

Cancel

o]

Help |

Figura 4. Resultados del contraste de hipdtesis

Two-Sample T-Test and CI: TA; TB

Two-sample T for T4 ws TB

o) Mean Sthewv
T4 50 9,935 0,900
TE 50 g,90 1,75

3E Mean
0,13
0,25

Difference = mwa (TA) - mua ([TE)
Estimate for difference: 1,032
99% lower bound for difference:
T-Test of difference = 0
P-Walue = 0,000 DF = 73

0,371
[wa »): T-Value = 3,71

Contrastes para muestras con varianzas poblacionales desconocidas pero

iguales

El procedimiento que utilizamos se basa en la distribucién t con ny + n, — 2

grados de libertad.

Pasos a seguir

Una vez introducidos los datos
en el programa, se sigue la ruta
Stat > Basic Statistics > 2-Sam-
ple t (1), y se seleccionan las
variables en la ventana corres-
pondiente (2). En el cuadro de
dialogo Options se completan
los campos Confidence level:
99,0y el tipo de hipétesis alter-
nativa Alternative: greater than
3)

Seleccionad OK para obtener el
contraste.

Observad

En el paso (2) no presupone-
mos que las varianzas sean
iguales.
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El estadistico de contraste sera:

donde s es la desviacién tipica comun.
Ejemplo 2. “Estudio sobre la produccién cientifica”.

El director de una escuela universitaria quiere comparar dos departamentos, A
y B, de tamafio similar, por lo que se refiere al “ntimero total de publicaciones
o ponencias de calidad que puedan aportar mejoras a la actividad docente de
la escuela”. Se considerara que una publicacion es de calidad cuando se haya
publicado en una revista indexada o la haya publicado una editorial de pres-
tigio internacional; se considerarad que una ponencia es de calidad cuando se
haya desarrollado en un congreso internacional con proceso de seleccién; para
determinar si la publicaciéon o ponencia puede aportar mejoras a la actividad

docente se ha constituido un tribunal de expertos independientes.

Se ha tomado una muestra aleatoria formada por seis profesores del departa-
mento A y se ha hallado el valor de la variable “ntimero total de publicaciones
o ponencias de calidad para cada uno de dichos profesores”. Se ha hecho lo
propio con otra muestra aleatoria formada por ocho profesores del departa-

mento B. Los resultados se presentan a continuacion:

Tabla 2. Datos del ejemplo 2. “Estudio sobre la difusion cientifica”

Dep. A 5 8 7 6 9 7

Dep. B 8 10 7 11 9 12 14 9

Para un nivel de significacién alfa = 0,05, ;puede afirmarse que la produccion
media de ambos departamentos (segtn los criterios establecidos) es significa-
tivamente distinta?

Para realizar el estudio partiremos del supuesto de que no hay diferencias en el
“ntmero total de publicaciones o ponencias de calidad de ambos departamen-
tos”. Por consiguiente, en términos de la media del namero total de publicacio-
nes o ponencias de calidad, la hipoétesis nula es que la diferencia de medias es
cero. Si la evidencia de la muestra conduce al rechazo de esta hipotesis, llegare-
mos a la conclusion de que las medias de calidad son distintas para las dos po-
blaciones, lo que indica que hay diferencia en las publicaciones de calidad de

los dos departamentos, y eso induciria a encontrar las razones de esa diferencia.

En este estudio hay dos poblaciones: una de los profesores del departamento
A, y otra de los profesores del departamento B. Suponemos que ambas pobla-

ciones son normales y que sus varianzas son iguales pero desconocidas.
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Considerando el namero de publicaciones y ponencias, las medias de pobla-

cion son: py y pp se plantean las hipotesis de trabajo:

Hy: p1 — pp = 0 (ambas medias son iguales)

Hj: pq - py # 0 (ambas medias son distintas)

Se trata de un contraste de hipdtesis bilateral sobre la media de dos poblacio-

nes independientes.

Se empleara Minitab para probar las hipoétesis acerca de la diferencia entre las

medias de dos poblaciones (figura 5).

Figura 5. Pasos para realizar un contraste de hipétesis para la diferencia de medias para muestras
con varianzas poblacionales desconocidas

= Minitab - Untitled - [Worksheet 1 ***]
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Confidence level: I 5.0 3
«

Pasos a seguir

Una vez introducidos los datos
en el programa se sigue la ruta
Stat > Basic Statistics > 2-Sam-
ple t (1), y se seleccionan las va-
riables en la ventana
correspondiente (2).En el cua-
dro de dialogo Options se com-
pletan los campos Confidence
level: 95,0 y el tipo de hipétesis
alternativa Alternative: not equal
(3).

Seleccionad OK para obtener el
contraste.

Observad

En el paso (2) suponemos que
las varianzas son desconocidas
pero iguales y marcamos la ca-
silla correspondiente.
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Obtuvimos los resultados de la figura 6. Aparecen los valores muestrales de
ambos departamentos. El estadistico de contraste es un valor t = -2,84 con
12 grados de libertad (DF) y el p-valor P-Value = 0,015.

Figura 6. Resultados del contraste de hipétesis
Two-Sample T-Test and Cl: DepA; DepB

Tuwo-zauple T for Depd ws DepB

n Mean &tDew 32E Mean

Depd _ & 7,00 1,41 0,58

DepE & 10,00 Z,27 0,50

Difference = mwa (Depd) - mu (DepB)

Estimate for difference: -3,00

95% CI for difference: [=5,30; -0,70)

T-Test of difference = 0 (w3 not =): T-¥Walue = -2,54

P-Walue= 0,0L5 DF = 12
Both use Pooled Sthev = 1,9579

Como p-valor = 0,015 < 0,05, se puede rechazar la hip6tesis nula con a = 0,05.
Asi, la producciéon media de ambos departamentos (segtn los criterios estable-
cidos) es significativamente distinta en los departamento A y B. Observad
que la informacién de Minitab para el intervalo de confianza del 95% en la
figura 5 tiene como extremos los valores —5,30 y —0,70 (observad que el O no
esta incluido en dicho intervalo). Esto también nos indica que debemos recha-
zar la hip6tesis nula y aceptar la alternativa (las medias son distintas).

Asi, los resultados permiten que el director de la escuela universitaria concluya
que existen diferencias significativas entre ambos departamentos en el “na-

mero total de publicaciones o ponencias de calidad”.

Aplicando Microsoft Excel al ejemplo 2. “Estudio sobre la difusion cientifica”. .
Analisis de datos

Para ejecutar una prueba t de dos muestras independientes para datos no apa- Para realizar contrastes de hi-

pétesis con MS Excel es nece-

reados haced clic en (t-Test: Two Simple > Assuming Equal Variants) “prueba t: sario instalar previamente un
. . . ” s complemento llamado

dos muestras suponiendo varianzas iguales” y especificad las dos columnas “Analisis de datos”. Para ins-

talar las herramientas de
analisis de datos haced clic
en Herramientas > comple-
mentos, en el cuadro de dialo-
go activar Herramientas para
andlisis.

que contengan los datos.

La figura 7 muestra el correspondiente output que ofrece Microsoft Excel.

Figura 7. Resultados ejemplo 2. “Estudio sobre la difusion cientifica”. Excel

A B C

_ 1 |Prueba t para dos muestras suponiendo varianzas iguales

2

3 DepA DepB
_ 4 |Media 7 10
_ 5 |Varianza 2 514285714
_6 |Observaciones 6 8
_7 |Varianza agrupada 3,83333333
_ 8 |Diferencia hipotética de las medias 0
_ 9 |Grados de libertad 12
10 |Estadistico f -2,8371975
11 |P(T<=t) una cola 0,0074872
12 |Valor critico de t (una cola) 1,78228755
13 |P(T<=t) dos colas 0,01497439

14 |Valor critico de t (dos colas) 2,17881283
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Como observamos, el p-valor = 0,0149, al ser menor que el valor de o, se puede

rechazar la hip6tesis nula con a = 0,05.

Contraste de hipotesis para la diferencia entre las medias de dos poblaci-

ones: muestras dependientes (datos pareados)

Disponemos de una muestra aleatoria de n pares de observaciones de distribu-
ciones con medias py y ug. Denotamos por d y s; la media muestral y la des-
viacion tipica observadas para las n diferencias (x5-xg) y sea p = puy — ug media

de las diferencias para la poblacion.

Si la distribucién poblacional es normal podemos realizar los siguientes con-

trastes para un nivel de significacion o:

la hipotesis nula: Hy = py=0

la hipotesis alternativa (H;) puede ser bilateral: Hy:p; =0
o unilateral Hy: py>00H; : py< 0

En este tipo de contraste se usa la misma metodologia usada para el contraste

de la media para una sola poblacion que vimos en el moédulo anterior.
Para ilustrar el disefio con muestras emparejadas ilustrar el ejemplo siguiente:
Ejemplo 3. “Puntuaciones de un test de actitud”

A un grupo de personas se les propuso un test de actitud acerca de un tema
polémico y obtuvimos unos resultados. Luego el grupo asisti6 a la proyecciéon
de una pelicula favorable al tema y acto seguido se les propuso de nuevo el test
de actitud, del que se obtuvieron otros resultados. En la tabla 3 aparecen los
datos acerca de las puntuaciones del test realizado a once personas. Cada per-
sona da un par de valores, uno para antes de asistir a la proyeccion de la peli-
cula y otro después de asistir a la proyeccion. Se quiere verificar la hipotesis de
que la proyeccion de una pelicula favorable hace que cambie la actitud desfa-

vorable hacia el tema.

Tabla 3. Datos del ejemplo 3. “Puntuaciones de un test de actitud”

Muestras dependientes

02 Puntuacién del test Diferencia de
Puntuacion del test p -
Persona > después de ver la puntuaciones del test
antes de ver la pelicula -
pelicula (d;)
1 24 16 8
2 20 18 2
3 24 20 4
4 28 24 4
5 30 24 6

Muestras dependientes significa
que tenemos una muestra de
observaciones de dos variables.

La media de la muestra es:

n

2d

La notacién d es para recordar
que la muestra apareada pro-
duce datos de diferencia.
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0z Puntuacion del test Diferencia de
Puntuacion del test Z -
Persona > después de ver la puntuaciones del test
antes de ver la pelicula p
pelicula (di)
6 20 22 -2
7 24 20 4
8 22 18 4
9 18 10 8
10 18 8 10
11 24 20 4
11
>d =52
i=1

Observad que la Gltima columna de la tabla 3 contiene la diferencia entre las
puntuaciones antes y después de ver la pelicula. La clave para analizar el dise-
fio con muestras apareadas es tener en cuenta que solo se considera la colum-
na de las diferencias. Verificaremos la hipo6tesis de investigacion a un nivel de
significacion del 1% (a = 0,01). Sea p; = la media de las diferencias para la po-
blacién de personas.

Las hipotesis serdn:

HO: Wg = 0
H1: Wg # 0

Se trata de un contraste bilateral. Si se rechaza Hj se llega a la conclusion de

que las medias de las puntuaciones del test son distintas al nivel de significa-
cién del 1%. En el médulo 2 se vio que si se puede suponer que la poblacién
tiene una distribucién normal, el estadistico de contraste es una t-Student con
n — 1 grados de libertad, para probar la hipo6tesis nula acerca de la media po-
blacional, si no conocemos la varianza de la poblacién como en este ejemplo.

Con datos de diferencia se calcula el estadistico de prueba para la hipotesis

nula

Hoi Hg= Oes:

como E:2=4,72 Y s;= /M=3,26
11 10

s d-pg  472-0
_S% _3’27 =4,80
Jn J1i1

Con a=0,01yn-1=10 grados de libertad (fy ¢1/2 = o 005 = 3,169), la regla de

t

rechazo para la prueba bilateral es:

Rechazar Hysit < 3,169 ot > 3,169
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En vista de que t = 4,80 esta en la region de rechazo, se rechaza Hy y se acepta
H; y podemos afirmar con un 99% de confianza que la pelicula influy6 en la
actitud de las personas.

Con los resultados de la muestra podemos definir un intervalo de confianza
de diferencia entre las dos medias de la poblacién, con la metodologia para po-

blacién tinica del moédulo 2 los calculos son:

- s 3,26
d+t,, -4 =472+3169| == |=4,72+3,12 =[1,60; 7,84
% Jn (Juj [ !

En consecuencia, el intervalo de confianza de 99% de la diferencia de medias
entre las medias de las dos puntuaciones del test es de 1,6 hasta 7,84 observa-
mos que el intervalo no incluye el valor cero, luego, como hemos visto en el

contraste, podemos rechazar Hy,.

Emplearemos Minitab para este ejemplo 3. “Puntuaciones de un test de ac-
titud”.

La figura 8 muestra los pasos basicos necesarios para realizar el contraste de
hipotesis.

En primer lugar comprobaremos el supuesto de que las poblaciones siguen

una distribucién aproximadamente normal:

Figura 8. Pasos para realizar un test de normalidad. Minitab
Normality Test E'

Variable: | aMTES

Percentile Lines
{+ Mone
" ALY values: |

(" A data values: |

Tests For Normality
f* anderson-Datling
" Ryan-Joiner (gimilar ko Shapiro-ilk)

™ Kolmogorow-Smirnoy

Title: |
Help

K | Cancel |

En los gréaficos resultantes (figuras 9 y 10) se observa que no hay indicios
para dudar de que se cumpla el supuesto de normalidad, ya que los puntos
se encuentran muy proximos a las respectivas rectas. Los graficos nos pro-
porcionan también el p-valor asociado al test de normalidad de Ander-
son-Darling, siendo dicho p-valor suficientemente grande en ambos casos
para no descartar la hipotesis nula de este contraste: que los datos siguen

una distribucién normal.

Pasos a seguir

Una vez introducidos los datos
en el programa se sigue la ruta
Stat > Basic Statistics > Norma-
lity Test. Y rellenamos los cam-
pos en la ventana
correspondiente.

En el cuadro de didlogo se se-
lecciona el test de Anderson-
Darling.
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Figura 9. Test de normalidad. Minitab

Figura 10. Test de normalidad. Minitab

Pasamos, pues a realizar las inferencias ya comentadas sobre p.
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Figura 11. Pasos para realizar un contraste de hipdtesis para la diferencia de medias para muestras
dependientes

= Minitab - Untitled - [Worksheet 1 ***]

J@ File Edit Data Calc | stat Graph  Editor  Tools  WWindow Help

P R = . iy Ay
J = n | % | é{j E s Display Descriptive Statistics, ..
J I Regression 4 55 Store Descripkive Statistics. ..
= s
— AMOYE » g; Graphical Surmmary. ..
+ C1 c2
DOE »
Persona| ANTES 12 1-5ample 2.
Contral Charts 3
1 1 1t 1-Samplet... «—1
ualicy Tools 2
2 2 =l 2% 2-Samplet...
ReliabilitySurvival 3
3 3 L
1 4 Multivariate 4
5 5 Tirne: Seties y| 1P 1 Propartion...
g 5 Tables y | 2P 2 Proportions. ..
1 5
7 7 Monparametrics y| sp 1-5ample Poisson Rate. ..
8 = EDA y| & 2-3ample Paisson Rate. ..
9 g Power and Sample Size * | 2 1 variance, ..
10 10 18 g “§u§ 2 Yariances...
1 1 24 20 e :
COR Correlation. ..
L =

Paired t (Test and Confidence Interval) |X| Paired t - Options

" Samples in columns Confidence level:

First sample: I AMTES
Second sample: I CESPUES Test mean: 0,0
i Summarized data (differences) nlternative: m

Sample size!

I—
Mean: I— Help |
I—

Standard deviation:

Paired t evaluates the first sample
minus the second sample,

+—72

OF I Cancel
3

Seleck |
Graphs. .. |
Help | ok I Cancel I

Opkions... |

Los resultados obtenidos en la figura 12 que, en base a las observaciones regis-
tradas, hay una probabilidad de 0,99 de que p; sea un valor del intervalo
(1,613; 7,841). Ademas, con un p-valor de 0,001 también podemos afirmar
que hay indicios suficientes para rechazar la hipotesis nula. Por lo tanto, po-
demos concluir que la pelicula influy6 en la actitud de las personas.

Figura 12. Resultados del contraste de medias para dos muestras dependientes. Minitab

Paired T for ANTES - DESPUES

H Meann StDev SE Mean
LNTES 11 22,91 3,83 1,16
DESPUES 11 15,15 5,17 1,56
Difference 11 4,727 3,259 0,982

99% CI for mean difference: (1,613; 7,34l1)
T-Test of mean difference = 0 (w3 not = 0): T-VWalue = 4,51
P-Value = 0,001

También puede ejecutar una prueba t por pares utilizando Excel. Desde Herra-
mientas > Andlisis de datos, haced clic en Prueba t para medias de dos muestras
emparejadas y especificad las dos columnas que contienen los datos por pares.
Este comando no calcula el intervalo de confianza, de modo que tenéis que
calcularlo mediante las férmulas que aparecen en este modulo.

Pasos a seguir

Se sigue la ruta Stat > Basic
Statistics > Paired t (1) y se re-
llenan los campos en la venta-
na correspondiente (2). En el
cuadro de didlogo Options se
completan los campos Confi-
dence level: 99,0 y el tipo de hi-
pétesis alternativa Alternative:
not equal (3).

Seleccionad OK para obtener el
contraste.
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La figura 13 muestra el correspondiente output que ofrece Microsoft Excel.

Figura 13. Resultados del contraste de medias para dos muestras emparejadas. Excel

B13 - A 0 000711223615253756
A | B | C |
1 |Prueba t para medias de dos muestras emparejadas
2
3 ANTES DESPUES
4 |Media 22 80909091 18,18181818
5 |“arianza 14 9090909 25 FE3E3636
B |Observaciones 11 11
7 |Coeficiente de correlacidn de Peal 0777554218
& |Diferencia hipotética de las media 0
9 |Grados de libertad 10
10 [Estadistico ¢ 4 811515866
11 [P{T==f) una cola 0000355612
12 [%alor critico de ¢ (una cola) 2 7B37E3458
13 |P(T==t) dos colas 00,0007 1 122:1_
14 [alor critico de ¢ {dos colas) 316927 2672

Al ser el p-valor = 0,0007 < (0,01), se rechaza Hy,.

1.2. Contrastes de hipétesis para la diferencia de

proporciones

Al estudiar la diferencia entre dos proporciones poblacionales, el estimador es
Pq — P,- Como hemos visto en casos anteriores, la distribucion del estimador
de las muestras es un factor clave para determinar los intervalos de confianza

y probar las hip6tesis de los parametros.

Supongamos que disponemos de dos muestras aleatorias simples e indepen-
dientes de ny y n, observaciones. Las proporciones muestrales de éxitos son

respectivamente: 2’1 y 132.

La distribucion de la variable diferencia de proporciones muestrales p; — p, se

puede aproximar con una distribucién N(0,1).

Bajo el supuesto de la hipoétesis nula cierta (Hy: p; — p2 = 0), tenemos que el

estadistico de contraste es:

(b1 1)

J;(l-z))g) (17)

m )

z* =

donde ( f;l —272) es la diferencia de las proporciones muestrales.

El valor f) es el valor estimado comtn de la proporcién poblacional, que po-

demos estimarlo a partir de las dos muestras:

Recordad

Si los tamarfios de las muestras
son grandes:

~ 1-
p1—>N[p1, 7’0‘(” p‘)]

1

y

pz(1_p2)]

n,

p, > N[/%
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mp+mp,
Ny + 1y

p=

Regla de decision del contraste de hipotesis

Nota
A veces, en lugar de:
Una vez que se ha calculado el valor del estadistico de contraste, se debe Ho: p1 - p2=0
determinar el p-valor. El p-valor depende de la hipoétesis alternativa plan- escribiremos:
Ho: p1 = p2
teada.

* Si Hy:p;—p,#0, entonces p=2P (Z<|z))
e Si Hy:pp—py<0,entonces p=P (Z<z)
* Si Hy:p;—py>0,entonces p=P(Z>z)

Si el p-valor es significativo se rechaza la hip6tesis nula si es menor que

el nivel de significacion a fijado.

Se utilizar4 el ejemplo del apartado 1.1, tabla 1. Datos del ejemplo 1. “Compa-
racion de las medias del tiempo de respuesta de dos servidores”.

En una empresa informéatica se desea medir la eficiencia de dos servidores
web. Para ello, miden el tiempo de espera del cliente entre la peticién que
éste hace y la respuesta que le da el servidor. Los tiempos de espera (en mi-
lisegundos) de ambos servidores (TA y TB) para cincuenta peticiones estan
en la tabla 2.

Diremos que el tiempo de espera es aceptable si es menor que 9 milisegundos.
(Podemos decir que la proporcién de peticiones con tiempo de espera acepta-
ble es distinta para los dos servidores?

Para contestar esta pregunta debemos hacer un contraste de diferencia de pro-
porciones que resolveremos con Minitab.

Lo primera operacién es calcular para cada tipo de servidor la proporcién de
tiempo inferior a 9 milisegundos. Para ello, creamos una nueva columna de
nombre A donde pondremos un 1 si la observaciéon de tiempo de espera del
servidor A es inferior a 9 y O en caso contrario. Después sumaremos los valores
de la columna y obtendremos el niimero de observaciones de tiempo del ser-

vidor A inferior a 9 milisegundos.
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En la figura 14 se indican los pasos a seguir:

Figura 14. Pasos a seguir para recalcular una variable nueva

Calculator

Cl TA
C2 TB
C3 A

Seleck |

Help |

Store result in variable: I

Expression:

IF(TA <9; 1;0)

Functions:

EI All functions
>l
=

< Absolute value
Antilog
1 4= =| |Any

Arcsine
Arccosine
or Arctangent

Seleck

[ Assign as a formula

[oc 1

Cancel I

Indicacién

Para hacer este ejercicio prime-
ro calcularemos una nueva va-
riable, que valga 1 si el tiempo
de espera es menor que 9 mili-
segundos y 0 en caso contra-
rio. Para calcular esta variable,
podemos utilizar la instruccién
IF de Minitab.

Hacemos lo mismo para el tiempo del servidor B, creamos una columna de

nombre B con 1 si el tiempo es inferior a 9 y 0 en caso contrario.

Figura 15. Datos

=3 Minitab - Untitled - [SERvIDORS. T I{I] =] [=]B)[X]

@ File Edit Data Calc Stat Graph Editor Tools Window Help
=12
: c1 c2 C3 c4 c5 e
TA B A B =]
1 9.67 6.45 0 1
2 962 964 UEI
3 9.50 8.53 0 1
4 10,88 9,20 0 0
5 8.94 4,55 1 1
6 10,59 8.51 0 1
T 981 12,11 0 0
8 9.46 7.65 0 1
9 9.26 8.85 0 1
10 9.02 8.45 0 1
= v o . . |
0| ]
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Una vez tenemos estas dos nuevas columnas, calculamos la suma de cada una
de ellas y asi tendremos para cada servidor el namero de observaciones de
tiempo inferior a 9:

Figura 16. Pasos a seguir para obtener el valor suma
Pasos a seguir

Display Descriptive Statistics

Se sigue la ruta Stat > Basic

Variables: Statistics > Display Descriptive
AB Statistics. (1), y se rellenan los
campos en la ventana corres-
pondiente.

En el cuadro de dialogo Statis-
tic se marca Sum (2).

— 1 Seleccionad OK para obtenerel
contraste.

By variables (optional):

Select |

Help |

Descriptive Statistics -

[ Mean [~ N nonmissing
[~ SEofmean £ [~ N missing
[~ standard deviation ™ Minimum ™ N total
[~ variance ™ Maximum ™ Cumulative N
[~ Coeffident of variaton [~ Range I~ Percent
[T Cumulative percent

[~ First quartile [~ Sum of squares +«— 2
™ Median [~ Skewness
[~ Third quartile [~ Kurtosis
[~ Interguartile range [ MssD
™ Mode

Help | oK Cancel

Figura 17. Resultados

Descriptive Statistics: A; B
“ariable Sum

A B 0000

B 31.0000

Para el servidor A hay seis observaciones con un tiempo de espera inferior
a 9 milisegundos y para el servidor B el niimero de observaciones menores

de 9 milisegundos es treinta y una.

Plantearemos el siguiente contraste:

Ho:pa—-pp=0
Hy:py—-pp#0

Fijamos a = 0,0S.

La figura 18 muestra los pasos a seguir para realizar el contraste de la diferencia

de proporciones.
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Figura 18. Pasos para hacer un contraste de hipdtesis para la diferencia de
proporciones

2 Proportions (Test and Confidence Interval)

{~ Samples in one column

Samples: I
Subscripts; I

= Samples in different columns

Eirsk: I
Second: I ‘ 1

% Summarized data

Ewvents: Trials:
First: | 3] I 50
Second: | 31 I 50

Select |
Help | QK |

2 Proportions - Options

Confidence level: | ST

Test difference: 0,0

Alternative: Ingt equal ‘l —2

[~ Use pooled estimate of p for test

Help | oK I Cancel |

Los resultados de la figura 19 muestran el p-valor = 0,000 < 0,05. Esto indica que
podemos rechazar la hipétesis nula y concluimos que la proporcion de peticiones

con tiempo de espera aceptable es diferente para los dos servidores.

Figura 19. Resultados del contraste de diferencia de proporciones. Minitab

Pasos a seguir

Se sigue la ruta Stat > Basic
Statistics > 2-Proportions y se
rellenan los campos en la ven-
tana correspondiente.

Summarized data (1)
First: Events: 6 Trials: 50
Second:  Events: 31 Trials: 50

Seleccione Options (2) y se re-
llenan los campos:

Confidence level: 95,0
Alternative: not equal

Test and CI for Two Proportions

Sample X N Satnple p

1 6 50 0,120000

2 31 50 0,620000
Difference = p (11 - p (2]
Estimate for difference: -0,5

95% CI for difference: (-0,661203; -0,338092)
Test for difference = 0 (ws not = 0): Z = —-6,05
P-¥alue = 0,000

1.3. Contrastes de hipodtesis de comparacion de varianzas

Uno de los contrastes desarrollados en el apartado 1.1 para la comparacion de
medias poblacionales depende del supuesto de igualdad de las dos varianzas
poblacionales. Aunque en muchas aplicaciones practicas este es un supuesto

razonable, conviene usar los datos disponibles para contrastar su validez.
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En este apartado consideramos el caso de dos muestras aleatorias indepen-
dientes de poblaciones normales y contrastaremos la igualdad de varianzas

poblacionales.

Sea 512 la varianza muestral de una muestra de 1, observaciones de una poblacién
normal con varianza c? ,y s3 la varianza muestral de una muestra independien-
te de n, observaciones de una poblaciébn normal con varianza c% . Siempre que

las dos varianzas poblacionales sean iguales ( c% = c;% )- La distribucion de la rela-

2
cion de las dos varianzas de las muestras % esta definida por el estadistico F
S2

que sigue una distribucién F de Snedecor con n; -1 grados de libertad para el

numerador y 1, — 1 grados de libertad para el denominador,

st

Fnl—l;nz—l =7
52

Contraste de igualdad de varianzas de dos poblaciones normales Not
ota

. P . A veces, en lugar de:
Ahora nos interesa contrastar la hipotesis nula que asegura que las varianzas 9

. . . . i Ho: 62 = 52
de las poblaciones son iguales % =3 , es decir, la varianza de la poblacion 1 0' of =03

es igual a la varianza de la poblacién 2. Primero fijaremos el nivel de significa- escribiremos:

cién o del contraste. Ho: o /o3 =1

Hipotesis alternativa, puede ser:

e Bilateral: Hy: G% # G%, las varianzas de las dos poblaciones son distintas.

e Unilateral: Hy: 0% > 0%, la varianza de la poblacién 1 es mayor que la va-

rianza de la poblacién 2.

¢ Unilateral: Hy: 6% <03, la varianza de la poblacién 1 es menor que la va-

rianza de la poblacién 2.

Bajo el supuesto de la hipotesis nula cierta H: o% = G% , el estadistico de con-

traste es:

st

F *nl—l;nz—l =77
52

Regla de decision del contraste de hipotesis

Una vez que se ha calculado el valor del estadistico de contraste, se debe de-

terminar el p-valor. El p-valor depende de la hipotesis alternativa planteada.

e SiHjp: o% # G% , entonces p-valor = zp(pnrl — F *)
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e SiH: o7 <03, entonces p-valor — p( Foy iy <F *)
e SiHj: % >03, entonces p-valor = P(Fnl—l,nzl >F *)
e Si p-valor < a se rechaza H

Ejemplo 4. “Variabilidad de procesadores de texto”.

Queremos comparar dos tipos de procesadores de textos: el LaTeX y el OpenOffi-
ce. Para hacerlo, consideramos textos mas o menos de la misma longitud y
contamos la variabilidad del espacio que deja cada procesador entre las pala-
bras. En el caso del LaTeX, consideramos diez textos y obtenemos que la des-
viacién estandar muestral del espacio que deja es de 2,5 mm, mientras que
para el OpenOffice consideramos quince textos y obtenemos que la desvia-
cién estdndar muestral del espacio que deja es de 3,5 mm. Suponiendo nor-
malidad, ;podemos afirmar que los dos procesadores de textos tienen la

misma variabilidad en el espacio que dejan entre palabras?

Para contestar a la pregunta hemos de realizar un contraste de igualdad de va-

rianzas.

L2 _ 2
) Hg :6Ta1ex = SOpenOffice
El contraste de hipotesis es: 2 2
1:OLaTeX # OOpenOffice

Fijamos el valor de a = 0,05.

2
o S
El estadistico de contraste vale: F* :ﬂi. Los valores de s%aTeX y
SOpenOffice

: 2
sépenoﬁqce son, respectivamente, s7,7.x =6,25Yy sépenoﬁqce =12,25.

El estadistico F sigue la distribucion F de Fisher-Snedecor con 9 y 14 grados de

libertad. El valor del estadistico de contraste sera:

._ 6,25
12,25

~ 0,51

Los valores criticos seran:

H_42,914 = Fo,9759,14 = 0,265y F, /5 = Fy 025,9,14 = 3,21.

Para calcular los valores criticos utilizaremos la tabla F o mediante un software

estadistico.

Como Fy 259,14 < F* < Fg 975,9,14 aceptamos la hipétesis nula y concluimos

que las varianzas son iguales. Luego los dos procesadores tienen la misma va-
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riabilidad en el espacio que dejan entre palabras. Si quisiéramos realizar el con-
traste con el p-valor, éste valdria: p=2-p(Fy14 <0,51)~0,312. Como es
mucho mayor que 0,05, aceptamos la hipoétesis nula y llegamos a la misma

conclusion.

En el ejemplo 1. “Comparacion de las medias del tiempo de respuesta de
dos servidores”, cuando realizamos el contraste de diferencia de medias con
Minitab no presupusimos que las varianzas fueran iguales. Ahora realizaremos

un contraste para comparar las dos varianzas y ver si son iguales.

o . Hy:o% =o%
Las hipotesis nula y alternativa son: s o
Hl :0p #0OB

2
Fijamos a = 0,1. El estadistico de contraste es: " = S_g, donde 5,%1 y sl% son
5B
respectivamente, las varianzas de los tiempos de espera de los servidores A y
B. La distribucién de F es la de la F de Snedecor con 50 — 1 = 49 grados de li-
bertad en el numerador y 50 — 1 = 49 grados de libertad en el denominador.

Se resolverd el problema con Minitab. Los resultados de Minitab se muestran
en la figura 20.

Figura 20. Resultados del contraste de varianzas. Minitab

Test for Egqual WVariances: TA; TB

S0% Bonferroni confidence intervals for standard
deviations
i) Lower StDew Tpper
Th &0 0,75196 0,290019 1.12176
TE 50 1.45954 1.74726 2.17731

F-Test ([(Normwal Distribmtion)

Test statistic = 0,27; p-wvalue 0,000

Lewvene's Test [(Lhy Continuous Distribucion)

Test statistic = 13.14; p-walue = 0,000

Pasos a seguir

Podemos ver que como el p-valor es practicamente cero, hemos de rechazar la
hipétesis nula, es decir, no podemos considerar que las varianzas sean iguales.
Por esa razoén cuando hicimos el contraste de diferencia de medias no asumi-

mos que las varianzas fueran iguales.

Se sigue la ruta Stat > Basic
Statistics >2-Variances y se re-
llenan los campos en la venta-
na correspondiente.

En el cuadro de dialogo se
completan los campos:

Samples in different colums:
First:  TA

Second: TB

Seleccionad Options, comple-
tad los campos:

Confidence level: 90,0

Title: Contraste de igualdad de
varianzas
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Minitab también nos ha proporcionado el siguiente grafico para el contraste
de igualdad de varianzas:

Figura 21. Resultados del contraste de igualdad de varianzas. Minitab

Contraste de igualdad de varianzas Estadistica del test
Test Static 0,27
P-valor 0,000

TA7 -
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La figura 21 presenta un grafico con los intervalos de confianza de las varian-
zas de las dos poblaciones, se observa que los intervalos son distintos y no se
solapan. El p-valor del test F indica que se rechaza la hipétesis de igualdad de

varianzas.

En el gréfico de boxplot se ve claramente que la variabilidad del tiempo de es-
pera del servidor A es mucho més pequefia que la del servidor B.
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2. Comparacion de grupos mediante ANOVA

En el apartado anterior se presentaron algunos de los contrastes de hipotesis
que se usan habitualmente para determinar si existen diferencias significativas
entre dos poblaciones o grupos de individuos. En ocasiones, sin embargo, se
deseara comparar mas de dos poblaciones o grupos entre si, para lo cual se em-
plearan las técnicas de analysis of variance (ANOVA) que se introducen en

este apartado.

Asi, por ejemplo, las técnicas ANOVA se podrian aplicar para dar respuestas a

preguntas como las siguientes:

e ,Existen diferencias significativas entre la duracion media de los juicios se-
gan el tipo de delito cometido (homicidio, abuso sexual, robo, pirateria,

fraude fiscal, etc.)?

e ;Existen diferencias significativas entre el gasto anual promedio en tecno-
logia segan la franja de edad a la que pertenezca el individuo (nifio, joven,

adulto, anciano)?

¢ ;Existen diferencias significativas entre el nimero medio de alumnos y or-

denadores por centro escolar entre los diferentes paises de la eurozona?

* Existen diferencias significativas entre el nimero medio de autocitas a re-
vistas cientificas segin la editorial (Elsevier, Inderscience, Taylor & Francis,
IGI Global, etc.)?

e ;Existen diferencias significativas entre el consumo medio de combustible
segin el modelo de automévil usado (deportivo, turismo, todoterreno,

monovolumen, etc.)?

¢ ;Existen diferencias significativas entre la calidad media (medida a partir de
unos parametros definidos) de los resultados de bisquedas en linea segin el

tipo de motor usado (Google, Microsoft Bing, Yahoo!, etc.)? (figura 22)

Figura 22. ANOVA permite comparar la calidad media de diferentes servicios

Google
bINg

YaHoO!

Nota

El acrénimo ANOVA viene del
término analysis of variance
(analisis de la variacion existen-
te entre las distintas medias
consideradas, para ver si exis-
ten diferencias significativas
entre las mismas).

Observad

Los ejemplos que se presentan
en este capitulo se caracterizan
porque la pertenencia a una po-
blacién o a otra depende de un
Unico factor (tipo de delito, fran-
ja de edad, pais, editorial, mode-
lo de automavil, motor de
busqueda, etc.). En estos casos,
se usa ANOVA de un Unico fac-
tor (en inglés one-way ANOVA o
single-factor ANOVA). Sin em-
bargo, existen también técnicas
ANOVA para el caso en que los
grupos vengan determinados
por dos factores (p. ej.: tipo de
delito y solvencia econémica del
acusado, franja de edad y clase
social, etc.).
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2.1. Comparaciones de varias medias

Cuando se desean comparar entre si las medias correspondientes a mas de dos
poblaciones o grupos de individuos, se podria pensar en comparar dichas me-
dias dos a dos mediante un contraste de hipotesis para dos poblaciones. Asi,
por ejemplo, en el caso de tres poblaciones se podria pensar en realizar una
serie de tests t de hipotesis para comparar las distintas medias entre si: un pri-
mer test t para comparar las medias de las poblaciones 1y 2, otro para com-
parar las medias de las poblaciones 1 y 3, y otro para comparar las medias de
las poblaciones 2 y 3. Sin embargo, esta aproximacién tiene un grave proble-
ma: si para cada test t se usa un nivel de significacién a (generalmente se usa
o = 0,05), entonces la probabilidad de cometer un error de tipo I es o en cada
test; en tales condiciones, se puede comprobar que la probabilidad de cometer
un error de tipo I en el global de los tres tests seria de 1—(1-a)> (si a = 0,05
dicha probabilidad seria de, aproximadamente, 0,14). En otras palabras, com-
parando las medias dos a dos se esta realizando un test global con una proba-
bilidad de error de tipo I mucho mayor que la prevista inicialmente para cada
test individual. Para evitar este problema se pueden usar las técnicas ANOVA,
que permiten realizar un tnico test global con una probabilidad de error de

tipo I determinada (generalmente o = 0,05).
El test F de ANOVA

A fin de comparar las medias correspondientes a k poblaciones o grupos de in-
dividuos distintos (k > 3 ), se puede plantear el siguiente contraste de hipote-
sis, donde el simbolo p; representa la media de la poblacién i-ésima para
i=1,2,..k

M

Hg:py =py =... = pg (todas las medias son iguales)
H, :no todas las medias son iguales

En otras palabras, la hipotesis nula, Hy, sostiene que no hay diferencias signi-
ficativas entre las distintas medias poblacionales, mientras que la hipétesis al-
ternativa, H,, sostiene todo lo contrario, p. ej.: que las medias si son
significativamente distintas. Es importante observar aqui que la hipétesis nula
no dice que todas las medias sean significativamente distintas entre si, sino
simplemente que no todas las medias son iguales, aunque puede haber algu-
nas de ellas que si lo sean (podria ocurrir, por ejemplo, que p; #puy ¥ Up # 13
pero siendo W =p3). Por tanto, si se concluyese que no todas las medias son
iguales, cabria realizar un analisis posterior para determinar cuales de ellas son

diferentes entre si.

El contraste de hipotesis (1) se llama test F de ANOVA, y generalmente se recurre
al uso de algan software estadistico para resolverlo, es decir, para obtener el p-
valor asociado al test. A partir de dicho p-valor corresponde al investigador de-

Recordad

Un error de tipo | consiste en
rechazar la hipétesis nula cuan-
do resulta que ésta es cierta. En
este caso, la hipétesis nula seria
que las medias son coinciden-
tes.

Software estadistico

En la actualidad existe una
gran variedad de programas
estadisticos o de anilisis de
datos de gran calidad, tanto
comerciales (Minitab, SPSS,
MS Excel, SAS, S-Plus, etc.)
como de cédigo abierto (R,
Calc de Open Office, etc.).
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terminar si ha sido posible encontrar suficientes evidencias para rechazar la hi-
potesis nula o si, por el contrario, los datos empiricos parecen no estar en
contradicciéon con la hip6tesis nula y, por tanto, se acepta ésta como valida.
Como en cualquier otro tipo de contraste estadistico, antes de resolver el test se
suele fijar un valor de significacién, a (por lo general o = 0,05 o bien a = 0,01).
Una vez obtenido el p-valor, si p —valor < a se rechaza la hipotesis nula; en caso
contrario no hay indicios suficientes para hacerlo y, por tanto, se aceptara la hi-
potesis nula como valida. La eleccion del valor concreto para o dependera del
nivel de confianza, 1-a, que se desee que tenga la decision final sobre la acep-
tacion o no de la hipétesis nula. Asi, por ejemplo, un a = 0,05 implicara un nivel
de confianza en la decision final del 95%, mientras que un a. = 0,01 implicara un
nivel de confianza en la decision final del 99%. El problema de seleccionar nive-
les de confianza excesivamente elevados (superiores al 99% o, lo que es lo mis-
mo, valores de a inferiores a 0,01) es que entonces el contraste de hipotesis se
vuelve excesivamente “conservador”, de manera que s6lo cuando las evidencias
empiricas en contra de la hipétesis nula son totalmente abrumadoras (es decir,
sOlo cuando las diferencias entre algunas de las medias son desproporcionadas),
es posible obtener un p-valor mas pequefio o igual que o. Por ese motivo, en la
mayoria de los casos practicos se suele usar el valor a = 0,05 o bien o = 0,01.

Ejemplo de aplicaciéon de ANOVA: comparando el niimero medio de
accesos a contenidos en linea segtn la posicion del enlace en el portal

En un portal web de acceso a publicaciones en linea, se sospecha que la posi-
cién que ocupa el enlace a una determinada base de datos afecta al nimero de
consultas diarias que ésta recibe. Para comprobarlo, se han seleccionado al azar
un total de 13 dias laborables de un mes y, para cada uno de ellos, se ha con-
tabilizado el namero de accesos recibidos. La tabla 4 muestra los valores obte-
nidos, los cuales han sido agrupados segtn la posicion diaria del enlace (en el

encabezado de la pagina, en el margen derecho o en el margen izquierdo).

Tabla 4. Accesos a una base de datos segln la posiciéon del enlace

Posicion del enlace

Encabezado (1) Derecha (2) lzquierda (3)

10 7 3

12 6 3

10 7 5

9 8 4

7

Total 41 45 15
Media X1 =10,25 X2 =70 X3=3,75

(Se puede afirmar que hay diferencias significativas entre las distintas me-
dias?, es decir: ;depende el nimero medio de consultas diarias de la posicion

que ocupe el enlace?
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Como primera aproximacion a este problema, se puede optar por generar un
diagrama de cajas y bigotes (boxplot) para cada uno de los grupos de datos. La
figura 23 muestra dicho diagrama que incluye ademads una linea uniendo las
respectivas medias. Se aprecian claras diferencias entre los tres grupos consi-
derados, tanto a nivel de boxplots como a nivel de las respectivas medias.

Figura 23. Boxplot del nimero de consultas para cada posicién

Boxplot of Encabezado, Derecha, Izquierda
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Sin embargo, para contestar de forma contundente a las preguntas anteriores,
resulta necesario realizar un test F de ANOVA. El contraste de hipotesis se pue-

de formular como sigue:

HO : )_(1 = )_(2 = )_(3
H, :no todas las medias son iguales

Para resolver dicho contraste, se fijard un valor de significacién a = 0,05 y se
recurrira al uso de software estadistico para obtener el p-valor correspondiente

a las observaciones de la tabla 4.

La figura 24 muestra los pasos basicos necesarios para generar un analisis
ANOVA con el programa Minitab. Por su parte, la figura 24 muestra el output
generado para los datos de este ejemplo. Se observa que el valor resultante para
el estadistico del contraste es F=44,47. El estadistico F es una variable aleatoria
que se comporta segin una distribucion F-Snedecor con 2 grados de libertad
en el numerador (DF Factor) y 10 grados de libertad en el denominador (DF
Error). El p-valor no es més que la probabilidad de que una variable aleatoria
con esas caracteristicas supere el valor observado para el estadistico de contras-
te, p. €j.: p-valor = P(F5,1o > 44,47). Segln se observa en el output, en este caso
se obtiene p-valor = 0,000. Dado que el p-valor es mucho menor que el nivel
de significacidn escogido (p-valor = 0,000 < 0,05 = o), se concluye que los datos
obtenidos parecen contradecir la hipoétesis nula y, por tanto, ésta se debe re-

chazar. Asi pues, hay indicios claros para pensar que no todas las medias son
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iguales, p. ej.: que el nimero medio de consultas diarias si depende de la po-

sicion que ocupe el enlace.

Figura 24. Pasos a seguir para realizar un analisis ANOVA en Minitab
Pasos a seguir

Worksheet 1

+ c1 c? 3 cC 1 Una vez introducidos los datos
: +— en el programa (1), se sigue la
Encahezado| Derecha |lzquierda 4
- - - 4 . ruta Stat > ANOVA > One-Way
| (Unstacked) (2) y se seleccio-
2 12 B 3 Stat Graph Edtor Tools ‘Window Help nan las variables en la ventana
3 1a 7 a Basic Statistics » k‘ ‘ = de ANOVA (3). Mas adelante
o 5 g 1 ] # | 7 J * B se haré uso de la opcién
L2 Reoc M = RV Graphs de esta ventana (4).
3 7 (> ‘ one-ay. ..
h DCE ¥
Control Charts | HH Two-way...
x
C1 Encabezado Responses (in separake columns):
2  Derecha : 79
€3 Lzquierda Encabezado Derecha Izquierda _I
- 2

I~ store residuals
) —
[~ Store fits 3

Confidence level: I a5,0

Select | Comparisons...l araphs. .. | 4——4
Help | (o] 4 I Cancel |

Figura 25. Output ANOVA de Minitab para la comparativa de posiciones

=
One-way ANOVA: Encabezado, Derecha, lzquierda :l‘

Source DF 35 ik F P
Factor 2 84.500 42,250 44.47 0.000
Error 10 9.500 0.950 |

Total 12 54,000

§ = 0.9747 B-3g = 89.89% R-Sg(adj) = 87.87%

Individual 95% CIs For Mean Based on
Pooled Stlew

Level i) Mean Stlew + + +
Encabezado 4 10.250 1.258 [—=—=*%-—-]
Derecha 5 7.000 0,707 [—=—=*%-—-]
Izquierda 4 3.750 0,957 ([---%---]
5.0 7.5 10.0 1z.5
Pooled 5StDew = 0.975
-
4| H 4

En la segunda parte del output Minitab se representa cada una de las medias
junto con su respectivo intervalo de confianza para un nivel de confianza del
95%. Se observa que los intervalos son disjuntos (no se solapan), lo que signi-
fica que las observaciones aportan evidencias de que las tres medias son signi-
ficativamente distintas. En general, sin embargo, el hecho de que todas las
medias no sean iguales no implicard necesariamente que todas sean distintas

(es decir, podria haber intervalos que se solapasen y otros que no).
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La figura 26 muestra el correspondiente output ANOVA que ofrece Microsoft
Excel. Se observa el mismo valor para el estadistico F = 44,47, asi como un
p-valor = 1,0543E-05 (es decir, p-valor = 0,00001543 o, redondeando, p-valor
= 0,000).

Figura 26. Output ANOVA de Excel para la comparativa de posiciones

A B c D E F G
1 |Andlisis de varianza de un factor
2
3 |RESUMEN
4 Grupos Cuenta Suma Promedio Warianza
4 |Encabezado 4 41 10,25 1,58333333
6 |Deracha 5 35 7 05
7 |lzguierda 4 15 375 091666667
g

10 | ANALISIS DE WARIANZA

11 | Onigen de las varaciones Suma de cuadrados | Grados de fibertad | Promedio de Jos cuadrados F Probabilidad Valor critico para F
12 |Entre grupos 845 2 4225 44 4736842 1,0543E-05 4,102821015
13 |Dentro de los grupos 95 0 095

14

15 Total 94 12

Ejemplo de aplicacion de ANOVA: comparando promedios de resultados

validos ofrecidos por un motor de basqueda segiin el algoritmo empleado

Los desarrolladores de un nuevo motor de bisqueda especializado en recursos
de investigacion estan probando tres algoritmos distintos de recuperacién de
la informacién. Para comprobar si el promedio de resultados validos que pro-
porciona cada algoritmo es el mismo en los tres casos, se han realizado unas
pruebas aleatorias con cada uno de ellos. La tabla 5 muestra las observaciones

que se han obtenido tras realizar las pruebas.

Tabla 5. Resultados validos obtenidos con cada algoritmo

Nota

Algoritmo
SR-GCWS SS-NEH Hibrido
12 10 16
10 17 14
18 16 16
12 13 11
14 20
21
Total 66 56 98
Media X1 =13,20 X = 14,00 X3=16,33

;Se puede afirmar que hay diferencias significativas entre los distintos prome-
dios?, es decir: ;depende el promedio de resultados validos obtenidos del al-
goritmo que implemente el motor de bisqueda?

Nuevamente, para responder adecuadamente a estas preguntas resulta necesa-

rio llevar a cabo un test F de ANOVA. Como paso previo, sin embargo, pode-

Para poder realizar ANOVA con
MS Excel, es necesario instalar
previamente un complemento
llamado “Anélisis de datos”.
Usando Google o cualquier
otro buscador es facil encon-
trar informacién detallada so-
bre el proceso de instalacion.
También existe un comple-
mento similar para Open Offi-
ce Calc.




CC-BY-SA * PID_00161060 37 Inferencia de informacién para dos o mas poblaciones

mos graficar los correspondientes boxplots. Como se observa en la figura 27, en
este caso las diferencias entre los distintos grupos no parecen ser excesivas, si
bien el algoritmo hibrido parece haber proporcionado resultados ligeramente

superiores al resto.

Figura 27. Boxplot del nimero de resultados vélidos para cada algoritmo

Boxplot of SR-GCWS, SS-NEH, Hibrido
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A fin de comprobar si las diferencias entre los promedios son o no estadistica-
mente significativas, se formula el siguiente contraste ANOVA:

HO : )_Cl = )_Cz = )_C3
H, :no todas las medias son iguales

Nuevamente se hara uso de un nivel de significacion a. = 0,05 (es decir, el nivel
de confianza usado es del 95%). Las figuras 28 y 29 muestran, respectivamen-

te, los output Minitab y Excel para este ejemplo.

Figura 28. Output ANOVA de Minitab para la comparativa de algoritmos

R
One-way ANOVA: SR-GCWS, 55-NEH, Hibrido :IA
Source DF k] ok F P

Factor Z 9.2 l4.6 1.29 0.312
Error 12 136.1 11.3
Total 14 165.3

§ = 3.368 R-Sg = 17.66% R-Sgadj) = 3.94%

Individual 95% CIs For Mean Based on Pooled Stlew
Level i) Mean Stlew + + +
SR-GCWS 5 13.200 3.033 [ *
4
&

53-NEH 14.000 3.162 { *
Hibrido 16.333 3.7:24 { *

10.0 12.5 15.0 17.5

Pooled 5StDew = 3.368

R

ol ,




CC-BY-SA * PID_00161060 38 Inferencia de informacién para dos o mas poblaciones

Figura 29. Output ANOVA de Excel para la comparativa de algoritmos

A =] © D E F
1 |Analisis de varianza de un factor
2
3 |RESUMEN
4 Grupos Cuenta Suma Promedio Varanza
5 |SR-GCWS 5 BE 132 92
6 |53-NEH 4 56 14 10
7 |Hibrido B 98 16,33333333_13,8606667
g

10 |ANALISIS DE WARIANZA

11 |Qvigen de las variaciones| Suma de cuadrados  Grados de liberad Fromedio de Jos cuadrados F Frobabilidad | v
12 |Entre grupos 282 2 146 1,28697356 0311619296
13 |Dentro de los grupos 136,1333333 12 11,34444444

14

15 | Tatal 165,3333333 14

En ambos outputs se observa un valor del estadistico F = 1,29. En esta oca-
sion, dicho estadistico es una variable aleatoria que se distribuye segin una
F-Snedecor con 2 grados de libertad en el numerador (DF Factor) y 12 en el
denominador (DF Error). La probabilidad de que una variable como esta al-
cance o supere el valor 1,29 obtenido por el estadistico es de 0,312, que es
precisamente el p-valor que se observa en ambos outputs. Puesto que p-valor
= 0,312 > a = 0,05, no parece que haya indicios suficientes como para re-
chazar la hipo6tesis nula. En otras palabras, los datos observados parecen es-
tar en sintonia con la hipotesis nula, por lo que aceptaremos la hipotesis
de que los promedios de resultados validos son equivalentes para los tres
algoritmos, sin que haya diferencias estadisticamente significativas entre

ellos.

De hecho, en la segunda parte del output Minitab se observa que los intervalos
de confianza para las tres medias se solapan parcialmente, lo que significa que
para un nivel de confianza del 95% no se puede afirmar que haya diferencias

significativas entre dichas medias.

2.2. Lalégica del contraste ANOVA

Cuando mediante un experimento aleatorio se recogen una serie de datos (ob-
servaciones) y estos son clasificados en varios grupos o niveles segin un factor
determinado (franja de edad, clase social, etc.), se pueden analizar dos tipos
distintos de varianza en las observaciones (figura 30):

e Porun lado, la variacién existente entre los distintos grupos o niveles (p.ej.:
la variacion entre las respectivas medias de cada grupo). Esta se conoce
como “variacién entre-grupos” o “MS Factor”.

e Por otro, la variacion existente dentro de cada grupo o nivel. Esta se conoce

como “variacion intra-grupos” o “MS Error”.
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Figura 30. Variacion entre-grupos y variacién intra-grupos

edia global de los tres grupos

Variacién entre-
grupos

/Media del grupo

GI’L!pO 1

Variacion intra-
grupo

En el fondo, lo que hace el test ANOVA es comparar las dos medidas de varia-
bilidad, la variacion entre-grupos (MS Factor) y la variacion intra-grupos (MS
Error). Si ocurre que el MS Factor es significativamente mayor que el MS Error
(figura 31), entonces el test concluird que las medias de los distintos grupos
no son iguales en todos los casos (lo que implica que no todos los datos per-
tenecen a un mismo grupo o, lo que es lo mismo, que el valor de las observa-
ciones si depende del factor considerado). Si, por el contrario, el MS Factor no
es significativamente mayor que el MS Error (figura 32), entonces el test con-
cluird que no se aprecian diferencias significativas entre las medias de los dis-
tintos grupos (en otras palabras, que las observaciones parecen proceder todas
de un Gnico grupo o, lo que es lo mismo, que las observaciones no parecen
depender del factor considerado).

Figura 31. La variacién entre-grupos es mayor que la intra-grupos

Boxplot of G1, G2, G3
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Figura 32. La variacién entre-grupos es menor que la intra-grupos

Boxplot of G1, G2, G3
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En la figura 25 (output ANOVA de Minitab) se observan los valores MS Factor
= 42,250 y MS Error = 0,950. Es decir, en este caso la variacién entre-grupos
(MS Factor) es mucho mayor que la variacion intra-grupos (MS Error), lo que
ya deja entrever que, probablemente, el test concluya que no todas las medias
son iguales. Pero, ;como llega el test a la conclusion final? La figura 33 ayuda

a entender mejor como funciona el test F de ANOVA:

a) Por un lado, a partir de los valores obtenidos para MS Factor y MS Ertor se

MS Factor

calcula el estadistico de contraste F = ———.
MS Error

En este caso, F = 44,47.

b) Por otra parte, se sabe que si la hip6tesis nula fuese cierta (p. ej.: si todas las
medias son iguales), este estadistico F seria una variable aleatoria que seguiria
una distribucion F-Snedecor con k — 1 grados de libertad en el numerador (DF
Factor), y n — k grados de libertad en el denominador (DF Error), siendo k el

namero de grupos o niveles y n el namero total de observaciones.

En el ejemplo de la figura 25, DF Factor = 2 y DF Error = 10. Ahora bien, ;cual
es la probabilidad de que una variable aleatoria F-Snedecor (2, 10) alcance un
valor como el obtenido por el estadistico de contraste F? En otras palabras, jes
razonable pensar que una F-Snedecor (2,10) haya alcanzado un valor de
44,477 La probabilidad de que esto ocurra nos la proporciona el p-valor. De
esta manera, un p-valor “pequefio” (inferior al nivel de significacién a) se pue-
de interpretar como una probabilidad demasiado baja de que una F-Snedecor
(2, 10) pueda dar el valor obtenido para F, lo que pone en entredicho la supo-
sicion inicial de que la hipdtesis nula era cierta. Por otra parte, un p-valor

“grande” (superior al nivel de significaciéon o) se puede interpretar como una
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probabilidad aceptable de que, en efecto, una F-Snedecor (2, 10) tome dicho

valor y, por tanto, no habria evidencias para dudar de la hip6tesis nula.

Figura 33. Funcionamiento interno del test F de ANOVA

Ms Factor (variacion
entre-grupos)
Ms Error (variacion
intra-grupos)

F= MS Factor/
MS Error

Observaciones >

v

v

Sies cierta F sigue una ;Es probable que una
la hipétesis nula »| F-Snedecor ——| F-Snedecor (k-1, n—k) llegue
(situacién inicial) (k=1, n-k) al valor F? (p-valor)
*
! No Si
| v v
1
e ,| Fallala suposicién Aceptar

inicial la hipétesis
nula y concluir
que todas las
medidas
parecen iguales

Rechazar la hipétesis
nula y concluir que
todas las medidas no
son iguales

2.3. Las hipétesis del modelo ANOVA

Como cualquier otra técnica de inferencia estadistica, el contraste ANOVA se
puede usar con garantias, para comparar poblaciones o grupos, solo si se cum-

plen unas determinadas condiciones de entorno o supuestos basicos:

1) Las observaciones son independientes entre si y constituyen, para cada po-
blacién o grupo, una muestra aleatoria.

2) Las observaciones de cada poblacion o grupo siguen una distribuciéon
aproximadamente normal.

3) Las observaciones de cada poblacién o grupo tienen una varianza 2, que
es aproximadamente la misma para todos los grupos.

El primer supuesto garantiza que las muestras son aleatorias e independientes,
lo que es un requisito comun en las técnicas de inferencia estadistica. Si las
muestras no fuesen aleatorias o las observaciones no fuesen independientes,
la informacion que se generaria estaria sesgada y, por tanto, no seria valida. Es
funcién del investigador garantizar, durante la fase de disefio del experimento
y posterior recogida de datos, que se cumple este supuesto.

Observad

que cuando el valor obtenido

para el estadistico F a partir de
las observaciones no es cohe-

rente con lo que cabria esperar
de una F-Snedecor (k- 1,

n - k), entonces lo que est4 fa-
llando es la suposicion inicial de
que la hipétesis nula es cierta.




CC-BY-SA * PID_00161060 42 Inferencia de informacién para dos o mas poblaciones

Por lo que respecta al supuesto segundo (normalidad de los datos), éste se suele
comprobar mediante la realizacion de un gréafico de normalidad para el con-
junto de los datos. La figura 34 muestra dicho grafico para el ejemplo anterior
de los algoritmos. Siempre que los puntos (que representan a las observacio-
nes) estén razonablemente cerca de la linea recta (que representa a la distribu-
cién normal) y no muestren un patrén de comportamiento extrafio, no hay
motivos para sospechar que falla el supuesto de normalidad. Si se observase al-
gun patrén de comportamiento anémalo (e.j.: muchos puntos excesivamente
alejados de la linea o bien muchos puntos consecutivos situados al mismo
lado de la linea), entonces el supuesto de normalidad quedaria en entredicho.
Para el ejemplo de los algoritmos, no se observa en el grafico nada extrafio y,
por tanto, se puede validar el supuesto de normalidad de los datos.

Figura 34. Gréfico de normalidad para los datos del ejemplo de algoritmos

Normal Probability Plot
(responses are SR-GCWS, SS-NEH, Hibrido)

Por cien
3

Finalmente, por lo que respecta al supuesto de varianza constante, este se suele
comprobar o bien calculando las desviaciones estandar de las muestras para
verificar que no hay grandes diferencias entre ellas (figura 35), o bien median-
te un grafico que permita comparar visualmente la dispersion de los datos en
cada grupo (figura 36). En el caso del ejemplo de los algoritmos no se observan
diferencias sustanciales entre las varianzas de los distintos grupos, lo que per-

mite validar el supuesto de varianza constante.

Figura 35. La columna StDev permite estimar la varianza de cada grupo

Esemon =

Descriptive Statistics: SR-GCWS, 55-NEH, Hibrido

Warishle N N* Mean 3E Mean 3tDev Minimum 0l Median 03 Maximum
SR-GCWS 5 o 13.zZ0 1.36 3.03 10.00 1l.00 1z.00 1l6.00 15.00
55-NEH 4 o 14.00 1.58 3.16 10.00 10.75 14.50 16.75 17.00
Hibride & 0 16.33 1.52 3.72 11.00 13.25 16.00 20.25 Zl.00 _I
-
[ 4

Pasos a seguir

Este tipo de gréfico se puede
obtener con Minitab sin més
que marcar la casilla “Normal
plot of residuals” en las opcio-
nes de Graphs de la ventana
ANOVA (figura 24).

Recordad

La varianza, cz, es el cuadrado
de la desviacién estandar o ti-
pica, o. Por lo general, el valor
exacto de la varianza poblacio-
nal, 02, sera desconocido, pero
dicho valor se puede estimar
mediante la varianza de la
muestra, s2.
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Figura 36. El grafico muestra la dispersién de cada grupo
Pasos a seguir

Versus Fits Este tipo de gréfico se puede
(responses are SR-GCWS, SS-NEH, Hibrido) obtener con Minitab sin mas
que marcar la casilla “Residuals
5.0+ ° ° versus fits” en las opciones de
Graphs de la ventana ANOVA
(figura 24).
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E L]
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Ejemplo de aplicaciéon de ANOVA: comparando valoraciones medias en
un cuestionario de escala Likert segun el perfil de los encuestados

En una universidad se ha implementado recientemente un nuevo servicio
online que facilita el acceso a recursos didacticos complementarios. Se desea
conocer la opinién de los estudiantes sobre este nuevo servicio y, en parti-
cular, si existen diferencias significativas en la valoracion media del servicio
segan la titulacién a la que pertenezca el estudiante. Para ello, un investiga-
dor ha seleccionado al azar cinco estudiantes de cada uno de los principales
estudios que se ofrecen y les ha pedido que rellenen un cuestionario de eva-
luacion del servicio. El cuestionario usa una escala Likert entre 1 (minima va-
loracién) y 7 (méxima valoracion). Los resultados obtenidos se muestran en
la tabla 6.

Tabla 6. Valoraciones obtenidas segin perfil del estudiante

Estudios
CC. Informacion CC. Empresariales Ing. Informatica | Derecho Psicologia
6 4 5 4 3
> 4 4 4 3
5 3 4 5 2
7 3 6 4 4
4 2 2 6 2

La figura 37 muestra el output Minitab correspondiente a los estadisticos des-
criptivos para cada grupo o nivel de observaciones. A simple vista parecen
apreciarse diferencias considerables entre la maxima valoracién media (CC.
Informacién, con 5,4) y la minima (Psicologia, con 2,8). El boxplot de la figura

38 también apunta a la posibilidad de que las valoraciones medias del servicio
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puedan depender del perfil del estudiante, no siendo las mismas para todas las

titulaciones.

Figura 37. Estadisticos descriptivos de las valoraciones por grupo

il
|

Descriptive Statistics: CC. Informac, CC. Empresar, Ing. Informa, Derecho, ...

Variable n H* Mean SE Mean 3StDev Sum Minimum 0l Median
CC. Informacidn 5 0 5.400 0.510 1.140 27.000 4.000 4.500 5.000
CC. Empresariales 5 o 3.z200 0.374 0.837 16.000 Z.000  2.500 3.000
Ing. Informatica 5 o 4.z00 0.663 1.453 zZ1.000 Z.000  3.000 4,000
Derecho 5 0 4.600 0.400 0.894 Z3.000 4.000 4.000 4,000
Psicologia 5 o z.800 0.374 0.537 14.000 Z.000  Z.000 3.000 —I
K| o

Figura 38. Boxplot para las valoraciones del servicio por titulacién

Boxplot of CC. Informac, CC. Empresar, Ing. Informa, Derecho, ...
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Para poder corroborar o desmentir estas impresiones visuales de una forma
maés cientifica, se opta por realizar un test F de ANOVA con un nivel de signi-
ficacién a = 0,01 (es decir, en este caso se opta por usar un nivel de confianza
del 99%).

La figura 39 muestra el output ANOVA de Minitab, en el que se aprecia un MS
Factor = 5,54 (variacién entre-grupos), un MS Error = 1,14 (variacion intra-gru-
pos) y un valor para el estadistico de contraste F = 5,54 / 1,14 = 4,86. En el su-
puesto de que la hipoétesis nula fuese cierta, este estadistico seguiria una
distribucién F-Snedecor con 4 grados de libertad en el numerador (DF Factor)
y 20 grados de libertad en el denominador (DF Error). La probabilidad de que
una variable aleatoria F-Snedecor (4, 20) tome un valor igual o superior a 4,86
es 0,007 (p-valor). Esta probabilidad es extremadamente baja (mas baja que el
valor de significacién fijado), lo cual pone en entredicho el supuesto inicial de
que la hipoétesis nula era cierta. En otras palabras: puesto que p-valor < a hay
que rechazar la hipétesis nula. Asi, pues, segin las evidencias empiricas en-
contradas, se puede afirmar con un 99% de confianza que las valoraciones me-
dias de los grupos no son todas iguales.
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Figura 39. Output ANOVA de Minitab para la comparativa de valoraciones

= Atencion
R il
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§ = 1.068 F-3g = 49.29% R-Sg{adj] = 39.15%
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===
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Derecho
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-
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La segunda parte del output Minitab ofrece los intervalos de confianza, a un
nivel de confianza del 99% en este caso, para cada una de las medias. Se
observa como los intervalos mas extremos, p. ej.: los correspondientes a
CC. Informacién y Psicologia, no se solapan por muy poco. Esto es 16gico,
puesto que el p-valor = 0,007 estd muy cercano al valor de significacion es-
cogido ¢ =0,01. Si el p-valor hubiera sido todavia menor, ambos intervalos
estarian claramente separados. Si, por el contrario, el p-valor hubiera sido
mayor, ambos intervalos se solaparian parcialmente como ocurre en el res-
to de los casos.

Antes de dar por definitivas las conclusiones anteriores, conviene validar
que se cumplen los supuestos basicos de normalidad y varianza constante
de los datos. La figura 40 muestra el grafico de normalidad correspondiente
a las observaciones. No parecen observarse patrones extrafios ni demasia-
dos puntos excesivamente alejados de la recta, por lo que se aceptard como
valido el supuesto de normalidad. Por su parte, la figura 41 muestra el gra-
fico de dispersion de cada grupo. Tampoco se observan grandes diferencias
entre las dispersiones de los distintos niveles, por lo que se aceptard como
valido el supuesto de varianza constante entre los distintos grupos.
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Figura 40. Gréfico de normalidad de las valoraciones registradas

Normal Probability Plot
(responses are CC. Informacion, CC. Empresariales, Ing. Informatica, Derecho, Psicologia)
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Figura 41. Gréfico de dispersion de cada grupo

Versus Fits
(responses are CC. Informacion, CC. Empresariales, Ing. Informatica, Derecho, Psicologia)
24
L ]
.
o
L ]
14
o o
[ ]
L ]
5 ol
E o o
L ]
& .
L ]
= 1 -
L ]
.
—2
o
T T T T T T
3.0 3.5 4.0 4.5 5.0 55

Ftted Value



CC-BY-SA * PID_00161060 47 Inferencia de informacién para dos o mas poblaciones

Resumen

En este mo6dulo se han presentado las principales técnicas estadisticas que per-
miten comparar estadisticamente dos o més grupos y discernir si existen o no
diferencias significativas entre ellos. En el caso de dos grupos, se usa un con-
traste de hipotesis basado en la t-Student (si se estdin comparando dos medias)
o en la normal (si se estin comparando dos proporciones).Por Gltimo, se han
estudiado procedimientos que se pueden aplicar para hacer inferencias acerca
de varianzas poblacionales. Se presento la distribucion F, para emplearla en
pruebas de hipoétesis acerca de las varianzas de dos poblaciones normales.

En el caso de tres o mas grupos, se usa un test ANOVA basado en la F-Snedecor.

Conviene tener siempre muy presente que lo mas importante de un test de hi-
potesis no son los calculos matematicos que subyacen al mismo (en gran parte
porque dichos célculos se pueden automatizar mediante el uso de software),
sino la correcta interpretacion de los resultados obtenidos y la credibilidad de
los mismos, que dependerd de que se cumplan o no los supuestos necesarios
para poder aplicar cada una de las técnicas de inferencia vistas en este médulo.
Si bien el ordenador puede ser muy util efectuando los célculos matematicos
con precision y rapidez, es responsabilidad del investigador saber interpretar

los resultados y comprobar la validez de los supuestos.
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Ejercicios de autoevaluacion

1) Se estudia el impacto que causa la reubicacién forzada sobre la buena vecindad. Se entre-
vista a seis individuos tanto antes como después de que se les obligara a mudarse. Las entre-
vistas producen las siguientes puntuaciones:

Entrevistado | Antes Después
1 2 1
2 1 2
3 3 1
4 3 1
5 1 2
6 4 1

Realizad un contraste de hipotesis al nivel de confianza del 95%.

2) De una muestra de ochenta y cinco mensajes de correo con virus que llegan al servidor de
nuestra empresa, nuestro programa KILLVIRUS instalado en el servidor sélo ha detectado
veinticinco. Las especificaciones del programa decian que el programa detectaba mas del
40% del correo con virus. ;Estais de acuerdo con los resultados obtenidos con las especifica-
ciones del programa? (considerad o = 0,1). Hallad el p-valor del contraste.

3) Queremos comparar la eficiencia de dos compiladores de dos sistemas de indizacion dife-
rentes: A y B. Para hacerlo, se disefian ocho programas en cada uno de los dos sistemas y se
mide el tiempo de ejecucién que tarda cada uno de los programas para resolver ocho proble-
mas determinados de optimizacién. Los resultados se muestran en la tabla siguiente:

Problema de Tiempo de ejecucién usado Tiempo de ejecucion usado
optimizacion a por el ejecutable compilado por el ejecutable compilado
resolver con el sistema A (en segundos) | con el sistema B (en segundos)

P1 1,2 1,4

P2 1,3 1.7

P3 1,5 1,5

P4 1,4 1.3

Ps 1,7 2,0

P6 1,8 2,1

P7 1,4 1,7

P8 1,3 1,6

(Podemos asegurar a partir de los datos anteriores que el compilador del sistema A es mas
eficiente que el compilador del sistema B? (considerad o = 0,05). Hallad el p-valor del con-
traste.

4) Dos empresas, Ay B, quieren comprar un dispositivo de almacenamiento para realizar co-
pias de seguridad. Antes de hacer la compra se hace un estudio de cuantos gigas necesitarian
para realizar la copia. Este estudio consiste en calcular durante diez dias toda la informacion
de la empresa necesaria para la copia de seguridad. Los resultados se muestran en la tabla si-

guiente:
Dia 1 2 3 4 5 6 7 8 9 | 10
f;'l.‘g;f)‘a A 34 45 | 47 | 49 | 31 | 30 | 24 | 33 | 35 | 40
fgi‘g;:)sa B | 45 | 47 | 50 | 42 | 40 | 51 46 59 | 42 | 46
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Suponiendo normalidad y un nivel de significacion del 0,05, jpodemos afirmar que la em-
presa B necesita més capacidad de almacenamiento que la empresa A? Indicacién: antes de
nada, tenéis que realizar el contraste correspondiente para ver si las varianzas de las dos
muestras son iguales a un nivel de significacién de 0,05.

5) Se ha disefiado un experimento aleatorio para analizar durante cuanto tiempo es efectiva
cada una de las cuatro drogas distintas que se pueden emplear para aliviar el dolor tras una
operacién quirdrgica. Los datos obtenidos se muestran en la tabla siguiente:

A B c D
8 6 8 4
6 6 10 4
4 4 10 2
2 4 10

12

Para un nivel de significacién a = 005, contrastar la hipétesis nula de que las cuatro drogas
son igualmente efectivas.

6) Alahora de descargar programas open-source de Internet, suele ser habitual poder optar por
hacerlo desde varios servidores (mirrors). Generalmente, las velocidades de descarga desde cada
servidor dependen de la distancia existente entre el servidor y el cliente que solicita la descarga.
En este caso se desea estudiar si las velocidades de descarga desde cinco servidores distintos se
pueden considerar equivalentes o no. Para cada uno de los servidores, se han seleccionado al-
gunos ficheros al azar (todos ellos del mismo tamarfio) y se han descargado en el cliente, obte-
niendo los tiempos de descarga (en segundos) que se muestran en la tabla siguiente:

A B q D E
3,8 6,8 4,4 6,5 6,2
4,2 71 4,1 6,4 4,5
4,1 6,7 3,9 6,2 53
4,4 4,5 58

¢Se puede afirmar que la velocidad media de descarga es independiente del servidor seleccio-
nado? Usar un nivel de significacién o = 0,01.

7) Se desean comparar los ingresos por familia (en miles de euros) correspondientes a tres
provincias de una misma comunidad auténoma. A tal efecto, para cada provincia se han se-
leccionado 9 familias al azar y se han registrado sus ingresos. La tabla siguiente muestra las
observaciones obtenidas:

A B c
45 32 40
39,5 30 42
42 37 45
35 35 39,5
40 28,5 40
37 37,5 38
44 31 51
48,5 37,6 47,5
50 25 41
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Para un nivel de significacion o = 0,035, ;se puede afirmar que los ingresos medios por familia
no dependen de la provincia a la que ésta pertenezca?

8) Una universidad hace uso de tres consultorias externas que ofrecen servicios de asesora-
miento técnico en linea a sus estudiantes. Para cada una de estas consultorias, se han escogi-
do al azar seis servicios prestados durante el aflo en curso y se ha registrado el cambio
porcentual en su precio con respecto al precio medio del afio anterior. Los datos recogidos se
muestran en la tabla siguiente:

Para un nivel de significacién o = 0,01, se desea contrastar la hipdtesis nula de que el cambio
porcentual medio en el precio del servicio es el mismo para las tres consultorias.

9) Se desea comparar el nivel de innovacién/originalidad de seis revistas distintas, aunque
todas ellas pertenecientes a un mismo ambito tematico. A tal efecto, se han seleccionado al
azar siete ejemplares de cada una de las revistas y un comité de expertos ha evaluado el nivel
de innovacion/originalidad de cada ejemplar, para lo cual se ha usado una escala entre 1 (mi-
nimo) y 300 (méximo). Los datos recogidos se muestran en la tabla siguiente:

A B C D E F
300 190 228 276 162 264
300 164 300 296 175 168
300 238 268 62 157 254
260 200 280 300 262 216
300 221 300 230 200 257
261 132 300 175 256 183
300 156 300 211 92 93

A partir de estas observaciones, ;se puede afirmar que todas las revistas muestran un nivel de
innovacién/originalidad equivalente o, por el contrario, existen diferencias significativas en-
tre los niveles de innovacion/originalidad de las distintas revistas? Utilizar un nivel de signi-
ficacién o = 0,05.
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Solucionario

1) Se trata de un contraste de diferencia de medias para muestras dependientes o empare-
jadas (estadistico de contraste t* =1,49; el valor critico es taj2=0,05/2, Y S grados de libertad =
2,571. ' < to,025; s NO se puede rechazar Hy. Podemos decir con un 95% de confianza que la
buena vecindad no ha variado cuando se produce la reubicacién.

2) Se trata de un contraste de diferencia de proporciones. El estadistico de contraste sigue
aproximadamente la distribucién normal N(0,1) si el tamafio de la muestra es suficientemen-
te grande como en nuestro caso. El valor del estadistico de contraste es z* = —-1,993.

El valor critico serd: z,, ~1,28. Como z< 7 1, aceptamos la hip6tesis nula y concluimos que
las especificaciones del servidor son falsas.

3) Se trata de un contraste de diferencia de medias dependientes. El valor del estadistico de
contraste vale: t ~-3,481. El valor critico vale ¢, s, ~1,895. Como f < ~fj o5,7; rechazamos
la hipotesis.

El p-valores p = p(t; <-3,481) = 0,0051, valor que es menor que 0,05. Por tanto, llegamos a
la misma conclusion: rechazar la hipétesis nula.

4) El resultado del Minitab para el contraste de varianzas es:

Test for Equal Wariances: A:; B

95% FBonferroni confidence interwals for standard dewiations

i Lower Sthew Tpper
& 10 5,33911 &,l6224 16,4359
B 10 3,60659 5,51362 11,1025
F-Test (Normal Distribution)
Test statistic = Z,1%; p-walue = 0,255

Levene's Test (&ny Continuous Distribution)

Test =ztatistic = 1,6l; p-walue = 0,221

Se acepta la igualdad de varianzas.

El resultado del Minitab para el contraste de diferencia medias independientes es:

Two-Sample T-Test and CI: Empresa A; Empresa B

Two-sample T for Empresa & ws Empresa B

o) Mean &Schew 53E HMean

Enpresa A 10 36,80 3,16 2.0
Enpreza B 10 46,50 5,51 1.7
Difference = mu [(Empresza 4) - mu [(Empresa E)
Estimate for difference: -10,00

95% nupper bound for difference: -4,60

T-Test of difference = 0 (ws <£): T-Value = -3,-21 P-Value =
0,002 DF = 15

Eoth use Pooled 5thew = 6&,9650

Como p-valor < 0,05, rechazamos la hip6tesis nula, por lo tanto aceptamos que la empresa B
necesita mas capacidad de almacenamiento que la empresa A.

5) Estadistico de contraste F = 12,50; p-valor = 0,001 < o = 0,05 - Rechazar la hip6tesis nula,
p- €j.: no todos los grupos tienen el mismo comportamiento.
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6) Estadistico de contraste F = 31,6; p-valor = 0,000 < o = 0,01 > Rechazar la hip6tesis nula,
p. €j.: no todos los grupos tienen el mismo comportamiento.

7) Estadistico de contraste F = 13,83; p-valor = 0,000 < a. = 0,05 - Rechazar la hip6tesis nula,
p. €j.: no todos los grupos tienen el mismo comportamiento.

8) Estadistico de contraste F = 2,91; p-valor = 0,085 > a = 0,01 - No rechazar la hipotesis
nula, p. ej.: todos los grupos parecen tener el mismo comportamiento.

9) Estadistico de contraste F = 5,30; p-valor = 0,001 < a = 0,05 - Rechazar la hipétesis nula,
p. €j.: no todos los grupos se comportan igual.
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Introduccion

En este mo6dulo se van a estudiar las relaciones que se pueden presentar entre
diferentes variables. En concreto se estudiaran posibles relaciones de depen-
dencia entre las variables para intentar encontrar una expresién que permita
estimar una variable en funcién de otras. Para profundizar en el analisis es ne-
cesario determinar la forma concreta en que se relacionan y medir su grado de

asociacion.

Asi, por ejemplo, el estudio de las relaciones entre variables se puede aplicar
para dar respuestas a preguntas y casos como los siguientes:

e ;Existe relacion entre la edad de los lectores y el nimero de préstamos de
libros?

¢ En otro caso, una editorial podria usar la relacion entre el namero de pagi-
nas de un trabajo y el tiempo de impresion para predecir el tiempo emplea-

do en la impresion.

¢ Se quiere estudiar el “tiempo de respuesta” de unos ciertos programas de
basqueda bibliografica en funcion del “namero de instrucciones” en que
estan programados.

e En una determinada empresa de venta de libros en linea, ;cOmo represen-
tamos que el aumento de la cantidad gastada en publicidad provoca un in-
cremento de las ventas?

Este m6dulo examina la relacion entre dos variables, una variable indepen-
diente y otra dependiente, por medio de la regresién simple y la correlacion.
También se considera el modelo de regresion miltiple en el que aparecen dos
0 mas variables independientes.
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Objetivos

Los objetivos académicos del presente modulo se describen a continuacién:
1. Comprender la relacion entre correlacién y regresion simple.

2. Usar gréficos para ayudar a comprender una relacién de regresion.

3. Ajustar una recta de regresion e interpretar los coeficientes.

4. Obtener e interpretar las correlaciones y su significacion estadistica.

5. Utilizar los residuos de la regresion para comprobar la validez de las supo-

siciones necesarias para la inferencia estadistica.
6. Aplicar contrastes de hipotesis.

7. Ajustar una ecuacion de regresion multiple e interpretar los resultados.
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1. Relacion entre variables

Cuando se estudian conjuntamente dos o mas variables que no son indepen-
dientes, la relacion entre ellas puede ser funcional (relacién matemaética exac-
ta entre dos variables, por ejemplo, espacio recorrido por un vehiculo que
circula a velocidad constante y el tiempo empleado en recorrerlo) o estadisti-
ca (no existe una expresiéon matematica exacta que relacione ambas variables,
existe una relacion aproximada entre las dos variables, por ejemplo, incre-
mento de las ventas de libros en funcion de la cantidad gastada en publicidad).
En este altimo caso interesa estudiar el grado de dependencia existente entre
ambas variables. Lo realizaremos mediante el analisis de correlacion y, final-
mente, desarrollaremos un modelo matematico para estimar el valor de una
variable basdndonos en el valor de otra, en lo que llamaremos analisis de re-

gresion.

El andlisis de regresion no se puede interpretar como un procedimiento para
establecer una relacion causa-efecto o causalidad entre variables. La regre-
sién solo puede indicar como estan asociadas las variables entre si y nos per-
mite construir un modelo para explicar la relacion entre ellas. La correlacion
indica el grado de la relacion entre dos variables sin suponer que una altera-

cién en una cause un cambio en la otra variable.

El objetivo principal del analisis de regresion es explicar el comportamien-
to de una variable dependiente Y (endogena o explicada) a partir de una o
varias variables independientes (ex6genas o explicativas). El tipo mas sen-
cillo de regresion es la regresion simple. La regresion lineal simple estima
una ecuacion lineal que describe la relacion, mientras que la correlacion
mide la fuerza de la relacién lineal. Aparte de los modelos lineales se pue-
den establecer otros modelos de regresion no lineales. El anélisis de regre-
sibn donde intervienen dos o mas variables independientes se llama
analisis de regresiéon multiple, donde una variable viene explicada por la

accion simultanea de otras variables.

Diagrama de dispersiéon

Antes de abordar el problema, se puede intuir si existe relacion entre las varia-
bles a través de la representacion grafica llamada diagrama de dispersion o

nube de puntos.

A partir de un conjunto de observaciones (x;, y;) de dos variables X e Y sobre
una muestra de individuos se representan estos datos sobre un eje de coorde-
nadas x—y. En la figura 1 se incluyen varias graficas de dispersién que ilustran

diversos tipos de relacién entre variables.
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Figura 1. Diagramas de dispersion
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En los casos (a) y (b) tenemos que las observaciones se encuentran sobre una
recta. En el primer caso, con pendiente negativa, indica una relacién inversa en-
tre las variables (a medida que X aumenta, la Y es cada vez menor) y lo contrario
en el segundo caso, en el que la pendiente es positiva, indica una relacién directa
entre las variables (a medida que aumenta X, la Y también aumenta). En estos dos
casos los puntos se ajustan perfectamente sobre la recta, de manera que tenemos

una relacion funcional entre las dos variables dada por la ecuacion de la recta.

En el caso (c) los puntos se encuentran situados en una franja bastante estrecha
que tiene una forma bien determinada. No sera una relacién funcional, ya que los
puntos no se sitan sobre una curva, pero si que es posible asegurar la existencia
de una fuerte relacion entre las dos variables. De todos modos, vemos que no se
trata de una relacion lineal (la nube de puntos tiene forma de parébola).

En el caso (d) no tenemos ningan tipo de relacioén entre las variables. La nube
de puntos no presenta una forma bien determinada; los puntos se encuentran

absolutamente dispersos.

En los casos (e) y (f) podemos observar que si existe algtin tipo de relacion entre
las dos variables. En el caso (e) podemos ver un tipo de dependencia lineal con
pendiente negativa, ya que a medida que el valor de X aumenta, el valor de Y
disminuye. Los puntos no estan sobre una linea recta, pero se acercan bastante,
de manera que podemos pensar en una relacion lineal. En el caso (f) observamos

una relacién lineal con pendiente positiva, pero no tan fuerte como la anterior.

Después de estudiar el diagrama de dispersion, el siguiente paso es comprobar

analiticamente la dependencia o independencia de ambas variables.
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2. Analisis de la correlacion

El anélisis de correlacién mide el grado de relacién entre las variables. En este
apartado veremos el andlisis de correlacioén simple, que mide la relacion en-
tre s6lo una variable independiente (X) y la variable dependiente (Y). En el
apartado 4 de este modulo se describe el anélisis de correlacién multiple que
muestra el grado de asociacion entre dos o mas variables independientes y la
variable dependiente.

La correlacién simple determina la cantidad de variaciéon conjunta que pre-
sentan dos variables aleatorias de una distribucion bidimensional. En concre-
to, cuantifica la dependencia lineal, por lo que recibe el nombre de correlacién
lineal. El coeficiente de correlacion lineal se llama coeficiente de correlacion
de Pearson designado r, cuyo valor oscila entre -1y +1. Su expresion es el co-
ciente entre la covarianza muestral entre las variables y el producto de sus res-

pectivas desviaciones tipicas:

re Cov(X,Y)
‘SXSY
El valor de r se aproxima a +1 cuando la correlacion tiende a ser lineal directa
(mayores valores de X significan mayores valores de Y), y se aproxima a -1
cuando la correlacién tiende a ser lineal inversa. Podemos formular la pregun-
ta: ja partir de qué valor de r podemos decir que la relacion entre las variables
es fuerte? Una regla razonable es decir que la relacion es débilsi 0 <1 r1<0,5;

fuerte si 0,8 <|r| <1, y moderada si tiene otro valor.

Dada una variable X con xq, x,... x,, valores muestrales y otra variable Y con y;,

V2... ¥y valores muestrales, siendo n el nimero total de observaciones y siendo

n n

2% Vi

lamediade X: ¥ =izl ylamediadeY: y-i=l _
n n

La covarianza muestral entre dos variables X e Y nos permite medir estas
relaciones positivas y negativas entre las variables X e Y:

i L — _
Cov(X,Y) = Sxy =:2(Xi -X)(y;j=¥)
-lia

La covarianza muestral podemos calcularla mediante otra expresion
equivalente:
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Ejemplo 1. “Estudio de los servicios ofrecidos por un centro de documen-

tacion”.

Estamos realizando un proceso de evaluacion de los servicios ofrecidos por un
centro de documentacién. Para conocer la opinién de los usuarios se les ha pedi-
do que rellenen un cuestionario de evaluacién del servicio. Hacemos dos pregun-
tas, una para que valoren de 0 a 10 su impresion sobre el funcionamiento global
del centro y otra pregunta que valora especificamente la atencién a los usuarios,
para determinar si las valoraciones respecto a la atencion al usuario (representadas
por la variable dependiente Y) estan relacionadas con las valoraciones obtenidas
respecto al funcionamiento global del centro (variable independiente X).

Para ello, un investigador ha seleccionado al azar cinco personas entrevistadas

y dan las siguientes valoraciones:

Tabla 1. Datos obtenidos de respuestas a cinco entrevistas realizadas sobre
valoraciones de funcionamiento y atencién a usuarios de un centro de
documentacién

Entrevista (i) Funcionamiento (X) Atencién (Y)
1 2 2
2 4 4
3 6 5
4 8 4
5 10 7

El diagrama de dispersion (figura 2) nos permite observar graficamente los da-
tos y sacar conclusiones. Parece que las valoraciones de atencién al usuario
son mejores para valoraciones elevadas del funcionamiento global del centro.
Ademas, para esos datos la relacion entre la atencién al usuario y el funciona-
miento parece poder aproximarse a una linea recta; realmente parece haber

una relacion lineal positiva entre X e Y.

Figura 2. Diagrama de dispersién del funcionamiento del centro y de la atencién

al usuario
Diagrama de dispersion del funcionamiento
y de la atencién al usuario
8
7 +
L 6
i3
\S 4 * *
g
3 3
< 2 .
‘I e
0 T T T T T
0 2 4 6 8 10 12

Funcionamiento
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Para determinar si existe correlaciéon lineal entre las dos variables, calculamos

el coeficiente de correlacion r.

En la tabla 2 se desarrollan los calculos necesarios para determinar los valores

de las varianzas, desviaciones tipicas muestrales y covarianza muestral.

Tabla 2. Célculo de las sumas de cuadrados para la ecuacién estimada de regresion de minimos
cuadrados

Funcionamiento Atencion (x; - X) (yi-7) (xi = %X)(yi - ¥) (x; - ,7)2 (yi -7¥)
X 80
2 2 -4 -2,4 9,6 16 5,76
4 4 -2 -0,4 0,8 4 0,16
6 5 0 0,6 0 0 0,36
8 4 2 -0,4 -0,8 4 0,16
10 7 4 2,6 10,4 16 6,76

y; representa las valoraciones observadas (reales) del funcionamiento global
obtenidas en la entrevista i,

5 5 5 5 5
n=5>x%=30 Yyi=44 YX-Dyi-7=20 Y (-0>=40 D (yi-9)*=13.2
i=1 i=1 i=1 i=1 i=1

realizando las siguientes operaciones obtendremos el coeficiente de correla-

cion lineal.

)_(: =
n
n
£
_:]: _
Y n

n
1
CovX, V) =3k 3% (= Ry -F) =5 +20 =5
=) 5=

El coeficiente de correlacion lineal es:

. Cov(X,)Y) 5 B
SxSy 3,16-1,82

0,87

Como el valor del coeficiente de correlacion lineal es proximo a 1, se puede

afirmar que existe una correlacion lineal positiva entre las valoraciones obte-
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nidas de atencidén al usuario y las valoraciones del funcionamiento global del
centro. Es decir el, funcionamiento global esta asociado positivamente a la

atencioén al usuario.
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3. Modelos de regresion simple

3.1. Modelos de regresion lineal simple

Una vez que hemos obtenido el diagrama de dispersion y después de observar
una posible relacién lineal entre las dos variables, el paso siguiente seria en-
contrar la ecuacion de la recta que mejor se ajuste a la nube de puntos. Esta
recta se denomina recta de regresion. Una recta queda bien determinada si el
valor de su pendiente (b) y de la ordenada en el origen (a) son conocidas. De

esta manera la ecuacion de la recta viene dada por:
Y=a+bx

A partir de la formula anterior definimos para cada observacién (x;, y;) el error

o residuo como la distancia vertical entre el punto (x;, y;) y la recta, es decir:
yi— (a+ bx;)

Por cada recta que consideremos, tendremos una coleccion diferente de residuos.
Buscaremos la recta que minimice la suma de los cuadrados de los residuos. Este
es el método de los minimos cuadrados, un procedimiento para encontrar la
ecuacion de regresion que consiste en buscar los valores de los coeficientes a y b
de manera que la suma de los cuadrados de los residuos sea minima, obteniéndo-

se la recta de regresion por minimos cuadrados (figura 3).

Figura 3. Recta de regresion por minimos cuadrados

Nota
Interpretacion geométrica del residuo La recta de regresién pasa por
el punto (X,y).
Y Observacién
y=a+ bx
(x;y)
M pe===sos

a+bx |- - - _ __¥_ _ _ _

Valor predicho
por la recta

=

Hemos hecho un cambio en la notacién para distinguir de manera clara entre
una recta cualquiera: y = a + bx y la recta de regresién por minimos cuadrados

obtenida al determinar a y b.
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A partir de ahora, la recta de regresion la escribiremos de la manera siguiente:

yi:BO+B1Xi

El modelo de regresion lineal permite hallar el valor esperado de la variable

aleatoria Y cuando X toma un valor especifico.

La recta de regresion Y/X permite predecir un valor de y para un deter-

minado valor de x.

Para cada observacion (x;,y;) definimos:

e El valor estimado o predicho para la recta de regresion:
)A’ i~ ﬁo + [31"1‘

e Los parametros o coeficientes de la recta y vienen dados por:

A - 2 ~  Cov(XY) S
Bo=y-Px ¥ Pi="—="5"
SX SX

Siendo:
Bo esla ordenada en el origen de la ecuacion estimada de regresion.
By esla pendiente de la ecuacion estimada de regresion.

Sxy la covarianza muestral, 5)2( la varianza muestral de X, x e y son las
medias aritméticas de las variables X e Y respectivamente.

e Elresiduo o error es la diferencia entre el valor observado y; y el valor
estimado y it

ei=yi—yi=vi—Bo+Bx)

Ejemplo 1. “Estudio de los servicios ofrecidos por un centro de documen-

tacion”.

Hemos comprobado en el ejemplo anterior que existe correlacion lineal entre
ambas variables, ahora calcularemos la recta de regresion por minimos cua-
drados Y/X.

)A’i = ﬁo + ﬁlxi
en la que,

x; = valor de funcionamiento para la i-ésima entrevista

ﬁo = ordenada en el origen de la linea estimada de regresion
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B; = pendiente de la linea estimada de regresion

y; = valor estimado de la atencion al usuario para la i-ésima entrevista

Para que la linea estimada de regresion ajuste bien con los datos, las diferen-
cias entre los valores observados y los valores estimados de atencién al usuario

deben ser pequefias.

Utilizando los valores obtenidos en la tabla 2 podemos determinar la pendien-
te y la ordenada en el origen de la ecuacion estimada de regresion en este ejem-

plo. Los calculos son los siguientes:

5
X &=00i-7) A A
By =El< =0,5; Bp=V-Px=14
> (% -X)

i=1

Por lo anterior, la ecuacion estimada de regresion deducida con el método de
minimos cuadrados, sera:
y=1,4+0,5x
Figura 4. Gréfica de la ecuacién de regresién ejemplo 1

Grafica de la ecuacién de regresion

y=0,5x+1,4

M oW B L O N
1

Atencién usuario

Funcionamiento

Interpretacion de los parametros de la recta de regresion

Es importante interpretar los coeficientes de la ecuacién en el contexto del fe-

némeno que se estd estudiando.
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e Interpretacion de la ordenada en el origen, [30:

Este coeficiente representa la estimacion del valor de Y cuando X es igual a
cero. No siempre tiene una interpretacion practica. Para que sea posible, es

preciso que:

— realmente sea posible que X tome el valor x = 0,
- se tengan suficientes observaciones cercanas al valor x = 0.

e Interpretacion de la pendiente de la recta, [31:

Este coeficiente representa la estimacion del incremento que experimenta
la variable Y cuando X aumenta en una unidad. Este coeficiente nos infor-
ma de como estan relacionadas las dos variables en qué cantidad varian los

valores de Y cuando varian los valores de la X en una unidad.
La calidad o bondad del ajuste

Una vez acumulada la recta de regresion por minimos cuadrados debemos anali-
zar si este ajuste al modelo es lo bastante bueno. Mirando si en el diagrama de
dispersion los puntos experimentales quedan muy cerca de la recta de regre-
sion obtenida, podemos tener una idea de si la recta se ajusta o no a los datos,
pero nos hace falta un valor numérico que nos ayude a precisarlo. La medida
de bondad de ajuste para una ecuacioén de regresion es el coeficiente de de-
terminacién R?. Nos indica el grado de ajuste de la recta de regresion a los va-
lores de la muestra y se define como la proporcion de varianza en Y explicada

por la recta de regresion. La expresion de R? es la siguiente:

_ Varianza en Y explicada por la recta de regresion
Varianza total de los datosY

RZ

La varianza explicada por la recta de regresion es la varianza de los valores es-
timados y la varianza total de los datos es la varianza de los valores observados.

Por tanto, podemos establecer que:

Varianza total de Y = varianza explicada por la regresion +

+ varianza no explicada (residual o de los errores)

Es decir, podemos descomponer la variabilidad total (S5Total) de las observa-

ciones de la forma:

SSTotal = SSRegresion + SSError
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en la que,

n
SSTotal, es la suma de cuadrados totales SST =" (y; - 7)?
i=1

SSRegresion, mide cuanto se desvian los valores de y; medidos en la linea de

n
regresion, de los valores de Vir SSR = 2()71. — }7)2
i=1

SSError, representa el error que se comete al usar y; para estimar y;, es la suma

n R n
de cuadrados de estos errores, SSE=)"(y; - yi)2 = Zeiz
i=1 i=1

Ahora vemos como se pueden utilizar las tres sumas de cuadrados, SST, SSR 'y
SSE para obtener la medida de bondad de ajuste para la ecuacion de regresion,

que es el coeficiente de determinacion R?. Vendra dado por la expresion:
R? = & =1= E
YA SST

e Los valores del coeficiente de determinaciéon estdin comprendidos entre

ceroyuno: 0<R?><1

e R?=1 cuando el ajuste es perfecto, es decir, todos los puntos estan sobre la

recta de regresion.

e R2 =0 muestra la inexistencia de relacion entre las variables X e Y.

e Como R? explica la proporciéon de variabilidad de los datos explicada
por el modelo de regresiéon, cuanto mas préximo a la unidad, serd mejor

el ajuste.

Observaciones

Relacién entre R? yr Un coeficiente de determina-
ci6n diferente de cero no signi-
. ) ) fica que haya relacién lineal
Es muy importante tener clara la diferencia entre el coeficiente de co- entre las variables. Por ejem-
plo, R? = 0,5 sélo dice que el
50% de la varianza de las ob-
servaciones queda explicado

 R%mide la proporcion de variacion de la variable dependiente expli- por el modelo lineal.

rrelacion y el coeficiente de determinacion:

cada por la variable independiente.

o 2 esel coeficiente de correlacion, mide el grado de asociacion lineal
entre las dos variables.

e No obstante, en la regresion lineal simple tenemos que R>=r%
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La relacion entre Rzy rayuda a comprender lo expuesto en el andlisis de la co-
rrelacién: que un valor de r* = 0,5 indica una correlacién débil. Este valor re-
presentara un R2 = 0,25; es decir, el modelo de regresion solo explica un 25%

de la variabilidad total de las observaciones.

El signo de r da informacién de si la relacién es positiva o negativa. Asi pues,
con el valor de r siempre se puede calcular el valor de R?, pero al revés quedara
indeterminado el valor del signo a menos que conozcamos la pendiente de la
recta. Por ejemplo, dado un R? = 0,81, si se sabe que la pendiente de la recta
de regresiOn es negativa, entonces se puede afirmar que el coeficiente de co-

rrelacion r sera igual a 0,9.

Prediccion

La prediccién constituye una de las aplicaciones mas interesantes de la téc- Not
ota

nica de regresion. La prediccién consiste en determinar a partir del modelo
. . . . Variable endégena es la varia-
estimado el valor que toma la variable endégena para un valor determinado ble dependiente. Es la variable
que se predice o se explica. Se

de la ex6gena. La fiabilidad de esta prediccion sera tanto mayor, en princi- representa por .

pio, cuanto mejor sea el ajuste (es decir, cuanto mayor sea Rz), en el supues- Variable exégena es la varia-
. » . . . ble independiente. Es la varia-
to de que exista relaciéon causal entre la variable end6gena y la variable ble que sirve para predecir o

explicar. Se representa por X.

exogena.

Ejemplo 1. Estudio de los servicios ofrecidos por un centro de documen-

tacion.

Una vez obtenida la ecuacion estimada de regresion }3 =1,4+0,5x del ejemplo

anterior, interpretamos los resultados:

En este caso la ordenada en el origen (ﬁo = 1,4) si puede tener interpreta-
cién con sentido, ya que corresponderia a la estimacion de la puntuacion
obtenida para la atenci6on al usuario cuando la puntuacién del funciona-
miento global es cero. La pendiente (f;l =0,5) es positiva, lo que indica que
el aumento en una unidad de la valoracion del funcionamiento global del
centro esta asociado con un aumento de 0,5 unidades en la puntuacion de

atencion al usuario.

Si quisiéramos predecir la valoracion de la atencién para una persona que ha
valorado 7 el funcionamiento global, el resultado seria:

y=14+05-7=49

En el ejemplo hemos obtenido la ecuacion de regresién y debemos analizar
la bondad de dicho ajuste que daria respuesta a la siguiente pregunta: ;se

ajustan bien los datos a esta ecuacion de regresion?
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Calcularemos el coeficiente de determinacién que es una medida de la correc-
cion del ajuste. Para ello tenemos que descomponer la variabilidad total de las
observaciones de la forma:

SST = SSR + SSE

Utilizando los valores de la tabla 2 (calculo de las sumas de cuadrados para la ecua-
cion estimada de regresion con minimos cuadrados), calculamos SST = suma de
cuadrados total, es la suma de la Gltima columna de Ila tabla 2.

5
SST =3 (y; 7> =13,2
i=1

En la tabla 3 vemos los calculos necesarios para determinar la SSE = suma de
cuadrados debida al error

n “ n
SSE=Y(vi-y)* =Y ¢ =3,2
i=1 i=1

Tabla 3. Calculo de las sumas de cuadrados debidas al error SCE

5 5 2,4 -0,4 0,16
. ; 3,4 0,6 0,36
p 5 4.4 0,6 0,36
s 4 5.4 1,4 1,96
1 7 6,4 0,6 0,36

5 ~
SSE=3 (yi-yy)* =3,2
i=1

La SSR = suma de cuadrados debida a la regresion se puede calcular con facili-
dad usando esta expresion:

5 ~
SSR=Y"(y; - 7)?
i=1

o bien si se conocen SST'y SSE se puede obtener facilmente.
SSR=SST-SSE=13,2-3,2=10

Fl valor del coeficiente de determinacion sera:

R2-S5R_10 _ 5576
SST 13,2
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Si lo expresamos en porcentaje, R?=75,76 %. Podemos concluir que el 75,76%
de la variacién de la puntuacién en la atencion al usuario se puede explicar
con la relacion lineal entre las valoraciones del funcionamiento global del
centro y la atencién al usuario. El ajuste al modelo lineal es bueno. Se consi-

dera un buen ajuste cuando R? es mayor o igual que 0,5.

El coeficiente de correlacion lineal “r” sera ,/0,75760 = | 0,87 |, resultado acor-

de con la estimacién obtenida usando la covarianza.

Solucidn de problemas de regresion lineal simple con programas infor-

maticos

Para resolver el ejercicio empleamos el programa Minitab.

Insertamos los datos del ejemplo 1: “Estudio de los servicios ofrecidos por un
Pasos a seguir

centro de documentacién”. A la variable independiente (Y) la llamamos ATEN

Para crear el grafico una vez in-
(de atencion al usuario) y a la variable dependiente (X) la llamamos FUNC (de troducidos |0% datos en el pro-
grama (1), se sigue la ruta

funcionamiento global) para facilitar la interpretacion de los resultados. Inser- Graph > Scatterplot > Simple

tamos los datos FUNC en la columna C1 y los datos de ATEN en la columna (2)y se rellenan los campos en
la ventana correspondlente se-
C2, con encabezados para obtener el diagrama de dispersion. leccionando las variables (3).

Seleccionad OK para obtener el
diagrama de dispersion.

Figura 5. Pasos a seguir para obtener el diagrama de dispersién

=3 Minitab - MINITAB_EJ1.MPJ - [Worksheet 1 **+] Batiernlols

X

J@ File Edit Data Calc 3Stat | Graph Editor Tools  Window  Help
\With Regression
J = i | = | 3 [~ | K Q Simple ‘With Groups  With Regression  and Groups
BB i
J I LI | IMatrix Plot... .o o
|=" Maraginal Plat,.. ow © ./)‘. )
+ C1 c2 C
. - -
FUNC{X) | ATEN(Y) dh Hstogram... «—
i Dotplot...
1 2 2 iy With Connect  With Connect
2 4 4 itz stem-and-Leaf,.. Line and Groups
3 B g | Probability Flct...
4 8 4 | " Empirical COF... 2—» / f
K] 10a 7 A\, Probability Distribution Plat...
6
|¢_L0 Boxplot, .,
[
— [2? inkerval Plat... Help | o3 Cancel
Scatterplot - Simple £|
1 FUNC(x) ¥ variables | X variables | A
w2 ATENCY) 1 [ATEN(YY  FUNCERY |2
2 |
3
4
5
&
T w
Scale... | Labels. .. | Data View. .. +«— 3
Multiple Graphs. .. | Data Cpkions, .. |
Select |
Help | O, | Cancel
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Obtuvimos el diagrama de la figura 6.

Figura 6. Diagrama de dispersién. Minitab

Scatterplot of ATEN(Y) vs FUNC(X)

7 *
& 4
— T .
=)
=
[}
=
< 4 * *
3_
24 *
T T T T T T T T T T
1 2 3 4 5 5] 7 g 9 10
FUNC(X)

La figura 7 muestra los pasos a seguir para representar la recta de de regresion

de minimos cuadrados:

Figura 7. Pasos a seguir para representar la recta de regresion de minimos cuadrados

2 Minitab - Untitled - [Worksheet 1 ***]

J@ File Edit Data Calc | Stat Graph Edtor  Tools  MWindow Help

Pasos a seguir

Usamos la opcion Stat, se sigue
la ruta Regression > Regression

b i iski 3 - = . Y
J @S| % B @ BesicStatistcs gloedl2amad > Fitted Line Plot (1) y se relle-
J | = 0 | Regression... nan los campos en la ventana
—  aNOMA V| ] Stepuise... correspondiente (2). Seleccio-
+ Fm::(: . ATE:‘ DOE b|| % et ' nad OK para obtener el grafico.
. +—
- ( 2] [Y; Conkrol Charts L4 L,i! Fitted Line Plak, ..
uality Tools |
2 4 4 Ll ?_{E Partial Leask Squares...
= £ ReliabilitySurvival 3
3 Multivariate b |ﬁ Einary Logistic Regression. ..
g 4 -
4 e Saies » Iﬁ COrdinal Logiskic Regression, ..
10 7 =
= Tables » ﬁ Mominal Logistic Reqgression.. .
6 I
7 MNonparametrics »
8 EDA 3
g9 Paower and Sample Size #
10

Fitted Line Plot

Response (Y3 f ()
Predictor {): I 'FIUMCRY

Type of Regression Model
% Linear Quadratic ¢ Cubic +— 2

Select | Graphs... | Options. .. | Starage. .. |
Help | 0K I Cancel I

C1 FUNCE)
Cz2  ATENDY)

Obtuvimos los resultados que aparecen en la figura 8.

A continuacién interpretaremos los resultados:

La figura 8 muestra la gréafica de la ecuaciéon de regresion sobre el diagrama de

dispersion. La pendiente de la ecuacion de regresion (ﬁl = 0,50) es positiva, lo
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que implica que al aumentar las valoraciones del funcionamiento global, las
puntuaciones de atencion al usuario también aumentan.
Figura 8. Grafica de la ecuacion de regresion de minimos cuadrados

Fitted Line Plot
ATEN(YY = 1,400 + 0,5000 FUNC(X)

7 - s 1,03280
R-5g 75,8%
R-Sq(adi) 67,79
6 -
L .
= 5
<
=
[ )
-
<L 4 L] L]
2
24 *

Figura 9. Pasos a seguir para realizar el anélisis de regresién

Pasos a seguir

= Minitah - Untitled - [Worksheet 1 ™*]

J@ File Edit Data Calc | Stat Graph  Edtor Tools  Window Help Se sigue la ruta Stat > Regressi-
= : —— Ni | i on > Regression (1) y se relle-
FH S @ w O 2dl 2B nan los campos en la ventana
J | = i | Regression... correspondiente (2). Seleccio-
= o] Stepwise... nad OK para obtener el analisis
s FUNC(: . ATEQN DOE | i Boet subssts... : de regresion.
- (2) ﬁ; Control Charts ¥ [|# Fitted Line Fiat...
—— lity Tool |
2 4 4 L on ?ﬁE Partial Least Squares...
— B £ ReliabilitySurvival 3
i Multivariate » Iﬁ Binary Logistic Regressiorn. ..
L B 4 e Saies » lﬁ Ordinal Logistic Regression. ..
10 7 =
L Tables ) ﬂ Mominal Logistic Regression,. .
6 T:
7 Monparametrics »
g EDA 3
g9 Power and Sample Size ¥
10
Regression |§|

Cl FUNC() Response: | "ATEM(VY

Cz  ATEM(Y)
Predictars: [ FURCxY|

Select | Results...
Help | ITI Cancel |

Graphs... | Options... |
I

Storage... |

En el cuadro de didlogo de Minitab puede obtenerse mas informacion sobre
resultados seleccionando las opciones deseadas. Por ejemplo, con este cuadro
de dialogo se pueden obtener los residuos, los residuales estandarizados, los
puntos de alta influencia y la matriz de correlacién (estos resultados los co-
mentaremos mas adelante).
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Obtenemos los resultados que aparecen en la figura 10.

Figura 10. Resultados del analisis de regresién. Minitab

Regression Analysis: ATEN(Y) versus FUNC(X)

The regression equation is

ATEM(¥) = 1,40 + 0,500 FUMNC (¥) 4w Ecuaci@r} estimada de
regresion
FPredictor Cosf SE Coef T P
Constant 1,400 1,083 1,29 0,287 } Prueha T
FUMC () a,5000 0,1633 3,06 0,085
3 = 1,03280 R-5c = 75,5% B-Sciadi) = 67,7%

Analysis of Variance

Source DF 33 H3 F F

Regression 1 10,000 10,000 9,38 0,055 Tabla
ATV A

Fesidual Error 3 3,200 1,087

Total 4 13,200

Predicted Values for New Chservations

e
Chs Fit 3E Fit a5% CI a5% PI
1 4,900 0O.420 (3.341; 6.459) [1.262; 5.538) +——Estimados del

intervalo

Values of Predictors for MNew Chservations

e
Chas FUNC ()
1 7.00

¢ Interpretacion de las estadisticas de regresion:
Minitab imprime la ecuacién de regresion en la forma:
ATEN(Y) = 1,40 + 0,500 FUNC(X).

Se imprime una tabla que muestra los valores de los coeficientes a y b. El
coeficiente Constant (ordenada en el origen) es 1,4, y la pendiente con base
en la variable FUNC es 0,50. SE Coef son las desviaciones estandar de cada
coeficiente. Los valores de las columnas Ty P los analizaremos mas adelan-

te al estudiar la inferencia en la regresion.

El programa imprime el error estandar del valor estimado, S =1,03280 mide
el tamario de una desviacion tipica de un valor observado (x,y) a partir de
la recta de regresion. También proporciona la informacién sobre la bondad
de ajuste. Observad que R-Sq = 75,8% (R? = 0,758) es el coeficiente de de-
terminacién expresado en porcentaje. Como hemos comentado en la solu-
cién manual del ejercicio, un valor del 75,8% significa que el 75,8% de la
variacion en la puntuacion de atencion al usuario puede explicarse por me-
dio de la valoracién obtenida en el funcionamiento global del centro. Se
supone que el 24,2 % restante de la variacion se debe a la variabilidad alea-

toria. El resultado R-Sq(adj) = 67,7% (R? ajustado) es un valor corregido de
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acuerdo con la cantidad de variables independientes. Se tiene en cuenta al
realizar una regresion con varias variables independientes y se estudiara
mas adelante al tratar la regresion multiple.

Interpretacion del analisis de la varianza:

La salida de Minitab analiza la variabilidad de las puntuaciones de atencién
al usuario. La variabilidad, como hemos explicado anteriormente, se divide
en dos partes: SST = SSR + SSE.

SS Regresion (SSR) es la variabilidad debida a la regresion, SS Error (SSE) es
la variabilidad debida al error o variabilidad aleatoria, SS Total (SST) es la
variabilidad total. El resto de la informacién se ira viendo mas adelante al

tratar la regresion lineal multiple.

Interpretacion del valor estimado de predicciéon y del intervalo de confian-
za de 95% (95% C.1.) y el estimado del intervalo de prediccion (95% P.1.)
de la atencidn al usuario para el valor 7 de funcionamiento global. El valor
estimado para Atencién al usuario es 4,9.

A continuacién calcularemos el coeficiente de correlacién lineal como se
indica en la figura 11.

Figura 11. Pasos a seguir para calcular el coeficiente de correlacion

= Minitab - MINITAB_EJ1.MPJ - [Worksheet 1 ***]

J@ File Edit Data Calc | Stat Graph Editor  Tools  Window Help

= N = . A Al
J =5 n | @ | é{: E < Display Descriptive Statistics. ..
J I— Reqgression L4 Es Store Descripkive Statistics. ..
= it
—] AMOVA 4 g; Graphical Surmary. ..
+ C1 (i
DOE 3
FUNC(X) | ATEN(Y) 12 1-Sample Z... «— 1
Control Charts 3
1 2 2 1t 1-Samplet...
———1 uality Tools 3

2 4 n 2t zsamplet..
= Reliability Survival 3

3 B 5 S 4 Pairedt...

T g 2 Multivariate 3
T 10 7 Time Series »| 1P 1 Propartion...
———— Tables » | 2P 2 Proportions. ..
B T:
1 .
7 Monparametrics »| sp l-5ample Poisson Rate...
T EDA » 52,: 2-5ample Poisson Rate...

9 Paower and Sample Size ¥ | g2 1 variance. ..

10 “i,; 2 Mariances...

1

12 .

? COv Covariance. ..

14 ﬁ Mormality Test, ..

15 2 ’ :
Rt W, Goodness-of-Fit Test For Poisson, ..
Correlation |§|

C1 o FUNC(R) Variables:

2 ATENGY)

¥ Display p-values
Select [ Store matrix (display nothing)
Help | OF I Cancel

Pasos a seguir

Para crear el gréfico se sigue la
ruta Stat > Basic Statistics >
Correlation (1)y se rellenan los
campos en la ventana corres-
pondiente (2). Seleccione OK
para obtener el coeficiente de
correlacion lineal.
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Obtuvimos los resultados que aparecen en la figura 12.

Figura 12. Resultados del analisis de correlacién

Correlations: FUNC(X); ATEN(Y)
Pearson correlation of FUNC (Z)
P-alue = 0,055

and ATEM(Y) = 0,870

e Interpretacion del andlisis de correlacion:

Como r =0,870, podemos decir que existe correlacion lineal positiva entre
las valoraciones obtenidas de atencién al usuario y las valoraciones del fun-
cionamiento global del centro. El funcionamiento esta asociado positiva-

mente con la atencién al usuario.

Obsérvese que R%=0,758, por lo que \/F =./0,758 =0,87 =r

Atenciéon

Para resolver el ejemplo 1. “Estudio de los servicios ofrecidos por un centro de

documentaciéon” se emplea Microsoft Excel.
La figura 13 muestra el correspondiente output que ofrece Microsoft Excel.

Se observa que las estadisticas de regresion coinciden con las obtenidas con
Minitab.

Para poder hacer la regresion
con MS Excel es necesario ins-
talar previamente un comple-
mento llamado “Analisis de
datos”. Para instalar las herra-
mientas de analisis de datos,
haced clic en Herramientas >
Complementos, y en el cuadro
de didlogo activar: Herrami-
entas para andlisis.

Figura 13. Resultados del andlisis de regresion del ejemplo 1. “Estudio de los servicios ofrecidos
por un centro de documentacién”. Excel

A | B 5 D | E IF | G | H |

_1 |Resumen

2

3 Estadisticas de la regresion
_4 |Coeficiente de correlacidn miltiple 0,67035528
_5 |Coeficiente de determinacidn R42 0,757575758
_B |R*2 ajustadn 0E7E767677
_ 7 |Errortipico 1032795559

8 |Observaciones 5

g

10 [ANALISIS DE WARIANZA

i Grados de libertad Suma de cusdrados | Promedio de los cuadrados F Valar critico de F
_12 |Regresidn 1 10 10 9,375 0,054312524
_13 |Residuos 3 32 1056665657

14 |Total 4 13,2

18

16 Cosficientes Error Hpico Estadistico t Frobabilidad Inferior 95% Superior 95% | Inferior 95,0% | Superiar 95,0%
17 |Intercepeidn 14 1,083205121 1292460655 | 0,28574453 -2047242134 | 4847242134 2047242134 4847242134
18 |Funcionamiento () 05 0,153299316 3051862178 0,05431252 -0,018631305| 1,019831305 -0,019531305 1,013691305
12
20|
| 2 |
22 |Analisis de los residuales Resultados de datos de probahilidad

23

24 Obsenacion FProndstico Atencion (V] Residuos Percentil Atencidn [ ¥)
25| 1 24 04 10 2
26 | 2 34 o0& 30 4
27 3 44 06 50 4
28 | 4 54 -14 70 5

] 5 64 06 20 7
30|

Diagnostico de la regresion

Al igual que en cualquier procedimiento estadistico, cuando se efectia una re-
gresion en un conjunto de datos se hacen algunas suposiciones importantes,

y en este caso son cuatro:

1) El modelo de linea recta es correcto.
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2) Los errores o residuos siguen una distribucién aproximadamente normal
de media cero.
3) Los errores o residuos tienen una varianza constante o2,

4) Los errores o residuos son independientes.

Siempre que usen regresiones para ajustar una recta a los datos, deben consi-
derarse estas suposiciones. Comprobar que los datos cumplen estas suposicio-
nes supone pasar por una serie de pruebas llamadas diagnosis que se describen

a continuacion.
Prueba de suposicion de linea recta.

Para comprobar si es correcto el modelo de linea recta se usa el grafico de dis-

persion con el ajuste a la recta de minimos cuadrados (ejemplo 1, figura 14).

Figura 14. Gréfica de la ecuacién de regresion del ejemplo 1

Grafica de la ecuacién de regresion

M oW B L O N
1

Atencién usuario

Funcionamiento

Analisis de residuos

Una vez hecho el ajuste de un modelo de regresion lineal a los datos muestra-
les, hay que efectuar el andlisis de los residuos o errores. Este andlisis, que a
continuacién comentaremos de forma breve e intuitiva, nos servira para hacer

un diagnostico del modelo de regresion.

Otra forma de ver si los datos se ajustan a una recta es realizando un gréfico
de los residuos (¢; = y; — }71. ) en funcién de la variable predictora (X). En el eje
horizontal se representa el valor de la variable independiente (X) y en el ver-

tical los valores de los residuos (e;).

Podemos calcular los residuos manualmente segiin habiamos indicado en la
tabla 3.

En la figura 15 presentamos 4 ejemplos de graficos de residuos o errores.
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Figura 15. Diagrama de residuos

Diagramas de residuos

(@ (b)
Residuos Residuos
2 . 14 .
N 0"“““7“‘““““‘?“"
[]___‘_________-___ _____ -~
iy -1 - .
-2 T T T T - T -2 |. T T T T it
5 6 7 8 9 10 5 6 7 8 9 10
X X
. (© . d
Residuos Residuos @
34 + A
2 14
14 [ -
(1 A A’
-1 T T T T = .I -2 |. T T T T
5 6 7 & 9 10 7 8 9 10 11 12 13
X X

Podemos observar que de los cuatro, s6lo el primero no presenta ningan
tipo de estructura, los residuos se distribuyen aleatoriamente, de manera
que sélo tendria sentido la regresioén hecha sobre la muestra (a). Si los pun-
tos se orientasen en forma de “U” (o “U” invertida), habria problemas con
este supuesto, como es el caso de la muestra (b). Los residuos del diagrama
(¢) y (d) no se distribuyen aleatoriamente, por lo que no se cumple el su-
puesto de linealidad.

En el mismo grafico también podemos observar si los residuos tienen varianza -
Valor atipico

constante (supuesto 3). Si la varianza de los errores es constante para todos los
Por valor atipico entendemos
un valor muy diferente de los

da horizontal de los puntos, como en (a). Si forman una flecha (en un extremo g;r:rsrg r?e‘:)e muy posiblemente

valores de X, la grafica de residuales debe mostrar un patréon similar a una ban-

se agrupan mucho mas que en el otro), caso (d), entonces este supuesto falla.
También es conveniente estar atentos ante la posible existencia de valores ati-
picos o valores extremos (outliers), pues éstos podrian afectar.

También podemos usar un grafico de residuos en funcién del valor estimado
o predicho y. Esto lo representaremos graficamente mediante un diagrama de
dispersion de los puntos (yi,e,-), es decir, sobre el eje de las abscisas represen-
tamos el valor estimado y, y sobre el eje de ordenadas, el valor correspondien-
te del residuo, es decir, ¢;=y; —y; -

Figura 16. Gréfico de residuos en funcién
de valor estimado o predicho )A/

¢ [ ] e o @®
;:,::
... ... ...

° ...... :
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Si el modelo lineal obtenido se ajusta bien a los datos muestrales, entonces la
nube de puntos ()A/l-,ei) no debe mostrar ningtn tipo de estructura. Para la re-
gresion lineal simple, la grafica de residuos en funcion de X y los de residuos
en funci6on de )A/ dan la misma informacién. Para la regresiéon maltiple, la gra-
fica de residuos en funcién de y se usa con mas frecuencia porque se maneja
mas de una variable independiente.

Para comprobar el segundo supuesto de que los errores o residuos siguen una dis-

tribucion aproximadamente normal usaremos la grafica de probabilidad normal.

Consideramos de nuevo el ejemplo 1. “Estudio de los servicios ofrecidos por
un centro de documentacioén” y realizamos la diagnosis con Minitab a fin de

comprobar si se cumplen las condiciones del modelo.

En la figura 17 se indican los pasos a seguir para crear un grafico de los residuos

en funcién de la variable de prediccién con Minitab:

Figura 17. Pasos a seguir para crear un gréfico de los residuos
en funcién de la prediccién

Fitted Line Plot - Graphs @

Cl FUNC(X)
C2  ATEM(Y)

Residuals for Plots:
f+ Reqular " Standardized ¢ Deleted

Residual Plots

& Individual plots
[ Hiskogram of residuals
™ Mormal plot of residuals
I~ Residuals versus fits
I™ Residuals versus order

" Four in one

Residuals versus the variables:
‘ IFUMC ()

K | Cancel

Obtenemos la grafica que aparece en la figura 18.

Figura 18. Gréfica de los residuos en funcién de la variable independiente

Residuals Versus FUNC(X)
(response is ATENCY))
. . .
=
0,0
T
=
= .
? -05
&
-1,04
*
-1,54
T T T T T T T T T T
1 2 3 4 5 5] 7 =] 9 10

FUNC{X)

Pasos a seguir

Sesigue la ruta Stat > Regression
> Fitted Line Plot > Linear >
Graphy se rellenan los campos
correspondientes. Seleccione
OK para obtener el gréfico de
residuos.
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Los valores residuales se distribuyen aleatoriamente y no presenta ningtn tipo
de estructura, por consiguiente concluimos que la gréfica de los residuos no
muestra evidencia de incumplir el supuesto de linealidad y podemos por aho-
ra concluir que el modelo lineal simple es valido para el ejemplo “Estudio de

los servicios ofrecidos por un centro de documentacién”.

En el mismo grafico podemos observar que los residuos tienen varianza cons-

tante ya que parecen estar en la banda horizontal.

A fin de comprobar si se cumplen el resto de las condiciones del modelo, se-
leccionamos la opcion Graphs y completamos los campos segtn se indica en
la figura 19:

Figura 19. Pasos a seguir para crear un grafico de los residuos en
funcién de los valores estimados (fits)

Regression - Graphs E|
C1 FUNC() Residuals For Ploks:
CZ ATEMNY)Y {* Reqular (" standardized " Deleted

Residual Ploks

(" Individual plots
[ Histogram of residuals
[v Mormal plot of residuals
[v Residuals versus fits
[ Residuals wersus order

(" Four in ane

Residuals versus the variables:

Help QK | Cancel

La figura 20 presenta el grafico de los valores residuales frente a los valores estima-
dos y el significado es analogo al de la figura 18. Los residuos se distribuyen alea-
toriamente, no presenta ningin tipo de estructura, y podemos concluir que es
valido el modelo lineal simple.

Figura 20. Gréfica de los residuos en funcién de los valores estimados
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En la gréfica de la figura 21 podemos comprobar que los residuos siguen una
distribucién aproximadamente normal, ya que los puntos se acercan bastante
a una recta (esta hipotesis s6lo plantearia dificultades si estos puntos se aleja-
sen de la forma lineal):

Figura 21. Gréfica de probabilidad normal
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Inferencia en la regresion: constrastes de hipotesis e intervalos de confianza

Al hacer un analisis de regresiéon se comienza proponiendo una hipétesis
acerca del modelo adecuado de la relacion entre las variables dependiente e
independiente. Para el caso de regresion lineal simple, el modelo de regre-
sidén supuesto es:

Yy =Bo +B1x; +g

A continuacién aplicamos el método de minimos cuadrados para determinar
los valores de los estimadores By y B; de los parametros del modelo. La ecua-
cién estimada de regresion que resulta es:

}A’Z 60 +61Xi

Ya hemos visto que el valor del coeficiente de determinacion (R?) es una me-
dida de bondad de ajuste de esta ecuacién. Sin embargo, aun con un valor
grande de R? no se deberia usar la ecuacion de regresion sin antes efectuar un
analisis de la adecuacion del modelo propuesto. Para ello se debe determinar
el significado (o importancia estadistica) de la relacién. Las pruebas de signifi-
cacion en el analisis de regresion se basan en los siguientes supuestos acerca
del término del error ¢:

1) El término del error € es una variable aleatoria con distribucién normal con
media, o valor esperado, igual a cero.

2

2) La varianza del error, representada por o<, es igual para todos los valores de x.
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3) Los valores de los errores son independientes.

Base para la inferencia sobre la pendiente de la regresiéon poblacional

Sea ; la pendiente del modelo de regresion y ﬁl su estimacion por mi-
nimos cuadrados (basada en observaciones muestrales). Si se cumplen
los supuestos acerca del termino del error expuestos anteriormente, la
pendiente del modelo de regresion 1 se distribuye como una t de Stu-
dent con (n — 2) grados de libertad.

A

B1-B1

==L
By

Para obtener el estadistico de contraste, calcularemos:

Sﬁl es la desviacion estandar estimada de B4,

s es el error estandar de los estimados. Para calcularlo, se divide la
suma de las desviaciones al cuadrado por n — 2, que son los grados de
libertad.

1

n
“\2
n_ZZ(J’i—Yi)

i=1

S =

En el analisis de regresion aplicado, primero se desea conocer si existe una
relacion entre las variables X e Y. En el modelo se ve que si B; es cero, en-
tonces no existe relacion lineal: ¥ no aumentaria o disminuiria cuando au-
menta X. Para averiguar si existe una relacion lineal, se puede contrastar la

hipoétesis

Hoi Bl =0
frente a

Hll Bl =0

Se puede contrastar esta hipotesis utilizando el estadistico t de Student

BB _Bi-0_ By

Sﬁl Sﬁl Sﬁl
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que se distribuye como una t de Student con n — 2 grados de libertad. La ma-
yoria de los programas que se emplean para estimar regresiones la desviacién
estandar de los coeficientes y el estadistico t de Student para 1 = 0. Las figuras
10 y 13 muestran respectivamente las salidas de Minitab y Excel correspon-
dientes al ejemplo del estudio de los servicios ofrecidos por un centro de do-

cumentacion.

En el caso del modelo de ejemplo, el coeficiente de la pendiente es ﬁl =0,50
con una desviacién estandar Sfy] =0,1633. Para saber si existe relacion entre la
atencion al usuario, Y, y el funcionamiento global, X, se puede contrastar la
hipotesis H, : B; =0 frente a Hy : 1 # 0. Este resultado se obtiene en el caso de
un contraste de dos colas con un nivel de significacién a = 0,05 y 3 grados de

libertad.

El estadistico t calculado es:

t= 0,50-0 =3,06 Recordad
0,1633

El p-valor es la probabilidad de

P . ., que una variable aleatoria su-
El estadistico t resultante, t = 3,06, mostrado en la salida de regresion de la pere el valor observado para el
figura 22, es la prueba definitiva para rechazar o aceptar la hipotesis nula. En estadistico de contraste.

e Sip-valor < a, se rechaza Hy.

este caso el p-valor es 0,055; como p-valor > 0,05 (no podemos rechazar la e Si pvalor > a, no se recha-

Hy: B1 =0al nivel de significacion de a.= 0,05), se acepta que [31 =0. Por lo tan- za Ho.

to, no se puede afirmar que exista una relacion lineal entre las valoraciones del
funcionamiento global y la atencién al usuario a un nivel de confianza del
95% (nivel de significacion del 0,05).

Figura 22. Resumen de la figura 10. Resultados del andlisis de regresién. Minitab

Regression Analysis: ATEN(Y) versus FUNC(X)
The regression equation is

ATEM(Y) = 1,40 + 0,500 FUNC (X

Predictor Coef 3E Coef T F
Constant 1, 400 1,083 1,29 0,287

FUNC [ X) 0,5000 0,1633 3,06 0,055

S = 1,03280 R-Sg = 75,8% R-Sgiadj) = &67,7%

Si el nivel de significacion se hubiera fijado del 10% (o = 0,10), se podria re-
chazar Hy, ya que el p-valor < 0,10, los resultados indicarian que B; #0 y en
este caso se podria decir que a un nivel de confianza del 90% existe relacion

lineal entre ambas variables.

Intervalo de confianza para la pendiente

Se puede obtener intervalos de confianza para la pendiente ; del modelo de
regresion utilizando los estimadores de los coeficientes y de las varianzas que

se han desarrollado y el razonamiento utilizado en el mé6dulo 2.
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Si los errores de la regresion g; siguen una distribucién normal y se cum-
plen los supuestos de la regresion, se obtiene un intervalo de confianza
al (1 — )% de la pendiente del modelo de regresion simple B; de la si-

guiente forma:

~

B1- tn—Z,a/ZSﬁl <B1<Pr+ti2,u 1253,

donde t,_, ;2 es el namero para el que
Pty >ty 2,6/2)=0/2

el estadistico t,,_, sigue una distribucion t de Student con (n — 2) gra-
dos de libertad.

En la salida del analisis de regresion de la atencién al usuario respecto al funcio-
namiento global del centro de documentacion de la figura 22, se observa que

n=5 p;=0,50 Sp, = 0,1633

Para obtener el intervalo de confianza al 95% de B, (1-a)=095yn-2=3
grados de libertad, es necesario calcular el valor critico de la t-Student. En este
casocon n—2 =35 -2 =3 grados de libertad y a/2 = 0,05/2 = 0,025. Se puede

obtener utilizando las tablas de la distribucion t de Student o con el ordenador.
Si se utiliza Minitab, los pasos a seguir se muestran en la figura 23.

Figura 23. Pasos a seguir para calcular el valor critico t

t Distribution g|
™ Probability density

™ Cumulative probability

¥ Inverse cumnulative probability

Moncentrality parameter: | 0.0

Degrees of freedom: 3
" Input colurmn:
Optional storage:
f« Input constant: 0.975
Q Optional storage:

=]

Cancel |

Help

Figura 24. Resultados de calculo del valor critico t. Minitab

Pasos a seguir

Inverse Cumulative Distribution Function

Jtudent's t distrilbution with 3 DF

Pl X <=x) X
0.975 3.13245

Se sigue la ruta Calc > Probabi-
lity Distributions > ty se relle-
nan los campos en la ventana
correspondiente. Seleccionad
OK para obtener el output de la
figura 24.
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el valorde t, 2 q/2 =t3,0,025 = 3,18
Por lo tanto, el intervalo de confianza al 95% sera
0,50 - (0,1633) (3,18) < B < 0,50 + (0,1633) (3,18)
O sea
-0,019 < B < 1,0193

Por tanto, el intervalo de confianza buscado es: 0,50 + 3,18245 - 0,1633, i. e.,
se puede afirmar con una probabilidad del 95% que B; se encuentra en el in-
tervalo de extremos -0,0197 y 1,0197.

En la tabla 4 se presentase el intervalo de confianza calculado con Ex-
cel. El resumen muestra en las ultimas columnas los valores estimados
de intervalo de confianza del 95% para los pardmetros de regresién B
y By, también las desviaciones estandar estimadas (columna Error tipi-
co), el valor estadistico t (columna Estadistico t) y 1os p-valores (columna
Probabilidad).

Tabla 4. Resumen de la figura 13 (Resultados del andlisis de regresion. Excel)

Intercepcién 1,4 1,08320512 1,29246066 0,286745 -2,047242 4,847242134

Funcionamiento (X) 0,5 0,16329932 3,06186218 0,054913 -0,019691 1,019691305

3.2. Modelos de regresion simple no lineales:
modelo cuadratico y cabico

Existen algunas relaciones que no son estrictamente lineales, y se pueden de-
sarrollar métodos con el fin de poder utilizar los métodos de regresion para es-
timar los coeficientes del modelo.

Aparte de los modelos de regresion lineales, se pueden establecer otros que
no son lineales, entre los cuales destacamos: el modelo cuadratico y el ca-
bico, que son modelos curvilineos. Cada modelo corresponde con el grado
de la ecuacion, siendo Y la respuesta y X la variable predictora, By la orde-
nada en el origen, y B, B, Y B3 los coeficientes. Es importante escoger el
modelo apropiado cuando se modelizan datos usando regresion y analisis
de tendencia.
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Modelo cuadratico: Y = By + B1X + By X?

Modelo cubico: Y = B, + By X + By X2 + 53X3

Para determinar qué modelo utilizar, se representan previamente los datos
(diagrama de dispersion) y se calcula el coeficiente de correlaciéon lineal de
Pearson. Conviene recordar que dicho coeficiente “r” mide el grado de asocia-
cién que existe entre las variables X e Y cuando se ajusta a su nube de puntos
una linea recta, pero no mide el grado de ajuste de una curva a la nube de pun-
tos. Podria darse el caso de que la relacion entre las variables fuera grande, s6lo
que distribuida a lo largo de una curva, en cuyo caso, al ajustar a una recta se
obtendria un coeficiente de correlacion lineal “r” y un coeficiente de determi-
nacién “R%” bajo. Calculariamos el ajuste simultdneo a los modelos no lineales
(cuadrético y ctbico) y se calcularian los coeficientes de determinacion para
ambos modelos para determinar la bondad del ajuste. El mejor modelo sera el

que presente el valor mas elevado de R%.

Los métodos de inferencia para los modelos no lineales transformados son los
mismos que se han desarrollado para los modelos lineales. Asi, si se tiene un
modelo cuadratico, el efecto de una variable X esta indicado por los coeficien-

tes tanto de los términos lineales como de los términos cuadraticos.
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Ejemplo. Nimero de visitantes a un museo (estimacion de un modelo
cuadratico utilizando Minitab)

Se desea estudiar la variacién entre el nimero de visitantes a un museo en fun-
cién del niimero de obras visitadas. La tabla 5 muestra el niimero de visitantes
y el nimero de obras visitadas. Se han seleccionado aleatoriamente los datos
correspondientes a 6 dias.

Tabla 5. Ndmero de visitantes a un museo

Numero de visitantes (Y) 22 24 26 30 35 40

Numero de obras visitadas (X) 12 21 33 35 40 36

Con estos datos podemos deducir si existe relaciéon entre ambas variables y si

las variables estan relacionadas establecer el mejor modelo.

La figura 25 representa el diagrama de dispersion para estos datos. El diagrama
de dispersion indica que posiblemente hay una relacién curvilinea entre el na-
mero de de obras visitadas y el namero de visitantes.

Figura 25. Diagrama de dispersién para ejemplo 2. Minitab

Scatterplot of Numero de visitantes () vs Namero de obras visitadas
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Antes de deducir la ecuacién curvilinea entre nimero de obras visitadas y na-
mero de visitantes, se realiza el ajuste a un modelo de regresion lineal simple
(de primer orden) siguiendo los pasos que muestra la figura 26.

Figura 26. Pasos a seguir para comprobar el modelo lineal
Pasos a seguir

Fitted Line Plot -
Se sigue la ruta Stat > Re-
C1  Nimero de obras visitadas ([0 | R NEEe) gresion > Fitted Line Plot >
2 Mdmero de visita ; Lineary se rellenan los campos
Predictor (#): | 'imero de obras en la ventana correspondiente.
Seleccionad OK para obtener el
Type of Reqgression Model output de la figura 27 y 28.
(¢ Linear " Quadrakic " Cuobic

Graphs. .. | Options... | Skorage... |
Help O | Zancel |
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Figura 27. Gréfica de la ecuacion de regresién de minimos cuadrados

Fitted Line Plot
Marnero de visitantes (¥) = - 6,77 + 1,230 Nlrmero de obras visitadas (0
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Figura 28. Resultados del andlisis de regresién. Modelo lineal simple

Regression Analysis: Niamero de visitantes (Y) versus Nimero
de obras visitada

The regre=ssion equation i=

MNiawero de wisitantes (Y) = - 6,77 + 1,230 Muero de ohras
vigitadas ()

% = 7,26028 R-Sq = 63,1% R-Sgiadj) = 53,9%

Analvsis of Variance

Jource DF 33 il F F
Regression 1 362,130 362,130 6,85 0,059
Error 4 211,370 52,542

Total 5 573,500

Observamos que con el modelo lineal se explica un 63,1% de la variabilidad

del ntmero de visitantes (R% = 63,1%). La ecuacién de ajuste es:
Numero de visitantes (Y) = -6,77 + 1,230; nimero de obras visitadas (X)

A continuacion se presenta el ajuste del modelo cuadrético y, como se puede
ver en la grafica de la figura 29, los puntos se ajustan mejor a una funcién no

lineal.

Figura 29. Gréfica del ajuste cuadratico

Fitted Line Plot
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Observamos que el ajuste cuadratico es muy bueno con un valor de R?=94,5%
que mejora el ajuste lineal. La ecuacién de ajuste es:

Numero de visitantes (Y) =-168,9 + 12,19; namero de obras visitadas —0,1770;

namero de obras visitadas?

Figura 30. Resultados del analisis de regresién. Modelo cuadratico

Polynoemial Regression Analysis: Namero de visita versus Namero
de obras

The regression equation is

Nuawero de wisitantez (¥] = - 168,9 + 12,19 Nawero de ohras
wigitadas (X)) - 0,1770 Nuamero de ohras visitadas () ¥%2
S = 3,24822 R-Sg = 94,5% ERE-Sgiadj) = 90,8%

Ahaly=si= of Wariance

Jource oF 33 M3 F P
Fegression 2 541,847 270,924 25,65 0,013
Error 3 31,853 10,551

Total & E73,500

Secquential Analysis of Variance

SJource oF 33 F P
Lin=ar 1 362,130 6,85 0,059
Cmadratic 1 179,717 17,053 0,026

A continuacién se presenta el ajuste del modelo ctbico:

Figura 31. Graéfica del ajuste cibico

Fitted Line Plot
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Figura 32. Resultados del analisis de regresién. Modelo clbico

Miuwero de visitantes

- 420,929 + 37,75 NMimero de obras visitadas (X

Polynomial Regression Analysis:
Mamero de visita versus Niamero de obras

The regression equation i=s

(T =

- 1,021 Niawero de ohras vigitadas () ¥+2

+ 0,009051 Nimero de obras wisitadas () **3

3 0= 3,22941 BE-8q = 96,4% B-Sqgiadj) = 90,9%
hnalysis of Variance

Source DF 33 Juis] F P
Fegression 3 55Z,6d2 154,214 17,66 0,054
Error 2 20,858 10,429

Total 5 573,500

Secquential Lnalvsis of Variance

Source oF =] F P

Linear 1 362,130 6,55 0,059

Cuadratic 1 1vs,717 17,03 0,026

Cubie 1 10,735 1,04 0,416

El ajuste al modelo ctibico también es bueno con un valor alto de R? = 96,4 %

que mejora el ajuste lineal e iguala al cuadratico.

La ecuacion de ajuste es:

Numero de visitantes (Y) = —420,9 + 37,75 Namero de obras visitadas —1,021

Nuamero de obras visitadas® + 0,009081 Ndamero de obras visitadas®

Analizando la significatividad de los modelos mediante el p-valor, el modelo

cuadratico por tener el menor p-valor (p-valor = 0,026) es el mds significativo,

por lo que se elegiria como mejor ajuste el cuadratico.

La figura 33 muestra el correspondiente output que ofrece Microsoft Excel del

ejemplo 2. “Namero de visitantes a un museo”. Seleccionando la opcién

Tipo de tendencia poligonal de segundo orden, que coincide con el ajuste cua-

dratico elegido con Minitab (figuras 29 y 30). La ecuacion de ajuste y el valor

de R? coinciden con las obtenidas con Minitab.
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Figura 33. Gréfica del ajuste cuadratico. Excel

Nimero de visitantes versus nimero de obras
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3.3. Transformaciones de modelos de regresion no lineales:
modelos exponenciales

Algunas relaciones entre variables pueden analizarse mediante modelos expo-
nenciales. Por ejemplo las relaciones entre la variable tiempo (X) y otras varia-
bles (Y) como la poblacién, los precios de algunos productos, el nimero de
ordenadores infectados son exponenciales. Los modelos exponenciales de de-

manda se utilizan mucho en el analisis de conducta del mercado.

El modelo exponencial es del tipo:

y =ka* cona>0,k>0

donde k y a son valores constantes.

Para tratar este modelo se realizara una transformacién de las variables de ma-
nera que el modelo se convierta en lineal.

Si en la ecuacién y = ka* tomamos logaritmos In y = In(ka*), obtenemos, por
aplicacion de las propiedades de los logaritmos:

Iny=Ink+xlna

Esta ecuacion muestra un modelo lineal entre las variables X y In Y.

Curva en un modelo
exponencial

En el modelo lineal se ajusta la
nube de puntos a una recta de
ecuacién:

y =a+bx

En el modelo exponencial se
ajusta a una curva de ecuacion:

y =ka* cona>0,k>0

Propiedades
de los logaritmos

Inab=1Ina +Inb

Ina* = xlna




CC-BY-SA « PID_00161061 41 Relacién entre variables: causalidad, correlacion y regresion

Si representamos el diagrama de dispersion de los puntos (x;, In y;) y la nube
de puntos presenta una estructura lineal, se puede pensar que entre las varia-

bles X e Y hay una relacién exponencial.
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4. Modelos de regresion miultiple

En el apartado 3.1 hemos presentado el método de regresién simple para ob-
tener una ecuaciéon lineal que predice una variable dependiente o end6gena
en funcién de una tnica variable independiente o exdégena: namero total de
libros vendidos en funcion del precio. Sin embargo, en muchas situaciones,
varias variables independientes influyen conjuntamente en una variable de-
pendiente. La regresion multiple permite averiguar el efecto simultdneo de va-
rias variables independientes en una variable dependiente utilizando el

principio de los minimos cuadrados.

Existen muchas aplicaciones de la regresion multiple para dar respuesta a pre-

guntas como las siguientes:

(En qué medida el precio de un ordenador depende de la velocidad del proce-

sador, de la capacidad del disco duro y de la cantidad de memoria RAM?

¢{Como relacionar el indice de impacto de una revista cientifica con el namero

total de documentos publicados y el namero de citas por documento?

¢El sueldo de un titulado depende de la edad, de los afios que hace que acabd

los estudios, de los afios de experiencia en la empresa, etc.?

¢(El precio de alquiler de un piso depende de los metros cuadrados de superfi-

cie, de la edad de la finca, de la proximidad al centro de la ciudad, etc.?

¢El precio de un coche depende de la potencia del motor, del namero de puer-
tas y de multitud de accesorios que puede llevar: airbag, ordenador de viaje,

equipo de alta fidelidad volante deportivo, llantas especiales, etc.?

Los métodos para ajustar modelos de regresion multiple se basan en el mismo

principio de minimos cuadrados explicado en el apartado 3.1.

Nuestro objetivo es aprender a utilizar la regresién multiple para crear y ana-
lizar modelos. Por lo tanto se aprendera como funciona la regresiéon multiple
y algunas directrices para interpretarla. Comprendiendo perfectamente la re-
gresion maultiple, es posible resolver una amplia variedad de problemas aplica-
dos. Este estudio de los métodos de regresion multiple es paralelo al de
regresion simple. El primer paso para desarrollar un modelo consiste en la se-
leccién de las variables y de la forma del modelo. A continuacién, estudiamos
el método de minimos cuadrados y analizamos la variabilidad para identificar

los efectos de cada una de las variables de prediccion.
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Después estudiamos la estimacion, los intervalos de confianza y el contraste
de hipotesis. Utilizamos aplicaciones informaticas para indicar como se aplica

la teoria a problemas reales.

Desarrollo del modelo

Cuando se aplica la regresion multiple, se construye un modelo para explicar
la variabilidad de la variable dependiente. Para ello hay que incluir las influen-
cias simultaneas e individuales de varias variables independientes. Se supone,
por ejemplo, que se quiere desarrollar un modelo que prediga el precio de las
impresoras laser que desea liquidar una empresa. Un estudio inicial indicaba
que el precio estaba relacionado con el ntimero de paginas por minuto que la
impresora es capaz de imprimir y los afios de antigiiedad de la impresora en
cuestion. Eso llevaria a especificar el siguiente modelo de regresion multiple

con dos variables independientes.

y=PBo+B1x1 +Pox2+e

donde:

Y = precio en euros
X1 = ntmero de paginas impresas por minuto
X, = afios de antigiiedad de la impresora

La tabla 6 contiene 12 observaciones de estas variables. Utilizaremos estos da-
tos para desarrollar el modelo lineal que prediga el precio de las impresoras en
funciéon del nimero de paginas impresas por minuto y de los afios de antigtie-

dad de la impresora.

Tabla 6. Datos del ejemplo “Estudio sobre el precio de impresoras laser en funcién de su
velocidad de impresién y la antigiiedad del modelo”. Nota
X 6 6 6 6 8 8 8 8 12 12 12 12 En el caso general empleare-
mos k para representar el nd-
5% 6 4 2 0 6 4 2 0 6 4 2 0 mero de variables
independientes.

Y 466 | 418 | 434 | 487 | 516 | 462 | 475 | 501 | 594 | 553 | 551 | 589

Pero antes de poder estimar el modelo es necesario desarrollar y comprender

el método de regresion multiple.

El modelo de regresion multiple es

Y =Bo +P1x1 +Boxo +... + Py + g

Donde By, B1, B2,--- , Bx son los coeficientes de las variables independientes o

exogenas y ¢ (letra griega épsilon) es el error o residuo y es una variable alea-
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toria. Mas adelante describiremos todos los supuestos del modelo para el mo-
delo de regresion multiple y para «.

Los coeficientes en general no se conocen y se deben determinar a partir de los
datos de una muestra y empledndose el método de minimos cuadrados para
llegar a la ecuacién estimada de regresion que mas se aproxima a la relaciéon
lineal entre las variables independientes y dependiente. El procedimiento es
similar al utilizado en la regresiéon simple. En la regresién multiple el mejor
ajuste es un hiperplano en espacio n-dimensional (espacio tridimensional en
el caso de dos variables independientes, figura 34).

Figura 34. Gréfica de la ecuacion de regresion, para el anélisis de regresién multiple
con dos variables independientes

Residuo

X2

X4

Valor estimado

Los valores estimados de la variable dependiente se calculan con la ecuaciéon

estimada de regresion multiple:

Y =Bg +Byx1 +Boxo +... + BrX

Donde ﬁo,ﬁl,ﬁz,...,ﬁk son los valores de los estimadores de los pardmetros o
coeficientes de la ecuacion de regresion multiple, la deduccion de estos coefi-
cientes requiere el empleo del algebra de matrices y se sale del propésito de
este texto. Asi, al describir la regresién multiple lo enfocaremos hacia como se
pueden emplear los programas informaticos de célculo para obtener la ecua-
cion estimada de regresion y otros resultados y su interpretacion, y no hacia

como hacer los célculos de la regresion multiple.

Considerando de nuevo el modelo de regresion con dos variables indepen-
dientes del ejemplo 3. “Estudio sobre el precio de impresoras laser en funciéon
de su velocidad de impresion y la antigiedad del modelo”. Utilizando los da-
tos de la tabla 6 se ha estimado un modelo de regresion mualtiple, que se ob-

serva en la salida Minitab de la figura 35.

Criterio de minimos
cuadrados

miné“(y, —)A/f)z

Donde:

y; = valor observado de la va-
riable dependiente en la i-ési-
ma observacion.

y; = valor estimado de la varia-
ble dependiente en la i-ésima
observacion.
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Figura 35. Resultados del ejemplo 3 del analisis de regresiéon miltiple para dos variables
independientes

Pasos a seguir

Regression Analysis: Y versus X1; X2

The regression equation i=

T = 330 + 20,2 E1 - 0,50 X2

FPredictor Coef 3E Coef T P
Constant 330,38 29,40 11,24 0,000
1 20, 157 3,056 6,61 0,000
Zz -0, 500 3,410 -0,15 0,587

S = 26,4100 B-Sg = 82,9% R-Sgiady) = 79,1%

Los coeficientes estimados se identifican en la salida de los programas

informaticos
La ecuacion de regresion multiple es: Y = 330 + 20,2 X1 - 0,50 X2
La interpretacion de los coeficientes es la siguiente:

e Coeficiente de X1 (20,2 euros): seria el aumento del precio de la impresora
cuando aumenta en una unidad el namero de paginas por minuto que im-
prime, cuando las demds variables independientes se mantienen constan-

tes (en este caso X2, la antigiiedad no varia).

e Coeficiente X2 (0,50 euros): seria la disminucién del precio por cada afio
mas de antigiiedad de la impresora, cuando X1 permanece constante (el

ntmero de paginas por minuto no varia).

e Término independiente (330): no tiene mucho sentido interpretarlo en
este caso ya que representaria el precio de una impresora que no puede im-

primir ninguna péagina.
El coeficiente de determinacién miltiple

En la regresion lineal simple vimos que la suma total de cuadrados se puede
descomponer en dos componentes: la suma de cuadrados debida a la regresion
y la suma de cuadrados debida al error. Este mismo procedimiento se aplica a
la suma de cuadrados de la regresion maultiple. El coeficiente de determinacién
multiple mide la bondad de ajuste para la ecuacion de regresién multiple. Este

coeficiente se calcula como sigue:

g2 - 3SR
SST

Se puede interpretar como la proporcion de variabilidad de la variable depen-

diente que se puede explicar con la ecuacion de regresion maualtiple. Cuando se

Para estimar el modelo de re-
gresién multiple introducimos
los datos en Minitab para cal-
cular el modelo.

Se sigue la ruta Stat > Regres-
sion > Regression y se rellenan
los campos en la ventana co-
rrespondiente. Se selecciona
OK para obtener el analisis de
regresion.

Coeficiente de
determinacién R?

El coeficiente de determina-
cién R? en Minitab se designa
como R-sq.
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multiplica por cien, se interpreta como la variacién porcentual de y que se ex-

plica con la ecuacion de regresion.

En general, R? aumenta cuando se anaden variables independientes (variables
explicativas o predictoras) al modelo. Si se afiade una variable al modelo, R?
se hace mayor (o permanece igual), aun cuando esa variable no sea estadisti-
camente significativa. El coeficiente de determinacion corregido o adjusted
R-sq elimina el efecto que se produce sobre el R-sq cuando se aumenta el na-

mero de variables independientes.

El coeficiente de correlacion miultiple se define como la raiz cuadrada posi-
tiva del R-sq. Este coeficiente nos proporciona la correlacidon existente entre la
variable dependiente (respuesta) y una nueva variable formada por la combi-

nacion lineal de los predictores.

Continuando con el ejemplo 3. “Estudio sobre el precio de impresoras laser
en funcidén de su velocidad de impresion y la antigiiedad del modelo”, in-
terpretaremos el resultado del coeficiente de determinacioén R-Sq = 82,9% (fi-
gura 35). Significa que el 82,9% de la variabilidad en el precio de impresoras
laser se explica con la ecuacion de regresion multiple, con el namero de pagi-
nas que imprime por minuto y los afios de antigiiedad. La figura 35 muestra
que el valor R-Sq (adj) = 79,1%, significa que si se agregase una variable inde-

pendiente (predictora) el valor de R? no aumentaria.

Supuestos del modelo

Los supuestos acerca del término del error ¢, en el modelo de regresion multi-

ple, son similares a los del modelo de regresion lineal simple.

Por simplicidad, consideraremos un modelo de regresién con sélo dos varia-
bles explicativas (X1y X2). La ecuacién de regresién multiple, con dos varia-

bles independientes sera:
y=Bo+Bixy +Poxa +e
donde los B;representan coeficientes reales y ¢ representa el error aleatorio.

1) Elerror es una variable aleatoria cuyo valor medio u esperado es cero; esto
es E(e) = 0.

2) Para todos los valores de X1y X2, los valores de Y (o, alternativamente, los

valores de (¢) muestran varianza constante o2,

3) Para cada valor de X1y X2, la distribucion de Y (o, alternativamente, la de ¢)

es aproximadamente normal.
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4) Los valores de Y obtenidos (o, alternativamente, los de ¢) son independientes.

Hay toda una serie de graficos que nos pueden ayudar a analizar los resultados
de una regresion lineal maltiple y a comprobar si se cumplen o no los supues-
tos anteriores:

1) Un gréfico de la variable dependiente frente a los valores estimados por el

modelo nos ayudara a comprobar visualmente la bondad del ajuste.

2) Representando los residuos frente a los valores estimados podremos com-
probar la variabilidad vertical en los datos. Ello nos permitira saber si se cum-

ple el supuesto de varianza constante.

3) Un gréfico de residuos frente a cada una de las variables explicativas puede re-

velar problemas adicionales que no se hayan detectado en el grafico anterior.

4) Para comprobar la hip6tesis de normalidad suele ser conveniente realizar

un test y un grafico de normalidad para los residuos.

En el ejemplo se comprueba si se cumplen los supuestos del modelo utilizado.

En la grafica de la figura 36 podemos comprobar que los residuos siguen una
distribucién aproximadamente normal, ya que los puntos se acercan bastante

a una recta.

Figura 36. Gréfica de probabilidad normal

Normal Probability Plot
(response is Y)

Por cien
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=}
+
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=50 -25 0 25 50

Residual

La figura 37 presenta el grafico de los valores residuales frente a los valores es-
timados. Los residuos se distribuyen aleatoriamente, no presenta ningan tipo
de estructura y podemos concluir que es valido el modelo lineal multiple.
También observamos en este grafico que las varianzas de los residuos son

constantes. El procedimiento y la interpretacion de los supuestos se explica-
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ron en el apartado 3.1. (modelos de regresion lineal simple) y son iguales a los

correspondientes de regresion multiple.

Figura 37. Gréfica de los residuos en funcién de los valores estimados

Versus Fits
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Pruebas de significaciéon

Las pruebas de significacién que empleamos en la regresion lineal fueron una
prueba t y una prueba F. En ese caso, ambas pruebas dan como resultado la
misma conclusion: si se rechaza la hipoétesis nula, la conclusion es que (= 0.

En la regresion multiple la prueba t y F tienen distintas finalidades.

La prueba F se usa para determinar si hay una relacién significativa entre la
variable dependiente y el conjunto de todas las variables independientes. En

estas condiciones se le llama prueba de significacion global.

La prueba t se aplica para determinar si cada una de las variables independien-
tes tiene significado. Se hace una prueba t por separado para cada variable in-
dependiente en el modelo y a cada una de estas pruebas se le llama prueba de
significacion individual.

Prueba F o analisis de la varianza en regresion lineal

Las hipotesis para la prueba F implican los parametros del modelo de regresion

multiple:

Hipotesis nula: Hy: B1=Bp=...=B¢=0

Hipoétesis alternativa: Hy: uno o mas de los parametros no es igual a cero (al

menos un parametro es = 0). Debemos fijar el nivel se significacion a.
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Si se rechaza H, tendremos suficiente evidencia estadistica para concluir que
uno o mas de los pardmetros no es igual a cero y que la relacién general entre
y vy el conjunto de variables independientes x;, x,,.....x, es significativa. Sin
embargo, si no podemos rechazar H, no tenemos la evidencia suficiente para

llegar a la conclusion de que la relacion es significativa.

Para realizar el contraste debemos calcular el estadistico de contraste F. El es-
tadistico F es una variable aleatoria que se comporta segiin una distribu-
cion F-Snedecor con k grados de libertad en el numerador (DF-Regresion)
y n-k-1 grados de libertad en el denominador (DF- Error). Donde k son
los grados de libertad de la regresion iguales a la cantidad de variables in-
dependientes y n es el nimero de observaciones. Asi pues, el estadistico de

contraste es:

.__ SSR/k
SSE/n—k-1

También podemos definir el estadistico de contraste como el cociente de cua-
Cuadrado medio

drados medio (mean squares).
Es la suma de cuadrados dividi-
da por los grados de libertad
(DF) correspondientes. Esta

El cuadrado medio debido a la regresion o simplemente regresion del cua- cantidad se usa en la prueba F
para determinar si hay diferen-

drado medio se representa por MSR (mean square regression): cias significativas entre medias.

SR = SSF SR
gradosdelibertad delaregresion  k

El cuadrado medio debido a los errores o residuos se llama cuadrado me-
dio residual o cuadrado medio del error se representa por MSE (mean square
residual error):

_ SSE _ S5R
gradosdelibertaddelerror n-k-1

MSE

MSR

El valor del estadistico de contraste F podemos definirlo como: F* = ASE

Regla de decisidn del contraste de hipétesis
Podemos actuar de dos maneras:

a) A partir del p-valor. Este valor es: p-valor = P(F, y , k-1 > F¥), donde F, es un
valor de la distribucion F con k grados de libertad en el numerador y n—k-1 grados

de libertad en el denominador.

e Si p-valor < a se rechaza la hipoétesis nula H; por tanto, el modelo en con-
junto explica de forma significativa la variable Y. Es decir, el modelo si con-

tribuye con informacion a explicar la variable Y.
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e Si p-valor > a no se rechaza la hipétesis nula Hy; por tanto, no hay una re-
lacion significativa. El modelo en conjunto no explica de forma significa-

tiva la variable Y.

b) A partir de los valores criticos
* SiF*>Fy. i nk-1, s€ rechaza la hipotesis nula H,
* SiF*<Fy i nk-1, NO se rechaza la hipotesis nula Hy

Los céalculos necesarios se pueden resumir en la tabla 7, conocida como tabla

de analisis de la varianza:

Tabla 7. Analisis de varianza para un modelo de regresion mdltiple con k variables
independientes

Tabla de analisis
de varianza

Fuente de variacién Suma de Grados de Cuadrados E
cuadrados libertad medios
Regresion SSR k MSR = SSR/k F= MSR
MSE
Error SSE n—k-1 MSE = SSE/n—k-1
Total SST n-1

Aplicaremos la prueba F al ejemplo 3. Con dos variables independientes “nt-
mero de paginas por minuto (X1)” y “antigiiedad de la impresora (X2)”.

Las hipotesis se formulan como sigue:

Hy: B1=B=0

H;: B;1y/o By no es igual a cero

Fijamos un nivel de significacion del 5% (a = 0,05).

La figura 38 muestra los resultados del modelo de regresion multiple, en la par-
te de resultados correspondiente al analisis de varianza.

Figura 38. Resultados obtenidos con Minitab.Tabla de anélisis de varianza

Analysis of Variance

Source oF =21 o] F P
Regression 2 30444 15222 21.52 0.000
Residual Error = 5277 697

Total 11 36722

El valor del estadistico de contraste es F* = 21,82, el p-valor = 0,000

Como p-valor < a, rechazamos la hipétesis nula, por tanto, el modelo en con-
junto explica de forma significativa la variable Y. Es decir, llegamos a la con-

En la primera columna se pone
la fuente de variacion, los ele-
mentos del modelo responsa-
bles de la variacion.

En la segunda columna pone-
mos la suma de cuadrados co-
rrespondientes.

En la tercera columna pone-
mos los grados de libertad co-
rrespondientes a las sumas de
cuadrados.

En la cuarta columna con el
nombre de cuadrados medios
se ponen las sumas de cuadra-
dos divididas por los grados de
libertad correspondientes. Sélo
para SSR'y SSE.

En la quinta columna ponemos
el estadistico de contraste F.
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clusién de que hay una relacidn significativa entre el precio de la impresora y
las dos variables independientes que son nimero de paginas impresas por mi-

nuto (X1) y la antigiiedad de la impresora (X2).
Prueba ¢

Se utiliza para determinar el significado de cada uno de los parametros indivi-
duales. Las hipotesis para la prueba t implican los pardmetros del modelo de

regresion maualtiple, se hace un contraste para cada parametro f:
Hipoétesis nula: Hy: 1= By=...= Px=0

Hipoétesis alternativa: Hy: uno o mas de los parametros no es igual a cero (al

menos un parametro es # 0). Debemos fijar el nivel se significacion a.

El estadistico de contraste es:

Sigue una distribucion t de Student con n-k-1 grados de libertad
Regla de decision del contraste de hipétesis

Podemos actuar de dos maneras:

a) A partir del p-valor. Este valor es: p = 2P(t,, 1 > | t'1).

e Sip <a serechaza la hipotesis nula Hy; se rechaza la hipoétesis nula H; por
tanto, hay una relacion lineal entre la variable X; e Y. Por consiguiente, di-

cha variable debe permanecer en el modelo.

e Sip>a no se rechaza la hipétesis nula Hy; por tanto, no hay una relacion
lineal entre la correspondiente variable X; e Y. Decimos que la variable im-

plicada X; es no explicativa y podemos eliminarla del modelo.
b) A partir de los valores criticos + ta/2, n—k—1, de manera que:

o Silt'l > to/2, n—k-1, se rechaza la hipotesis nula Hy; por tanto, la variable es

significativa.

e Silt'l > ta/2, n—k-1, no se rechaza la hipétesis nula H,; por tanto, la variable

no es significativa. Decimos que la variable implicada X; no es explicativa.
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Si la prueba F del ejemplo (figura 38) ha mostrado que la relacién multiple tie-
ne significado, se puede hacer una prueba t para determinar el significado de
cada uno de los parametros individuales. El nivel de significacion es a = 0,05.
Obsérvese que los valores de los estadisticos t aparecen en la figura 39. Los
p-valores de los contrastes individuales son para el contraste de ; el p-valor =
0,000 y para B,, p-valor = 0,887.

Figura 39. Resultados obtenidos con Minitab

Predictor Coef 3E Coef T P VIF
Constant 330.38 29.40 11.24 0.000

X1 20,187 3.058 .61 0.000 1.000
X2 -0, 500 3.410 -0.15 0.857 1.000

Interpretamos el contraste para el parametro 1 la Hy: 1 =0, Hy: B1# 0. Como
0,000 < 0,05 se rechaza Hy 'y, por tanto, la variable X1 (namero de paginas im-

presas por minuto) es significativa.

El contraste para el parametro B, la Hy: B2 = 0, H;: B # 0. Como 0,887 > 0,05
no podemos rechazar Hy por lo que la variable X2 (antigiiedad) no es signifi-
cativa y podriamos eliminarla del modelo porque no influye significativamen-

te en el precio.

El problema de la multicolinealidad

En los problemas de regresion lineal multiple esperamos encontrar depen-
dencia entre la variable Y y las variables explicativas X1, X2, ..., Xk, pero
en algunos problemas de regresiéon podemos tener también algin tipo de
dependencia entre algunas de las variables Xj. En este caso tenemos infor-
macién redundante en el modelo. Este fenémeno se llama multicolineali-
dad y suele ser bastante frecuente en los modelos de regresion lineal

multiple.

El término multicolinealidad en anéalisis de regresion multiple indica la co-
rrelacion entre variables independientes. La multicolinealidad puede tener
efectos muy importantes en las estimaciones de los coeficientes de la regre-
sidbn y, por tanto, sobre las posteriores aplicaciones del modelo estimado.
Cuando las variables independientes estan muy correlacionadas no es posi-
ble determinar el efecto por separado de una de ellas sobre la variable depen-
diente. Cuando existe multicolinealidad, los resultados de los contrastes de
hipotesis sobre el modelo conjunto y los resultados de los contrastes indivi-
duales son aparentemente contradictorios, pero realmente no lo son. Este
efecto lo veremos en el ejemplo propuesto (figura 40). Minitab dispone de
una opcién, llamada Variance Inflation Factors (VIF), que nos permite
identificar la multicolinealidad entre los predictores del modelo. La figura 40

indica los pasos a seguir.
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Figura 40. Pasos a seguir para identificar la multicolinealidad

Regression - Options | |

IS ‘Weights: | | [v Fit intercept
cz Xl
3 w2 Display Lack of Fit Tesks

[~ Pure error
[~ Data subsetting

[v ‘“ariance inflakion Fackors
[~ Durbin-Watson skatistic
[~ PRESS and predicted R-square

Prediction intervals for new observations:

E

I L
=

[

Help lTl

Cancel |

Ahora la figura 41 de los resultados del analisis de regresion multiple contiene
los valores VIF. Cada coeficiente VIF es de 1,000. Estos valores son bajos, lo
que indica que las variables independientes no estan correlacionadas. Dado
que estos valores indican que el grado de colinearidad es bajo. No existe mul-
ticolienalidad en el modelo propuesto.

Figura 41. Resultados del ejemplo 3 del analisis de regresion mudiltiple, que incluye los Variance
Inflation Factors (VIF) o factores de inflacion de la varianza

Regression Analysis: Y versus X1; X2

The regression equation is

¥ = 330 + 20.2 ¥¥1 - 0.50 ZE

Predictor Coef 3E Coef T P VIF
Constant 330.38 29.40 11.24 0O.000

1 20,187 3.056 G.61 0.000 1.000
X2 -0.500 3.410 -0.15 0.887 1.000
% = 26.4100 R-Sg = 82.9%  BR-Sgiadj) = 79.1%

Pasos a seguir

Sesigue la ruta Stat > Regression
> Regression > Options y se
rellenan los campos en la venta-
na correspondiente. Seleccio-
nad OK.

Usando Microsoft Excel para obtener el analisis de regresion del ejemplo 3.
“Estudio sobre el precio de impresoras laser en funcién de su velocidad de
impresion y la antigiiedad del modelo”.

La tabla 8 muestra el correspondiente output que ofrece Microsoft Excel.

Tabla 8. Resultados del anélisis de regresion del ejemplo 3. Estudio sobre el precio de impresoras

Pasos a seguir

Para efectuar la regresién mdailti-
ple con MS Excel, una vez intro-
ducidos los datos en la hoja de
célculo se sigue la siguiente ruta:
clic en Herramientas > Analisis
de datos > Regresion > OK.

A continuacién se seleccionan
los rangos de datos de las varia-

laser en funcién de su velocidad de impresién y la antigliedad del modelo. Excel bles.
B | © | D | E | F | G | H |
_1 |Resurnen
2
3 Estadisticas de la regresion
_4 |Coeficiente de caorrelacidan miltiple 0 9106247 28228339
_ 4 |Coeficiente de determinacidn R*2 0 8200552807 15291
B |R"*2 ajustado 0,791067565318689
7 |Errar tipico 2640996235
8 |Dbservaciones 12
&l
10 |ANALISIS DE VARIANZA,
il Grados de libertad | Suma de cuadrados | Promedio de los cuadrados F \Walor citico de F
2
73]
14
15
16
A7
5 |

Regresidn 2 3044429167 1522214583 21.82420957 0.000353062
Residuos a 5277375 G57. 4861111
Total 11 36721.66667
Coeficientes Error tipico Estadistico t Frobabilidad Inferior 95% Supetior 95%
Intercepeidn 330.375 29.40041791 11.23708517 | 1.34464E-05 263.8666342 395.8533658
#1 20,1875 3.086359247 5.605080872| 9.86968E-05 13.27353505) 2710146425
19 %2 0.5 3.402511475 -0.146645575 | 0.856641778 -5.2128507965 | 7.212850796

2
2
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Resumen

En este m6dulo hemos introducido conceptos de relaciones funcionales y es-
tadisticas, asi como el de variables dependientes y el de variables independien-
tes. Hemos comentado la construccién de un diagrama de dispersién como
paso inicial a la hora de buscar algan tipo de relacién entre dos variables. Si el
diagrama muestra una estructura lineal, entonces se buscara la recta que mejor
se ajusta a las observaciones. Hemos puesto de manifiesto la importancia de
interpretar correctamente los coeficientes de la recta. También hemos visto
como se debe utilizar la recta de regresion para realizar predicciones. Hemos
introducido una medida numérica de la bondad de ajuste. Esta medida se ob-
tiene con el coeficiente de determinacion, discutiendo los valores que puede
tomar. Finalmente, hemos comentado la importancia de analizar los residuos

para hacer un diagnostico del modelo lineal obtenido.

En este modulo de regresion lineal simple hemos considerado que las obser-
vaciones sobre dos variables X e Y son una muestra aleatoria de una poblacion
y que se utilizan para extraer algunas conclusiones del comportamiento de las
variables sobre la poblacion, y para ello hemos visto como hacer inferencia so-
bre la pendiente de la recta obtenida a partir de la muestra y como hacer un
contraste de hipoOtesis para decidir si la variable X explica realmente el com-
portamiento de la variable Y. También hemos comentado algunas las relacio-
nes no lineales y la manera en que se puede transformar en una lineal.

Hemos tratado la regresion lineal multiple como una generalizacion del modelo
de regresion lineal simple en aquellos casos en los que se tiene mas de una varia-
ble explicativa. Finalmente, hemos visto como hacer inferencia sobre los coefi-
cientes de regresion obtenidos a partir de la muestra, cdmo hacer un contraste de
hipétesis para cada uno de los coeficientes obtenidos para decidir si las variables
independientes explican realmente el comportamiento de la variable dependien-
te o se puede prescindir de alguna de ellas. También hemos realizado un contraste
conjunto del modelo. Finalmente, hemos presentado el posible problema de mul-
ticolinealidad que puede aparecer y que es debido a la relacién entre algunas de
las variables explicativas que supuestamente son independientes.
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Ejercicios de autoevaluacion

1) Los precios de una pantalla TFT de una conocida marca son los siguientes:

Tamafno (pulgadas) 15 17 19 24

Precio (euros) 251 301 357 | 556

Calculad la recta de regresién para explicar el precio a partir del tamano.

2) Con los datos de la cuestion anterior queremos decidir si se trata de un buen modelo. ;Qué
método proponéis para determinar si se ajusta bien? ;Qué podemos decir del caso concreto
del ejemplo anterior?

3) Consideramos un modelo lineal para explicar el rendimiento de un sistema informatico
(variable Y) en relacién con el nimero de buffers y el numero de procesadores (variables X1
y X2 respectivamente). Se obtiene el modelo Y =-3,20 + 2X1 + 0,0845X2 con un coeficiente
de determinacion de 0,99. ;Se trata de un buen modelo? ;Cudl serd el rendimiento esperado
si tenemos 1 buffer y 1 procesador? Comentad si este valor os parece 16gico y si puede rela-
cionarse con la bondad del modelo.

4) La empresa Ibérica editores tiene que decidir si firma o no un contrato de mantenimiento para
su nuevo sistema de procesamiento de palabras. Los directivos creen que el gasto de manteni-
miento debe estar relacionado con el uso y han reunido la informacién que vemos en la tabla
siguiente sobre el uso semanal, en horas, y el gasto anual de mantenimiento (cientos de euros).

Uso semanal Gastos anuales
(horas) de mantenimiento
13 17,0
10 22,0
20 30,0
28 37,0
32 47,0
17 30,5
24 32,5
31 39,0
40 51,5
38 40,0

a) Determinad la ecuacion de regresién que relaciona el costo anual de mantenimiento con
el uso semanal.

b) Probad el significado de la relacién obtenida en el apartado a al nivel de significacion 0,05.

c) Ibérica editores espera usar el procesador de palabras 30 horas semanales. Determinad un
intervalo de prediccién del 95% para el gasto de la empresa en mantenimiento anual.

d) Si el contrato de mantenimiento cuesta 3.000 euros anuales, ;recomendariais firmarlo?
;Por qué?

5) Una biblioteca ptblica de una ciudad espafiola ofrece un servicio via Internet de préstamo
de libros a los usuarios. Se quiere estudiar la correlacion entre el nimero de usuarios de esta
biblioteca virtual y cuantos de ellos acaban realizando los préstamos.

Los datos de los altimos doce meses son:

Usuarios 296 459 602 798 915 521 362 658 741 892 936 747

Préstamos 155 275 322 582 761 324 221 415 562 628 753 569

a) Determina el coeficiente de correlacion entre las dos variables. Calcula y representa la recta
de regresion.
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b) ;Qué namero de préstamos se esperaria si el nimero de usuarios aumentase a 1.000?

6) Un experto documentalista necesita saber si la eficiencia de un nuevo programa de bus-
queda bibliogréafica depende del volumen de los datos entrantes. La eficiencia se mide con el
namero de peticiones por hora procesadas. Aplicando el programa a distintos volimenes de
datos, obtenemos los resultados siguientes:

Volumen (gigabytes), X | 6 7 7 8 10 | 10 | 15

Peticiones procesadas, Y | 40 | 55 | 50 | 41 17 | 26 16

a) Calculad la recta de regresion para explicar las peticiones procesadas por hora a partir del
volumen de datos e interpretad los pardmetros obtenidos.

b) Cread el gréfico de ajuste a la recta de minimos cuadrados.

¢) Determinad el coeficiente de correlacién lineal entre las dos variables e interpretad su sig-
nificado.

d) Determinad el coeficiente de determinacién R e interpretad su significado.

e) Calculad, a partir de la recta anterior, cuantas peticiones podemos esperar para un volu-
men de datos de 12 gigabytes.

f) Realizad el contraste de hipdtesis sobre la pendiente. jPodemos afirmar a un nivel de sig-
nificacion de 0,05 que la pendiente de la recta es cero?
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Solucionario

1) Precio =-279,11 + 34,42 - tamarfio.
2) Para estudiar la calidad del ajuste, se calcula el coeficiente de correlacion muestral r= 0,994

3) Es un buen modelo ya que el coeficiente de determinacién es muy cercano a 1. El rendi-
miento, si tenemos un buffer y un procesador seria: ¥ =-3,20 + 2 - 1 + 0,0845 - 1 =-1,1155.
Este valor no tiene sentido, ya que el rendimiento no puede ser negativo. De todas las mane-
ras, este hecho no es contradictorio con tener un buen modelo ya que estamos fuera del in-
tervalo donde la regresién funciona.

4

a) y=10,5+0,953x-

b) Relacion significativa; p-valor = 0,000.

©) [2.874;54.952] euros.

d) Si, la probabilidad de encontrar el gasto de mantenimiento dentro del intervalo de con-
fianza es del 95%.

5)
a)r=0,978.

Fitted Line Plot
Préstamos = -151,6 + 0,9317 Usuarios

8004

S 45,4245 ®e
700 | R-Sq 95,6%

R-Sqg(adj) 95,1% o

Préstamos

I I I T T
300 400 500 600 700 800 900 1000
Usuarios

b) -151,6 + 0,9317 x 1.000 = 780 préstamos

6)
a)

Regression Analysis: Peticiones procesadas versus Volumen (gigabytes)
The regression equation is

Peticiones procesadas = 72,29 - 4,143 WVolumen (gigabytes)

5 = 9,90815 R-S8q = 66,2%  R-3gladj) = 59,4%

Ahaly=siz of Variance

Jource DF 33 o] F P
Regression 1 951,14 951,143 9,79 0,026
Error 5 490,86 95,171

Total & 1452,00

La recta de regresion sera:

Peticiones procesadas = 72,29 - 4,143 volumen (gigabytes).

La ordenada en el origen: 72,29; en este caso su significado no tiene ningtn sentido.

La pendiente de la recta: —4,143; es negativa: indica que, por cada unidad de volumen de da-

tos (gigabytes) que aumenten los datos entrantes, el nimero de peticiones procesadas dismi-
nuye en 4,143 unidades.



CC-BY-SA « PID_00161061 58 Relacién entre variables: causalidad, correlacion y regresion

b) El gréfico de ajuste a la recta de minimos cuadrados es:

Fitted Line Plot
Peticiones procesadas = 72,29 — 4,143 Volumen (gigabytes)

60 S 9,90815
. RSq 662%
R-Sq(adj) 59,4%
w 50+
-]
©
a
g 404
o
o
v
g
§ 30
S
L
1]
(-9
20
10
T T T T T
5,0 7,5 10,0 12,5 15,0

Volumen (gigabytes)

)

Correlations: Volumen (gigabytes); Peticiones procesadas

FPear=son correlation of Voluwen [(gigabytes) and Peticiones
procesadas = -0,514
P-Value = 0,026

El coeficiente de correlacién r=-0,814 nos indica que hay una correlacién alta negativa entre
volumen de datos entrantes y el niimero de peticiones procesadas.

d) El coeficiente de determinacion R-Sq es el 66,2%. Esto quiere decir que nuestro modelo
lineal explica el 66,2% del comportamiento de la variable Y (en este caso, nimero de peti-
ciones procesadas).

e) Con 12 gigabytes, habra 72,3 - 4,14 - 12 = 22,57 peticiones.

f) En el output anterior podemos ver que el p-valor asociado al contraste de hipdtesis anterior
€5 0,026. Como este valor es menor que a = 0,05, debemos rechazar la hipotesis nula; es decir,
podemos concluir que la pendiente de la recta es distinta de cero o, lo que es lo mismo, que
el coeficiente de correlacion poblacional es no nulo (es decir, que ambas variables estan co-
rrelacionadas y que, por tanto, el modelo estudiado tiene sentido).
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Introduccion

Las encuestas y cuestionarios se han convertido en una herramienta de inves-
tigacion de uso cotidiano en la llamada “sociedad de la informaciéon”. La idea
de usar datos provenientes de una muestra —compuesta por un namero relati-
vamente pequefio de elementos— para obtener informacién sobre toda una
poblacioén es utilizada a diario por los medios de comunicacién, ya sea prensa
escrita, television, radio o incluso Internet.

En efecto, las encuestas y los cuestionarios se usan para sondear el estado de
opinion de los potenciales votantes de unas elecciones, para conocer el poten-
cial interés de nuevos bienes o servicios en el mercado, para predecir la acep-
tacion que tendran determinadas decisiones gubernamentales o estratégicas,
para conocer mejor a los miembros de una comunidad, para detectar deman-
das potenciales de los consumidores que no estan siendo satisfechas, etc. En
investigacion, ademas, las técnicas basadas en el uso de encuestas y cuestiona-
rios representan probablemente la herramienta de investigacion social mas

comun en articulos y publicaciones cientificas.

Sin embargo, el paso de datos muestrales a informacion sobre la poblacion no
es trivial, ya que requiere de todo un proceso metddico que incluye el disefio
de las preguntas (para evitar introducir sesgos innecesarios en las mismas), el
disefio de la muestra (para minimizar en lo posible el error muestral), la reali-
zacion de la encuesta y el analisis de los resultados. En muchas ocasiones este
proceso se hace demasiado a la ligera y de forma poco rigurosa, con lo que los
resultados que se obtienen son poco fiables y nada creibles desde un punto de
vista cientifico. En este modulo se presentan y discuten los conceptos basicos
de estas técnicas, desde las claves de un buen cuestionario y de un buen disefio
muestral hasta ejemplos de como pueden aplicarse las técnicas estadisticas tra-
bajadas durante el curso para representar numeérica y graficamente la informa-
cién obtenida sobre la poblacién.
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Objetivos

Los objetivos docentes que se pretenden alcanzar con este m6dulo son los si-

guientes:

1. Entender la importancia de las encuestas y los cuestionarios en la sociedad
de la informacion.

2. Conocer los aspectos clave a considerar cuando se elaboran las preguntas

de un cuestionario.

3. Conocer los tipos de escalas mas habituales en los cuestionarios, asi como
el tipo de datos que produce cada una de ellas.

4. Introducirse en los tipos de muestreo mas habituales en los estudios de en-
cuestas, en particular: el muestreo aleatorio simple, el muestreo sistemati-

co, el muestreo por estratos y el muestreo por conglomerados.

5. Saber calcular estimaciones puntuales y por intervalos para diversos para-

metros poblacionales segin el tipo de muestreo usado.

6. Aprender a usar las técnicas estadisticas trabajadas durante el curso para

analizar cuestionarios.

7. Aprender a usar programas estadisticos o de anélisis de datos como ins-
trumento basico en la aplicacion préctica de los conceptos y técnicas es-
tadisticas.
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1. Diseno de cuestionarios

Las técnicas de investigacion basadas en el uso de encuestas se aplican a mul-
titud de ambitos diferentes: en los negocios, en la administracion pablica, en
las ciencias sociales y del comportamiento, en las ciencias de la informacién y
la comunicacién, en las ciencias de la salud, en las ciencias politicas, y en cual-
quier otro d&mbito en el que los datos que puedan aportar los usuarios de un
servicio o los consumidores de un producto jueguen un papel fundamental.
En la Sociedad de la Informacién, las organizaciones e instituciones hacen un
uso intensivo de los datos que explican coémo se comportan los individuos,
cuales son sus gustos y sus necesidades, qué opinion tienen sobre determina-
dos temas, etc. En este contexto, las técnicas de investigacion basadas en el uso
de encuestas permiten obtener unos datos que, tras su posterior analisis esta-
distico, proporcionan una valiosa informacion tanto a los investigadores te6-
ricos de una determinada disciplina como a los responsables de tomar
decisiones sobre el funcionamiento de las organizaciones.

En general, se pueden distinguir seis fases secuenciales en el desarrollo de cual-
quier estudio basado en el uso de encuestas (figura 1): (a) identificacion de los
temas concretos sobre los que se desea obtener informacion asi como de la po-
blaciéon a encuestar, (b) disefio del cuestionario como instrumento para obte-
ner los datos que se necesitan, (c) disefilo y selecciébn de una muestra
representativa de la poblacion, (d) obtencion de los datos mediante el envio
del cuestionario a los individuos que componen la muestra, (e) analisis esta-
distico de las observaciones muestrales a fin de inferir informacién sobre la po-
blacion, y (f) elaboracién de informes y conclusiones.

Figura 1. Fases en el desarrollo de una encuesta

Identificacién

de temas y de Disefio del Disefio y Andlisis de las Elaboracién de
OblaCiéﬁ a 1 cuestionario > seleccion de > observaciones » informes y
pencuestar (instrumento) la muestra muestrales conclusiones

En este apartado se hard especial énfasis en la fase de disefio del cuestionario,
dejando para apartados posteriores otras fases clave en las que las técnicas es-
tadisticas tienen una aportacion decisiva, es decir, la fase de disefio y seleccién
de la muestra y la fase de analisis de las observaciones muestrales.

1.1. Elaboracion de las preguntas de un cuestionario

Las preguntas que se formulan en un cuestionario constituyen el aspecto mas
relevante de cualquier encuesta. Para que éstas cumplan su papel de forma efi-
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ciente, las preguntas de un cuestionario deben centrarse en aquellos aspectos
esenciales sobre los que se desea obtener informacién. Asimismo, dichas pre-
guntas deben ser lo mas breves y claras posibles a fin de facilitar la tarea de las
personas encuestadas y maximizar la fiabilidad y validez del cuestionario. Se
trata de evitar posibles problemas tales como: interpretaciones erréneas de las
preguntas, agotamiento del encuestado o, incluso, rechazo a contestar una
parte o la totalidad del cuestionario por la longitud del mismo o el esfuerzo
necesario para entender las preguntas y contestarlas. Estas problematicas po-
drian introducir sesgos y errores muestrales en los datos, lo que mermaria la

fiabilidad y validez de la encuesta y de sus resultados.

Es importante ser cuidadoso en la elaboracion de las preguntas a fin de evi-
tar introducir en el cuestionario problemas de error muestral —-debido al
uso de una muestra para estimar parametros poblacionales- o de sesgo
(cualquier otro tipo de error en el cuestionario diferente del error muestral):
si en la propia formulacion de las pregunta se estd induciendo al encuestado a
responder en un sentido concreto, entonces se estd introduciendo un sesgo
en el cuestionario; si la formulacion de las preguntas es ambigua y da pie a
diferentes interpretaciones, entonces se esta favoreciendo una excesiva dis-
persion de las respuestas, 1o que incrementa el error muestral. Por tanto, la
manera en como las preguntas se formulan en un cuestionario es determi-
nante a la hora de evitar introducir patrones de sesgo y error muestral en
el mismo. Asi, se pueden establecer las siguientes recomendaciones gene-

rales a tener presentes cuando se elaboran las preguntas de un cuestionario:

e Criterios de interpretacion y respuesta claros: los criterios en los que el en-
cuestado debe basarse para interpretar y contestar a una pregunta deben es-

tar claramente especificados en el cuestionario.

* Preguntas apropiadas al conjunto de individuos que configuran la muestra:
todos los encuestados deben poder responder a las preguntas sobre la base

de su experiencia o condicion personal.

e Uso adecuado de expresiones, ejemplos o alternativas de respuesta: debe
evitarse incluir en la pregunta expresiones que inciten a una determinada
respuesta, asi como ejemplos de posibles respuestas, ya que ello podria in-
ducir a los encuestados a responder de una determinada manera y de este

modo introducir un factor de sesgo en las respuestas.

e Nivel de actualidad de las preguntas: no se deberia presuponer que el en-
cuestado sera capaz de recordar con precision cual fue su comporta-
miento en el pasado o su opinién sobre un tema acontecido hace ya
bastante tiempo.

e Preguntas con un nivel de generalizaciéon o concrecién adecuado: se debe-

ria evitar formular preguntas demasiado genéricas o ambiguas que se pue-
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dan interpretar de formas muy distintas y cuya respuesta no aporte
demasiada informacion, asi como preguntas demasiado especificas que el

encuestado no sea capaz de contestar con el nivel de detalle requerido.

Ademas de estas fuentes internas de sesgo causadas por el propio instru-
mento de la encuesta, existen también otras potenciales fuentes de sesgo
que no se originan por como se han elaborado las preguntas, sino por las
condiciones en las que se ha respondido al cuestionario. Conviene conocer
y tener presentes estas otras fuentes potenciales de sesgo para evitarlas en lo
posible con una correcta eleccion de las condiciones de la encuesta y, en par-
ticular, de la muestra. Asi, algunas de estas fuentes externas de sesgo son
las siguientes: respuestas que buscan estar en coherencia con lo que es “so-
cialmente deseable” o con lo que el entrevistador espera obtener, respues-
tas orientadas a dar una buena imagen del encuestado, respuestas con
excesiva tendencia a la dicotomia (si o no, positivo o negativo, etc.) o hacia
las opciones extremas, respuestas hostiles excesivamente condicionadas

por experiencias negativas recientes, etc.

Existen dos formatos béasicos para elaborar preguntas de un cuestionario:
las preguntas abiertas o no estructuradas son aquellas que permiten al en-
cuestado responder libremente sin estar condicionado por un conjunto de
posibles alternativas de respuesta. Por el contrario, las preguntas estructu-
radas o cerradas son aquellas que contienen en la propia pregunta un con-
junto de posibles respuestas o categorias a elegir por el encuestado. La
preguntas estructuradas son las que habitualmente mas se usan en los cues-
tionarios, ya que ademas de acotar mas claramente el contexto de la infor-
macién que se espera obtener, suelen ser mas faciles y rapidas de contestar,
permiten comparar mejor diferentes grupos de encuestados y, sobre todo,

facilitan enormemente el procesado y andlisis posterior de los datos.

Cuando se usan preguntas estructuradas es importante elegir bien las cate-
gorias o posibles respuestas alternativas de manera que éstas constituyan
una lista completa de opciones (incluyendo opciones como “otros” o “no
sabe o no contesta” cuando sea necesario) y sean mutuamente excluyentes
(a menos que sean de opcion maultiple). Por lo que respecta al namero de
categorias o respuestas alternativas, lo recomendable es que se sittie entre
un minimo de dos para preguntas dicotdbmicas y un maximo de seis. Afiadir
mas categorias suele dificultar en exceso la tarea del encuestado. Hay que
tener presente, sin embargo, que en caso de duda sobre el nivel de detalle
que se quiera ofrecer en las categorias, suele ser preferible optar por la op-
cién con mas categorias, puesto que siempre es posible combinar o agregar
categorias a posteriori —durante la fase de andlisis—, mientras que la opera-
cion de desagregar respuestas ya obtenidas en nuevas categorias no suele

ser posible sin la consiguiente pérdida de precision e informacion.
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La figura 2 sintetiza los conceptos clave que se deben tener en cuenta en la ela-

boracién de las preguntas de cualquier cuestionario.

Figura 2. Conceptos clave en la elaboracién de las preguntas de un cuestionario

Preguntas focalizadas, Minimizacién del
breves y claras sesgo y del error
muestral

Maximizacion de la
fiabilidad y de la
validez de la encuesta

Fuentes de sesgo internas
(cuestionario) y externas
(individuos entrevistados)

Preguntas
estructuradas y no
estructuradas

1.2. Uso de escalas en preguntas estructuradas

Las respuestas a preguntas estructuradas consisten, por lo general, en elegir

una opcién concreta en una lista de categorias posibles. Estas categorias si-

guen una escala o graduacién que puede ser simplemente nominal o bien

puede implicar algtn tipo de relacion ordinal o numeérica entre las distintas

categorias implicadas:

Escalas nominales: son aquellas en las que las categorias no estan asocia-
das a una relacién de orden o de magnitud. Un ejemplo seria una escala en
la que las categorias fuesen distintos cddigos postales, prefijos telefébnicos
o identificadores del sexo (“hombre”, “mujer”). Este tipo de escala propor-
ciona datos de tipo nominal que simplemente identifican categorias, por
lo que es el mas limitado desde el punto de vista de las técnicas estadisticas

que se pueden aplicar a las observaciones obtenidas.

Escalas ordinales: son aquellas cuyas categorias siguen una relacién de or-
den o preferencia, aunque no de magnitud, que permite clasificarlas. Un
ejemplo seria una escala de tareas secuenciales a realizar en un proceso, en
el que la pregunta podria ser elegir aquella tarea que se considere mas cri-
tica. Este tipo de escalas posibilita el uso de las llamadas técnicas estadisti-

cas no parameétricas para analizar los datos obtenidos.

Escalas de intervalos equidistantes: son las que asocian una magnitud a
cada categoria y en las que el cero no significa ausencia de magnitud. Un
ejemplo seria una escala graduada del 1 al 7 para representar niveles de im-
portancia. Esta escala permite el uso de técnicas de inferencia estadistica,

por lo que resulta altamente recomendable.
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Escalas de ratio: son las que asocian una magnitud a cada categoria y en
las que el cero representa ausencia de magnitud. Un ejemplo seria una es-
cala graduada del O al 50 para indicar la distancia en kilébmetros recorrida
por el encuestado para acudir a su lugar de trabajo. Al igual que ocurria con
las escalas de intervalos equidistantes, las de ratio también permiten el uso

de técnicas de inferencia estadistica.

A continuacioén, se describen algunos ejemplos de escalas particulares que se

usan habitualmente en los cuestionarios:

La escala de Likert: esta escala suele usarse para obtener el grado de
acuerdo o desacuerdo del encuestado con una determinada afirmacion
(figura 3). Puesto que todas las categorias en una escala de Likert suelen
estar etiquetadas (y las etiquetas o identificadores de cada categoria no
tienen por qué representar magnitudes equidistantes), hay cierta discre-
pancia entre los expertos sobre si esta escala debe considerarse simple-
mente como una escala ordinal o bien puede incluso considerarse como
una escala de intervalos. Una posible solucion a este problema seria
mantener tnicamente los identificadores o etiquetas de los extremos (p.
ej.: “(1) Muy en desacuerdo” y “(5) muy de acuerdo”), dejando el resto
de items numerados pero sin etiquetar, de modo que los nimeros defi-
nan intervalos equidistantes. En todo caso, es éste un tema bastante dis-
cutible sobre el que no parece haber un total consenso. Obviamente,
resulta muy ventajoso poder considerar una escala de Likert como de in-
tervalos para poder asi aplicar técnicas de inferencia estadistica de for-

ma licita.

Figura 3. Ejemplo de preguntas usando una escala de Likert

Nota

La asignatura ofrece contenidos practicos

Selecociona un nimero de la escala para expresar en qué medida
eztas en acuerdo o en degfacuerdo con cada una de lasz afirma-

ciones siguientez referidas a la azignatura Estadiztica:

Escala
1 Totalmente de acuerdo
2 De acuerdo
3 Neutral
4 En desacuerda

5 Totalmehte eh dezacuerdo

Loz exdmenes finales son coherentez con la EC

Loz materiales docentes son adecuados

La escala de frecuencia verbal: esta escala es muy similar a la de Likert,
con la diferencia de que los items de la escala indican con qué frecuencia

se ha llevado a cabo una determinada accion (figura 4).

Los ejemplos sélo cubren algu-
nas de las tipologias de escalas
maés usadas. En Internet es facil
encontrar ejemplos de cuestio-
narios completos y otros tipos
de escalas sin mas que buscar
por términos como survey
examples, questionnaire exam-
ples, etc.
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Figura 4. Ejemplo de preguntas usando una escala de frecuencia verbal

Gelecciona un numero de la escala para expresar la frecuencia
con la que ocurren cada uno de los siguientes acontecimientos

referidos a las asignaturas de la titulacidn gue cursas:

Ezcala
1 Ziempre
2 & menudo
3 Algunas weces
4 Casi nunca

5 Nunca

Loz exdmenes finales son coherentes con la EC
Las asignaturas ofrecen contenidos préacticos

Los materiales docentes son adecuados

e La escala comparativa: a diferencia de las anteriores, los items de esta
escala indican cémo se comparan dos elementos entre si a criterio del
encuestado (figura 5). Esta escala se considera como una escala de inter-
valos, por lo que es licito aplicar las técnicas de inferencia a los datos
obtenidos con ella.

Figura 5. Ejemplo de uso de una escala comparativa

Gelecciona un nimero de la escala para edpresar tu opinidn so-

bre cada uno de los siguientes temas:

Escala
1 Muy superior
2 Superior
3 Bimilar
4 Inferior

5 Muy inferior

Comparado con el plan de estudios anterior,

el nuevo plan de estudios te parece

Comparado con el sistema de ewaluacidn anterior,

el revo sistema de evaluacidn te parece

e La escala linealnumérica: esta escala también es similar a la de Likert,
aunque los items extremos suelen hacer referencia al grado de impor-
tancia que asigna el encuestado a un tema y los items intermedios no
suelen estar etiquetados (figura 6). Por esto altimo, se considera una es-
cala de intervalos.
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Figura 6. Ejemplo de uso de una escala lineal-numérica

Zelecciona un numero de la ezcala para eXpresar tu opinidn 2o-
bre el nivel de relevancia de cada uno de los siguientes temas

referidos a las asignaturas oue cursas:

Escala

Maxima relevancia 1 2 3 4 g 6 Minima relevancia

El uso de recursos de Internet
El uso de materiales actualirados

El uso de los foros v debates

e Laescala de diferencias semanticas: esta escala consiste en definir dos ex-
tremos caracterizados por adjetivos contrapuestos y, posteriormente, defi-
nir una graduacion de items no etiquetados entre ambos (figura 7). También

se considera como una escala de intervalos.

Figura 7. Ejemplo de uso de una escala de diferencias semanticas

En relacidén a la formacion eue recibes en esta universidad,
gelecciona un walor humérico Sein lo prdxima oue esSté con

respecto a cada adjetiwo:

Practica

=
s}
[}
(4]
-1

Tedrica
Econodmica 1 2 3 4 & & 7 Cara

Actualizada 1 2 3 4 5 & 7 Dezfazada
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2. Diseiio y seleccion de la muestra

Como ya se ha comentado en el apartado anterior, en toda encuesta hay

Ejemplo

dos tipos de errores que conviene tener presentes: (a) el error muestral, que
. . . . . . . Recordar que el término esta-
es la diferencia entre el estimador obtenido a partir de las observaciones (p. €j., distico hace referencia a una
muestra mientras que el térmi-

la media muestral X) y el verdadero valor del pardmetro poblacional (p. ej., la no pardmetro hace referencia

media poblacional p), y (b) el sesgo o error no muestral, que engloba todos a toda la poblaci6n. Asi, por
ejemplo, el estadistico media
los restantes tipos de errores que pueden ocurrir durante el desarrollo y muestral es un estimador del

parametro media poblacional.

analisis de una encuesta, es decir, errores en el disefio de las preguntas,

errores causados por la “no-respuesta” (missing data), errores en la seleccion
de los individuos a encuestar, errores en el registro y procesado de los da-

tos, etc.

Las encuestas pueden clasificarse en funcién del método de muestreo usado.
Asi, se habla de muestreo probabilistico cuando cada uno de los individuos
que componen el marco del muestreo (elementos de la poblacién susceptibles
de ser elegidos) tiene una probabilidad conocida de ser seleccionado. Por el
contrario, se habla de muestreo no probabilistico cuando no es posible saber
cudl es la probabilidad de cada elemento de ser seleccionado. Los muestreos
no probabilisticos pueden ser de gran utilidad como herramienta exploratoria,
pero no permiten conocer la precision de las estimaciones que se obtienen
para los parametros poblacionales, es decir, no dan informacion sobre el error
muestral que se estd cometiendo. Ejemplos de muestreos no probabilisticos se-

rian los siguientes:

e A fin de conocer la opinién de los estudiantes de una universidad presen-
cial sobre su nuevo Campus Virtual, se encuesta a los matriculados de una

asignatura concreta.

e A fin de conocer la opinién de los clientes de un nuevo centro comercial,

se piden voluntarios para responder a un cuestionario.

¢ A fin de conocer la opinién de los usuarios de una base de datos documen-
tal, un directivo selecciona una muestra de usuarios que, segiin su criterio,

son representativos del conjunto de usuarios.

Los muestreos probabilisticos, por su parte, si permiten calcular intervalos de
confianza para los parametros poblacionales a partir de los las observaciones
de la muestra. Esto es, los muestreos probabilisticos permiten conocer la mag-
nitud del error muestral que se estda cometiendo. En este apartado se describi-
ran cuatro de los métodos probabilisticos mas populares: el muestreo aleatorio
simple, el muestreo sistematico, el muestreo estratificado, y el muestreo por

conglomerados.



CC-BY-SA » PID_00161062 15

Introduccion al disefio y analisis de encuestas

2.1. Muestreo aleatorio simple

En un muestreo aleatorio simple, todos los elementos del marco muestral
(elementos de la poblacién que son candidatos a ser seleccionados) tienen la
misma probabilidad de ser elegidos. Para seleccionar, mediante muestreo alea-
torio simple, n elementos de entre los N que componen la lista de candidatos
a ser elegidos, se suele asignar un ntmero natural (1, 2, 3, ..., N) a cada uno de
los elementos de la lista y, a continuacién, se generan al azar n niimeros alea-
torios distintos, que identificaran a los elementos seleccionados.

De acuerdo con la teoria de la estadistica inferencial, si se selecciona una
muestra aleatoria suficientemente grande (en la practica n > 30 suele ser sufi-
ciente), el teorema central del limite permite obtener intervalos de confianza
para la media poblacional p. En particular:

Para un nivel de confianza del 95%, un intervalo de confianza para la

media poblacional, u, viene dado por:

Xil,96-\/?(%}

donde s representa la desviacion estandar de las observaciones muestrales.

Ejemplo: un periddico de economia tiene actualmente N = 8.000 lectores suscri-
tos. Una muestra aleatoria simple de n = 484 lectores es elegida para realizar una
encuesta. Tras analizar los datos de dicha encuesta, se sabe que la media de los in-
gresos mensuales de los lectores seleccionados en la muestra es de x = 30.500
euros y que la correspondiente desviacion estandar es de s = 7.040 euros.

La media muestral, X, es un buen estimador de la media poblacional, p. Ade-

mas, un intervalo de confianza del 95% para dicha media poblacional sera:

8.000 — 484 (7.040
30.500+1,96- | = (29.892,07, 31.107,93). En otras pala-
8.000 (\/484 ] ( ) P

bras, para un nivel de confianza del 95%, los ingresos medios del conjunto de

los 8.000 lectores suscritos al peridédico oscilardn entre 29.892 y 31.108 euros.

De forma similar, es posible calcular intervalos de confianza para otros para-
metros de la poblacion, como el total acumulado de una poblacién, por ejem-
plo, la demanda total de la poblacion, la riqueza total de una poblacion, etc.

Fl estadistico N.x es un buen estimador del total acumulado de una
poblacion, N - p. Ademas, si (a, b) es un intervalo de confianza del 95%
para la media poblacional, p, un intervalo de confianza del 95% para
N -y, viene dado por (N - a, N - b).
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Ejemplo: se desea estimar el niimero total de visitas anuales que reciben los
portales web de las universidades pertenecientes a una clasificaciéon que inclu-
ye las quinientas mejores del mundo. Para ello, se ha seleccionado una mues-
tra aleatoria de cincuenta universidades pertenecientes a esa clasificacién y se
han obtenido los siguientes estadisticos muestrales: el namero medio de visi-

tas anuales es de veintidos mil, siendo la desviacién estandar de cuatro mil.

En primer lugar, cabe destacar que N -x =11.000.000 serd un buen estimador
para el namero total de visitas anuales que reciben los portales de las quinien-

tas mejores universidades. Un intervalo de confianza del 95% para el namero

total de visitas anuales serd: 500-22.000+1,96-500 - /w [@] =
500 V50

(10.474.077, 11.525.923). En otras palabras, para un nivel de confianza del
95%, el nimero total de visitas anuales que recibirdn los quinientos portales
web estara entre 10,47 millones y 11,53 millones.

Finalmente, también es posible obtener intervalos de confianza para la pro-
porcién de elementos de una poblaciéon que satisfacen unas determinadas
condiciones, por ejemplo, proporcion de individuos que usan un servicio,

proporcién de individuos con estudios superiores, etc.

Para un nivel de confianza del 95%, un intervalo de confianza para la
proporcién p de elementos de una poblaciéon que cumple una determi-
nada condicion viene dado por:

P 1,96.J[N§”j.[p'nl_"f')]

donde p' es la proporcion de elementos de la muestra que la cumplen.

Ejemplo: siguiendo con el ejemplo anterior de los portales web de las univer-
sidades pertenecientes a la clasificacion de las 500 mejores, se desea estimar el
porcentaje de portales que disponen de un programa institucional —al estilo
del MIT OpenCourseWare- para ofrecer contenidos formativos en abierto. De
las cincuenta universidades que constituyen la muestra, un total de treinta y

cinco disponen de dicho programa.

La proporcion muestral, p'=35/50=0,70 = 70%, es un buen estimador del por-
centaje de universidades en las quinientas mejores que tendran un programa
asi. Ademas, es posible obtener un intervalo de confianza del 95% para dicha

proporcién poblacional: 0’7i1,96‘\/(500—50)[0,7(1—0,7)} = (0,5783,

500 50-1

0,8217). En otras palabras, con un nivel de confianza del 95% se puede afirmar
que entre el 58% y el 82% de universidades entre las quinientas mejores dis-

ponen de un programa de contenidos formativos en abierto. Observar que, en

Indicacién

Al realizar los calculos, se reco-
mienda usar al menos cuatro
decimales para no perder de-
masiada precision en el redon-
deo, especialmente cuando N
es un nimero muy grande.
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este caso, el intervalo de confianza es poco preciso (hay unos veinticuatro
puntos porcentuales de diferencia entre los extremos del intervalo), lo cual se

debe a que el tamafio de la muestra es relativamente pequefio.

2.2. Muestreo sistematico

El muestreo sistematico consiste en usar una regla para seleccionar de forma
sistemadtica los elementos de una muestra. Este muestreo se suele usar en pobla-
ciones grandes y homogéneas como alternativa al muestreo aleatorio simple,
especialmente en aquellas situaciones en las que el proceso de asignar un na-
mero entero a cada elemento de una larga lista puede resultar complicado o
costoso en tiempo (p. ej.: asignar un namero entero a cada uno de los ntimeros
de una guia telefonica, asignar un namero entero a cada uno de los clientes que
accede a un centro comercial en un dia determinado, etc.). Asi, por ejemplo, si
se desea seleccionar una muestra de treinta teléfonos de la guia telefénica de
una ciudad, una forma sistemética de hacerlo seria escoger al azar el primero y,
posteriormente, escoger un teléfono cualquiera de cada una de las veintinueve
paginas siguientes. Otro ejemplo: si se desea entrevistar a cuarenta clientes de
un gran centro comercial, una forma sistematica de seleccionar la muestra seria
empezar por uno al azar y, a continuacion, escoger cada cinco minutos al nue-
vo cliente que acceda al centro en ese preciso instante. A menudo, este tipo de
muestreo se puede considerar como equivalente a un muestreo aleatorio sim-
ple, especialmente cuando el listado o marco muestral sigue un orden aleato-
rio, es decir, realizar una seleccidn sistematica de elementos en una lista que
sigue un orden aleatorio es técnicamente equivalente a realizar directamente

una seleccion aleatoria de elementos que no sigan un orden aleatorio.

2.3. Muestreo aleatorio estratificado (grupos homogéneos)

El muestreo aleatorio estratificado se suele usar en los casos en que resulta
facil agrupar los elementos de la poblacién considerada en subgrupos de com-
posicion homogénea llamados estratos. Por ejemplo: trabajadores de una or-
ganizaciéon agrupados por departamento, estudiantes de una universidad
agrupados por titulacién, habitantes de un pais agrupados por nivel de renta
o edad, revistas cientificas agrupadas por &mbito tematico, etc. Cuando la va-
riabilidad dentro de cada estrato es menor que la variabilidad entre estratos,
este tipo de muestreo tiende a proporcionar més precision que un muestreo

aleatorio simple a la hora de estimar los pardmetros poblacionales.

Asi, el muestreo aleatorio por estratos consiste en: (a) clasificar los N elemen-
tos de una poblacion en H grupos o estratos (de manera que los elementos de
cada estrato sean similares entre ellos), y (b) seleccionar a continuacién una
muestra aleatoria simple para cada uno de los estratos (figura 8). Los estadisti-

cos obtenidos para cada estrato se combinan posteriormente para obtener es-
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timaciones de algunos parametros como la media, el total acumulado o la

proporcién de la poblacién.

Figura 8. Muestreo aleatorio estratificado

P‘;Felzgﬁ?ocs’e O L @) O O L o Parédmetros
C TSR
stratos 0,0 B _N E
(horEw(théneos) OOOO LL: DDD J’E

1 v v v
Muestra aleatoria o
de elementos @ LL @ Estadisticos

En un muestreo por estratos, es posible obtener un buen estimador de la media

poblacional haciendo un promedio ponderado de las medias muestrales obte-

, _o18 .
nidas en cada estrato. En concreto, xp = —ZN i -X; esun buen estimador de
i=1

1, donde N; representa el nimero total de elementos del estrato i-ésimo y X,

representa la media de la muestra asociada a dicho estrato.

Para un nivel de confianza del 95%, un intervalo de confianza para la

media poblacional, u, viene dado por:

SZ

_ 1 & :
inl,96-\/v;N,.(Ni—ni)E

donde n; y s; representan, respectivamente, el tamafio y la desviacion
estandar de la muestra asociada al estrato i-é€simo.

Por otro lado, el estadistico N.x, es un buen estimador del total acu-
mulado de una poblacién, N - p. Ademas, si (4, b) es un intervalo de con-
fianza del 95% para la media poblacional, u, un intervalo de confianza
del 95% para N - p, viene dado por (N - a, N - b).

Finalmente, un intervalo de confianza para la proporcién p de elemen-
tos de una poblaciéon que cumple una determinada condicién viene

dado por:

H
donde p', = %ZNI. -p'; esun promedio ponderado de las proporciones
i=1

p'; de elementos de la muestra que la cumplen para el estrato i-€simo.
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Ejemplo: hace dos afios se graduaron en una universidad un total de 1.500
estudiantes. Para conocer el salario medio de dichos estudiantes, tanto a ni-
vel global como por titulacion, se agruparon los estudiantes por titulacio-
nes (estratos) y se encuesto a un total de ciento ochenta exestudiantes. La
tabla 1 incluye, por orden de columnas, el nimero de graduados en cada
estrato, el tamano de cada muestra, la media muestral, la desviacion estan-
dar muestral y la proporcion de estudiantes con un sueldo superior a los
36.000 euros anuales.

Tabla 1. Estadisticos obtenidos para cada estrato

Titulacién (estrato) N; n; X, S P
Administracion y Direccién de Empresas 500 45 | 30.000 | 2.000 | 4/45
Informacién y Documentacién 350 40 28.500 1.700 2/40
Ingenierfa Informatica 200 30 | 31.500 | 2.300 | 7/30
Psicologia 300 35 | 27.000 | 1.600 | 1/35
Ingenieria de Telecomunicaciones 150 30 31.000 2.250 6/30
Total 1.500 180

Un buen estimador del salario medio para el conjunto de mil quinientos gra-
duados viene dado por el promedio ponderado de las distintas medias mues-
trales:

— 1

Xg = ———(500-30.000 + 350 - 28.500 + 200 - 31.500 + 300 - 27.000 + 150 - 31.000)

1.500
= 29.350 euros.

Ademas, se puede obtener el correspondiente intervalo de confianza, para

un nivel de confianza del 95%, para la media poblacional:

1
00?2

+..+150-(150-30)

29.350i1,96~\/15 [500.(500—45)

2.000? 2.2502J
(29.079,33, 29.620,67), es decir, se puede afirmar, con un nivel de confian-
za del 95%, que el salario medio del total de mil quinientos graduados de
esta universidad estéd entre 29.079 y 29.621 euros por afio. Para hacer este
tipo de calculos es conveniente usar una hoja de célculo (figura 9).
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Figura 9. Uso de Excel para realizar célculos en muestreo estratificado

A B © D E F G H
| 1 Titulacion (estrato)  N(i)  n(i) x-bar(i) s(i) p(i)  N(i)* x-bar(i) N(i)* ( N(i) - n(i) ) * ( s(i)*2 / n(i) )
Direccidn de
| 2 |Empresas 500 45 30.000 2.000 16.528  15.000.000 20.222.222 222
Informacién y
| 3 Documentacién 350 40 28.500 1700 14.642  9.975.000 7.839.125.000
| 4 Ing. Informética 200 30 31.500 2300 40.024  6.300.000 5.995,333.333
| 5 Psicologia 300 35 27.000 1600 12.785  8.100.000 5.814.857.143
| 6 Ing. Telecomunicacion 150 30 31.000 2250 39.994  4.650.000 3.037.500.000
| 7 Totales  1.500 180 44.025.000 42.909.037.698
i
9 zZ= 1,96 5 s ,
10 X(E) = 29.350 N.-% NN —n )L
11 s(E) = 138,10 g e =) (N ’)n,.
12 X(E) - z*s(E) = 29.079,3306
13 X(E) + z*s(E) = 29.620,6694
14

En segundo lugar, se pueden estimar los ingresos anuales totales del conjunto
de los mil quinientos graduados, N - p, para saber cudl serd su potencial im-
pacto sobre la economia local. En este caso, puesto que el estimador de p era
Xg =29.350 euros, el estimador puntual de N - p serd 1.500 X = 44.025.000
y un intervalo de confianza al 95% vendra dado por: (1.500 - 29.079,3306,
1.500 - 29.620,6694) = (43.618.995,86, 44.431.004,14). En otras palabras, se
puede afirmar con un nivel de confianza del 95% que serdn necesarios entre
43,6 y 44,4 millones de euros para cubrir los salarios anuales de los mil qui-

nientos graduados.

En tercer lugar, un buen estimador del porcentaje de estudiantes de la poblacion

cuyos ingresos superan los 36.000 euros vendra dado por el promedio ponderado

1

4 6
i s pE=——=|500—+...+150— | =
de los porcentajes en cada estrato: P g 15 OO( 45 3 Oj 0,0981,

es decir, aproximadamente, s6lo un 9,8% de los salarios de los mil quinientos gra-
duados serd superior a los 36.000 euros anuales. Finalmente, se puede obtener un

intervalo de confianza del 95% para el porcentaje poblacional anterior:

1
1.500°

(4/45)(41/45)
45-1

0,0981i]ﬁ96~J +...+150(150 - 30)

[500(500 _45) WJ

30-1

= (0,0584, 0,1379), es decir, se puede afirmar con un 95% de confianza que el
porcentaje de graduados en la promocién de hace dos afios cuyos ingresos supe-

ran los 36.000 euros anuales oscila entre un 5,8% y un 13,8%.

2.4. Muestreo por conglomerados (clusters o grupos heterogéneos)

El muestreo por conglomerados se suele usar en los casos en que resulta

facil agrupar los elementos de la poblacién considerada en subgrupos de
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composicion heterogénea llamados conglomerados, cada uno de los cuales
viene a ser una representaciéon a pequerfia escala de la poblacién total (es
decir, se presupone una gran variabilidad entre los elementos de un mismo
conglomerado). Por ejemplo: los habitantes de una gran ciudad pueden
agruparse por barrios, los usuarios de un servicio web pueden agruparse por
paises de procedencia, las revistas cientificas pueden agruparse por edito-
rial, etc. De hecho, una de las principales aplicaciones del muestreo por
conglomerados esté4 relacionada con el muestreo por areas o regiones geo-
graficas, donde los conglomerados suelen ser paises, regiones, ciudades o
barrios. El muestreo por conglomerados permite reducir los costes de des-
plazamientos entre zonas geograficamente dispersas y, a la vez, evita tener
que generar listados exhaustivos de toda la poblacién, puesto que s6lo son
necesarios listados exhaustivos de cada conglomerado seleccionado.

Asi, el muestreo por conglomerados consiste en: (a) clasificar los N elemen-
tos de una poblacién en H grupos o conglomerados (de manera que los ele-
mentos de cada conglomerado presenten mucha variabilidad entre ellos),
(b) seleccionar a continuacién una muestra aleatoria simple de h conglo-
merados, y (c) para cada conglomerado de la muestra seleccionada, o bien
encuestar a cada uno de los elementos que lo componen —-muestreo por
conglomerados en una etapa— o bien seleccionar una nueva muestra alea-
toria de elementos para encuestar —-muestreo en dos etapas- (figura 10). Si
bien tanto en un caso como en otro es posible obtener estimadores puntua-
les y por intervalos para varios parametros poblacionales, se tratara so6lo el
muestreo por conglomerados en una etapa (es decir, se supondrd que, una
vez seleccionada la muestra de conglomerados, se encuesta a todos los ele-
mentos de cada conglomerado seleccionado).

Figura 10. Muestreo por conglomerados

P:Itisl;ctiez?o(sie @) L O O ] ‘ O Parametros
1 AO @ AOpOom
Conglomerados O L ol 1= m = L @ E
(heterogéneos) ‘O | k @) @) m .g
Muestra aleatoria
de conglomerados Estadisticos

En un muestreo por conglomerados es posible obtener un buen estimador de

Vi

M=

la media poblacional p mediante la expresiéon X =-=1

, donde N; represen-
N;

M=

Il
—
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ta el nimero total de elementos del conglomerado i-ésimo e y; representa el

valor total de las observaciones de dicho conglomerado.

Para un nivel de confianza del 95%, un intervalo de confianza para la

media poblacional, u, viene dado por:

X.+1,96- _ —

Por otro lado, el estadistico N -X. es un buen estimador del total acu-
mulado de una poblacion, N - p. Ademas, si (4, b) es un intervalo de con-
fianza del 95% para la media poblacional p, un intervalo de confianza
del 95% para N - p viene dado por (N - a, N - b)

Finalmente, un intervalo de confianza para la proporciéon p de elementos

de una poblaciéon que cumple una determinada condicion viene dado por:

h 2
Y (mi-p'c Ny

H-h |5

N 2 h-1
H

plc £1,96 \j

donde m; es el namero de elementos del conglomerado i-ésimo que cum-

M:-

m.

1

ple una determinada caracteristicay p'c =5t es buen estimador del

SN,

=il

promedio de elementos de la poblaciéon que cumplen dicha caracteristica.

Ejemplo: el sistema sanitario de atencion primaria de un pais esta com-
puesto por un total de doce mil médicos distribuidos en mil centros de
atencion primaria (conglomerados). Con el fin de obtener cierta informa-
cion sobre la poblacion de médicos considerada, y ante la dificultad de rea-
lizar encuestas a médicos de todos los centros, se lleva a cabo un muestreo
por conglomerados en el que se seleccionan de forma aleatoria un total de
diez centros de atencion primaria. A continuacion, se pasa una encuesta a
los médicos de cada uno de los centros escogidos. La tabla 2 incluye, por
orden de columnas, el identificador del centro, el nimero de médicos que
en €l trabajan, el ntmero total de visitas asociadas con una cierta enferme-
dad que recibe el centro en una semana normal y el namero de médicos

que son mujeres.
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Tabla 2. Estadisticos obtenidos para cada conglomerado de la muestra

Centro Numero de médicos Total de visitas Numero de mujeres

(conglomerado) N; Yi m;
CAP-01 8 320 2
CAP-02 25 1.125 8
CAP-03 4 115 0
CAP-04 17 714 6
CAP-05 7 247 1
CAP-06 3 94 2
CAP-07 15 634 2
CAP-08 4 147 0
CAP-09 12 481 5
CAP-10 33 1.567 9
Totales 128 5.444 35

En primer lugar, un buen estimador para el nimero medio de visitas semana-

les que recibe cada médico viene dado por: X = % =42,5313, es decir, en

promedio cada médico del sistema sanitario recibird unas cuarenta y tres visi-
tas semanales.

Es posible obtener un intervalo de confianza del 95% para dicha media pobla-

cional:
2 2
42,5313+1,96- ’ 1.000-10 . (320—42,5313~8) +1..(.)+(11.567—42,5313-33)
1.OOO~10(MJ
1.000

=42,5313+1,96 - 1,7299 = (39,14, 45,92). En otras palabras, se puede afirmar
con un nivel de confianza del 95% que el promedio de visitas semanales por
meédico en el sistema sanitario del pais esta entre 39 y 46 (figura 11).

Figura 11. Uso de Excel para realizar calculos en muestreo por conglomerados

A | B | | D | E
1] Centro Namero de médicos  Total de visitas  Ndmero de mujeres

"2 | (conglomerado) N, Y, m, [ w(i) - x(C)*N(i) 1*2

'3 CAP-01 8 320 2 410,06

4 CAP-02 25 1125 8 3809,20
5 | CAP-03 4 115 0 3038,77
6 |CAP-04 17 714 5] 81,56

7 cAP-05 7 247 1 2572,39

'8 CAP-06 3 94 2 1128,54

9 |cap-07 15 634 2 15,75
10 | CAP-08 4 147 0 534,77
11 |CAP-09 12 481 5 862,89

12 | CAP-10 33 1567 9 2672203

3] Totales 128 5444 35
14

[15] z= 1,96 0
16 X(C) = 42,53 = v
17| s(C) = 173 Z(" i=%c V)

18 X(C) - 2°s(C) = 39,14 -

9 X(C) + z*s(C) = 4592
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En segundo lugar, se pueden estimar las visitas semanales totales del conjunto de
los doce mil médicos, N - p, para saber cudl sera su potencial impacto sobre el sis-
tema sanitario. En este caso, puesto que el estimador de p era X = 42,5313, el es-
timador puntual de N - pserd 12.000x- = 510.375 y un intervalo de confianza del
95% vendra dado por: (12.000 - 39,1.406, 12.000 - 45,9219) = (469.687,38,
551.062,62). En otras palabras, se puede afirmar con un nivel de confianza del
95% que el sistema de atencion primaria del pais recibird entre 469.687 y
551.063 visitas en una semana normal.

En tercer lugar, un buen estimador del porcentaje de médicos que son mujeres

vendra dado por: p'c = =0,2734, es decir, aproximadamente el 27,3% de

128
los médicos del sistema de atencion primaria son mujeres. Finalmente, se pue-
de obtener un intervalo de confianza del 95% para el porcentaje poblacional

anterior:

0,2734+1,96-

| 1.000-10 [(2—0,2734-8)2+...+(9—0,2734-33)2
2
1.000)

10-1
\/1.000 . 10(12'000

= (0,2066, 0,3402), es decir, se puede afirmar con un 95% de confianza que el
porcentaje de mujeres en la poblacién de médicos de asistencia primaria oscila
entre un 20,7% y un 34,0%.
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3. Analisis de cuestionarios: estudio parcial de un caso

En este apartado se presenta un caso de estudio en el que se muestran ejemplos
del uso de técnicas estadisticas para analizar diferentes tipos de preguntas perte-
necientes a una encuesta. El objetivo de la encuesta era obtener informacion
concreta sobre la vision (y la actitud) de las grandes empresas de una determi-
nada comunidad autébnoma respecto al fendmeno de la externalizacién de los
servicios, sistemas y tecnologias de la informacion. Para ello, se disefié una en-
cuesta formada por varias preguntas, algunas de ellas basadas en escalas nomi-
nales y otras en escalas de intervalos equidistantes. La poblacién objetivo de la
encuesta eran los directivos de servicios, sistemas y tecnologias de la informa-
cion de las empresas, con sede social en dicha comunidad auténoma, cuyo vo-
lumen de facturaciéon o de empleados superaban unas determinadas cantidades
establecidas a priori por los investigadores. Del listado completo de empresas
que cumplian dichos requisitos, se seleccion6 una muestra aleatoria de cien em-
presas y se mando el cuestionario a los correspondientes directivos, tras lo que
se obtuvo una tasa de respuesta superior al 80%. La aleatoriedad de la muestra
y la alta tasa de respuesta obtenida son dos factores imprescindibles a la hora de
generalizar, con ciertas garantias, los resultados de la encuesta al conjunto de la

poblacién de empresas que satistacen las caracteristicas anteriormente descritas.

3.1. Ejemplo de uso de estadisticos descriptivos e intervalos
de confianza

Una de las preguntas de la encuesta pedia especificar el namero de trabajado-
res de plantilla del departamento de tecnologias de la informaciéon y la comu-
nicacion (TIC). Dicha pregunta esta asociada a una variable aleatoria discreta,
por lo que se pueden considerar los estadisticos descriptivos de la misma como
muestra la figura 12.

Figura 12. Estadisticos descriptivos de la variable “N.2 de empleados”

L=
Descriptive Statistics: Empleados [ |
Variahle H N+ Mean SE Mean 3tDev  Minimum 01 HMedian 03
Empleados 77 5 58.87 .79 77.15 6.00 14.00 37.00 65.00
Variahle Maximum
Enpleados 450,00
One-Sample T: Empleados
Variahle N HMean &HtDev 3E Mean 95% CI
Empleados 77 55.87 77.15 §.759 (41.36, 76.38) _I

-

K1 4

Esta pregunta fue contestada correctamente por un total de setenta y siete de los
ochenta y dos directivos que respondieron la encuesta (cinco directivos dejaron

Aclaracion

El objetivo Gltimo de esta sec-
cién no es explicar con detalle
un caso completo de analisis
de una encuesta (ya que ello
requeriria de un médulo ente-
ro), sino proporcionar ejem-
plos concretos de cémo se
pueden utilizar muchos de los
conceptos y técnicas vistas en
médulos anteriores para anali-
zar encuestas. Asi pues, esta
seccién muestra c6mo se pue-
den combinar muchas de las
técnicas estadisticas anterior-
mente vistas para extraer infor-
macién a partir de los datos de
una encuesta.

Nota

Tanto los outputs como los gra-
ficos de esta seccién han sido
generados con Minitab, usan-
do los men(s y opciones

ya explicadas en médulos
anteriores.

Recordatorio Minitab

Para obtener los estadisticos
descriptivos, usar Stat > Basic
Statistics > Display Descriptive
Statistics. Para obtener el Inter-
valo de Confianza usar Stat >
Basic Statistics > 1-Sample t.
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sin contestar esta pregunta). El promedio de trabajadores del departamento TIC
es de cincuenta y nueve para las empresas que contestaron a la pregunta. Se ob-
serva también que el namero de trabajadores en dicho departamento es muy va-
riable, oscilando entre un minimo de seis trabajadores y un maximo de
cuatrocientos cincuenta, lo que hace pensar en diferentes niveles de externali-
zacion de los servicios y sistemas TIC. Puesto que la muestra es aleatoria, se ha
podido obtener un intervalo de confianza para el promedio de trabajadores en
departamentos TIC de todas las empresas de la poblacion considerada. En este
caso, usando un nivel de confianza del 95% se ha obtenido el intervalo (41,36,
76,38), es decir: con un 95% de confianza se puede afirmar que en promedio es-
tos departamentos tienen entre 41 y 77 empleados. Asimismo, resulta posible
agrupar los valores obtenidos para la variable anterior en categorias de empresas
segin el nimero de empleados en el departamento TIC, lo que permite obtener
tablas y graficos circulares para representar las frecuencias asociadas a cada tipo
de empresa participante en la encuesta (figuras 13 y 14).

Figura 13. Tabla de frecuencias para cada categoria

=

Tally for Discrete Variables: Categoria j‘
Categoria Count CuwCnt Fercent CumPocto
<20 a7 27 32.93 32.93
=100 11 38 13.41  45.34
20 a 59 24 62 29.27  75.61
60 a 100 15 77 18.29  93.90
N /HC 5 52 £.10 100.00 =
H= G2
-
<] | ' 4

Figura 14. Gréfico circular que representa los porcentajes de cada categoria

Categorias de empresas por nimero de empleados

NS/NC

>100
13,4% 6.1%

<20

60a 100 32.9%

18,3%

20a 59
29,3%

En este caso se aprecia que aproximadamente un tercio (32,9%) de las empre-
sas participantes tienen departamentos TIC relativamente pequefios (menos
de 20 empleados), lo que induce a pensar que tendran bastantes servicios y sis-
temas de informacion externalizados.

Recordatorio Minitab

Para obtener una tabla de fre-
cuencias, usar Stat > Tables >
Tally Individual Variables.

Recordatorio Minitab

Para obtener un diagrama
circular, usar Graph > Pie
Chart.
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Otra de las preguntas de la encuesta pedia seleccionar, de entre una lista de
factores, aquellos (uno o mas) que se tenian en cuenta a la hora de valorar el
nivel de éxito de un proyecto TIC finalizado. Puesto que se trata de una pre-
gunta con respuesta multiple (se pueden seleccionar varios factores a la vez),
en este caso se puede emplear un diagrama de barras, como se muestra en la
figura 15, para representar el porcentaje de citas de cada factor y caracterizar
asi aquellos factores mas frecuentemente citados.

Figura 15. Gréfico de barras con frecuencia de citas de factores de éxito

Indicadores utilizados para analizar el éxito de un proyecto TIC

Resultados y funcionalidades - |96 4%

Coste final acorde a presupuesto - |92, )%

o]
o
w
=3

Cumplimiento de los plazos previstos

Indicadores

Actitud del proveedor - 53,6%

Otros |14,3%

T I T I I
0,0% 20,0% 40,0% 60,0% 80,0% 100,0%

Frec. relativa

En este caso, queda claro que a la hora de valorar el éxito de un proyecto hay
tres factores que se usan casi siempre (“resultados y funcionalidad”, “coste fi-
nal acorde a presupuesto” y “cumplimiento de los plazos previstos”). Cabe ob-
servar que el factor “otros” ha sido seleccionado en un 14,3% de las respuestas,
lo que indica que tal vez exista un factor no considerado entre los anteriores

que también tenga su importancia relativa.

3.2. Ejemplo de uso de contrastes de hipétesis para comparar

dos grupos

En otra de las preguntas del cuestionario se le proponian al encuestado una
lista de cinco items o motivos por los cuales una empresa podia optar por la
externalizacion de sus servicios y sistemas TIC (p. ej.: “superar las limitaciones
de las calificaciones profesionales y técnicas del equipo interno”, “promover
cambios organizativos, estructurales o culturales internos”, “conseguir mejo-
res niveles de calidad del servicio o sistema final”, “reducir los costes totales”,
etc.). A continuacion se le pedia valorar, usando una escala linealnumérica, la
importancia de cada uno de dichos items o motivos de externalizacién, tanto
desde un punto de vista tedrico como desde un punto de vista practico (es de-
cir, el encuestado debia emitir dos evaluaciones para cada item: por un lado la

Recordatorio Minitab

Para obtener un diagrama de
barras, usar Graph > Bar Chart.
Notar que es posible personali-
zar los gréficos (p. €j., mostran-
do porcentajes, haciendo que
las barras sean horizontales)
mediante los botones Chart
Options, Scale, etc. (la ayuda
contextual de Minitab incluye
explicaciones detalladas de to-
das estas opciones).
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correspondiente a la importancia tedrica o hipotética del motivo de externa-
lizacién y, por otro, la correspondiente a la importancia real manifestada en
la practica cotidiana). La escala linealnumérica oscilaba entre 1 (muy poco im-
portante) y 5 (muy importante). Uno de los objetivos de esta pregunta era de-
terminar si para cada uno de los items existian diferencias significativas entre
su importancia hipotética o tedrica y su importancia real en la practica del dia
a dia (tales diferencias pondrian de manifiesto la existencia de otros factores
asociados con la practica diaria que alteraban significativamente el nivel de
importancia teérico de cada motivo). En este caso se opt6 por realizar un con-
traste de hipotesis para comparar las dos medias que se obtenian para cada
uno de los items (es decir, para cada motivo se realiza un contraste de hipotesis
sobre la igualdad de la puntuacién media teérica y la puntuaciéon media prac-
tica). La figura 16 muestra el output de Minitab para los dos primeros tests co-
rrespondientes a los dos primeros motivos de la lista (items Al y A2). Se
observa que en el caso del primer motivo de externalizacion considerado, no
parece haber diferencias significativas, para un nivel de significaciéon a = 0,05,
entre las medias respectivas de las puntuaciones teoricas (A1T) y las practicas
(A1P). Por el contrario, en el caso del segundo motivo, el p-valor obtenido es
muy bajo (p-valor = 0,000), lo que evidencia la existencia de diferencias signi-
ficativas entre la importancia hipotética del motivo y su importancia en la

practica.

Figura 16. Test de hipdtesis para comparar medias de motivos

~ioi]
Paired T-Test and CI: A1T, A1P il

Paired T for AIT - A1F
i) Hean Sthev  3E Mean
AlT §2 3.6951 0.5416 0.09z9

ALlF §2  3.5732 0.8017 0.0885
Difference && 0.1220 0.8662 0.0857

95% CI for mean difference: (-0.0654, 0.3123)

iT—Test, of mean difference = 0 (ws not = 0): T-Value = 1.27 P-Walue = 0,206
Paired T-Test and CI: AZT, AZP

Paired T for AZT - AZP

i) Hean Sthev  3E Mean

A2T g2 3.024 1.030 0.114
AZP g2 Z.707  0.923 0.10z
Difference 82 0.3171 0.7180 0.0793
95% CI for mean difference: (0.1593, 0.47438)
T-Test of mean difference = 0 (ws not = 0): T-Walue = 4.00 P-Value = 0.000
-
K o 4

La figura 17 muestra el valor de importancia medio obtenido para cada uno
de los cinco motivos de externalizacién considerados, tanto desde un pun-
to de vista tedrico como desde un punto de vista practico. Se observa que,
para todos los pares teoria-practica, el valor tedrico siempre es superior al
valor practico. Esto hace sospechar que si bien algunos motivos de exter-
nalizacién deberian ser considerados como muy importantes, en la practica

ello no siempre es posible debido a la influencia de otros factores (condi-

Recordatorio Minitab

Para realizar un contraste de
hipétesis para dos muestras
dependientes, usar Stat > Basic
Statistics > Paired t.
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ciones laborales, recursos disponibles, etc.). Precisamente los contrastes de
hipétesis permiten detectar aquellos casos en los que las diferencias entre
teoria y practica son significativas. Se observa también en esta figura cual
es la importancia relativa de cada motivo a la hora de decidir sobre exter-
nalizar o no los servicios y sistemas TIC.

Figura 17. Comparacion visual de la importancia relativa de los items

Valoracion media de cada motivo
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Valoracion media (1= muy poco importante; 5 = muy importante)

3.3. Ejemplo de uso de ANOVA para comparar

mas de dos grupos

A fin de disponer de informacion sobre el porcentaje de servicios y sistemas
TIC que las empresas externalizaban, en una de las preguntas se le pidi6 al
encuestado estimar ese valor porcentual. En particular, se pretendia analizar
si este porcentaje era el mismo para todas las empresas con independencia
del tamafio de su departamento TIC o si, por el contrario, este porcentaje de-
pendia de forma significativa del nimero de trabajadores en némina que tu-

viera dicho departamento.

Puesto que se habian predefinido cuatro categorias o niveles distintos de
empresas segin la dimension del departamento TIC (véase la figura 14), re-
sulta necesario aplicar un test ANOVA para dar respuesta a la duda formu-
lada. La figura 18 muestra una comparativa de los distintos diagramas de
cajas y bigotes (boxplots) por categoria o nivel. Visualmente no se observan
grandes diferencias entre los diferentes grupos, salvo quizd una cierta dife-
rencia con el grupo de empresas con departamentos entre sesenta y cien
empleados, cuyos porcentajes de externalizacion parecen algo inferiores al
resto (incluso a las de mayor tamafo). En todo caso, estas posibles diferen-

cias visuales no parecen demasiado claras.

Recordatorio Minitab

La figura muestra una nube de
puntos obtenida con Graph >
Scatterplot. Las lineas de union
entre puntos se han generado
con las opciones de dibujo de
Minitab con el fin de visualizar
mejor las diferencias.
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Figura 18. Boxplots de porcentaje de externalizacion por nivel

Porcentaje de externalizacion por nivel
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La figura 19 muestra el output ANOVA, que ayuda a despejar las dudas: un p-
valor de 0,618 indica que no se han hallado indicios suficientes como para re-
chazar la hipotesis nula de que el porcentaje medio de externalizacion es el
mismo para todos los grupos, es decir, no parece que el tamafio del departa-
mento TIC tenga una influencia decisiva en el porcentaje de servicios y siste-
mas TIC que acaban externalizandose.

Figura 19. Contraste ANOVA para comparar las medias de porcentajes

=k
One-way ANOVA: Externalizacién versus Nivel 2
Jource DF 33 Hi F 3

Hiwvel 3 1151 3597 0.60 0.618
Error 73 43499 A64d
Total 76 49630

§ = 25.78 R-Sq = 2.40% R-Sg{adj) = 0.00%

Indiwidual 95% CIs For Mean Based on
Pooled StDew

Lewel N  Mean StDewv [
<20 27 44.63 27.49
=100 11 46.82 28.92

20 a 59 24 44,83 26.10
60 a 100 15 35.33 16.56

Pooled StDev = 25.78 _I
-
A

KT ,

3.4. Ejemplo de uso de correlacion y regresion lineal

En una de las altimas preguntas del cuestionario se pedia a los encuestados esti-
mar las cantidades (en euros) que tenian previsto invertir durante el proximo afio
en adquisicién de programas y nuevos sistemas informaticos. Parece l6gico pen-

Recordatorio Minitab

Para obtener un boxplot malti-
ple, se ha de usar la opcién
Graph > Boxplot. Las lineas de
unién entre los distintos box-
plots se generan mediante las
opciones del botén Data View.
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sar que estas cantidades pueden estar inversamente relacionadas con los porcen-
tajes de externalizacién de cada empresa, esto es, cabria esperar que a mayor
porcentaje de externalizacion de servicios y sistemas TIC, menor inversion previs-
ta en adquisicion de programas y nuevos sistemas informaticos. Para tratar de co-
rroborar esta impresion y detectar una posible correlaciéon lineal entre ambas
variables se calcul6 el coeficiente de correlacion lineal entre ambas. La figura 20
muestra que, en efecto, existe una fuerte correlacion lineal negativa entre ambas
variables, ya que el coeficiente de correlacion es de —0,982.

Figura 20. Coeficiente de correlacién lineal entre externalizacién e inversién

i

Correlations: Externalizacidn, Inversidn

Pearson correlation of Externalizacién and Inwversidn = -0.982
P-¥alue = 0.000

M4

Tiene sentido, pues, representar la recta de regresion de la inversidén sobre el
nivel de externalizacién. Esta recta se muestra en la figura 21. Puesto que el
coeficiente de determinacién asociado es muy alto (R-sq = 96,5%), se puede
incluso usar al ecuacion de dicha recta para hacer estimaciones sobre la inver-
sion futura de las empresas en nuevos equipos informaticos a partir de su nivel
de externalizacion de servicios y sistemas TIC.

Figura 21. Recta de regresién de la inversion sobre el nivel de externalizacién

Recta de regresion inversion sobre % externalizacion
Inversion = 148.633 — 958,5 externalizacion

S 4.699,77
R-Sq¢  96,5%
R-Sg(adj)  96,5%

150.000 4
140.000 ’
130.000 -
120.000 +
110.000 -
100.000 -
90.000
80.000 4

Inversion (euros)

70.000 -

60.000 - T T T T T T T T T
0 10 20 30 40 50 60 70 80

Porcentaje de externalizacion

Recordatorio Minitab

Para calcular el coeficiente de
correlacién, usar la opcién Stat
> Basic Statistics > Correlation.

Recordatorio Minitab

Para representar la recta de
regresion, usar la opcién Stat >
Regression > Regression (alter-
nativamente, también se pue-
de usar Stat > Regression >
Fitted Line Plot).
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Resumen

Las técnicas de investigacion social basadas en el uso de encuestas y cuestio-
narios estan cada vez mas extendidas en todos los &mbitos. Sin embargo, dise-
flar un buen cuestionario no es una tarea facil y conviene tener presentes
aspectos clave como la brevedad y claridad de las preguntas, el tipo de escala
usada o el analisis posterior que se pretende aplicar a los datos de la muestra.

En el disefio del cuestionario y del muestreo hay que tratar de minimizar tanto
el error muestral como el error no muestral o sesgo. Para ello resulta necesario
conocer bien las diferentes técnicas basicas de muestreo que se usan en cada
caso (muestreo aleatorio simple, muestreo sistematico, muestreo estratificado

y muestreo por conglomerados).

Finalmente, una vez obtenidos los datos de la encuesta, conviene saber qué
técnicas estadisticas se pueden aplicar en cada caso y qué tipo de informacién
pueden proporcionar, tanto de forma numérica como gréfica. Precisamente,
el analisis de los resultados obtenidos mediante el uso de estas técnicas com-
porta a menudo un proceso de reflexion importante, es decir, el programa es-
tadistico siempre sera capaz de calcular naimeros y generar resultados, pero no
siempre estos resultados tendran sentido ni seran validos. Es tarea del investi-
gador comprobar si se satisfacen las hipotesis necesarias para aplicar cada téc-
nica estadistica, e interpretar y validar, si procede, los resultados generados por
los ordenadores.
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Ejercicios de autoevaluacion

1) Seleccionar un tema y disefiar un cuestionario para obtener informacion sobre el mismo.
El cuestionario debe contener una pregunta por cada tipo de escala (nominal, ordinal, de in-
tervalos equidistantes y de ratio). Argumentar la validez del cuestionario y especificar qué
tipo de técnicas estadisticas se pueden hacer servir para analizar cada pregunta.

2) Entre los investigadores de una universidad se ha realizado un estudio para conocer sus
hébitos de trabajo. Entre otras cosas, el estudio pretendia obtener informacién sobre el na-
mero medio de articulos que un investigador lee anualmente, asi como sobre qué porcentaje
de los mismos estan en inglés. Dado que la universidad tiene tres grandes &mbitos de inves-
tigacién (E-learning, Computacion y Sociedad de la Informacién), se disefié un muestreo por
estratos en el que se clasifico a cada investigador en el estrato correspondiente a su &mbito
de investigacién. La tabla siguiente resume los datos de la encuesta:

Ambito de investigacién (estrato) N; n; Xj s pi

E-learning 200 20 138 30 0,50
Computacién 250 30 103 25 0,78
Sociedad de la Informacién 100 25 210 50 0,21

Con la ayuda de un modelo de hoja de célculo (MS Excel u Open Office Calc), se pide:

a) Obtener un intervalo de confianza del 95% para el promedio de articulos leidos anualmen-
te por la poblacion de investigadores de la universidad.

b) Obtener un intervalo de confianza del 95% para el total de articulos leidos anualmente
por el conjunto de investigadores de la universidad.

c) Obtener un intervalo de confianza del 95% para el porcentaje de articulos leidos que estan
en inglés.

3) Las veinticinco bibliotecas universitarias de un pais emplean un total de trescientos pro-
fesionales en su servicio de obtencién de documentos (SOD). A fin de obtener informacion
sobre el nimero medio de documentos “dificiles de obtener” que se solicitan anualmente, se
selecciona una muestra aleatoria de cuatro bibliotecas universitarias y se encuesta a cada uno
de los profesionales del SOD respectivo. También se quiere obtener informacion sobre el nt-
mero de expertos en Tecnologias de la Informacién y Comunicacién de cada servicio SOD
analizado. La tabla inferior muestra la informacion obtenida:

. Ndmero de Total de documentos Ndmero de
(co:IgbII(:(r’r::::do) profesionales “dificiles” expertos en TIC
N; Vi m;
SOD-01 7 95 1
SOD-02 18 325 6
SOD-03 15 190 6
SOD-04 10 140 2

Con la ayuda de un modelo de hoja de calculo (MS Excel o Open Office Calc), se pide:

a) Obtener un intervalo de confianza del 95% para el promedio de documentos “dificiles de
obtener” procesados anualmente por un SOD.

b) Obtener un intervalo de confianza del 95% para el total de documentos “dificiles de ob-
tener” que son procesados anualmente por el global de los SOD.

c) Obtener un intervalo de confianza del 95% para el porcentaje de especialistas en TIC que
trabajan en los SOD del sistema universitario.

4) En un estudio se entrevist6 a ocho individuos elegidos al azar para evaluar el potencial de ven-
ta de un producto antes y después de lanzar una fuerte camparia publicitaria por television. El
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interés por comprar el producto fue determinado por cada individuo, antes y después de la cam-

pafia, usando una escala entre O y 10, donde los valores més grandes representaban un interés
mayor en adquirir el producto. La tabla siguiente muestra los resultados obtenidos:

Individuo Después Antes
1 6 5
2 6 4
3 7 7
4 4 3
5 3 5
6 9 8
7 7 5
8 6 6

Contrastad la hipoétesis nula de que, en promedio, el interés por adquirir el producto no ha
variado tras la campafia. Usad un nivel de confianza del 95%.

5) En un estudio se visitaron cinco ciudades de una provincia para preguntar a los residentes
sobre sus habitos a la hora de hacer la compra. Una de las preguntas versaba sobre el namero
de dias por mes que realizaban la compra fuera de su provincia. Un total de treinta personas
participaron en la encuesta y proporcionaron las observaciones que se incluyen en la tabla

siguiente:
Ciudad 1 Ciudad 2 Ciudad 3 Ciudad 4 Ciudad 5
1 3 2 5
3 3 5 3
2 4 7 2
1 3 4 9
1 9 8 8
0 7 1 6
Se pide:

a) Determinar si existen o no diferencias significativas entre los hdbitos de compra de los re-
sidentes en funcion de su ciudad (usar un nivel de confianza del 99%).

b) Obtener el coeficiente de correlacion entre la ciudad de residencia y el nimero de veces

por mes que se compra fuera de la provincia.
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Solucionario

1) Pregunta abierta, consultad el primer apartado de este material para comprobar la validez
del cuestionario propuesto.

2) La figura siguiente muestra los resultados obtenidos con el modelo Excel. Asi, con un nivel
de confianza del 95% se puede afirmar que:

a) El nimero medio de articulos leidos por afio e investigador oscila entre 129 y 142.

b) El total de articulos leidos por afio oscila entre 70.675 y 78.025.

c) El porcentaje de los articulos leidos que esta en inglés oscila entre el 47% y el 68%.

| A B @ || o E Fo (c) | H
investigacion

1 (estrato) N(i) n(i) x-bar(i) sli) P'(i)  N(i) " x-bar(i) N(i) " ( N(i) - n{i) ) " (s()*2/ n(i) ) N{i) * p(i) N(i) " (N(i) -n(i) )" [p'() " (1-p () )/ (n(i)-1)]

2 |E-learning 200 20 138 30 0,50 27.600 1.620.000 100 473,68

3 |Computacian 250 30 103 25 0,78 25.750 1.145.833 195 325,45
Sociedad de la

4 |Informacidn 100 25 210 50 0,21 21.000 750.000 21 51,84

5 Totales 550 75 74.350 3.515.833 316 850,98

(]

| z= 1,96

8 x(E) = 135,18 p(E) = 057

9| s(E) = 3.41 sp(E) = 0,05

10| X(E) - z's(E) = 128,50 PE) - z*sp(E) = 0,47

11 *(E) + 2"s(E) = 141,86 p'(E) + Z*sp(E) = 0,68

12| N*a= 70.674,89

13 N*b= 78.02511

14|

3) La figura siguiente muestra los resultados obtenidos con el modelo Excel. Asi, con un nivel
de confianza del 95% se puede afirmar que:

a) El namero medio de documentos “dificiles” solicitados por afio en cada SOD oscila entre
129y 142.

b) El total de documentos “dificiles” solicitados por afio en el conjunto de los SOD oscila en-
tre 3.635y 5.365.

c) El porcentaje de especialistas en TIC de entre los empleados en el conjunto de los SOD os-
cila entre 0,21 y 0,39.

L2 ] - & =[O0 SESI0TEIP2
A | B | C | D E F

1 S0D Numero de profesionales Total de documentos "dificiles” NNumero de especialistas TIC
2 |(conglomerado) N(i) wli) mii) [ w(i) - x{Cy*N(i) 1*2 [ m(i) - p"(c)"N(i) ]*2
4 |SOD-02 18 325 5] 3025,00 0,38
5 |SCD-03 15 190 6 1225,00 225
6 |SOD-04 10 140 2 100,00 1,00
i || Totales 50 750 5 4450,00 4,82
8
9 z= 1,96
10| X(C) = 15,00 p'(C) = 03
11 s(C) = 1.47 sp(C) = 0,05
12| X(C) - z*s(C) = 12,12 p'(C) - z*sp(C) = 0,21
13| X(C) + z*s(C) = 17,88 piC) + z*sp(C) = 0,39
14 N*a = 3635,18
15| N*b = 5364,82

4) En este caso, se requiere usar un contraste de hipotesis para dos poblaciones depen-
dientes (ya que son los mismos individuos los que contestan al test en dos momentos
distintos). El output de Minitab muestra un p-valor = 0,217 > 0,05 = a, es decir, no se pue-
de rechazar la hipdtesis nula de que ambas medias son iguales. En otras palabras, no se
han encontrado evidencias suficientes como para afirmar, a un nivel de confianza del
95%, que la campaiia publicitaria ha tenido efecto en la intencién de compra del produc-
to por parte de los consumidores.

=k
Paired T-Test and Cl: Antes, Después :I‘

Paired T for Antes - Después

oy Mean StDew 3SE Mean
Anres & 5.375 1.598 0.585
Después & 6.000 1.852 0.655
Difference & -0.625 1.302 0. 460

95% CI for mean difference: (-1.714, 0.464) J
T-Test of mean difference = 0 (vs not = 0): T-Value = -1.36 P-Value = 0.Z17

KN v
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5) En el output siguiente de Minitab se muestra un estadistico F = 2,85 que tiene un p-valor
asociado p = 0,045 > 0,01 = o (puesto que en este caso el nivel de confianza era del 99%). Asi
pues, no hay evidencias suficientes como para rechazar la hip6tesis nula de que todas las me-
dias son iguales, es decir, no parece haber diferencias significativas entre los habitos de com-
pra de los residentes de las distintas ciudades. Se observa que, en efecto, los intervalos de
confianza se solapan unos sobre otros.

o]
One-way ANOVA: Ciudad 1, Ciudad 2, Ciudad 3, Ciudad 4, Ciudad 5

Source DF 33 ik F P

Factor 4 B62.00 15.50 Z.85 0.045

Error 25 l3a.00 5.44
Total 2% 188.00

9 = 2.332 R-%g = 31.31% R-3gfadj) = 20.32%

Individual 99% CIzs For Mean Based on
Pooled 3tDew

tl..evel N Mean
Ciudad 1 & 1,333 —I
Ciudad 2 & 4.833
Ciudad 3 & 3.833
Ciudad 4 & 4.500
Ciudad 5 & 5.500

Pooled StDhewv = Z.332

KN oy

El output siguiente muestra que la correlaciéon entre la variable Ciudad y la variable Dias
(ambas generadas a partir de los datos iniciales) es de 0,440, valor que no parece corres-
ponder con una correlacién fuerte. En efecto, el p-valor de 0,015 hace pensar que, para
un nivel de confianza del 99%, ambas variables no estan fuertemente correlacionadas.
Observad que esta conclusion es bastante coherente con la obtenida anteriormente para
el test ANOVA.

=loi]

Correlations: Dias, Ciudad

Pearson correlation of Diaz and Ciudad = 0,440
P-Walue = 0.015
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